ggml.c 707 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  289. for (int64_t i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  294. int64_t i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ1_M] = {
  718. .type_name = "iq1_m",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq1_m),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  723. .from_float = NULL,
  724. .from_float_reference = NULL,
  725. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_NL] = {
  730. .type_name = "iq4_nl",
  731. .blck_size = QK4_NL,
  732. .type_size = sizeof(block_iq4_nl),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  735. .from_float = quantize_row_iq4_nl,
  736. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  737. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  738. .vec_dot_type = GGML_TYPE_Q8_0,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ4_XS] = {
  742. .type_name = "iq4_xs",
  743. #if QK_K == 64
  744. .blck_size = QK4_NL,
  745. #else
  746. .blck_size = QK_K,
  747. #endif
  748. .type_size = sizeof(block_iq4_xs),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  751. .from_float = quantize_row_iq4_xs,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  753. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  754. #if QK_K == 64
  755. .vec_dot_type = GGML_TYPE_Q8_0,
  756. #else
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. #endif
  759. .nrows = 1,
  760. },
  761. [GGML_TYPE_Q8_K] = {
  762. .type_name = "q8_K",
  763. .blck_size = QK_K,
  764. .type_size = sizeof(block_q8_K),
  765. .is_quantized = true,
  766. .from_float = quantize_row_q8_K,
  767. }
  768. };
  769. // For internal test use
  770. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  771. GGML_ASSERT(type < GGML_TYPE_COUNT);
  772. return type_traits[type];
  773. }
  774. //
  775. // simd mappings
  776. //
  777. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  778. // we then implement the fundamental computation operations below using only these macros
  779. // adding support for new architectures requires to define the corresponding SIMD macros
  780. //
  781. // GGML_F32_STEP / GGML_F16_STEP
  782. // number of elements to process in a single step
  783. //
  784. // GGML_F32_EPR / GGML_F16_EPR
  785. // number of elements to fit in a single register
  786. //
  787. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  788. #define GGML_SIMD
  789. // F32 NEON
  790. #define GGML_F32_STEP 16
  791. #define GGML_F32_EPR 4
  792. #define GGML_F32x4 float32x4_t
  793. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  794. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  795. #define GGML_F32x4_LOAD vld1q_f32
  796. #define GGML_F32x4_STORE vst1q_f32
  797. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  798. #define GGML_F32x4_ADD vaddq_f32
  799. #define GGML_F32x4_MUL vmulq_f32
  800. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  801. #define GGML_F32x4_REDUCE(res, x) \
  802. { \
  803. int offset = GGML_F32_ARR >> 1; \
  804. for (int i = 0; i < offset; ++i) { \
  805. x[i] = vaddq_f32(x[i], x[offset+i]); \
  806. } \
  807. offset >>= 1; \
  808. for (int i = 0; i < offset; ++i) { \
  809. x[i] = vaddq_f32(x[i], x[offset+i]); \
  810. } \
  811. offset >>= 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  816. }
  817. #define GGML_F32_VEC GGML_F32x4
  818. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  819. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  820. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  821. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  822. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  823. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  824. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  825. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  826. // F16 NEON
  827. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  828. #define GGML_F16_STEP 32
  829. #define GGML_F16_EPR 8
  830. #define GGML_F16x8 float16x8_t
  831. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  832. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  833. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  834. #define GGML_F16x8_STORE vst1q_f16
  835. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  836. #define GGML_F16x8_ADD vaddq_f16
  837. #define GGML_F16x8_MUL vmulq_f16
  838. #define GGML_F16x8_REDUCE(res, x) \
  839. do { \
  840. int offset = GGML_F16_ARR >> 1; \
  841. for (int i = 0; i < offset; ++i) { \
  842. x[i] = vaddq_f16(x[i], x[offset+i]); \
  843. } \
  844. offset >>= 1; \
  845. for (int i = 0; i < offset; ++i) { \
  846. x[i] = vaddq_f16(x[i], x[offset+i]); \
  847. } \
  848. offset >>= 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  853. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  854. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  855. } while (0)
  856. #define GGML_F16_VEC GGML_F16x8
  857. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  858. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  859. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  860. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  861. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  862. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  863. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  864. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  865. #else
  866. // if FP16 vector arithmetic is not supported, we use FP32 instead
  867. // and take advantage of the vcvt_ functions to convert to/from FP16
  868. #define GGML_F16_STEP 16
  869. #define GGML_F16_EPR 4
  870. #define GGML_F32Cx4 float32x4_t
  871. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  872. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  873. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  874. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  875. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  876. #define GGML_F32Cx4_ADD vaddq_f32
  877. #define GGML_F32Cx4_MUL vmulq_f32
  878. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  879. #define GGML_F16_VEC GGML_F32Cx4
  880. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  881. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  882. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  883. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  884. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  885. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  886. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  887. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  888. #endif
  889. #elif defined(__AVX512F__)
  890. #define GGML_SIMD
  891. // F32 AVX512
  892. #define GGML_F32_STEP 64
  893. #define GGML_F32_EPR 16
  894. #define GGML_F32x16 __m512
  895. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  896. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  897. #define GGML_F32x16_LOAD _mm512_loadu_ps
  898. #define GGML_F32x16_STORE _mm512_storeu_ps
  899. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  900. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  901. #define GGML_F32x16_ADD _mm512_add_ps
  902. #define GGML_F32x16_MUL _mm512_mul_ps
  903. #define GGML_F32x16_REDUCE(res, x) \
  904. do { \
  905. int offset = GGML_F32_ARR >> 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. res = _mm512_reduce_add_ps(x[0]); \
  918. } while (0)
  919. // TODO: is this optimal ?
  920. #define GGML_F32_VEC GGML_F32x16
  921. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  922. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  923. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  924. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  925. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  926. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  927. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  928. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  929. // F16 AVX512
  930. // F16 AVX
  931. #define GGML_F16_STEP 64
  932. #define GGML_F16_EPR 16
  933. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  934. #define GGML_F32Cx16 __m512
  935. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  936. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  937. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  938. // so F16C guard isn't required
  939. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  940. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  941. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  942. #define GGML_F32Cx16_ADD _mm512_add_ps
  943. #define GGML_F32Cx16_MUL _mm512_mul_ps
  944. #define GGML_F32Cx16_REDUCE(res, x) \
  945. do { \
  946. int offset = GGML_F32_ARR >> 1; \
  947. for (int i = 0; i < offset; ++i) { \
  948. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  949. } \
  950. offset >>= 1; \
  951. for (int i = 0; i < offset; ++i) { \
  952. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  953. } \
  954. offset >>= 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. res = _mm512_reduce_add_ps(x[0]); \
  959. } while (0)
  960. #define GGML_F16_VEC GGML_F32Cx16
  961. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  962. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  963. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  964. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  965. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  966. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  967. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  968. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  969. #elif defined(__AVX__)
  970. #define GGML_SIMD
  971. // F32 AVX
  972. #define GGML_F32_STEP 32
  973. #define GGML_F32_EPR 8
  974. #define GGML_F32x8 __m256
  975. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  976. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  977. #define GGML_F32x8_LOAD _mm256_loadu_ps
  978. #define GGML_F32x8_STORE _mm256_storeu_ps
  979. #if defined(__FMA__)
  980. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  981. #else
  982. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  983. #endif
  984. #define GGML_F32x8_ADD _mm256_add_ps
  985. #define GGML_F32x8_MUL _mm256_mul_ps
  986. #define GGML_F32x8_REDUCE(res, x) \
  987. do { \
  988. int offset = GGML_F32_ARR >> 1; \
  989. for (int i = 0; i < offset; ++i) { \
  990. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  991. } \
  992. offset >>= 1; \
  993. for (int i = 0; i < offset; ++i) { \
  994. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  995. } \
  996. offset >>= 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1001. _mm256_extractf128_ps(x[0], 1)); \
  1002. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1003. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1004. } while (0)
  1005. // TODO: is this optimal ?
  1006. #define GGML_F32_VEC GGML_F32x8
  1007. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1008. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1009. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1010. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1011. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1012. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1013. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1014. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1015. // F16 AVX
  1016. #define GGML_F16_STEP 32
  1017. #define GGML_F16_EPR 8
  1018. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1019. #define GGML_F32Cx8 __m256
  1020. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1021. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1022. #if defined(__F16C__)
  1023. // the _mm256_cvt intrinsics require F16C
  1024. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1025. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1026. #else
  1027. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1028. float tmp[8];
  1029. for (int i = 0; i < 8; i++) {
  1030. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1031. }
  1032. return _mm256_loadu_ps(tmp);
  1033. }
  1034. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1035. float arr[8];
  1036. _mm256_storeu_ps(arr, y);
  1037. for (int i = 0; i < 8; i++)
  1038. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1039. }
  1040. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1041. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1042. #endif
  1043. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1044. #define GGML_F32Cx8_ADD _mm256_add_ps
  1045. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1046. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1047. #define GGML_F16_VEC GGML_F32Cx8
  1048. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1049. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1050. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1051. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1052. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1053. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1054. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1055. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1056. #elif defined(__POWER9_VECTOR__)
  1057. #define GGML_SIMD
  1058. // F32 POWER9
  1059. #define GGML_F32_STEP 32
  1060. #define GGML_F32_EPR 4
  1061. #define GGML_F32x4 vector float
  1062. #define GGML_F32x4_ZERO 0.0f
  1063. #define GGML_F32x4_SET1 vec_splats
  1064. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1065. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1066. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1067. #define GGML_F32x4_ADD vec_add
  1068. #define GGML_F32x4_MUL vec_mul
  1069. #define GGML_F32x4_REDUCE(res, x) \
  1070. { \
  1071. int offset = GGML_F32_ARR >> 1; \
  1072. for (int i = 0; i < offset; ++i) { \
  1073. x[i] = vec_add(x[i], x[offset+i]); \
  1074. } \
  1075. offset >>= 1; \
  1076. for (int i = 0; i < offset; ++i) { \
  1077. x[i] = vec_add(x[i], x[offset+i]); \
  1078. } \
  1079. offset >>= 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. res = vec_extract(x[0], 0) + \
  1084. vec_extract(x[0], 1) + \
  1085. vec_extract(x[0], 2) + \
  1086. vec_extract(x[0], 3); \
  1087. }
  1088. #define GGML_F32_VEC GGML_F32x4
  1089. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1090. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1091. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1092. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1093. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1094. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1095. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1096. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1097. // F16 POWER9
  1098. #define GGML_F16_STEP GGML_F32_STEP
  1099. #define GGML_F16_EPR GGML_F32_EPR
  1100. #define GGML_F16_VEC GGML_F32x4
  1101. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1102. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1103. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1104. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1105. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1106. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1107. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1108. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1109. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1110. #define GGML_F16_VEC_STORE(p, r, i) \
  1111. if (i & 0x1) \
  1112. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1113. r[i - GGML_ENDIAN_BYTE(0)]), \
  1114. 0, p - GGML_F16_EPR)
  1115. #elif defined(__wasm_simd128__)
  1116. #define GGML_SIMD
  1117. // F32 WASM
  1118. #define GGML_F32_STEP 16
  1119. #define GGML_F32_EPR 4
  1120. #define GGML_F32x4 v128_t
  1121. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1122. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1123. #define GGML_F32x4_LOAD wasm_v128_load
  1124. #define GGML_F32x4_STORE wasm_v128_store
  1125. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1126. #define GGML_F32x4_ADD wasm_f32x4_add
  1127. #define GGML_F32x4_MUL wasm_f32x4_mul
  1128. #define GGML_F32x4_REDUCE(res, x) \
  1129. { \
  1130. int offset = GGML_F32_ARR >> 1; \
  1131. for (int i = 0; i < offset; ++i) { \
  1132. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1133. } \
  1134. offset >>= 1; \
  1135. for (int i = 0; i < offset; ++i) { \
  1136. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1137. } \
  1138. offset >>= 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1143. wasm_f32x4_extract_lane(x[0], 1) + \
  1144. wasm_f32x4_extract_lane(x[0], 2) + \
  1145. wasm_f32x4_extract_lane(x[0], 3); \
  1146. }
  1147. #define GGML_F32_VEC GGML_F32x4
  1148. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1149. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1150. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1151. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1152. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1153. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1154. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1155. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1156. // F16 WASM
  1157. #define GGML_F16_STEP 16
  1158. #define GGML_F16_EPR 4
  1159. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1160. float tmp[4];
  1161. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1162. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1163. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1164. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1165. return wasm_v128_load(tmp);
  1166. }
  1167. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1168. float tmp[4];
  1169. wasm_v128_store(tmp, x);
  1170. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1171. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1172. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1173. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1174. }
  1175. #define GGML_F16x4 v128_t
  1176. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1177. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1178. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1179. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1180. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1181. #define GGML_F16x4_ADD wasm_f32x4_add
  1182. #define GGML_F16x4_MUL wasm_f32x4_mul
  1183. #define GGML_F16x4_REDUCE(res, x) \
  1184. { \
  1185. int offset = GGML_F16_ARR >> 1; \
  1186. for (int i = 0; i < offset; ++i) { \
  1187. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1188. } \
  1189. offset >>= 1; \
  1190. for (int i = 0; i < offset; ++i) { \
  1191. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1192. } \
  1193. offset >>= 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1198. wasm_f32x4_extract_lane(x[0], 1) + \
  1199. wasm_f32x4_extract_lane(x[0], 2) + \
  1200. wasm_f32x4_extract_lane(x[0], 3); \
  1201. }
  1202. #define GGML_F16_VEC GGML_F16x4
  1203. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1204. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1205. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1206. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1207. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1208. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1209. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1210. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1211. #elif defined(__SSE3__)
  1212. #define GGML_SIMD
  1213. // F32 SSE
  1214. #define GGML_F32_STEP 32
  1215. #define GGML_F32_EPR 4
  1216. #define GGML_F32x4 __m128
  1217. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1218. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1219. #define GGML_F32x4_LOAD _mm_loadu_ps
  1220. #define GGML_F32x4_STORE _mm_storeu_ps
  1221. #if defined(__FMA__)
  1222. // TODO: Does this work?
  1223. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1224. #else
  1225. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1226. #endif
  1227. #define GGML_F32x4_ADD _mm_add_ps
  1228. #define GGML_F32x4_MUL _mm_mul_ps
  1229. #define GGML_F32x4_REDUCE(res, x) \
  1230. { \
  1231. int offset = GGML_F32_ARR >> 1; \
  1232. for (int i = 0; i < offset; ++i) { \
  1233. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1234. } \
  1235. offset >>= 1; \
  1236. for (int i = 0; i < offset; ++i) { \
  1237. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1238. } \
  1239. offset >>= 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1244. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1245. }
  1246. // TODO: is this optimal ?
  1247. #define GGML_F32_VEC GGML_F32x4
  1248. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1249. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1250. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1251. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1252. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1253. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1254. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1255. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1256. // F16 SSE
  1257. #define GGML_F16_STEP 32
  1258. #define GGML_F16_EPR 4
  1259. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1260. float tmp[4];
  1261. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1262. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1263. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1264. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1265. return _mm_loadu_ps(tmp);
  1266. }
  1267. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1268. float arr[4];
  1269. _mm_storeu_ps(arr, y);
  1270. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1271. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1272. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1273. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1274. }
  1275. #define GGML_F32Cx4 __m128
  1276. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1277. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1278. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1279. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1280. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1281. #define GGML_F32Cx4_ADD _mm_add_ps
  1282. #define GGML_F32Cx4_MUL _mm_mul_ps
  1283. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1284. #define GGML_F16_VEC GGML_F32Cx4
  1285. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1286. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1287. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1288. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1289. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1290. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1291. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1292. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1293. #endif
  1294. // GGML_F32_ARR / GGML_F16_ARR
  1295. // number of registers to use per step
  1296. #ifdef GGML_SIMD
  1297. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1298. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1299. #endif
  1300. //
  1301. // fundamental operations
  1302. //
  1303. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1304. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1305. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1306. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1307. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1308. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1309. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1310. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1311. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1312. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1313. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1314. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1315. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1316. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1317. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1318. assert(nrc == 1);
  1319. UNUSED(nrc);
  1320. UNUSED(bx);
  1321. UNUSED(by);
  1322. UNUSED(bs);
  1323. #ifdef GGML_SIMD
  1324. float sumf = 0.0f;
  1325. const int np = (n & ~(GGML_F32_STEP - 1));
  1326. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1327. GGML_F32_VEC ax[GGML_F32_ARR];
  1328. GGML_F32_VEC ay[GGML_F32_ARR];
  1329. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1330. for (int j = 0; j < GGML_F32_ARR; j++) {
  1331. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1332. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1333. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1334. }
  1335. }
  1336. // reduce sum0..sum3 to sum0
  1337. GGML_F32_VEC_REDUCE(sumf, sum);
  1338. // leftovers
  1339. for (int i = np; i < n; ++i) {
  1340. sumf += x[i]*y[i];
  1341. }
  1342. #else
  1343. // scalar
  1344. ggml_float sumf = 0.0;
  1345. for (int i = 0; i < n; ++i) {
  1346. sumf += (ggml_float)(x[i]*y[i]);
  1347. }
  1348. #endif
  1349. *s = sumf;
  1350. }
  1351. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1352. assert(nrc == 1);
  1353. UNUSED(nrc);
  1354. UNUSED(bx);
  1355. UNUSED(by);
  1356. UNUSED(bs);
  1357. ggml_float sumf = 0.0;
  1358. #if defined(GGML_SIMD)
  1359. const int np = (n & ~(GGML_F16_STEP - 1));
  1360. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1361. GGML_F16_VEC ax[GGML_F16_ARR];
  1362. GGML_F16_VEC ay[GGML_F16_ARR];
  1363. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1364. for (int j = 0; j < GGML_F16_ARR; j++) {
  1365. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1366. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1367. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1368. }
  1369. }
  1370. // reduce sum0..sum3 to sum0
  1371. GGML_F16_VEC_REDUCE(sumf, sum);
  1372. // leftovers
  1373. for (int i = np; i < n; ++i) {
  1374. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1375. }
  1376. #else
  1377. for (int i = 0; i < n; ++i) {
  1378. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1379. }
  1380. #endif
  1381. *s = sumf;
  1382. }
  1383. // compute GGML_VEC_DOT_UNROLL dot products at once
  1384. // xs - x row stride in bytes
  1385. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1386. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1387. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1388. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1389. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1390. }
  1391. #if defined(GGML_SIMD)
  1392. const int np = (n & ~(GGML_F16_STEP - 1));
  1393. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1394. GGML_F16_VEC ax[GGML_F16_ARR];
  1395. GGML_F16_VEC ay[GGML_F16_ARR];
  1396. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1397. for (int j = 0; j < GGML_F16_ARR; j++) {
  1398. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1399. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1400. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1401. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1402. }
  1403. }
  1404. }
  1405. // reduce sum0..sum3 to sum0
  1406. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1407. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1408. }
  1409. // leftovers
  1410. for (int i = np; i < n; ++i) {
  1411. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1412. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1413. }
  1414. }
  1415. #else
  1416. for (int i = 0; i < n; ++i) {
  1417. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1418. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1419. }
  1420. }
  1421. #endif
  1422. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1423. s[i] = sumf[i];
  1424. }
  1425. }
  1426. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1427. #if defined(GGML_SIMD)
  1428. const int np = (n & ~(GGML_F32_STEP - 1));
  1429. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1430. GGML_F32_VEC ax[GGML_F32_ARR];
  1431. GGML_F32_VEC ay[GGML_F32_ARR];
  1432. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1433. for (int j = 0; j < GGML_F32_ARR; j++) {
  1434. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1435. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1436. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1437. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1438. }
  1439. }
  1440. // leftovers
  1441. for (int i = np; i < n; ++i) {
  1442. y[i] += x[i]*v;
  1443. }
  1444. #else
  1445. // scalar
  1446. for (int i = 0; i < n; ++i) {
  1447. y[i] += x[i]*v;
  1448. }
  1449. #endif
  1450. }
  1451. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1452. #if defined(GGML_SIMD)
  1453. const int np = (n & ~(GGML_F16_STEP - 1));
  1454. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1455. GGML_F16_VEC ax[GGML_F16_ARR];
  1456. GGML_F16_VEC ay[GGML_F16_ARR];
  1457. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1458. for (int j = 0; j < GGML_F16_ARR; j++) {
  1459. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1460. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1461. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1462. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1463. }
  1464. }
  1465. // leftovers
  1466. for (int i = np; i < n; ++i) {
  1467. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1468. }
  1469. #else
  1470. // scalar
  1471. for (int i = 0; i < n; ++i) {
  1472. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1473. }
  1474. #endif
  1475. }
  1476. // xs and vs are byte strides of x and v
  1477. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1478. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1479. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1480. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1481. x[i] = (const float *) ((const char *) xv + i*xs);
  1482. v[i] = (const float *) ((const char *) vv + i*vs);
  1483. }
  1484. #if defined(GGML_SIMD)
  1485. const int np = (n & ~(GGML_F32_STEP - 1));
  1486. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1487. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1488. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1489. }
  1490. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1491. GGML_F32_VEC ay[GGML_F32_ARR];
  1492. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1493. for (int j = 0; j < GGML_F32_ARR; j++) {
  1494. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1495. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1496. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1497. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1498. }
  1499. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1500. }
  1501. }
  1502. // leftovers
  1503. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1504. for (int i = np; i < n; ++i) {
  1505. y[i] += x[k][i]*v[k][0];
  1506. }
  1507. }
  1508. #else
  1509. // scalar
  1510. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1511. for (int i = 0; i < n; ++i) {
  1512. y[i] += x[k][i]*v[k][0];
  1513. }
  1514. }
  1515. #endif
  1516. }
  1517. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1518. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1519. #if defined(GGML_USE_ACCELERATE)
  1520. vDSP_vsmul(y, 1, &v, y, 1, n);
  1521. #elif defined(GGML_SIMD)
  1522. const int np = (n & ~(GGML_F32_STEP - 1));
  1523. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1524. GGML_F32_VEC ay[GGML_F32_ARR];
  1525. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1526. for (int j = 0; j < GGML_F32_ARR; j++) {
  1527. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1528. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1529. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1530. }
  1531. }
  1532. // leftovers
  1533. for (int i = np; i < n; ++i) {
  1534. y[i] *= v;
  1535. }
  1536. #else
  1537. // scalar
  1538. for (int i = 0; i < n; ++i) {
  1539. y[i] *= v;
  1540. }
  1541. #endif
  1542. }
  1543. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1544. #if defined(GGML_SIMD)
  1545. const int np = (n & ~(GGML_F16_STEP - 1));
  1546. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1547. GGML_F16_VEC ay[GGML_F16_ARR];
  1548. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1549. for (int j = 0; j < GGML_F16_ARR; j++) {
  1550. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1551. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1552. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1553. }
  1554. }
  1555. // leftovers
  1556. for (int i = np; i < n; ++i) {
  1557. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1558. }
  1559. #else
  1560. // scalar
  1561. for (int i = 0; i < n; ++i) {
  1562. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1563. }
  1564. #endif
  1565. }
  1566. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1567. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1568. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1569. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1570. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1571. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1572. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1573. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1574. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1575. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1576. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1577. // TODO: optimize performance
  1578. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1579. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1580. static const float GELU_COEF_A = 0.044715f;
  1581. static const float GELU_QUICK_COEF = -1.702f;
  1582. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1583. inline static float ggml_gelu_f32(float x) {
  1584. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1585. }
  1586. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1587. const uint16_t * i16 = (const uint16_t *) x;
  1588. for (int i = 0; i < n; ++i) {
  1589. y[i] = ggml_table_gelu_f16[i16[i]];
  1590. }
  1591. }
  1592. #ifdef GGML_GELU_FP16
  1593. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1594. uint16_t t;
  1595. for (int i = 0; i < n; ++i) {
  1596. if (x[i] <= -10.0f) {
  1597. y[i] = 0.0f;
  1598. } else if (x[i] >= 10.0f) {
  1599. y[i] = x[i];
  1600. } else {
  1601. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1602. memcpy(&t, &fp16, sizeof(uint16_t));
  1603. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1604. }
  1605. }
  1606. }
  1607. #else
  1608. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1609. for (int i = 0; i < n; ++i) {
  1610. y[i] = ggml_gelu_f32(x[i]);
  1611. }
  1612. }
  1613. #endif
  1614. inline static float ggml_gelu_quick_f32(float x) {
  1615. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1616. }
  1617. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1618. // const uint16_t * i16 = (const uint16_t *) x;
  1619. // for (int i = 0; i < n; ++i) {
  1620. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1621. // }
  1622. //}
  1623. #ifdef GGML_GELU_QUICK_FP16
  1624. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1625. uint16_t t;
  1626. for (int i = 0; i < n; ++i) {
  1627. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1628. memcpy(&t, &fp16, sizeof(uint16_t));
  1629. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1630. }
  1631. }
  1632. #else
  1633. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1634. for (int i = 0; i < n; ++i) {
  1635. y[i] = ggml_gelu_quick_f32(x[i]);
  1636. }
  1637. }
  1638. #endif
  1639. // Sigmoid Linear Unit (SiLU) function
  1640. inline static float ggml_silu_f32(float x) {
  1641. return x/(1.0f + expf(-x));
  1642. }
  1643. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1644. // const uint16_t * i16 = (const uint16_t *) x;
  1645. // for (int i = 0; i < n; ++i) {
  1646. // y[i] = ggml_table_silu_f16[i16[i]];
  1647. // }
  1648. //}
  1649. #ifdef GGML_SILU_FP16
  1650. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1651. uint16_t t;
  1652. for (int i = 0; i < n; ++i) {
  1653. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1654. memcpy(&t, &fp16, sizeof(uint16_t));
  1655. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1656. }
  1657. }
  1658. #else
  1659. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1660. for (int i = 0; i < n; ++i) {
  1661. y[i] = ggml_silu_f32(x[i]);
  1662. }
  1663. }
  1664. #endif
  1665. inline static float ggml_silu_backward_f32(float x, float dy) {
  1666. const float s = 1.0f/(1.0f + expf(-x));
  1667. return dy*s*(1.0f + x*(1.0f - s));
  1668. }
  1669. #ifdef GGML_SILU_FP16
  1670. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1671. for (int i = 0; i < n; ++i) {
  1672. // we did not use x[i] to compute forward silu but its f16 equivalent
  1673. // take derivative at f16 of x[i]:
  1674. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1675. float usedx = GGML_FP16_TO_FP32(fp16);
  1676. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1677. }
  1678. }
  1679. #else
  1680. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1681. for (int i = 0; i < n; ++i) {
  1682. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1683. }
  1684. }
  1685. #endif
  1686. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1687. #ifndef GGML_USE_ACCELERATE
  1688. ggml_float sum = 0.0;
  1689. for (int i = 0; i < n; ++i) {
  1690. sum += (ggml_float)x[i];
  1691. }
  1692. *s = sum;
  1693. #else
  1694. vDSP_sve(x, 1, s, n);
  1695. #endif
  1696. }
  1697. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1698. ggml_float sum = 0.0;
  1699. for (int i = 0; i < n; ++i) {
  1700. sum += (ggml_float)x[i];
  1701. }
  1702. *s = sum;
  1703. }
  1704. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1705. float sum = 0.0f;
  1706. for (int i = 0; i < n; ++i) {
  1707. sum += GGML_FP16_TO_FP32(x[i]);
  1708. }
  1709. *s = sum;
  1710. }
  1711. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1712. #ifndef GGML_USE_ACCELERATE
  1713. float max = -INFINITY;
  1714. for (int i = 0; i < n; ++i) {
  1715. max = MAX(max, x[i]);
  1716. }
  1717. *s = max;
  1718. #else
  1719. vDSP_maxv(x, 1, s, n);
  1720. #endif
  1721. }
  1722. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1723. ggml_vec_norm_f32(n, s, x);
  1724. *s = 1.f/(*s);
  1725. }
  1726. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1727. float max = -INFINITY;
  1728. int idx = 0;
  1729. for (int i = 0; i < n; ++i) {
  1730. max = MAX(max, x[i]);
  1731. if (max == x[i]) { idx = i; }
  1732. }
  1733. *s = idx;
  1734. }
  1735. //
  1736. // data types
  1737. //
  1738. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1739. "NONE",
  1740. "DUP",
  1741. "ADD",
  1742. "ADD1",
  1743. "ACC",
  1744. "SUB",
  1745. "MUL",
  1746. "DIV",
  1747. "SQR",
  1748. "SQRT",
  1749. "LOG",
  1750. "SUM",
  1751. "SUM_ROWS",
  1752. "MEAN",
  1753. "ARGMAX",
  1754. "REPEAT",
  1755. "REPEAT_BACK",
  1756. "CONCAT",
  1757. "SILU_BACK",
  1758. "NORM",
  1759. "RMS_NORM",
  1760. "RMS_NORM_BACK",
  1761. "GROUP_NORM",
  1762. "MUL_MAT",
  1763. "MUL_MAT_ID",
  1764. "OUT_PROD",
  1765. "SCALE",
  1766. "SET",
  1767. "CPY",
  1768. "CONT",
  1769. "RESHAPE",
  1770. "VIEW",
  1771. "PERMUTE",
  1772. "TRANSPOSE",
  1773. "GET_ROWS",
  1774. "GET_ROWS_BACK",
  1775. "DIAG",
  1776. "DIAG_MASK_INF",
  1777. "DIAG_MASK_ZERO",
  1778. "SOFT_MAX",
  1779. "SOFT_MAX_BACK",
  1780. "ROPE",
  1781. "ROPE_BACK",
  1782. "ALIBI",
  1783. "CLAMP",
  1784. "CONV_TRANSPOSE_1D",
  1785. "IM2COL",
  1786. "CONV_TRANSPOSE_2D",
  1787. "POOL_1D",
  1788. "POOL_2D",
  1789. "UPSCALE",
  1790. "PAD",
  1791. "ARANGE",
  1792. "TIMESTEP_EMBEDDING",
  1793. "ARGSORT",
  1794. "LEAKY_RELU",
  1795. "FLASH_ATTN",
  1796. "FLASH_ATTN_EXT",
  1797. "FLASH_FF",
  1798. "FLASH_ATTN_BACK",
  1799. "SSM_CONV",
  1800. "SSM_SCAN",
  1801. "WIN_PART",
  1802. "WIN_UNPART",
  1803. "GET_REL_POS",
  1804. "ADD_REL_POS",
  1805. "UNARY",
  1806. "MAP_UNARY",
  1807. "MAP_BINARY",
  1808. "MAP_CUSTOM1_F32",
  1809. "MAP_CUSTOM2_F32",
  1810. "MAP_CUSTOM3_F32",
  1811. "MAP_CUSTOM1",
  1812. "MAP_CUSTOM2",
  1813. "MAP_CUSTOM3",
  1814. "CROSS_ENTROPY_LOSS",
  1815. "CROSS_ENTROPY_LOSS_BACK",
  1816. };
  1817. static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77");
  1818. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1819. "none",
  1820. "x",
  1821. "x+y",
  1822. "x+y",
  1823. "view(x,nb,offset)+=y->x",
  1824. "x-y",
  1825. "x*y",
  1826. "x/y",
  1827. "x^2",
  1828. "√x",
  1829. "log(x)",
  1830. "Σx",
  1831. "Σx_k",
  1832. "Σx/n",
  1833. "argmax(x)",
  1834. "repeat(x)",
  1835. "repeat_back(x)",
  1836. "concat(x, y)",
  1837. "silu_back(x)",
  1838. "norm(x)",
  1839. "rms_norm(x)",
  1840. "rms_norm_back(x)",
  1841. "group_norm(x)",
  1842. "X*Y",
  1843. "X[i]*Y",
  1844. "X*Y",
  1845. "x*v",
  1846. "y-\\>view(x)",
  1847. "x-\\>y",
  1848. "cont(x)",
  1849. "reshape(x)",
  1850. "view(x)",
  1851. "permute(x)",
  1852. "transpose(x)",
  1853. "get_rows(x)",
  1854. "get_rows_back(x)",
  1855. "diag(x)",
  1856. "diag_mask_inf(x)",
  1857. "diag_mask_zero(x)",
  1858. "soft_max(x)",
  1859. "soft_max_back(x)",
  1860. "rope(x)",
  1861. "rope_back(x)",
  1862. "alibi(x)",
  1863. "clamp(x)",
  1864. "conv_transpose_1d(x)",
  1865. "im2col(x)",
  1866. "conv_transpose_2d(x)",
  1867. "pool_1d(x)",
  1868. "pool_2d(x)",
  1869. "upscale(x)",
  1870. "pad(x)",
  1871. "arange(start, stop, step)",
  1872. "timestep_embedding(timesteps, dim, max_period)",
  1873. "argsort(x)",
  1874. "leaky_relu(x)",
  1875. "flash_attn(x)",
  1876. "flash_attn_ext(x)",
  1877. "flash_ff(x)",
  1878. "flash_attn_back(x)",
  1879. "ssm_conv(x)",
  1880. "ssm_scan(x)",
  1881. "win_part(x)",
  1882. "win_unpart(x)",
  1883. "get_rel_pos(x)",
  1884. "add_rel_pos(x)",
  1885. "unary(x)",
  1886. "f(x)",
  1887. "f(x,y)",
  1888. "custom_f32(x)",
  1889. "custom_f32(x,y)",
  1890. "custom_f32(x,y,z)",
  1891. "custom(x)",
  1892. "custom(x,y)",
  1893. "custom(x,y,z)",
  1894. "cross_entropy_loss(x,y)",
  1895. "cross_entropy_loss_back(x,y)",
  1896. };
  1897. static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77");
  1898. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1899. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1900. "ABS",
  1901. "SGN",
  1902. "NEG",
  1903. "STEP",
  1904. "TANH",
  1905. "ELU",
  1906. "RELU",
  1907. "GELU",
  1908. "GELU_QUICK",
  1909. "SILU",
  1910. "HARDSWISH",
  1911. "HARDSIGMOID",
  1912. };
  1913. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1914. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1915. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1916. // WARN:
  1917. // Mis-configuration can lead to problem that's hard to reason about:
  1918. // * At best it crash or talks nosense.
  1919. // * At worst it talks slightly difference but hard to perceive.
  1920. //
  1921. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1922. // Take care about compile options (e.g., GGML_USE_xxx).
