convert-hf-to-gguf.py 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  14. import numpy as np
  15. import torch
  16. if TYPE_CHECKING:
  17. from torch import Tensor
  18. if 'NO_LOCAL_GGUF' not in os.environ:
  19. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  20. import gguf
  21. from convert import LlamaHfVocab, permute
  22. ###### MODEL DEFINITIONS ######
  23. class SentencePieceTokenTypes(IntEnum):
  24. NORMAL = 1
  25. UNKNOWN = 2
  26. CONTROL = 3
  27. USER_DEFINED = 4
  28. UNUSED = 5
  29. BYTE = 6
  30. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  31. class Model(ABC):
  32. _model_classes: dict[str, type[Model]] = {}
  33. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  34. self.dir_model = dir_model
  35. self.ftype = ftype
  36. self.fname_out = fname_out
  37. self.is_big_endian = is_big_endian
  38. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  39. self.use_temp_file = use_temp_file
  40. self.is_safetensors = self._is_model_safetensors()
  41. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  42. self.part_names = self._get_part_names()
  43. self.hparams = Model.load_hparams(self.dir_model)
  44. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  45. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  46. @property
  47. @abstractmethod
  48. def model_arch(self) -> gguf.MODEL_ARCH:
  49. pass
  50. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  51. key = next((k for k in keys if k in self.hparams), None)
  52. if key is not None:
  53. return self.hparams[key]
  54. if optional:
  55. return None
  56. raise KeyError(f"could not find any of: {keys}")
  57. def set_vocab(self):
  58. self._set_vocab_gpt2()
  59. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  60. for part_name in self.part_names:
  61. print(f"gguf: loading model part '{part_name}'")
  62. ctx: ContextManager[Any]
  63. if self.is_safetensors:
  64. from safetensors import safe_open
  65. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  66. else:
  67. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  68. with ctx as model_part:
  69. for name in model_part.keys():
  70. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  71. yield name, data
  72. def set_gguf_parameters(self):
  73. self.gguf_writer.add_name(self.dir_model.name)
  74. self.gguf_writer.add_block_count(self.block_count)
  75. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  76. self.gguf_writer.add_context_length(n_ctx)
  77. print(f"gguf: context length = {n_ctx}")
  78. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  79. self.gguf_writer.add_embedding_length(n_embd)
  80. print(f"gguf: embedding length = {n_embd}")
  81. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  82. self.gguf_writer.add_feed_forward_length(n_ff)
  83. print(f"gguf: feed forward length = {n_ff}")
  84. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  85. self.gguf_writer.add_head_count(n_head)
  86. print(f"gguf: head count = {n_head}")
  87. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  88. self.gguf_writer.add_head_count_kv(n_head_kv)
  89. print(f"gguf: key-value head count = {n_head_kv}")
  90. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  91. self.gguf_writer.add_rope_freq_base(rope_theta)
  92. print(f"gguf: rope theta = {rope_theta}")
  93. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  94. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  95. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  96. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  97. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  98. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  99. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  100. self.gguf_writer.add_expert_count(n_experts)
  101. print(f"gguf: expert count = {n_experts}")
  102. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  103. self.gguf_writer.add_expert_used_count(n_experts_used)
  104. print(f"gguf: experts used count = {n_experts_used}")
  105. self.gguf_writer.add_file_type(self.ftype)
  106. print(f"gguf: file type = {self.ftype}")
  107. def write_tensors(self):
  108. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  109. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  110. for name, data_torch in self.get_tensors():
  111. # we don't need these
  112. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  113. continue
  114. old_dtype = data_torch.dtype
  115. # convert any unsupported data types to float32
  116. if data_torch.dtype not in (torch.float16, torch.float32):
  117. data_torch = data_torch.to(torch.float32)
  118. data = data_torch.squeeze().numpy()
  119. # map tensor names
  120. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  121. if new_name is None:
  122. print(f"Can not map tensor {name!r}")
  123. sys.exit()
  124. n_dims = len(data.shape)
  125. data_dtype = data.dtype
  126. # if f32 desired, convert any float16 to float32
  127. if self.ftype == 0 and data_dtype == np.float16:
  128. data = data.astype(np.float32)
  129. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  130. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  131. data = data.astype(np.float32)
  132. # if f16 desired, convert any float32 2-dim weight tensors to float16
  133. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  134. data = data.astype(np.float16)
  135. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  136. self.gguf_writer.add_tensor(new_name, data)
  137. def write(self):
  138. self.write_tensors()
  139. self.gguf_writer.write_header_to_file()
  140. self.gguf_writer.write_kv_data_to_file()
  141. self.gguf_writer.write_tensors_to_file()
  142. self.gguf_writer.close()
  143. def write_vocab(self):
  144. self.gguf_writer.write_header_to_file()
  145. self.gguf_writer.write_kv_data_to_file()
  146. self.gguf_writer.close()
  147. @staticmethod
  148. def count_model_parts(dir_model: Path, prefix: str) -> int:
  149. num_parts = 0
  150. for filename in os.listdir(dir_model):
  151. if filename.endswith(prefix):
  152. num_parts += 1
  153. return num_parts
  154. @staticmethod
  155. def load_hparams(dir_model):
  156. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  157. return json.load(f)
  158. @classmethod
  159. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  160. assert names
  161. def func(modelcls: type[Model]):
  162. for name in names:
  163. cls._model_classes[name] = modelcls
  164. return modelcls
  165. return func
  166. @classmethod
  167. def from_model_architecture(cls, arch):
  168. try:
  169. return cls._model_classes[arch]
  170. except KeyError:
  171. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  172. def _is_model_safetensors(self) -> bool:
  173. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  174. def _get_part_names(self):
  175. if self.is_safetensors:
  176. if self.num_parts == 1: # there's only one .safetensors file
  177. return ("model.safetensors",)
  178. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  179. if self.num_parts == 1: # there's only one .bin file
  180. return ("pytorch_model.bin",)
  181. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  182. # used for GPT-2 BPE and WordPiece vocabs
  183. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  184. tokens: list[str] = []
  185. toktypes: list[int] = []
  186. from transformers import AutoTokenizer
  187. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  188. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  189. assert max(tokenizer.vocab.values()) < vocab_size
  190. tokpre = self.get_vocab_base_pre(tokenizer)
  191. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  192. added_vocab = tokenizer.get_added_vocab()
  193. for i in range(vocab_size):
  194. if i not in reverse_vocab:
  195. tokens.append(f"[PAD{i}]")
  196. toktypes.append(gguf.TokenType.USER_DEFINED)
  197. elif reverse_vocab[i] in added_vocab:
  198. tokens.append(reverse_vocab[i])
  199. if tokenizer.added_tokens_decoder[i].special:
  200. toktypes.append(gguf.TokenType.CONTROL)
  201. else:
  202. toktypes.append(gguf.TokenType.USER_DEFINED)
  203. else:
  204. tokens.append(reverse_vocab[i])
  205. toktypes.append(gguf.TokenType.NORMAL)
  206. return tokens, toktypes, tokpre
  207. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  208. # do not modify it manually!
  209. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  210. def get_vocab_base_pre(self, tokenizer) -> str:
  211. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  212. # is specific for the BPE pre-tokenizer used by the model
  213. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  214. # use in llama.cpp to implement the same pre-tokenizer
  215. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  216. chktok = tokenizer.encode(chktxt)
  217. chkhsh = sha256(str(chktok).encode()).hexdigest()
  218. print(f"chktok: {chktok}")
  219. print(f"chkhsh: {chkhsh}")
  220. res = None
  221. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  222. # or pull the latest version of the model from Huggingface
  223. # don't edit the hashes manually!
  224. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  225. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  226. res = "llama-bpe"
  227. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  228. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  229. res = "deepseek-llm"
  230. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  231. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  232. res = "deepseek-coder"
  233. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  234. # ref: https://huggingface.co/tiiuae/falcon-7b
  235. res = "falcon"
  236. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  237. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  238. res = "bert-bge"
  239. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  240. # ref: https://huggingface.co/mosaicml/mpt-7b
  241. res = "mpt"
  242. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  243. # ref: https://huggingface.co/bigcode/starcoder2-3b
  244. res = "starcoder"
  245. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  246. # ref: https://huggingface.co/openai-community/gpt2
  247. res = "gpt-2"
  248. if res is None:
  249. print("\n")
  250. print("**************************************************************************************")
  251. print("** WARNING: The BPE pre-tokenizer was not recognized!")