  1923. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1924. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1925. static void ggml_setup_op_has_task_pass(void) {
  1926. { // INIT
  1927. bool * p = GGML_OP_HAS_INIT;
  1928. p[GGML_OP_ACC ] = true;
  1929. p[GGML_OP_MUL_MAT ] = true;
  1930. p[GGML_OP_MUL_MAT_ID ] = true;
  1931. p[GGML_OP_OUT_PROD ] = true;
  1932. p[GGML_OP_SET ] = true;
  1933. p[GGML_OP_GET_ROWS_BACK ] = true;
  1934. p[GGML_OP_DIAG_MASK_INF ] = true;
  1935. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1936. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1937. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1938. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1939. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1940. p[GGML_OP_ADD_REL_POS ] = true;
  1941. }
  1942. { // FINALIZE
  1943. bool * p = GGML_OP_HAS_FINALIZE;
  1944. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1945. }
  1946. }
  1947. //
  1948. // ggml context
  1949. //
  1950. struct ggml_context {
  1951. size_t mem_size;
  1952. void * mem_buffer;
  1953. bool mem_buffer_owned;
  1954. bool no_alloc;
  1955. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1956. int n_objects;
  1957. struct ggml_object * objects_begin;
  1958. struct ggml_object * objects_end;
  1959. struct ggml_scratch scratch;
  1960. struct ggml_scratch scratch_save;
  1961. };
  1962. struct ggml_context_container {
  1963. bool used;
  1964. struct ggml_context context;
  1965. };
  1966. //
  1967. // NUMA support
  1968. //
  1969. #define GGML_NUMA_MAX_NODES 8
  1970. #define GGML_NUMA_MAX_CPUS 512
  1971. struct ggml_numa_node {
  1972. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1973. uint32_t n_cpus;
  1974. };
  1975. struct ggml_numa_nodes {
  1976. enum ggml_numa_strategy numa_strategy;
  1977. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1978. uint32_t n_nodes;
  1979. uint32_t total_cpus; // hardware threads on system
  1980. uint32_t current_node; // node on which main process is execting
  1981. #if defined(__gnu_linux__)
  1982. cpu_set_t cpuset; // cpuset from numactl
  1983. #else
  1984. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1985. #endif
  1986. };
  1987. //
  1988. // ggml state
  1989. //
  1990. struct ggml_state {
  1991. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1992. struct ggml_numa_nodes numa;
  1993. };
  1994. // global state
  1995. static struct ggml_state g_state;
  1996. static atomic_int g_state_barrier = 0;
  1997. // barrier via spin lock
  1998. inline static void ggml_critical_section_start(void) {
  1999. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2000. while (processing > 0) {
  2001. // wait for other threads to finish
  2002. atomic_fetch_sub(&g_state_barrier, 1);
  2003. sched_yield(); // TODO: reconsider this
  2004. processing = atomic_fetch_add(&g_state_barrier, 1);
  2005. }
  2006. }
  2007. // TODO: make this somehow automatically executed
  2008. // some sort of "sentry" mechanism
  2009. inline static void ggml_critical_section_end(void) {
  2010. atomic_fetch_sub(&g_state_barrier, 1);
  2011. }
  2012. #if defined(__gnu_linux__)
  2013. static cpu_set_t ggml_get_numa_affinity(void) {
  2014. cpu_set_t cpuset;
  2015. pthread_t thread;
  2016. thread = pthread_self();
  2017. CPU_ZERO(&cpuset);
  2018. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2019. return cpuset;
  2020. }
  2021. #else
  2022. static uint32_t ggml_get_numa_affinity(void) {
  2023. return 0; // no NUMA support
  2024. }
  2025. #endif
  2026. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2027. if (g_state.numa.n_nodes > 0) {
  2028. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2029. return;
  2030. }
  2031. #if defined(__gnu_linux__)
  2032. struct stat st;
  2033. char path[256];
  2034. int rv;
  2035. // set numa scheme
  2036. g_state.numa.numa_strategy = numa_flag;
  2037. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2038. g_state.numa.cpuset = ggml_get_numa_affinity();
  2039. // enumerate nodes
  2040. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2041. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2042. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2043. if (stat(path, &st) != 0) { break; }
  2044. ++g_state.numa.n_nodes;
  2045. }
  2046. // enumerate CPUs
  2047. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2048. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2049. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2050. if (stat(path, &st) != 0) { break; }
  2051. ++g_state.numa.total_cpus;
  2052. }
  2053. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2054. // figure out which node we're on
  2055. uint current_cpu;
  2056. int getcpu_ret = 0;
  2057. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2058. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2059. #else
  2060. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2061. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2062. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2063. # endif
  2064. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2065. #endif
  2066. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2067. g_state.numa.n_nodes = 0;
  2068. return;
  2069. }
  2070. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2071. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2072. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2073. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2074. node->n_cpus = 0;
  2075. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2076. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2077. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2078. if (stat(path, &st) == 0) {
  2079. node->cpus[node->n_cpus++] = c;
  2080. GGML_PRINT_DEBUG(" %u", c);
  2081. }
  2082. }
  2083. GGML_PRINT_DEBUG("\n");
  2084. }
  2085. if (ggml_is_numa()) {
  2086. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2087. if (fptr != NULL) {
  2088. char buf[42];
  2089. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2090. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2091. }
  2092. fclose(fptr);
  2093. }
  2094. }
  2095. #else
  2096. GGML_UNUSED(numa_flag);
  2097. // TODO
  2098. #endif
  2099. }
  2100. bool ggml_is_numa(void) {
  2101. return g_state.numa.n_nodes > 1;
  2102. }
  2103. ////////////////////////////////////////////////////////////////////////////////
  2104. void ggml_print_object(const struct ggml_object * obj) {
  2105. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2106. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2107. }
  2108. void ggml_print_objects(const struct ggml_context * ctx) {
  2109. struct ggml_object * obj = ctx->objects_begin;
  2110. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2111. while (obj != NULL) {
  2112. ggml_print_object(obj);
  2113. obj = obj->next;
  2114. }
  2115. GGML_PRINT("%s: --- end ---\n", __func__);
  2116. }
  2117. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2118. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2119. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2120. }
  2121. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2122. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2123. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2124. }
  2125. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2126. size_t nbytes;
  2127. size_t blck_size = ggml_blck_size(tensor->type);
  2128. if (blck_size == 1) {
  2129. nbytes = ggml_type_size(tensor->type);
  2130. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2131. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2132. }
  2133. }
  2134. else {
  2135. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2136. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2137. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2138. }
  2139. }
  2140. return nbytes;
  2141. }
  2142. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2143. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2144. }
  2145. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2146. return type_traits[type].blck_size;
  2147. }
  2148. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2149. return type_traits[type].type_size;
  2150. }
  2151. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2152. assert(ne % ggml_blck_size(type) == 0);
  2153. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2154. }
  2155. double ggml_type_sizef(enum ggml_type type) {
  2156. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2157. }
  2158. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2159. return type_traits[type].type_name;
  2160. }
  2161. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2162. return type_traits[type].is_quantized;
  2163. }
  2164. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2165. return GGML_OP_NAME[op];
  2166. }
  2167. const char * ggml_op_symbol(enum ggml_op op) {
  2168. return GGML_OP_SYMBOL[op];
  2169. }
  2170. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2171. return GGML_UNARY_OP_NAME[op];
  2172. }
  2173. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2174. if (t->op == GGML_OP_UNARY) {
  2175. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2176. return ggml_unary_op_name(uop);
  2177. }
  2178. else {
  2179. return ggml_op_name(t->op);
  2180. }
  2181. }
  2182. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2183. return ggml_type_size(tensor->type);
  2184. }
  2185. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2186. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2187. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2188. }
  2189. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2190. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2191. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2192. }
  2193. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2194. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2195. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2196. }
  2197. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2198. return tensor->ne[3] == 1;
  2199. }
  2200. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2201. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2202. if (tensor->ne[i] > 1) {
  2203. return i + 1;
  2204. }
  2205. }
  2206. return 1;
  2207. }
  2208. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2209. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2210. return (t0->ne[0] == t1->ne[0]) &&
  2211. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2212. (t1->ne[3]%t0->ne[3] == 0);
  2213. }
  2214. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2215. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2216. return (t0->ne[1] == t1->ne[1]) &&
  2217. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2218. (t1->ne[3]%t0->ne[3] == 0);
  2219. }
  2220. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2221. enum ggml_type wtype = GGML_TYPE_COUNT;
  2222. switch (ftype) {
  2223. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2224. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2225. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2226. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2227. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2228. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2229. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2230. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2231. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2232. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2233. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2234. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2235. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2236. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2237. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2238. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2239. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2240. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2241. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2242. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2243. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2244. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2245. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2246. }
  2247. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2248. return wtype;
  2249. }
  2250. size_t ggml_tensor_overhead(void) {
  2251. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2252. }
  2253. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2254. return tensor->nb[0] > tensor->nb[1];
  2255. }
  2256. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2257. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2258. return
  2259. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2260. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2261. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2262. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2263. }
  2264. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2265. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2266. return
  2267. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2268. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2269. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2270. }
  2271. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2272. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2273. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2274. }
  2275. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2276. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2277. return
  2278. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2279. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2280. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2281. }
  2282. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2283. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2284. if (tensor->ne[i] == 0) {
  2285. // empty if any dimension has no elements
  2286. return true;
  2287. }
  2288. }
  2289. return false;
  2290. }
  2291. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2292. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2293. return
  2294. (t0->ne[0] == t1->ne[0] ) &&
  2295. (t0->ne[1] == t1->ne[1] ) &&
  2296. (t0->ne[2] == t1->ne[2] ) &&
  2297. (t0->ne[3] == t1->ne[3] );
  2298. }
  2299. // check if t1 can be represented as a repeatition of t0
  2300. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2301. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2302. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2303. (t1->ne[0]%t0->ne[0] == 0) &&
  2304. (t1->ne[1]%t0->ne[1] == 0) &&
  2305. (t1->ne[2]%t0->ne[2] == 0) &&
  2306. (t1->ne[3]%t0->ne[3] == 0);
  2307. }
  2308. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2309. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2310. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2311. }
  2312. static inline int ggml_up32(int n) {
  2313. return (n + 31) & ~31;
  2314. }
  2315. //static inline int ggml_up64(int n) {
  2316. // return (n + 63) & ~63;
  2317. //}
  2318. static inline int ggml_up(int n, int m) {
  2319. // assert m is a power of 2
  2320. GGML_ASSERT((m & (m - 1)) == 0);
  2321. return (n + m - 1) & ~(m - 1);
  2322. }
  2323. // assert that pointer is aligned to GGML_MEM_ALIGN
  2324. #define ggml_assert_aligned(ptr) \
  2325. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2326. ////////////////////////////////////////////////////////////////////////////////
  2327. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2328. // make this function thread safe
  2329. ggml_critical_section_start();
  2330. static bool is_first_call = true;
  2331. if (is_first_call) {
  2332. // initialize time system (required on Windows)
  2333. ggml_time_init();
  2334. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2335. {
  2336. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2337. ggml_fp16_t ii;
  2338. for (int i = 0; i < (1 << 16); ++i) {
  2339. uint16_t ui = i;
  2340. memcpy(&ii, &ui, sizeof(ii));
  2341. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2342. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2343. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2344. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2345. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2346. }
  2347. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2348. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2349. }
  2350. // initialize g_state
  2351. {
  2352. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2353. g_state = (struct ggml_state) {
  2354. /*.contexts =*/ { { 0 } },
  2355. /*.numa =*/ {
  2356. .n_nodes = 0,
  2357. .total_cpus = 0,
  2358. },
  2359. };
  2360. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2361. g_state.contexts[i].used = false;
  2362. }
  2363. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2364. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2365. }
  2366. #if defined(GGML_USE_CLBLAST)
  2367. ggml_cl_init();
  2368. #endif
  2369. ggml_setup_op_has_task_pass();
  2370. is_first_call = false;
  2371. }
  2372. // find non-used context in g_state
  2373. struct ggml_context * ctx = NULL;
  2374. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2375. if (!g_state.contexts[i].used) {
  2376. g_state.contexts[i].used = true;
  2377. ctx = &g_state.contexts[i].context;
  2378. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2379. break;
  2380. }
  2381. }
  2382. if (ctx == NULL) {
  2383. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2384. ggml_critical_section_end();
  2385. return NULL;
  2386. }
  2387. // allow to call ggml_init with 0 size
  2388. if (params.mem_size == 0) {
  2389. params.mem_size = GGML_MEM_ALIGN;
  2390. }
  2391. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2392. *ctx = (struct ggml_context) {
  2393. /*.mem_size =*/ mem_size,
  2394. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2395. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2396. /*.no_alloc =*/ params.no_alloc,
  2397. /*.no_alloc_save =*/ params.no_alloc,
  2398. /*.n_objects =*/ 0,
  2399. /*.objects_begin =*/ NULL,
  2400. /*.objects_end =*/ NULL,
  2401. /*.scratch =*/ { 0, 0, NULL, },
  2402. /*.scratch_save =*/ { 0, 0, NULL, },
  2403. };
  2404. GGML_ASSERT(ctx->mem_buffer != NULL);
  2405. ggml_assert_aligned(ctx->mem_buffer);
  2406. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2407. ggml_critical_section_end();
  2408. return ctx;
  2409. }
  2410. void ggml_free(struct ggml_context * ctx) {
  2411. if (ctx == NULL) {
  2412. return;
  2413. }
  2414. // make this function thread safe
  2415. ggml_critical_section_start();
  2416. bool found = false;
  2417. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2418. if (&g_state.contexts[i].context == ctx) {
  2419. g_state.contexts[i].used = false;
  2420. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2421. __func__, i, ggml_used_mem(ctx));
  2422. if (ctx->mem_buffer_owned) {
  2423. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2424. }
  2425. found = true;
  2426. break;
  2427. }
  2428. }
  2429. if (!found) {
  2430. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2431. }
  2432. ggml_critical_section_end();
  2433. }
  2434. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2435. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2436. }
  2437. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2438. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2439. ctx->scratch = scratch;
  2440. return result;
  2441. }
  2442. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2443. return ctx->no_alloc;
  2444. }
  2445. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2446. ctx->no_alloc = no_alloc;
  2447. }
  2448. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2449. return ctx->mem_buffer;
  2450. }
  2451. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2452. return ctx->mem_size;
  2453. }
  2454. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2455. size_t max_size = 0;
  2456. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2457. size_t bytes = ggml_nbytes(tensor);
  2458. max_size = MAX(max_size, bytes);
  2459. }
  2460. return max_size;
  2461. }
  2462. // IMPORTANT:
  2463. // when creating "opt" tensors, always save and load the scratch buffer
  2464. // this is an error prone process, but it is necessary to support inplace
  2465. // operators when using scratch buffers
  2466. // TODO: implement a better way
  2467. static void ggml_scratch_save(struct ggml_context * ctx) {
  2468. // this is needed to allow opt tensors to store their data
  2469. // TODO: again, need to find a better way
  2470. ctx->no_alloc_save = ctx->no_alloc;
  2471. ctx->no_alloc = false;
  2472. ctx->scratch_save = ctx->scratch;
  2473. ctx->scratch.data = NULL;
  2474. }
  2475. static void ggml_scratch_load(struct ggml_context * ctx) {
  2476. ctx->no_alloc = ctx->no_alloc_save;
  2477. ctx->scratch = ctx->scratch_save;
  2478. }
  2479. ////////////////////////////////////////////////////////////////////////////////
  2480. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2481. // always insert objects at the end of the context's memory pool
  2482. struct ggml_object * obj_cur = ctx->objects_end;
  2483. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2484. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2485. const size_t cur_end = cur_offs + cur_size;
  2486. // align to GGML_MEM_ALIGN
  2487. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2488. char * const mem_buffer = ctx->mem_buffer;
  2489. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2490. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2491. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2492. __func__, cur_end + size_needed, ctx->mem_size);
  2493. assert(false);
  2494. return NULL;
  2495. }
  2496. *obj_new = (struct ggml_object) {
  2497. .offs = cur_end + GGML_OBJECT_SIZE,
  2498. .size = size_needed,
  2499. .next = NULL,
  2500. .type = type,
  2501. };
  2502. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2503. if (obj_cur != NULL) {
  2504. obj_cur->next = obj_new;
  2505. } else {
  2506. // this is the first object in this context
  2507. ctx->objects_begin = obj_new;
  2508. }
  2509. ctx->objects_end = obj_new;
  2510. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2511. return obj_new;
  2512. }
  2513. static struct ggml_tensor * ggml_new_tensor_impl(
  2514. struct ggml_context * ctx,
  2515. enum ggml_type type,
  2516. int n_dims,
  2517. const int64_t * ne,
  2518. struct ggml_tensor * view_src,
  2519. size_t view_offs) {
  2520. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2521. // find the base tensor and absolute offset
  2522. if (view_src != NULL && view_src->view_src != NULL) {
  2523. view_offs += view_src->view_offs;
  2524. view_src = view_src->view_src;
  2525. }
  2526. size_t data_size = ggml_row_size(type, ne[0]);
  2527. for (int i = 1; i < n_dims; i++) {
  2528. data_size *= ne[i];
  2529. }
  2530. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2531. void * data = view_src != NULL ? view_src->data : NULL;
  2532. if (data != NULL) {
  2533. data = (char *) data + view_offs;
  2534. }
  2535. size_t obj_alloc_size = 0;
  2536. if (view_src == NULL && !ctx->no_alloc) {
  2537. if (ctx->scratch.data != NULL) {
  2538. // allocate tensor data in the scratch buffer
  2539. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2540. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2541. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2542. assert(false);
  2543. return NULL;
  2544. }
  2545. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2546. ctx->scratch.offs += data_size;
  2547. } else {
  2548. // allocate tensor data in the context's memory pool
  2549. obj_alloc_size = data_size;
  2550. }
  2551. }
  2552. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2553. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2554. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2555. *result = (struct ggml_tensor) {
  2556. /*.type =*/ type,
  2557. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2558. /*.buffer =*/ NULL,
  2559. /*.ne =*/ { 1, 1, 1, 1 },
  2560. /*.nb =*/ { 0, 0, 0, 0 },
  2561. /*.op =*/ GGML_OP_NONE,
  2562. /*.op_params =*/ { 0 },
  2563. /*.flags =*/ 0,
  2564. /*.grad =*/ NULL,
  2565. /*.src =*/ { NULL },
  2566. /*.perf_runs =*/ 0,
  2567. /*.perf_cycles =*/ 0,
  2568. /*.perf_time_us =*/ 0,
  2569. /*.view_src =*/ view_src,
  2570. /*.view_offs =*/ view_offs,
  2571. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2572. /*.name =*/ { 0 },
  2573. /*.extra =*/ NULL,
  2574. /*.padding =*/ { 0 },
  2575. };
  2576. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2577. //ggml_assert_aligned(result->data);
  2578. for (int i = 0; i < n_dims; i++) {
  2579. result->ne[i] = ne[i];
  2580. }
  2581. result->nb[0] = ggml_type_size(type);
  2582. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2583. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2584. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2585. }
  2586. ctx->n_objects++;
  2587. return result;
  2588. }
  2589. struct ggml_tensor * ggml_new_tensor(
  2590. struct ggml_context * ctx,
  2591. enum ggml_type type,
  2592. int n_dims,
  2593. const int64_t * ne) {
  2594. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2595. }
  2596. struct ggml_tensor * ggml_new_tensor_1d(
  2597. struct ggml_context * ctx,
  2598. enum ggml_type type,
  2599. int64_t ne0) {
  2600. return ggml_new_tensor(ctx, type, 1, &ne0);
  2601. }
  2602. struct ggml_tensor * ggml_new_tensor_2d(
  2603. struct ggml_context * ctx,
  2604. enum ggml_type type,
  2605. int64_t ne0,
  2606. int64_t ne1) {
  2607. const int64_t ne[2] = { ne0, ne1 };
  2608. return ggml_new_tensor(ctx, type, 2, ne);
  2609. }
  2610. struct ggml_tensor * ggml_new_tensor_3d(
  2611. struct ggml_context * ctx,
  2612. enum ggml_type type,
  2613. int64_t ne0,
  2614. int64_t ne1,
  2615. int64_t ne2) {
  2616. const int64_t ne[3] = { ne0, ne1, ne2 };
  2617. return ggml_new_tensor(ctx, type, 3, ne);
  2618. }
  2619. struct ggml_tensor * ggml_new_tensor_4d(
  2620. struct ggml_context * ctx,
  2621. enum ggml_type type,
  2622. int64_t ne0,
  2623. int64_t ne1,
  2624. int64_t ne2,
  2625. int64_t ne3) {
  2626. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2627. return ggml_new_tensor(ctx, type, 4, ne);
  2628. }
  2629. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2630. ggml_scratch_save(ctx);
  2631. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2632. ggml_scratch_load(ctx);
  2633. ggml_set_i32(result, value);
  2634. return result;
  2635. }
  2636. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2637. ggml_scratch_save(ctx);
  2638. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2639. ggml_scratch_load(ctx);
  2640. ggml_set_f32(result, value);
  2641. return result;
  2642. }
  2643. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2644. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2645. }
  2646. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2647. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2648. assert(params_size <= GGML_MAX_OP_PARAMS);
  2649. memcpy(tensor->op_params, params, params_size);
  2650. }
  2651. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2652. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2653. return ((const int32_t *)(tensor->op_params))[i];
  2654. }
  2655. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2656. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2657. return ((const float *)(tensor->op_params))[i];
  2658. }
  2659. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2660. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2661. ((int32_t *)(tensor->op_params))[i] = value;
  2662. }
  2663. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2664. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2665. ((float *)(tensor->op_params))[i] = value;
  2666. }
  2667. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2668. memset(tensor->data, 0, ggml_nbytes(tensor));
  2669. return tensor;
  2670. }
  2671. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2672. const int n = ggml_nrows(tensor);
  2673. const int nc = tensor->ne[0];
  2674. const size_t n1 = tensor->nb[1];
  2675. char * const data = tensor->data;
  2676. switch (tensor->type) {
  2677. case GGML_TYPE_I8:
  2678. {
  2679. assert(tensor->nb[0] == sizeof(int8_t));
  2680. for (int i = 0; i < n; i++) {
  2681. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2682. }
  2683. } break;
  2684. case GGML_TYPE_I16:
  2685. {
  2686. assert(tensor->nb[0] == sizeof(int16_t));
  2687. for (int i = 0; i < n; i++) {
  2688. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2689. }
  2690. } break;
  2691. case GGML_TYPE_I32:
  2692. {
  2693. assert(tensor->nb[0] == sizeof(int32_t));
  2694. for (int i = 0; i < n; i++) {
  2695. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2696. }
  2697. } break;
  2698. case GGML_TYPE_F16:
  2699. {
  2700. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2701. for (int i = 0; i < n; i++) {
  2702. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2703. }
  2704. } break;
  2705. case GGML_TYPE_F32:
  2706. {
  2707. assert(tensor->nb[0] == sizeof(float));
  2708. for (int i = 0; i < n; i++) {
  2709. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2710. }
  2711. } break;
  2712. default:
  2713. {
  2714. GGML_ASSERT(false);
  2715. } break;
  2716. }
  2717. return tensor;
  2718. }
  2719. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2720. const int n = ggml_nrows(tensor);
  2721. const int nc = tensor->ne[0];
  2722. const size_t n1 = tensor->nb[1];
  2723. char * const data = tensor->data;
  2724. switch (tensor->type) {
  2725. case GGML_TYPE_I8:
  2726. {
  2727. assert(tensor->nb[0] == sizeof(int8_t));
  2728. for (int i = 0; i < n; i++) {
  2729. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2730. }
  2731. } break;
  2732. case GGML_TYPE_I16:
  2733. {
  2734. assert(tensor->nb[0] == sizeof(int16_t));
  2735. for (int i = 0; i < n; i++) {
  2736. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2737. }
  2738. } break;
  2739. case GGML_TYPE_I32:
  2740. {
  2741. assert(tensor->nb[0] == sizeof(int32_t));
  2742. for (int i = 0; i < n; i++) {
  2743. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2744. }
  2745. } break;
  2746. case GGML_TYPE_F16:
  2747. {
  2748. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2749. for (int i = 0; i < n; i++) {
  2750. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2751. }
  2752. } break;
  2753. case GGML_TYPE_F32:
  2754. {
  2755. assert(tensor->nb[0] == sizeof(float));
  2756. for (int i = 0; i < n; i++) {
  2757. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2758. }
  2759. } break;
  2760. default:
  2761. {
  2762. GGML_ASSERT(false);
  2763. } break;
  2764. }
  2765. return tensor;
  2766. }
  2767. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2768. const int64_t ne2 = tensor->ne[2];
  2769. const int64_t ne1 = tensor->ne[1];
  2770. const int64_t ne0 = tensor->ne[0];
  2771. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2772. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2773. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2774. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2775. if (i0) {
  2776. * i0 = i0_;
  2777. }
  2778. if (i1) {
  2779. * i1 = i1_;
  2780. }
  2781. if (i2) {
  2782. * i2 = i2_;
  2783. }
  2784. if (i3) {
  2785. * i3 = i3_;
  2786. }
  2787. }
  2788. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2789. if (!ggml_is_contiguous(tensor)) {
  2790. int64_t id[4] = { 0, 0, 0, 0 };
  2791. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2792. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2793. }
  2794. switch (tensor->type) {
  2795. case GGML_TYPE_I8:
  2796. {
  2797. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2798. return ((int8_t *)(tensor->data))[i];
  2799. }
  2800. case GGML_TYPE_I16:
  2801. {
  2802. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2803. return ((int16_t *)(tensor->data))[i];
  2804. }
  2805. case GGML_TYPE_I32:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2808. return ((int32_t *)(tensor->data))[i];
  2809. }
  2810. case GGML_TYPE_F16:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2813. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2814. }
  2815. case GGML_TYPE_F32:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2818. return ((float *)(tensor->data))[i];
  2819. }
  2820. default:
  2821. {
  2822. GGML_ASSERT(false);
  2823. }
  2824. }
  2825. return 0.0f;
  2826. }
  2827. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2828. if (!ggml_is_contiguous(tensor)) {
  2829. int64_t id[4] = { 0, 0, 0, 0 };
  2830. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2831. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2832. return;
  2833. }
  2834. switch (tensor->type) {
  2835. case GGML_TYPE_I8:
  2836. {
  2837. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2838. ((int8_t *)(tensor->data))[i] = value;
  2839. } break;
  2840. case GGML_TYPE_I16:
  2841. {
  2842. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2843. ((int16_t *)(tensor->data))[i] = value;
  2844. } break;
  2845. case GGML_TYPE_I32:
  2846. {
  2847. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2848. ((int32_t *)(tensor->data))[i] = value;
  2849. } break;
  2850. case GGML_TYPE_F16:
  2851. {
  2852. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2853. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2854. } break;
  2855. case GGML_TYPE_F32:
  2856. {
  2857. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2858. ((float *)(tensor->data))[i] = value;
  2859. } break;
  2860. default:
  2861. {
  2862. GGML_ASSERT(false);
  2863. } break;
  2864. }
  2865. }
  2866. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2867. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2868. switch (tensor->type) {
  2869. case GGML_TYPE_I8:
  2870. return ((int8_t *) data)[0];
  2871. case GGML_TYPE_I16:
  2872. return ((int16_t *) data)[0];
  2873. case GGML_TYPE_I32:
  2874. return ((int32_t *) data)[0];
  2875. case GGML_TYPE_F16:
  2876. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2877. case GGML_TYPE_F32:
  2878. return ((float *) data)[0];
  2879. default:
  2880. GGML_ASSERT(false);
  2881. }
  2882. return 0.0f;
  2883. }
  2884. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2885. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2886. switch (tensor->type) {
  2887. case GGML_TYPE_I8:
  2888. {
  2889. ((int8_t *)(data))[0] = value;
  2890. } break;
  2891. case GGML_TYPE_I16:
  2892. {
  2893. ((int16_t *)(data))[0] = value;
  2894. } break;
  2895. case GGML_TYPE_I32:
  2896. {
  2897. ((int32_t *)(data))[0] = value;
  2898. } break;
  2899. case GGML_TYPE_F16:
  2900. {
  2901. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2902. } break;
  2903. case GGML_TYPE_F32:
  2904. {
  2905. ((float *)(data))[0] = value;
  2906. } break;
  2907. default:
  2908. {
  2909. GGML_ASSERT(false);
  2910. } break;
  2911. }
  2912. }
  2913. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2914. if (!ggml_is_contiguous(tensor)) {
  2915. int64_t id[4] = { 0, 0, 0, 0 };
  2916. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2917. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2918. }
  2919. switch (tensor->type) {
  2920. case GGML_TYPE_I8:
  2921. {
  2922. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2923. return ((int8_t *)(tensor->data))[i];
  2924. }
  2925. case GGML_TYPE_I16:
  2926. {
  2927. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2928. return ((int16_t *)(tensor->data))[i];
  2929. }
  2930. case GGML_TYPE_I32:
  2931. {
  2932. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2933. return ((int32_t *)(tensor->data))[i];
  2934. }
  2935. case GGML_TYPE_F16:
  2936. {
  2937. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2938. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2939. }
  2940. case GGML_TYPE_F32:
  2941. {
  2942. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2943. return ((float *)(tensor->data))[i];
  2944. }
  2945. default:
  2946. {
  2947. GGML_ASSERT(false);
  2948. }
  2949. }
  2950. return 0.0f;
  2951. }
  2952. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2953. if (!ggml_is_contiguous(tensor)) {
  2954. int64_t id[4] = { 0, 0, 0, 0 };
  2955. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2956. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2957. return;
  2958. }
  2959. switch (tensor->type) {
  2960. case GGML_TYPE_I8:
  2961. {
  2962. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2963. ((int8_t *)(tensor->data))[i] = value;
  2964. } break;
  2965. case GGML_TYPE_I16:
  2966. {
  2967. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2968. ((int16_t *)(tensor->data))[i] = value;
  2969. } break;
  2970. case GGML_TYPE_I32:
  2971. {
  2972. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2973. ((int32_t *)(tensor->data))[i] = value;
  2974. } break;
  2975. case GGML_TYPE_F16:
  2976. {
  2977. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2978. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2979. } break;
  2980. case GGML_TYPE_F32:
  2981. {
  2982. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2983. ((float *)(tensor->data))[i] = value;
  2984. } break;
  2985. default:
  2986. {
  2987. GGML_ASSERT(false);
  2988. } break;
  2989. }
  2990. }
  2991. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2992. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2993. switch (tensor->type) {
  2994. case GGML_TYPE_I8:
  2995. return ((int8_t *) data)[0];
  2996. case GGML_TYPE_I16:
  2997. return ((int16_t *) data)[0];
  2998. case GGML_TYPE_I32:
  2999. return ((int32_t *) data)[0];
  3000. case GGML_TYPE_F16:
  3001. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3002. case GGML_TYPE_F32:
  3003. return ((float *) data)[0];
  3004. default:
  3005. GGML_ASSERT(false);
  3006. }
  3007. return 0.0f;
  3008. }
  3009. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3010. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3011. switch (tensor->type) {
  3012. case GGML_TYPE_I8:
  3013. {
  3014. ((int8_t *)(data))[0] = value;
  3015. } break;
  3016. case GGML_TYPE_I16:
  3017. {
  3018. ((int16_t *)(data))[0] = value;
  3019. } break;
  3020. case GGML_TYPE_I32:
  3021. {
  3022. ((int32_t *)(data))[0] = value;
  3023. } break;
  3024. case GGML_TYPE_F16:
  3025. {
  3026. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3027. } break;
  3028. case GGML_TYPE_F32:
  3029. {
  3030. ((float *)(data))[0] = value;
  3031. } break;
  3032. default:
  3033. {
  3034. GGML_ASSERT(false);
  3035. } break;
  3036. }
  3037. }
  3038. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3039. return tensor->data;
  3040. }
  3041. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3042. assert(tensor->type == GGML_TYPE_F32);
  3043. return (float *)(tensor->data);
  3044. }
  3045. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3046. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3047. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3048. }
  3049. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3050. return tensor->name;
  3051. }
  3052. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3053. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3054. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3055. return tensor;
  3056. }
  3057. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3058. va_list args;
  3059. va_start(args, fmt);
  3060. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3061. va_end(args);
  3062. return tensor;
  3063. }
  3064. struct ggml_tensor * ggml_view_tensor(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * src) {
  3067. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3068. ggml_format_name(result, "%s (view)", src->name);
  3069. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3070. result->nb[i] = src->nb[i];
  3071. }
  3072. return result;
  3073. }
  3074. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3075. struct ggml_object * obj = ctx->objects_begin;
  3076. char * const mem_buffer = ctx->mem_buffer;
  3077. while (obj != NULL) {
  3078. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3079. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3080. }
  3081. obj = obj->next;
  3082. }
  3083. return NULL;
  3084. }
  3085. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3086. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3087. obj = obj->next;
  3088. char * const mem_buffer = ctx->mem_buffer;
  3089. while (obj != NULL) {
  3090. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3091. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3092. }
  3093. obj = obj->next;
  3094. }
  3095. return NULL;
  3096. }
  3097. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3098. struct ggml_object * obj = ctx->objects_begin;
  3099. char * const mem_buffer = ctx->mem_buffer;
  3100. while (obj != NULL) {
  3101. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3102. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3103. if (strcmp(cur->name, name) == 0) {
  3104. return cur;
  3105. }
  3106. }
  3107. obj = obj->next;
  3108. }
  3109. return NULL;
  3110. }
  3111. ////////////////////////////////////////////////////////////////////////////////
  3112. // ggml_dup
  3113. static struct ggml_tensor * ggml_dup_impl(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a,
  3116. bool inplace) {
  3117. bool is_node = false;
  3118. if (!inplace && (a->grad)) {
  3119. is_node = true;
  3120. }
  3121. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3122. result->op = GGML_OP_DUP;
  3123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3124. result->src[0] = a;
  3125. return result;
  3126. }
  3127. struct ggml_tensor * ggml_dup(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a) {
  3130. return ggml_dup_impl(ctx, a, false);
  3131. }
  3132. struct ggml_tensor * ggml_dup_inplace(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a) {
  3135. return ggml_dup_impl(ctx, a, true);
  3136. }
  3137. // ggml_add
  3138. static struct ggml_tensor * ggml_add_impl(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a,
  3141. struct ggml_tensor * b,
  3142. bool inplace) {
  3143. GGML_ASSERT(ggml_can_repeat(b, a));
  3144. bool is_node = false;
  3145. if (!inplace && (a->grad || b->grad)) {
  3146. // TODO: support backward pass for broadcasting
  3147. GGML_ASSERT(ggml_are_same_shape(a, b));
  3148. is_node = true;
  3149. }
  3150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3151. result->op = GGML_OP_ADD;
  3152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3153. result->src[0] = a;
  3154. result->src[1] = b;
  3155. return result;
  3156. }
  3157. struct ggml_tensor * ggml_add(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a,
  3160. struct ggml_tensor * b) {
  3161. return ggml_add_impl(ctx, a, b, false);
  3162. }
  3163. struct ggml_tensor * ggml_add_inplace(
  3164. struct ggml_context * ctx,
  3165. struct ggml_tensor * a,
  3166. struct ggml_tensor * b) {
  3167. return ggml_add_impl(ctx, a, b, true);
  3168. }
  3169. // ggml_add_cast
  3170. static struct ggml_tensor * ggml_add_cast_impl(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a,
  3173. struct ggml_tensor * b,
  3174. enum ggml_type type) {
  3175. // TODO: support less-strict constraint
  3176. // GGML_ASSERT(ggml_can_repeat(b, a));
  3177. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3178. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3179. bool is_node = false;
  3180. if (a->grad || b->grad) {
  3181. // TODO: support backward pass for broadcasting
  3182. GGML_ASSERT(ggml_are_same_shape(a, b));
  3183. is_node = true;
  3184. }
  3185. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3186. result->op = GGML_OP_ADD;
  3187. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3188. result->src[0] = a;
  3189. result->src[1] = b;
  3190. return result;
  3191. }
  3192. struct ggml_tensor * ggml_add_cast(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a,
  3195. struct ggml_tensor * b,
  3196. enum ggml_type type) {
  3197. return ggml_add_cast_impl(ctx, a, b, type);
  3198. }
  3199. // ggml_add1
  3200. static struct ggml_tensor * ggml_add1_impl(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b,
  3204. bool inplace) {
  3205. GGML_ASSERT(ggml_is_scalar(b));
  3206. GGML_ASSERT(ggml_is_padded_1d(a));
  3207. bool is_node = false;
  3208. if (a->grad || b->grad) {
  3209. is_node = true;
  3210. }
  3211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3212. result->op = GGML_OP_ADD1;
  3213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3214. result->src[0] = a;
  3215. result->src[1] = b;
  3216. return result;
  3217. }
  3218. struct ggml_tensor * ggml_add1(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a,
  3221. struct ggml_tensor * b) {
  3222. return ggml_add1_impl(ctx, a, b, false);
  3223. }
  3224. struct ggml_tensor * ggml_add1_inplace(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a,
  3227. struct ggml_tensor * b) {
  3228. return ggml_add1_impl(ctx, a, b, true);
  3229. }
  3230. // ggml_acc
  3231. static struct ggml_tensor * ggml_acc_impl(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a,
  3234. struct ggml_tensor * b,
  3235. size_t nb1,
  3236. size_t nb2,
  3237. size_t nb3,
  3238. size_t offset,
  3239. bool inplace) {
  3240. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3241. GGML_ASSERT(ggml_is_contiguous(a));
  3242. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3243. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3244. bool is_node = false;
  3245. if (!inplace && (a->grad || b->grad)) {
  3246. is_node = true;
  3247. }
  3248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3249. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3250. ggml_set_op_params(result, params, sizeof(params));
  3251. result->op = GGML_OP_ACC;
  3252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3253. result->src[0] = a;
  3254. result->src[1] = b;
  3255. return result;
  3256. }
  3257. struct ggml_tensor * ggml_acc(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. struct ggml_tensor * b,
  3261. size_t nb1,
  3262. size_t nb2,
  3263. size_t nb3,
  3264. size_t offset) {
  3265. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3266. }
  3267. struct ggml_tensor * ggml_acc_inplace(
  3268. struct ggml_context * ctx,
  3269. struct ggml_tensor * a,
  3270. struct ggml_tensor * b,
  3271. size_t nb1,
  3272. size_t nb2,
  3273. size_t nb3,
  3274. size_t offset) {
  3275. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3276. }
  3277. // ggml_sub
  3278. static struct ggml_tensor * ggml_sub_impl(
  3279. struct ggml_context * ctx,
  3280. struct ggml_tensor * a,
  3281. struct ggml_tensor * b,
  3282. bool inplace) {
  3283. GGML_ASSERT(ggml_are_same_shape(a, b));
  3284. bool is_node = false;
  3285. if (!inplace && (a->grad || b->grad)) {
  3286. is_node = true;
  3287. }
  3288. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3289. result->op = GGML_OP_SUB;
  3290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3291. result->src[0] = a;
  3292. result->src[1] = b;
  3293. return result;
  3294. }
  3295. struct ggml_tensor * ggml_sub(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a,
  3298. struct ggml_tensor * b) {
  3299. return ggml_sub_impl(ctx, a, b, false);
  3300. }
  3301. struct ggml_tensor * ggml_sub_inplace(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b) {
  3305. return ggml_sub_impl(ctx, a, b, true);
  3306. }
  3307. // ggml_mul
  3308. static struct ggml_tensor * ggml_mul_impl(
  3309. struct ggml_context * ctx,
  3310. struct ggml_tensor * a,
  3311. struct ggml_tensor * b,
  3312. bool inplace) {
  3313. GGML_ASSERT(ggml_can_repeat(b, a));
  3314. bool is_node = false;
  3315. if (!inplace && (a->grad || b->grad)) {
  3316. // TODO: support backward pass for broadcasting
  3317. GGML_ASSERT(ggml_are_same_shape(a, b));
  3318. is_node = true;
  3319. }
  3320. if (inplace) {
  3321. GGML_ASSERT(!is_node);
  3322. }
  3323. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3324. result->op = GGML_OP_MUL;
  3325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3326. result->src[0] = a;
  3327. result->src[1] = b;
  3328. return result;
  3329. }
  3330. struct ggml_tensor * ggml_mul(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. struct ggml_tensor * b) {
  3334. return ggml_mul_impl(ctx, a, b, false);
  3335. }
  3336. struct ggml_tensor * ggml_mul_inplace(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a,
  3339. struct ggml_tensor * b) {
  3340. return ggml_mul_impl(ctx, a, b, true);
  3341. }
  3342. // ggml_div
  3343. static struct ggml_tensor * ggml_div_impl(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. struct ggml_tensor * b,
  3347. bool inplace) {
  3348. GGML_ASSERT(ggml_can_repeat(b, a));
  3349. bool is_node = false;
  3350. if (!inplace && (a->grad || b->grad)) {
  3351. is_node = true;
  3352. }
  3353. if (inplace) {
  3354. GGML_ASSERT(!is_node);
  3355. }
  3356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3357. result->op = GGML_OP_DIV;
  3358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3359. result->src[0] = a;
  3360. result->src[1] = b;
  3361. return result;
  3362. }
  3363. struct ggml_tensor * ggml_div(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a,
  3366. struct ggml_tensor * b) {
  3367. return ggml_div_impl(ctx, a, b, false);
  3368. }
  3369. struct ggml_tensor * ggml_div_inplace(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a,
  3372. struct ggml_tensor * b) {
  3373. return ggml_div_impl(ctx, a, b, true);
  3374. }
  3375. // ggml_sqr
  3376. static struct ggml_tensor * ggml_sqr_impl(
  3377. struct ggml_context * ctx,
  3378. struct ggml_tensor * a,
  3379. bool inplace) {
  3380. bool is_node = false;
  3381. if (!inplace && (a->grad)) {
  3382. is_node = true;
  3383. }
  3384. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3385. result->op = GGML_OP_SQR;
  3386. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3387. result->src[0] = a;
  3388. return result;
  3389. }
  3390. struct ggml_tensor * ggml_sqr(
  3391. struct ggml_context * ctx,
  3392. struct ggml_tensor * a) {
  3393. return ggml_sqr_impl(ctx, a, false);
  3394. }
  3395. struct ggml_tensor * ggml_sqr_inplace(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a) {
  3398. return ggml_sqr_impl(ctx, a, true);
  3399. }
  3400. // ggml_sqrt
  3401. static struct ggml_tensor * ggml_sqrt_impl(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. bool inplace) {
  3405. bool is_node = false;
  3406. if (!inplace && (a->grad)) {
  3407. is_node = true;
  3408. }
  3409. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3410. result->op = GGML_OP_SQRT;
  3411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3412. result->src[0] = a;
  3413. return result;
  3414. }
  3415. struct ggml_tensor * ggml_sqrt(
  3416. struct ggml_context * ctx,
  3417. struct ggml_tensor * a) {
  3418. return ggml_sqrt_impl(ctx, a, false);
  3419. }
  3420. struct ggml_tensor * ggml_sqrt_inplace(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a) {
  3423. return ggml_sqrt_impl(ctx, a, true);
  3424. }
  3425. // ggml_log
  3426. static struct ggml_tensor * ggml_log_impl(
  3427. struct ggml_context * ctx,
  3428. struct ggml_tensor * a,
  3429. bool inplace) {
  3430. bool is_node = false;
  3431. if (!inplace && (a->grad)) {
  3432. is_node = true;
  3433. }
  3434. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3435. result->op = GGML_OP_LOG;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src[0] = a;
  3438. return result;
  3439. }
  3440. struct ggml_tensor * ggml_log(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a) {
  3443. return ggml_log_impl(ctx, a, false);
  3444. }
  3445. struct ggml_tensor * ggml_log_inplace(
  3446. struct ggml_context * ctx,
  3447. struct ggml_tensor * a) {
  3448. return ggml_log_impl(ctx, a, true);
  3449. }
  3450. // ggml_sum
  3451. struct ggml_tensor * ggml_sum(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a) {
  3454. bool is_node = false;
  3455. if (a->grad) {
  3456. is_node = true;
  3457. }
  3458. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3459. result->op = GGML_OP_SUM;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src[0] = a;
  3462. return result;
  3463. }
  3464. // ggml_sum_rows
  3465. struct ggml_tensor * ggml_sum_rows(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a) {
  3468. bool is_node = false;
  3469. if (a->grad) {
  3470. is_node = true;
  3471. }
  3472. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3473. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3474. ne[i] = a->ne[i];
  3475. }
  3476. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3477. result->op = GGML_OP_SUM_ROWS;
  3478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3479. result->src[0] = a;
  3480. return result;
  3481. }
  3482. // ggml_mean
  3483. struct ggml_tensor * ggml_mean(
  3484. struct ggml_context * ctx,
  3485. struct ggml_tensor * a) {
  3486. bool is_node = false;
  3487. if (a->grad) {
  3488. GGML_ASSERT(false); // TODO: implement
  3489. is_node = true;
  3490. }
  3491. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3492. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3493. result->op = GGML_OP_MEAN;
  3494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3495. result->src[0] = a;
  3496. return result;
  3497. }
  3498. // ggml_argmax
  3499. struct ggml_tensor * ggml_argmax(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a) {
  3502. GGML_ASSERT(ggml_is_matrix(a));
  3503. bool is_node = false;
  3504. if (a->grad) {
  3505. GGML_ASSERT(false);
  3506. is_node = true;
  3507. }
  3508. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3509. result->op = GGML_OP_ARGMAX;
  3510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3511. result->src[0] = a;
  3512. return result;
  3513. }
  3514. // ggml_repeat
  3515. struct ggml_tensor * ggml_repeat(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b) {
  3519. GGML_ASSERT(ggml_can_repeat(a, b));
  3520. bool is_node = false;
  3521. if (a->grad) {
  3522. is_node = true;
  3523. }
  3524. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3525. result->op = GGML_OP_REPEAT;
  3526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3527. result->src[0] = a;
  3528. return result;
  3529. }
  3530. // ggml_repeat_back
  3531. struct ggml_tensor * ggml_repeat_back(
  3532. struct ggml_context * ctx,
  3533. struct ggml_tensor * a,
  3534. struct ggml_tensor * b) {
  3535. GGML_ASSERT(ggml_can_repeat(b, a));
  3536. bool is_node = false;
  3537. if (a->grad) {
  3538. is_node = true;
  3539. }
  3540. if (ggml_are_same_shape(a, b) && !is_node) {
  3541. return a;
  3542. }
  3543. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3544. result->op = GGML_OP_REPEAT_BACK;
  3545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3546. result->src[0] = a;
  3547. return result;
  3548. }
  3549. // ggml_concat
  3550. struct ggml_tensor * ggml_concat(
  3551. struct ggml_context* ctx,
  3552. struct ggml_tensor* a,
  3553. struct ggml_tensor* b) {
  3554. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3555. bool is_node = false;
  3556. if (a->grad || b->grad) {
  3557. is_node = true;
  3558. }
  3559. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3560. result->op = GGML_OP_CONCAT;
  3561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3562. result->src[0] = a;
  3563. result->src[1] = b;
  3564. return result;
  3565. }
  3566. // ggml_abs
  3567. struct ggml_tensor * ggml_abs(
  3568. struct ggml_context * ctx,
  3569. struct ggml_tensor * a) {
  3570. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3571. }
  3572. struct ggml_tensor * ggml_abs_inplace(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a) {
  3575. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3576. }
  3577. // ggml_sgn
  3578. struct ggml_tensor * ggml_sgn(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a) {
  3581. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3582. }
  3583. struct ggml_tensor * ggml_sgn_inplace(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a) {
  3586. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3587. }
  3588. // ggml_neg
  3589. struct ggml_tensor * ggml_neg(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a) {
  3592. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3593. }
  3594. struct ggml_tensor * ggml_neg_inplace(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a) {
  3597. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3598. }
  3599. // ggml_step
  3600. struct ggml_tensor * ggml_step(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a) {
  3603. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3604. }
  3605. struct ggml_tensor * ggml_step_inplace(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a) {
  3608. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3609. }
  3610. // ggml_tanh
  3611. struct ggml_tensor * ggml_tanh(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a) {
  3614. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3615. }
  3616. struct ggml_tensor * ggml_tanh_inplace(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a) {
  3619. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3620. }
  3621. // ggml_elu
  3622. struct ggml_tensor * ggml_elu(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a) {
  3625. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3626. }
  3627. struct ggml_tensor * ggml_elu_inplace(
  3628. struct ggml_context * ctx,
  3629. struct ggml_tensor * a) {
  3630. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3631. }
  3632. // ggml_relu
  3633. struct ggml_tensor * ggml_relu(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a) {
  3636. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3637. }
  3638. struct ggml_tensor * ggml_relu_inplace(
  3639. struct ggml_context * ctx,
  3640. struct ggml_tensor * a) {
  3641. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3642. }
  3643. // ggml_leaky_relu
  3644. struct ggml_tensor * ggml_leaky_relu(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3647. bool is_node = false;
  3648. if (!inplace && (a->grad)) {
  3649. is_node = true;
  3650. }
  3651. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3652. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3653. result->op = GGML_OP_LEAKY_RELU;
  3654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3655. result->src[0] = a;
  3656. return result;
  3657. }
  3658. // ggml_gelu
  3659. struct ggml_tensor * ggml_gelu(
  3660. struct ggml_context * ctx,
  3661. struct ggml_tensor * a) {
  3662. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3663. }
  3664. struct ggml_tensor * ggml_gelu_inplace(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a) {
  3667. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3668. }
  3669. // ggml_gelu_quick
  3670. struct ggml_tensor * ggml_gelu_quick(
  3671. struct ggml_context * ctx,
  3672. struct ggml_tensor * a) {
  3673. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3674. }
  3675. struct ggml_tensor * ggml_gelu_quick_inplace(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a) {
  3678. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3679. }
  3680. // ggml_silu
  3681. struct ggml_tensor * ggml_silu(
  3682. struct ggml_context * ctx,
  3683. struct ggml_tensor * a) {
  3684. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3685. }
  3686. struct ggml_tensor * ggml_silu_inplace(
  3687. struct ggml_context * ctx,
  3688. struct ggml_tensor * a) {
  3689. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3690. }
  3691. // ggml_silu_back
  3692. struct ggml_tensor * ggml_silu_back(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. struct ggml_tensor * b) {
  3696. bool is_node = false;
  3697. if (a->grad || b->grad) {
  3698. // TODO: implement backward
  3699. is_node = true;
  3700. }
  3701. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3702. result->op = GGML_OP_SILU_BACK;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src[0] = a;
  3705. result->src[1] = b;
  3706. return result;
  3707. }
  3708. // ggml hardswish
  3709. struct ggml_tensor * ggml_hardswish(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a) {
  3712. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3713. }
  3714. // ggml hardsigmoid
  3715. struct ggml_tensor * ggml_hardsigmoid(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a) {
  3718. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3719. }
  3720. // ggml_norm
  3721. static struct ggml_tensor * ggml_norm_impl(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. float eps,
  3725. bool inplace) {
  3726. bool is_node = false;
  3727. if (!inplace && (a->grad)) {
  3728. GGML_ASSERT(false); // TODO: implement backward
  3729. is_node = true;
  3730. }
  3731. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3732. ggml_set_op_params(result, &eps, sizeof(eps));
  3733. result->op = GGML_OP_NORM;
  3734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3735. result->src[0] = a;
  3736. return result;
  3737. }
  3738. struct ggml_tensor * ggml_norm(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. float eps) {
  3742. return ggml_norm_impl(ctx, a, eps, false);
  3743. }
  3744. struct ggml_tensor * ggml_norm_inplace(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. float eps) {
  3748. return ggml_norm_impl(ctx, a, eps, true);
  3749. }
  3750. // ggml_rms_norm
  3751. static struct ggml_tensor * ggml_rms_norm_impl(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. float eps,
  3755. bool inplace) {
  3756. bool is_node = false;
  3757. if (!inplace && (a->grad)) {
  3758. is_node = true;
  3759. }
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. ggml_set_op_params(result, &eps, sizeof(eps));
  3762. result->op = GGML_OP_RMS_NORM;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src[0] = a;
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_rms_norm(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. float eps) {
  3771. return ggml_rms_norm_impl(ctx, a, eps, false);
  3772. }
  3773. struct ggml_tensor * ggml_rms_norm_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. float eps) {
  3777. return ggml_rms_norm_impl(ctx, a, eps, true);
  3778. }
  3779. // ggml_rms_norm_back
  3780. struct ggml_tensor * ggml_rms_norm_back(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b,
  3784. float eps) {
  3785. bool is_node = false;
  3786. if (a->grad) {
  3787. // TODO: implement backward
  3788. is_node = true;
  3789. }
  3790. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3791. ggml_set_op_params(result, &eps, sizeof(eps));
  3792. result->op = GGML_OP_RMS_NORM_BACK;
  3793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3794. result->src[0] = a;
  3795. result->src[1] = b;
  3796. return result;
  3797. }
  3798. // ggml_group_norm
  3799. static struct ggml_tensor * ggml_group_norm_impl(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. int n_groups,
  3803. bool inplace) {
  3804. bool is_node = false;
  3805. if (!inplace && (a->grad)) {
  3806. GGML_ASSERT(false); // TODO: implement backward
  3807. is_node = true;
  3808. }
  3809. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3810. result->op_params[0] = n_groups;
  3811. result->op = GGML_OP_GROUP_NORM;
  3812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3813. result->src[0] = a;
  3814. return result;
  3815. }
  3816. struct ggml_tensor * ggml_group_norm(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. int n_groups) {
  3820. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3821. }
  3822. struct ggml_tensor * ggml_group_norm_inplace(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. int n_groups) {
  3826. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3827. }
  3828. // ggml_mul_mat
  3829. struct ggml_tensor * ggml_mul_mat(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. struct ggml_tensor * b) {
  3833. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3834. GGML_ASSERT(!ggml_is_transposed(a));
  3835. bool is_node = false;
  3836. if (a->grad || b->grad) {
  3837. is_node = true;
  3838. }
  3839. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3840. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3841. result->op = GGML_OP_MUL_MAT;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src[0] = a;
  3844. result->src[1] = b;
  3845. return result;
  3846. }
  3847. void ggml_mul_mat_set_prec(
  3848. struct ggml_tensor * a,
  3849. enum ggml_prec prec) {
  3850. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  3851. const int32_t prec_i32 = (int32_t) prec;
  3852. ggml_set_op_params_i32(a, 0, prec_i32);
  3853. }
  3854. // ggml_mul_mat_id
  3855. /*
  3856. c = ggml_mul_mat_id(ctx, as, b, ids);
  3857. as -> [cols, rows, n_expert]
  3858. ids -> [n_experts_used, n_tokens] (i32)
  3859. b -> [cols, n_expert_used, n_tokens]
  3860. c -> [cols, n_expert_used, n_tokens]
  3861. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  3862. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  3863. */
  3864. struct ggml_tensor * ggml_mul_mat_id(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * as,
  3867. struct ggml_tensor * b,
  3868. struct ggml_tensor * ids) {
  3869. GGML_ASSERT(!ggml_is_transposed(as));
  3870. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3871. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  3872. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  3873. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  3874. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  3875. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  3876. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  3877. bool is_node = false;
  3878. if (as->grad || b->grad) {
  3879. is_node = true;
  3880. }
  3881. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  3882. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3883. result->op = GGML_OP_MUL_MAT_ID;
  3884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3885. result->src[0] = as;
  3886. result->src[1] = b;
  3887. result->src[2] = ids;
  3888. return result;
  3889. }
  3890. // ggml_out_prod
  3891. struct ggml_tensor * ggml_out_prod(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. struct ggml_tensor * b) {
  3895. GGML_ASSERT(ggml_can_out_prod(a, b));
  3896. GGML_ASSERT(!ggml_is_transposed(a));
  3897. bool is_node = false;
  3898. if (a->grad || b->grad) {
  3899. is_node = true;
  3900. }
  3901. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3902. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3903. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3904. result->op = GGML_OP_OUT_PROD;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. result->src[1] = b;
  3908. return result;
  3909. }
  3910. // ggml_scale
  3911. static struct ggml_tensor * ggml_scale_impl(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. float s,
  3915. bool inplace) {
  3916. GGML_ASSERT(ggml_is_padded_1d(a));
  3917. bool is_node = false;
  3918. if (a->grad) {
  3919. is_node = true;
  3920. }
  3921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3922. ggml_set_op_params(result, &s, sizeof(s));
  3923. result->op = GGML_OP_SCALE;
  3924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3925. result->src[0] = a;
  3926. return result;
  3927. }
  3928. struct ggml_tensor * ggml_scale(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. float s) {
  3932. return ggml_scale_impl(ctx, a, s, false);
  3933. }
  3934. struct ggml_tensor * ggml_scale_inplace(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. float s) {
  3938. return ggml_scale_impl(ctx, a, s, true);
  3939. }
  3940. // ggml_set
  3941. static struct ggml_tensor * ggml_set_impl(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b,
  3945. size_t nb1,
  3946. size_t nb2,
  3947. size_t nb3,
  3948. size_t offset,
  3949. bool inplace) {
  3950. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3951. bool is_node = false;
  3952. if (a->grad || b->grad) {
  3953. is_node = true;
  3954. }
  3955. // make a view of the destination
  3956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3957. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3958. ggml_set_op_params(result, params, sizeof(params));
  3959. result->op = GGML_OP_SET;
  3960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3961. result->src[0] = a;
  3962. result->src[1] = b;
  3963. return result;
  3964. }
  3965. struct ggml_tensor * ggml_set(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. struct ggml_tensor * b,
  3969. size_t nb1,
  3970. size_t nb2,
  3971. size_t nb3,
  3972. size_t offset) {
  3973. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3974. }
  3975. struct ggml_tensor * ggml_set_inplace(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b,
  3979. size_t nb1,
  3980. size_t nb2,
  3981. size_t nb3,
  3982. size_t offset) {
  3983. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3984. }
  3985. struct ggml_tensor * ggml_set_1d(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. struct ggml_tensor * b,
  3989. size_t offset) {
  3990. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3991. }
  3992. struct ggml_tensor * ggml_set_1d_inplace(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a,
  3995. struct ggml_tensor * b,
  3996. size_t offset) {
  3997. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3998. }
  3999. struct ggml_tensor * ggml_set_2d(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. struct ggml_tensor * b,
  4003. size_t nb1,
  4004. size_t offset) {
  4005. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4006. }
  4007. struct ggml_tensor * ggml_set_2d_inplace(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. struct ggml_tensor * b,
  4011. size_t nb1,
  4012. size_t offset) {
  4013. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4014. }
  4015. // ggml_cpy
  4016. static struct ggml_tensor * ggml_cpy_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. struct ggml_tensor * b) {
  4020. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4021. bool is_node = false;
  4022. if (a->grad || b->grad) {
  4023. // inplace is false and either one have a grad
  4024. is_node = true;
  4025. }
  4026. // make a view of the destination
  4027. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4028. if (strlen(b->name) > 0) {
  4029. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4030. } else {
  4031. ggml_format_name(result, "%s (copy)", a->name);
  4032. }
  4033. result->op = GGML_OP_CPY;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src[0] = a;
  4036. result->src[1] = b;
  4037. return result;
  4038. }
  4039. struct ggml_tensor * ggml_cpy(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b) {
  4043. return ggml_cpy_impl(ctx, a, b);
  4044. }
  4045. struct ggml_tensor * ggml_cast(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. enum ggml_type type) {
  4049. bool is_node = false;
  4050. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4051. ggml_format_name(result, "%s (copy)", a->name);
  4052. result->op = GGML_OP_CPY;
  4053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4054. result->src[0] = a;
  4055. result->src[1] = result;
  4056. return result;
  4057. }
  4058. // ggml_cont
  4059. static struct ggml_tensor * ggml_cont_impl(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a) {
  4062. bool is_node = false;
  4063. if (a->grad) {
  4064. is_node = true;
  4065. }
  4066. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4067. ggml_format_name(result, "%s (cont)", a->name);
  4068. result->op = GGML_OP_CONT;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src[0] = a;
  4071. return result;
  4072. }
  4073. struct ggml_tensor * ggml_cont(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a) {
  4076. return ggml_cont_impl(ctx, a);
  4077. }
  4078. // make contiguous, with new shape
  4079. GGML_API struct ggml_tensor * ggml_cont_1d(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. int64_t ne0) {
  4083. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4084. }
  4085. GGML_API struct ggml_tensor * ggml_cont_2d(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. int64_t ne0,
  4089. int64_t ne1) {
  4090. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4091. }
  4092. GGML_API struct ggml_tensor * ggml_cont_3d(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a,
  4095. int64_t ne0,
  4096. int64_t ne1,
  4097. int64_t ne2) {
  4098. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4099. }
  4100. struct ggml_tensor * ggml_cont_4d(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. int64_t ne0,
  4104. int64_t ne1,
  4105. int64_t ne2,
  4106. int64_t ne3) {
  4107. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4108. bool is_node = false;
  4109. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4110. ggml_format_name(result, "%s (cont)", a->name);
  4111. result->op = GGML_OP_CONT;
  4112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4113. result->src[0] = a;
  4114. return result;
  4115. }
  4116. // ggml_reshape
  4117. struct ggml_tensor * ggml_reshape(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. struct ggml_tensor * b) {
  4121. GGML_ASSERT(ggml_is_contiguous(a));
  4122. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4123. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4124. bool is_node = false;
  4125. if (a->grad) {
  4126. is_node = true;
  4127. }
  4128. if (b->grad) {
  4129. // gradient propagation is not supported
  4130. //GGML_ASSERT(false);
  4131. }
  4132. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4133. ggml_format_name(result, "%s (reshaped)", a->name);
  4134. result->op = GGML_OP_RESHAPE;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. return result;
  4138. }
  4139. struct ggml_tensor * ggml_reshape_1d(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a,
  4142. int64_t ne0) {
  4143. GGML_ASSERT(ggml_is_contiguous(a));
  4144. GGML_ASSERT(ggml_nelements(a) == ne0);
  4145. bool is_node = false;
  4146. if (a->grad) {
  4147. is_node = true;
  4148. }
  4149. const int64_t ne[1] = { ne0 };
  4150. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4151. ggml_format_name(result, "%s (reshaped)", a->name);
  4152. result->op = GGML_OP_RESHAPE;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. return result;
  4156. }
  4157. struct ggml_tensor * ggml_reshape_2d(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. int64_t ne0,
  4161. int64_t ne1) {
  4162. GGML_ASSERT(ggml_is_contiguous(a));
  4163. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4164. bool is_node = false;
  4165. if (a->grad) {
  4166. is_node = true;
  4167. }
  4168. const int64_t ne[2] = { ne0, ne1 };
  4169. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4170. ggml_format_name(result, "%s (reshaped)", a->name);
  4171. result->op = GGML_OP_RESHAPE;
  4172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4173. result->src[0] = a;
  4174. return result;
  4175. }
  4176. struct ggml_tensor * ggml_reshape_3d(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. int64_t ne0,
  4180. int64_t ne1,
  4181. int64_t ne2) {
  4182. GGML_ASSERT(ggml_is_contiguous(a));
  4183. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4184. bool is_node = false;
  4185. if (a->grad) {
  4186. is_node = true;
  4187. }
  4188. const int64_t ne[3] = { ne0, ne1, ne2 };
  4189. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4190. ggml_format_name(result, "%s (reshaped)", a->name);
  4191. result->op = GGML_OP_RESHAPE;
  4192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4193. result->src[0] = a;
  4194. return result;
  4195. }
  4196. struct ggml_tensor * ggml_reshape_4d(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. int64_t ne0,
  4200. int64_t ne1,
  4201. int64_t ne2,
  4202. int64_t ne3) {
  4203. GGML_ASSERT(ggml_is_contiguous(a));
  4204. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4205. bool is_node = false;
  4206. if (a->grad) {
  4207. is_node = true;
  4208. }
  4209. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4210. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4211. ggml_format_name(result, "%s (reshaped)", a->name);
  4212. result->op = GGML_OP_RESHAPE;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src[0] = a;
  4215. return result;
  4216. }
  4217. static struct ggml_tensor * ggml_view_impl(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. int n_dims,
  4221. const int64_t * ne,
  4222. size_t offset) {
  4223. bool is_node = false;
  4224. if (a->grad) {
  4225. is_node = true;
  4226. }
  4227. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4228. ggml_format_name(result, "%s (view)", a->name);
  4229. ggml_set_op_params(result, &offset, sizeof(offset));
  4230. result->op = GGML_OP_VIEW;
  4231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4232. result->src[0] = a;
  4233. return result;
  4234. }
  4235. // ggml_view_1d
  4236. struct ggml_tensor * ggml_view_1d(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. int64_t ne0,
  4240. size_t offset) {
  4241. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4242. return result;
  4243. }
  4244. // ggml_view_2d
  4245. struct ggml_tensor * ggml_view_2d(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. int64_t ne0,
  4249. int64_t ne1,
  4250. size_t nb1,
  4251. size_t offset) {
  4252. const int64_t ne[2] = { ne0, ne1 };
  4253. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4254. result->nb[1] = nb1;
  4255. result->nb[2] = result->nb[1]*ne1;
  4256. result->nb[3] = result->nb[2];
  4257. return result;
  4258. }
  4259. // ggml_view_3d
  4260. struct ggml_tensor * ggml_view_3d(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a,
  4263. int64_t ne0,
  4264. int64_t ne1,
  4265. int64_t ne2,
  4266. size_t nb1,
  4267. size_t nb2,
  4268. size_t offset) {
  4269. const int64_t ne[3] = { ne0, ne1, ne2 };
  4270. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4271. result->nb[1] = nb1;
  4272. result->nb[2] = nb2;
  4273. result->nb[3] = result->nb[2]*ne2;
  4274. return result;
  4275. }
  4276. // ggml_view_4d
  4277. struct ggml_tensor * ggml_view_4d(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. int64_t ne0,
  4281. int64_t ne1,
  4282. int64_t ne2,
  4283. int64_t ne3,
  4284. size_t nb1,
  4285. size_t nb2,
  4286. size_t nb3,
  4287. size_t offset) {
  4288. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4289. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4290. result->nb[1] = nb1;
  4291. result->nb[2] = nb2;
  4292. result->nb[3] = nb3;
  4293. return result;
  4294. }
  4295. // ggml_permute
  4296. struct ggml_tensor * ggml_permute(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. int axis0,
  4300. int axis1,
  4301. int axis2,
  4302. int axis3) {
  4303. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4304. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4305. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4306. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4307. GGML_ASSERT(axis0 != axis1);
  4308. GGML_ASSERT(axis0 != axis2);
  4309. GGML_ASSERT(axis0 != axis3);
  4310. GGML_ASSERT(axis1 != axis2);
  4311. GGML_ASSERT(axis1 != axis3);
  4312. GGML_ASSERT(axis2 != axis3);
  4313. bool is_node = false;
  4314. if (a->grad) {
  4315. is_node = true;
  4316. }
  4317. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4318. ggml_format_name(result, "%s (permuted)", a->name);
  4319. int ne[GGML_MAX_DIMS];
  4320. int nb[GGML_MAX_DIMS];
  4321. ne[axis0] = a->ne[0];
  4322. ne[axis1] = a->ne[1];
  4323. ne[axis2] = a->ne[2];
  4324. ne[axis3] = a->ne[3];
  4325. nb[axis0] = a->nb[0];
  4326. nb[axis1] = a->nb[1];
  4327. nb[axis2] = a->nb[2];
  4328. nb[axis3] = a->nb[3];
  4329. result->ne[0] = ne[0];
  4330. result->ne[1] = ne[1];
  4331. result->ne[2] = ne[2];
  4332. result->ne[3] = ne[3];
  4333. result->nb[0] = nb[0];
  4334. result->nb[1] = nb[1];
  4335. result->nb[2] = nb[2];
  4336. result->nb[3] = nb[3];
  4337. result->op = GGML_OP_PERMUTE;
  4338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4339. result->src[0] = a;
  4340. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4341. ggml_set_op_params(result, params, sizeof(params));
  4342. return result;
  4343. }
  4344. // ggml_transpose
  4345. struct ggml_tensor * ggml_transpose(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a) {
  4348. bool is_node = false;
  4349. if (a->grad) {
  4350. is_node = true;
  4351. }
  4352. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4353. ggml_format_name(result, "%s (transposed)", a->name);
  4354. result->ne[0] = a->ne[1];
  4355. result->ne[1] = a->ne[0];
  4356. result->nb[0] = a->nb[1];
  4357. result->nb[1] = a->nb[0];
  4358. result->op = GGML_OP_TRANSPOSE;
  4359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4360. result->src[0] = a;
  4361. return result;
  4362. }
  4363. // ggml_get_rows
  4364. struct ggml_tensor * ggml_get_rows(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a,
  4367. struct ggml_tensor * b) {
  4368. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4369. GGML_ASSERT(b->ne[3] == 1);
  4370. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4371. bool is_node = false;
  4372. if (a->grad || b->grad) {
  4373. is_node = true;
  4374. }
  4375. // TODO: implement non F32 return
  4376. enum ggml_type type = GGML_TYPE_F32;
  4377. if (a->type == GGML_TYPE_I32) {
  4378. type = a->type;
  4379. }
  4380. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4381. result->op = GGML_OP_GET_ROWS;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src[0] = a;
  4384. result->src[1] = b;
  4385. return result;
  4386. }
  4387. // ggml_get_rows_back
  4388. struct ggml_tensor * ggml_get_rows_back(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. struct ggml_tensor * b,
  4392. struct ggml_tensor * c) {
  4393. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4394. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4395. bool is_node = false;
  4396. if (a->grad || b->grad) {
  4397. is_node = true;
  4398. }
  4399. // TODO: implement non F32 return
  4400. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4401. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4402. result->op = GGML_OP_GET_ROWS_BACK;
  4403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4404. result->src[0] = a;
  4405. result->src[1] = b;
  4406. return result;
  4407. }
  4408. // ggml_diag
  4409. struct ggml_tensor * ggml_diag(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a) {
  4412. GGML_ASSERT(a->ne[1] == 1);
  4413. bool is_node = false;
  4414. if (a->grad) {
  4415. is_node = true;
  4416. }
  4417. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4418. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4419. result->op = GGML_OP_DIAG;
  4420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4421. result->src[0] = a;
  4422. return result;
  4423. }
  4424. // ggml_diag_mask_inf
  4425. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. int n_past,
  4429. bool inplace) {
  4430. bool is_node = false;
  4431. if (a->grad) {
  4432. is_node = true;
  4433. }
  4434. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4435. int32_t params[] = { n_past };
  4436. ggml_set_op_params(result, params, sizeof(params));
  4437. result->op = GGML_OP_DIAG_MASK_INF;
  4438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4439. result->src[0] = a;
  4440. return result;
  4441. }
  4442. struct ggml_tensor * ggml_diag_mask_inf(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. int n_past) {
  4446. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4447. }
  4448. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. int n_past) {
  4452. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4453. }
  4454. // ggml_diag_mask_zero
  4455. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int n_past,
  4459. bool inplace) {
  4460. bool is_node = false;
  4461. if (a->grad) {
  4462. is_node = true;
  4463. }
  4464. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4465. int32_t params[] = { n_past };
  4466. ggml_set_op_params(result, params, sizeof(params));
  4467. result->op = GGML_OP_DIAG_MASK_ZERO;
  4468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4469. result->src[0] = a;
  4470. return result;
  4471. }
  4472. struct ggml_tensor * ggml_diag_mask_zero(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a,
  4475. int n_past) {
  4476. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4477. }
  4478. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. int n_past) {
  4482. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4483. }
  4484. // ggml_soft_max
  4485. static struct ggml_tensor * ggml_soft_max_impl(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * mask,
  4489. struct ggml_tensor * pos,
  4490. float scale,
  4491. float max_bias,
  4492. bool inplace) {
  4493. GGML_ASSERT(ggml_is_contiguous(a));
  4494. if (mask) {
  4495. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4496. GGML_ASSERT(ggml_is_contiguous(mask));
  4497. GGML_ASSERT(ggml_is_matrix(mask));
  4498. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4499. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4500. }
  4501. if (pos) {
  4502. GGML_ASSERT(ggml_is_vector(pos));
  4503. GGML_ASSERT(pos->type == GGML_TYPE_F16 || pos->type == GGML_TYPE_F32);
  4504. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4505. }
  4506. if (pos && mask) {
  4507. GGML_ASSERT(pos->type == mask->type);
  4508. }
  4509. if (max_bias > 0.0f) {
  4510. GGML_ASSERT(pos);
  4511. }
  4512. bool is_node = false;
  4513. if (a->grad) {
  4514. is_node = true;
  4515. }
  4516. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4517. float params[] = { scale, max_bias };
  4518. ggml_set_op_params(result, params, sizeof(params));
  4519. result->op = GGML_OP_SOFT_MAX;
  4520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4521. result->src[0] = a;
  4522. result->src[1] = mask;
  4523. result->src[2] = pos;
  4524. return result;
  4525. }
  4526. struct ggml_tensor * ggml_soft_max(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a) {
  4529. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4530. }
  4531. struct ggml_tensor * ggml_soft_max_inplace(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a) {
  4534. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4535. }
  4536. struct ggml_tensor * ggml_soft_max_ext(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. struct ggml_tensor * mask,
  4540. struct ggml_tensor * pos,
  4541. float scale,
  4542. float max_bias) {
  4543. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4544. }
  4545. // ggml_soft_max_back
  4546. static struct ggml_tensor * ggml_soft_max_back_impl(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. struct ggml_tensor * b,
  4550. bool inplace) {
  4551. bool is_node = false;
  4552. if (a->grad || b->grad) {
  4553. is_node = true; // TODO : implement backward pass
  4554. }
  4555. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4556. result->op = GGML_OP_SOFT_MAX_BACK;
  4557. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4558. result->src[0] = a;
  4559. result->src[1] = b;
  4560. return result;
  4561. }
  4562. struct ggml_tensor * ggml_soft_max_back(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. struct ggml_tensor * b) {
  4566. return ggml_soft_max_back_impl(ctx, a, b, false);
  4567. }
  4568. struct ggml_tensor * ggml_soft_max_back_inplace(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b) {
  4572. return ggml_soft_max_back_impl(ctx, a, b, true);
  4573. }
  4574. // ggml_rope
  4575. static struct ggml_tensor * ggml_rope_impl(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a,
  4578. struct ggml_tensor * b,
  4579. int n_dims,
  4580. int mode,
  4581. int n_ctx,
  4582. int n_orig_ctx,
  4583. float freq_base,
  4584. float freq_scale,
  4585. float ext_factor,
  4586. float attn_factor,
  4587. float beta_fast,
  4588. float beta_slow,
  4589. float xpos_base,
  4590. bool xpos_down,
  4591. bool inplace) {
  4592. GGML_ASSERT(ggml_is_vector(b));
  4593. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4594. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4595. bool is_node = false;
  4596. if (a->grad) {
  4597. is_node = true;
  4598. }
  4599. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4600. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4601. memcpy(params + 5, &freq_base, sizeof(float));
  4602. memcpy(params + 6, &freq_scale, sizeof(float));
  4603. memcpy(params + 7, &ext_factor, sizeof(float));
  4604. memcpy(params + 8, &attn_factor, sizeof(float));
  4605. memcpy(params + 9, &beta_fast, sizeof(float));
  4606. memcpy(params + 10, &beta_slow, sizeof(float));
  4607. memcpy(params + 11, &xpos_base, sizeof(float));
  4608. memcpy(params + 12, &xpos_down, sizeof(bool));
  4609. ggml_set_op_params(result, params, sizeof(params));
  4610. result->op = GGML_OP_ROPE;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src[0] = a;
  4613. result->src[1] = b;
  4614. return result;
  4615. }
  4616. struct ggml_tensor * ggml_rope(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a,
  4619. struct ggml_tensor * b,
  4620. int n_dims,
  4621. int mode,
  4622. int n_ctx) {
  4623. return ggml_rope_impl(
  4624. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4625. );
  4626. }
  4627. struct ggml_tensor * ggml_rope_inplace(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. struct ggml_tensor * b,
  4631. int n_dims,
  4632. int mode,
  4633. int n_ctx) {
  4634. return ggml_rope_impl(
  4635. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4636. );
  4637. }
  4638. struct ggml_tensor * ggml_rope_custom(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. struct ggml_tensor * b,
  4642. int n_dims,
  4643. int mode,
  4644. int n_ctx,
  4645. int n_orig_ctx,
  4646. float freq_base,
  4647. float freq_scale,
  4648. float ext_factor,
  4649. float attn_factor,
  4650. float beta_fast,
  4651. float beta_slow) {
  4652. return ggml_rope_impl(
  4653. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4654. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4655. );
  4656. }
  4657. struct ggml_tensor * ggml_rope_custom_inplace(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. struct ggml_tensor * b,
  4661. int n_dims,
  4662. int mode,
  4663. int n_ctx,
  4664. int n_orig_ctx,
  4665. float freq_base,
  4666. float freq_scale,
  4667. float ext_factor,
  4668. float attn_factor,
  4669. float beta_fast,
  4670. float beta_slow) {
  4671. return ggml_rope_impl(
  4672. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4673. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4674. );
  4675. }
  4676. struct ggml_tensor * ggml_rope_xpos_inplace(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. struct ggml_tensor * b,
  4680. int n_dims,
  4681. float base,
  4682. bool down) {
  4683. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4684. }
  4685. // ggml_rope_back
  4686. struct ggml_tensor * ggml_rope_back(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. struct ggml_tensor * b,
  4690. int n_dims,
  4691. int mode,
  4692. int n_ctx,
  4693. int n_orig_ctx,
  4694. float freq_base,
  4695. float freq_scale,
  4696. float ext_factor,
  4697. float attn_factor,
  4698. float beta_fast,
  4699. float beta_slow,
  4700. float xpos_base,
  4701. bool xpos_down) {
  4702. GGML_ASSERT(ggml_is_vector(b));
  4703. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4704. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4705. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4706. bool is_node = false;
  4707. if (a->grad) {
  4708. is_node = false; // TODO: implement backward
  4709. }
  4710. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4711. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4712. memcpy(params + 5, &freq_base, sizeof(float));
  4713. memcpy(params + 6, &freq_scale, sizeof(float));
  4714. memcpy(params + 7, &ext_factor, sizeof(float));
  4715. memcpy(params + 8, &attn_factor, sizeof(float));
  4716. memcpy(params + 9, &beta_fast, sizeof(float));
  4717. memcpy(params + 10, &beta_slow, sizeof(float));
  4718. memcpy(params + 11, &xpos_base, sizeof(float));
  4719. memcpy(params + 12, &xpos_down, sizeof(bool));
  4720. ggml_set_op_params(result, params, sizeof(params));
  4721. result->op = GGML_OP_ROPE_BACK;
  4722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4723. result->src[0] = a;
  4724. result->src[1] = b;
  4725. return result;
  4726. }
  4727. // ggml_alibi
  4728. struct ggml_tensor * ggml_alibi(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. int n_past,
  4732. int n_head,
  4733. float bias_max) {
  4734. GGML_ASSERT(n_past >= 0);
  4735. bool is_node = false;
  4736. if (a->grad) {
  4737. GGML_ASSERT(false); // TODO: implement backward
  4738. is_node = true;
  4739. }
  4740. // TODO: when implement backward, fix this:
  4741. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4742. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4743. int32_t op_params[3] = { n_past, n_head };
  4744. memcpy(op_params + 2, &bias_max, sizeof(float));
  4745. ggml_set_op_params(result, op_params, sizeof(op_params));
  4746. result->op = GGML_OP_ALIBI;
  4747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4748. result->src[0] = a;
  4749. return result;
  4750. }
  4751. // ggml_clamp
  4752. struct ggml_tensor * ggml_clamp(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. float min,
  4756. float max) {
  4757. bool is_node = false;
  4758. if (a->grad) {
  4759. GGML_ASSERT(false); // TODO: implement backward
  4760. is_node = true;
  4761. }
  4762. // TODO: when implement backward, fix this:
  4763. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4764. float params[] = { min, max };
  4765. ggml_set_op_params(result, params, sizeof(params));
  4766. result->op = GGML_OP_CLAMP;
  4767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4768. result->src[0] = a;
  4769. return result;
  4770. }
  4771. // ggml_conv_1d
  4772. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4773. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4774. }
  4775. GGML_API struct ggml_tensor * ggml_conv_1d(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. struct ggml_tensor * b,
  4779. int s0,
  4780. int p0,
  4781. int d0) {
  4782. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4783. struct ggml_tensor * result =
  4784. ggml_mul_mat(ctx,
  4785. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4786. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4787. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4788. return result;
  4789. }
  4790. // ggml_conv_1d_ph
  4791. struct ggml_tensor* ggml_conv_1d_ph(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a,
  4794. struct ggml_tensor * b,
  4795. int s,
  4796. int d) {
  4797. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4798. }
  4799. // ggml_conv_transpose_1d
  4800. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4801. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4802. }
  4803. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. struct ggml_tensor * b,
  4807. int s0,
  4808. int p0,
  4809. int d0) {
  4810. GGML_ASSERT(ggml_is_matrix(b));
  4811. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4812. GGML_ASSERT(a->ne[3] == 1);
  4813. GGML_ASSERT(p0 == 0);
  4814. GGML_ASSERT(d0 == 1);
  4815. bool is_node = false;
  4816. if (a->grad || b->grad) {
  4817. GGML_ASSERT(false); // TODO: implement backward
  4818. is_node = true;
  4819. }
  4820. const int64_t ne[4] = {
  4821. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4822. a->ne[1], b->ne[2], 1,
  4823. };
  4824. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4825. int32_t params[] = { s0, p0, d0 };
  4826. ggml_set_op_params(result, params, sizeof(params));
  4827. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4829. result->src[0] = a;
  4830. result->src[1] = b;
  4831. return result;
  4832. }
  4833. // ggml_conv_depthwise
  4834. struct ggml_tensor * ggml_conv_depthwise_2d(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. struct ggml_tensor * b,
  4838. int s0,
  4839. int s1,
  4840. int p0,
  4841. int p1,
  4842. int d0,
  4843. int d1) {
  4844. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4845. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4846. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4847. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4848. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4849. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4850. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4851. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4852. return result;
  4853. }
  4854. // ggml_conv_2d
  4855. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4856. // a: [OC,IC, KH, KW]
  4857. // b: [N, IC, IH, IW]
  4858. // result: [N, OH, OW, IC*KH*KW]
  4859. struct ggml_tensor * ggml_im2col(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. struct ggml_tensor * b,
  4863. int s0,
  4864. int s1,
  4865. int p0,
  4866. int p1,
  4867. int d0,
  4868. int d1,
  4869. bool is_2D,
  4870. enum ggml_type dst_type) {
  4871. if(is_2D) {
  4872. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4873. } else {
  4874. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4875. }
  4876. bool is_node = false;
  4877. if (a->grad || b->grad) {
  4878. GGML_ASSERT(false); // TODO: implement backward
  4879. is_node = true;
  4880. }
  4881. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4882. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4883. const int64_t ne[4] = {
  4884. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4885. OW,
  4886. is_2D ? OH : b->ne[2],
  4887. is_2D ? b->ne[3] : 1,
  4888. };
  4889. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4890. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4891. ggml_set_op_params(result, params, sizeof(params));
  4892. result->op = GGML_OP_IM2COL;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src[0] = a;
  4895. result->src[1] = b;
  4896. return result;
  4897. }
  4898. // a: [OC,IC, KH, KW]
  4899. // b: [N, IC, IH, IW]
  4900. // result: [N, OC, OH, OW]
  4901. struct ggml_tensor * ggml_conv_2d(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. struct ggml_tensor * b,
  4905. int s0,
  4906. int s1,
  4907. int p0,
  4908. int p1,
  4909. int d0,
  4910. int d1) {
  4911. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4912. struct ggml_tensor * result =
  4913. ggml_mul_mat(ctx,
  4914. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4915. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4916. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4917. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4918. return result;
  4919. }
  4920. // ggml_conv_2d_sk_p0
  4921. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a,
  4924. struct ggml_tensor * b) {
  4925. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4926. }
  4927. // ggml_conv_2d_s1_ph
  4928. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. struct ggml_tensor * b) {
  4932. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4933. }
  4934. // ggml_conv_transpose_2d_p0
  4935. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4936. return (ins - 1) * s - 2 * p + ks;
  4937. }
  4938. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. struct ggml_tensor * b,
  4942. int stride) {
  4943. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4944. bool is_node = false;
  4945. if (a->grad || b->grad) {
  4946. GGML_ASSERT(false); // TODO: implement backward
  4947. is_node = true;
  4948. }
  4949. const int64_t ne[4] = {
  4950. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4951. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4952. a->ne[2], b->ne[3],
  4953. };
  4954. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4955. ggml_set_op_params_i32(result, 0, stride);
  4956. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4958. result->src[0] = a;
  4959. result->src[1] = b;
  4960. return result;
  4961. }
  4962. // ggml_pool_*
  4963. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4964. return (ins + 2 * p - ks) / s + 1;
  4965. }
  4966. // ggml_pool_1d
  4967. struct ggml_tensor * ggml_pool_1d(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. enum ggml_op_pool op,
  4971. int k0,
  4972. int s0,
  4973. int p0) {
  4974. bool is_node = false;
  4975. if (a->grad) {
  4976. GGML_ASSERT(false); // TODO: implement backward
  4977. is_node = true;
  4978. }
  4979. const int64_t ne[4] = {
  4980. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4981. a->ne[1],
  4982. a->ne[2],
  4983. a->ne[3],
  4984. };
  4985. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4986. int32_t params[] = { op, k0, s0, p0 };
  4987. ggml_set_op_params(result, params, sizeof(params));
  4988. result->op = GGML_OP_POOL_1D;
  4989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4990. result->src[0] = a;
  4991. return result;
  4992. }
  4993. // ggml_pool_2d
  4994. struct ggml_tensor * ggml_pool_2d(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a,
  4997. enum ggml_op_pool op,
  4998. int k0,
  4999. int k1,
  5000. int s0,
  5001. int s1,
  5002. float p0,
  5003. float p1) {
  5004. bool is_node = false;
  5005. if (a->grad) {
  5006. GGML_ASSERT(false); // TODO: implement backward
  5007. is_node = true;
  5008. }
  5009. struct ggml_tensor * result;
  5010. const int64_t ne[3] = {
  5011. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5012. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5013. a->ne[2],
  5014. };
  5015. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5016. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5017. ggml_set_op_params(result, params, sizeof(params));
  5018. result->op = GGML_OP_POOL_2D;
  5019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5020. result->src[0] = a;
  5021. return result;
  5022. }
  5023. // ggml_upscale
  5024. static struct ggml_tensor * ggml_upscale_impl(
  5025. struct ggml_context * ctx,
  5026. struct ggml_tensor * a,
  5027. int scale_factor) {
  5028. bool is_node = false;
  5029. if (a->grad) {
  5030. GGML_ASSERT(false); // TODO: implement backward
  5031. is_node = true;
  5032. }
  5033. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5034. a->ne[0] * scale_factor,
  5035. a->ne[1] * scale_factor,
  5036. a->ne[2], a->ne[3]);
  5037. result->op = GGML_OP_UPSCALE;
  5038. result->op_params[0] = scale_factor;
  5039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5040. result->src[0] = a;
  5041. return result;
  5042. }
  5043. struct ggml_tensor * ggml_pad(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. int p0, int p1, int p2, int p3) {
  5047. bool is_node = false;
  5048. if (a->grad) {
  5049. GGML_ASSERT(false); // TODO: implement backward
  5050. is_node = true;
  5051. }
  5052. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5053. a->ne[0] + p0,
  5054. a->ne[1] + p1,
  5055. a->ne[2] + p2,
  5056. a->ne[3] + p3);
  5057. result->op = GGML_OP_PAD;
  5058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5059. result->src[0] = a;
  5060. return result;
  5061. }
  5062. struct ggml_tensor * ggml_upscale(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. int scale_factor) {
  5066. return ggml_upscale_impl(ctx, a, scale_factor);
  5067. }
  5068. struct ggml_tensor * ggml_arange(
  5069. struct ggml_context * ctx,
  5070. float start,
  5071. float stop,
  5072. float step) {
  5073. GGML_ASSERT(stop > start);
  5074. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5075. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5076. result->op = GGML_OP_ARANGE;
  5077. ggml_set_op_params_f32(result, 0, start);
  5078. ggml_set_op_params_f32(result, 1, stop);
  5079. ggml_set_op_params_f32(result, 2, step);
  5080. return result;
  5081. }
  5082. struct ggml_tensor * ggml_timestep_embedding(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * timesteps,
  5085. int dim,
  5086. int max_period) {
  5087. bool is_node = false;
  5088. if (timesteps->grad) {
  5089. GGML_ASSERT(false); // TODO: implement backward
  5090. is_node = true;
  5091. }
  5092. int actual_dim = dim;
  5093. if (dim % 2 != 0) {
  5094. actual_dim = dim + 1;
  5095. }
  5096. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5097. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5098. ggml_set_op_params_i32(result, 0, dim);
  5099. ggml_set_op_params_i32(result, 1, max_period);
  5100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5101. result->src[0] = timesteps;
  5102. return result;
  5103. }
  5104. // ggml_argsort
  5105. struct ggml_tensor * ggml_argsort(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. enum ggml_sort_order order) {
  5109. bool is_node = false;
  5110. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5111. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5112. result->op = GGML_OP_ARGSORT;
  5113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5114. result->src[0] = a;
  5115. return result;
  5116. }
  5117. // ggml_top_k
  5118. struct ggml_tensor * ggml_top_k(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. int k) {
  5122. GGML_ASSERT(a->ne[0] >= k);
  5123. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5124. result = ggml_view_4d(ctx, result,
  5125. k, result->ne[1], result->ne[2], result->ne[3],
  5126. result->nb[1], result->nb[2], result->nb[3],
  5127. 0);
  5128. return result;
  5129. }
  5130. // ggml_flash_attn
  5131. struct ggml_tensor * ggml_flash_attn(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * q,
  5134. struct ggml_tensor * k,
  5135. struct ggml_tensor * v,
  5136. bool masked) {
  5137. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5138. // TODO: check if vT can be multiplied by (k*qT)
  5139. bool is_node = false;
  5140. if (q->grad || k->grad || v->grad) {
  5141. is_node = true;
  5142. }
  5143. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5144. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5145. int32_t t = masked ? 1 : 0;
  5146. ggml_set_op_params(result, &t, sizeof(t));
  5147. result->op = GGML_OP_FLASH_ATTN;
  5148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5149. result->src[0] = q;
  5150. result->src[1] = k;
  5151. result->src[2] = v;
  5152. return result;
  5153. }
  5154. // ggml_flash_attn_ext
  5155. struct ggml_tensor * ggml_flash_attn_ext(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * q,
  5158. struct ggml_tensor * k,
  5159. struct ggml_tensor * v,
  5160. struct ggml_tensor * mask,
  5161. float scale) {
  5162. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5163. // TODO: check if vT can be multiplied by (k*qT)
  5164. if (mask) {
  5165. GGML_ASSERT(ggml_is_contiguous(mask));
  5166. GGML_ASSERT(mask->ne[2] == 1);
  5167. GGML_ASSERT(mask->ne[3] == 1);
  5168. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5169. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5170. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5171. }
  5172. bool is_node = false;
  5173. if (q->grad || k->grad || v->grad) {
  5174. is_node = true;
  5175. }
  5176. // permute(0, 2, 1, 3)
  5177. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5178. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5179. float params[] = { scale };
  5180. ggml_set_op_params(result, params, sizeof(params));
  5181. result->op = GGML_OP_FLASH_ATTN_EXT;
  5182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5183. result->src[0] = q;
  5184. result->src[1] = k;
  5185. result->src[2] = v;
  5186. result->src[3] = mask;
  5187. return result;
  5188. }
  5189. void ggml_flash_attn_ext_set_prec(
  5190. struct ggml_tensor * a,
  5191. enum ggml_prec prec) {
  5192. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5193. const int32_t prec_i32 = (int32_t) prec;
  5194. ggml_set_op_params_i32(a, 1, prec_i32); // scale is on first pos
  5195. }
  5196. // ggml_flash_ff
  5197. struct ggml_tensor * ggml_flash_ff(
  5198. struct ggml_context * ctx,
  5199. struct ggml_tensor * a,
  5200. struct ggml_tensor * b0,
  5201. struct ggml_tensor * b1,
  5202. struct ggml_tensor * c0,
  5203. struct ggml_tensor * c1) {
  5204. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5205. // TODO: more checks
  5206. bool is_node = false;
  5207. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5208. is_node = true;
  5209. }
  5210. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5211. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5212. result->op = GGML_OP_FLASH_FF;
  5213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5214. result->src[0] = a;
  5215. result->src[1] = b0;
  5216. result->src[2] = b1;
  5217. result->src[3] = c0;
  5218. result->src[4] = c1;
  5219. return result;
  5220. }
  5221. // ggml_flash_attn_back
  5222. struct ggml_tensor * ggml_flash_attn_back(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * q,
  5225. struct ggml_tensor * k,
  5226. struct ggml_tensor * v,
  5227. struct ggml_tensor * d,
  5228. bool masked) {
  5229. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5230. // TODO: check if vT can be multiplied by (k*qT)
  5231. // d shape [D,N,ne2,ne3]
  5232. // q shape [D,N,ne2,ne3]
  5233. // k shape [D,M,kvne2,ne3]
  5234. // v shape [M,D,kvne2,ne3]
  5235. const int64_t D = q->ne[0];
  5236. const int64_t N = q->ne[1];
  5237. const int64_t M = k->ne[1];
  5238. const int64_t ne2 = q->ne[2];
  5239. const int64_t ne3 = q->ne[3];
  5240. const int64_t kvne2 = k->ne[2];
  5241. GGML_ASSERT(k->ne[0] == D);
  5242. GGML_ASSERT(v->ne[0] == M);
  5243. GGML_ASSERT(v->ne[1] == D);
  5244. GGML_ASSERT(d->ne[0] == D);
  5245. GGML_ASSERT(d->ne[1] == N);
  5246. GGML_ASSERT(k->ne[2] == kvne2);
  5247. GGML_ASSERT(k->ne[3] == ne3);
  5248. GGML_ASSERT(v->ne[2] == kvne2);
  5249. GGML_ASSERT(v->ne[3] == ne3);
  5250. GGML_ASSERT(d->ne[2] == ne2);
  5251. GGML_ASSERT(d->ne[3] == ne3);
  5252. GGML_ASSERT(ne2 % kvne2 == 0);
  5253. bool is_node = false;
  5254. if (q->grad || k->grad || v->grad) {
  5255. // when using this operation (in backwards pass) these grads are set.
  5256. // we don't want to create (big) grad of our result, so is_node is false.
  5257. is_node = false;
  5258. }
  5259. // store gradients of q, k and v as continuous tensors concatenated in result.