  252. print("** There are 2 possible reasons for this:")
  253. print("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  254. print("** - the pre-tokenization config has changed upstream")
  255. print("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  256. print("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  257. print("**")
  258. print(f"** chkhsh: {chkhsh}")
  259. print("**************************************************************************************")
  260. print("\n")
  261. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  262. print(f"tokenizer.ggml.pre: {res}")
  263. print(f"chkhsh: {chkhsh}")
  264. return res
  265. def _set_vocab_gpt2(self) -> None:
  266. tokens, toktypes, tokpre = self.get_vocab_base()
  267. self.gguf_writer.add_tokenizer_model("gpt2")
  268. self.gguf_writer.add_tokenizer_pre(tokpre)
  269. self.gguf_writer.add_token_list(tokens)
  270. self.gguf_writer.add_token_types(toktypes)
  271. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  272. special_vocab.add_to_gguf(self.gguf_writer)
  273. def _set_vocab_qwen(self):
  274. dir_model = self.dir_model
  275. hparams = self.hparams
  276. tokens: list[str] = []
  277. toktypes: list[int] = []
  278. from transformers import AutoTokenizer
  279. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  280. vocab_size = hparams["vocab_size"]
  281. assert max(tokenizer.get_vocab().values()) < vocab_size
  282. tokpre = self.get_vocab_base_pre(tokenizer)
  283. merges = []
  284. vocab = {}
  285. mergeable_ranks = tokenizer.mergeable_ranks
  286. for token, rank in mergeable_ranks.items():
  287. vocab[QwenModel.token_bytes_to_string(token)] = rank
  288. if len(token) == 1:
  289. continue
  290. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  291. assert len(merged) == 2
  292. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  293. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  294. added_vocab = tokenizer.special_tokens
  295. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  296. for i in range(vocab_size):
  297. if i not in reverse_vocab:
  298. tokens.append(f"[PAD{i}]")
  299. toktypes.append(gguf.TokenType.USER_DEFINED)
  300. elif reverse_vocab[i] in added_vocab:
  301. tokens.append(reverse_vocab[i])
  302. toktypes.append(gguf.TokenType.CONTROL)
  303. else:
  304. tokens.append(reverse_vocab[i])
  305. toktypes.append(gguf.TokenType.NORMAL)
  306. self.gguf_writer.add_tokenizer_model("gpt2")
  307. self.gguf_writer.add_tokenizer_pre(tokpre)
  308. self.gguf_writer.add_token_list(tokens)
  309. self.gguf_writer.add_token_types(toktypes)
  310. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  311. special_vocab.merges = merges
  312. # only add special tokens when they were not already loaded from config.json
  313. if len(special_vocab.special_token_ids) == 0:
  314. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  315. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  316. # this one is usually not in config.json anyway
  317. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  318. special_vocab.add_to_gguf(self.gguf_writer)
  319. def _set_vocab_sentencepiece(self):
  320. from sentencepiece import SentencePieceProcessor
  321. tokenizer_path = self.dir_model / 'tokenizer.model'
  322. tokens: list[bytes] = []
  323. scores: list[float] = []
  324. toktypes: list[int] = []
  325. if not tokenizer_path.is_file():
  326. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  327. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  328. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  329. for token_id in range(tokenizer.vocab_size()):
  330. piece = tokenizer.id_to_piece(token_id)
  331. text = piece.encode("utf-8")
  332. score = tokenizer.get_score(token_id)
  333. toktype = SentencePieceTokenTypes.NORMAL
  334. if tokenizer.is_unknown(token_id):
  335. toktype = SentencePieceTokenTypes.UNKNOWN
  336. elif tokenizer.is_control(token_id):
  337. toktype = SentencePieceTokenTypes.CONTROL
  338. elif tokenizer.is_unused(token_id):
  339. toktype = SentencePieceTokenTypes.UNUSED
  340. elif tokenizer.is_byte(token_id):
  341. toktype = SentencePieceTokenTypes.BYTE
  342. tokens.append(text)
  343. scores.append(score)
  344. toktypes.append(toktype)
  345. added_tokens_file = self.dir_model / 'added_tokens.json'
  346. if added_tokens_file.is_file():
  347. with open(added_tokens_file, "r", encoding="utf-8") as f:
  348. added_tokens_json = json.load(f)
  349. for key in added_tokens_json:
  350. key = key.encode("utf-8")
  351. if key not in tokens:
  352. tokens.append(key)
  353. scores.append(-1000.0)
  354. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  355. if vocab_size > len(tokens):
  356. pad_count = vocab_size - len(tokens)
  357. print(
  358. f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
  359. )
  360. for i in range(1, pad_count + 1):
  361. tokens.append(f"[PAD{i}]")
  362. scores.append(-1000.0)
  363. toktypes.append(SentencePieceTokenTypes.UNUSED)
  364. assert len(tokens) == vocab_size
  365. self.gguf_writer.add_tokenizer_model("llama")
  366. self.gguf_writer.add_tokenizer_pre("default")
  367. self.gguf_writer.add_token_list(tokens)
  368. self.gguf_writer.add_token_scores(scores)
  369. self.gguf_writer.add_token_types(toktypes)
  370. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  371. special_vocab.add_to_gguf(self.gguf_writer)
  372. def _set_vocab_llama_hf(self):
  373. vocab = LlamaHfVocab(self.dir_model)
  374. tokens = []
  375. scores = []
  376. toktypes = []
  377. for text, score, toktype in vocab.all_tokens():
  378. tokens.append(text)
  379. scores.append(score)
  380. toktypes.append(toktype)
  381. assert len(tokens) == vocab.vocab_size
  382. self.gguf_writer.add_tokenizer_model("llama")
  383. self.gguf_writer.add_tokenizer_pre("default")
  384. self.gguf_writer.add_token_list(tokens)
  385. self.gguf_writer.add_token_scores(scores)
  386. self.gguf_writer.add_token_types(toktypes)
  387. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  388. special_vocab.add_to_gguf(self.gguf_writer)
  389. @Model.register("GPTNeoXForCausalLM")
  390. class GPTNeoXModel(Model):
  391. model_arch = gguf.MODEL_ARCH.GPTNEOX
  392. def set_gguf_parameters(self):
  393. block_count = self.hparams["num_hidden_layers"]
  394. self.gguf_writer.add_name(self.dir_model.name)
  395. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  396. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  397. self.gguf_writer.add_block_count(block_count)
  398. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  399. self.gguf_writer.add_rope_dimension_count(
  400. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  401. )
  402. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  403. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  404. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  405. @Model.register("BloomForCausalLM")
  406. class BloomModel(Model):
  407. model_arch = gguf.MODEL_ARCH.BLOOM
  408. def set_gguf_parameters(self):
  409. self.gguf_writer.add_name("Bloom")
  410. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  411. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  412. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  413. self.gguf_writer.add_embedding_length(n_embed)
  414. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  415. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  416. self.gguf_writer.add_head_count(n_head)
  417. self.gguf_writer.add_head_count_kv(n_head)
  418. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  419. self.gguf_writer.add_file_type(self.ftype)
  420. def write_tensors(self):
  421. block_count = self.hparams["n_layer"]
  422. tensors = dict(self.get_tensors())
  423. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  424. has_lm_head = True
  425. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  426. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  427. for name, data_torch in tensors.items():
  428. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  429. has_lm_head = False
  430. name = re.sub(r'transformer\.', '', name)
  431. old_dtype = data_torch.dtype
  432. # convert any unsupported data types to float32
  433. if data_torch.dtype not in (torch.float16, torch.float32):
  434. data_torch = data_torch.to(torch.float32)
  435. data = data_torch.squeeze().numpy()
  436. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  437. # Map bloom-style qkv_linear to gpt-style qkv_linear
  438. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  439. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  440. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  441. data = np.concatenate(
  442. (
  443. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  444. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  445. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  446. ),
  447. axis=0,
  448. )
  449. print("re-format attention.linear_qkv.weight")
  450. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  451. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  452. data = np.concatenate(
  453. (
  454. qkv_bias[:, 0, :].reshape((n_embed,)),
  455. qkv_bias[:, 1, :].reshape((n_embed,)),
  456. qkv_bias[:, 2, :].reshape((n_embed,)),
  457. ),
  458. axis=0,
  459. )
  460. print("re-format attention.linear_qkv.bias")
  461. # map tensor names
  462. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  463. if new_name is None:
  464. print(f"Can not map tensor {name!r}")
  465. sys.exit()
  466. n_dims = len(data.shape)
  467. data_dtype = data.dtype
  468. # if f32 desired, convert any float16 to float32
  469. if self.ftype == 0 and data_dtype == np.float16:
  470. data = data.astype(np.float32)
  471. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  472. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  473. data = data.astype(np.float32)
  474. # if f16 desired, convert any float32 2-dim weight tensors to float16
  475. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  476. data = data.astype(np.float16)
  477. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  478. self.gguf_writer.add_tensor(new_name, data)
  479. if not has_lm_head and name == "word_embeddings.weight":
  480. self.gguf_writer.add_tensor("output.weight", data)
  481. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  482. @Model.register("MPTForCausalLM")
  483. class MPTModel(Model):
  484. model_arch = gguf.MODEL_ARCH.MPT
  485. def set_vocab(self):
  486. try:
  487. self._set_vocab_gpt2()
  488. except Exception:
  489. # Fallback for SEA-LION model
  490. self._set_vocab_sentencepiece()
  491. self.gguf_writer.add_add_bos_token(False)
  492. self.gguf_writer.add_pad_token_id(3)
  493. self.gguf_writer.add_eos_token_id(1)
  494. self.gguf_writer.add_unk_token_id(0)
  495. def set_gguf_parameters(self):
  496. block_count = self.hparams["n_layers"]
  497. self.gguf_writer.add_name(self.dir_model.name)
  498. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  499. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  500. self.gguf_writer.add_block_count(block_count)
  501. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  502. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  503. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  504. self.gguf_writer.add_head_count_kv(kv_n_heads)
  505. self.gguf_writer.add_layer_norm_eps(1e-5)
  506. if self.hparams["attn_config"]["clip_qkv"] is not None:
  507. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  508. if self.hparams["attn_config"]["alibi"]:
  509. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  510. else:
  511. self.gguf_writer.add_max_alibi_bias(0.0)
  512. def write_tensors(self):
  513. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  514. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  515. for name, data_torch in self.get_tensors():
  516. # we don't need these
  517. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  518. continue
  519. old_dtype = data_torch.dtype
  520. # convert any unsupported data types to float32
  521. if data_torch.dtype not in (torch.float16, torch.float32):
  522. data_torch = data_torch.to(torch.float32)
  523. data = data_torch.squeeze().numpy()
  524. # map tensor names
  525. if "scales" in name:
  526. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  527. if new_name is not None:
  528. new_name = new_name.replace("scales", "act.scales")
  529. else:
  530. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  531. if new_name is None:
  532. print(f"Can not map tensor {name!r}")
  533. sys.exit()
  534. n_dims = len(data.shape)
  535. data_dtype = data.dtype
  536. # if f32 desired, convert any float16 to float32
  537. if self.ftype == 0 and data_dtype == np.float16:
  538. data = data.astype(np.float32)
  539. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  540. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  541. data = data.astype(np.float32)
  542. # if f16 desired, convert any float32 2-dim weight tensors to float16
  543. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  544. data = data.astype(np.float16)
  545. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  546. self.gguf_writer.add_tensor(new_name, data)
  547. @Model.register("OrionForCausalLM")
  548. class OrionModel(Model):
  549. model_arch = gguf.MODEL_ARCH.ORION
  550. def set_vocab(self):
  551. self._set_vocab_sentencepiece()
  552. def set_gguf_parameters(self):
  553. block_count = self.hparams["num_hidden_layers"]
  554. head_count = self.hparams["num_attention_heads"]
  555. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  556. hf_repo = self.hparams.get("_name_or_path", "")
  557. ctx_length = 0
  558. if "max_sequence_length" in self.hparams:
  559. ctx_length = self.hparams["max_sequence_length"]
  560. elif "max_position_embeddings" in self.hparams:
  561. ctx_length = self.hparams["max_position_embeddings"]
  562. elif "model_max_length" in self.hparams:
  563. ctx_length = self.hparams["model_max_length"]
  564. else:
  565. print("gguf: can not find ctx length parameter.")