  5260. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5261. const int64_t elem_q = ggml_nelements(q);
  5262. const int64_t elem_k = ggml_nelements(k);
  5263. const int64_t elem_v = ggml_nelements(v);
  5264. enum ggml_type result_type = GGML_TYPE_F32;
  5265. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5266. const size_t tsize = ggml_type_size(result_type);
  5267. const size_t offs_q = 0;
  5268. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5269. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5270. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5271. const size_t nelements = (end + tsize - 1)/tsize;
  5272. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5273. int32_t masked_i = masked ? 1 : 0;
  5274. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5275. result->op = GGML_OP_FLASH_ATTN_BACK;
  5276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5277. result->src[0] = q;
  5278. result->src[1] = k;
  5279. result->src[2] = v;
  5280. result->src[3] = d;
  5281. return result;
  5282. }
  5283. // ggml_ssm_conv
  5284. struct ggml_tensor * ggml_ssm_conv(
  5285. struct ggml_context * ctx,
  5286. struct ggml_tensor * s,
  5287. struct ggml_tensor * x,
  5288. struct ggml_tensor * c,
  5289. struct ggml_tensor * sq) {
  5290. GGML_ASSERT(ggml_is_3d(s));
  5291. GGML_ASSERT(ggml_is_matrix(x));
  5292. GGML_ASSERT(ggml_is_matrix(c));
  5293. GGML_ASSERT(ggml_is_matrix(sq));
  5294. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5295. const int64_t d_conv = c->ne[0];
  5296. const int64_t d_inner = c->ne[1];
  5297. const int64_t n_tokens = x->ne[1];
  5298. const int64_t n_kv = s->ne[2];
  5299. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5300. GGML_ASSERT( s->ne[1] == d_inner);
  5301. GGML_ASSERT( x->ne[0] == d_inner);
  5302. GGML_ASSERT(sq->ne[0] == n_kv);
  5303. GGML_ASSERT(sq->ne[1] == n_tokens);
  5304. bool is_node = false;
  5305. if (s->grad || x->grad || c->grad || sq->grad) {
  5306. GGML_ASSERT(false); // TODO: implement
  5307. is_node = true;
  5308. }
  5309. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5310. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5311. result->op = GGML_OP_SSM_CONV;
  5312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5313. result->src[0] = s;
  5314. result->src[1] = x;
  5315. result->src[2] = c;
  5316. result->src[3] = sq;
  5317. return result;
  5318. }
  5319. // ggml_ssm_scan
  5320. struct ggml_tensor * ggml_ssm_scan(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * s,
  5323. struct ggml_tensor * x,
  5324. struct ggml_tensor * dt,
  5325. struct ggml_tensor * A,
  5326. struct ggml_tensor * B,
  5327. struct ggml_tensor * C,
  5328. struct ggml_tensor * sq) {
  5329. GGML_ASSERT(ggml_is_contiguous(s));
  5330. GGML_ASSERT(ggml_is_contiguous(x));
  5331. GGML_ASSERT(ggml_is_contiguous(dt));
  5332. GGML_ASSERT(ggml_is_contiguous(A));
  5333. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5334. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5335. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5336. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5337. {
  5338. const int64_t d_state = s->ne[0];
  5339. const int64_t d_inner = s->ne[1];
  5340. const int64_t n_tokens = x->ne[1];
  5341. GGML_ASSERT(x->ne[0] == d_inner);
  5342. GGML_ASSERT(A->ne[0] == d_state);
  5343. GGML_ASSERT(A->ne[1] == d_inner);
  5344. GGML_ASSERT(B->ne[0] == d_state);
  5345. GGML_ASSERT(B->ne[1] == n_tokens);
  5346. GGML_ASSERT(C->ne[0] == d_state);
  5347. GGML_ASSERT(C->ne[1] == n_tokens);
  5348. }
  5349. bool is_node = false;
  5350. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5351. GGML_ASSERT(false); // TODO: implement
  5352. is_node = true;
  5353. }
  5354. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5355. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5356. result->op = GGML_OP_SSM_SCAN;
  5357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5358. result->src[0] = s;
  5359. result->src[1] = x;
  5360. result->src[2] = dt;
  5361. result->src[3] = A;
  5362. result->src[4] = B;
  5363. result->src[5] = C;
  5364. result->src[6] = sq;
  5365. return result;
  5366. }
  5367. // ggml_win_part
  5368. struct ggml_tensor * ggml_win_part(
  5369. struct ggml_context * ctx,
  5370. struct ggml_tensor * a,
  5371. int w) {
  5372. GGML_ASSERT(a->ne[3] == 1);
  5373. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5374. bool is_node = false;
  5375. if (a->grad) {
  5376. GGML_ASSERT(false); // TODO: implement backward
  5377. is_node = true;
  5378. }
  5379. // padding
  5380. const int px = (w - a->ne[1]%w)%w;
  5381. const int py = (w - a->ne[2]%w)%w;
  5382. const int npx = (px + a->ne[1])/w;
  5383. const int npy = (py + a->ne[2])/w;
  5384. const int np = npx*npy;
  5385. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5386. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5387. int32_t params[] = { npx, npy, w };
  5388. ggml_set_op_params(result, params, sizeof(params));
  5389. result->op = GGML_OP_WIN_PART;
  5390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5391. result->src[0] = a;
  5392. return result;
  5393. }
  5394. // ggml_win_unpart
  5395. struct ggml_tensor * ggml_win_unpart(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. int w0,
  5399. int h0,
  5400. int w) {
  5401. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5402. bool is_node = false;
  5403. if (a->grad) {
  5404. GGML_ASSERT(false); // TODO: implement backward
  5405. is_node = true;
  5406. }
  5407. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5408. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5409. int32_t params[] = { w };
  5410. ggml_set_op_params(result, params, sizeof(params));
  5411. result->op = GGML_OP_WIN_UNPART;
  5412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5413. result->src[0] = a;
  5414. return result;
  5415. }
  5416. // ggml_get_rel_pos
  5417. struct ggml_tensor * ggml_get_rel_pos(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a,
  5420. int qh,
  5421. int kh) {
  5422. GGML_ASSERT(qh == kh);
  5423. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5424. bool is_node = false;
  5425. if (a->grad) {
  5426. GGML_ASSERT(false); // TODO: implement backward
  5427. is_node = true;
  5428. }
  5429. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5430. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5431. result->op = GGML_OP_GET_REL_POS;
  5432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5433. result->src[0] = a;
  5434. return result;
  5435. }
  5436. // ggml_add_rel_pos
  5437. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5438. struct ggml_context * ctx,
  5439. struct ggml_tensor * a,
  5440. struct ggml_tensor * pw,
  5441. struct ggml_tensor * ph,
  5442. bool inplace) {
  5443. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5444. GGML_ASSERT(ggml_is_contiguous(a));
  5445. GGML_ASSERT(ggml_is_contiguous(pw));
  5446. GGML_ASSERT(ggml_is_contiguous(ph));
  5447. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5448. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5449. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5450. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5451. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5452. bool is_node = false;
  5453. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5454. is_node = true;
  5455. }
  5456. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5457. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5458. result->op = GGML_OP_ADD_REL_POS;
  5459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5460. result->src[0] = a;
  5461. result->src[1] = pw;
  5462. result->src[2] = ph;
  5463. return result;
  5464. }
  5465. struct ggml_tensor * ggml_add_rel_pos(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. struct ggml_tensor * pw,
  5469. struct ggml_tensor * ph) {
  5470. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5471. }
  5472. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5473. struct ggml_context * ctx,
  5474. struct ggml_tensor * a,
  5475. struct ggml_tensor * pw,
  5476. struct ggml_tensor * ph) {
  5477. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5478. }
  5479. // gmml_unary
  5480. static struct ggml_tensor * ggml_unary_impl(
  5481. struct ggml_context * ctx,
  5482. struct ggml_tensor * a,
  5483. enum ggml_unary_op op,
  5484. bool inplace) {
  5485. bool is_node = false;
  5486. if (!inplace && (a->grad)) {
  5487. is_node = true;
  5488. }
  5489. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5490. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5491. result->op = GGML_OP_UNARY;
  5492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5493. result->src[0] = a;
  5494. return result;
  5495. }
  5496. struct ggml_tensor * ggml_unary(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. enum ggml_unary_op op) {
  5500. return ggml_unary_impl(ctx, a, op, false);
  5501. }
  5502. struct ggml_tensor * ggml_unary_inplace(
  5503. struct ggml_context * ctx,
  5504. struct ggml_tensor * a,
  5505. enum ggml_unary_op op) {
  5506. return ggml_unary_impl(ctx, a, op, true);
  5507. }
  5508. // ggml_map_unary
  5509. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5510. struct ggml_context * ctx,
  5511. struct ggml_tensor * a,
  5512. const ggml_unary_op_f32_t fun,
  5513. bool inplace) {
  5514. bool is_node = false;
  5515. if (!inplace && a->grad) {
  5516. is_node = true;
  5517. }
  5518. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5519. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5520. result->op = GGML_OP_MAP_UNARY;
  5521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5522. result->src[0] = a;
  5523. return result;
  5524. }
  5525. struct ggml_tensor * ggml_map_unary_f32(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a,
  5528. const ggml_unary_op_f32_t fun) {
  5529. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5530. }
  5531. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5532. struct ggml_context * ctx,
  5533. struct ggml_tensor * a,
  5534. const ggml_unary_op_f32_t fun) {
  5535. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5536. }
  5537. // ggml_map_binary
  5538. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5539. struct ggml_context * ctx,
  5540. struct ggml_tensor * a,
  5541. struct ggml_tensor * b,
  5542. const ggml_binary_op_f32_t fun,
  5543. bool inplace) {
  5544. GGML_ASSERT(ggml_are_same_shape(a, b));
  5545. bool is_node = false;
  5546. if (!inplace && (a->grad || b->grad)) {
  5547. is_node = true;
  5548. }
  5549. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5550. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5551. result->op = GGML_OP_MAP_BINARY;
  5552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5553. result->src[0] = a;
  5554. result->src[1] = b;
  5555. return result;
  5556. }
  5557. struct ggml_tensor * ggml_map_binary_f32(
  5558. struct ggml_context * ctx,
  5559. struct ggml_tensor * a,
  5560. struct ggml_tensor * b,
  5561. const ggml_binary_op_f32_t fun) {
  5562. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5563. }
  5564. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. const ggml_binary_op_f32_t fun) {
  5569. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5570. }
  5571. // ggml_map_custom1_f32
  5572. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a,
  5575. const ggml_custom1_op_f32_t fun,
  5576. bool inplace) {
  5577. bool is_node = false;
  5578. if (!inplace && a->grad) {
  5579. is_node = true;
  5580. }
  5581. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5582. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5583. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5585. result->src[0] = a;
  5586. return result;
  5587. }
  5588. struct ggml_tensor * ggml_map_custom1_f32(
  5589. struct ggml_context * ctx,
  5590. struct ggml_tensor * a,
  5591. const ggml_custom1_op_f32_t fun) {
  5592. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5593. }
  5594. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. const ggml_custom1_op_f32_t fun) {
  5598. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5599. }
  5600. // ggml_map_custom2_f32
  5601. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5602. struct ggml_context * ctx,
  5603. struct ggml_tensor * a,
  5604. struct ggml_tensor * b,
  5605. const ggml_custom2_op_f32_t fun,
  5606. bool inplace) {
  5607. bool is_node = false;
  5608. if (!inplace && (a->grad || b->grad)) {
  5609. is_node = true;
  5610. }
  5611. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5612. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5613. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5615. result->src[0] = a;
  5616. result->src[1] = b;
  5617. return result;
  5618. }
  5619. struct ggml_tensor * ggml_map_custom2_f32(
  5620. struct ggml_context * ctx,
  5621. struct ggml_tensor * a,
  5622. struct ggml_tensor * b,
  5623. const ggml_custom2_op_f32_t fun) {
  5624. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5625. }
  5626. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5627. struct ggml_context * ctx,
  5628. struct ggml_tensor * a,
  5629. struct ggml_tensor * b,
  5630. const ggml_custom2_op_f32_t fun) {
  5631. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5632. }
  5633. // ggml_map_custom3_f32
  5634. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5635. struct ggml_context * ctx,
  5636. struct ggml_tensor * a,
  5637. struct ggml_tensor * b,
  5638. struct ggml_tensor * c,
  5639. const ggml_custom3_op_f32_t fun,
  5640. bool inplace) {
  5641. bool is_node = false;
  5642. if (!inplace && (a->grad || b->grad || c->grad)) {
  5643. is_node = true;
  5644. }
  5645. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5646. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5647. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5649. result->src[0] = a;
  5650. result->src[1] = b;
  5651. result->src[2] = c;
  5652. return result;
  5653. }
  5654. struct ggml_tensor * ggml_map_custom3_f32(
  5655. struct ggml_context * ctx,
  5656. struct ggml_tensor * a,
  5657. struct ggml_tensor * b,
  5658. struct ggml_tensor * c,
  5659. const ggml_custom3_op_f32_t fun) {
  5660. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5661. }
  5662. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5663. struct ggml_context * ctx,
  5664. struct ggml_tensor * a,
  5665. struct ggml_tensor * b,
  5666. struct ggml_tensor * c,
  5667. const ggml_custom3_op_f32_t fun) {
  5668. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5669. }
  5670. // ggml_map_custom1
  5671. struct ggml_map_custom1_op_params {
  5672. ggml_custom1_op_t fun;
  5673. int n_tasks;
  5674. void * userdata;
  5675. };
  5676. static struct ggml_tensor * ggml_map_custom1_impl(
  5677. struct ggml_context * ctx,
  5678. struct ggml_tensor * a,
  5679. const ggml_custom1_op_t fun,
  5680. int n_tasks,
  5681. void * userdata,
  5682. bool inplace) {
  5683. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5684. bool is_node = false;
  5685. if (!inplace && a->grad) {
  5686. is_node = true;
  5687. }
  5688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5689. struct ggml_map_custom1_op_params params = {
  5690. /*.fun =*/ fun,
  5691. /*.n_tasks =*/ n_tasks,
  5692. /*.userdata =*/ userdata
  5693. };
  5694. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5695. result->op = GGML_OP_MAP_CUSTOM1;
  5696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5697. result->src[0] = a;
  5698. return result;
  5699. }
  5700. struct ggml_tensor * ggml_map_custom1(
  5701. struct ggml_context * ctx,
  5702. struct ggml_tensor * a,
  5703. const ggml_custom1_op_t fun,
  5704. int n_tasks,
  5705. void * userdata) {
  5706. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5707. }
  5708. struct ggml_tensor * ggml_map_custom1_inplace(
  5709. struct ggml_context * ctx,
  5710. struct ggml_tensor * a,
  5711. const ggml_custom1_op_t fun,
  5712. int n_tasks,
  5713. void * userdata) {
  5714. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5715. }
  5716. // ggml_map_custom2
  5717. struct ggml_map_custom2_op_params {
  5718. ggml_custom2_op_t fun;
  5719. int n_tasks;
  5720. void * userdata;
  5721. };
  5722. static struct ggml_tensor * ggml_map_custom2_impl(
  5723. struct ggml_context * ctx,
  5724. struct ggml_tensor * a,
  5725. struct ggml_tensor * b,
  5726. const ggml_custom2_op_t fun,
  5727. int n_tasks,
  5728. void * userdata,
  5729. bool inplace) {
  5730. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5731. bool is_node = false;
  5732. if (!inplace && (a->grad || b->grad)) {
  5733. is_node = true;
  5734. }
  5735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5736. struct ggml_map_custom2_op_params params = {
  5737. /*.fun =*/ fun,
  5738. /*.n_tasks =*/ n_tasks,
  5739. /*.userdata =*/ userdata
  5740. };
  5741. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5742. result->op = GGML_OP_MAP_CUSTOM2;
  5743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5744. result->src[0] = a;
  5745. result->src[1] = b;
  5746. return result;
  5747. }
  5748. struct ggml_tensor * ggml_map_custom2(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. struct ggml_tensor * b,
  5752. const ggml_custom2_op_t fun,
  5753. int n_tasks,
  5754. void * userdata) {
  5755. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5756. }
  5757. struct ggml_tensor * ggml_map_custom2_inplace(
  5758. struct ggml_context * ctx,
  5759. struct ggml_tensor * a,
  5760. struct ggml_tensor * b,
  5761. const ggml_custom2_op_t fun,
  5762. int n_tasks,
  5763. void * userdata) {
  5764. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5765. }
  5766. // ggml_map_custom3
  5767. struct ggml_map_custom3_op_params {
  5768. ggml_custom3_op_t fun;
  5769. int n_tasks;
  5770. void * userdata;
  5771. };
  5772. static struct ggml_tensor * ggml_map_custom3_impl(
  5773. struct ggml_context * ctx,
  5774. struct ggml_tensor * a,
  5775. struct ggml_tensor * b,
  5776. struct ggml_tensor * c,
  5777. const ggml_custom3_op_t fun,
  5778. int n_tasks,
  5779. void * userdata,
  5780. bool inplace) {
  5781. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5782. bool is_node = false;
  5783. if (!inplace && (a->grad || b->grad || c->grad)) {
  5784. is_node = true;
  5785. }
  5786. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5787. struct ggml_map_custom3_op_params params = {
  5788. /*.fun =*/ fun,
  5789. /*.n_tasks =*/ n_tasks,
  5790. /*.userdata =*/ userdata
  5791. };
  5792. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5793. result->op = GGML_OP_MAP_CUSTOM3;
  5794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5795. result->src[0] = a;
  5796. result->src[1] = b;
  5797. result->src[2] = c;
  5798. return result;
  5799. }
  5800. struct ggml_tensor * ggml_map_custom3(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. struct ggml_tensor * b,
  5804. struct ggml_tensor * c,
  5805. const ggml_custom3_op_t fun,
  5806. int n_tasks,
  5807. void * userdata) {
  5808. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5809. }
  5810. struct ggml_tensor * ggml_map_custom3_inplace(
  5811. struct ggml_context * ctx,
  5812. struct ggml_tensor * a,
  5813. struct ggml_tensor * b,
  5814. struct ggml_tensor * c,
  5815. const ggml_custom3_op_t fun,
  5816. int n_tasks,
  5817. void * userdata) {
  5818. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5819. }
  5820. // ggml_cross_entropy_loss
  5821. struct ggml_tensor * ggml_cross_entropy_loss(
  5822. struct ggml_context * ctx,
  5823. struct ggml_tensor * a,
  5824. struct ggml_tensor * b) {
  5825. GGML_ASSERT(ggml_are_same_shape(a, b));
  5826. bool is_node = false;
  5827. if (a->grad || b->grad) {
  5828. is_node = true;
  5829. }
  5830. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5831. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5833. result->src[0] = a;
  5834. result->src[1] = b;
  5835. return result;
  5836. }
  5837. // ggml_cross_entropy_loss_back
  5838. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5839. struct ggml_context * ctx,
  5840. struct ggml_tensor * a,
  5841. struct ggml_tensor * b,
  5842. struct ggml_tensor * c) {
  5843. GGML_ASSERT(ggml_are_same_shape(a, b));
  5844. GGML_ASSERT(ggml_is_scalar(c));
  5845. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5846. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5847. result->grad = NULL;
  5848. result->src[0] = a;
  5849. result->src[1] = b;
  5850. result->src[2] = c;
  5851. return result;
  5852. }
  5853. ////////////////////////////////////////////////////////////////////////////////
  5854. void ggml_set_param(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * tensor) {
  5857. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5858. GGML_ASSERT(tensor->grad == NULL);
  5859. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5860. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5861. }
  5862. // ggml_compute_forward_dup
  5863. static void ggml_compute_forward_dup_same_cont(
  5864. const struct ggml_compute_params * params,
  5865. struct ggml_tensor * dst) {
  5866. const struct ggml_tensor * src0 = dst->src[0];
  5867. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5868. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5869. GGML_ASSERT(src0->type == dst->type);
  5870. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5871. return;
  5872. }
  5873. const size_t nb00 = src0->nb[0];
  5874. const size_t nb0 = dst->nb[0];
  5875. const int ith = params->ith; // thread index
  5876. const int nth = params->nth; // number of threads
  5877. // parallelize by elements
  5878. const int ne = ggml_nelements(dst);
  5879. const int dr = (ne + nth - 1) / nth;
  5880. const int ie0 = dr * ith;
  5881. const int ie1 = MIN(ie0 + dr, ne);
  5882. if (ie0 < ie1) {
  5883. memcpy(
  5884. ((char *) dst->data + ie0*nb0),
  5885. ((char *) src0->data + ie0*nb00),
  5886. (ie1 - ie0) * ggml_type_size(src0->type));
  5887. }
  5888. }
  5889. static void ggml_compute_forward_dup_f16(
  5890. const struct ggml_compute_params * params,
  5891. struct ggml_tensor * dst) {
  5892. const struct ggml_tensor * src0 = dst->src[0];
  5893. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5894. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5895. return;
  5896. }
  5897. GGML_TENSOR_UNARY_OP_LOCALS
  5898. const int ith = params->ith; // thread index
  5899. const int nth = params->nth; // number of threads
  5900. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5901. ggml_compute_forward_dup_same_cont(params, dst);
  5902. return;
  5903. }
  5904. // parallelize by rows
  5905. const int nr = ne01;
  5906. // number of rows per thread
  5907. const int dr = (nr + nth - 1) / nth;
  5908. // row range for this thread
  5909. const int ir0 = dr * ith;
  5910. const int ir1 = MIN(ir0 + dr, nr);
  5911. if (src0->type == dst->type &&
  5912. ne00 == ne0 &&
  5913. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5914. // copy by rows
  5915. const size_t rs = ne00*nb00;
  5916. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5917. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5918. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5919. memcpy(
  5920. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5921. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5922. rs);
  5923. }
  5924. }
  5925. }
  5926. return;
  5927. }
  5928. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5929. if (ggml_is_contiguous(dst)) {
  5930. if (nb00 == sizeof(ggml_fp16_t)) {
  5931. if (dst->type == GGML_TYPE_F16) {
  5932. size_t id = 0;
  5933. const size_t rs = ne00 * nb00;
  5934. char * dst_ptr = (char *) dst->data;
  5935. for (int i03 = 0; i03 < ne03; i03++) {
  5936. for (int i02 = 0; i02 < ne02; i02++) {
  5937. id += rs * ir0;
  5938. for (int i01 = ir0; i01 < ir1; i01++) {
  5939. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5940. memcpy(dst_ptr + id, src0_ptr, rs);
  5941. id += rs;
  5942. }
  5943. id += rs * (ne01 - ir1);
  5944. }
  5945. }
  5946. } else if (dst->type == GGML_TYPE_F32) {
  5947. size_t id = 0;
  5948. float * dst_ptr = (float *) dst->data;
  5949. for (int i03 = 0; i03 < ne03; i03++) {
  5950. for (int i02 = 0; i02 < ne02; i02++) {
  5951. id += ne00 * ir0;
  5952. for (int i01 = ir0; i01 < ir1; i01++) {
  5953. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5954. for (int i00 = 0; i00 < ne00; i00++) {
  5955. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5956. id++;
  5957. }
  5958. }
  5959. id += ne00 * (ne01 - ir1);
  5960. }
  5961. }
  5962. } else if (type_traits[dst->type].from_float) {
  5963. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5964. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5965. size_t id = 0;
  5966. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5967. char * dst_ptr = (char *) dst->data;
  5968. for (int i03 = 0; i03 < ne03; i03++) {
  5969. for (int i02 = 0; i02 < ne02; i02++) {
  5970. id += rs * ir0;
  5971. for (int i01 = ir0; i01 < ir1; i01++) {
  5972. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5973. for (int i00 = 0; i00 < ne00; i00++) {
  5974. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5975. }
  5976. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5977. id += rs;
  5978. }
  5979. id += rs * (ne01 - ir1);
  5980. }
  5981. }
  5982. } else {
  5983. GGML_ASSERT(false); // TODO: implement
  5984. }
  5985. } else {
  5986. //printf("%s: this is not optimal - fix me\n", __func__);
  5987. if (dst->type == GGML_TYPE_F32) {
  5988. size_t id = 0;
  5989. float * dst_ptr = (float *) dst->data;
  5990. for (int i03 = 0; i03 < ne03; i03++) {
  5991. for (int i02 = 0; i02 < ne02; i02++) {
  5992. id += ne00 * ir0;
  5993. for (int i01 = ir0; i01 < ir1; i01++) {
  5994. for (int i00 = 0; i00 < ne00; i00++) {
  5995. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5996. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5997. id++;
  5998. }
  5999. }
  6000. id += ne00 * (ne01 - ir1);
  6001. }
  6002. }
  6003. } else if (dst->type == GGML_TYPE_F16) {
  6004. size_t id = 0;
  6005. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6006. for (int i03 = 0; i03 < ne03; i03++) {
  6007. for (int i02 = 0; i02 < ne02; i02++) {
  6008. id += ne00 * ir0;
  6009. for (int i01 = ir0; i01 < ir1; i01++) {
  6010. for (int i00 = 0; i00 < ne00; i00++) {
  6011. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6012. dst_ptr[id] = *src0_ptr;
  6013. id++;
  6014. }
  6015. }
  6016. id += ne00 * (ne01 - ir1);
  6017. }
  6018. }
  6019. } else {
  6020. GGML_ASSERT(false); // TODO: implement
  6021. }
  6022. }
  6023. return;
  6024. }
  6025. // dst counters
  6026. int64_t i10 = 0;
  6027. int64_t i11 = 0;
  6028. int64_t i12 = 0;
  6029. int64_t i13 = 0;
  6030. if (dst->type == GGML_TYPE_F16) {
  6031. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6032. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6033. i10 += ne00 * ir0;
  6034. while (i10 >= ne0) {
  6035. i10 -= ne0;
  6036. if (++i11 == ne1) {
  6037. i11 = 0;
  6038. if (++i12 == ne2) {
  6039. i12 = 0;
  6040. if (++i13 == ne3) {
  6041. i13 = 0;
  6042. }
  6043. }
  6044. }
  6045. }
  6046. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6047. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6048. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6049. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6050. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6051. if (++i10 == ne00) {
  6052. i10 = 0;
  6053. if (++i11 == ne01) {
  6054. i11 = 0;
  6055. if (++i12 == ne02) {
  6056. i12 = 0;
  6057. if (++i13 == ne03) {
  6058. i13 = 0;
  6059. }
  6060. }
  6061. }
  6062. }
  6063. }
  6064. }
  6065. i10 += ne00 * (ne01 - ir1);
  6066. while (i10 >= ne0) {
  6067. i10 -= ne0;
  6068. if (++i11 == ne1) {
  6069. i11 = 0;
  6070. if (++i12 == ne2) {
  6071. i12 = 0;
  6072. if (++i13 == ne3) {
  6073. i13 = 0;
  6074. }
  6075. }
  6076. }
  6077. }
  6078. }
  6079. }
  6080. } else if (dst->type == GGML_TYPE_F32) {
  6081. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6082. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6083. i10 += ne00 * ir0;
  6084. while (i10 >= ne0) {
  6085. i10 -= ne0;
  6086. if (++i11 == ne1) {
  6087. i11 = 0;
  6088. if (++i12 == ne2) {
  6089. i12 = 0;
  6090. if (++i13 == ne3) {
  6091. i13 = 0;
  6092. }
  6093. }
  6094. }
  6095. }
  6096. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6097. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6098. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6099. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6100. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6101. if (++i10 == ne0) {
  6102. i10 = 0;
  6103. if (++i11 == ne1) {
  6104. i11 = 0;
  6105. if (++i12 == ne2) {
  6106. i12 = 0;
  6107. if (++i13 == ne3) {
  6108. i13 = 0;
  6109. }
  6110. }
  6111. }
  6112. }
  6113. }
  6114. }
  6115. i10 += ne00 * (ne01 - ir1);
  6116. while (i10 >= ne0) {
  6117. i10 -= ne0;
  6118. if (++i11 == ne1) {
  6119. i11 = 0;
  6120. if (++i12 == ne2) {
  6121. i12 = 0;
  6122. if (++i13 == ne3) {
  6123. i13 = 0;
  6124. }
  6125. }
  6126. }
  6127. }
  6128. }
  6129. }
  6130. } else {
  6131. GGML_ASSERT(false); // TODO: implement
  6132. }
  6133. }
  6134. static void ggml_compute_forward_dup_f32(
  6135. const struct ggml_compute_params * params,
  6136. struct ggml_tensor * dst) {
  6137. const struct ggml_tensor * src0 = dst->src[0];
  6138. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6139. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6140. return;
  6141. }
  6142. GGML_TENSOR_UNARY_OP_LOCALS
  6143. const int ith = params->ith; // thread index
  6144. const int nth = params->nth; // number of threads
  6145. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6146. ggml_compute_forward_dup_same_cont(params, dst);
  6147. return;
  6148. }
  6149. // parallelize by rows
  6150. const int nr = ne01;
  6151. // number of rows per thread
  6152. const int dr = (nr + nth - 1) / nth;
  6153. // row range for this thread
  6154. const int ir0 = dr * ith;
  6155. const int ir1 = MIN(ir0 + dr, nr);
  6156. if (src0->type == dst->type &&
  6157. ne00 == ne0 &&
  6158. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6159. // copy by rows
  6160. const size_t rs = ne00*nb00;
  6161. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6162. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6163. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6164. memcpy(
  6165. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6166. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6167. rs);
  6168. }
  6169. }
  6170. }
  6171. return;
  6172. }
  6173. if (ggml_is_contiguous(dst)) {
  6174. // TODO: simplify
  6175. if (nb00 == sizeof(float)) {
  6176. if (dst->type == GGML_TYPE_F32) {
  6177. size_t id = 0;
  6178. const size_t rs = ne00 * nb00;
  6179. char * dst_ptr = (char *) dst->data;
  6180. for (int i03 = 0; i03 < ne03; i03++) {
  6181. for (int i02 = 0; i02 < ne02; i02++) {
  6182. id += rs * ir0;
  6183. for (int i01 = ir0; i01 < ir1; i01++) {
  6184. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6185. memcpy(dst_ptr + id, src0_ptr, rs);
  6186. id += rs;
  6187. }
  6188. id += rs * (ne01 - ir1);
  6189. }
  6190. }
  6191. } else if (type_traits[dst->type].from_float) {
  6192. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6193. size_t id = 0;
  6194. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6195. char * dst_ptr = (char *) dst->data;
  6196. for (int i03 = 0; i03 < ne03; i03++) {
  6197. for (int i02 = 0; i02 < ne02; i02++) {
  6198. id += rs * ir0;
  6199. for (int i01 = ir0; i01 < ir1; i01++) {
  6200. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6201. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6202. id += rs;
  6203. }
  6204. id += rs * (ne01 - ir1);
  6205. }
  6206. }
  6207. } else {
  6208. GGML_ASSERT(false); // TODO: implement
  6209. }
  6210. } else {
  6211. //printf("%s: this is not optimal - fix me\n", __func__);
  6212. if (dst->type == GGML_TYPE_F32) {
  6213. size_t id = 0;
  6214. float * dst_ptr = (float *) dst->data;
  6215. for (int i03 = 0; i03 < ne03; i03++) {
  6216. for (int i02 = 0; i02 < ne02; i02++) {
  6217. id += ne00 * ir0;
  6218. for (int i01 = ir0; i01 < ir1; i01++) {
  6219. for (int i00 = 0; i00 < ne00; i00++) {
  6220. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6221. dst_ptr[id] = *src0_ptr;
  6222. id++;
  6223. }
  6224. }
  6225. id += ne00 * (ne01 - ir1);
  6226. }
  6227. }
  6228. } else if (dst->type == GGML_TYPE_F16) {
  6229. size_t id = 0;
  6230. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6231. for (int i03 = 0; i03 < ne03; i03++) {
  6232. for (int i02 = 0; i02 < ne02; i02++) {
  6233. id += ne00 * ir0;
  6234. for (int i01 = ir0; i01 < ir1; i01++) {
  6235. for (int i00 = 0; i00 < ne00; i00++) {
  6236. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6237. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6238. id++;
  6239. }
  6240. }
  6241. id += ne00 * (ne01 - ir1);
  6242. }
  6243. }
  6244. } else {
  6245. GGML_ASSERT(false); // TODO: implement
  6246. }
  6247. }
  6248. return;
  6249. }
  6250. // dst counters
  6251. int64_t i10 = 0;
  6252. int64_t i11 = 0;
  6253. int64_t i12 = 0;
  6254. int64_t i13 = 0;
  6255. if (dst->type == GGML_TYPE_F32) {
  6256. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6257. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6258. i10 += ne00 * ir0;
  6259. while (i10 >= ne0) {
  6260. i10 -= ne0;
  6261. if (++i11 == ne1) {
  6262. i11 = 0;
  6263. if (++i12 == ne2) {
  6264. i12 = 0;
  6265. if (++i13 == ne3) {
  6266. i13 = 0;
  6267. }
  6268. }
  6269. }
  6270. }
  6271. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6272. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6273. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6274. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6275. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6276. if (++i10 == ne0) {
  6277. i10 = 0;
  6278. if (++i11 == ne1) {
  6279. i11 = 0;
  6280. if (++i12 == ne2) {
  6281. i12 = 0;
  6282. if (++i13 == ne3) {
  6283. i13 = 0;
  6284. }
  6285. }
  6286. }
  6287. }
  6288. }
  6289. }
  6290. i10 += ne00 * (ne01 - ir1);
  6291. while (i10 >= ne0) {
  6292. i10 -= ne0;
  6293. if (++i11 == ne1) {
  6294. i11 = 0;
  6295. if (++i12 == ne2) {
  6296. i12 = 0;
  6297. if (++i13 == ne3) {
  6298. i13 = 0;
  6299. }
  6300. }
  6301. }
  6302. }
  6303. }
  6304. }
  6305. } else if (dst->type == GGML_TYPE_F16) {
  6306. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6307. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6308. i10 += ne00 * ir0;
  6309. while (i10 >= ne0) {
  6310. i10 -= ne0;
  6311. if (++i11 == ne1) {
  6312. i11 = 0;
  6313. if (++i12 == ne2) {
  6314. i12 = 0;
  6315. if (++i13 == ne3) {
  6316. i13 = 0;
  6317. }
  6318. }
  6319. }
  6320. }
  6321. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6322. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6323. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6324. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6325. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6326. if (++i10 == ne0) {
  6327. i10 = 0;
  6328. if (++i11 == ne1) {
  6329. i11 = 0;
  6330. if (++i12 == ne2) {
  6331. i12 = 0;
  6332. if (++i13 == ne3) {
  6333. i13 = 0;
  6334. }
  6335. }
  6336. }
  6337. }
  6338. }
  6339. }
  6340. i10 += ne00 * (ne01 - ir1);
  6341. while (i10 >= ne0) {
  6342. i10 -= ne0;
  6343. if (++i11 == ne1) {
  6344. i11 = 0;
  6345. if (++i12 == ne2) {
  6346. i12 = 0;
  6347. if (++i13 == ne3) {
  6348. i13 = 0;
  6349. }
  6350. }
  6351. }
  6352. }
  6353. }
  6354. }
  6355. } else {
  6356. GGML_ASSERT(false); // TODO: implement
  6357. }
  6358. }
  6359. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6360. static void ggml_compute_forward_dup_bytes(
  6361. const struct ggml_compute_params * params,
  6362. struct ggml_tensor * dst) {
  6363. const struct ggml_tensor * src0 = dst->src[0];
  6364. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6365. GGML_ASSERT(src0->type == dst->type);
  6366. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6367. return;
  6368. }
  6369. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6370. ggml_compute_forward_dup_same_cont(params, dst);
  6371. return;
  6372. }
  6373. GGML_TENSOR_UNARY_OP_LOCALS;
  6374. const size_t type_size = ggml_type_size(src0->type);
  6375. const int ith = params->ith; // thread index
  6376. const int nth = params->nth; // number of threads
  6377. // parallelize by rows
  6378. const int nr = ne01;
  6379. // number of rows per thread
  6380. const int dr = (nr + nth - 1) / nth;
  6381. // row range for this thread
  6382. const int ir0 = dr * ith;
  6383. const int ir1 = MIN(ir0 + dr, nr);
  6384. if (src0->type == dst->type &&
  6385. ne00 == ne0 &&
  6386. nb00 == type_size && nb0 == type_size) {
  6387. // copy by rows
  6388. const size_t rs = ne00 * type_size;
  6389. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6391. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6392. memcpy(
  6393. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6394. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6395. rs);
  6396. }
  6397. }
  6398. }
  6399. return;
  6400. }
  6401. if (ggml_is_contiguous(dst)) {
  6402. size_t id = 0;
  6403. char * dst_ptr = (char *) dst->data;
  6404. const size_t rs = ne00 * type_size;
  6405. if (nb00 == type_size) {
  6406. // src0 is contigous on first dimension, copy by rows
  6407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6409. id += rs * ir0;
  6410. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6411. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6412. memcpy(dst_ptr + id, src0_ptr, rs);
  6413. id += rs;
  6414. }
  6415. id += rs * (ne01 - ir1);
  6416. }
  6417. }
  6418. } else {
  6419. //printf("%s: this is not optimal - fix me\n", __func__);
  6420. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6421. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6422. id += rs * ir0;
  6423. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6424. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6425. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6426. memcpy(dst_ptr + id, src0_ptr, type_size);
  6427. id += type_size;
  6428. }
  6429. }
  6430. id += rs * (ne01 - ir1);
  6431. }
  6432. }
  6433. }
  6434. return;
  6435. }
  6436. // dst counters
  6437. int64_t i10 = 0;
  6438. int64_t i11 = 0;
  6439. int64_t i12 = 0;
  6440. int64_t i13 = 0;
  6441. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6442. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6443. i10 += ne00 * ir0;
  6444. while (i10 >= ne0) {
  6445. i10 -= ne0;
  6446. if (++i11 == ne1) {
  6447. i11 = 0;
  6448. if (++i12 == ne2) {
  6449. i12 = 0;
  6450. if (++i13 == ne3) {
  6451. i13 = 0;
  6452. }
  6453. }
  6454. }
  6455. }
  6456. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6457. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6458. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6459. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6460. memcpy(dst_ptr, src0_ptr, type_size);
  6461. if (++i10 == ne0) {
  6462. i10 = 0;
  6463. if (++i11 == ne1) {
  6464. i11 = 0;
  6465. if (++i12 == ne2) {
  6466. i12 = 0;
  6467. if (++i13 == ne3) {
  6468. i13 = 0;
  6469. }
  6470. }
  6471. }
  6472. }
  6473. }
  6474. }
  6475. i10 += ne00 * (ne01 - ir1);
  6476. while (i10 >= ne0) {
  6477. i10 -= ne0;
  6478. if (++i11 == ne1) {
  6479. i11 = 0;
  6480. if (++i12 == ne2) {
  6481. i12 = 0;
  6482. if (++i13 == ne3) {
  6483. i13 = 0;
  6484. }
  6485. }
  6486. }
  6487. }
  6488. }
  6489. }
  6490. }
  6491. static void ggml_compute_forward_dup(
  6492. const struct ggml_compute_params * params,
  6493. struct ggml_tensor * dst) {
  6494. const struct ggml_tensor * src0 = dst->src[0];
  6495. if (src0->type == dst->type) {
  6496. ggml_compute_forward_dup_bytes(params, dst);
  6497. return;
  6498. }
  6499. switch (src0->type) {
  6500. case GGML_TYPE_F16:
  6501. {
  6502. ggml_compute_forward_dup_f16(params, dst);
  6503. } break;
  6504. case GGML_TYPE_F32:
  6505. {
  6506. ggml_compute_forward_dup_f32(params, dst);
  6507. } break;
  6508. default:
  6509. {
  6510. GGML_ASSERT(false);
  6511. } break;
  6512. }
  6513. }
  6514. // ggml_compute_forward_add
  6515. static void ggml_compute_forward_add_f32(
  6516. const struct ggml_compute_params * params,
  6517. struct ggml_tensor * dst) {
  6518. const struct ggml_tensor * src0 = dst->src[0];
  6519. const struct ggml_tensor * src1 = dst->src[1];
  6520. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6521. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6522. return;
  6523. }
  6524. const int ith = params->ith;
  6525. const int nth = params->nth;
  6526. #ifdef GGML_USE_CLBLAST
  6527. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6528. // TODO: OpenCL kernel support full broadcast
  6529. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6530. if (ith == 0) {
  6531. ggml_cl_add(src0, src1, dst);
  6532. }
  6533. return;
  6534. }
  6535. #endif
  6536. const int nr = ggml_nrows(src0);
  6537. GGML_TENSOR_BINARY_OP_LOCALS
  6538. GGML_ASSERT( nb0 == sizeof(float));
  6539. GGML_ASSERT(nb00 == sizeof(float));
  6540. // rows per thread
  6541. const int dr = (nr + nth - 1)/nth;
  6542. // row range for this thread
  6543. const int ir0 = dr*ith;
  6544. const int ir1 = MIN(ir0 + dr, nr);
  6545. if (nb10 == sizeof(float)) {
  6546. for (int ir = ir0; ir < ir1; ++ir) {
  6547. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6548. const int64_t i03 = ir/(ne02*ne01);
  6549. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6550. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6551. const int64_t i13 = i03 % ne13;
  6552. const int64_t i12 = i02 % ne12;
  6553. const int64_t i11 = i01 % ne11;
  6554. const int64_t nr0 = ne00 / ne10;
  6555. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6556. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6557. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6558. for (int64_t r = 0; r < nr0; ++r) {
  6559. #ifdef GGML_USE_ACCELERATE
  6560. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6561. #else
  6562. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6563. #endif
  6564. }
  6565. }
  6566. } else {
  6567. // src1 is not contiguous
  6568. for (int ir = ir0; ir < ir1; ++ir) {
  6569. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6570. const int64_t i03 = ir/(ne02*ne01);
  6571. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6572. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6573. const int64_t i13 = i03 % ne13;
  6574. const int64_t i12 = i02 % ne12;
  6575. const int64_t i11 = i01 % ne11;
  6576. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6577. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6578. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6579. const int64_t i10 = i0 % ne10;
  6580. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6581. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6582. }
  6583. }
  6584. }
  6585. }
  6586. static void ggml_compute_forward_add_f16_f32(
  6587. const struct ggml_compute_params * params,
  6588. struct ggml_tensor * dst) {
  6589. const struct ggml_tensor * src0 = dst->src[0];
  6590. const struct ggml_tensor * src1 = dst->src[1];
  6591. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6592. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6593. return;
  6594. }
  6595. const int ith = params->ith;
  6596. const int nth = params->nth;
  6597. const int nr = ggml_nrows(src0);
  6598. GGML_TENSOR_BINARY_OP_LOCALS
  6599. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6600. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6601. if (dst->type == GGML_TYPE_F32) {
  6602. GGML_ASSERT( nb0 == sizeof(float));
  6603. }
  6604. else {
  6605. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6606. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6607. }
  6608. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6609. // rows per thread
  6610. const int dr = (nr + nth - 1)/nth;
  6611. // row range for this thread
  6612. const int ir0 = dr*ith;
  6613. const int ir1 = MIN(ir0 + dr, nr);
  6614. if (nb10 == sizeof(float)) {
  6615. if (dst->type == GGML_TYPE_F16) {
  6616. for (int ir = ir0; ir < ir1; ++ir) {
  6617. // src0, src1 and dst are same shape => same indices
  6618. const int i3 = ir/(ne2*ne1);
  6619. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6620. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6621. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6622. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6623. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6624. for (int i = 0; i < ne0; i++) {
  6625. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6626. }
  6627. }
  6628. } else {
  6629. for (int ir = ir0; ir < ir1; ++ir) {
  6630. // src0, src1 and dst are same shape => same indices
  6631. const int i3 = ir/(ne2*ne1);
  6632. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6633. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6634. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6635. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6636. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6637. for (int i = 0; i < ne0; i++) {
  6638. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6639. }
  6640. }
  6641. }
  6642. }
  6643. else {
  6644. // src1 is not contiguous
  6645. GGML_ASSERT(false);
  6646. }
  6647. }
  6648. static void ggml_compute_forward_add_f16_f16(
  6649. const struct ggml_compute_params * params,
  6650. struct ggml_tensor * dst) {
  6651. const struct ggml_tensor * src0 = dst->src[0];
  6652. const struct ggml_tensor * src1 = dst->src[1];
  6653. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6654. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6655. return;
  6656. }
  6657. const int ith = params->ith;
  6658. const int nth = params->nth;
  6659. const int nr = ggml_nrows(src0);
  6660. GGML_TENSOR_BINARY_OP_LOCALS
  6661. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6662. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6663. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6664. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6665. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6666. // rows per thread
  6667. const int dr = (nr + nth - 1)/nth;
  6668. // row range for this thread
  6669. const int ir0 = dr*ith;
  6670. const int ir1 = MIN(ir0 + dr, nr);
  6671. if (nb10 == sizeof(ggml_fp16_t)) {
  6672. for (int ir = ir0; ir < ir1; ++ir) {
  6673. // src0, src1 and dst are same shape => same indices
  6674. const int i3 = ir/(ne2*ne1);
  6675. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6676. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6677. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6678. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6679. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6680. for (int i = 0; i < ne0; i++) {
  6681. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6682. }
  6683. }
  6684. }
  6685. else {
  6686. // src1 is not contiguous
  6687. GGML_ASSERT(false);
  6688. }
  6689. }
  6690. static void ggml_compute_forward_add_q_f32(
  6691. const struct ggml_compute_params * params,
  6692. struct ggml_tensor * dst) {
  6693. const struct ggml_tensor * src0 = dst->src[0];
  6694. const struct ggml_tensor * src1 = dst->src[1];
  6695. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6696. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6697. return;
  6698. }
  6699. const int nr = ggml_nrows(src0);
  6700. GGML_TENSOR_BINARY_OP_LOCALS
  6701. const int ith = params->ith;
  6702. const int nth = params->nth;
  6703. const enum ggml_type type = src0->type;
  6704. const enum ggml_type dtype = dst->type;
  6705. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6706. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6707. // we don't support permuted src0 or src1
  6708. GGML_ASSERT(nb00 == ggml_type_size(type));
  6709. GGML_ASSERT(nb10 == sizeof(float));
  6710. // dst cannot be transposed or permuted
  6711. GGML_ASSERT(nb0 <= nb1);
  6712. GGML_ASSERT(nb1 <= nb2);
  6713. GGML_ASSERT(nb2 <= nb3);
  6714. GGML_ASSERT(ggml_is_quantized(src0->type));
  6715. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6716. // rows per thread
  6717. const int dr = (nr + nth - 1)/nth;
  6718. // row range for this thread
  6719. const int ir0 = dr*ith;
  6720. const int ir1 = MIN(ir0 + dr, nr);
  6721. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6722. for (int ir = ir0; ir < ir1; ++ir) {
  6723. // src0 indices
  6724. const int i03 = ir/(ne02*ne01);
  6725. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6726. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6727. // src1 and dst are same shape as src0 => same indices
  6728. const int i13 = i03;
  6729. const int i12 = i02;
  6730. const int i11 = i01;
  6731. const int i3 = i03;
  6732. const int i2 = i02;
  6733. const int i1 = i01;
  6734. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6735. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6736. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6737. assert(ne00 % 32 == 0);
  6738. // unquantize row from src0 to temp buffer
  6739. dequantize_row_q(src0_row, wdata, ne00);
  6740. // add src1
  6741. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6742. // quantize row to dst
  6743. if (quantize_row_q != NULL) {
  6744. quantize_row_q(wdata, dst_row, ne00);
  6745. } else {
  6746. memcpy(dst_row, wdata, ne0*nb0);
  6747. }
  6748. }
  6749. }
  6750. static void ggml_compute_forward_add(
  6751. const struct ggml_compute_params * params,
  6752. struct ggml_tensor * dst) {
  6753. const struct ggml_tensor * src0 = dst->src[0];
  6754. const struct ggml_tensor * src1 = dst->src[1];
  6755. switch (src0->type) {
  6756. case GGML_TYPE_F32:
  6757. {
  6758. if (src1->type == GGML_TYPE_F32) {
  6759. ggml_compute_forward_add_f32(params, dst);
  6760. }
  6761. else {
  6762. GGML_ASSERT(false);
  6763. }
  6764. } break;
  6765. case GGML_TYPE_F16:
  6766. {
  6767. if (src1->type == GGML_TYPE_F16) {
  6768. ggml_compute_forward_add_f16_f16(params, dst);
  6769. }
  6770. else if (src1->type == GGML_TYPE_F32) {
  6771. ggml_compute_forward_add_f16_f32(params, dst);
  6772. }
  6773. else {
  6774. GGML_ASSERT(false);
  6775. }
  6776. } break;
  6777. case GGML_TYPE_Q4_0:
  6778. case GGML_TYPE_Q4_1:
  6779. case GGML_TYPE_Q5_0:
  6780. case GGML_TYPE_Q5_1:
  6781. case GGML_TYPE_Q8_0:
  6782. case GGML_TYPE_Q2_K:
  6783. case GGML_TYPE_Q3_K:
  6784. case GGML_TYPE_Q4_K:
  6785. case GGML_TYPE_Q5_K:
  6786. case GGML_TYPE_Q6_K:
  6787. case GGML_TYPE_IQ2_XXS:
  6788. case GGML_TYPE_IQ2_XS:
  6789. case GGML_TYPE_IQ3_XXS:
  6790. case GGML_TYPE_IQ1_S:
  6791. case GGML_TYPE_IQ1_M:
  6792. case GGML_TYPE_IQ4_NL:
  6793. case GGML_TYPE_IQ4_XS:
  6794. case GGML_TYPE_IQ3_S:
  6795. case GGML_TYPE_IQ2_S:
  6796. {
  6797. ggml_compute_forward_add_q_f32(params, dst);
  6798. } break;
  6799. default:
  6800. {
  6801. GGML_ASSERT(false);
  6802. } break;
  6803. }
  6804. }
  6805. // ggml_compute_forward_add1
  6806. static void ggml_compute_forward_add1_f32(
  6807. const struct ggml_compute_params * params,
  6808. struct ggml_tensor * dst) {
  6809. const struct ggml_tensor * src0 = dst->src[0];
  6810. const struct ggml_tensor * src1 = dst->src[1];
  6811. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6812. GGML_ASSERT(ggml_is_scalar(src1));
  6813. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6814. return;
  6815. }
  6816. const int ith = params->ith;
  6817. const int nth = params->nth;
  6818. const int nr = ggml_nrows(src0);
  6819. GGML_TENSOR_UNARY_OP_LOCALS
  6820. GGML_ASSERT( nb0 == sizeof(float));
  6821. GGML_ASSERT(nb00 == sizeof(float));
  6822. // rows per thread
  6823. const int dr = (nr + nth - 1)/nth;
  6824. // row range for this thread
  6825. const int ir0 = dr*ith;
  6826. const int ir1 = MIN(ir0 + dr, nr);
  6827. for (int ir = ir0; ir < ir1; ++ir) {
  6828. // src0 and dst are same shape => same indices
  6829. const int i3 = ir/(ne2*ne1);
  6830. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6831. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6832. #ifdef GGML_USE_ACCELERATE
  6833. UNUSED(ggml_vec_add1_f32);
  6834. vDSP_vadd(
  6835. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6836. (float *) ((char *) src1->data), 0,
  6837. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6838. ne0);
  6839. #else
  6840. ggml_vec_add1_f32(ne0,
  6841. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6842. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6843. *(float *) src1->data);
  6844. #endif
  6845. }
  6846. }
  6847. static void ggml_compute_forward_add1_f16_f32(
  6848. const struct ggml_compute_params * params,
  6849. struct ggml_tensor * dst) {
  6850. const struct ggml_tensor * src0 = dst->src[0];
  6851. const struct ggml_tensor * src1 = dst->src[1];
  6852. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6853. GGML_ASSERT(ggml_is_scalar(src1));
  6854. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6855. return;
  6856. }
  6857. // scalar to add
  6858. const float v = *(float *) src1->data;
  6859. const int ith = params->ith;
  6860. const int nth = params->nth;
  6861. const int nr = ggml_nrows(src0);
  6862. GGML_TENSOR_UNARY_OP_LOCALS
  6863. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6864. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6865. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6866. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6867. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6868. // rows per thread
  6869. const int dr = (nr + nth - 1)/nth;
  6870. // row range for this thread
  6871. const int ir0 = dr*ith;
  6872. const int ir1 = MIN(ir0 + dr, nr);
  6873. for (int ir = ir0; ir < ir1; ++ir) {
  6874. // src0 and dst are same shape => same indices
  6875. const int i3 = ir/(ne2*ne1);
  6876. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6877. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6878. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6879. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6880. for (int i = 0; i < ne0; i++) {
  6881. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6882. }
  6883. }
  6884. }
  6885. static void ggml_compute_forward_add1_f16_f16(
  6886. const struct ggml_compute_params * params,
  6887. struct ggml_tensor * dst) {
  6888. const struct ggml_tensor * src0 = dst->src[0];
  6889. const struct ggml_tensor * src1 = dst->src[1];
  6890. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6891. GGML_ASSERT(ggml_is_scalar(src1));
  6892. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6893. return;
  6894. }
  6895. // scalar to add
  6896. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6897. const int ith = params->ith;
  6898. const int nth = params->nth;
  6899. const int nr = ggml_nrows(src0);
  6900. GGML_TENSOR_UNARY_OP_LOCALS
  6901. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6902. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6903. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6904. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6905. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6906. // rows per thread
  6907. const int dr = (nr + nth - 1)/nth;
  6908. // row range for this thread
  6909. const int ir0 = dr*ith;
  6910. const int ir1 = MIN(ir0 + dr, nr);
  6911. for (int ir = ir0; ir < ir1; ++ir) {
  6912. // src0 and dst are same shape => same indices
  6913. const int i3 = ir/(ne2*ne1);
  6914. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6915. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6916. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6917. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6918. for (int i = 0; i < ne0; i++) {
  6919. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6920. }
  6921. }
  6922. }
  6923. static void ggml_compute_forward_add1_q_f32(
  6924. const struct ggml_compute_params * params,
  6925. struct ggml_tensor * dst) {
  6926. const struct ggml_tensor * src0 = dst->src[0];
  6927. const struct ggml_tensor * src1 = dst->src[1];
  6928. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6929. GGML_ASSERT(ggml_is_scalar(src1));
  6930. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6931. return;
  6932. }
  6933. // scalar to add
  6934. const float v = *(float *) src1->data;
  6935. const int ith = params->ith;
  6936. const int nth = params->nth;
  6937. const int nr = ggml_nrows(src0);
  6938. GGML_TENSOR_UNARY_OP_LOCALS
  6939. const enum ggml_type type = src0->type;
  6940. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6941. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6942. // we don't support permuted src0
  6943. GGML_ASSERT(nb00 == ggml_type_size(type));
  6944. // dst cannot be transposed or permuted
  6945. GGML_ASSERT(nb0 <= nb1);
  6946. GGML_ASSERT(nb1 <= nb2);
  6947. GGML_ASSERT(nb2 <= nb3);
  6948. GGML_ASSERT(ggml_is_quantized(src0->type));
  6949. GGML_ASSERT(dst->type == src0->type);
  6950. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6951. // rows per thread
  6952. const int dr = (nr + nth - 1)/nth;
  6953. // row range for this thread
  6954. const int ir0 = dr*ith;
  6955. const int ir1 = MIN(ir0 + dr, nr);
  6956. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6957. for (int ir = ir0; ir < ir1; ++ir) {
  6958. // src0 and dst are same shape => same indices
  6959. const int i3 = ir/(ne2*ne1);
  6960. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6961. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6962. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6963. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6964. assert(ne0 % 32 == 0);
  6965. // unquantize row from src0 to temp buffer
  6966. dequantize_row_q(src0_row, wdata, ne0);
  6967. // add src1
  6968. ggml_vec_acc1_f32(ne0, wdata, v);
  6969. // quantize row to dst
  6970. quantize_row_q(wdata, dst_row, ne0);
  6971. }
  6972. }
  6973. static void ggml_compute_forward_add1(
  6974. const struct ggml_compute_params * params,
  6975. struct ggml_tensor * dst) {
  6976. const struct ggml_tensor * src0 = dst->src[0];
  6977. const struct ggml_tensor * src1 = dst->src[1];
  6978. switch (src0->type) {
  6979. case GGML_TYPE_F32:
  6980. {
  6981. ggml_compute_forward_add1_f32(params, dst);
  6982. } break;
  6983. case GGML_TYPE_F16:
  6984. {
  6985. if (src1->type == GGML_TYPE_F16) {
  6986. ggml_compute_forward_add1_f16_f16(params, dst);
  6987. }
  6988. else if (src1->type == GGML_TYPE_F32) {
  6989. ggml_compute_forward_add1_f16_f32(params, dst);
  6990. }
  6991. else {
  6992. GGML_ASSERT(false);
  6993. }
  6994. } break;
  6995. case GGML_TYPE_Q4_0:
  6996. case GGML_TYPE_Q4_1:
  6997. case GGML_TYPE_Q5_0:
  6998. case GGML_TYPE_Q5_1:
  6999. case GGML_TYPE_Q8_0:
  7000. case GGML_TYPE_Q8_1:
  7001. case GGML_TYPE_Q2_K:
  7002. case GGML_TYPE_Q3_K:
  7003. case GGML_TYPE_Q4_K:
  7004. case GGML_TYPE_Q5_K:
  7005. case GGML_TYPE_Q6_K:
  7006. case GGML_TYPE_IQ2_XXS:
  7007. case GGML_TYPE_IQ2_XS:
  7008. case GGML_TYPE_IQ3_XXS:
  7009. case GGML_TYPE_IQ1_S:
  7010. case GGML_TYPE_IQ1_M:
  7011. case GGML_TYPE_IQ4_NL:
  7012. case GGML_TYPE_IQ4_XS:
  7013. case GGML_TYPE_IQ3_S:
  7014. case GGML_TYPE_IQ2_S:
  7015. {
  7016. ggml_compute_forward_add1_q_f32(params, dst);
  7017. } break;
  7018. default:
  7019. {
  7020. GGML_ASSERT(false);
  7021. } break;
  7022. }
  7023. }
  7024. // ggml_compute_forward_acc
  7025. static void ggml_compute_forward_acc_f32(
  7026. const struct ggml_compute_params * params,
  7027. struct ggml_tensor * dst) {
  7028. const struct ggml_tensor * src0 = dst->src[0];
  7029. const struct ggml_tensor * src1 = dst->src[1];
  7030. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7031. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7032. // view src0 and dst with these strides and data offset inbytes during acc
  7033. // nb0 is implicitly element_size because src0 and dst are contiguous
  7034. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7035. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7036. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7037. size_t offset = ((int32_t *) dst->op_params)[3];
  7038. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7039. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  7040. if (params->ith != 0) {
  7041. return;
  7042. }
  7043. // memcpy needs to be synchronized across threads to avoid race conditions.
  7044. // => do it in INIT phase
  7045. memcpy(
  7046. ((char *) dst->data),
  7047. ((char *) src0->data),
  7048. ggml_nbytes(dst));
  7049. }
  7050. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7051. return;
  7052. }
  7053. const int ith = params->ith;
  7054. const int nth = params->nth;
  7055. const int nr = ggml_nrows(src1);
  7056. const int nc = src1->ne[0];
  7057. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7058. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7059. // src0 and dst as viewed during acc
  7060. const size_t nb0 = ggml_element_size(src0);
  7061. const size_t nb00 = nb0;
  7062. const size_t nb01 = nb1;
  7063. const size_t nb02 = nb2;
  7064. const size_t nb03 = nb3;
  7065. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7066. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7067. GGML_ASSERT(nb10 == sizeof(float));
  7068. // rows per thread
  7069. const int dr = (nr + nth - 1)/nth;
  7070. // row range for this thread
  7071. const int ir0 = dr*ith;
  7072. const int ir1 = MIN(ir0 + dr, nr);
  7073. for (int ir = ir0; ir < ir1; ++ir) {
  7074. // src0 and dst are viewed with shape of src1 and offset
  7075. // => same indices
  7076. const int i3 = ir/(ne12*ne11);
  7077. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7078. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7079. #ifdef GGML_USE_ACCELERATE
  7080. vDSP_vadd(
  7081. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7082. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7083. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7084. #else
  7085. ggml_vec_add_f32(nc,
  7086. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7087. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7088. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7089. #endif
  7090. }
  7091. }
  7092. static void ggml_compute_forward_acc(
  7093. const struct ggml_compute_params * params,
  7094. struct ggml_tensor * dst) {
  7095. const struct ggml_tensor * src0 = dst->src[0];
  7096. switch (src0->type) {
  7097. case GGML_TYPE_F32:
  7098. {
  7099. ggml_compute_forward_acc_f32(params, dst);
  7100. } break;
  7101. case GGML_TYPE_F16:
  7102. case GGML_TYPE_Q4_0:
  7103. case GGML_TYPE_Q4_1:
  7104. case GGML_TYPE_Q5_0:
  7105. case GGML_TYPE_Q5_1:
  7106. case GGML_TYPE_Q8_0:
  7107. case GGML_TYPE_Q8_1:
  7108. case GGML_TYPE_Q2_K:
  7109. case GGML_TYPE_Q3_K:
  7110. case GGML_TYPE_Q4_K:
  7111. case GGML_TYPE_Q5_K:
  7112. case GGML_TYPE_Q6_K:
  7113. case GGML_TYPE_IQ2_XXS:
  7114. case GGML_TYPE_IQ2_XS:
  7115. case GGML_TYPE_IQ3_XXS:
  7116. case GGML_TYPE_IQ1_S:
  7117. case GGML_TYPE_IQ1_M:
  7118. case GGML_TYPE_IQ4_NL:
  7119. case GGML_TYPE_IQ4_XS:
  7120. case GGML_TYPE_IQ3_S:
  7121. case GGML_TYPE_IQ2_S:
  7122. default:
  7123. {
  7124. GGML_ASSERT(false);
  7125. } break;
  7126. }
  7127. }
  7128. // ggml_compute_forward_sub
  7129. static void ggml_compute_forward_sub_f32(
  7130. const struct ggml_compute_params * params,
  7131. struct ggml_tensor * dst) {
  7132. const struct ggml_tensor * src0 = dst->src[0];
  7133. const struct ggml_tensor * src1 = dst->src[1];
  7134. assert(params->ith == 0);
  7135. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7136. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7137. return;
  7138. }
  7139. const int nr = ggml_nrows(src0);
  7140. GGML_TENSOR_BINARY_OP_LOCALS
  7141. GGML_ASSERT( nb0 == sizeof(float));
  7142. GGML_ASSERT(nb00 == sizeof(float));
  7143. if (nb10 == sizeof(float)) {
  7144. for (int ir = 0; ir < nr; ++ir) {
  7145. // src0, src1 and dst are same shape => same indices
  7146. const int i3 = ir/(ne2*ne1);
  7147. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7148. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7149. #ifdef GGML_USE_ACCELERATE
  7150. vDSP_vsub(
  7151. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7152. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7153. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7154. ne0);
  7155. #else
  7156. ggml_vec_sub_f32(ne0,
  7157. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7158. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7159. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7160. #endif
  7161. // }
  7162. // }
  7163. }
  7164. } else {
  7165. // src1 is not contiguous
  7166. for (int ir = 0; ir < nr; ++ir) {
  7167. // src0, src1 and dst are same shape => same indices
  7168. const int i3 = ir/(ne2*ne1);
  7169. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7170. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7171. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7172. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7173. for (int i0 = 0; i0 < ne0; i0++) {
  7174. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7175. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7176. }
  7177. }
  7178. }
  7179. }
  7180. static void ggml_compute_forward_sub(
  7181. const struct ggml_compute_params * params,
  7182. struct ggml_tensor * dst) {
  7183. const struct ggml_tensor * src0 = dst->src[0];
  7184. switch (src0->type) {
  7185. case GGML_TYPE_F32:
  7186. {
  7187. ggml_compute_forward_sub_f32(params, dst);
  7188. } break;
  7189. default:
  7190. {
  7191. GGML_ASSERT(false);
  7192. } break;
  7193. }
  7194. }
  7195. // ggml_compute_forward_mul
  7196. static void ggml_compute_forward_mul_f32(
  7197. const struct ggml_compute_params * params,
  7198. struct ggml_tensor * dst) {
  7199. const struct ggml_tensor * src0 = dst->src[0];
  7200. const struct ggml_tensor * src1 = dst->src[1];
  7201. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7202. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7203. return;
  7204. }
  7205. const int ith = params->ith;
  7206. const int nth = params->nth;
  7207. #if defined(GGML_USE_CLBLAST)
  7208. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7209. // TODO: OpenCL kernel support full broadcast
  7210. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7211. if (ith == 0) {
  7212. ggml_cl_mul(src0, src1, dst);
  7213. }
  7214. return;
  7215. }
  7216. #endif
  7217. const int64_t nr = ggml_nrows(src0);
  7218. GGML_TENSOR_BINARY_OP_LOCALS
  7219. GGML_ASSERT( nb0 == sizeof(float));
  7220. GGML_ASSERT(nb00 == sizeof(float));
  7221. if (nb10 == sizeof(float)) {
  7222. for (int64_t ir = ith; ir < nr; ir += nth) {
  7223. // src0 and dst are same shape => same indices
  7224. const int64_t i03 = ir/(ne02*ne01);
  7225. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7226. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7227. const int64_t i13 = i03 % ne13;
  7228. const int64_t i12 = i02 % ne12;
  7229. const int64_t i11 = i01 % ne11;
  7230. const int64_t nr0 = ne00 / ne10;
  7231. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7232. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7233. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7234. for (int64_t r = 0 ; r < nr0; ++r) {
  7235. #ifdef GGML_USE_ACCELERATE
  7236. UNUSED(ggml_vec_mul_f32);
  7237. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7238. #else
  7239. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7240. #endif
  7241. }
  7242. }
  7243. } else {
  7244. // src1 is not contiguous
  7245. for (int64_t ir = ith; ir < nr; ir += nth) {
  7246. // src0 and dst are same shape => same indices
  7247. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7248. const int64_t i03 = ir/(ne02*ne01);
  7249. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7250. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7251. const int64_t i13 = i03 % ne13;
  7252. const int64_t i12 = i02 % ne12;
  7253. const int64_t i11 = i01 % ne11;
  7254. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7255. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7256. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7257. const int64_t i10 = i0 % ne10;
  7258. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7259. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7260. }
  7261. }
  7262. }
  7263. }
  7264. static void ggml_compute_forward_mul(
  7265. const struct ggml_compute_params * params,
  7266. struct ggml_tensor * dst) {
  7267. const struct ggml_tensor * src0 = dst->src[0];
  7268. const struct ggml_tensor * src1 = dst->src[1];
  7269. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7270. switch (src0->type) {
  7271. case GGML_TYPE_F32:
  7272. {
  7273. ggml_compute_forward_mul_f32(params, dst);
  7274. } break;
  7275. default:
  7276. {
  7277. GGML_ASSERT(false);
  7278. } break;
  7279. }
  7280. }
  7281. // ggml_compute_forward_div
  7282. static void ggml_compute_forward_div_f32(
  7283. const struct ggml_compute_params * params,
  7284. struct ggml_tensor * dst) {
  7285. const struct ggml_tensor * src0 = dst->src[0];
  7286. const struct ggml_tensor * src1 = dst->src[1];
  7287. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7288. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7289. return;
  7290. }
  7291. const int ith = params->ith;
  7292. const int nth = params->nth;
  7293. const int64_t nr = ggml_nrows(src0);
  7294. GGML_TENSOR_BINARY_OP_LOCALS
  7295. GGML_ASSERT( nb0 == sizeof(float));
  7296. GGML_ASSERT(nb00 == sizeof(float));
  7297. if (nb10 == sizeof(float)) {
  7298. for (int64_t ir = ith; ir < nr; ir += nth) {
  7299. // src0 and dst are same shape => same indices
  7300. const int64_t i03 = ir/(ne02*ne01);
  7301. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7302. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7303. const int64_t i13 = i03 % ne13;
  7304. const int64_t i12 = i02 % ne12;
  7305. const int64_t i11 = i01 % ne11;
  7306. const int64_t nr0 = ne00 / ne10;
  7307. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7308. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7309. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7310. for (int64_t r = 0; r < nr0; ++r) {
  7311. #ifdef GGML_USE_ACCELERATE
  7312. UNUSED(ggml_vec_div_f32);
  7313. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7314. #else
  7315. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7316. #endif
  7317. }
  7318. }
  7319. } else {
  7320. // src1 is not contiguous
  7321. for (int64_t ir = ith; ir < nr; ir += nth) {
  7322. // src0 and dst are same shape => same indices
  7323. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7324. const int64_t i03 = ir/(ne02*ne01);
  7325. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7326. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7327. const int64_t i13 = i03 % ne13;
  7328. const int64_t i12 = i02 % ne12;
  7329. const int64_t i11 = i01 % ne11;
  7330. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7331. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7332. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7333. const int64_t i10 = i0 % ne10;
  7334. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7335. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7336. }
  7337. }
  7338. }
  7339. }
  7340. static void ggml_compute_forward_div(
  7341. const struct ggml_compute_params * params,
  7342. struct ggml_tensor * dst) {
  7343. const struct ggml_tensor * src0 = dst->src[0];
  7344. switch (src0->type) {
  7345. case GGML_TYPE_F32:
  7346. {
  7347. ggml_compute_forward_div_f32(params, dst);
  7348. } break;
  7349. default:
  7350. {
  7351. GGML_ASSERT(false);
  7352. } break;
  7353. }
  7354. }
  7355. // ggml_compute_forward_sqr
  7356. static void ggml_compute_forward_sqr_f32(
  7357. const struct ggml_compute_params * params,
  7358. struct ggml_tensor * dst) {
  7359. const struct ggml_tensor * src0 = dst->src[0];
  7360. assert(params->ith == 0);
  7361. assert(ggml_are_same_shape(src0, dst));
  7362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7363. return;
  7364. }
  7365. const int n = ggml_nrows(src0);
  7366. const int nc = src0->ne[0];
  7367. assert( dst->nb[0] == sizeof(float));
  7368. assert(src0->nb[0] == sizeof(float));
  7369. for (int i = 0; i < n; i++) {
  7370. ggml_vec_sqr_f32(nc,
  7371. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7372. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7373. }
  7374. }
  7375. static void ggml_compute_forward_sqr(
  7376. const struct ggml_compute_params * params,
  7377. struct ggml_tensor * dst) {
  7378. const struct ggml_tensor * src0 = dst->src[0];
  7379. switch (src0->type) {
  7380. case GGML_TYPE_F32:
  7381. {
  7382. ggml_compute_forward_sqr_f32(params, dst);
  7383. } break;
  7384. default:
  7385. {
  7386. GGML_ASSERT(false);
  7387. } break;
  7388. }
  7389. }
  7390. // ggml_compute_forward_sqrt
  7391. static void ggml_compute_forward_sqrt_f32(
  7392. const struct ggml_compute_params * params,
  7393. struct ggml_tensor * dst) {
  7394. const struct ggml_tensor * src0 = dst->src[0];
  7395. assert(params->ith == 0);
  7396. assert(ggml_are_same_shape(src0, dst));
  7397. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7398. return;
  7399. }
  7400. const int n = ggml_nrows(src0);
  7401. const int nc = src0->ne[0];
  7402. assert( dst->nb[0] == sizeof(float));
  7403. assert(src0->nb[0] == sizeof(float));
  7404. for (int i = 0; i < n; i++) {
  7405. ggml_vec_sqrt_f32(nc,
  7406. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7407. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7408. }
  7409. }
  7410. static void ggml_compute_forward_sqrt(
  7411. const struct ggml_compute_params * params,
  7412. struct ggml_tensor * dst) {
  7413. const struct ggml_tensor * src0 = dst->src[0];
  7414. switch (src0->type) {
  7415. case GGML_TYPE_F32:
  7416. {
  7417. ggml_compute_forward_sqrt_f32(params, dst);
  7418. } break;
  7419. default:
  7420. {
  7421. GGML_ASSERT(false);
  7422. } break;
  7423. }
  7424. }
  7425. // ggml_compute_forward_log
  7426. static void ggml_compute_forward_log_f32(
  7427. const struct ggml_compute_params * params,
  7428. struct ggml_tensor * dst) {
  7429. const struct ggml_tensor * src0 = dst->src[0];
  7430. GGML_ASSERT(params->ith == 0);
  7431. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7432. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7433. return;
  7434. }
  7435. const int n = ggml_nrows(src0);
  7436. const int nc = src0->ne[0];
  7437. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7438. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7439. for (int i = 0; i < n; i++) {
  7440. ggml_vec_log_f32(nc,
  7441. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7442. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7443. }
  7444. }
  7445. static void ggml_compute_forward_log(
  7446. const struct ggml_compute_params * params,
  7447. struct ggml_tensor * dst) {
  7448. const struct ggml_tensor * src0 = dst->src[0];
  7449. switch (src0->type) {
  7450. case GGML_TYPE_F32:
  7451. {
  7452. ggml_compute_forward_log_f32(params, dst);
  7453. } break;
  7454. default:
  7455. {
  7456. GGML_ASSERT(false);
  7457. } break;
  7458. }
  7459. }
  7460. // ggml_compute_forward_sum
  7461. static void ggml_compute_forward_sum_f32(
  7462. const struct ggml_compute_params * params,
  7463. struct ggml_tensor * dst) {
  7464. const struct ggml_tensor * src0 = dst->src[0];
  7465. assert(params->ith == 0);
  7466. assert(ggml_is_scalar(dst));
  7467. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7468. return;
  7469. }
  7470. assert(ggml_is_scalar(dst));
  7471. assert(src0->nb[0] == sizeof(float));
  7472. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7473. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7474. ggml_float sum = 0;
  7475. ggml_float row_sum = 0;
  7476. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7477. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7478. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7479. ggml_vec_sum_f32_ggf(ne00,
  7480. &row_sum,
  7481. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7482. sum += row_sum;
  7483. }
  7484. }
  7485. }
  7486. ((float *) dst->data)[0] = sum;
  7487. }
  7488. static void ggml_compute_forward_sum_f16(
  7489. const struct ggml_compute_params * params,
  7490. struct ggml_tensor * dst) {
  7491. const struct ggml_tensor * src0 = dst->src[0];
  7492. assert(params->ith == 0);
  7493. assert(ggml_is_scalar(dst));
  7494. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7495. return;
  7496. }
  7497. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7498. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7499. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7500. float sum = 0;
  7501. float row_sum = 0;
  7502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7504. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7505. ggml_vec_sum_f16_ggf(ne00,
  7506. &row_sum,
  7507. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7508. sum += row_sum;
  7509. }
  7510. }
  7511. }
  7512. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7513. }
  7514. static void ggml_compute_forward_sum(
  7515. const struct ggml_compute_params * params,
  7516. struct ggml_tensor * dst) {
  7517. const struct ggml_tensor * src0 = dst->src[0];
  7518. switch (src0->type) {
  7519. case GGML_TYPE_F32:
  7520. {
  7521. ggml_compute_forward_sum_f32(params, dst);
  7522. } break;
  7523. case GGML_TYPE_F16:
  7524. {
  7525. ggml_compute_forward_sum_f16(params, dst);
  7526. } break;
  7527. default:
  7528. {
  7529. GGML_ASSERT(false);
  7530. } break;
  7531. }
  7532. }
  7533. // ggml_compute_forward_sum_rows
  7534. static void ggml_compute_forward_sum_rows_f32(
  7535. const struct ggml_compute_params * params,
  7536. struct ggml_tensor * dst) {
  7537. const struct ggml_tensor * src0 = dst->src[0];
  7538. GGML_ASSERT(params->ith == 0);
  7539. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7540. return;
  7541. }
  7542. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7543. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7544. GGML_TENSOR_UNARY_OP_LOCALS
  7545. GGML_ASSERT(ne0 == 1);
  7546. GGML_ASSERT(ne1 == ne01);
  7547. GGML_ASSERT(ne2 == ne02);
  7548. GGML_ASSERT(ne3 == ne03);
  7549. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7550. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7551. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7552. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7553. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7554. float row_sum = 0;
  7555. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7556. dst_row[0] = row_sum;
  7557. }
  7558. }
  7559. }
  7560. }
  7561. static void ggml_compute_forward_sum_rows(
  7562. const struct ggml_compute_params * params,
  7563. struct ggml_tensor * dst) {
  7564. const struct ggml_tensor * src0 = dst->src[0];
  7565. switch (src0->type) {
  7566. case GGML_TYPE_F32:
  7567. {
  7568. ggml_compute_forward_sum_rows_f32(params, dst);
  7569. } break;
  7570. default:
  7571. {
  7572. GGML_ASSERT(false);
  7573. } break;
  7574. }
  7575. }
  7576. // ggml_compute_forward_mean
  7577. static void ggml_compute_forward_mean_f32(
  7578. const struct ggml_compute_params * params,
  7579. struct ggml_tensor * dst) {
  7580. const struct ggml_tensor * src0 = dst->src[0];
  7581. assert(params->ith == 0);
  7582. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7583. return;
  7584. }
  7585. assert(src0->nb[0] == sizeof(float));
  7586. GGML_TENSOR_UNARY_OP_LOCALS
  7587. assert(ne0 == 1);
  7588. assert(ne1 == ne01);
  7589. assert(ne2 == ne02);
  7590. assert(ne3 == ne03);
  7591. UNUSED(ne0);
  7592. UNUSED(ne1);
  7593. UNUSED(ne2);
  7594. UNUSED(ne3);
  7595. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7596. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7597. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7598. ggml_vec_sum_f32(ne00,
  7599. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7600. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7601. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7602. }
  7603. }
  7604. }
  7605. }
  7606. static void ggml_compute_forward_mean(
  7607. const struct ggml_compute_params * params,
  7608. struct ggml_tensor * dst) {
  7609. const struct ggml_tensor * src0 = dst->src[0];
  7610. switch (src0->type) {
  7611. case GGML_TYPE_F32:
  7612. {
  7613. ggml_compute_forward_mean_f32(params, dst);
  7614. } break;
  7615. default:
  7616. {
  7617. GGML_ASSERT(false);
  7618. } break;
  7619. }
  7620. }
  7621. // ggml_compute_forward_argmax
  7622. static void ggml_compute_forward_argmax_f32(
  7623. const struct ggml_compute_params * params,
  7624. struct ggml_tensor * dst) {
  7625. const struct ggml_tensor * src0 = dst->src[0];
  7626. assert(params->ith == 0);
  7627. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7628. return;
  7629. }
  7630. assert(src0->nb[0] == sizeof(float));
  7631. assert(dst->nb[0] == sizeof(float));
  7632. const int64_t ne00 = src0->ne[0];
  7633. const int64_t ne01 = src0->ne[1];
  7634. const size_t nb01 = src0->nb[1];
  7635. const size_t nb0 = dst->nb[0];
  7636. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7637. float * src = (float *) ((char *) src0->data + i1*nb01);
  7638. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7639. int v = 0;
  7640. ggml_vec_argmax_f32(ne00, &v, src);
  7641. dst_[0] = v;
  7642. }
  7643. }
  7644. static void ggml_compute_forward_argmax(
  7645. const struct ggml_compute_params * params,
  7646. struct ggml_tensor * dst) {
  7647. const struct ggml_tensor * src0 = dst->src[0];
  7648. switch (src0->type) {
  7649. case GGML_TYPE_F32:
  7650. {
  7651. ggml_compute_forward_argmax_f32(params, dst);
  7652. } break;
  7653. default:
  7654. {
  7655. GGML_ASSERT(false);
  7656. } break;
  7657. }
  7658. }
  7659. // ggml_compute_forward_repeat
  7660. static void ggml_compute_forward_repeat_f32(
  7661. const struct ggml_compute_params * params,
  7662. struct ggml_tensor * dst) {
  7663. const struct ggml_tensor * src0 = dst->src[0];
  7664. GGML_ASSERT(params->ith == 0);
  7665. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7666. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7667. return;
  7668. }
  7669. GGML_TENSOR_UNARY_OP_LOCALS
  7670. // guaranteed to be an integer due to the check in ggml_can_repeat
  7671. const int nr0 = (int)(ne0/ne00);
  7672. const int nr1 = (int)(ne1/ne01);
  7673. const int nr2 = (int)(ne2/ne02);
  7674. const int nr3 = (int)(ne3/ne03);
  7675. // TODO: support for transposed / permuted tensors
  7676. GGML_ASSERT(nb0 == sizeof(float));
  7677. GGML_ASSERT(nb00 == sizeof(float));
  7678. // TODO: maybe this is not optimal?
  7679. for (int i3 = 0; i3 < nr3; i3++) {
  7680. for (int k3 = 0; k3 < ne03; k3++) {
  7681. for (int i2 = 0; i2 < nr2; i2++) {
  7682. for (int k2 = 0; k2 < ne02; k2++) {
  7683. for (int i1 = 0; i1 < nr1; i1++) {
  7684. for (int k1 = 0; k1 < ne01; k1++) {
  7685. for (int i0 = 0; i0 < nr0; i0++) {
  7686. ggml_vec_cpy_f32(ne00,
  7687. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7688. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7689. }
  7690. }
  7691. }
  7692. }
  7693. }
  7694. }
  7695. }
  7696. }
  7697. static void ggml_compute_forward_repeat_f16(
  7698. const struct ggml_compute_params * params,
  7699. struct ggml_tensor * dst) {
  7700. const struct ggml_tensor * src0 = dst->src[0];
  7701. GGML_ASSERT(params->ith == 0);
  7702. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7703. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7704. return;
  7705. }
  7706. GGML_TENSOR_UNARY_OP_LOCALS
  7707. // guaranteed to be an integer due to the check in ggml_can_repeat
  7708. const int nr0 = (int)(ne0/ne00);
  7709. const int nr1 = (int)(ne1/ne01);
  7710. const int nr2 = (int)(ne2/ne02);
  7711. const int nr3 = (int)(ne3/ne03);
  7712. // TODO: support for transposed / permuted tensors
  7713. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7714. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7715. // TODO: maybe this is not optimal?
  7716. for (int i3 = 0; i3 < nr3; i3++) {
  7717. for (int k3 = 0; k3 < ne03; k3++) {
  7718. for (int i2 = 0; i2 < nr2; i2++) {
  7719. for (int k2 = 0; k2 < ne02; k2++) {
  7720. for (int i1 = 0; i1 < nr1; i1++) {
  7721. for (int k1 = 0; k1 < ne01; k1++) {
  7722. for (int i0 = 0; i0 < nr0; i0++) {
  7723. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7724. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7725. // ggml_vec_cpy_f16(ne00, y, x)
  7726. for (int i = 0; i < ne00; ++i) {
  7727. y[i] = x[i];
  7728. }
  7729. }
  7730. }
  7731. }
  7732. }
  7733. }
  7734. }
  7735. }
  7736. }
  7737. static void ggml_compute_forward_repeat(
  7738. const struct ggml_compute_params * params,
  7739. struct ggml_tensor * dst) {
  7740. const struct ggml_tensor * src0 = dst->src[0];
  7741. switch (src0->type) {
  7742. case GGML_TYPE_F16:
  7743. case GGML_TYPE_I16:
  7744. {
  7745. ggml_compute_forward_repeat_f16(params, dst);
  7746. } break;
  7747. case GGML_TYPE_F32:
  7748. case GGML_TYPE_I32:
  7749. {
  7750. ggml_compute_forward_repeat_f32(params, dst);
  7751. } break;
  7752. default:
  7753. {
  7754. GGML_ASSERT(false);
  7755. } break;
  7756. }
  7757. }
  7758. // ggml_compute_forward_repeat_back
  7759. static void ggml_compute_forward_repeat_back_f32(
  7760. const struct ggml_compute_params * params,
  7761. struct ggml_tensor * dst) {
  7762. const struct ggml_tensor * src0 = dst->src[0];
  7763. GGML_ASSERT(params->ith == 0);
  7764. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7765. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7766. return;
  7767. }
  7768. GGML_TENSOR_UNARY_OP_LOCALS
  7769. // guaranteed to be an integer due to the check in ggml_can_repeat
  7770. const int nr0 = (int)(ne00/ne0);
  7771. const int nr1 = (int)(ne01/ne1);
  7772. const int nr2 = (int)(ne02/ne2);
  7773. const int nr3 = (int)(ne03/ne3);
  7774. // TODO: support for transposed / permuted tensors
  7775. GGML_ASSERT(nb0 == sizeof(float));
  7776. GGML_ASSERT(nb00 == sizeof(float));
  7777. if (ggml_is_contiguous(dst)) {
  7778. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7779. } else {
  7780. for (int k3 = 0; k3 < ne3; k3++) {
  7781. for (int k2 = 0; k2 < ne2; k2++) {
  7782. for (int k1 = 0; k1 < ne1; k1++) {
  7783. ggml_vec_set_f32(ne0,
  7784. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7785. 0);
  7786. }
  7787. }
  7788. }
  7789. }
  7790. // TODO: maybe this is not optimal?
  7791. for (int i3 = 0; i3 < nr3; i3++) {
  7792. for (int k3 = 0; k3 < ne3; k3++) {
  7793. for (int i2 = 0; i2 < nr2; i2++) {
  7794. for (int k2 = 0; k2 < ne2; k2++) {
  7795. for (int i1 = 0; i1 < nr1; i1++) {
  7796. for (int k1 = 0; k1 < ne1; k1++) {
  7797. for (int i0 = 0; i0 < nr0; i0++) {
  7798. ggml_vec_acc_f32(ne0,
  7799. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7800. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7801. }
  7802. }
  7803. }
  7804. }
  7805. }
  7806. }
  7807. }
  7808. }
  7809. static void ggml_compute_forward_repeat_back(
  7810. const struct ggml_compute_params * params,
  7811. struct ggml_tensor * dst) {
  7812. const struct ggml_tensor * src0 = dst->src[0];
  7813. switch (src0->type) {
  7814. case GGML_TYPE_F32:
  7815. {
  7816. ggml_compute_forward_repeat_back_f32(params, dst);
  7817. } break;
  7818. default:
  7819. {
  7820. GGML_ASSERT(false);
  7821. } break;
  7822. }
  7823. }
  7824. // ggml_compute_forward_concat
  7825. static void ggml_compute_forward_concat_f32(
  7826. const struct ggml_compute_params * params,
  7827. struct ggml_tensor * dst) {
  7828. const struct ggml_tensor * src0 = dst->src[0];
  7829. const struct ggml_tensor * src1 = dst->src[1];
  7830. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7831. return;
  7832. }
  7833. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7834. const int ith = params->ith;
  7835. const int nth = params->nth;
  7836. GGML_TENSOR_BINARY_OP_LOCALS
  7837. // TODO: support for transposed / permuted tensors
  7838. GGML_ASSERT(nb0 == sizeof(float));
  7839. GGML_ASSERT(nb00 == sizeof(float));
  7840. GGML_ASSERT(nb10 == sizeof(float));
  7841. for (int i3 = 0; i3 < ne3; i3++) {
  7842. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7843. if (i2 < ne02) { // src0
  7844. for (int i1 = 0; i1 < ne1; i1++) {
  7845. for (int i0 = 0; i0 < ne0; i0++) {
  7846. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7847. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7848. *y = *x;
  7849. }
  7850. }
  7851. } // src1
  7852. else {
  7853. for (int i1 = 0; i1 < ne1; i1++) {
  7854. for (int i0 = 0; i0 < ne0; i0++) {
  7855. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7856. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7857. *y = *x;
  7858. }
  7859. }
  7860. }
  7861. }
  7862. }
  7863. }
  7864. static void ggml_compute_forward_concat(
  7865. const struct ggml_compute_params* params,
  7866. struct ggml_tensor* dst) {
  7867. const struct ggml_tensor * src0 = dst->src[0];
  7868. switch (src0->type) {
  7869. case GGML_TYPE_F32:
  7870. case GGML_TYPE_I32:
  7871. {
  7872. ggml_compute_forward_concat_f32(params, dst);
  7873. } break;
  7874. default:
  7875. {
  7876. GGML_ASSERT(false);
  7877. } break;
  7878. }
  7879. }
  7880. // ggml_compute_forward_abs
  7881. static void ggml_compute_forward_abs_f32(
  7882. const struct ggml_compute_params * params,
  7883. struct ggml_tensor * dst) {
  7884. const struct ggml_tensor * src0 = dst->src[0];
  7885. assert(params->ith == 0);
  7886. assert(ggml_are_same_shape(src0, dst));
  7887. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7888. return;
  7889. }
  7890. const int n = ggml_nrows(src0);
  7891. const int nc = src0->ne[0];
  7892. assert(dst->nb[0] == sizeof(float));
  7893. assert(src0->nb[0] == sizeof(float));
  7894. for (int i = 0; i < n; i++) {
  7895. ggml_vec_abs_f32(nc,
  7896. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7897. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7898. }
  7899. }
  7900. static void ggml_compute_forward_abs(
  7901. const struct ggml_compute_params * params,
  7902. struct ggml_tensor * dst) {
  7903. const struct ggml_tensor * src0 = dst->src[0];
  7904. switch (src0->type) {
  7905. case GGML_TYPE_F32:
  7906. {
  7907. ggml_compute_forward_abs_f32(params, dst);
  7908. } break;
  7909. default:
  7910. {
  7911. GGML_ASSERT(false);
  7912. } break;
  7913. }
  7914. }
  7915. // ggml_compute_forward_sgn
  7916. static void ggml_compute_forward_sgn_f32(
  7917. const struct ggml_compute_params * params,
  7918. struct ggml_tensor * dst) {
  7919. const struct ggml_tensor * src0 = dst->src[0];
  7920. assert(params->ith == 0);
  7921. assert(ggml_are_same_shape(src0, dst));
  7922. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7923. return;
  7924. }
  7925. const int n = ggml_nrows(src0);
  7926. const int nc = src0->ne[0];
  7927. assert(dst->nb[0] == sizeof(float));
  7928. assert(src0->nb[0] == sizeof(float));
  7929. for (int i = 0; i < n; i++) {
  7930. ggml_vec_sgn_f32(nc,
  7931. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7932. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7933. }
  7934. }
  7935. static void ggml_compute_forward_sgn(
  7936. const struct ggml_compute_params * params,
  7937. struct ggml_tensor * dst) {
  7938. const struct ggml_tensor * src0 = dst->src[0];
  7939. switch (src0->type) {
  7940. case GGML_TYPE_F32:
  7941. {
  7942. ggml_compute_forward_sgn_f32(params, dst);
  7943. } break;
  7944. default:
  7945. {
  7946. GGML_ASSERT(false);
  7947. } break;
  7948. }
  7949. }
  7950. // ggml_compute_forward_neg
  7951. static void ggml_compute_forward_neg_f32(
  7952. const struct ggml_compute_params * params,
  7953. struct ggml_tensor * dst) {
  7954. const struct ggml_tensor * src0 = dst->src[0];
  7955. assert(params->ith == 0);
  7956. assert(ggml_are_same_shape(src0, dst));
  7957. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7958. return;
  7959. }
  7960. const int n = ggml_nrows(src0);
  7961. const int nc = src0->ne[0];
  7962. assert(dst->nb[0] == sizeof(float));
  7963. assert(src0->nb[0] == sizeof(float));
  7964. for (int i = 0; i < n; i++) {
  7965. ggml_vec_neg_f32(nc,
  7966. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7967. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7968. }
  7969. }
  7970. static void ggml_compute_forward_neg(
  7971. const struct ggml_compute_params * params,
  7972. struct ggml_tensor * dst) {
  7973. const struct ggml_tensor * src0 = dst->src[0];
  7974. switch (src0->type) {
  7975. case GGML_TYPE_F32:
  7976. {
  7977. ggml_compute_forward_neg_f32(params, dst);
  7978. } break;
  7979. default:
  7980. {
  7981. GGML_ASSERT(false);
  7982. } break;
  7983. }
  7984. }
  7985. // ggml_compute_forward_step
  7986. static void ggml_compute_forward_step_f32(
  7987. const struct ggml_compute_params * params,
  7988. struct ggml_tensor * dst) {
  7989. const struct ggml_tensor * src0 = dst->src[0];
  7990. assert(params->ith == 0);
  7991. assert(ggml_are_same_shape(src0, dst));
  7992. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7993. return;
  7994. }
  7995. const int n = ggml_nrows(src0);
  7996. const int nc = src0->ne[0];
  7997. assert(dst->nb[0] == sizeof(float));
  7998. assert(src0->nb[0] == sizeof(float));
  7999. for (int i = 0; i < n; i++) {
  8000. ggml_vec_step_f32(nc,
  8001. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8002. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8003. }
  8004. }
  8005. static void ggml_compute_forward_step(
  8006. const struct ggml_compute_params * params,
  8007. struct ggml_tensor * dst) {
  8008. const struct ggml_tensor * src0 = dst->src[0];
  8009. switch (src0->type) {
  8010. case GGML_TYPE_F32:
  8011. {
  8012. ggml_compute_forward_step_f32(params, dst);
  8013. } break;
  8014. default:
  8015. {
  8016. GGML_ASSERT(false);
  8017. } break;
  8018. }
  8019. }
  8020. // ggml_compute_forward_tanh
  8021. static void ggml_compute_forward_tanh_f32(
  8022. const struct ggml_compute_params * params,
  8023. struct ggml_tensor * dst) {
  8024. const struct ggml_tensor * src0 = dst->src[0];
  8025. assert(params->ith == 0);
  8026. assert(ggml_are_same_shape(src0, dst));
  8027. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8028. return;
  8029. }
  8030. const int n = ggml_nrows(src0);
  8031. const int nc = src0->ne[0];
  8032. assert(dst->nb[0] == sizeof(float));
  8033. assert(src0->nb[0] == sizeof(float));
  8034. for (int i = 0; i < n; i++) {
  8035. ggml_vec_tanh_f32(nc,
  8036. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8037. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8038. }
  8039. }
  8040. static void ggml_compute_forward_tanh(
  8041. const struct ggml_compute_params * params,
  8042. struct ggml_tensor * dst) {
  8043. const struct ggml_tensor * src0 = dst->src[0];
  8044. switch (src0->type) {
  8045. case GGML_TYPE_F32:
  8046. {
  8047. ggml_compute_forward_tanh_f32(params, dst);
  8048. } break;
  8049. default:
  8050. {
  8051. GGML_ASSERT(false);
  8052. } break;
  8053. }
  8054. }
  8055. // ggml_compute_forward_elu
  8056. static void ggml_compute_forward_elu_f32(
  8057. const struct ggml_compute_params * params,
  8058. struct ggml_tensor * dst) {
  8059. const struct ggml_tensor * src0 = dst->src[0];
  8060. assert(params->ith == 0);
  8061. assert(ggml_are_same_shape(src0, dst));
  8062. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8063. return;
  8064. }
  8065. const int n = ggml_nrows(src0);
  8066. const int nc = src0->ne[0];
  8067. assert(dst->nb[0] == sizeof(float));
  8068. assert(src0->nb[0] == sizeof(float));
  8069. for (int i = 0; i < n; i++) {
  8070. ggml_vec_elu_f32(nc,
  8071. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8072. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8073. }
  8074. }
  8075. static void ggml_compute_forward_elu(
  8076. const struct ggml_compute_params * params,
  8077. struct ggml_tensor * dst) {
  8078. const struct ggml_tensor * src0 = dst->src[0];
  8079. switch (src0->type) {
  8080. case GGML_TYPE_F32:
  8081. {
  8082. ggml_compute_forward_elu_f32(params, dst);
  8083. } break;
  8084. default:
  8085. {
  8086. GGML_ASSERT(false);
  8087. } break;
  8088. }
  8089. }
  8090. // ggml_compute_forward_relu
  8091. static void ggml_compute_forward_relu_f32(
  8092. const struct ggml_compute_params * params,
  8093. struct ggml_tensor * dst) {
  8094. const struct ggml_tensor * src0 = dst->src[0];
  8095. assert(params->ith == 0);
  8096. assert(ggml_are_same_shape(src0, dst));
  8097. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8098. return;
  8099. }
  8100. const int n = ggml_nrows(src0);
  8101. const int nc = src0->ne[0];
  8102. assert(dst->nb[0] == sizeof(float));
  8103. assert(src0->nb[0] == sizeof(float));
  8104. for (int i = 0; i < n; i++) {
  8105. ggml_vec_relu_f32(nc,
  8106. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8107. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8108. }
  8109. }
  8110. static void ggml_compute_forward_relu(
  8111. const struct ggml_compute_params * params,
  8112. struct ggml_tensor * dst) {
  8113. const struct ggml_tensor * src0 = dst->src[0];
  8114. switch (src0->type) {
  8115. case GGML_TYPE_F32:
  8116. {
  8117. ggml_compute_forward_relu_f32(params, dst);
  8118. } break;
  8119. default:
  8120. {
  8121. GGML_ASSERT(false);
  8122. } break;
  8123. }
  8124. }
  8125. // ggml_compute_forward_gelu
  8126. static void ggml_compute_forward_gelu_f32(
  8127. const struct ggml_compute_params * params,
  8128. struct ggml_tensor * dst) {
  8129. const struct ggml_tensor * src0 = dst->src[0];
  8130. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8131. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8132. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8133. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8134. return;
  8135. }
  8136. const int ith = params->ith;
  8137. const int nth = params->nth;
  8138. const int nc = src0->ne[0];
  8139. const int nr = ggml_nrows(src0);
  8140. // rows per thread
  8141. const int dr = (nr + nth - 1)/nth;
  8142. // row range for this thread
  8143. const int ir0 = dr*ith;
  8144. const int ir1 = MIN(ir0 + dr, nr);
  8145. for (int i1 = ir0; i1 < ir1; i1++) {
  8146. ggml_vec_gelu_f32(nc,
  8147. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8148. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8149. #ifndef NDEBUG
  8150. for (int k = 0; k < nc; k++) {
  8151. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8152. UNUSED(x);
  8153. assert(!isnan(x));
  8154. assert(!isinf(x));
  8155. }
  8156. #endif
  8157. }
  8158. }
  8159. static void ggml_compute_forward_gelu(
  8160. const struct ggml_compute_params * params,
  8161. struct ggml_tensor * dst) {
  8162. const struct ggml_tensor * src0 = dst->src[0];
  8163. switch (src0->type) {
  8164. case GGML_TYPE_F32:
  8165. {
  8166. ggml_compute_forward_gelu_f32(params, dst);
  8167. } break;
  8168. default:
  8169. {
  8170. GGML_ASSERT(false);
  8171. } break;
  8172. }
  8173. }
  8174. // ggml_compute_forward_gelu_quick
  8175. static void ggml_compute_forward_gelu_quick_f32(
  8176. const struct ggml_compute_params * params,
  8177. struct ggml_tensor * dst) {
  8178. const struct ggml_tensor * src0 = dst->src[0];
  8179. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8180. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8181. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8182. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8183. return;
  8184. }
  8185. const int ith = params->ith;
  8186. const int nth = params->nth;
  8187. const int nc = src0->ne[0];
  8188. const int nr = ggml_nrows(src0);
  8189. // rows per thread
  8190. const int dr = (nr + nth - 1)/nth;
  8191. // row range for this thread
  8192. const int ir0 = dr*ith;
  8193. const int ir1 = MIN(ir0 + dr, nr);
  8194. for (int i1 = ir0; i1 < ir1; i1++) {
  8195. ggml_vec_gelu_quick_f32(nc,
  8196. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8197. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8198. #ifndef NDEBUG
  8199. for (int k = 0; k < nc; k++) {
  8200. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8201. UNUSED(x);
  8202. assert(!isnan(x));
  8203. assert(!isinf(x));
  8204. }
  8205. #endif
  8206. }
  8207. }
  8208. static void ggml_compute_forward_gelu_quick(
  8209. const struct ggml_compute_params * params,
  8210. struct ggml_tensor * dst) {
  8211. const struct ggml_tensor * src0 = dst->src[0];
  8212. switch (src0->type) {
  8213. case GGML_TYPE_F32:
  8214. {
  8215. ggml_compute_forward_gelu_quick_f32(params, dst);
  8216. } break;
  8217. default:
  8218. {
  8219. GGML_ASSERT(false);
  8220. } break;
  8221. }
  8222. }
  8223. // ggml_compute_forward_silu
  8224. static void ggml_compute_forward_silu_f32(
  8225. const struct ggml_compute_params * params,
  8226. struct ggml_tensor * dst) {
  8227. const struct ggml_tensor * src0 = dst->src[0];
  8228. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8229. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8230. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8231. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8232. return;
  8233. }
  8234. const int ith = params->ith;
  8235. const int nth = params->nth;
  8236. const int nc = src0->ne[0];
  8237. const int nr = ggml_nrows(src0);
  8238. // rows per thread
  8239. const int dr = (nr + nth - 1)/nth;
  8240. // row range for this thread
  8241. const int ir0 = dr*ith;
  8242. const int ir1 = MIN(ir0 + dr, nr);
  8243. for (int i1 = ir0; i1 < ir1; i1++) {
  8244. ggml_vec_silu_f32(nc,
  8245. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8246. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8247. #ifndef NDEBUG
  8248. for (int k = 0; k < nc; k++) {
  8249. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8250. UNUSED(x);
  8251. assert(!isnan(x));
  8252. assert(!isinf(x));
  8253. }
  8254. #endif
  8255. }
  8256. }
  8257. static void ggml_compute_forward_silu(
  8258. const struct ggml_compute_params * params,
  8259. struct ggml_tensor * dst) {
  8260. const struct ggml_tensor * src0 = dst->src[0];
  8261. switch (src0->type) {
  8262. case GGML_TYPE_F32:
  8263. {
  8264. ggml_compute_forward_silu_f32(params, dst);
  8265. } break;
  8266. default:
  8267. {
  8268. GGML_ASSERT(false);
  8269. } break;
  8270. }
  8271. }
  8272. // ggml_compute_forward_leaky_relu
  8273. static void ggml_compute_forward_leaky_relu_f32(
  8274. const struct ggml_compute_params * params,
  8275. struct ggml_tensor * dst) {
  8276. const struct ggml_tensor * src0 = dst->src[0];
  8277. assert(params->ith == 0);
  8278. assert(ggml_are_same_shape(src0, dst));
  8279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8280. return;
  8281. }
  8282. const int n = ggml_nrows(src0);
  8283. const int nc = src0->ne[0];
  8284. float negative_slope;
  8285. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8286. assert(dst->nb[0] == sizeof(float));
  8287. assert(src0->nb[0] == sizeof(float));
  8288. for (int i = 0; i < n; i++) {
  8289. ggml_vec_leaky_relu_f32(nc,
  8290. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8291. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8292. }
  8293. }
  8294. static void ggml_compute_forward_leaky_relu(
  8295. const struct ggml_compute_params * params,
  8296. struct ggml_tensor * dst) {
  8297. const struct ggml_tensor * src0 = dst->src[0];
  8298. switch (src0->type) {
  8299. case GGML_TYPE_F32:
  8300. {
  8301. ggml_compute_forward_leaky_relu_f32(params, dst);
  8302. } break;
  8303. default:
  8304. {
  8305. GGML_ASSERT(false);
  8306. } break;
  8307. }
  8308. }
  8309. // ggml_compute_forward_silu_back
  8310. static void ggml_compute_forward_silu_back_f32(
  8311. const struct ggml_compute_params * params,
  8312. struct ggml_tensor * dst) {
  8313. const struct ggml_tensor * src0 = dst->src[0];
  8314. const struct ggml_tensor * grad = dst->src[1];
  8315. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8316. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8317. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8318. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8319. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8320. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8321. return;
  8322. }
  8323. const int ith = params->ith;
  8324. const int nth = params->nth;
  8325. const int nc = src0->ne[0];
  8326. const int nr = ggml_nrows(src0);
  8327. // rows per thread
  8328. const int dr = (nr + nth - 1)/nth;
  8329. // row range for this thread
  8330. const int ir0 = dr*ith;
  8331. const int ir1 = MIN(ir0 + dr, nr);
  8332. for (int i1 = ir0; i1 < ir1; i1++) {
  8333. ggml_vec_silu_backward_f32(nc,
  8334. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8335. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8336. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8337. #ifndef NDEBUG
  8338. for (int k = 0; k < nc; k++) {
  8339. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8340. UNUSED(x);
  8341. assert(!isnan(x));
  8342. assert(!isinf(x));
  8343. }
  8344. #endif
  8345. }
  8346. }
  8347. static void ggml_compute_forward_silu_back(
  8348. const struct ggml_compute_params * params,
  8349. struct ggml_tensor * dst) {
  8350. const struct ggml_tensor * src0 = dst->src[0];
  8351. switch (src0->type) {
  8352. case GGML_TYPE_F32:
  8353. {
  8354. ggml_compute_forward_silu_back_f32(params, dst);
  8355. } break;
  8356. default:
  8357. {
  8358. GGML_ASSERT(false);
  8359. } break;
  8360. }
  8361. }
  8362. static void ggml_compute_forward_hardswish_f32(
  8363. const struct ggml_compute_params * params,
  8364. struct ggml_tensor * dst) {
  8365. const struct ggml_tensor * src0 = dst->src[0];
  8366. assert(params->ith == 0);
  8367. assert(ggml_are_same_shape(src0, dst));
  8368. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8369. return;
  8370. }
  8371. const int n = ggml_nrows(src0);
  8372. const int nc = src0->ne[0];
  8373. assert(dst->nb[0] == sizeof(float));
  8374. assert(src0->nb[0] == sizeof(float));
  8375. for (int i = 0; i < n; i++) {
  8376. ggml_vec_hardswish_f32(nc,
  8377. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8378. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8379. }
  8380. }
  8381. static void ggml_compute_forward_hardswish(
  8382. const struct ggml_compute_params * params,
  8383. struct ggml_tensor * dst) {
  8384. const struct ggml_tensor * src0 = dst->src[0];
  8385. switch (src0->type) {
  8386. case GGML_TYPE_F32:
  8387. {
  8388. ggml_compute_forward_hardswish_f32(params, dst);
  8389. } break;
  8390. default:
  8391. {
  8392. GGML_ASSERT(false);
  8393. } break;
  8394. }
  8395. }
  8396. static void ggml_compute_forward_hardsigmoid_f32(
  8397. const struct ggml_compute_params * params,
  8398. struct ggml_tensor * dst) {
  8399. const struct ggml_tensor * src0 = dst->src[0];
  8400. assert(params->ith == 0);
  8401. assert(ggml_are_same_shape(src0, dst));
  8402. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8403. return;
  8404. }
  8405. const int n = ggml_nrows(src0);
  8406. const int nc = src0->ne[0];
  8407. assert(dst->nb[0] == sizeof(float));
  8408. assert(src0->nb[0] == sizeof(float));
  8409. for (int i = 0; i < n; i++) {
  8410. ggml_vec_hardsigmoid_f32(nc,
  8411. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8412. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8413. }
  8414. }
  8415. static void ggml_compute_forward_hardsigmoid(
  8416. const struct ggml_compute_params * params,
  8417. struct ggml_tensor * dst) {
  8418. const struct ggml_tensor * src0 = dst->src[0];
  8419. switch (src0->type) {
  8420. case GGML_TYPE_F32:
  8421. {
  8422. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8423. } break;
  8424. default:
  8425. {
  8426. GGML_ASSERT(false);
  8427. } break;
  8428. }
  8429. }
  8430. // ggml_compute_forward_norm
  8431. static void ggml_compute_forward_norm_f32(
  8432. const struct ggml_compute_params * params,
  8433. struct ggml_tensor * dst) {
  8434. const struct ggml_tensor * src0 = dst->src[0];
  8435. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8436. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8437. return;
  8438. }
  8439. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8440. const int ith = params->ith;
  8441. const int nth = params->nth;
  8442. GGML_TENSOR_UNARY_OP_LOCALS
  8443. float eps;
  8444. memcpy(&eps, dst->op_params, sizeof(float));
  8445. GGML_ASSERT(eps > 0.0f);
  8446. // TODO: optimize
  8447. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8448. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8449. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8450. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8451. ggml_float sum = 0.0;
  8452. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8453. sum += (ggml_float)x[i00];
  8454. }
  8455. float mean = sum/ne00;
  8456. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8457. ggml_float sum2 = 0.0;
  8458. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8459. float v = x[i00] - mean;
  8460. y[i00] = v;
  8461. sum2 += (ggml_float)(v*v);
  8462. }
  8463. float variance = sum2/ne00;
  8464. const float scale = 1.0f/sqrtf(variance + eps);
  8465. ggml_vec_scale_f32(ne00, y, scale);
  8466. }
  8467. }
  8468. }
  8469. }
  8470. static void ggml_compute_forward_norm(
  8471. const struct ggml_compute_params * params,
  8472. struct ggml_tensor * dst) {
  8473. const struct ggml_tensor * src0 = dst->src[0];
  8474. switch (src0->type) {
  8475. case GGML_TYPE_F32:
  8476. {
  8477. ggml_compute_forward_norm_f32(params, dst);
  8478. } break;
  8479. default:
  8480. {
  8481. GGML_ASSERT(false);
  8482. } break;
  8483. }
  8484. }
  8485. // ggml_compute_forward_group_rms_norm
  8486. static void ggml_compute_forward_rms_norm_f32(
  8487. const struct ggml_compute_params * params,
  8488. struct ggml_tensor * dst) {
  8489. const struct ggml_tensor * src0 = dst->src[0];
  8490. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8491. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8492. return;
  8493. }
  8494. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8495. const int ith = params->ith;
  8496. const int nth = params->nth;
  8497. GGML_TENSOR_UNARY_OP_LOCALS
  8498. float eps;
  8499. memcpy(&eps, dst->op_params, sizeof(float));
  8500. GGML_ASSERT(eps > 0.0f);
  8501. // TODO: optimize
  8502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8504. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8505. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8506. ggml_float sum = 0.0;
  8507. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8508. sum += (ggml_float)(x[i00] * x[i00]);
  8509. }
  8510. const float mean = sum/ne00;
  8511. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8512. memcpy(y, x, ne00 * sizeof(float));
  8513. // for (int i00 = 0; i00 < ne00; i00++) {
  8514. // y[i00] = x[i00];
  8515. // }
  8516. const float scale = 1.0f/sqrtf(mean + eps);
  8517. ggml_vec_scale_f32(ne00, y, scale);
  8518. }
  8519. }
  8520. }
  8521. }
  8522. static void ggml_compute_forward_rms_norm(
  8523. const struct ggml_compute_params * params,
  8524. struct ggml_tensor * dst) {
  8525. const struct ggml_tensor * src0 = dst->src[0];
  8526. switch (src0->type) {
  8527. case GGML_TYPE_F32:
  8528. {
  8529. ggml_compute_forward_rms_norm_f32(params, dst);
  8530. } break;
  8531. default:
  8532. {
  8533. GGML_ASSERT(false);
  8534. } break;
  8535. }
  8536. }
  8537. static void ggml_compute_forward_rms_norm_back_f32(
  8538. const struct ggml_compute_params * params,
  8539. struct ggml_tensor * dst) {
  8540. const struct ggml_tensor * src0 = dst->src[0];
  8541. const struct ggml_tensor * src1 = dst->src[1];
  8542. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8543. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8544. return;
  8545. }
  8546. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8547. const int ith = params->ith;
  8548. const int nth = params->nth;
  8549. GGML_TENSOR_BINARY_OP_LOCALS
  8550. float eps;
  8551. memcpy(&eps, dst->op_params, sizeof(float));
  8552. // TODO: optimize
  8553. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8554. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8555. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8556. // src1 is same shape as src0 => same indices
  8557. const int64_t i11 = i01;
  8558. const int64_t i12 = i02;
  8559. const int64_t i13 = i03;
  8560. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8561. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8562. ggml_float sum_xx = 0.0;
  8563. ggml_float sum_xdz = 0.0;
  8564. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8565. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8566. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8567. }
  8568. //const float mean = (float)(sum_xx)/ne00;
  8569. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8570. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8571. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8572. // we could cache rms from forward pass to improve performance.