  566. sys.exit()
  567. self.gguf_writer.add_file_type(self.ftype)
  568. self.gguf_writer.add_name(self.dir_model.name)
  569. self.gguf_writer.add_source_hf_repo(hf_repo)
  570. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  571. self.gguf_writer.add_context_length(ctx_length)
  572. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  573. self.gguf_writer.add_block_count(block_count)
  574. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  575. self.gguf_writer.add_head_count(head_count)
  576. self.gguf_writer.add_head_count_kv(head_count_kv)
  577. # note: config provides rms norm but it is actually layer norm
  578. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  579. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  580. def write_tensors(self):
  581. # Collect tensors from generator object
  582. model_kv = dict(self.get_tensors())
  583. block_count = self.hparams["num_hidden_layers"]
  584. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  585. for name, data_torch in model_kv.items():
  586. # we don't need these
  587. if name.endswith(".rotary_emb.inv_freq"):
  588. continue
  589. old_dtype = data_torch.dtype
  590. # convert any unsupported data types to float32
  591. if data_torch.dtype not in (torch.float16, torch.float32):
  592. data_torch = data_torch.to(torch.float32)
  593. data = data_torch.squeeze().numpy()
  594. # map tensor names
  595. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  596. if new_name is None:
  597. print(f"Can not map tensor {name!r}")
  598. sys.exit()
  599. n_dims = len(data.shape)
  600. data_dtype = data.dtype
  601. # if f32 desired, convert any float16 to float32
  602. if self.ftype == 0 and data_dtype == np.float16:
  603. data = data.astype(np.float32)
  604. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  605. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  606. data = data.astype(np.float32)
  607. # if f16 desired, convert any float32 2-dim weight tensors to float16
  608. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  609. data = data.astype(np.float16)
  610. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  611. self.gguf_writer.add_tensor(new_name, data)
  612. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  613. class BaichuanModel(Model):
  614. model_arch = gguf.MODEL_ARCH.BAICHUAN
  615. def set_vocab(self):
  616. self._set_vocab_sentencepiece()
  617. def set_gguf_parameters(self):
  618. block_count = self.hparams["num_hidden_layers"]
  619. head_count = self.hparams["num_attention_heads"]
  620. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  621. hf_repo = self.hparams.get("_name_or_path", "")
  622. ctx_length = 0
  623. if "max_sequence_length" in self.hparams:
  624. ctx_length = self.hparams["max_sequence_length"]
  625. elif "max_position_embeddings" in self.hparams:
  626. ctx_length = self.hparams["max_position_embeddings"]
  627. elif "model_max_length" in self.hparams:
  628. ctx_length = self.hparams["model_max_length"]
  629. else:
  630. print("gguf: can not find ctx length parameter.")
  631. sys.exit()
  632. self.gguf_writer.add_name(self.dir_model.name)
  633. self.gguf_writer.add_source_hf_repo(hf_repo)
  634. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  635. self.gguf_writer.add_context_length(ctx_length)
  636. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  637. self.gguf_writer.add_block_count(block_count)
  638. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  639. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  640. self.gguf_writer.add_head_count(head_count)
  641. self.gguf_writer.add_head_count_kv(head_count_kv)
  642. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  643. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  644. if self.hparams["rope_scaling"].get("type") == "linear":
  645. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  646. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  647. def write_tensors(self):
  648. # Collect tensors from generator object
  649. model_kv = dict(self.get_tensors())
  650. block_count = self.hparams["num_hidden_layers"]
  651. head_count = self.hparams["num_attention_heads"]
  652. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  653. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  654. for i in range(block_count):
  655. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  656. print(f"Unpacking and permuting layer {i}")
  657. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  658. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  659. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  660. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  661. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  662. self._reverse_hf_part(w, 2)
  663. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  664. for name, data_torch in model_kv.items():
  665. # we don't need these
  666. if name.endswith(".rotary_emb.inv_freq"):
  667. continue
  668. old_dtype = data_torch.dtype
  669. # convert any unsupported data types to float32
  670. if data_torch.dtype not in (torch.float16, torch.float32):
  671. data_torch = data_torch.to(torch.float32)
  672. data = data_torch.squeeze().numpy()
  673. # map tensor names
  674. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  675. if new_name is None:
  676. print(f"Can not map tensor {name!r}")
  677. sys.exit()
  678. n_dims = len(data.shape)
  679. data_dtype = data.dtype
  680. # if f32 desired, convert any float16 to float32
  681. if self.ftype == 0 and data_dtype == np.float16:
  682. data = data.astype(np.float32)
  683. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  684. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  685. data = data.astype(np.float32)
  686. # if f16 desired, convert any float32 2-dim weight tensors to float16
  687. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  688. data = data.astype(np.float16)
  689. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  690. self.gguf_writer.add_tensor(new_name, data)
  691. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  692. if n_kv_head is not None and n_head != n_kv_head:
  693. n_head //= n_kv_head
  694. return (
  695. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  696. .swapaxes(1, 2)
  697. .reshape(weights.shape)
  698. )
  699. def _reverse_hf_permute_part(
  700. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  701. ) -> Tensor:
  702. r = weights.shape[0] // 3
  703. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  704. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  705. r = weights.shape[0] // 3
  706. return weights[r * n_part:r * n_part + r, ...]
  707. @Model.register("XverseForCausalLM")
  708. class XverseModel(Model):
  709. model_arch = gguf.MODEL_ARCH.XVERSE
  710. def set_vocab(self):
  711. assert (self.dir_model / "tokenizer.json").is_file()
  712. dir_model = self.dir_model
  713. hparams = self.hparams
  714. tokens: list[bytearray] = []
  715. toktypes: list[int] = []
  716. from transformers import AutoTokenizer
  717. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  718. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  719. assert max(tokenizer.vocab.values()) < vocab_size
  720. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  721. added_vocab = tokenizer.get_added_vocab()
  722. for token_id in range(vocab_size):
  723. token_text = reverse_vocab[token_id].encode('utf-8')
  724. # replace "\x00" to string with length > 0
  725. if token_text == b"\x00":
  726. toktype = gguf.TokenType.BYTE # special
  727. token_text = f"<{token_text}>".encode('utf-8')
  728. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  729. toktype = gguf.TokenType.BYTE # special
  730. elif reverse_vocab[token_id] in added_vocab:
  731. if tokenizer.added_tokens_decoder[token_id].special:
  732. toktype = gguf.TokenType.CONTROL
  733. else:
  734. toktype = gguf.TokenType.USER_DEFINED
  735. else:
  736. toktype = gguf.TokenType.NORMAL
  737. tokens.append(token_text)
  738. toktypes.append(toktype)
  739. self.gguf_writer.add_tokenizer_model("llama")
  740. self.gguf_writer.add_tokenizer_pre("default")
  741. self.gguf_writer.add_token_list(tokens)
  742. self.gguf_writer.add_token_types(toktypes)
  743. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  744. special_vocab.add_to_gguf(self.gguf_writer)
  745. def set_gguf_parameters(self):
  746. block_count = self.hparams["num_hidden_layers"]
  747. head_count = self.hparams["num_attention_heads"]
  748. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  749. hf_repo = self.hparams.get("_name_or_path", "")
  750. ctx_length = 0
  751. if "max_sequence_length" in self.hparams:
  752. ctx_length = self.hparams["max_sequence_length"]
  753. elif "max_position_embeddings" in self.hparams:
  754. ctx_length = self.hparams["max_position_embeddings"]
  755. elif "model_max_length" in self.hparams:
  756. ctx_length = self.hparams["model_max_length"]
  757. else:
  758. print("gguf: can not find ctx length parameter.")
  759. sys.exit()
  760. self.gguf_writer.add_name(self.dir_model.name)
  761. self.gguf_writer.add_source_hf_repo(hf_repo)
  762. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  763. self.gguf_writer.add_context_length(ctx_length)
  764. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  765. self.gguf_writer.add_block_count(block_count)
  766. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  767. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  768. self.gguf_writer.add_head_count(head_count)
  769. self.gguf_writer.add_head_count_kv(head_count_kv)
  770. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  771. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  772. if self.hparams["rope_scaling"].get("type") == "linear":
  773. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  774. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  775. def write_tensors(self):
  776. # Collect tensors from generator object
  777. model_kv = dict(self.get_tensors())
  778. block_count = self.hparams["num_hidden_layers"]
  779. head_count = self.hparams["num_attention_heads"]
  780. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  781. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  782. for name, data_torch in model_kv.items():
  783. # we don't need these
  784. if name.endswith(".rotary_emb.inv_freq"):
  785. continue
  786. old_dtype = data_torch.dtype
  787. # convert any unsupported data types to float32
  788. if data_torch.dtype not in (torch.float16, torch.float32):
  789. data_torch = data_torch.to(torch.float32)
  790. # HF models permute some of the tensors, so we need to undo that
  791. if name.endswith(("q_proj.weight")):
  792. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  793. if name.endswith(("k_proj.weight")):
  794. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  795. data = data_torch.squeeze().numpy()
  796. # map tensor names
  797. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  798. if new_name is None:
  799. print(f"Can not map tensor {name!r}")
  800. sys.exit()
  801. n_dims = len(data.shape)
  802. data_dtype = data.dtype
  803. # if f32 desired, convert any float16 to float32
  804. if self.ftype == 0 and data_dtype == np.float16:
  805. data = data.astype(np.float32)
  806. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  807. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  808. data = data.astype(np.float32)
  809. # if f16 desired, convert any float32 2-dim weight tensors to float16
  810. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  811. data = data.astype(np.float16)
  812. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  813. self.gguf_writer.add_tensor(new_name, data)
  814. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  815. if n_kv_head is not None and n_head != n_kv_head:
  816. n_head //= n_kv_head
  817. return (
  818. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  819. .swapaxes(1, 2)
  820. .reshape(weights.shape)
  821. )
  822. @Model.register("FalconForCausalLM", "RWForCausalLM")
  823. class FalconModel(Model):
  824. model_arch = gguf.MODEL_ARCH.FALCON
  825. def set_gguf_parameters(self):
  826. block_count = self.hparams.get("num_hidden_layers")
  827. if block_count is None:
  828. block_count = self.hparams["n_layer"] # old name
  829. n_head = self.hparams.get("num_attention_heads")
  830. if n_head is None:
  831. n_head = self.hparams["n_head"] # old name
  832. n_head_kv = self.hparams.get("num_kv_heads")
  833. if n_head_kv is None:
  834. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  835. self.gguf_writer.add_name("Falcon")
  836. self.gguf_writer.add_context_length(2048) # not in config.json
  837. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  838. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  839. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  840. self.gguf_writer.add_block_count(block_count)
  841. self.gguf_writer.add_head_count(n_head)
  842. self.gguf_writer.add_head_count_kv(n_head_kv)
  843. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  844. self.gguf_writer.add_file_type(self.ftype)
  845. def write_tensors(self):
  846. block_count = self.hparams.get("num_hidden_layers")
  847. if block_count is None:
  848. block_count = self.hparams["n_layer"] # old name
  849. n_head = self.hparams.get("num_attention_heads")
  850. if n_head is None:
  851. n_head = self.hparams["n_head"] # old name
  852. n_head_kv = self.hparams.get("num_kv_heads")
  853. if n_head_kv is None:
  854. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  855. head_dim = self.hparams["hidden_size"] // n_head
  856. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  857. for name, data_torch in self.get_tensors():
  858. old_dtype = data_torch.dtype
  859. # convert any unsupported data types to float32
  860. if data_torch.dtype not in (torch.float16, torch.float32):
  861. data_torch = data_torch.to(torch.float32)
  862. # QKV tensor transform
  863. # The original query_key_value tensor contains n_head_kv "kv groups",
  864. # each consisting of n_head/n_head_kv query weights followed by one key
  865. # and one value weight (shared by all query heads in the kv group).
  866. # This layout makes it a big pain to work with in GGML.
  867. # So we rearrange them here,, so that we have n_head query weights
  868. # followed by n_head_kv key weights followed by n_head_kv value weights,
  869. # in contiguous fashion.