  8573. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8574. //const float rms = sqrtf(mean_eps);
  8575. const float rrms = 1.0f / sqrtf(mean_eps);
  8576. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8577. {
  8578. // z = rms_norm(x)
  8579. //
  8580. // rms_norm(src0) =
  8581. // scale(
  8582. // src0,
  8583. // div(
  8584. // 1,
  8585. // sqrt(
  8586. // add(
  8587. // scale(
  8588. // sum(
  8589. // sqr(
  8590. // src0)),
  8591. // (1.0/N)),
  8592. // eps))));
  8593. // postorder:
  8594. // ## op args grad
  8595. // 00 param src0 grad[#00]
  8596. // 01 const 1
  8597. // 02 sqr (#00) grad[#02]
  8598. // 03 sum (#02) grad[#03]
  8599. // 04 const 1/N
  8600. // 05 scale (#03, #04) grad[#05]
  8601. // 06 const eps
  8602. // 07 add (#05, #06) grad[#07]
  8603. // 08 sqrt (#07) grad[#08]
  8604. // 09 div (#01,#08) grad[#09]
  8605. // 10 scale (#00,#09) grad[#10]
  8606. //
  8607. // backward pass, given grad[#10]
  8608. // #10: scale
  8609. // grad[#00] += scale(grad[#10],#09)
  8610. // grad[#09] += sum(mul(grad[#10],#00))
  8611. // #09: div
  8612. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8613. // #08: sqrt
  8614. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8615. // #07: add
  8616. // grad[#05] += grad[#07]
  8617. // #05: scale
  8618. // grad[#03] += scale(grad[#05],#04)
  8619. // #03: sum
  8620. // grad[#02] += repeat(grad[#03], #02)
  8621. // #02:
  8622. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8623. //
  8624. // substitute and simplify:
  8625. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8626. // grad[#02] = repeat(grad[#03], #02)
  8627. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8628. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8629. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8630. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8631. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8632. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8633. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8634. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8635. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8636. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8637. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8638. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8639. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8640. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8641. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8642. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8643. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8644. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8645. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8646. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8647. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8648. // a = b*c + d*e
  8649. // a = b*c*f/f + d*e*f/f
  8650. // a = (b*c*f + d*e*f)*(1/f)
  8651. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8652. // a = (b + d*e/c)*c
  8653. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8654. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8655. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8656. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8657. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8658. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8659. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8660. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8661. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8662. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8663. }
  8664. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8665. // post-order:
  8666. // dx := x
  8667. // dx := scale(dx,-mean_xdz/mean_eps)
  8668. // dx := add(dx, dz)
  8669. // dx := scale(dx, rrms)
  8670. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8671. ggml_vec_cpy_f32 (ne00, dx, x);
  8672. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8673. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8674. ggml_vec_acc_f32 (ne00, dx, dz);
  8675. ggml_vec_scale_f32(ne00, dx, rrms);
  8676. }
  8677. }
  8678. }
  8679. }
  8680. static void ggml_compute_forward_rms_norm_back(
  8681. const struct ggml_compute_params * params,
  8682. struct ggml_tensor * dst) {
  8683. const struct ggml_tensor * src0 = dst->src[0];
  8684. switch (src0->type) {
  8685. case GGML_TYPE_F32:
  8686. {
  8687. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8688. } break;
  8689. default:
  8690. {
  8691. GGML_ASSERT(false);
  8692. } break;
  8693. }
  8694. }
  8695. // ggml_compute_forward_group_norm
  8696. static void ggml_compute_forward_group_norm_f32(
  8697. const struct ggml_compute_params * params,
  8698. struct ggml_tensor * dst) {
  8699. const struct ggml_tensor * src0 = dst->src[0];
  8700. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8702. return;
  8703. }
  8704. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8705. const int ith = params->ith;
  8706. const int nth = params->nth;
  8707. GGML_TENSOR_UNARY_OP_LOCALS
  8708. const float eps = 1e-6f; // TODO: make this a parameter
  8709. // TODO: optimize
  8710. int n_channels = src0->ne[2];
  8711. int n_groups = dst->op_params[0];
  8712. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8713. for (int i = ith; i < n_groups; i += nth) {
  8714. int start = i * n_channels_per_group;
  8715. int end = start + n_channels_per_group;
  8716. if (end > n_channels) {
  8717. end = n_channels;
  8718. }
  8719. int step = end - start;
  8720. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8721. ggml_float sum = 0.0;
  8722. for (int64_t i02 = start; i02 < end; i02++) {
  8723. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8724. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8725. ggml_float sumr = 0.0;
  8726. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8727. sumr += (ggml_float)x[i00];
  8728. }
  8729. sum += sumr;
  8730. }
  8731. }
  8732. const float mean = sum / (ne00 * ne01 * step);
  8733. ggml_float sum2 = 0.0;
  8734. for (int64_t i02 = start; i02 < end; i02++) {
  8735. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8736. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8737. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8738. ggml_float sumr = 0.0;
  8739. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8740. float v = x[i00] - mean;
  8741. y[i00] = v;
  8742. sumr += (ggml_float)(v * v);
  8743. }
  8744. sum2 += sumr;
  8745. }
  8746. }
  8747. const float variance = sum2 / (ne00 * ne01 * step);
  8748. const float scale = 1.0f / sqrtf(variance + eps);
  8749. for (int64_t i02 = start; i02 < end; i02++) {
  8750. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8751. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8752. ggml_vec_scale_f32(ne00, y, scale);
  8753. }
  8754. }
  8755. }
  8756. }
  8757. }
  8758. static void ggml_compute_forward_group_norm(
  8759. const struct ggml_compute_params * params,
  8760. struct ggml_tensor * dst) {
  8761. const struct ggml_tensor * src0 = dst->src[0];
  8762. switch (src0->type) {
  8763. case GGML_TYPE_F32:
  8764. {
  8765. ggml_compute_forward_group_norm_f32(params, dst);
  8766. } break;
  8767. default:
  8768. {
  8769. GGML_ASSERT(false);
  8770. } break;
  8771. }
  8772. }
  8773. // ggml_compute_forward_mul_mat
  8774. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8775. // helper function to determine if it is better to use BLAS or not
  8776. // for large matrices, BLAS is faster
  8777. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8778. const struct ggml_tensor * src0 = dst->src[0];
  8779. const struct ggml_tensor * src1 = dst->src[1];
  8780. //const int64_t ne00 = src0->ne[0];
  8781. //const int64_t ne01 = src0->ne[1];
  8782. const int64_t ne10 = src1->ne[0];
  8783. const int64_t ne0 = dst->ne[0];
  8784. const int64_t ne1 = dst->ne[1];
  8785. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8786. // all the experts for each batch element and the processing would become incredibly slow
  8787. // TODO: find the optimal values for these
  8788. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8789. ggml_is_contiguous(src0) &&
  8790. ggml_is_contiguous(src1) &&
  8791. //src0->type == GGML_TYPE_F32 &&
  8792. src1->type == GGML_TYPE_F32 &&
  8793. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8794. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8795. return true;
  8796. }
  8797. return false;
  8798. }
  8799. #endif
  8800. static void ggml_compute_forward_mul_mat(
  8801. const struct ggml_compute_params * params,
  8802. struct ggml_tensor * dst) {
  8803. const struct ggml_tensor * src0 = dst->src[0];
  8804. const struct ggml_tensor * src1 = dst->src[1];
  8805. int64_t t0 = ggml_perf_time_us();
  8806. UNUSED(t0);
  8807. GGML_TENSOR_BINARY_OP_LOCALS
  8808. const int ith = params->ith;
  8809. const int nth = params->nth;
  8810. const enum ggml_type type = src0->type;
  8811. const bool src1_cont = ggml_is_contiguous(src1);
  8812. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8813. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8814. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8815. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8816. GGML_ASSERT(ne0 == ne01);
  8817. GGML_ASSERT(ne1 == ne11);
  8818. GGML_ASSERT(ne2 == ne12);
  8819. GGML_ASSERT(ne3 == ne13);
  8820. // we don't support permuted src0 or src1
  8821. GGML_ASSERT(nb00 == ggml_type_size(type));
  8822. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8823. // dst cannot be transposed or permuted
  8824. GGML_ASSERT(nb0 == sizeof(float));
  8825. GGML_ASSERT(nb0 <= nb1);
  8826. GGML_ASSERT(nb1 <= nb2);
  8827. GGML_ASSERT(nb2 <= nb3);
  8828. // broadcast factors
  8829. const int64_t r2 = ne12/ne02;
  8830. const int64_t r3 = ne13/ne03;
  8831. // nb01 >= nb00 - src0 is not transposed
  8832. // compute by src0 rows
  8833. #if defined(GGML_USE_CLBLAST)
  8834. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8835. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8836. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8837. }
  8838. return;
  8839. }
  8840. #endif
  8841. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8842. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8843. const int64_t ne_plane = ne01*ne00;
  8844. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8845. UNUSED(desired_wsize);
  8846. if (params->type == GGML_TASK_TYPE_INIT) {
  8847. if (type != GGML_TYPE_F32) {
  8848. assert(params->wsize >= desired_wsize);
  8849. // parallelize by src0 rows
  8850. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8851. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8852. // broadcast src0 into src1 across 2nd,3rd dimension
  8853. const int64_t i03 = i13/r3;
  8854. const int64_t i02 = i12/r2;
  8855. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8856. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8857. ggml_to_float_t const to_float = type_traits[type].to_float;
  8858. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8859. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8860. }
  8861. }
  8862. }
  8863. }
  8864. return;
  8865. }
  8866. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8867. return;
  8868. }
  8869. // perform sgemm, parallelization controlled by blas lib
  8870. if (ith != 0) {
  8871. return;
  8872. }
  8873. //const int64_t tgemm0 = ggml_perf_time_us();
  8874. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8875. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8876. const int64_t i03 = i13/r3;
  8877. const int64_t i02 = i12/r2;
  8878. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8879. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8880. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8881. if (type != GGML_TYPE_F32) {
  8882. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8883. }
  8884. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8885. ne1, ne01, ne10,
  8886. 1.0f, y, ne10,
  8887. x, ne00,
  8888. 0.0f, d, ne01);
  8889. }
  8890. }
  8891. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8892. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8893. return;
  8894. }
  8895. #endif
  8896. #if GGML_USE_LLAMAFILE
  8897. if (src1_cont) {
  8898. for (int64_t i13 = 0; i13 < ne13; i13++)
  8899. for (int64_t i12 = 0; i12 < ne12; i12++)
  8900. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8901. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8902. nb01/ggml_type_size(src0->type),
  8903. (const char *)src1->data + i12*nb12 + i13*nb13,
  8904. nb11/ggml_type_size(src1->type),
  8905. (char *)dst->data + i12*nb2 + i13*nb3,
  8906. nb1/ggml_type_size(dst->type),
  8907. ith, nth,
  8908. params->type,
  8909. src0->type,
  8910. src1->type,
  8911. dst->type))
  8912. goto UseGgmlGemm1;
  8913. return;
  8914. }
  8915. UseGgmlGemm1:;
  8916. #endif
  8917. if (params->type == GGML_TASK_TYPE_INIT) {
  8918. if (ith != 0) {
  8919. return;
  8920. }
  8921. if (src1->type != vec_dot_type) {
  8922. char * wdata = params->wdata;
  8923. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8924. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8925. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8926. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8927. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8928. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8929. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8930. wdata += row_size;
  8931. }
  8932. }
  8933. }
  8934. }
  8935. return;
  8936. }
  8937. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8938. return;
  8939. }
  8940. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8941. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8942. #if GGML_USE_LLAMAFILE
  8943. if (src1->type != vec_dot_type) {
  8944. for (int64_t i13 = 0; i13 < ne13; i13++)
  8945. for (int64_t i12 = 0; i12 < ne12; i12++)
  8946. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8947. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8948. nb01/ggml_type_size(src0->type),
  8949. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  8950. row_size/ggml_type_size(vec_dot_type),
  8951. (char *)dst->data + i12*nb2 + i13*nb3,
  8952. nb1/ggml_type_size(dst->type),
  8953. ith, nth,
  8954. params->type,
  8955. src0->type,
  8956. vec_dot_type,
  8957. dst->type))
  8958. goto UseGgmlGemm2;
  8959. return;
  8960. }
  8961. UseGgmlGemm2:;
  8962. #endif
  8963. const int64_t nr0 = ne01; // src0 rows
  8964. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8965. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8966. // distribute the thread work across the inner or outer loop based on which one is larger
  8967. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8968. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8969. const int64_t ith0 = ith % nth0;
  8970. const int64_t ith1 = ith / nth0;
  8971. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8972. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8973. const int64_t ir010 = dr0*ith0;
  8974. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8975. const int64_t ir110 = dr1*ith1;
  8976. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8977. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8978. // threads with no work simply yield (not sure if it helps)
  8979. if (ir010 >= ir011 || ir110 >= ir111) {
  8980. sched_yield();
  8981. return;
  8982. }
  8983. assert(ne12 % ne02 == 0);
  8984. assert(ne13 % ne03 == 0);
  8985. // block-tiling attempt
  8986. const int64_t blck_0 = 16;
  8987. const int64_t blck_1 = 16;
  8988. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8989. int64_t nrc = vec_dot_num_rows;
  8990. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8991. // this check can be removed once they are extended to support odd numbered rows/cols too
  8992. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8993. nrc = 1;
  8994. }
  8995. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8996. // attempt to reduce false-sharing (does not seem to make a difference)
  8997. // 16 * 2, accounting for mmla kernels
  8998. float tmp[32];
  8999. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9000. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9001. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  9002. const int64_t i13 = (ir1/(ne12*ne1));
  9003. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  9004. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  9005. // broadcast src0 into src1
  9006. const int64_t i03 = i13/r3;
  9007. const int64_t i02 = i12/r2;
  9008. const int64_t i1 = i11;
  9009. const int64_t i2 = i12;
  9010. const int64_t i3 = i13;
  9011. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9012. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9013. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9014. // the original src1 data pointer, so we should index using the indices directly
  9015. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9016. const char * src1_col = (const char *) wdata +
  9017. (src1_cont || src1->type != vec_dot_type
  9018. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9019. : (i11*nb11 + i12*nb12 + i13*nb13));
  9020. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9021. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9022. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9023. //}
  9024. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  9025. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  9026. }
  9027. for (int cn = 0; cn < nrc; ++cn) {
  9028. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9029. }
  9030. }
  9031. }
  9032. }
  9033. }
  9034. // ggml_compute_forward_mul_mat_id
  9035. static void ggml_compute_forward_mul_mat_id(
  9036. const struct ggml_compute_params * params,
  9037. struct ggml_tensor * dst) {
  9038. const struct ggml_tensor * src0 = dst->src[0];
  9039. const struct ggml_tensor * src1 = dst->src[1];
  9040. const struct ggml_tensor * ids = dst->src[2];
  9041. GGML_TENSOR_BINARY_OP_LOCALS
  9042. const int ith = params->ith;
  9043. const int nth = params->nth;
  9044. const enum ggml_type type = src0->type;
  9045. const bool src1_cont = ggml_is_contiguous(src1);
  9046. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9047. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9048. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9049. // we don't support permuted src0 or src1
  9050. GGML_ASSERT(nb00 == ggml_type_size(type));
  9051. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9052. // dst cannot be transposed or permuted
  9053. GGML_ASSERT(nb0 == sizeof(float));
  9054. GGML_ASSERT(nb0 <= nb1);
  9055. GGML_ASSERT(nb1 <= nb2);
  9056. GGML_ASSERT(nb2 <= nb3);
  9057. // row groups
  9058. const int n_ids = ids->ne[0]; // n_expert_used
  9059. const int n_as = ne02; // n_expert
  9060. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  9061. (char *) params->wdata :
  9062. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  9063. struct mmid_row_mapping {
  9064. int32_t i1;
  9065. int32_t i2;
  9066. };
  9067. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  9068. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  9069. if (params->type == GGML_TASK_TYPE_INIT) {
  9070. if (ith != 0) {
  9071. return;
  9072. }
  9073. char * wdata = params->wdata;
  9074. if (src1->type != vec_dot_type) {
  9075. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9076. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9077. assert(src1->type == GGML_TYPE_F32);
  9078. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9079. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9080. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9081. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9082. wdata += row_size;
  9083. }
  9084. }
  9085. }
  9086. }
  9087. // initialize matrix_row_counts
  9088. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9089. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9090. // group rows by src0 matrix
  9091. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9092. for (int id = 0; id < n_ids; ++id) {
  9093. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9094. assert(i02 >= 0 && i02 < n_as);
  9095. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9096. matrix_row_counts[i02] += 1;
  9097. }
  9098. }
  9099. return;
  9100. }
  9101. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9102. return;
  9103. }
  9104. // compute each matrix multiplication in sequence
  9105. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9106. const int64_t cne1 = matrix_row_counts[cur_a];
  9107. if (cne1 == 0) {
  9108. continue;
  9109. }
  9110. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9111. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9112. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9113. const int64_t nr0 = ne01; // src0 rows
  9114. const int64_t nr1 = cne1; // src1 rows
  9115. // distribute the thread work across the inner or outer loop based on which one is larger
  9116. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9117. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9118. const int64_t ith0 = ith % nth0;
  9119. const int64_t ith1 = ith / nth0;
  9120. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9121. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9122. const int64_t ir010 = dr0*ith0;
  9123. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9124. const int64_t ir110 = dr1*ith1;
  9125. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9126. // threads with no work simply yield (not sure if it helps)
  9127. //if (ir010 >= ir011 || ir110 >= ir111) {
  9128. // sched_yield();
  9129. // continue;
  9130. //}
  9131. // block-tiling attempt
  9132. const int64_t blck_0 = 16;
  9133. const int64_t blck_1 = 16;
  9134. // attempt to reduce false-sharing (does not seem to make a difference)
  9135. float tmp[16];
  9136. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9137. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9138. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9139. const int64_t _i12 = ir1; // logical row index for this expert
  9140. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9141. const int id = row_mapping.i1; // selected expert index
  9142. const int64_t i11 = id % ne11;
  9143. const int64_t i12 = row_mapping.i2; // row index in src1
  9144. const int64_t i1 = id; // selected expert index
  9145. const int64_t i2 = i12; // row
  9146. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9147. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9148. // the original src1 data pointer, so we should index using the indices directly
  9149. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9150. const char * src1_col = (const char *) wdata +
  9151. (src1_cont || src1->type != vec_dot_type
  9152. ? (i11 + i12*ne11)*row_size
  9153. : (i11*nb11 + i12*nb12));
  9154. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9155. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9156. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9157. //}
  9158. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9159. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9160. }
  9161. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9162. }
  9163. }
  9164. }
  9165. }
  9166. #undef MMID_MATRIX_ROW
  9167. }
  9168. // ggml_compute_forward_out_prod
  9169. static void ggml_compute_forward_out_prod_f32(
  9170. const struct ggml_compute_params * params,
  9171. struct ggml_tensor * dst) {
  9172. const struct ggml_tensor * src0 = dst->src[0];
  9173. const struct ggml_tensor * src1 = dst->src[1];
  9174. // int64_t t0 = ggml_perf_time_us();
  9175. // UNUSED(t0);
  9176. GGML_TENSOR_BINARY_OP_LOCALS
  9177. const int ith = params->ith;
  9178. const int nth = params->nth;
  9179. GGML_ASSERT(ne0 == ne00);
  9180. GGML_ASSERT(ne1 == ne10);
  9181. GGML_ASSERT(ne2 == ne02);
  9182. GGML_ASSERT(ne02 == ne12);
  9183. GGML_ASSERT(ne3 == ne13);
  9184. GGML_ASSERT(ne03 == ne13);
  9185. // we don't support permuted src0 or src1
  9186. GGML_ASSERT(nb00 == sizeof(float));
  9187. // dst cannot be transposed or permuted
  9188. GGML_ASSERT(nb0 == sizeof(float));
  9189. // GGML_ASSERT(nb0 <= nb1);
  9190. // GGML_ASSERT(nb1 <= nb2);
  9191. // GGML_ASSERT(nb2 <= nb3);
  9192. // nb01 >= nb00 - src0 is not transposed
  9193. // compute by src0 rows
  9194. // TODO: #if defined(GGML_USE_CLBLAST)
  9195. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9196. bool use_blas = ggml_is_matrix(src0) &&
  9197. ggml_is_matrix(src1) &&
  9198. ggml_is_contiguous(src0) &&
  9199. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9200. #endif
  9201. if (params->type == GGML_TASK_TYPE_INIT) {
  9202. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9203. if (use_blas) {
  9204. return;
  9205. }
  9206. #endif
  9207. if (ith != 0) {
  9208. return;
  9209. }
  9210. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9211. return;
  9212. }
  9213. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9214. return;
  9215. }
  9216. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9217. if (use_blas) {
  9218. if (params->ith != 0) { // All threads other than the first do no work.
  9219. return;
  9220. }
  9221. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9222. // src0: (k,n)
  9223. // src1: (k,m)
  9224. // dst: (m,n)
  9225. //
  9226. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9227. // Also expressed as (major,minor)
  9228. // a: (m,k): so src1 transposed
  9229. // b: (k,n): so src0
  9230. // c: (m,n)
  9231. //
  9232. // However, if ggml_is_transposed(src1) is true, then
  9233. // src1->data already contains a transposed version, so sgemm mustn't
  9234. // transpose it further.
  9235. int n = src0->ne[0];
  9236. int k = src0->ne[1];
  9237. int m = src1->ne[0];
  9238. int transposeA, lda;
  9239. if (!ggml_is_transposed(src1)) {
  9240. transposeA = CblasTrans;
  9241. lda = m;
  9242. } else {
  9243. transposeA = CblasNoTrans;
  9244. lda = k;
  9245. }
  9246. float * a = (float *) ((char *) src1->data);
  9247. float * b = (float *) ((char *) src0->data);
  9248. float * c = (float *) ((char *) dst->data);
  9249. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9250. return;
  9251. }
  9252. #endif
  9253. // dst[:,:,:,:] = 0
  9254. // for i2,i3:
  9255. // for i1:
  9256. // for i01:
  9257. // for i0:
  9258. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9259. // parallelize by last three dimensions
  9260. // total rows in dst
  9261. const int64_t nr = ne1*ne2*ne3;
  9262. // rows per thread
  9263. const int64_t dr = (nr + nth - 1)/nth;
  9264. // row range for this thread
  9265. const int64_t ir0 = dr*ith;
  9266. const int64_t ir1 = MIN(ir0 + dr, nr);
  9267. // block-tiling attempt
  9268. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9269. const int64_t blck_1 = 16;
  9270. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9271. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9272. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9273. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9274. for (int64_t ir = bir; ir < bir1; ++ir) {
  9275. // dst indices
  9276. const int64_t i3 = ir/(ne2*ne1);
  9277. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9278. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9279. const int64_t i02 = i2;
  9280. const int64_t i03 = i3;
  9281. //const int64_t i10 = i1;
  9282. const int64_t i12 = i2;
  9283. const int64_t i13 = i3;
  9284. #if GGML_VEC_MAD_UNROLL > 2
  9285. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9286. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9287. const int64_t i11 = i01;
  9288. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9289. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9290. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9291. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9292. }
  9293. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9294. const int64_t i11 = i01;
  9295. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9296. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9297. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9298. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9299. }
  9300. #else
  9301. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9302. const int64_t i11 = i01;
  9303. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9304. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9305. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9306. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9307. }
  9308. #endif
  9309. }
  9310. }
  9311. }
  9312. //int64_t t1 = ggml_perf_time_us();
  9313. //static int64_t acc = 0;
  9314. //acc += t1 - t0;
  9315. //if (t1 - t0 > 10) {
  9316. // printf("\n");
  9317. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9318. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9319. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9320. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9321. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9322. //}
  9323. }
  9324. static void ggml_compute_forward_out_prod_q_f32(
  9325. const struct ggml_compute_params * params,
  9326. struct ggml_tensor * dst) {
  9327. const struct ggml_tensor * src0 = dst->src[0];
  9328. const struct ggml_tensor * src1 = dst->src[1];
  9329. // int64_t t0 = ggml_perf_time_us();
  9330. // UNUSED(t0);
  9331. GGML_TENSOR_BINARY_OP_LOCALS;
  9332. const int ith = params->ith;
  9333. const int nth = params->nth;
  9334. const enum ggml_type type = src0->type;
  9335. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9336. GGML_ASSERT(ne02 == ne12);
  9337. GGML_ASSERT(ne03 == ne13);
  9338. GGML_ASSERT(ne2 == ne12);
  9339. GGML_ASSERT(ne3 == ne13);
  9340. // we don't support permuted src0 dim0
  9341. GGML_ASSERT(nb00 == ggml_type_size(type));
  9342. // dst dim0 cannot be transposed or permuted
  9343. GGML_ASSERT(nb0 == sizeof(float));
  9344. // GGML_ASSERT(nb0 <= nb1);
  9345. // GGML_ASSERT(nb1 <= nb2);
  9346. // GGML_ASSERT(nb2 <= nb3);
  9347. GGML_ASSERT(ne0 == ne00);
  9348. GGML_ASSERT(ne1 == ne10);
  9349. GGML_ASSERT(ne2 == ne02);
  9350. GGML_ASSERT(ne3 == ne03);
  9351. // nb01 >= nb00 - src0 is not transposed
  9352. // compute by src0 rows
  9353. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9354. if (params->type == GGML_TASK_TYPE_INIT) {
  9355. if (ith != 0) {
  9356. return;
  9357. }
  9358. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9359. return;
  9360. }
  9361. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9362. return;
  9363. }
  9364. // parallelize by last three dimensions
  9365. // total rows in dst
  9366. const int64_t nr = ne1*ne2*ne3;
  9367. // rows per thread
  9368. const int64_t dr = (nr + nth - 1)/nth;
  9369. // row range for this thread
  9370. const int64_t ir0 = dr*ith;
  9371. const int64_t ir1 = MIN(ir0 + dr, nr);
  9372. // dst[:,:,:,:] = 0
  9373. // for i2,i3:
  9374. // for i1:
  9375. // for i01:
  9376. // for i0:
  9377. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9378. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9379. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9380. // dst indices
  9381. const int64_t i3 = ir/(ne2*ne1);
  9382. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9383. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9384. const int64_t i02 = i2;
  9385. const int64_t i03 = i3;
  9386. //const int64_t i10 = i1;
  9387. const int64_t i12 = i2;
  9388. const int64_t i13 = i3;
  9389. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9390. const int64_t i11 = i01;
  9391. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9392. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9393. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9394. dequantize_row_q(s0, wdata, ne0);
  9395. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9396. }
  9397. }
  9398. //int64_t t1 = ggml_perf_time_us();
  9399. //static int64_t acc = 0;
  9400. //acc += t1 - t0;
  9401. //if (t1 - t0 > 10) {
  9402. // printf("\n");
  9403. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9404. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9405. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9406. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9407. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9408. //}
  9409. }
  9410. static void ggml_compute_forward_out_prod(
  9411. const struct ggml_compute_params * params,
  9412. struct ggml_tensor * dst) {
  9413. const struct ggml_tensor * src0 = dst->src[0];
  9414. switch (src0->type) {
  9415. case GGML_TYPE_Q4_0:
  9416. case GGML_TYPE_Q4_1:
  9417. case GGML_TYPE_Q5_0:
  9418. case GGML_TYPE_Q5_1:
  9419. case GGML_TYPE_Q8_0:
  9420. case GGML_TYPE_Q2_K:
  9421. case GGML_TYPE_Q3_K:
  9422. case GGML_TYPE_Q4_K:
  9423. case GGML_TYPE_Q5_K:
  9424. case GGML_TYPE_Q6_K:
  9425. case GGML_TYPE_IQ2_XXS:
  9426. case GGML_TYPE_IQ2_XS:
  9427. case GGML_TYPE_IQ3_XXS:
  9428. case GGML_TYPE_IQ1_S:
  9429. case GGML_TYPE_IQ1_M:
  9430. case GGML_TYPE_IQ4_NL:
  9431. case GGML_TYPE_IQ4_XS:
  9432. case GGML_TYPE_IQ3_S:
  9433. case GGML_TYPE_IQ2_S:
  9434. {
  9435. ggml_compute_forward_out_prod_q_f32(params, dst);
  9436. } break;
  9437. case GGML_TYPE_F16:
  9438. {
  9439. GGML_ASSERT(false); // todo
  9440. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9441. } break;
  9442. case GGML_TYPE_F32:
  9443. {
  9444. ggml_compute_forward_out_prod_f32(params, dst);
  9445. } break;
  9446. default:
  9447. {
  9448. GGML_ASSERT(false);
  9449. } break;
  9450. }
  9451. }
  9452. // ggml_compute_forward_scale
  9453. static void ggml_compute_forward_scale_f32(
  9454. const struct ggml_compute_params * params,
  9455. struct ggml_tensor * dst) {
  9456. const struct ggml_tensor * src0 = dst->src[0];
  9457. GGML_ASSERT(ggml_is_contiguous(src0));
  9458. GGML_ASSERT(ggml_is_contiguous(dst));
  9459. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9460. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9461. return;
  9462. }
  9463. // scale factor
  9464. float v;
  9465. memcpy(&v, dst->op_params, sizeof(float));
  9466. const int ith = params->ith;
  9467. const int nth = params->nth;
  9468. const int nc = src0->ne[0];
  9469. const int nr = ggml_nrows(src0);
  9470. // rows per thread
  9471. const int dr = (nr + nth - 1)/nth;
  9472. // row range for this thread
  9473. const int ir0 = dr*ith;
  9474. const int ir1 = MIN(ir0 + dr, nr);
  9475. const size_t nb01 = src0->nb[1];
  9476. const size_t nb1 = dst->nb[1];
  9477. for (int i1 = ir0; i1 < ir1; i1++) {
  9478. if (dst->data != src0->data) {
  9479. // src0 is same shape as dst => same indices
  9480. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9481. }
  9482. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9483. }
  9484. }
  9485. static void ggml_compute_forward_scale(
  9486. const struct ggml_compute_params * params,
  9487. struct ggml_tensor * dst) {
  9488. const struct ggml_tensor * src0 = dst->src[0];
  9489. switch (src0->type) {
  9490. case GGML_TYPE_F32:
  9491. {
  9492. ggml_compute_forward_scale_f32(params, dst);
  9493. } break;
  9494. default:
  9495. {
  9496. GGML_ASSERT(false);
  9497. } break;
  9498. }
  9499. }
  9500. // ggml_compute_forward_set
  9501. static void ggml_compute_forward_set_f32(
  9502. const struct ggml_compute_params * params,
  9503. struct ggml_tensor * dst) {
  9504. const struct ggml_tensor * src0 = dst->src[0];
  9505. const struct ggml_tensor * src1 = dst->src[1];
  9506. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9507. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9508. // view src0 and dst with these strides and data offset inbytes during set
  9509. // nb0 is implicitly element_size because src0 and dst are contiguous
  9510. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9511. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9512. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9513. size_t offset = ((int32_t *) dst->op_params)[3];
  9514. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9515. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9516. if (params->ith != 0) {
  9517. return;
  9518. }
  9519. // memcpy needs to be synchronized across threads to avoid race conditions.
  9520. // => do it in INIT phase
  9521. memcpy(
  9522. ((char *) dst->data),
  9523. ((char *) src0->data),
  9524. ggml_nbytes(dst));
  9525. }
  9526. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9527. return;
  9528. }
  9529. const int ith = params->ith;
  9530. const int nth = params->nth;
  9531. const int nr = ggml_nrows(src1);
  9532. const int nc = src1->ne[0];
  9533. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9534. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9535. // src0 and dst as viewed during set
  9536. const size_t nb0 = ggml_element_size(src0);
  9537. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9538. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9539. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9540. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9541. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9542. GGML_ASSERT(nb10 == sizeof(float));
  9543. // rows per thread
  9544. const int dr = (nr + nth - 1)/nth;
  9545. // row range for this thread
  9546. const int ir0 = dr*ith;
  9547. const int ir1 = MIN(ir0 + dr, nr);
  9548. for (int ir = ir0; ir < ir1; ++ir) {
  9549. // src0 and dst are viewed with shape of src1 and offset
  9550. // => same indices
  9551. const int i3 = ir/(ne12*ne11);
  9552. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9553. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9554. ggml_vec_cpy_f32(nc,
  9555. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9556. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9557. }
  9558. }
  9559. static void ggml_compute_forward_set(
  9560. const struct ggml_compute_params * params,
  9561. struct ggml_tensor * dst) {
  9562. const struct ggml_tensor * src0 = dst->src[0];
  9563. switch (src0->type) {
  9564. case GGML_TYPE_F32:
  9565. {
  9566. ggml_compute_forward_set_f32(params, dst);
  9567. } break;
  9568. case GGML_TYPE_F16:
  9569. case GGML_TYPE_Q4_0:
  9570. case GGML_TYPE_Q4_1:
  9571. case GGML_TYPE_Q5_0:
  9572. case GGML_TYPE_Q5_1:
  9573. case GGML_TYPE_Q8_0:
  9574. case GGML_TYPE_Q8_1:
  9575. case GGML_TYPE_Q2_K:
  9576. case GGML_TYPE_Q3_K:
  9577. case GGML_TYPE_Q4_K:
  9578. case GGML_TYPE_Q5_K:
  9579. case GGML_TYPE_Q6_K:
  9580. case GGML_TYPE_IQ2_XXS:
  9581. case GGML_TYPE_IQ2_XS:
  9582. case GGML_TYPE_IQ3_XXS:
  9583. case GGML_TYPE_IQ1_S:
  9584. case GGML_TYPE_IQ1_M:
  9585. case GGML_TYPE_IQ4_NL:
  9586. case GGML_TYPE_IQ4_XS:
  9587. case GGML_TYPE_IQ3_S:
  9588. case GGML_TYPE_IQ2_S:
  9589. default:
  9590. {
  9591. GGML_ASSERT(false);
  9592. } break;
  9593. }
  9594. }
  9595. // ggml_compute_forward_cpy
  9596. static void ggml_compute_forward_cpy(
  9597. const struct ggml_compute_params * params,
  9598. struct ggml_tensor * dst) {
  9599. ggml_compute_forward_dup(params, dst);
  9600. }
  9601. // ggml_compute_forward_cont
  9602. static void ggml_compute_forward_cont(
  9603. const struct ggml_compute_params * params,
  9604. struct ggml_tensor * dst) {
  9605. ggml_compute_forward_dup(params, dst);
  9606. }
  9607. // ggml_compute_forward_reshape
  9608. static void ggml_compute_forward_reshape(
  9609. const struct ggml_compute_params * params,
  9610. struct ggml_tensor * dst) {
  9611. // NOP
  9612. UNUSED(params);
  9613. UNUSED(dst);
  9614. }
  9615. // ggml_compute_forward_view
  9616. static void ggml_compute_forward_view(
  9617. const struct ggml_compute_params * params,
  9618. const struct ggml_tensor * dst) {
  9619. // NOP
  9620. UNUSED(params);
  9621. UNUSED(dst);
  9622. }
  9623. // ggml_compute_forward_permute
  9624. static void ggml_compute_forward_permute(
  9625. const struct ggml_compute_params * params,
  9626. const struct ggml_tensor * dst) {
  9627. // NOP
  9628. UNUSED(params);
  9629. UNUSED(dst);
  9630. }
  9631. // ggml_compute_forward_transpose
  9632. static void ggml_compute_forward_transpose(
  9633. const struct ggml_compute_params * params,
  9634. const struct ggml_tensor * dst) {
  9635. // NOP
  9636. UNUSED(params);
  9637. UNUSED(dst);
  9638. }
  9639. // ggml_compute_forward_get_rows
  9640. static void ggml_compute_forward_get_rows_q(
  9641. const struct ggml_compute_params * params,
  9642. struct ggml_tensor * dst) {
  9643. const struct ggml_tensor * src0 = dst->src[0];
  9644. const struct ggml_tensor * src1 = dst->src[1];
  9645. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9646. return;
  9647. }
  9648. GGML_TENSOR_BINARY_OP_LOCALS
  9649. const int64_t nc = ne00;
  9650. const int64_t nr = ggml_nelements(src1);
  9651. const enum ggml_type type = src0->type;
  9652. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9653. assert(ne0 == nc);
  9654. assert(ne02 == ne11);
  9655. assert(nb00 == ggml_type_size(type));
  9656. assert(ggml_nrows(dst) == nr);
  9657. const int ith = params->ith;
  9658. const int nth = params->nth;
  9659. // rows per thread
  9660. const int dr = (nr + nth - 1)/nth;
  9661. // row range for this thread
  9662. const int ir0 = dr*ith;
  9663. const int ir1 = MIN(ir0 + dr, nr);
  9664. for (int64_t i = ir0; i < ir1; ++i) {
  9665. const int64_t i12 = i/(ne11*ne10);
  9666. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9667. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9668. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9669. dequantize_row_q(
  9670. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9671. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9672. }
  9673. }
  9674. static void ggml_compute_forward_get_rows_f16(
  9675. const struct ggml_compute_params * params,
  9676. struct ggml_tensor * dst) {
  9677. const struct ggml_tensor * src0 = dst->src[0];
  9678. const struct ggml_tensor * src1 = dst->src[1];
  9679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9680. return;
  9681. }
  9682. GGML_TENSOR_BINARY_OP_LOCALS
  9683. const int64_t nc = ne00;
  9684. const int64_t nr = ggml_nelements(src1);
  9685. assert(ne0 == nc);
  9686. assert(ne02 == ne11);
  9687. assert(nb00 == sizeof(ggml_fp16_t));
  9688. assert(ggml_nrows(dst) == nr);
  9689. const int ith = params->ith;
  9690. const int nth = params->nth;
  9691. // rows per thread
  9692. const int dr = (nr + nth - 1)/nth;
  9693. // row range for this thread
  9694. const int ir0 = dr*ith;
  9695. const int ir1 = MIN(ir0 + dr, nr);
  9696. for (int64_t i = ir0; i < ir1; ++i) {
  9697. const int64_t i12 = i/(ne11*ne10);
  9698. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9699. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9700. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9701. ggml_fp16_to_fp32_row(
  9702. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9703. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9704. }
  9705. }
  9706. static void ggml_compute_forward_get_rows_f32(
  9707. const struct ggml_compute_params * params,
  9708. struct ggml_tensor * dst) {
  9709. const struct ggml_tensor * src0 = dst->src[0];
  9710. const struct ggml_tensor * src1 = dst->src[1];
  9711. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9712. return;
  9713. }
  9714. GGML_TENSOR_BINARY_OP_LOCALS
  9715. const int64_t nc = ne00;
  9716. const int64_t nr = ggml_nelements(src1);
  9717. assert(ne0 == nc);
  9718. assert(ne02 == ne11);
  9719. assert(nb00 == sizeof(float));
  9720. assert(ggml_nrows(dst) == nr);
  9721. const int ith = params->ith;
  9722. const int nth = params->nth;
  9723. // rows per thread
  9724. const int dr = (nr + nth - 1)/nth;
  9725. // row range for this thread
  9726. const int ir0 = dr*ith;
  9727. const int ir1 = MIN(ir0 + dr, nr);
  9728. for (int64_t i = ir0; i < ir1; ++i) {
  9729. const int64_t i12 = i/(ne11*ne10);
  9730. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9731. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9732. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9733. ggml_vec_cpy_f32(nc,
  9734. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9735. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9736. }
  9737. }
  9738. static void ggml_compute_forward_get_rows(
  9739. const struct ggml_compute_params * params,
  9740. struct ggml_tensor * dst) {
  9741. const struct ggml_tensor * src0 = dst->src[0];
  9742. switch (src0->type) {
  9743. case GGML_TYPE_Q4_0:
  9744. case GGML_TYPE_Q4_1:
  9745. case GGML_TYPE_Q5_0:
  9746. case GGML_TYPE_Q5_1:
  9747. case GGML_TYPE_Q8_0:
  9748. case GGML_TYPE_Q8_1:
  9749. case GGML_TYPE_Q2_K:
  9750. case GGML_TYPE_Q3_K:
  9751. case GGML_TYPE_Q4_K:
  9752. case GGML_TYPE_Q5_K:
  9753. case GGML_TYPE_Q6_K:
  9754. case GGML_TYPE_IQ2_XXS:
  9755. case GGML_TYPE_IQ2_XS:
  9756. case GGML_TYPE_IQ3_XXS:
  9757. case GGML_TYPE_IQ1_S:
  9758. case GGML_TYPE_IQ1_M:
  9759. case GGML_TYPE_IQ4_NL:
  9760. case GGML_TYPE_IQ4_XS:
  9761. case GGML_TYPE_IQ3_S:
  9762. case GGML_TYPE_IQ2_S:
  9763. {
  9764. ggml_compute_forward_get_rows_q(params, dst);
  9765. } break;
  9766. case GGML_TYPE_F16:
  9767. {
  9768. ggml_compute_forward_get_rows_f16(params, dst);
  9769. } break;
  9770. case GGML_TYPE_F32:
  9771. case GGML_TYPE_I32:
  9772. {
  9773. ggml_compute_forward_get_rows_f32(params, dst);
  9774. } break;
  9775. default:
  9776. {
  9777. GGML_ASSERT(false);
  9778. } break;
  9779. }
  9780. //static bool first = true;
  9781. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9782. //if (first) {
  9783. // first = false;
  9784. //} else {
  9785. // for (int k = 0; k < dst->ne[1]; ++k) {
  9786. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9787. // for (int i = 0; i < 16; ++i) {
  9788. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9789. // }
  9790. // printf("\n");
  9791. // }
  9792. // printf("\n");
  9793. // }
  9794. // printf("\n");
  9795. // exit(0);
  9796. //}
  9797. }
  9798. // ggml_compute_forward_get_rows_back
  9799. static void ggml_compute_forward_get_rows_back_f32_f16(
  9800. const struct ggml_compute_params * params,
  9801. struct ggml_tensor * dst) {
  9802. const struct ggml_tensor * src0 = dst->src[0];
  9803. const struct ggml_tensor * src1 = dst->src[1];
  9804. GGML_ASSERT(params->ith == 0);
  9805. GGML_ASSERT(ggml_is_contiguous(dst));
  9806. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9807. if (params->type == GGML_TASK_TYPE_INIT) {
  9808. if (params->ith != 0) {
  9809. return;
  9810. }
  9811. memset(dst->data, 0, ggml_nbytes(dst));
  9812. }
  9813. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9814. return;
  9815. }
  9816. const int nc = src0->ne[0];
  9817. const int nr = ggml_nelements(src1);
  9818. GGML_ASSERT( dst->ne[0] == nc);
  9819. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9820. for (int i = 0; i < nr; ++i) {
  9821. const int r = ((int32_t *) src1->data)[i];
  9822. for (int j = 0; j < nc; ++j) {
  9823. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9824. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9825. }
  9826. }
  9827. }
  9828. static void ggml_compute_forward_get_rows_back_f32(
  9829. const struct ggml_compute_params * params,
  9830. struct ggml_tensor * dst) {
  9831. const struct ggml_tensor * src0 = dst->src[0];
  9832. const struct ggml_tensor * src1 = dst->src[1];
  9833. GGML_ASSERT(params->ith == 0);
  9834. GGML_ASSERT(ggml_is_contiguous(dst));
  9835. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9836. if (params->type == GGML_TASK_TYPE_INIT) {
  9837. if (params->ith != 0) {
  9838. return;
  9839. }
  9840. memset(dst->data, 0, ggml_nbytes(dst));
  9841. }
  9842. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9843. return;
  9844. }
  9845. const int nc = src0->ne[0];
  9846. const int nr = ggml_nelements(src1);
  9847. GGML_ASSERT( dst->ne[0] == nc);
  9848. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9849. for (int i = 0; i < nr; ++i) {
  9850. const int r = ((int32_t *) src1->data)[i];
  9851. ggml_vec_add_f32(nc,
  9852. (float *) ((char *) dst->data + r*dst->nb[1]),
  9853. (float *) ((char *) dst->data + r*dst->nb[1]),
  9854. (float *) ((char *) src0->data + i*src0->nb[1]));
  9855. }
  9856. }
  9857. static void ggml_compute_forward_get_rows_back(
  9858. const struct ggml_compute_params * params,
  9859. struct ggml_tensor * dst) {
  9860. const struct ggml_tensor * src0 = dst->src[0];
  9861. switch (src0->type) {
  9862. case GGML_TYPE_F16:
  9863. {
  9864. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9865. } break;
  9866. case GGML_TYPE_F32:
  9867. {
  9868. ggml_compute_forward_get_rows_back_f32(params, dst);
  9869. } break;
  9870. default:
  9871. {
  9872. GGML_ASSERT(false);
  9873. } break;
  9874. }
  9875. //static bool first = true;
  9876. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9877. //if (first) {
  9878. // first = false;
  9879. //} else {
  9880. // for (int k = 0; k < dst->ne[1]; ++k) {
  9881. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9882. // for (int i = 0; i < 16; ++i) {
  9883. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9884. // }
  9885. // printf("\n");
  9886. // }
  9887. // printf("\n");
  9888. // }
  9889. // printf("\n");
  9890. // exit(0);
  9891. //}
  9892. }
  9893. // ggml_compute_forward_diag
  9894. static void ggml_compute_forward_diag_f32(
  9895. const struct ggml_compute_params * params,
  9896. struct ggml_tensor * dst) {
  9897. const struct ggml_tensor * src0 = dst->src[0];
  9898. GGML_ASSERT(params->ith == 0);
  9899. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9900. return;
  9901. }
  9902. // TODO: handle transposed/permuted matrices
  9903. GGML_TENSOR_UNARY_OP_LOCALS
  9904. GGML_ASSERT(ne00 == ne0);
  9905. GGML_ASSERT(ne00 == ne1);
  9906. GGML_ASSERT(ne01 == 1);
  9907. GGML_ASSERT(ne02 == ne2);
  9908. GGML_ASSERT(ne03 == ne3);
  9909. GGML_ASSERT(nb00 == sizeof(float));
  9910. GGML_ASSERT(nb0 == sizeof(float));
  9911. for (int i3 = 0; i3 < ne3; i3++) {
  9912. for (int i2 = 0; i2 < ne2; i2++) {
  9913. for (int i1 = 0; i1 < ne1; i1++) {
  9914. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9915. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9916. for (int i0 = 0; i0 < i1; i0++) {
  9917. d[i0] = 0;
  9918. }
  9919. d[i1] = s[i1];
  9920. for (int i0 = i1+1; i0 < ne0; i0++) {
  9921. d[i0] = 0;
  9922. }
  9923. }
  9924. }
  9925. }
  9926. }
  9927. static void ggml_compute_forward_diag(
  9928. const struct ggml_compute_params * params,
  9929. struct ggml_tensor * dst) {
  9930. const struct ggml_tensor * src0 = dst->src[0];
  9931. switch (src0->type) {
  9932. case GGML_TYPE_F32:
  9933. {
  9934. ggml_compute_forward_diag_f32(params, dst);
  9935. } break;
  9936. default:
  9937. {
  9938. GGML_ASSERT(false);
  9939. } break;
  9940. }
  9941. }
  9942. // ggml_compute_forward_diag_mask_inf
  9943. static void ggml_compute_forward_diag_mask_f32(
  9944. const struct ggml_compute_params * params,
  9945. struct ggml_tensor * dst,
  9946. const float value) {
  9947. const struct ggml_tensor * src0 = dst->src[0];
  9948. const int ith = params->ith;
  9949. const int nth = params->nth;
  9950. const int n_past = ((int32_t *) dst->op_params)[0];
  9951. const bool inplace = src0->data == dst->data;
  9952. GGML_ASSERT(n_past >= 0);
  9953. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9954. if (ith != 0) {
  9955. return;
  9956. }
  9957. // memcpy needs to be synchronized across threads to avoid race conditions.