  870. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  871. if "query_key_value" in name:
  872. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  873. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  874. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  875. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  876. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  877. data = data_torch.squeeze().numpy()
  878. # map tensor names
  879. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  880. if new_name is None:
  881. print(f"Can not map tensor {name!r}")
  882. sys.exit()
  883. n_dims = len(data.shape)
  884. data_dtype = data.dtype
  885. # if f32 desired, convert any float16 to float32
  886. if self.ftype == 0 and data_dtype == np.float16:
  887. data = data.astype(np.float32)
  888. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  889. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  890. data = data.astype(np.float32)
  891. # if f16 desired, convert any float32 2-dim weight tensors to float16
  892. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  893. data = data.astype(np.float16)
  894. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  895. self.gguf_writer.add_tensor(new_name, data)
  896. @Model.register("GPTBigCodeForCausalLM")
  897. class StarCoderModel(Model):
  898. model_arch = gguf.MODEL_ARCH.STARCODER
  899. def set_gguf_parameters(self):
  900. block_count = self.hparams["n_layer"]
  901. self.gguf_writer.add_name("StarCoder")
  902. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  903. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  904. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  905. self.gguf_writer.add_block_count(block_count)
  906. self.gguf_writer.add_head_count(self.hparams["n_head"])
  907. self.gguf_writer.add_head_count_kv(1)
  908. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  909. self.gguf_writer.add_file_type(self.ftype)
  910. @Model.register("GPTRefactForCausalLM")
  911. class RefactModel(Model):
  912. model_arch = gguf.MODEL_ARCH.REFACT
  913. def set_gguf_parameters(self):
  914. hidden_dim = self.hparams["n_embd"]
  915. inner_dim = 4 * hidden_dim
  916. hidden_dim = int(2 * inner_dim / 3)
  917. multiple_of = 256
  918. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  919. block_count = self.hparams["n_layer"]
  920. self.gguf_writer.add_name("Refact")
  921. # refact uses Alibi. So this is from config.json which might be used by training.
  922. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  923. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  924. self.gguf_writer.add_feed_forward_length(ff_dim)
  925. self.gguf_writer.add_block_count(block_count)
  926. self.gguf_writer.add_head_count(self.hparams["n_head"])
  927. self.gguf_writer.add_head_count_kv(1)
  928. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  929. self.gguf_writer.add_file_type(self.ftype)
  930. def write_tensors(self):
  931. hidden_dim = self.hparams["n_embd"]
  932. inner_dim = 4 * hidden_dim
  933. hidden_dim = int(2 * inner_dim / 3)
  934. multiple_of = 256
  935. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  936. n_head = self.hparams["n_head"]
  937. n_head_kv = 1
  938. head_dim = self.hparams["n_embd"] // n_head
  939. block_count = self.hparams["n_layer"]
  940. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  941. tensors = dict(self.get_tensors())
  942. for i in range(block_count):
  943. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  944. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  945. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  946. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  947. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  948. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  949. del tensors[f"transformer.h.{i}.attn.q.weight"]
  950. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  951. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  952. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  953. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  954. for name, data_torch in tensors.items():
  955. old_dtype = data_torch.dtype
  956. # convert any unsupported data types to float32
  957. if data_torch.dtype not in (torch.float16, torch.float32):
  958. data_torch = data_torch.to(torch.float32)
  959. data = data_torch.squeeze().numpy()
  960. # map tensor names
  961. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  962. if new_name is None:
  963. print(f"Can not map tensor {name!r}")
  964. sys.exit()
  965. n_dims = len(data.shape)
  966. data_dtype = data.dtype
  967. # if f32 desired, convert any float16 to float32
  968. if self.ftype == 0 and data_dtype == np.float16:
  969. data = data.astype(np.float32)
  970. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  971. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  972. data = data.astype(np.float32)
  973. # if f16 desired, convert any float32 2-dim weight tensors to float16
  974. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  975. data = data.astype(np.float16)
  976. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  977. self.gguf_writer.add_tensor(new_name, data)
  978. @Model.register("PersimmonForCausalLM")
  979. class PersimmonModel(Model):
  980. model_arch = gguf.MODEL_ARCH.PERSIMMON
  981. def set_gguf_parameters(self):
  982. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  983. head_count = self.hparams["num_attention_heads"]
  984. head_count_kv = head_count
  985. hidden_size = self.hparams["hidden_size"]
  986. self.gguf_writer.add_name('persimmon-8b-chat')
  987. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  988. self.gguf_writer.add_embedding_length(hidden_size)
  989. self.gguf_writer.add_block_count(block_count)
  990. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  991. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  992. # than the head size?
  993. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  994. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  995. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  996. self.gguf_writer.add_head_count(head_count)
  997. self.gguf_writer.add_head_count_kv(head_count_kv)
  998. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  999. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1000. def set_vocab(self):
  1001. self._set_vocab_sentencepiece()
  1002. # self.gguf_writer.add_bos_token_id(71013)
  1003. # self.gguf_writer.add_eos_token_id(71013)
  1004. def write_tensors(self):
  1005. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1006. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1007. for name, data_torch in self.get_tensors():
  1008. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  1009. continue
  1010. old_dtype = data_torch.dtype
  1011. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  1012. data = data_torch.to(torch.float32).squeeze().numpy()
  1013. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1014. if new_name is None:
  1015. print(f"Can not map tensor {name!r}")
  1016. sys.exit()
  1017. n_dims = len(data.shape)
  1018. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1019. self.gguf_writer.add_tensor(new_name, data)
  1020. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1021. class StableLMModel(Model):
  1022. model_arch = gguf.MODEL_ARCH.STABLELM
  1023. def set_vocab(self):
  1024. if (self.dir_model / "tokenizer.json").is_file():
  1025. self._set_vocab_gpt2()
  1026. else:
  1027. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1028. self._set_vocab_qwen()
  1029. def set_gguf_parameters(self):
  1030. hparams = self.hparams
  1031. block_count = hparams["num_hidden_layers"]
  1032. self.gguf_writer.add_name(self.dir_model.name)
  1033. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1034. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1035. self.gguf_writer.add_block_count(block_count)
  1036. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1037. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1038. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1039. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1040. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1041. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1042. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1043. def write_tensors(self):
  1044. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1045. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1046. n_head = self.hparams.get("num_attention_heads")
  1047. n_kv_head = self.hparams.get("num_key_value_heads")
  1048. q_norms = dict()
  1049. k_norms = dict()
  1050. for name, data_torch in self.get_tensors():
  1051. # we don't need these
  1052. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1053. continue
  1054. old_dtype = data_torch.dtype
  1055. # convert any unsupported data types to float32
  1056. if data_torch.dtype not in (torch.float16, torch.float32):
  1057. data_torch = data_torch.to(torch.float32)
  1058. data = data_torch.squeeze().numpy()
  1059. n_dims = len(data.shape)
  1060. if name.find("q_layernorm.norms") != -1:
  1061. q_norms[name] = data
  1062. if len(q_norms) >= (block_count * n_head):
  1063. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  1064. continue
  1065. if name.find("k_layernorm.norms") != -1:
  1066. k_norms[name] = data
  1067. if len(k_norms) >= (block_count * n_kv_head):
  1068. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1069. continue
  1070. # map tensor names
  1071. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1072. if new_name is None:
  1073. print(f"Can not map tensor {name!r}")
  1074. sys.exit()
  1075. n_dims = len(data.shape)
  1076. data_dtype = data.dtype
  1077. # if f32 desired, convert any float16 to float32
  1078. if self.ftype == 0 and data_dtype == np.float16:
  1079. data = data.astype(np.float32)
  1080. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1081. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1082. data = data.astype(np.float32)
  1083. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1084. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1085. data = data.astype(np.float16)
  1086. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1087. self.gguf_writer.add_tensor(new_name, data)
  1088. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1089. for bid in range(block_count):
  1090. datas = []
  1091. for xid in range(n_head):
  1092. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1093. datas.append(norms[ename])
  1094. del norms[ename]
  1095. data = np.stack(datas, axis=0)
  1096. data_dtype = data.dtype
  1097. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1098. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1099. if new_name is None:
  1100. print(f"Can not map tensor {name!r}")
  1101. sys.exit()
  1102. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1103. data = data.astype(np.float32)
  1104. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1105. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1106. data = data.astype(np.float16)
  1107. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1108. self.gguf_writer.add_tensor(new_name, data)
  1109. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1110. class LlamaModel(Model):
  1111. model_arch = gguf.MODEL_ARCH.LLAMA
  1112. def set_vocab(self):
  1113. try:
  1114. self. _set_vocab_sentencepiece()
  1115. except FileNotFoundError:
  1116. try:
  1117. self._set_vocab_llama_hf()
  1118. except (FileNotFoundError, TypeError):
  1119. # Llama 3
  1120. self._set_vocab_gpt2()
  1121. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1122. if self.hparams.get("vocab_size", 32000) == 32016:
  1123. special_vocab = gguf.SpecialVocab(
  1124. self.dir_model, load_merges=False,
  1125. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1126. )
  1127. special_vocab._set_special_token("prefix", 32007)
  1128. special_vocab._set_special_token("suffix", 32008)
  1129. special_vocab._set_special_token("middle", 32009)
  1130. special_vocab._set_special_token("eot", 32010)
  1131. special_vocab.add_to_gguf(self.gguf_writer)
  1132. def set_gguf_parameters(self):
  1133. super().set_gguf_parameters()
  1134. hparams = self.hparams
  1135. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1136. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1137. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1138. if self.hparams["rope_scaling"].get("type") == "linear":
  1139. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1140. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1141. # Same as super class, but permuting q_proj, k_proj
  1142. def write_tensors(self):
  1143. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1144. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1145. n_head = self.hparams.get("num_attention_heads")
  1146. n_kv_head = self.hparams.get("num_key_value_heads")
  1147. n_experts = self.hparams.get("num_local_experts")
  1148. experts = dict()
  1149. for name, data_torch in self.get_tensors():
  1150. # we don't need these
  1151. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1152. continue
  1153. old_dtype = data_torch.dtype
  1154. # convert any unsupported data types to float32
  1155. if data_torch.dtype not in (torch.float16, torch.float32):
  1156. data_torch = data_torch.to(torch.float32)
  1157. data = data_torch.numpy()
  1158. if name.endswith("q_proj.weight"):
  1159. data = permute(data, n_head, n_head)
  1160. if name.endswith("k_proj.weight"):
  1161. data = permute(data, n_head, n_kv_head)
  1162. data = data.squeeze()
  1163. # process the experts separately
  1164. if name.find("block_sparse_moe.experts") != -1:
  1165. experts[name] = data
  1166. if len(experts) >= n_experts:
  1167. # merge the experts into a single 3d tensor
  1168. for bid in range(block_count):
  1169. for wid in range(1, 4):
  1170. full = True
  1171. for xid in range(n_experts):
  1172. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1173. if ename not in experts:
  1174. full = False
  1175. break
  1176. if not full:
  1177. continue
  1178. datas = []
  1179. for xid in range(n_experts):
  1180. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1181. datas.append(experts[ename])
  1182. del experts[ename]
  1183. data = np.stack(datas, axis=0)
  1184. data_dtype = data.dtype
  1185. if self.ftype == 0 and data_dtype == np.float16:
  1186. data = data.astype(np.float32)
  1187. if self.ftype == 1 and data_dtype == np.float32:
  1188. data = data.astype(np.float16)
  1189. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1190. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1191. if new_name is None:
  1192. print(f"Can not map tensor {name!r}")
  1193. sys.exit()
  1194. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1195. self.gguf_writer.add_tensor(new_name, data)
  1196. continue
  1197. # map tensor names
  1198. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1199. if new_name is None:
  1200. print(f"Can not map tensor {name!r}")
  1201. sys.exit()
  1202. n_dims = len(data.shape)
  1203. data_dtype = data.dtype
  1204. # if f32 desired, convert any float16 to float32
  1205. if self.ftype == 0 and data_dtype == np.float16:
  1206. data = data.astype(np.float32)
  1207. # 1d tensors need to be converted to float32
  1208. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1209. data = data.astype(np.float32)
  1210. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1211. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1212. data = data.astype(np.float16)
  1213. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1214. self.gguf_writer.add_tensor(new_name, data)
  1215. if len(experts) > 0:
  1216. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1217. @Model.register("GrokForCausalLM")
  1218. class GrokModel(Model):
  1219. model_arch = gguf.MODEL_ARCH.GROK
  1220. def set_vocab(self):
  1221. self._set_vocab_sentencepiece()
  1222. def __init__(self, *args, **kwargs):
  1223. super().__init__(*args, **kwargs)
  1224. def set_gguf_parameters(self):
  1225. super().set_gguf_parameters()
  1226. self.gguf_writer.add_name("Grok")
  1227. def write_tensors(self):
  1228. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1229. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1230. n_experts = self.hparams.get("num_local_experts")
  1231. experts = dict()
  1232. for name, data_torch in self.get_tensors():
  1233. # we don't need these
  1234. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1235. continue
  1236. old_dtype = data_torch.dtype
  1237. # convert any unsupported data types to float32
  1238. if data_torch.dtype not in (torch.float16, torch.float32):
  1239. data_torch = data_torch.to(torch.float32)
  1240. data = data_torch.squeeze().numpy()
  1241. # process the experts separately
  1242. if name.find(".moe.") != -1:
  1243. experts[name] = data
  1244. if len(experts) >= n_experts:
  1245. # merge the experts into a single 3d tensor
  1246. for bid in range(block_count):
  1247. for wid in ["linear", "linear_1", "linear_v"]:
  1248. full = True
  1249. for xid in range(n_experts):
  1250. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1251. if ename not in experts:
  1252. full = False
  1253. break
  1254. if not full:
  1255. continue
  1256. datas = []
  1257. for xid in range(n_experts):
  1258. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1259. datas.append(experts[ename])
  1260. del experts[ename]
  1261. data = np.stack(datas, axis=0)
  1262. data_dtype = data.dtype
  1263. if self.ftype == 0 and data_dtype == np.float16:
  1264. data = data.astype(np.float32)
  1265. if self.ftype == 1 and data_dtype == np.float32:
  1266. data = data.astype(np.float16)
  1267. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1268. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1269. if new_name is None:
  1270. print(f"Can not map tensor {name!r}")
  1271. sys.exit()
  1272. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1273. self.gguf_writer.add_tensor(new_name, data)
  1274. continue
  1275. # map tensor names
  1276. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1277. if new_name is None:
  1278. print(f"Can not map tensor {name!r}")
  1279. sys.exit()
  1280. n_dims = len(data.shape)
  1281. data_dtype = data.dtype
  1282. # if f32 desired, convert any float16 to float32
  1283. if self.ftype == 0 and data_dtype == np.float16:
  1284. data = data.astype(np.float32)
  1285. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1286. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1287. data = data.astype(np.float32)
  1288. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1289. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1290. data = data.astype(np.float16)
  1291. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1292. self.gguf_writer.add_tensor(new_name, data)
  1293. @Model.register("DbrxForCausalLM")
  1294. class DbrxModel(Model):
  1295. model_arch = gguf.MODEL_ARCH.DBRX
  1296. def set_gguf_parameters(self):
  1297. ffn_config = self.hparams["ffn_config"]
  1298. attn_config = self.hparams["attn_config"]
  1299. self.gguf_writer.add_name(self.hparams["model_type"])
  1300. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1301. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1302. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1303. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1304. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1305. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1306. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1307. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1308. self.gguf_writer.add_file_type(self.ftype)
  1309. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1310. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1311. self.gguf_writer.add_layer_norm_eps(1e-5)
  1312. self.gguf_writer.add_file_type(self.ftype)
  1313. print(f"gguf: file type = {self.ftype}")
  1314. def write_tensors(self):
  1315. block_count = self.hparams.get("n_layers")
  1316. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1317. for name, data_torch in self.get_tensors():
  1318. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1319. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1320. n_embd = self.hparams["d_model"]
  1321. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1322. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1323. # But llama.cpp moe graph works differently
  1324. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1325. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1326. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1327. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1328. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1329. experts = False
  1330. for exp_tensor_name in exp_tensor_names.keys():
  1331. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1332. experts = True
  1333. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1334. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1335. data_torch = data_torch.permute(*permute_tensor)
  1336. break
  1337. old_dtype = data_torch.dtype
  1338. # convert any unsupported data types to float32
  1339. if data_torch.dtype not in (torch.float16, torch.float32):
  1340. data_torch = data_torch.to(torch.float32)
  1341. data = data_torch.squeeze().numpy()
  1342. # map tensor names
  1343. # In MoE models the ffn tensors are typically most of the model weights,
  1344. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1345. # Every other model has the weight names ending in .weight,
  1346. # let's assume that is the convention which is not the case for dbrx:
  1347. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1348. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1349. if new_name is None:
  1350. print(f"Can not map tensor {name!r}")
  1351. sys.exit()
  1352. n_dims = len(data.shape)
  1353. data_dtype = data.dtype
  1354. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1355. # and most of the outputs tensors are F32.
  1356. if data_dtype != np.float32 and n_dims == 1:
  1357. print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1358. sys.exit()
  1359. # if f32 desired, convert any float16 to float32
  1360. if self.ftype == 0 and data_dtype == np.float16:
  1361. data = data.astype(np.float32)
  1362. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1363. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1364. data = data.astype(np.float16)
  1365. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1366. self.gguf_writer.add_tensor(new_name, data)
  1367. @Model.register("MiniCPMForCausalLM")
  1368. class MiniCPMModel(Model):
  1369. model_arch = gguf.MODEL_ARCH.MINICPM
  1370. def set_gguf_parameters(self):
  1371. block_count = self.hparams["num_hidden_layers"]
  1372. self.gguf_writer.add_name("MiniCPM")
  1373. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1374. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1375. self.gguf_writer.add_block_count(block_count)
  1376. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1377. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1378. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1379. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1380. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1381. self.gguf_writer.add_file_type(self.ftype)
  1382. def set_vocab(self):
  1383. self._set_vocab_llama_hf()
  1384. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1385. if n_kv_head is not None and n_head != n_kv_head:
  1386. n_head //= n_kv_head
  1387. return (
  1388. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1389. .swapaxes(1, 2)
  1390. .reshape(weights.shape)
  1391. )
  1392. def write_tensors(self):
  1393. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1394. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1395. n_head = self.hparams.get("num_attention_heads")
  1396. n_kv_head = self.hparams.get("num_key_value_heads")
  1397. for name, data_torch in self.get_tensors():
  1398. # we don't need these
  1399. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1400. continue
  1401. old_dtype = data_torch.dtype
  1402. # convert any unsupported data types to float32
  1403. if data_torch.dtype not in (torch.float16, torch.float32):
  1404. data_torch = data_torch.to(torch.float32)
  1405. # HF models permute some of the tensors, so we need to undo that
  1406. if name.endswith(("q_proj.weight")):
  1407. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1408. if name.endswith(("k_proj.weight")):
  1409. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1410. data = data_torch.squeeze().numpy()
  1411. # map tensor names
  1412. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1413. if new_name is None:
  1414. print(f"Can not map tensor {name!r}")
  1415. sys.exit()
  1416. n_dims = len(data.shape)
  1417. data_dtype = data.dtype
  1418. # if f32 desired, convert any float16 to float32
  1419. if self.ftype == 0 and data_dtype == np.float16:
  1420. data = data.astype(np.float32)
  1421. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1422. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1423. data = data.astype(np.float32)
  1424. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1425. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1426. data = data.astype(np.float16)
  1427. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1428. self.gguf_writer.add_tensor(new_name, data)
  1429. @Model.register("QWenLMHeadModel")
  1430. class QwenModel(Model):
  1431. model_arch = gguf.MODEL_ARCH.QWEN
  1432. @staticmethod
  1433. def token_bytes_to_string(b):
  1434. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1435. byte_encoder = bytes_to_unicode()
  1436. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1437. @staticmethod
  1438. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1439. parts = [bytes([b]) for b in token]
  1440. while True:
  1441. min_idx = None
  1442. min_rank = None
  1443. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1444. rank = mergeable_ranks.get(pair[0] + pair[1])
  1445. if rank is not None and (min_rank is None or rank < min_rank):
  1446. min_idx = i
  1447. min_rank = rank
  1448. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1449. break
  1450. assert min_idx is not None
  1451. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1452. return parts
  1453. def set_vocab(self):
  1454. self._set_vocab_qwen()
  1455. def set_gguf_parameters(self):
  1456. self.gguf_writer.add_name("Qwen")
  1457. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1458. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1459. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1460. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1461. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1462. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1463. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1464. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1465. def write_tensors(self):
  1466. block_count = self.hparams["num_hidden_layers"]
  1467. model_kv = dict(self.get_tensors())
  1468. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1469. for name, data_torch in model_kv.items():
  1470. # we don't need these
  1471. if name.endswith(".rotary_emb.inv_freq"):
  1472. continue
  1473. old_dtype = data_torch.dtype
  1474. # convert any unsupported data types to float32
  1475. if data_torch.dtype not in (torch.float16, torch.float32):
  1476. data_torch = data_torch.to(torch.float32)
  1477. data = data_torch.squeeze().numpy()
  1478. # map tensor names
  1479. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1480. if new_name is None:
  1481. print(f"Can not map tensor {name!r}")
  1482. sys.exit()
  1483. n_dims = len(data.shape)
  1484. data_dtype = data.dtype
  1485. # if f32 desired, convert any float16 to float32
  1486. if self.ftype == 0 and data_dtype == np.float16:
  1487. data = data.astype(np.float32)
  1488. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1489. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1490. data = data.astype(np.float32)
  1491. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1492. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1493. data = data.astype(np.float16)
  1494. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1495. self.gguf_writer.add_tensor(new_name, data)
  1496. @Model.register("Qwen2ForCausalLM")
  1497. class Qwen2Model(Model):
  1498. model_arch = gguf.MODEL_ARCH.QWEN2
  1499. def set_vocab(self):
  1500. try:
  1501. self._set_vocab_sentencepiece()
  1502. except FileNotFoundError:
  1503. self._set_vocab_gpt2()
  1504. @Model.register("Qwen2MoeForCausalLM")
  1505. class Qwen2MoeModel(Model):
  1506. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1507. def set_gguf_parameters(self):
  1508. super().set_gguf_parameters()
  1509. if (n_experts := self.hparams.get("num_experts")) is not None:
  1510. self.gguf_writer.add_expert_count(n_experts)
  1511. def write_tensors(self):
  1512. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1513. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1514. n_experts = self.hparams.get("num_experts")
  1515. experts = dict()