  9958. // => do it in INIT phase
  9959. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9960. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9961. memcpy(
  9962. ((char *) dst->data),
  9963. ((char *) src0->data),
  9964. ggml_nbytes(dst));
  9965. }
  9966. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9967. return;
  9968. }
  9969. // TODO: handle transposed/permuted matrices
  9970. const int n = ggml_nrows(src0);
  9971. const int nc = src0->ne[0];
  9972. const int nr = src0->ne[1];
  9973. const int nz = n/nr;
  9974. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9975. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9976. for (int k = 0; k < nz; k++) {
  9977. for (int j = ith; j < nr; j += nth) {
  9978. for (int i = n_past; i < nc; i++) {
  9979. if (i > n_past + j) {
  9980. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9981. }
  9982. }
  9983. }
  9984. }
  9985. }
  9986. static void ggml_compute_forward_diag_mask_inf(
  9987. const struct ggml_compute_params * params,
  9988. struct ggml_tensor * dst) {
  9989. const struct ggml_tensor * src0 = dst->src[0];
  9990. switch (src0->type) {
  9991. case GGML_TYPE_F32:
  9992. {
  9993. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9994. } break;
  9995. default:
  9996. {
  9997. GGML_ASSERT(false);
  9998. } break;
  9999. }
  10000. }
  10001. static void ggml_compute_forward_diag_mask_zero(
  10002. const struct ggml_compute_params * params,
  10003. struct ggml_tensor * dst) {
  10004. const struct ggml_tensor * src0 = dst->src[0];
  10005. switch (src0->type) {
  10006. case GGML_TYPE_F32:
  10007. {
  10008. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  10009. } break;
  10010. default:
  10011. {
  10012. GGML_ASSERT(false);
  10013. } break;
  10014. }
  10015. }
  10016. // ggml_compute_forward_soft_max
  10017. static void ggml_compute_forward_soft_max_f32(
  10018. const struct ggml_compute_params * params,
  10019. struct ggml_tensor * dst) {
  10020. const struct ggml_tensor * src0 = dst->src[0];
  10021. const struct ggml_tensor * src1 = dst->src[1];
  10022. const struct ggml_tensor * src2 = dst->src[2];
  10023. assert(ggml_is_contiguous(dst));
  10024. assert(ggml_are_same_shape(src0, dst));
  10025. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10026. return;
  10027. }
  10028. float scale = 1.0f;
  10029. float max_bias = 0.0f;
  10030. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  10031. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  10032. // TODO: handle transposed/permuted matrices
  10033. const int ith = params->ith;
  10034. const int nth = params->nth;
  10035. GGML_TENSOR_UNARY_OP_LOCALS
  10036. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  10037. // TODO: is this supposed to be ceil instead of floor?
  10038. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  10039. const uint32_t n_head_kv = ne02;
  10040. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  10041. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  10042. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  10043. const int nc = src0->ne[0];
  10044. const int nr = ggml_nrows(src0);
  10045. // rows per thread
  10046. const int dr = (nr + nth - 1)/nth;
  10047. // row range for this thread
  10048. const int ir0 = dr*ith;
  10049. const int ir1 = MIN(ir0 + dr, nr);
  10050. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  10051. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  10052. ggml_fp16_t * pos_f16 = src2 ? (ggml_fp16_t *) src2->data : src0->data;
  10053. float * pos_f32 = src2 ? (float *) src2->data : src0->data;
  10054. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16);
  10055. for (int i1 = ir0; i1 < ir1; i1++) {
  10056. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10057. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10058. // broadcast the mask across rows
  10059. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10060. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10061. ggml_vec_cpy_f32 (nc, wp, sp);
  10062. ggml_vec_scale_f32(nc, wp, scale);
  10063. if (mp_f32) {
  10064. if (use_f16) {
  10065. for (int i = 0; i < nc; ++i) {
  10066. wp[i] += GGML_FP16_TO_FP32(mp_f16[i]);
  10067. }
  10068. } else {
  10069. for (int i = 0; i < nc; ++i) {
  10070. wp[i] += mp_f32[i];
  10071. }
  10072. }
  10073. }
  10074. // ALiBi bias
  10075. if (max_bias > 0.0f) {
  10076. const uint32_t h = (i1/ne01)%ne02; // head
  10077. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  10078. if (use_f16) {
  10079. for (int i = 0; i < nc; ++i) {
  10080. wp[i] += slope*GGML_FP16_TO_FP32(pos_f16[i]);
  10081. }
  10082. } else {
  10083. for (int i = 0; i < nc; ++i) {
  10084. wp[i] += slope*pos_f32[i];
  10085. }
  10086. }
  10087. }
  10088. #ifndef NDEBUG
  10089. for (int i = 0; i < nc; ++i) {
  10090. //printf("p[%d] = %f\n", i, p[i]);
  10091. assert(!isnan(wp[i]));
  10092. }
  10093. #endif
  10094. float max = -INFINITY;
  10095. ggml_vec_max_f32(nc, &max, wp);
  10096. ggml_float sum = 0.0;
  10097. uint16_t scvt;
  10098. for (int i = 0; i < nc; i++) {
  10099. if (wp[i] == -INFINITY) {
  10100. dp[i] = 0.0f;
  10101. } else {
  10102. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  10103. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  10104. memcpy(&scvt, &s, sizeof(scvt));
  10105. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10106. sum += (ggml_float)val;
  10107. dp[i] = val;
  10108. }
  10109. }
  10110. assert(sum > 0.0);
  10111. sum = 1.0/sum;
  10112. ggml_vec_scale_f32(nc, dp, sum);
  10113. #ifndef NDEBUG
  10114. for (int i = 0; i < nc; ++i) {
  10115. assert(!isnan(dp[i]));
  10116. assert(!isinf(dp[i]));
  10117. }
  10118. #endif
  10119. }
  10120. }
  10121. static void ggml_compute_forward_soft_max(
  10122. const struct ggml_compute_params * params,
  10123. struct ggml_tensor * dst) {
  10124. const struct ggml_tensor * src0 = dst->src[0];
  10125. switch (src0->type) {
  10126. case GGML_TYPE_F32:
  10127. {
  10128. ggml_compute_forward_soft_max_f32(params, dst);
  10129. } break;
  10130. default:
  10131. {
  10132. GGML_ASSERT(false);
  10133. } break;
  10134. }
  10135. }
  10136. // ggml_compute_forward_soft_max_back
  10137. static void ggml_compute_forward_soft_max_back_f32(
  10138. const struct ggml_compute_params * params,
  10139. struct ggml_tensor * dst) {
  10140. const struct ggml_tensor * src0 = dst->src[0];
  10141. const struct ggml_tensor * src1 = dst->src[1];
  10142. GGML_ASSERT(ggml_is_contiguous(src0));
  10143. GGML_ASSERT(ggml_is_contiguous(src1));
  10144. GGML_ASSERT(ggml_is_contiguous(dst));
  10145. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10146. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10147. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10148. return;
  10149. }
  10150. // TODO: handle transposed/permuted matrices
  10151. const int ith = params->ith;
  10152. const int nth = params->nth;
  10153. const int nc = src0->ne[0];
  10154. const int nr = ggml_nrows(src0);
  10155. // rows per thread
  10156. const int dr = (nr + nth - 1)/nth;
  10157. // row range for this thread
  10158. const int ir0 = dr*ith;
  10159. const int ir1 = MIN(ir0 + dr, nr);
  10160. for (int i1 = ir0; i1 < ir1; i1++) {
  10161. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10162. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10163. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10164. #ifndef NDEBUG
  10165. for (int i = 0; i < nc; ++i) {
  10166. //printf("p[%d] = %f\n", i, p[i]);
  10167. assert(!isnan(dy[i]));
  10168. assert(!isnan(y[i]));
  10169. }
  10170. #endif
  10171. // Jii = yi - yi*yi
  10172. // Jij = -yi*yj
  10173. // J = diag(y)-y.T*y
  10174. // dx = J * dy
  10175. // dxk = sum_i(Jki * dyi)
  10176. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10177. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10178. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10179. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10180. // dxk = -yk * dot(y, dy) + yk*dyk
  10181. // dxk = yk * (- dot(y, dy) + dyk)
  10182. // dxk = yk * (dyk - dot(y, dy))
  10183. //
  10184. // post-order:
  10185. // dot_y_dy := dot(y, dy)
  10186. // dx := dy
  10187. // dx := dx - dot_y_dy
  10188. // dx := dx * y
  10189. // linear runtime, no additional memory
  10190. float dot_y_dy = 0;
  10191. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10192. ggml_vec_cpy_f32 (nc, dx, dy);
  10193. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10194. ggml_vec_mul_f32 (nc, dx, dx, y);
  10195. #ifndef NDEBUG
  10196. for (int i = 0; i < nc; ++i) {
  10197. assert(!isnan(dx[i]));
  10198. assert(!isinf(dx[i]));
  10199. }
  10200. #endif
  10201. }
  10202. }
  10203. static void ggml_compute_forward_soft_max_back(
  10204. const struct ggml_compute_params * params,
  10205. struct ggml_tensor * dst) {
  10206. const struct ggml_tensor * src0 = dst->src[0];
  10207. switch (src0->type) {
  10208. case GGML_TYPE_F32:
  10209. {
  10210. ggml_compute_forward_soft_max_back_f32(params, dst);
  10211. } break;
  10212. default:
  10213. {
  10214. GGML_ASSERT(false);
  10215. } break;
  10216. }
  10217. }
  10218. // ggml_compute_forward_alibi
  10219. static void ggml_compute_forward_alibi_f32(
  10220. const struct ggml_compute_params * params,
  10221. struct ggml_tensor * dst) {
  10222. const struct ggml_tensor * src0 = dst->src[0];
  10223. assert(params->ith == 0);
  10224. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10225. return;
  10226. }
  10227. //const int n_past = ((int32_t *) dst->op_params)[0];
  10228. const int n_head = ((int32_t *) dst->op_params)[1];
  10229. float max_bias;
  10230. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10231. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10232. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10233. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10234. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10235. const int64_t n = ggml_nrows(src0);
  10236. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10237. const size_t nb0 = src0->nb[0];
  10238. const size_t nb1 = src0->nb[1];
  10239. const size_t nb2 = src0->nb[2];
  10240. //const int nb3 = src0->nb[3];
  10241. GGML_ASSERT(nb0 == sizeof(float));
  10242. GGML_ASSERT(n_head == ne2);
  10243. // add alibi to src0 (KQ_scaled)
  10244. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10245. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10246. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10247. for (int64_t k = 0; k < ne2_ne3; k++) {
  10248. // TODO: k*nb2 or k*nb3
  10249. float m_k;
  10250. if (k < n_heads_log2_floor) {
  10251. m_k = powf(m0, k + 1);
  10252. } else {
  10253. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10254. }
  10255. for (int64_t i = 0; i < ne0; i++) {
  10256. for (int64_t j = 0; j < ne1; j++) {
  10257. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10258. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10259. pdst[0] = i * m_k + src[0];
  10260. }
  10261. }
  10262. }
  10263. }
  10264. static void ggml_compute_forward_alibi_f16(
  10265. const struct ggml_compute_params * params,
  10266. struct ggml_tensor * dst) {
  10267. const struct ggml_tensor * src0 = dst->src[0];
  10268. assert(params->ith == 0);
  10269. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10270. return;
  10271. }
  10272. //const int n_past = ((int32_t *) dst->op_params)[0];
  10273. const int n_head = ((int32_t *) dst->op_params)[1];
  10274. float max_bias;
  10275. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10276. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10277. const int ne1 = src0->ne[1]; // seq_len_without_past
  10278. const int ne2 = src0->ne[2]; // n_head -> this is k
  10279. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10280. const int n = ggml_nrows(src0);
  10281. const int ne2_ne3 = n/ne1; // ne2*ne3
  10282. const int nb0 = src0->nb[0];
  10283. const int nb1 = src0->nb[1];
  10284. const int nb2 = src0->nb[2];
  10285. //const int nb3 = src0->nb[3];
  10286. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10287. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10288. GGML_ASSERT(n_head == ne2);
  10289. // add alibi to src0 (KQ_scaled)
  10290. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10291. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10292. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10293. for (int k = 0; k < ne2_ne3; k++) {
  10294. // TODO: k*nb2 or k*nb3
  10295. float m_k;
  10296. if (k < n_heads_log2_floor) {
  10297. m_k = powf(m0, k + 1);
  10298. } else {
  10299. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10300. }
  10301. for (int i = 0; i < ne0; i++) {
  10302. for (int j = 0; j < ne1; j++) {
  10303. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10304. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10305. // we return F32
  10306. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10307. }
  10308. }
  10309. }
  10310. }
  10311. static void ggml_compute_forward_alibi(
  10312. const struct ggml_compute_params * params,
  10313. struct ggml_tensor * dst) {
  10314. const struct ggml_tensor * src0 = dst->src[0];
  10315. switch (src0->type) {
  10316. case GGML_TYPE_F16:
  10317. {
  10318. ggml_compute_forward_alibi_f16(params, dst);
  10319. } break;
  10320. case GGML_TYPE_F32:
  10321. {
  10322. ggml_compute_forward_alibi_f32(params, dst);
  10323. } break;
  10324. case GGML_TYPE_Q4_0:
  10325. case GGML_TYPE_Q4_1:
  10326. case GGML_TYPE_Q5_0:
  10327. case GGML_TYPE_Q5_1:
  10328. case GGML_TYPE_Q8_0:
  10329. case GGML_TYPE_Q8_1:
  10330. case GGML_TYPE_Q2_K:
  10331. case GGML_TYPE_Q3_K:
  10332. case GGML_TYPE_Q4_K:
  10333. case GGML_TYPE_Q5_K:
  10334. case GGML_TYPE_Q6_K:
  10335. case GGML_TYPE_IQ2_XXS:
  10336. case GGML_TYPE_IQ2_XS:
  10337. case GGML_TYPE_IQ3_XXS:
  10338. case GGML_TYPE_IQ1_S:
  10339. case GGML_TYPE_IQ1_M:
  10340. case GGML_TYPE_IQ4_NL:
  10341. case GGML_TYPE_IQ4_XS:
  10342. case GGML_TYPE_IQ3_S:
  10343. case GGML_TYPE_IQ2_S:
  10344. case GGML_TYPE_Q8_K:
  10345. case GGML_TYPE_I8:
  10346. case GGML_TYPE_I16:
  10347. case GGML_TYPE_I32:
  10348. case GGML_TYPE_I64:
  10349. case GGML_TYPE_F64:
  10350. case GGML_TYPE_COUNT:
  10351. {
  10352. GGML_ASSERT(false);
  10353. } break;
  10354. }
  10355. }
  10356. // ggml_compute_forward_clamp
  10357. static void ggml_compute_forward_clamp_f32(
  10358. const struct ggml_compute_params * params,
  10359. struct ggml_tensor * dst) {
  10360. const struct ggml_tensor * src0 = dst->src[0];
  10361. assert(params->ith == 0);
  10362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10363. return;
  10364. }
  10365. float min;
  10366. float max;
  10367. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10368. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10369. const int ith = params->ith;
  10370. const int nth = params->nth;
  10371. const int n = ggml_nrows(src0);
  10372. const int nc = src0->ne[0];
  10373. const size_t nb00 = src0->nb[0];
  10374. const size_t nb01 = src0->nb[1];
  10375. const size_t nb0 = dst->nb[0];
  10376. const size_t nb1 = dst->nb[1];
  10377. GGML_ASSERT( nb0 == sizeof(float));
  10378. GGML_ASSERT(nb00 == sizeof(float));
  10379. for (int j = ith; j < n; j += nth) {
  10380. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10381. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10382. for (int i = 0; i < nc; i++) {
  10383. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10384. }
  10385. }
  10386. }
  10387. static void ggml_compute_forward_clamp(
  10388. const struct ggml_compute_params * params,
  10389. struct ggml_tensor * dst) {
  10390. const struct ggml_tensor * src0 = dst->src[0];
  10391. switch (src0->type) {
  10392. case GGML_TYPE_F32:
  10393. {
  10394. ggml_compute_forward_clamp_f32(params, dst);
  10395. } break;
  10396. case GGML_TYPE_F16:
  10397. case GGML_TYPE_Q4_0:
  10398. case GGML_TYPE_Q4_1:
  10399. case GGML_TYPE_Q5_0:
  10400. case GGML_TYPE_Q5_1:
  10401. case GGML_TYPE_Q8_0:
  10402. case GGML_TYPE_Q8_1:
  10403. case GGML_TYPE_Q2_K:
  10404. case GGML_TYPE_Q3_K:
  10405. case GGML_TYPE_Q4_K:
  10406. case GGML_TYPE_Q5_K:
  10407. case GGML_TYPE_Q6_K:
  10408. case GGML_TYPE_IQ2_XXS:
  10409. case GGML_TYPE_IQ2_XS:
  10410. case GGML_TYPE_IQ3_XXS:
  10411. case GGML_TYPE_IQ1_S:
  10412. case GGML_TYPE_IQ1_M:
  10413. case GGML_TYPE_IQ4_NL:
  10414. case GGML_TYPE_IQ4_XS:
  10415. case GGML_TYPE_IQ3_S:
  10416. case GGML_TYPE_IQ2_S:
  10417. case GGML_TYPE_Q8_K:
  10418. case GGML_TYPE_I8:
  10419. case GGML_TYPE_I16:
  10420. case GGML_TYPE_I32:
  10421. case GGML_TYPE_I64:
  10422. case GGML_TYPE_F64:
  10423. case GGML_TYPE_COUNT:
  10424. {
  10425. GGML_ASSERT(false);
  10426. } break;
  10427. }
  10428. }
  10429. // ggml_compute_forward_rope
  10430. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10431. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10432. return 1 - MIN(1, MAX(0, y));
  10433. }
  10434. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10435. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10436. static void rope_yarn(
  10437. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10438. float * cos_theta, float * sin_theta
  10439. ) {
  10440. // Get n-d rotational scaling corrected for extrapolation
  10441. float theta_interp = freq_scale * theta_extrap;
  10442. float theta = theta_interp;
  10443. if (ext_factor != 0.0f) {
  10444. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10445. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10446. // Get n-d magnitude scaling corrected for interpolation
  10447. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10448. }
  10449. *cos_theta = cosf(theta) * mscale;
  10450. *sin_theta = sinf(theta) * mscale;
  10451. }
  10452. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10453. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10454. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10455. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10456. }
  10457. static void ggml_rope_cache_init(
  10458. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10459. float * cache, float sin_sign, float theta_scale
  10460. ) {
  10461. float theta = theta_base;
  10462. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10463. rope_yarn(
  10464. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10465. );
  10466. cache[i0 + 1] *= sin_sign;
  10467. theta *= theta_scale;
  10468. }
  10469. }
  10470. GGML_CALL void ggml_rope_yarn_corr_dims(
  10471. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10472. ) {
  10473. // start and end correction dims
  10474. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10475. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10476. dims[0] = MAX(0, start);
  10477. dims[1] = MIN(n_dims - 1, end);
  10478. }
  10479. static void ggml_compute_forward_rope_f32(
  10480. const struct ggml_compute_params * params,
  10481. struct ggml_tensor * dst,
  10482. const bool forward) {
  10483. const struct ggml_tensor * src0 = dst->src[0];
  10484. const struct ggml_tensor * src1 = dst->src[1];
  10485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10486. return;
  10487. }
  10488. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10489. // these two only relevant for xPos RoPE:
  10490. float xpos_base;
  10491. bool xpos_down;
  10492. //const int n_past = ((int32_t *) dst->op_params)[0];
  10493. const int n_dims = ((int32_t *) dst->op_params)[1];
  10494. const int mode = ((int32_t *) dst->op_params)[2];
  10495. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10496. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10497. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10498. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10499. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10500. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10501. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10502. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10503. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10504. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10505. GGML_TENSOR_UNARY_OP_LOCALS
  10506. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10507. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10508. GGML_ASSERT(nb00 == sizeof(float));
  10509. const int ith = params->ith;
  10510. const int nth = params->nth;
  10511. const int nr = ggml_nrows(dst);
  10512. GGML_ASSERT(n_dims <= ne0);
  10513. GGML_ASSERT(n_dims % 2 == 0);
  10514. // rows per thread
  10515. const int dr = (nr + nth - 1)/nth;
  10516. // row range for this thread
  10517. const int ir0 = dr*ith;
  10518. const int ir1 = MIN(ir0 + dr, nr);
  10519. // row index used to determine which thread to use
  10520. int ir = 0;
  10521. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10522. const float inv_ndims = -1.f/n_dims;
  10523. float corr_dims[2];
  10524. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10525. const bool is_neox = mode & 2;
  10526. const bool is_glm = mode & 4;
  10527. // backward process uses inverse rotation by cos and sin.
  10528. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10529. // this essentially just switches the sign of sin.
  10530. const float sin_sign = forward ? 1.0f : -1.0f;
  10531. const int32_t * pos = (const int32_t *) src1->data;
  10532. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10533. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10534. const int64_t p = pos[i2];
  10535. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10536. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10537. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10538. }
  10539. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10540. if (ir++ < ir0) continue;
  10541. if (ir > ir1) break;
  10542. float theta_base = (float)p;
  10543. if (is_glm) {
  10544. theta_base = MIN(p, n_ctx - 2);
  10545. float block_theta = MAX(p - (n_ctx - 2), 0);
  10546. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10547. const float cos_theta = cosf(theta_base);
  10548. const float sin_theta = sinf(theta_base) * sin_sign;
  10549. const float cos_block_theta = cosf(block_theta);
  10550. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10551. theta_base *= theta_scale;
  10552. block_theta *= theta_scale;
  10553. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10554. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10555. const float x0 = src[0];
  10556. const float x1 = src[n_dims/2];
  10557. const float x2 = src[n_dims];
  10558. const float x3 = src[n_dims/2*3];
  10559. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10560. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10561. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10562. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10563. }
  10564. } else if (!is_neox) {
  10565. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10566. const float cos_theta = cache[i0 + 0];
  10567. const float sin_theta = cache[i0 + 1];
  10568. // zeta scaling for xPos only:
  10569. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10570. if (xpos_down) zeta = 1.0f / zeta;
  10571. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10572. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10573. const float x0 = src[0];
  10574. const float x1 = src[1];
  10575. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10576. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10577. }
  10578. } else {
  10579. // TODO: this might be wrong for ne0 != n_dims - need double check
  10580. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10581. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10582. theta_base *= freq_scale;
  10583. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10584. if (ic < n_dims) {
  10585. const int64_t ib = 0;
  10586. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10587. float cur_rot = inv_ndims * ic - ib;
  10588. float cos_theta, sin_theta;
  10589. rope_yarn(
  10590. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10591. &cos_theta, &sin_theta
  10592. );
  10593. sin_theta *= sin_sign;
  10594. theta_base *= theta_scale;
  10595. const int64_t i0 = ib*n_dims + ic/2;
  10596. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10597. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10598. const float x0 = src[0];
  10599. const float x1 = src[n_dims/2];
  10600. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10601. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10602. } else {
  10603. const int64_t i0 = ic;
  10604. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10605. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10606. dst_data[0] = src[0];
  10607. dst_data[1] = src[1];
  10608. }
  10609. }
  10610. }
  10611. }
  10612. }
  10613. }
  10614. }
  10615. static void ggml_compute_forward_rope_f16(
  10616. const struct ggml_compute_params * params,
  10617. struct ggml_tensor * dst,
  10618. const bool forward) {
  10619. const struct ggml_tensor * src0 = dst->src[0];
  10620. const struct ggml_tensor * src1 = dst->src[1];
  10621. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10622. return;
  10623. }
  10624. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10625. //const int n_past = ((int32_t *) dst->op_params)[0];
  10626. const int n_dims = ((int32_t *) dst->op_params)[1];
  10627. const int mode = ((int32_t *) dst->op_params)[2];
  10628. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10629. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10630. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10631. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10632. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10633. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10634. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10635. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10636. GGML_TENSOR_UNARY_OP_LOCALS
  10637. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10638. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10639. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10640. const int ith = params->ith;
  10641. const int nth = params->nth;
  10642. const int nr = ggml_nrows(dst);
  10643. GGML_ASSERT(n_dims <= ne0);
  10644. GGML_ASSERT(n_dims % 2 == 0);
  10645. // rows per thread
  10646. const int dr = (nr + nth - 1)/nth;
  10647. // row range for this thread
  10648. const int ir0 = dr*ith;
  10649. const int ir1 = MIN(ir0 + dr, nr);
  10650. // row index used to determine which thread to use
  10651. int ir = 0;
  10652. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10653. const float inv_ndims = -1.f/n_dims;
  10654. float corr_dims[2];
  10655. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10656. const bool is_neox = mode & 2;
  10657. const bool is_glm = mode & 4;
  10658. // backward process uses inverse rotation by cos and sin.
  10659. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10660. // this essentially just switches the sign of sin.
  10661. const float sin_sign = forward ? 1.0f : -1.0f;
  10662. const int32_t * pos = (const int32_t *) src1->data;
  10663. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10664. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10665. const int64_t p = pos[i2];
  10666. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10667. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10668. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10669. }
  10670. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10671. if (ir++ < ir0) continue;
  10672. if (ir > ir1) break;
  10673. float theta_base = (float)p;
  10674. if (is_glm) {
  10675. theta_base = MIN(p, n_ctx - 2);
  10676. float block_theta = MAX(p - (n_ctx - 2), 0);
  10677. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10678. const float cos_theta = cosf(theta_base);
  10679. const float sin_theta = sinf(theta_base) * sin_sign;
  10680. const float cos_block_theta = cosf(block_theta);
  10681. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10682. theta_base *= theta_scale;
  10683. block_theta *= theta_scale;
  10684. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10685. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10686. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10687. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10688. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10689. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10690. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10691. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10692. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10693. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10694. }
  10695. } else if (!is_neox) {
  10696. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10697. const float cos_theta = cache[i0 + 0];
  10698. const float sin_theta = cache[i0 + 1];
  10699. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10700. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10701. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10702. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10703. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10704. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10705. }
  10706. } else {
  10707. // TODO: this might be wrong for ne0 != n_dims - need double check
  10708. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10709. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10710. theta_base *= freq_scale;
  10711. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10712. if (ic < n_dims) {
  10713. const int64_t ib = 0;
  10714. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10715. float cur_rot = inv_ndims * ic - ib;
  10716. float cos_theta, sin_theta;
  10717. rope_yarn(
  10718. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10719. &cos_theta, &sin_theta
  10720. );
  10721. sin_theta *= sin_sign;
  10722. theta_base *= theta_scale;
  10723. const int64_t i0 = ib*n_dims + ic/2;
  10724. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10725. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10726. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10727. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10728. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10729. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10730. } else {
  10731. const int64_t i0 = ic;
  10732. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10733. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10734. dst_data[0] = src[0];
  10735. dst_data[1] = src[1];
  10736. }
  10737. }
  10738. }
  10739. }
  10740. }
  10741. }
  10742. }
  10743. static void ggml_compute_forward_rope(
  10744. const struct ggml_compute_params * params,
  10745. struct ggml_tensor * dst) {
  10746. const struct ggml_tensor * src0 = dst->src[0];
  10747. switch (src0->type) {
  10748. case GGML_TYPE_F16:
  10749. {
  10750. ggml_compute_forward_rope_f16(params, dst, true);
  10751. } break;
  10752. case GGML_TYPE_F32:
  10753. {
  10754. ggml_compute_forward_rope_f32(params, dst, true);
  10755. } break;
  10756. default:
  10757. {
  10758. GGML_ASSERT(false);
  10759. } break;
  10760. }
  10761. }
  10762. // ggml_compute_forward_rope_back
  10763. static void ggml_compute_forward_rope_back(
  10764. const struct ggml_compute_params * params,
  10765. struct ggml_tensor * dst) {
  10766. const struct ggml_tensor * src0 = dst->src[0];
  10767. switch (src0->type) {
  10768. case GGML_TYPE_F16:
  10769. {
  10770. ggml_compute_forward_rope_f16(params, dst, false);
  10771. } break;
  10772. case GGML_TYPE_F32:
  10773. {
  10774. ggml_compute_forward_rope_f32(params, dst, false);
  10775. } break;
  10776. default:
  10777. {
  10778. GGML_ASSERT(false);
  10779. } break;
  10780. }
  10781. }
  10782. // ggml_compute_forward_conv_transpose_1d
  10783. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10784. const struct ggml_compute_params * params,
  10785. struct ggml_tensor * dst) {
  10786. const struct ggml_tensor * src0 = dst->src[0];
  10787. const struct ggml_tensor * src1 = dst->src[1];
  10788. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10789. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10790. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10791. int64_t t0 = ggml_perf_time_us();
  10792. UNUSED(t0);
  10793. GGML_TENSOR_BINARY_OP_LOCALS
  10794. const int ith = params->ith;
  10795. const int nth = params->nth;
  10796. const int nk = ne00*ne01*ne02;
  10797. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10798. GGML_ASSERT(nb10 == sizeof(float));
  10799. if (params->type == GGML_TASK_TYPE_INIT) {
  10800. if (ith != 0) {
  10801. return;
  10802. }
  10803. memset(params->wdata, 0, params->wsize);
  10804. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10805. {
  10806. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10807. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10808. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10809. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10810. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10811. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10812. dst_data[i00*ne02 + i02] = src[i00];
  10813. }
  10814. }
  10815. }
  10816. }
  10817. // permute source data (src1) from (L x Cin) to (Cin x L)
  10818. {
  10819. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10820. ggml_fp16_t * dst_data = wdata;
  10821. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10822. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10823. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10824. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10825. }
  10826. }
  10827. }
  10828. // need to zero dst since we are accumulating into it
  10829. memset(dst->data, 0, ggml_nbytes(dst));
  10830. return;
  10831. }
  10832. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10833. return;
  10834. }
  10835. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10836. // total rows in dst
  10837. const int nr = ne1;
  10838. // rows per thread
  10839. const int dr = (nr + nth - 1)/nth;
  10840. // row range for this thread
  10841. const int ir0 = dr*ith;
  10842. const int ir1 = MIN(ir0 + dr, nr);
  10843. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10844. ggml_fp16_t * const wdata_src = wdata + nk;
  10845. for (int i1 = ir0; i1 < ir1; i1++) {
  10846. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10847. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10848. for (int i10 = 0; i10 < ne10; i10++) {
  10849. const int i1n = i10*ne11;
  10850. for (int i00 = 0; i00 < ne00; i00++) {
  10851. float v = 0;
  10852. ggml_vec_dot_f16(ne02, &v, 0,
  10853. (ggml_fp16_t *) wdata_src + i1n, 0,
  10854. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10855. dst_data[i10*s0 + i00] += v;
  10856. }
  10857. }
  10858. }
  10859. }
  10860. static void ggml_compute_forward_conv_transpose_1d_f32(
  10861. const struct ggml_compute_params * params,
  10862. struct ggml_tensor * dst) {
  10863. const struct ggml_tensor * src0 = dst->src[0];
  10864. const struct ggml_tensor * src1 = dst->src[1];
  10865. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10866. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10867. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10868. int64_t t0 = ggml_perf_time_us();
  10869. UNUSED(t0);
  10870. GGML_TENSOR_BINARY_OP_LOCALS
  10871. const int ith = params->ith;
  10872. const int nth = params->nth;
  10873. const int nk = ne00*ne01*ne02;
  10874. GGML_ASSERT(nb00 == sizeof(float));
  10875. GGML_ASSERT(nb10 == sizeof(float));
  10876. if (params->type == GGML_TASK_TYPE_INIT) {
  10877. if (ith != 0) {
  10878. return;
  10879. }
  10880. memset(params->wdata, 0, params->wsize);
  10881. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10882. {
  10883. float * const wdata = (float *) params->wdata + 0;
  10884. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10885. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10886. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10887. float * dst_data = wdata + i01*ne00*ne02;
  10888. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10889. dst_data[i00*ne02 + i02] = src[i00];
  10890. }
  10891. }
  10892. }
  10893. }
  10894. // prepare source data (src1)
  10895. {
  10896. float * const wdata = (float *) params->wdata + nk;
  10897. float * dst_data = wdata;
  10898. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10899. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10900. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10901. dst_data[i10*ne11 + i11] = src[i10];
  10902. }
  10903. }
  10904. }
  10905. // need to zero dst since we are accumulating into it
  10906. memset(dst->data, 0, ggml_nbytes(dst));
  10907. return;
  10908. }
  10909. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10910. return;
  10911. }
  10912. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10913. // total rows in dst
  10914. const int nr = ne1;
  10915. // rows per thread
  10916. const int dr = (nr + nth - 1)/nth;
  10917. // row range for this thread
  10918. const int ir0 = dr*ith;
  10919. const int ir1 = MIN(ir0 + dr, nr);
  10920. float * const wdata = (float *) params->wdata + 0;
  10921. float * const wdata_src = wdata + nk;
  10922. for (int i1 = ir0; i1 < ir1; i1++) {
  10923. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10924. float * wdata_kernel = wdata + i1*ne02*ne00;
  10925. for (int i10 = 0; i10 < ne10; i10++) {
  10926. const int i1n = i10*ne11;
  10927. for (int i00 = 0; i00 < ne00; i00++) {
  10928. float v = 0;
  10929. ggml_vec_dot_f32(ne02, &v, 0,
  10930. wdata_src + i1n, 0,
  10931. wdata_kernel + i00*ne02, 0, 1);
  10932. dst_data[i10*s0 + i00] += v;
  10933. }
  10934. }
  10935. }
  10936. }
  10937. static void ggml_compute_forward_conv_transpose_1d(
  10938. const struct ggml_compute_params * params,
  10939. struct ggml_tensor * dst) {
  10940. const struct ggml_tensor * src0 = dst->src[0];
  10941. switch (src0->type) {
  10942. case GGML_TYPE_F16:
  10943. {
  10944. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10945. } break;
  10946. case GGML_TYPE_F32:
  10947. {
  10948. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10949. } break;
  10950. default:
  10951. {
  10952. GGML_ASSERT(false);
  10953. } break;
  10954. }
  10955. }
  10956. // src0: kernel [OC, IC, KH, KW]
  10957. // src1: image [N, IC, IH, IW]
  10958. // dst: result [N, OH, OW, IC*KH*KW]
  10959. static void ggml_compute_forward_im2col_f32(
  10960. const struct ggml_compute_params * params,
  10961. struct ggml_tensor * dst) {
  10962. const struct ggml_tensor * src0 = dst->src[0];
  10963. const struct ggml_tensor * src1 = dst->src[1];
  10964. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10965. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10966. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10967. int64_t t0 = ggml_perf_time_us();
  10968. UNUSED(t0);
  10969. GGML_TENSOR_BINARY_OP_LOCALS;
  10970. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10971. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10972. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10973. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10974. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10975. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10976. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10977. const int ith = params->ith;
  10978. const int nth = params->nth;
  10979. const int64_t N = is_2D ? ne13 : ne12;
  10980. const int64_t IC = is_2D ? ne12 : ne11;
  10981. const int64_t IH = is_2D ? ne11 : 1;
  10982. const int64_t IW = ne10;
  10983. const int64_t KH = is_2D ? ne01 : 1;
  10984. const int64_t KW = ne00;
  10985. const int64_t OH = is_2D ? ne2 : 1;
  10986. const int64_t OW = ne1;
  10987. int ofs0 = is_2D ? nb13 : nb12;
  10988. int ofs1 = is_2D ? nb12 : nb11;
  10989. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10990. GGML_ASSERT(nb10 == sizeof(float));
  10991. if (params->type == GGML_TASK_TYPE_INIT) {
  10992. return;
  10993. }
  10994. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10995. return;
  10996. }
  10997. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10998. {
  10999. float * const wdata = (float *) dst->data;
  11000. for (int64_t in = 0; in < N; in++) {
  11001. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11002. for (int64_t iow = 0; iow < OW; iow++) {
  11003. for (int64_t iic = ith; iic < IC; iic += nth) {
  11004. // micro kernel
  11005. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11006. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11007. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11008. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11009. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11010. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11011. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11012. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11013. } else {
  11014. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11015. }
  11016. }
  11017. }
  11018. }
  11019. }
  11020. }
  11021. }
  11022. }
  11023. }
  11024. // src0: kernel [OC, IC, KH, KW]
  11025. // src1: image [N, IC, IH, IW]
  11026. // dst: result [N, OH, OW, IC*KH*KW]
  11027. static void ggml_compute_forward_im2col_f16(
  11028. const struct ggml_compute_params * params,
  11029. struct ggml_tensor * dst) {
  11030. const struct ggml_tensor * src0 = dst->src[0];
  11031. const struct ggml_tensor * src1 = dst->src[1];
  11032. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11033. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11034. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11035. int64_t t0 = ggml_perf_time_us();
  11036. UNUSED(t0);
  11037. GGML_TENSOR_BINARY_OP_LOCALS;
  11038. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11039. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11040. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11041. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11042. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11043. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11044. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11045. const int ith = params->ith;
  11046. const int nth = params->nth;
  11047. const int64_t N = is_2D ? ne13 : ne12;
  11048. const int64_t IC = is_2D ? ne12 : ne11;
  11049. const int64_t IH = is_2D ? ne11 : 1;
  11050. const int64_t IW = ne10;
  11051. const int64_t KH = is_2D ? ne01 : 1;
  11052. const int64_t KW = ne00;
  11053. const int64_t OH = is_2D ? ne2 : 1;
  11054. const int64_t OW = ne1;
  11055. int ofs0 = is_2D ? nb13 : nb12;
  11056. int ofs1 = is_2D ? nb12 : nb11;
  11057. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11058. GGML_ASSERT(nb10 == sizeof(float));
  11059. if (params->type == GGML_TASK_TYPE_INIT) {
  11060. return;
  11061. }
  11062. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11063. return;
  11064. }
  11065. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11066. {
  11067. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11068. for (int64_t in = 0; in < N; in++) {
  11069. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11070. for (int64_t iow = 0; iow < OW; iow++) {
  11071. for (int64_t iic = ith; iic < IC; iic += nth) {
  11072. // micro kernel
  11073. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11074. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11075. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11076. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11077. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11078. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11079. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11080. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11081. } else {
  11082. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11083. }
  11084. }
  11085. }
  11086. }
  11087. }
  11088. }
  11089. }
  11090. }
  11091. }
  11092. static void ggml_compute_forward_im2col(
  11093. const struct ggml_compute_params * params,
  11094. struct ggml_tensor * dst) {
  11095. switch (dst->type) {
  11096. case GGML_TYPE_F16:
  11097. {
  11098. ggml_compute_forward_im2col_f16(params, dst);
  11099. } break;
  11100. case GGML_TYPE_F32:
  11101. {
  11102. ggml_compute_forward_im2col_f32(params, dst);
  11103. } break;
  11104. default:
  11105. {
  11106. GGML_ASSERT(false);
  11107. } break;
  11108. }
  11109. }
  11110. // ggml_compute_forward_conv_transpose_2d
  11111. static void ggml_compute_forward_conv_transpose_2d(
  11112. const struct ggml_compute_params * params,
  11113. struct ggml_tensor * dst) {
  11114. const struct ggml_tensor * src0 = dst->src[0];
  11115. const struct ggml_tensor * src1 = dst->src[1];
  11116. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11117. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11118. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11119. int64_t t0 = ggml_perf_time_us();
  11120. UNUSED(t0);
  11121. GGML_TENSOR_BINARY_OP_LOCALS
  11122. const int ith = params->ith;
  11123. const int nth = params->nth;
  11124. const int nk = ne00*ne01*ne02*ne03;
  11125. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11126. GGML_ASSERT(nb10 == sizeof(float));
  11127. if (params->type == GGML_TASK_TYPE_INIT) {
  11128. if (ith != 0) {
  11129. return;
  11130. }
  11131. memset(params->wdata, 0, params->wsize);
  11132. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11133. {
  11134. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11135. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11136. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11137. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11138. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11139. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11140. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11141. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11142. }
  11143. }
  11144. }
  11145. }
  11146. }
  11147. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11148. {
  11149. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11150. for (int i12 = 0; i12 < ne12; i12++) {
  11151. for (int i11 = 0; i11 < ne11; i11++) {
  11152. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11153. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11154. for (int i10 = 0; i10 < ne10; i10++) {
  11155. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11156. }
  11157. }
  11158. }
  11159. }
  11160. memset(dst->data, 0, ggml_nbytes(dst));
  11161. return;
  11162. }
  11163. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11164. return;
  11165. }
  11166. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11167. // total patches in dst
  11168. const int np = ne2;
  11169. // patches per thread
  11170. const int dp = (np + nth - 1)/nth;
  11171. // patch range for this thread
  11172. const int ip0 = dp*ith;
  11173. const int ip1 = MIN(ip0 + dp, np);
  11174. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11175. ggml_fp16_t * const wdata_src = wdata + nk;
  11176. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11177. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11178. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11179. for (int i11 = 0; i11 < ne11; i11++) {
  11180. for (int i10 = 0; i10 < ne10; i10++) {
  11181. const int i1n = i11*ne10*ne12 + i10*ne12;
  11182. for (int i01 = 0; i01 < ne01; i01++) {
  11183. for (int i00 = 0; i00 < ne00; i00++) {
  11184. float v = 0;
  11185. ggml_vec_dot_f16(ne03, &v, 0,
  11186. wdata_src + i1n, 0,
  11187. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11188. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11189. }
  11190. }
  11191. }
  11192. }
  11193. }
  11194. }
  11195. // ggml_compute_forward_pool_1d_sk_p0
  11196. static void ggml_compute_forward_pool_1d_sk_p0(
  11197. const struct ggml_compute_params * params,
  11198. const enum ggml_op_pool op,
  11199. const int k,
  11200. struct ggml_tensor * dst) {
  11201. const struct ggml_tensor * src = dst->src[0];
  11202. assert(src->type == GGML_TYPE_F32);
  11203. assert(params->ith == 0);
  11204. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11205. return;
  11206. }
  11207. const char * cdata = (const char *)src->data;
  11208. const char * const data_end = cdata + ggml_nbytes(src);
  11209. float * drow = (float *)dst->data;
  11210. const int64_t rs = dst->ne[0];
  11211. while (cdata < data_end) {
  11212. const float * const srow = (const float *)cdata;
  11213. int j = 0;
  11214. for (int64_t i = 0; i < rs; ++i) {
  11215. switch (op) {
  11216. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11217. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11218. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11219. }
  11220. for (int ki = 0; ki < k; ++ki) {
  11221. switch (op) {
  11222. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11223. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11224. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11225. }
  11226. ++j;
  11227. }
  11228. switch (op) {
  11229. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11230. case GGML_OP_POOL_MAX: break;
  11231. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11232. }
  11233. }
  11234. cdata += src->nb[1];
  11235. drow += rs;
  11236. }
  11237. }
  11238. // ggml_compute_forward_pool_1d
  11239. static void ggml_compute_forward_pool_1d(
  11240. const struct ggml_compute_params * params,
  11241. struct ggml_tensor * dst) {
  11242. const int32_t * opts = (const int32_t *)dst->op_params;
  11243. enum ggml_op_pool op = opts[0];
  11244. const int k0 = opts[1];
  11245. const int s0 = opts[2];
  11246. const int p0 = opts[3];
  11247. GGML_ASSERT(p0 == 0); // padding not supported
  11248. GGML_ASSERT(k0 == s0); // only s = k supported
  11249. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11250. }
  11251. // ggml_compute_forward_pool_2d
  11252. static void ggml_compute_forward_pool_2d(
  11253. const struct ggml_compute_params * params,
  11254. struct ggml_tensor * dst) {
  11255. const struct ggml_tensor * src = dst->src[0];
  11256. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11257. GGML_ASSERT(params->ith == 0);
  11258. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11259. return;
  11260. }
  11261. const int32_t * opts = (const int32_t *)dst->op_params;
  11262. enum ggml_op_pool op = opts[0];
  11263. const int k0 = opts[1];
  11264. const int k1 = opts[2];
  11265. const int s0 = opts[3];
  11266. const int s1 = opts[4];
  11267. const int p0 = opts[5];
  11268. const int p1 = opts[6];
  11269. const char * cdata = (const char*)src->data;
  11270. const char * const data_end = cdata + ggml_nbytes(src);
  11271. const int64_t px = dst->ne[0];
  11272. const int64_t py = dst->ne[1];
  11273. const int64_t pa = px * py;
  11274. float * dplane = (float *)dst->data;
  11275. const int ka = k0 * k1;
  11276. const int offset0 = -p0;
  11277. const int offset1 = -p1;
  11278. while (cdata < data_end) {
  11279. for (int oy = 0; oy < py; ++oy) {
  11280. float * const drow = dplane + oy * px;
  11281. for (int ox = 0; ox < px; ++ox) {
  11282. float * const out = drow + ox;
  11283. switch (op) {
  11284. case GGML_OP_POOL_AVG: *out = 0; break;
  11285. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11286. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11287. }
  11288. const int ix = offset0 + ox * s0;
  11289. const int iy = offset1 + oy * s1;
  11290. for (int ky = 0; ky < k1; ++ky) {
  11291. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11292. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11293. for (int kx = 0; kx < k0; ++kx) {
  11294. int j = ix + kx;
  11295. if (j < 0 || j >= src->ne[0]) continue;
  11296. switch (op) {