  1516. for name, data_torch in self.get_tensors():
  1517. # we don't need these
  1518. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1519. continue
  1520. old_dtype = data_torch.dtype
  1521. # convert any unsupported data types to float32
  1522. if data_torch.dtype not in (torch.float16, torch.float32):
  1523. data_torch = data_torch.to(torch.float32)
  1524. data = data_torch.squeeze().numpy()
  1525. # process the experts separately
  1526. if name.find("experts") != -1:
  1527. experts[name] = data
  1528. if len(experts) >= n_experts * 3:
  1529. # merge the experts into a single 3d tensor
  1530. for bid in range(block_count):
  1531. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1532. full = True
  1533. for xid in range(n_experts):
  1534. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1535. if ename not in experts:
  1536. full = False
  1537. break
  1538. if not full:
  1539. continue
  1540. datas = []
  1541. for xid in range(n_experts):
  1542. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1543. datas.append(experts[ename])
  1544. del experts[ename]
  1545. data = np.stack(datas, axis=0)
  1546. data_dtype = data.dtype
  1547. if self.ftype == 0 and data_dtype == np.float16:
  1548. data = data.astype(np.float32)
  1549. if self.ftype == 1 and data_dtype == np.float32:
  1550. data = data.astype(np.float16)
  1551. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1552. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1553. if new_name is None:
  1554. print(f"Can not map tensor {name!r}")
  1555. sys.exit()
  1556. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1557. self.gguf_writer.add_tensor(new_name, data)
  1558. continue
  1559. # map tensor names
  1560. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1561. if new_name is None:
  1562. print(f"Can not map tensor {name!r}")
  1563. sys.exit()
  1564. n_dims = len(data.shape)
  1565. data_dtype = data.dtype
  1566. # if f32 desired, convert any float16 to float32
  1567. if self.ftype == 0 and data_dtype == np.float16:
  1568. data = data.astype(np.float32)
  1569. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1570. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1571. data = data.astype(np.float32)
  1572. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1573. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1574. data = data.astype(np.float16)
  1575. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1576. self.gguf_writer.add_tensor(new_name, data)
  1577. if len(experts) > 0:
  1578. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1579. @Model.register("GPT2LMHeadModel")
  1580. class GPT2Model(Model):
  1581. model_arch = gguf.MODEL_ARCH.GPT2
  1582. def set_gguf_parameters(self):
  1583. self.gguf_writer.add_name(self.dir_model.name)
  1584. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1585. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1586. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1587. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1588. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1589. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1590. self.gguf_writer.add_file_type(self.ftype)
  1591. def write_tensors(self):
  1592. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1593. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1594. for name, data_torch in self.get_tensors():
  1595. # we don't need these
  1596. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1597. continue
  1598. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1599. data_torch = data_torch.transpose(1, 0)
  1600. old_dtype = data_torch.dtype
  1601. # convert any unsupported data types to float32
  1602. if data_torch.dtype not in (torch.float16, torch.float32):
  1603. data_torch = data_torch.to(torch.float32)
  1604. data = data_torch.squeeze().numpy()
  1605. # map tensor names
  1606. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1607. if new_name is None:
  1608. print(f"Can not map tensor {name!r}")
  1609. sys.exit()
  1610. n_dims = len(data.shape)
  1611. data_dtype = data.dtype
  1612. # if f32 desired, convert any float16 to float32
  1613. if self.ftype == 0 and data_dtype == np.float16:
  1614. data = data.astype(np.float32)
  1615. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1616. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1617. data = data.astype(np.float32)
  1618. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1619. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1620. data = data.astype(np.float16)
  1621. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1622. self.gguf_writer.add_tensor(new_name, data)
  1623. # note: GPT2 output is tied to (same as) wte in original model
  1624. if new_name == "token_embd.weight":
  1625. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1626. self.gguf_writer.add_tensor("output.weight", data)
  1627. @Model.register("PhiForCausalLM")
  1628. class Phi2Model(Model):
  1629. model_arch = gguf.MODEL_ARCH.PHI2
  1630. def set_gguf_parameters(self):
  1631. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1632. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1633. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1634. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1635. self.gguf_writer.add_name("Phi2")
  1636. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1637. self.gguf_writer.add_embedding_length(n_embd)
  1638. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1639. self.gguf_writer.add_block_count(block_count)
  1640. self.gguf_writer.add_head_count(n_head)
  1641. self.gguf_writer.add_head_count_kv(n_head)
  1642. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1643. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1644. self.gguf_writer.add_file_type(self.ftype)
  1645. self.gguf_writer.add_add_bos_token(False)
  1646. @Model.register("Phi3ForCausalLM")
  1647. class Phi3MiniModel(Model):
  1648. model_arch = gguf.MODEL_ARCH.PHI3
  1649. def set_vocab(self):
  1650. from sentencepiece import SentencePieceProcessor
  1651. tokenizer_path = self.dir_model / 'tokenizer.model'
  1652. if not tokenizer_path.is_file():
  1653. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1654. sys.exit(1)
  1655. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1656. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1657. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1658. scores: list[float] = [-10000.0] * vocab_size
  1659. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1660. for token_id in range(tokenizer.vocab_size()):
  1661. piece = tokenizer.id_to_piece(token_id)
  1662. text = piece.encode("utf-8")
  1663. score = tokenizer.get_score(token_id)
  1664. toktype = SentencePieceTokenTypes.NORMAL
  1665. if tokenizer.is_unknown(token_id):
  1666. toktype = SentencePieceTokenTypes.UNKNOWN
  1667. elif tokenizer.is_control(token_id):
  1668. toktype = SentencePieceTokenTypes.CONTROL
  1669. elif tokenizer.is_unused(token_id):
  1670. toktype = SentencePieceTokenTypes.UNUSED
  1671. elif tokenizer.is_byte(token_id):
  1672. toktype = SentencePieceTokenTypes.BYTE
  1673. tokens[token_id] = text
  1674. scores[token_id] = score
  1675. toktypes[token_id] = toktype
  1676. added_tokens_file = self.dir_model / 'added_tokens.json'
  1677. if added_tokens_file.is_file():
  1678. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1679. added_tokens_json = json.load(f)
  1680. for key in added_tokens_json:
  1681. token_id = added_tokens_json[key]
  1682. if (token_id >= vocab_size):
  1683. print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1684. continue
  1685. tokens[token_id] = key.encode("utf-8")
  1686. scores[token_id] = -1000.0
  1687. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1688. self.gguf_writer.add_tokenizer_model("llama")
  1689. self.gguf_writer.add_tokenizer_pre("default")
  1690. self.gguf_writer.add_token_list(tokens)
  1691. self.gguf_writer.add_token_scores(scores)
  1692. self.gguf_writer.add_token_types(toktypes)
  1693. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1694. special_vocab.add_to_gguf(self.gguf_writer)
  1695. def set_gguf_parameters(self):
  1696. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1697. rot_pct = 1.0
  1698. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1699. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1700. rms_eps = self.find_hparam(["rms_norm_eps"])
  1701. self.gguf_writer.add_name("Phi3")
  1702. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1703. self.gguf_writer.add_embedding_length(n_embd)
  1704. self.gguf_writer.add_feed_forward_length(8192)
  1705. self.gguf_writer.add_block_count(block_count)
  1706. self.gguf_writer.add_head_count(n_head)
  1707. self.gguf_writer.add_head_count_kv(n_head)
  1708. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1709. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1710. self.gguf_writer.add_file_type(self.ftype)
  1711. @Model.register("PlamoForCausalLM")
  1712. class PlamoModel(Model):
  1713. model_arch = gguf.MODEL_ARCH.PLAMO
  1714. def set_vocab(self):
  1715. self._set_vocab_sentencepiece()
  1716. def set_gguf_parameters(self):
  1717. hparams = self.hparams
  1718. block_count = hparams["num_hidden_layers"]
  1719. self.gguf_writer.add_name("PLaMo")
  1720. self.gguf_writer.add_context_length(4096) # not in config.json
  1721. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1722. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1723. self.gguf_writer.add_block_count(block_count)
  1724. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1725. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1726. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1727. def shuffle_attn_q_weight(self, data_torch):
  1728. assert data_torch.size() == (5120, 5120)
  1729. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1730. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1731. data_torch = torch.reshape(data_torch, (5120, 5120))
  1732. return data_torch
  1733. def shuffle_attn_output_weight(self, data_torch):
  1734. assert data_torch.size() == (5120, 5120)
  1735. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1736. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1737. data_torch = torch.reshape(data_torch, (5120, 5120))
  1738. return data_torch
  1739. def write_tensors(self):
  1740. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1741. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1742. for name, data_torch in self.get_tensors():
  1743. if "self_attn.rotary_emb.inv_freq" in name:
  1744. continue
  1745. # map tensor names
  1746. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1747. if new_name is None:
  1748. print(f"Can not map tensor {name!r}")
  1749. sys.exit()
  1750. # shuffle for broadcasting of gqa in ggml_mul_mat
  1751. if new_name.endswith("attn_q.weight"):
  1752. data_torch = self.shuffle_attn_q_weight(data_torch)
  1753. elif new_name.endswith("attn_output.weight"):
  1754. data_torch = self.shuffle_attn_output_weight(data_torch)
  1755. old_dtype = data_torch.dtype
  1756. # convert any unsupported data types to float32
  1757. if data_torch.dtype not in (torch.float16, torch.float32):
  1758. data_torch = data_torch.to(torch.float32)
  1759. data = data_torch.squeeze().numpy()
  1760. n_dims = len(data.shape)
  1761. data_dtype = data.dtype
  1762. # if f32 desired, convert any float16 to float32
  1763. if self.ftype == 0 and data_dtype == np.float16:
  1764. data = data.astype(np.float32)
  1765. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1766. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1767. data = data.astype(np.float32)
  1768. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1769. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1770. data = data.astype(np.float16)
  1771. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1772. self.gguf_writer.add_tensor(new_name, data)
  1773. @Model.register("CodeShellForCausalLM")
  1774. class CodeShellModel(Model):
  1775. model_arch = gguf.MODEL_ARCH.CODESHELL
  1776. def set_gguf_parameters(self):
  1777. block_count = self.hparams["n_layer"]
  1778. self.gguf_writer.add_name("CodeShell")
  1779. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1780. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1781. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1782. self.gguf_writer.add_block_count(block_count)
  1783. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1784. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1785. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1786. self.gguf_writer.add_file_type(self.ftype)
  1787. self.gguf_writer.add_rope_freq_base(10000.0)
  1788. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1789. self.gguf_writer.add_rope_scaling_factor(1.0)
  1790. def write_tensors(self):
  1791. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1792. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1793. tensors = dict(self.get_tensors())
  1794. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1795. for name, data_torch in tensors.items():
  1796. # we don't need these
  1797. if name.endswith((".attn.rotary_emb.inv_freq")):
  1798. continue
  1799. old_dtype = data_torch.dtype
  1800. # convert any unsupported data types to float32
  1801. if data_torch.dtype not in (torch.float16, torch.float32):
  1802. data_torch = data_torch.to(torch.float32)
  1803. data = data_torch.squeeze().numpy()
  1804. # map tensor names
  1805. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1806. if new_name is None:
  1807. print(f"Can not map tensor {name!r}")
  1808. sys.exit()
  1809. n_dims = len(data.shape)
  1810. data_dtype = data.dtype
  1811. # if f32 desired, convert any float16 to float32
  1812. if self.ftype == 0 and data_dtype == np.float16:
  1813. data = data.astype(np.float32)
  1814. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1815. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1816. data = data.astype(np.float32)
  1817. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1818. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1819. data = data.astype(np.float16)
  1820. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1821. self.gguf_writer.add_tensor(new_name, data)
  1822. if not has_lm_head and name == "transformer.wte.weight":
  1823. self.gguf_writer.add_tensor("output.weight", data)
  1824. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1825. @Model.register("InternLM2ForCausalLM")
  1826. class InternLM2Model(Model):
  1827. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1828. def set_vocab(self):
  1829. # (TODO): Is there a better way?
  1830. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1831. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1832. # recognized as an empty string in C++.
  1833. from sentencepiece import SentencePieceProcessor
  1834. from sentencepiece import sentencepiece_model_pb2 as model
  1835. tokenizer_path = self.dir_model / 'tokenizer.model'
  1836. tokens: list[bytes] = []
  1837. scores: list[float] = []
  1838. toktypes: list[int] = []
  1839. if not tokenizer_path.is_file():
  1840. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1841. sys.exit(1)
  1842. sentencepiece_model = model.ModelProto()
  1843. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1844. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1845. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1846. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1847. for token_id in range(vocab_size):
  1848. piece = tokenizer.id_to_piece(token_id)
  1849. text = piece.encode("utf-8")
  1850. score = tokenizer.get_score(token_id)
  1851. if text == b"\x00":
  1852. # (TODO): fixme
  1853. # Hack here and replace the \x00 characters.
  1854. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1855. text = "🐉"
  1856. toktype = SentencePieceTokenTypes.NORMAL
  1857. if tokenizer.is_unknown(token_id):
  1858. toktype = SentencePieceTokenTypes.UNKNOWN
  1859. elif tokenizer.is_control(token_id):
  1860. toktype = SentencePieceTokenTypes.CONTROL
  1861. elif tokenizer.is_unused(token_id):
  1862. toktype = SentencePieceTokenTypes.UNUSED
  1863. elif tokenizer.is_byte(token_id):
  1864. toktype = SentencePieceTokenTypes.BYTE
  1865. tokens.append(text)
  1866. scores.append(score)
  1867. toktypes.append(toktype)
  1868. added_tokens_file = self.dir_model / 'added_tokens.json'
  1869. if added_tokens_file.is_file():
  1870. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1871. added_tokens_json = json.load(f)
  1872. for key in added_tokens_json:
  1873. tokens.append(key.encode("utf-8"))
  1874. scores.append(-1000.0)
  1875. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1876. self.gguf_writer.add_tokenizer_model("llama")
  1877. self.gguf_writer.add_tokenizer_pre("default")
  1878. self.gguf_writer.add_token_list(tokens)
  1879. self.gguf_writer.add_token_scores(scores)
  1880. self.gguf_writer.add_token_types(toktypes)
  1881. self.gguf_writer.add_add_space_prefix(add_prefix)
  1882. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1883. old_eos = special_vocab.special_token_ids["eos"]
  1884. if "chat" in os.path.basename(self.dir_model.absolute()):
  1885. # For the chat model, we replace the eos with '<|im_end|>'.
  1886. # TODO: this is a hack, should be fixed
  1887. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1888. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1889. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1890. in chat mode so that the conversation can end normally.")
  1891. special_vocab.add_to_gguf(self.gguf_writer)
  1892. def _try_get_sft_eos(self, tokenizer):
  1893. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1894. im_end_list = tokenizer.encode('<|im_end|>')
  1895. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1896. if len(unused_145_list) == 1:
  1897. eos_token = unused_145_list[0]
  1898. if len(im_end_list) == 1:
  1899. eos_token = im_end_list[0]
  1900. return eos_token
  1901. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1902. if n_head_kv is not None and n_head != n_head_kv:
  1903. n_head = n_head_kv
  1904. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1905. .swapaxes(1, 2)
  1906. .reshape(weights.shape))
  1907. def set_gguf_parameters(self):
  1908. self.gguf_writer.add_name("InternLM2")
  1909. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1910. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1911. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1912. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1913. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1914. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1915. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1916. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1917. def post_write_tensors(self, tensor_map, name, data_torch):
  1918. old_dtype = data_torch.dtype
  1919. # convert any unsupported data types to float32
  1920. if data_torch.dtype not in (torch.float16, torch.float32):
  1921. data_torch = data_torch.to(torch.float32)
  1922. data = data_torch.squeeze().numpy()
  1923. # map tensor names
  1924. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1925. if new_name is None:
  1926. print(f"Can not map tensor {name!r}")
  1927. sys.exit()
  1928. n_dims = len(data.shape)
  1929. data_dtype = data.dtype
  1930. # if f32 desired, convert any float16 to float32
  1931. if self.ftype == 0 and data_dtype == np.float16:
  1932. data = data.astype(np.float32)
  1933. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1934. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1935. data = data.astype(np.float32)
  1936. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1937. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1938. data = data.astype(np.float16)
  1939. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1940. self.gguf_writer.add_tensor(new_name, data)
  1941. def write_tensors(self):
  1942. from einops import rearrange
  1943. num_heads = self.hparams.get("num_attention_heads")
  1944. num_kv_heads = self.hparams.get("num_key_value_heads")
  1945. hidden_size = self.hparams.get("hidden_size")
  1946. q_per_kv = num_heads // num_kv_heads
  1947. head_dim = hidden_size // num_heads
  1948. num_groups = num_heads // q_per_kv
  1949. block_count = self.hparams["num_hidden_layers"]
  1950. model_kv = dict(self.get_tensors())
  1951. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1952. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1953. for name, data_torch in model_kv.items():
  1954. # we don't need these
  1955. if name.endswith(".rotary_emb.inv_freq"):
  1956. continue
  1957. if re.match(qkv_pattern, name):
  1958. bid = re.findall(qkv_pattern, name)[0]
  1959. qkv = data_torch
  1960. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1961. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1962. # The model weights of q and k equire additional reshape.
  1963. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1964. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1965. v = rearrange(v, " o g n i -> o (g n i)").T
  1966. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1967. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1968. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1969. else:
  1970. self.post_write_tensors(tensor_map, name, data_torch)
  1971. @Model.register("BertModel", "CamembertModel")
  1972. class BertModel(Model):
  1973. model_arch = gguf.MODEL_ARCH.BERT
  1974. def __init__(self, *args, **kwargs):
  1975. super().__init__(*args, **kwargs)
  1976. self.vocab_size = None
  1977. def set_gguf_parameters(self):
  1978. super().set_gguf_parameters()
  1979. self.gguf_writer.add_causal_attention(False)
  1980. # get pooling path
  1981. pooling_path = None
  1982. module_path = self.dir_model / "modules.json"
  1983. if module_path.is_file():
  1984. with open(module_path, encoding="utf-8") as f:
  1985. modules = json.load(f)
  1986. for mod in modules:
  1987. if mod["type"] == "sentence_transformers.models.Pooling":
  1988. pooling_path = mod["path"]
  1989. break
  1990. # get pooling type
  1991. if pooling_path is not None:
  1992. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1993. pooling = json.load(f)
  1994. if pooling["pooling_mode_mean_tokens"]:
  1995. pooling_type = gguf.PoolingType.MEAN
  1996. elif pooling["pooling_mode_cls_token"]:
  1997. pooling_type = gguf.PoolingType.CLS
  1998. else:
  1999. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2000. self.gguf_writer.add_pooling_type(pooling_type)
  2001. def set_vocab(self):
  2002. tokens, toktypes, tokpre = self.get_vocab_base()
  2003. self.vocab_size = len(tokens)
  2004. # we need this to validate the size of the token_type embeddings
  2005. # though currently we are passing all zeros to the token_type embeddings
  2006. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2007. # convert to phantom space vocab
  2008. def phantom(tok):
  2009. if tok.startswith("[") and tok.endswith("]"):
  2010. return tok
  2011. if tok.startswith("##"):
  2012. return tok[2:]
  2013. return "\u2581" + tok
  2014. tokens = list(map(phantom, tokens))
  2015. # add vocab to gguf
  2016. self.gguf_writer.add_tokenizer_model("bert")
  2017. self.gguf_writer.add_tokenizer_pre(tokpre)
  2018. self.gguf_writer.add_token_list(tokens)
  2019. self.gguf_writer.add_token_types(toktypes)
  2020. # handle special tokens
  2021. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2022. special_vocab.add_to_gguf(self.gguf_writer)
  2023. def write_tensors(self):
  2024. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2025. tensors = dict(self.get_tensors())
  2026. for name, data_torch in tensors.items():
  2027. # we are only using BERT for embeddings so we don't need the pooling layer
  2028. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2029. continue # we don't need these
  2030. # map tensor names
  2031. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2032. if new_name is None:
  2033. print(f"Can not map tensor {name!r}")
  2034. sys.exit()
  2035. # convert any unsupported data types to float32
  2036. if data_torch.dtype not in (torch.float16, torch.float32):
  2037. data_torch = data_torch.to(torch.float32)
  2038. data = data_torch.squeeze().numpy()
  2039. n_dims = len(data.shape)
  2040. new_dtype: type[np.floating[Any]]
  2041. if (
  2042. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  2043. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  2044. ):
  2045. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2046. new_dtype = np.float16
  2047. else:
  2048. # if f32 desired, convert any float16 to float32
  2049. new_dtype = np.float32
  2050. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  2051. if data.dtype != new_dtype:
  2052. data = data.astype(new_dtype)
  2053. self.gguf_writer.add_tensor(new_name, data)
  2054. @Model.register("NomicBertModel")
  2055. class NomicBertModel(BertModel):
  2056. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2057. def __init__(self, *args, **kwargs):
  2058. super().__init__(*args, **kwargs)
  2059. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2060. self.hparams["n_ctx"] = 2048
  2061. # SwigLU activation
  2062. assert self.hparams["activation_function"] == "swiglu"
  2063. # this doesn't do anything in the HF version
  2064. assert self.hparams["causal"] is False
  2065. # no bias tensors
  2066. assert self.hparams["qkv_proj_bias"] is False
  2067. assert self.hparams["mlp_fc1_bias"] is False
  2068. assert self.hparams["mlp_fc2_bias"] is False
  2069. # norm at end of layer
  2070. assert self.hparams["prenorm"] is False
  2071. # standard RoPE
  2072. assert self.hparams["rotary_emb_fraction"] == 1.0
  2073. assert self.hparams["rotary_emb_interleaved"] is False
  2074. assert self.hparams["rotary_emb_scale_base"] is None
  2075. def set_gguf_parameters(self):
  2076. super().set_gguf_parameters()
  2077. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2078. @Model.register("GemmaForCausalLM")
  2079. class GemmaModel(Model):
  2080. model_arch = gguf.MODEL_ARCH.GEMMA
  2081. def set_vocab(self):
  2082. self._set_vocab_sentencepiece()
  2083. # TODO: these special tokens should be exported only for the CodeGemma family
  2084. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2085. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2086. special_vocab._set_special_token("prefix", 67)
  2087. special_vocab._set_special_token("suffix", 69)
  2088. special_vocab._set_special_token("middle", 68)
  2089. special_vocab._set_special_token("fsep", 70)
  2090. special_vocab._set_special_token("eot", 107)
  2091. special_vocab.add_to_gguf(self.gguf_writer)
  2092. def set_gguf_parameters(self):
  2093. hparams = self.hparams
  2094. block_count = hparams["num_hidden_layers"]
  2095. self.gguf_writer.add_name(self.dir_model.name)
  2096. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2097. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2098. self.gguf_writer.add_block_count(block_count)
  2099. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2100. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2101. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2102. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2103. self.gguf_writer.add_key_length(hparams["head_dim"])
  2104. self.gguf_writer.add_value_length(hparams["head_dim"])
  2105. self.gguf_writer.add_file_type(self.ftype)
  2106. def write_tensors(self):
  2107. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2108. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2109. for name, data_torch in self.get_tensors():
  2110. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2111. # To prevent errors, skip loading lm_head.weight.
  2112. if name == "lm_head.weight":
  2113. print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2114. continue
  2115. old_dtype = data_torch.dtype
  2116. # convert any unsupported data types to float32
  2117. if data_torch.dtype not in (torch.float16, torch.float32):
  2118. data_torch = data_torch.to(torch.float32)
  2119. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2120. if name.endswith("norm.weight"):
  2121. data_torch = data_torch + 1
  2122. data = data_torch.squeeze().numpy()
  2123. # map tensor names
  2124. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2125. if new_name is None:
  2126. print(f"Can not map tensor {name!r}")
  2127. sys.exit()
  2128. n_dims = len(data.shape)
  2129. data_dtype = data.dtype
  2130. data = data.astype(np.float32)
  2131. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2132. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2133. data = data.astype(np.float16)
  2134. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2135. self.gguf_writer.add_tensor(new_name, data)
  2136. @Model.register("Starcoder2ForCausalLM")
  2137. class StarCoder2Model(Model):
  2138. model_arch = gguf.MODEL_ARCH.STARCODER2
  2139. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2140. class MambaModel(Model):
  2141. model_arch = gguf.MODEL_ARCH.MAMBA
  2142. def set_vocab(self):
  2143. vocab_size = self.hparams["vocab_size"]
  2144. # Round vocab size to next multiple of 8
  2145. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2146. # pad using ceiling division
  2147. # ref: https://stackoverflow.com/a/17511341/22827863
  2148. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2149. self.hparams["vocab_size"] = vocab_size
  2150. if (self.dir_model / "tokenizer.json").is_file():
  2151. self._set_vocab_gpt2()
  2152. else:
  2153. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2154. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2155. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2156. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2157. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2158. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2159. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  2160. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
  2161. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2162. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2163. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2164. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2165. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2166. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2167. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2168. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2169. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2170. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2171. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2172. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2173. def set_gguf_parameters(self):
  2174. d_model = self.find_hparam(["hidden_size", "d_model"])
  2175. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2176. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2177. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2178. # ceiling division
  2179. # ref: https://stackoverflow.com/a/17511341/22827863
  2180. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2181. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2182. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2183. # Fail early for models which don't have a block expansion factor of 2
  2184. assert d_inner == 2 * d_model
  2185. self.gguf_writer.add_name(self.dir_model.name)
  2186. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2187. self.gguf_writer.add_embedding_length(d_model)
  2188. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2189. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2190. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2191. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2192. self.gguf_writer.add_ssm_inner_size(d_inner)
  2193. self.gguf_writer.add_ssm_state_size(d_state)
  2194. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2195. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2196. self.gguf_writer.add_file_type(self.ftype)
  2197. def write_tensors(self):
  2198. block_count = self.hparams["n_layer"]
  2199. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2200. tok_embd = None
  2201. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2202. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2203. for name, data_torch in self.get_tensors():
  2204. old_dtype = data_torch.dtype
  2205. # convert any unsupported data types to float32
  2206. if data_torch.dtype not in (torch.float16, torch.float32):
  2207. data_torch = data_torch.to(torch.float32)
  2208. # map tensor names
  2209. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2210. if new_name is None:
  2211. print(f"Can not map tensor {name!r}")
  2212. sys.exit()
  2213. if name.endswith(".A_log"):
  2214. print("A_log --> A ==> " + new_name)
  2215. data_torch = -torch.exp(data_torch)
  2216. # assuming token_embd.weight is seen before output.weight
  2217. if tok_embd is not None and new_name == output_name:
  2218. if torch.equal(tok_embd, data_torch):
  2219. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2220. continue
  2221. if new_name == tok_embd_name:
  2222. tok_embd = data_torch
  2223. data = data_torch.squeeze().numpy()
  2224. n_dims = len(data.shape)
  2225. data_dtype = data.dtype
  2226. # if f32 desired, convert any float16 to float32
  2227. if self.ftype == 0 and data_dtype == np.float16:
  2228. data = data.astype(np.float32)
  2229. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2230. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2231. data = data.astype(np.float32)
  2232. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2233. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2234. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2235. data = data.astype(np.float16)
  2236. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2237. self.gguf_writer.add_tensor(new_name, data)
  2238. @Model.register("CohereForCausalLM")
  2239. class CommandR2Model(Model):
  2240. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2241. def __init__(self, *args, **kwargs):
  2242. super().__init__(*args, **kwargs)
  2243. # max_position_embeddings = 8192 in config.json but model was actually
  2244. # trained on 128k context length
  2245. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2246. def set_gguf_parameters(self):
  2247. super().set_gguf_parameters()
  2248. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2249. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2250. @Model.register("OlmoForCausalLM")
  2251. @Model.register("OLMoForCausalLM")
  2252. class OlmoModel(Model):
  2253. model_arch = gguf.MODEL_ARCH.OLMO
  2254. def set_gguf_parameters(self):
  2255. super().set_gguf_parameters()
  2256. self.gguf_writer.add_layer_norm_eps(1e-5)
  2257. if "clip_qkv" in self.hparams is not None:
  2258. self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
  2259. # Same as super class, but permuting q_proj, k_proj
  2260. # Copied from: LlamaModel
  2261. def write_tensors(self):
  2262. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2263. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2264. n_head = self.hparams.get("num_attention_heads")
  2265. n_kv_head = self.hparams.get("num_key_value_heads")
  2266. for name, data_torch in self.get_tensors():
  2267. old_dtype = data_torch.dtype
  2268. # convert any unsupported data types to float32
  2269. if data_torch.dtype not in (torch.float16, torch.float32):
  2270. data_torch = data_torch.to(torch.float32)
  2271. data = data_torch.numpy()
  2272. if name.endswith("q_proj.weight"):
  2273. data = permute(data, n_head, n_head)
  2274. if name.endswith("k_proj.weight"):
  2275. data = permute(data, n_head, n_kv_head)
  2276. data = data.squeeze()
  2277. # map tensor names
  2278. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2279. if new_name is None:
  2280. print(f"Can not map tensor {name!r}")
  2281. sys.exit()
  2282. n_dims = len(data.shape)
  2283. data_dtype = data.dtype
  2284. # if f32 desired, convert any float16 to float32
  2285. if self.ftype == 0 and data_dtype == np.float16:
  2286. data = data.astype(np.float32)
  2287. # 1d tensors need to be converted to float32
  2288. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2289. data = data.astype(np.float32)
  2290. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2291. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2292. data = data.astype(np.float16)
  2293. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2294. self.gguf_writer.add_tensor(new_name, data)
  2295. ###### CONVERSION LOGIC ######
  2296. def parse_args() -> argparse.Namespace:
  2297. parser = argparse.ArgumentParser(
  2298. description="Convert a huggingface model to a GGML compatible file")
  2299. parser.add_argument(
  2300. "--vocab-only", action="store_true",
  2301. help="extract only the vocab",
  2302. )
  2303. parser.add_argument(
  2304. "--awq-path", type=Path, default=None,
  2305. help="Path to scale awq cache file")
  2306. parser.add_argument(
  2307. "--outfile", type=Path,
  2308. help="path to write to; default: based on input",
  2309. )
  2310. parser.add_argument(
  2311. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2312. help="output format - use f32 for float32, f16 for float16",
  2313. )
  2314. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2315. parser.add_argument(
  2316. "model", type=Path,
  2317. help="directory containing model file",
  2318. )
  2319. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2320. parser.add_argument("--model-name", type=str, default=None, help="name of the model")
  2321. return parser.parse_args()
  2322. def main() -> None:
  2323. args = parse_args()
  2324. dir_model = args.model
  2325. if args.awq_path:
  2326. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2327. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2328. tmp_model_path = args.model / "weighted_model"
  2329. dir_model = tmp_model_path
  2330. if tmp_model_path.is_dir():
  2331. print(f"{tmp_model_path} exists as a weighted model.")
  2332. else:
  2333. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2334. print("Saving new weighted model ...")
  2335. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2336. print(f"Saved weighted model at {tmp_model_path}.")
  2337. if not dir_model.is_dir():
  2338. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  2339. sys.exit(1)
  2340. ftype_map = {
  2341. "f32": gguf.GGMLQuantizationType.F32,
  2342. "f16": gguf.GGMLQuantizationType.F16,
  2343. }
  2344. if args.outfile is not None:
  2345. fname_out = args.outfile
  2346. else:
  2347. # output in the same directory as the model by default
  2348. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2349. print(f"Loading model: {dir_model.name}")
  2350. hparams = Model.load_hparams(dir_model)
  2351. with torch.inference_mode():
  2352. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2353. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2354. print("Set model parameters")
  2355. model_instance.set_gguf_parameters()
  2356. print("Set model tokenizer")
  2357. model_instance.set_vocab()
  2358. if args.vocab_only:
  2359. print(f"Exporting model vocab to '{fname_out}'")
  2360. model_instance.write_vocab()
  2361. else:
  2362. print(f"Exporting model to '{fname_out}'")
  2363. model_instance.write()
  2364. print(f"Model successfully exported to '{fname_out}'")
  2365. if __name__ == '__main__':
  2366. main()