  11297. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11298. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11299. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11300. }
  11301. }
  11302. }
  11303. switch (op) {
  11304. case GGML_OP_POOL_AVG: *out /= ka; break;
  11305. case GGML_OP_POOL_MAX: break;
  11306. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11307. }
  11308. }
  11309. }
  11310. cdata += src->nb[2];
  11311. dplane += pa;
  11312. }
  11313. }
  11314. // ggml_compute_forward_upscale
  11315. static void ggml_compute_forward_upscale_f32(
  11316. const struct ggml_compute_params * params,
  11317. struct ggml_tensor * dst) {
  11318. const struct ggml_tensor * src0 = dst->src[0];
  11319. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11320. return;
  11321. }
  11322. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11323. const int ith = params->ith;
  11324. const int nth = params->nth;
  11325. GGML_TENSOR_UNARY_OP_LOCALS
  11326. const int scale_factor = dst->op_params[0];
  11327. // TODO: optimize
  11328. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11329. const int64_t i03 = i3;
  11330. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11331. const int64_t i02 = i2;
  11332. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11333. const int64_t i01 = i1 / scale_factor;
  11334. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11335. const int64_t i00 = i0 / scale_factor;
  11336. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11337. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11338. *y = *x;
  11339. }
  11340. }
  11341. }
  11342. }
  11343. }
  11344. static void ggml_compute_forward_upscale(
  11345. const struct ggml_compute_params * params,
  11346. struct ggml_tensor * dst) {
  11347. const struct ggml_tensor * src0 = dst->src[0];
  11348. switch (src0->type) {
  11349. case GGML_TYPE_F32:
  11350. {
  11351. ggml_compute_forward_upscale_f32(params, dst);
  11352. } break;
  11353. default:
  11354. {
  11355. GGML_ASSERT(false);
  11356. } break;
  11357. }
  11358. }
  11359. // ggml_compute_forward_pad
  11360. static void ggml_compute_forward_pad_f32(
  11361. const struct ggml_compute_params * params,
  11362. struct ggml_tensor * dst) {
  11363. const struct ggml_tensor * src0 = dst->src[0];
  11364. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11365. return;
  11366. }
  11367. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11368. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11369. const int ith = params->ith;
  11370. const int nth = params->nth;
  11371. GGML_TENSOR_UNARY_OP_LOCALS
  11372. float * dst_ptr = (float *) dst->data;
  11373. // TODO: optimize
  11374. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11375. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11376. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11377. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11378. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11379. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11380. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11381. dst_ptr[dst_idx] = *src_ptr;
  11382. } else {
  11383. dst_ptr[dst_idx] = 0;
  11384. }
  11385. }
  11386. }
  11387. }
  11388. }
  11389. }
  11390. static void ggml_compute_forward_pad(
  11391. const struct ggml_compute_params * params,
  11392. struct ggml_tensor * dst) {
  11393. const struct ggml_tensor * src0 = dst->src[0];
  11394. switch (src0->type) {
  11395. case GGML_TYPE_F32:
  11396. {
  11397. ggml_compute_forward_pad_f32(params, dst);
  11398. } break;
  11399. default:
  11400. {
  11401. GGML_ASSERT(false);
  11402. } break;
  11403. }
  11404. }
  11405. // ggml_compute_forward_arange
  11406. static void ggml_compute_forward_arange_f32(
  11407. const struct ggml_compute_params * params,
  11408. struct ggml_tensor * dst) {
  11409. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11410. return;
  11411. }
  11412. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11413. const int ith = params->ith;
  11414. const int nth = params->nth;
  11415. const float start = ggml_get_op_params_f32(dst, 0);
  11416. const float stop = ggml_get_op_params_f32(dst, 1);
  11417. const float step = ggml_get_op_params_f32(dst, 2);
  11418. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11419. GGML_ASSERT(ggml_nelements(dst) == steps);
  11420. for (int64_t i = ith; i < steps; i+= nth) {
  11421. float value = start + step * i;
  11422. ((float *)dst->data)[i] = value;
  11423. }
  11424. }
  11425. static void ggml_compute_forward_arange(
  11426. const struct ggml_compute_params * params,
  11427. struct ggml_tensor * dst) {
  11428. switch (dst->type) {
  11429. case GGML_TYPE_F32:
  11430. {
  11431. ggml_compute_forward_arange_f32(params, dst);
  11432. } break;
  11433. default:
  11434. {
  11435. GGML_ASSERT(false);
  11436. } break;
  11437. }
  11438. }
  11439. static void ggml_compute_forward_timestep_embedding_f32(
  11440. const struct ggml_compute_params * params,
  11441. struct ggml_tensor * dst) {
  11442. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11443. return;
  11444. }
  11445. const struct ggml_tensor * src0 = dst->src[0];
  11446. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11447. const int ith = params->ith;
  11448. const int nth = params->nth;
  11449. GGML_TENSOR_UNARY_OP_LOCALS
  11450. const int dim = ggml_get_op_params_i32(dst, 0);
  11451. const int max_period = ggml_get_op_params_i32(dst, 1);
  11452. int half = dim / 2;
  11453. for (int64_t i = 0; i < ne00; i++) {
  11454. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11455. for (int64_t j = ith; j < half; j += nth) {
  11456. float timestep = ((float *)src0->data)[i];
  11457. float freq = (float)expf(-logf(max_period) * j / half);
  11458. float arg = timestep * freq;
  11459. embed_data[j] = cosf(arg);
  11460. embed_data[j + half] = sinf(arg);
  11461. }
  11462. if (dim % 2 != 0 && ith == 0) {
  11463. embed_data[dim] = 0.f;
  11464. }
  11465. }
  11466. }
  11467. static void ggml_compute_forward_timestep_embedding(
  11468. const struct ggml_compute_params * params,
  11469. struct ggml_tensor * dst) {
  11470. const struct ggml_tensor * src0 = dst->src[0];
  11471. switch (src0->type) {
  11472. case GGML_TYPE_F32:
  11473. {
  11474. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11475. } break;
  11476. default:
  11477. {
  11478. GGML_ASSERT(false);
  11479. } break;
  11480. }
  11481. }
  11482. // ggml_compute_forward_argsort
  11483. static void ggml_compute_forward_argsort_f32(
  11484. const struct ggml_compute_params * params,
  11485. struct ggml_tensor * dst) {
  11486. const struct ggml_tensor * src0 = dst->src[0];
  11487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11488. return;
  11489. }
  11490. GGML_TENSOR_UNARY_OP_LOCALS
  11491. GGML_ASSERT(nb0 == sizeof(float));
  11492. const int ith = params->ith;
  11493. const int nth = params->nth;
  11494. const int64_t nr = ggml_nrows(src0);
  11495. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11496. for (int64_t i = ith; i < nr; i += nth) {
  11497. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11498. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11499. for (int64_t j = 0; j < ne0; j++) {
  11500. dst_data[j] = j;
  11501. }
  11502. // C doesn't have a functional sort, so we do a bubble sort instead
  11503. for (int64_t j = 0; j < ne0; j++) {
  11504. for (int64_t k = j + 1; k < ne0; k++) {
  11505. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11506. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11507. int32_t tmp = dst_data[j];
  11508. dst_data[j] = dst_data[k];
  11509. dst_data[k] = tmp;
  11510. }
  11511. }
  11512. }
  11513. }
  11514. }
  11515. static void ggml_compute_forward_argsort(
  11516. const struct ggml_compute_params * params,
  11517. struct ggml_tensor * dst) {
  11518. const struct ggml_tensor * src0 = dst->src[0];
  11519. switch (src0->type) {
  11520. case GGML_TYPE_F32:
  11521. {
  11522. ggml_compute_forward_argsort_f32(params, dst);
  11523. } break;
  11524. default:
  11525. {
  11526. GGML_ASSERT(false);
  11527. } break;
  11528. }
  11529. }
  11530. // ggml_compute_forward_flash_attn
  11531. static void ggml_compute_forward_flash_attn_f32(
  11532. const struct ggml_compute_params * params,
  11533. const bool masked,
  11534. struct ggml_tensor * dst) {
  11535. const struct ggml_tensor * q = dst->src[0];
  11536. const struct ggml_tensor * k = dst->src[1];
  11537. const struct ggml_tensor * v = dst->src[2];
  11538. int64_t t0 = ggml_perf_time_us();
  11539. UNUSED(t0);
  11540. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11541. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11542. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11543. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11544. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11545. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11546. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11547. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11548. const int ith = params->ith;
  11549. const int nth = params->nth;
  11550. const int64_t D = neq0;
  11551. const int64_t N = neq1;
  11552. const int64_t P = nek1 - N;
  11553. const int64_t M = P + N;
  11554. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11555. GGML_ASSERT(ne0 == D);
  11556. GGML_ASSERT(ne1 == N);
  11557. GGML_ASSERT(P >= 0);
  11558. GGML_ASSERT(nbq0 == sizeof(float));
  11559. GGML_ASSERT(nbk0 == sizeof(float));
  11560. GGML_ASSERT(nbv0 == sizeof(float));
  11561. GGML_ASSERT(neq0 == D);
  11562. GGML_ASSERT(nek0 == D);
  11563. GGML_ASSERT(nev1 == D);
  11564. GGML_ASSERT(neq1 == N);
  11565. GGML_ASSERT(nek1 == N + P);
  11566. GGML_ASSERT(nev1 == D);
  11567. // dst cannot be transposed or permuted
  11568. GGML_ASSERT(nb0 == sizeof(float));
  11569. GGML_ASSERT(nb0 <= nb1);
  11570. GGML_ASSERT(nb1 <= nb2);
  11571. GGML_ASSERT(nb2 <= nb3);
  11572. if (params->type == GGML_TASK_TYPE_INIT) {
  11573. return;
  11574. }
  11575. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11576. return;
  11577. }
  11578. // parallelize by q rows using ggml_vec_dot_f32
  11579. // total rows in q
  11580. const int nr = neq1*neq2*neq3;
  11581. // rows per thread
  11582. const int dr = (nr + nth - 1)/nth;
  11583. // row range for this thread
  11584. const int ir0 = dr*ith;
  11585. const int ir1 = MIN(ir0 + dr, nr);
  11586. const float scale = 1.0f/sqrtf(D);
  11587. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11588. for (int ir = ir0; ir < ir1; ++ir) {
  11589. // q indices
  11590. const int iq3 = ir/(neq2*neq1);
  11591. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11592. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11593. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11594. for (int i = M; i < Mup; ++i) {
  11595. S[i] = -INFINITY;
  11596. }
  11597. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11598. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11599. // k indices
  11600. const int ik3 = iq3;
  11601. const int ik2 = iq2 % nek2;
  11602. const int ik1 = ic;
  11603. // S indices
  11604. const int i1 = ik1;
  11605. ggml_vec_dot_f32(neq0,
  11606. S + i1, 0,
  11607. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11608. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11609. }
  11610. // scale
  11611. ggml_vec_scale_f32(masked_begin, S, scale);
  11612. for (int64_t i = masked_begin; i < M; i++) {
  11613. S[i] = -INFINITY;
  11614. }
  11615. // softmax
  11616. // exclude known -INF S[..] values from max and loop
  11617. // dont forget to set their SW values to zero
  11618. {
  11619. float max = -INFINITY;
  11620. ggml_vec_max_f32(masked_begin, &max, S);
  11621. ggml_float sum = 0.0;
  11622. {
  11623. #ifdef GGML_SOFT_MAX_ACCELERATE
  11624. max = -max;
  11625. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11626. vvexpf(S, S, &Mup);
  11627. ggml_vec_sum_f32(Mup, &sum, S);
  11628. #else
  11629. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11630. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11631. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11632. if (i >= masked_begin) {
  11633. break;
  11634. }
  11635. float * SS = S + i;
  11636. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11637. if (i + j >= masked_begin) {
  11638. break;
  11639. } else if (SS[j] == -INFINITY) {
  11640. SS[j] = 0.0f;
  11641. } else {
  11642. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11643. const float val = expf(SS[j] - max);
  11644. #else
  11645. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11646. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11647. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11648. #endif
  11649. sump[j] += (ggml_float)val;
  11650. SS[j] = val;
  11651. }
  11652. }
  11653. }
  11654. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11655. sum += sump[i];
  11656. }
  11657. #endif
  11658. }
  11659. assert(sum > 0.0);
  11660. sum = 1.0/sum;
  11661. ggml_vec_scale_f32(masked_begin, S, sum);
  11662. #ifndef NDEBUG
  11663. for (int i = 0; i < masked_begin; ++i) {
  11664. assert(!isnan(S[i]));
  11665. assert(!isinf(S[i]));
  11666. }
  11667. #endif
  11668. }
  11669. for (int64_t ic = 0; ic < nev1; ++ic) {
  11670. // dst indices
  11671. const int i1 = iq1;
  11672. const int i2 = iq2;
  11673. const int i3 = iq3;
  11674. // v indices
  11675. const int iv2 = iq2 % nev2;
  11676. const int iv3 = iq3;
  11677. ggml_vec_dot_f32(masked_begin,
  11678. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11679. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11680. S, 0, 1);
  11681. }
  11682. }
  11683. }
  11684. static void ggml_compute_forward_flash_attn_f16(
  11685. const struct ggml_compute_params * params,
  11686. const bool masked,
  11687. struct ggml_tensor * dst) {
  11688. const struct ggml_tensor * q = dst->src[0];
  11689. const struct ggml_tensor * k = dst->src[1];
  11690. const struct ggml_tensor * v = dst->src[2];
  11691. int64_t t0 = ggml_perf_time_us();
  11692. UNUSED(t0);
  11693. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11694. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11695. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11696. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11697. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11698. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11699. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11700. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11701. const int ith = params->ith;
  11702. const int nth = params->nth;
  11703. const int64_t D = neq0;
  11704. const int64_t N = neq1;
  11705. const int64_t P = nek1 - N;
  11706. const int64_t M = P + N;
  11707. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11708. GGML_ASSERT(ne0 == D);
  11709. GGML_ASSERT(ne1 == N);
  11710. GGML_ASSERT(P >= 0);
  11711. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11712. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11713. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11714. GGML_ASSERT(neq0 == D);
  11715. GGML_ASSERT(nek0 == D);
  11716. GGML_ASSERT(nev1 == D);
  11717. GGML_ASSERT(neq1 == N);
  11718. GGML_ASSERT(nek1 == N + P);
  11719. GGML_ASSERT(nev1 == D);
  11720. // dst cannot be transposed or permuted
  11721. GGML_ASSERT(nb0 == sizeof(float));
  11722. GGML_ASSERT(nb0 <= nb1);
  11723. GGML_ASSERT(nb1 <= nb2);
  11724. GGML_ASSERT(nb2 <= nb3);
  11725. if (params->type == GGML_TASK_TYPE_INIT) {
  11726. return;
  11727. }
  11728. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11729. return;
  11730. }
  11731. // parallelize by q rows using ggml_vec_dot_f32
  11732. // total rows in q
  11733. const int nr = neq1*neq2*neq3;
  11734. // rows per thread
  11735. const int dr = (nr + nth - 1)/nth;
  11736. // row range for this thread
  11737. const int ir0 = dr*ith;
  11738. const int ir1 = MIN(ir0 + dr, nr);
  11739. const float scale = 1.0f/sqrtf(D);
  11740. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11741. for (int ir = ir0; ir < ir1; ++ir) {
  11742. // q indices
  11743. const int iq3 = ir/(neq2*neq1);
  11744. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11745. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11746. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11747. for (int i = M; i < Mup; ++i) {
  11748. S[i] = -INFINITY;
  11749. }
  11750. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11751. for (int64_t ic = 0; ic < nek1; ++ic) {
  11752. // k indices
  11753. const int ik3 = iq3;
  11754. const int ik2 = iq2 % nek2;
  11755. const int ik1 = ic;
  11756. // S indices
  11757. const int i1 = ik1;
  11758. ggml_vec_dot_f16(neq0,
  11759. S + i1, 0,
  11760. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11761. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11762. }
  11763. } else {
  11764. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11765. // k indices
  11766. const int ik3 = iq3;
  11767. const int ik2 = iq2 % nek2;
  11768. const int ik1 = ic;
  11769. // S indices
  11770. const int i1 = ik1;
  11771. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11772. S + i1,
  11773. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11774. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11775. }
  11776. }
  11777. // scale
  11778. ggml_vec_scale_f32(nek1, S, scale);
  11779. if (masked) {
  11780. for (int64_t i = P; i < M; i++) {
  11781. if (i > P + iq1) {
  11782. S[i] = -INFINITY;
  11783. }
  11784. }
  11785. }
  11786. // softmax
  11787. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11788. // dont forget to set their S values to zero
  11789. {
  11790. float max = -INFINITY;
  11791. ggml_vec_max_f32(M, &max, S);
  11792. ggml_float sum = 0.0;
  11793. {
  11794. #ifdef GGML_SOFT_MAX_ACCELERATE
  11795. max = -max;
  11796. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11797. vvexpf(S, S, &Mup);
  11798. ggml_vec_sum_f32(Mup, &sum, S);
  11799. #else
  11800. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11801. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11802. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11803. float * SS = S + i;
  11804. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11805. if (SS[j] == -INFINITY) {
  11806. SS[j] = 0.0f;
  11807. } else {
  11808. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11809. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11810. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11811. sump[j] += (ggml_float)val;
  11812. SS[j] = val;
  11813. }
  11814. }
  11815. }
  11816. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11817. sum += sump[i];
  11818. }
  11819. #endif
  11820. }
  11821. assert(sum > 0.0);
  11822. sum = 1.0/sum;
  11823. ggml_vec_scale_f32(M, S, sum);
  11824. #ifndef NDEBUG
  11825. for (int i = 0; i < M; ++i) {
  11826. assert(!isnan(S[i]));
  11827. assert(!isinf(S[i]));
  11828. }
  11829. #endif
  11830. }
  11831. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11832. for (int64_t i = 0; i < M; i++) {
  11833. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11834. }
  11835. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11836. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11837. for (int64_t ic = 0; ic < nev1; ++ic) {
  11838. // dst indices
  11839. const int i1 = iq1;
  11840. const int i2 = iq2;
  11841. const int i3 = iq3;
  11842. // v indices
  11843. const int iv2 = iq2 % nev2;
  11844. const int iv3 = iq3;
  11845. ggml_vec_dot_f16(nev0,
  11846. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11847. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11848. S16, 0, 1);
  11849. }
  11850. } else {
  11851. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11852. // dst indices
  11853. const int i1 = iq1;
  11854. const int i2 = iq2;
  11855. const int i3 = iq3;
  11856. // v indices
  11857. const int iv2 = iq2 % nev2;
  11858. const int iv3 = iq3;
  11859. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11860. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11861. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11862. S16);
  11863. }
  11864. }
  11865. }
  11866. }
  11867. static void ggml_compute_forward_flash_attn(
  11868. const struct ggml_compute_params * params,
  11869. const bool masked,
  11870. struct ggml_tensor * dst) {
  11871. const struct ggml_tensor * q = dst->src[0];
  11872. switch (q->type) {
  11873. case GGML_TYPE_F16:
  11874. {
  11875. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11876. } break;
  11877. case GGML_TYPE_F32:
  11878. {
  11879. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11880. } break;
  11881. default:
  11882. {
  11883. GGML_ASSERT(false);
  11884. } break;
  11885. }
  11886. }
  11887. // ggml_compute_forward_flash_attn_ext
  11888. static void ggml_compute_forward_flash_attn_ext_f16(
  11889. const struct ggml_compute_params * params,
  11890. const struct ggml_tensor * q,
  11891. const struct ggml_tensor * k,
  11892. const struct ggml_tensor * v,
  11893. const struct ggml_tensor * mask,
  11894. struct ggml_tensor * dst) {
  11895. int64_t t0 = ggml_perf_time_us();
  11896. UNUSED(t0);
  11897. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11898. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11899. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11900. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11901. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11902. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11903. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11904. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11905. const int ith = params->ith;
  11906. const int nth = params->nth;
  11907. const int64_t D = neq0;
  11908. const int64_t N = neq1;
  11909. GGML_ASSERT(ne0 == D);
  11910. GGML_ASSERT(ne2 == N);
  11911. GGML_ASSERT(nbq0 == sizeof(float));
  11912. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11913. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11914. GGML_ASSERT(neq0 == D);
  11915. GGML_ASSERT(nek0 == D);
  11916. GGML_ASSERT(nev0 == D);
  11917. GGML_ASSERT(neq1 == N);
  11918. GGML_ASSERT(nev0 == D);
  11919. // dst cannot be transposed or permuted
  11920. GGML_ASSERT(nb0 == sizeof(float));
  11921. GGML_ASSERT(nb0 <= nb1);
  11922. GGML_ASSERT(nb1 <= nb2);
  11923. GGML_ASSERT(nb2 <= nb3);
  11924. // broadcast factors
  11925. const int64_t rk2 = neq2/nek2;
  11926. const int64_t rk3 = neq3/nek3;
  11927. const int64_t rv2 = neq2/nev2;
  11928. const int64_t rv3 = neq3/nev3;
  11929. if (params->type == GGML_TASK_TYPE_INIT) {
  11930. return;
  11931. }
  11932. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11933. return;
  11934. }
  11935. // parallelize by q rows using ggml_vec_dot_f32
  11936. // total rows in q
  11937. const int nr = neq1*neq2*neq3;
  11938. // rows per thread
  11939. const int dr = (nr + nth - 1)/nth;
  11940. // row range for this thread
  11941. const int ir0 = dr*ith;
  11942. const int ir1 = MIN(ir0 + dr, nr);
  11943. float scale = 1.0f;
  11944. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11945. // loop over n_batch and n_head
  11946. for (int ir = ir0; ir < ir1; ++ir) {
  11947. // q indices
  11948. const int iq3 = ir/(neq2*neq1);
  11949. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11950. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11951. float S = 0.0f;
  11952. float M = -INFINITY;
  11953. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  11954. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  11955. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  11956. memset(V16, 0, D*sizeof(ggml_fp16_t));
  11957. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  11958. // k indices
  11959. const int ik3 = iq3 / rk3;
  11960. const int ik2 = iq2 / rk2;
  11961. // v indices
  11962. const int iv3 = iq3 / rv3;
  11963. const int iv2 = iq2 / rv2;
  11964. // online softmax / attention
  11965. // loop over n_kv and n_head_kv
  11966. // ref: https://arxiv.org/pdf/2112.05682.pdf
  11967. for (int64_t ic = 0; ic < nek1; ++ic) {
  11968. const float mv = mp ? GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  11969. if (mv == -INFINITY) {
  11970. continue;
  11971. }
  11972. float s;
  11973. // convert Q to F16 in V32
  11974. {
  11975. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  11976. for (int64_t d = 0; d < D; ++d) {
  11977. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  11978. }
  11979. }
  11980. ggml_vec_dot_f16(D,
  11981. &s, 0,
  11982. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11983. Q16, 0, 1);
  11984. s = s*scale + mv;
  11985. const float Mold = M;
  11986. float ms = 1.0f;
  11987. float vs = 1.0f;
  11988. if (s > M) {
  11989. M = s;
  11990. ms = expf(Mold - M);
  11991. // V = V*expf(Mold - M)
  11992. ggml_vec_scale_f16(D, V16, ms);
  11993. } else {
  11994. vs = expf(s - M);
  11995. }
  11996. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  11997. // V += v*expf(s - M)
  11998. ggml_vec_mad_f16(D, V16, v16, vs);
  11999. S = S*ms + vs;
  12000. }
  12001. // V /= S
  12002. for (int64_t d = 0; d < D; ++d) {
  12003. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  12004. }
  12005. // dst indices
  12006. const int i1 = iq1;
  12007. const int i2 = iq2;
  12008. const int i3 = iq3;
  12009. // original
  12010. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12011. // permute(0, 2, 1, 3)
  12012. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  12013. }
  12014. }
  12015. static void ggml_compute_forward_flash_attn_ext(
  12016. const struct ggml_compute_params * params,
  12017. const struct ggml_tensor * q,
  12018. const struct ggml_tensor * k,
  12019. const struct ggml_tensor * v,
  12020. const struct ggml_tensor * mask,
  12021. struct ggml_tensor * dst) {
  12022. switch (dst->op_params[1]) {
  12023. case GGML_PREC_DEFAULT:
  12024. case GGML_PREC_F32:
  12025. {
  12026. // uses F32 accumulators
  12027. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12028. } break;
  12029. default:
  12030. {
  12031. GGML_ASSERT(false);
  12032. } break;
  12033. }
  12034. }
  12035. // ggml_compute_forward_flash_ff
  12036. static void ggml_compute_forward_flash_ff_f16(
  12037. const struct ggml_compute_params * params,
  12038. struct ggml_tensor * dst) {
  12039. const struct ggml_tensor * a = dst->src[0]; // F16
  12040. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  12041. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  12042. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  12043. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  12044. int64_t t0 = ggml_perf_time_us();
  12045. UNUSED(t0);
  12046. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12047. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12048. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12049. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12050. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12051. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12052. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12053. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12054. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12055. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12056. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12057. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12058. const int ith = params->ith;
  12059. const int nth = params->nth;
  12060. const int64_t D = nea0;
  12061. //const int64_t N = nea1;
  12062. const int64_t M = neb01;
  12063. GGML_ASSERT(ne0 == nea0);
  12064. GGML_ASSERT(ne1 == nea1);
  12065. GGML_ASSERT(ne2 == nea2);
  12066. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12067. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12068. GGML_ASSERT(nbb10 == sizeof(float));
  12069. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12070. GGML_ASSERT(nbc10 == sizeof(float));
  12071. GGML_ASSERT(neb00 == D);
  12072. GGML_ASSERT(neb01 == M);
  12073. GGML_ASSERT(neb10 == M);
  12074. GGML_ASSERT(neb11 == 1);
  12075. GGML_ASSERT(nec00 == M);
  12076. GGML_ASSERT(nec01 == D);
  12077. GGML_ASSERT(nec10 == D);
  12078. GGML_ASSERT(nec11 == 1);
  12079. // dst cannot be transposed or permuted
  12080. GGML_ASSERT(nb0 == sizeof(float));
  12081. GGML_ASSERT(nb0 <= nb1);
  12082. GGML_ASSERT(nb1 <= nb2);
  12083. GGML_ASSERT(nb2 <= nb3);
  12084. if (params->type == GGML_TASK_TYPE_INIT) {
  12085. return;
  12086. }
  12087. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12088. return;
  12089. }
  12090. // parallelize by a rows using ggml_vec_dot_f32
  12091. // total rows in a
  12092. const int nr = nea1*nea2*nea3;
  12093. // rows per thread
  12094. const int dr = (nr + nth - 1)/nth;
  12095. // row range for this thread
  12096. const int ir0 = dr*ith;
  12097. const int ir1 = MIN(ir0 + dr, nr);
  12098. for (int ir = ir0; ir < ir1; ++ir) {
  12099. // a indices
  12100. const int ia3 = ir/(nea2*nea1);
  12101. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12102. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12103. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12104. for (int64_t ic = 0; ic < neb01; ++ic) {
  12105. // b0 indices
  12106. const int ib03 = ia3;
  12107. const int ib02 = ia2;
  12108. const int ib01 = ic;
  12109. // S indices
  12110. const int i1 = ib01;
  12111. ggml_vec_dot_f16(nea0,
  12112. S + i1, 0,
  12113. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  12114. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  12115. }
  12116. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12117. //ggml_vec_gelu_f32(neb01, S, S);
  12118. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12119. for (int64_t i = 0; i < M; i++) {
  12120. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12121. }
  12122. ggml_vec_gelu_f16(neb01, S16, S16);
  12123. {
  12124. // dst indices
  12125. const int i1 = ia1;
  12126. const int i2 = ia2;
  12127. const int i3 = ia3;
  12128. for (int64_t ic = 0; ic < nec01; ++ic) {
  12129. ggml_vec_dot_f16(neb01,
  12130. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12131. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  12132. S16, 0, 1);
  12133. }
  12134. ggml_vec_add_f32(nec01,
  12135. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12136. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12137. (float *) c1->data);
  12138. }
  12139. }
  12140. }
  12141. static void ggml_compute_forward_flash_ff(
  12142. const struct ggml_compute_params * params,
  12143. struct ggml_tensor * dst) {
  12144. const struct ggml_tensor * b0 = dst->src[1];
  12145. switch (b0->type) {
  12146. case GGML_TYPE_F16:
  12147. {
  12148. ggml_compute_forward_flash_ff_f16(params, dst);
  12149. } break;
  12150. case GGML_TYPE_F32:
  12151. {
  12152. GGML_ASSERT(false); // TODO
  12153. } break;
  12154. default:
  12155. {
  12156. GGML_ASSERT(false);
  12157. } break;
  12158. }
  12159. }
  12160. // ggml_compute_forward_flash_attn_back
  12161. static void ggml_compute_forward_flash_attn_back_f32(
  12162. const struct ggml_compute_params * params,
  12163. const bool masked,
  12164. struct ggml_tensor * dst) {
  12165. const struct ggml_tensor * q = dst->src[0];
  12166. const struct ggml_tensor * k = dst->src[1];
  12167. const struct ggml_tensor * v = dst->src[2];
  12168. const struct ggml_tensor * d = dst->src[3];
  12169. int64_t t0 = ggml_perf_time_us();
  12170. UNUSED(t0);
  12171. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12172. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12173. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12174. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12175. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12176. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12177. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12178. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12179. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12180. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12181. const int ith = params->ith;
  12182. const int nth = params->nth;
  12183. const int64_t D = neq0;
  12184. const int64_t N = neq1;
  12185. const int64_t P = nek1 - N;
  12186. const int64_t M = P + N;
  12187. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12188. const int mxDM = MAX(D, Mup);
  12189. // GGML_ASSERT(ne0 == D);
  12190. // GGML_ASSERT(ne1 == N);
  12191. GGML_ASSERT(P >= 0);
  12192. GGML_ASSERT(nbq0 == sizeof(float));
  12193. GGML_ASSERT(nbk0 == sizeof(float));
  12194. GGML_ASSERT(nbv0 == sizeof(float));
  12195. GGML_ASSERT(neq0 == D);
  12196. GGML_ASSERT(nek0 == D);
  12197. GGML_ASSERT(nev1 == D);
  12198. GGML_ASSERT(ned0 == D);
  12199. GGML_ASSERT(neq1 == N);
  12200. GGML_ASSERT(nek1 == N + P);
  12201. GGML_ASSERT(nev1 == D);
  12202. GGML_ASSERT(ned1 == N);
  12203. // dst cannot be transposed or permuted
  12204. GGML_ASSERT(nb0 == sizeof(float));
  12205. GGML_ASSERT(nb0 <= nb1);
  12206. GGML_ASSERT(nb1 <= nb2);
  12207. GGML_ASSERT(nb2 <= nb3);
  12208. if (params->type == GGML_TASK_TYPE_INIT) {
  12209. if (ith == 0) {
  12210. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12211. }
  12212. return;
  12213. }
  12214. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12215. return;
  12216. }
  12217. const int64_t elem_q = ggml_nelements(q);
  12218. const int64_t elem_k = ggml_nelements(k);
  12219. enum ggml_type result_type = dst->type;
  12220. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12221. const size_t tsize = ggml_type_size(result_type);
  12222. const size_t offs_q = 0;
  12223. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12224. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12225. void * grad_q = (char *) dst->data;
  12226. void * grad_k = (char *) dst->data + offs_k;
  12227. void * grad_v = (char *) dst->data + offs_v;
  12228. const size_t nbgq1 = nb0*neq0;
  12229. const size_t nbgq2 = nb0*neq0*neq1;
  12230. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12231. const size_t nbgk1 = nb0*nek0;
  12232. const size_t nbgk2 = nb0*nek0*nek1;
  12233. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12234. const size_t nbgv1 = nb0*nev0;
  12235. const size_t nbgv2 = nb0*nev0*nev1;
  12236. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12237. // parallelize by k rows using ggml_vec_dot_f32
  12238. // total rows in k
  12239. const int nr = nek2*nek3;
  12240. // rows per thread
  12241. const int dr = (nr + nth - 1)/nth;
  12242. // row range for this thread
  12243. const int ir0 = dr*ith;
  12244. const int ir1 = MIN(ir0 + dr, nr);
  12245. const float scale = 1.0f/sqrtf(D);
  12246. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12247. // how often k2 (and v2) is repeated in q2
  12248. int nrep = neq2/nek2;
  12249. for (int ir = ir0; ir < ir1; ++ir) {
  12250. // q indices
  12251. const int ik3 = ir/(nek2);
  12252. const int ik2 = ir - ik3*nek2;
  12253. const int iq3 = ik3;
  12254. const int id3 = ik3;
  12255. const int iv3 = ik3;
  12256. const int iv2 = ik2;
  12257. for (int irep = 0; irep < nrep; ++irep) {
  12258. const int iq2 = ik2 + irep*nek2;
  12259. const int id2 = iq2;
  12260. // (ik2 + irep*nek2) % nek2 == ik2
  12261. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12262. const int id1 = iq1;
  12263. // not sure about CACHE_LINE_SIZE_F32..
  12264. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12265. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12266. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12267. for (int i = M; i < Mup; ++i) {
  12268. S[i] = -INFINITY;
  12269. }
  12270. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12271. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12272. // k indices
  12273. const int ik1 = ic;
  12274. // S indices
  12275. const int i1 = ik1;
  12276. ggml_vec_dot_f32(neq0,
  12277. S + i1, 0,
  12278. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12279. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12280. }
  12281. // scale
  12282. ggml_vec_scale_f32(masked_begin, S, scale);
  12283. for (int64_t i = masked_begin; i < M; i++) {
  12284. S[i] = -INFINITY;
  12285. }
  12286. // softmax
  12287. // exclude known -INF S[..] values from max and loop
  12288. // dont forget to set their SM values to zero
  12289. {
  12290. float max = -INFINITY;
  12291. ggml_vec_max_f32(masked_begin, &max, S);
  12292. ggml_float sum = 0.0;
  12293. {
  12294. #ifdef GGML_SOFT_MAX_ACCELERATE
  12295. max = -max;
  12296. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12297. vvexpf(SM, SM, &Mup);
  12298. ggml_vec_sum_f32(Mup, &sum, SM);
  12299. #else
  12300. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12301. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12302. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12303. if (i >= masked_begin) {
  12304. break;
  12305. }
  12306. float * SR = S + i;
  12307. float * SW = SM + i;
  12308. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12309. if (i + j >= masked_begin) {
  12310. break;
  12311. } else if (SR[j] == -INFINITY) {
  12312. SW[j] = 0.0f;
  12313. } else {
  12314. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12315. const float val = expf(SR[j] - max);
  12316. #else
  12317. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12318. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12319. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12320. #endif
  12321. sump[j] += (ggml_float)val;
  12322. SW[j] = val;
  12323. }
  12324. }
  12325. }
  12326. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12327. sum += sump[i];
  12328. }
  12329. #endif
  12330. }
  12331. assert(sum > 0.0);
  12332. sum = 1.0/sum;
  12333. ggml_vec_scale_f32(masked_begin, SM, sum);
  12334. }
  12335. // step-by-step explanation
  12336. {
  12337. // forward-process shape grads from backward process
  12338. // parallel_for ik2,ik3:
  12339. // for irep:
  12340. // iq2 = ik2 + irep*nek2
  12341. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12342. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12343. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12344. // for iq1:
  12345. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12346. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12347. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12348. // S0 = -Inf [D,1,1,1]
  12349. // ~S1[i] = dot(kcur[:D,i], qcur)
  12350. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12351. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12352. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12353. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12354. // ~S5[i] = dot(vcur[:,i], S4)
  12355. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12356. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12357. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12358. // dst backward-/ grad[dst] = d
  12359. //
  12360. // output gradients with their dependencies:
  12361. //
  12362. // grad[kcur] = grad[S1].T @ qcur
  12363. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12364. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12365. // grad[S4] = grad[S5] @ vcur
  12366. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12367. // grad[qcur] = grad[S1] @ kcur
  12368. // grad[vcur] = grad[S5].T @ S4
  12369. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12370. //
  12371. // in post-order:
  12372. //
  12373. // S1 = qcur @ kcur.T
  12374. // S2 = S1 * scale
  12375. // S3 = diag_mask_inf(S2, P)
  12376. // S4 = softmax(S3)
  12377. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12378. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12379. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12380. // grad[qcur] = grad[S1] @ kcur
  12381. // grad[kcur] = grad[S1].T @ qcur
  12382. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12383. //
  12384. // using less variables (SM=S4):
  12385. //
  12386. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12387. // SM = softmax(S)
  12388. // S = d[:D,iq1,iq2,iq3] @ vcur
  12389. // dot_SM_gradSM = dot(SM, S)
  12390. // S = SM * (S - dot(SM, S))
  12391. // S = diag_mask_zero(S, P) * scale
  12392. //
  12393. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12394. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12395. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12396. }
  12397. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12398. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12399. // for ic:
  12400. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12401. // exclude known future zero S[..] values from operation
  12402. ggml_vec_set_f32(masked_begin, S, 0);
  12403. for (int64_t ic = 0; ic < D; ++ic) {
  12404. ggml_vec_mad_f32(masked_begin,
  12405. S,
  12406. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12407. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12408. }
  12409. // S = SM * (S - dot(SM, S))
  12410. float dot_SM_gradSM = 0;
  12411. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12412. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12413. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12414. // S = diag_mask_zero(S, P) * scale
  12415. // already done by above ggml_vec_set_f32
  12416. // exclude known zero S[..] values from operation
  12417. ggml_vec_scale_f32(masked_begin, S, scale);
  12418. // S shape [M,1]
  12419. // SM shape [M,1]
  12420. // kcur shape [D,M]
  12421. // qcur shape [D,1]
  12422. // vcur shape [M,D]
  12423. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12424. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12425. // for ic:
  12426. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12427. // exclude known zero S[..] values from loop
  12428. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12429. ggml_vec_mad_f32(D,
  12430. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12431. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12432. S[ic]);
  12433. }
  12434. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12435. // for ic:
  12436. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12437. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12438. // exclude known zero S[..] values from loop
  12439. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12440. ggml_vec_mad_f32(D,
  12441. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12442. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12443. S[ic]);
  12444. }
  12445. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12446. // for ic:
  12447. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12448. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12449. // exclude known zero SM[..] values from mad
  12450. for (int64_t ic = 0; ic < D; ++ic) {
  12451. ggml_vec_mad_f32(masked_begin,
  12452. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12453. SM,
  12454. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12455. }
  12456. }
  12457. }
  12458. }
  12459. }
  12460. static void ggml_compute_forward_flash_attn_back(
  12461. const struct ggml_compute_params * params,
  12462. const bool masked,
  12463. struct ggml_tensor * dst) {
  12464. const struct ggml_tensor * q = dst->src[0];
  12465. switch (q->type) {
  12466. case GGML_TYPE_F32:
  12467. {
  12468. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12469. } break;
  12470. default:
  12471. {
  12472. GGML_ASSERT(false);
  12473. } break;
  12474. }
  12475. }
  12476. // ggml_compute_forward_ssm_conv
  12477. static void ggml_compute_forward_ssm_conv_f32(
  12478. const struct ggml_compute_params * params,
  12479. struct ggml_tensor * dst) {
  12480. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12481. return;
  12482. }
  12483. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12484. const struct ggml_tensor * src1 = dst->src[1]; // x
  12485. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12486. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12487. const int ith = params->ith;
  12488. const int nth = params->nth;
  12489. const int nc = src2->ne[0]; // d_conv
  12490. const int nr = src0->ne[1]; // d_inner
  12491. const int n_t = src1->ne[1]; // n_tokens
  12492. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12493. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12494. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12495. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12496. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12497. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12498. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12499. // for use with the destination state offset between sequences
  12500. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12501. // rows per thread
  12502. const int dr = (nr + nth - 1)/nth;
  12503. // row range for this thread
  12504. const int ir0 = dr*ith;
  12505. const int ir1 = MIN(ir0 + dr, nr);
  12506. const int ir = ir1 - ir0;
  12507. if (n_kv > 1) {
  12508. // multiple sequences means it's hard to know when it's the first time a state is read,
  12509. // so copy them all over to the destination, just to be sure.
  12510. for (int i3 = 0; i3 < n_kv; ++i3) {
  12511. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12512. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12513. // can't use memcpy because of d_conv vs d_conv - 1
  12514. for (int i1 = 0; i1 < ir; ++i1) {
  12515. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12516. // copy s0 to last (d_conv - 1) columns of s
  12517. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12518. }
  12519. }
  12520. }
  12521. }
  12522. for (int i2 = 0; i2 < n_t; ++i2) {
  12523. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12524. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12525. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12526. float * s0; // {d_conv - 1, d_inner, n_kv}
  12527. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12528. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12529. int ne0s0;
  12530. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12531. // avoid needing to copy the state for the first token
  12532. if (i2 == 0) {
  12533. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12534. ne0s0 = src0->ne[0];
  12535. } else {
  12536. // the source is the last (d_conv - 1) columns of the destination
  12537. s0 = s + 1;
  12538. ne0s0 = nc;
  12539. }
  12540. // d_inner
  12541. for (int i1 = 0; i1 < ir; ++i1) {
  12542. // shift state left
  12543. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12544. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12545. }
  12546. // insert x on the last column
  12547. s[(nc - 1) + i1*nc] = x0[i1];
  12548. }
  12549. // handle copies when there are multiple output states
  12550. for (int i3 = 1; i3 < n_kv; ++i3) {
  12551. int32_t seq = sq[i3];
  12552. if (0 <= seq && seq < n_kv) {
  12553. float * s1 = s + (seq - sq[0])*nc*nr;
  12554. memcpy(s1, s, nc*ir*sizeof(float));
  12555. } else {
  12556. // stop at negative or too big seq_ids
  12557. break;
  12558. }
  12559. }
  12560. // it seems a little faster when this is separate from the state shift
  12561. for (int i1 = 0; i1 < ir; ++i1) {
  12562. // rowwise dot product
  12563. float sumf = 0.0f;
  12564. for (int i0 = 0; i0 < nc; ++i0) {
  12565. int i = i0 + i1*nc;
  12566. sumf += s[i] * c[i];
  12567. }
  12568. x[i1] = sumf;
  12569. }
  12570. }
  12571. }
  12572. static void ggml_compute_forward_ssm_conv(
  12573. const struct ggml_compute_params * params,
  12574. struct ggml_tensor * dst) {
  12575. switch (dst->src[0]->type) {
  12576. case GGML_TYPE_F32:
  12577. {
  12578. ggml_compute_forward_ssm_conv_f32(params, dst);
  12579. } break;
  12580. default:
  12581. {
  12582. GGML_ASSERT(false);
  12583. } break;
  12584. }
  12585. }
  12586. // ggml_compute_forward_ssm_scan
  12587. static void ggml_compute_forward_ssm_scan_f32(
  12588. const struct ggml_compute_params * params,
  12589. struct ggml_tensor * dst) {
  12590. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12591. return;
  12592. }
  12593. const struct ggml_tensor * src0 = dst->src[0]; // s
  12594. const struct ggml_tensor * src1 = dst->src[1]; // x
  12595. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12596. const struct ggml_tensor * src3 = dst->src[3]; // A
  12597. const struct ggml_tensor * src4 = dst->src[4]; // B
  12598. const struct ggml_tensor * src5 = dst->src[5]; // C
  12599. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12600. const int ith = params->ith;
  12601. const int nth = params->nth;
  12602. const int64_t nc = src0->ne[0]; // d_state
  12603. const int64_t nr = src0->ne[1]; // d_inner
  12604. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12605. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12606. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12607. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12608. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12609. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12610. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12611. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12612. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12613. // required for the dot product between s and C, and when copying the states
  12614. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12615. // required for per-sequence offsets for states
  12616. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12617. // required to get correct offset for state destination (i.e. src1->nb[2])
  12618. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12619. // rows per thread
  12620. const int dr = (nr + nth - 1)/nth;
  12621. // row range for this thread
  12622. const int ir0 = dr*ith;
  12623. const int ir1 = MIN(ir0 + dr, nr);
  12624. const int ir = ir1 - ir0;
  12625. if (n_kv > 1) {
  12626. // it's hard to know if the source states have already been copied
  12627. // when there are multiple, so copy them already.
  12628. for (int i3 = 0; i3 < n_kv; ++i3) {
  12629. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12630. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12631. memcpy(s, s0, nc*ir*sizeof(float));
  12632. }
  12633. }
  12634. for (int i2 = 0; i2 < n_t; ++i2) {
  12635. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12636. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12637. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12638. float * s0;
  12639. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12640. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12641. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12642. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12643. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12644. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12645. // avoid needing to copy the state for the first token
  12646. if (i2 == 0) {
  12647. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12648. } else {
  12649. // otherwise the source is the same as the destination
  12650. s0 = s;
  12651. }
  12652. // d_inner
  12653. for (int i1 = 0; i1 < ir; ++i1) {
  12654. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12655. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12656. float x_dt = x[i1] * dt_soft_plus;
  12657. float sumf = 0.0f;
  12658. // d_state
  12659. for (int i0 = 0; i0 < nc; ++i0) {
  12660. int i = i0 + i1*nc;
  12661. // state = prev_state * dA + dB * x
  12662. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12663. // y = rowwise_dotprod(state, C)
  12664. sumf += state * C[i0];
  12665. s[i] = state;
  12666. }
  12667. y[i1] = sumf;
  12668. }
  12669. // handle copies when there are multiple output states
  12670. for (int i3 = 1; i3 < n_kv; ++i3) {
  12671. int32_t seq = sq[i3];
  12672. if (0 <= seq && seq < n_kv) {
  12673. float * s1 = s + (seq - sq[0])*nc*nr;
  12674. memcpy(s1, s, nc*ir*sizeof(float));
  12675. } else {
  12676. // stop at negative or too big seq_ids
  12677. break;
  12678. }
  12679. }
  12680. }
  12681. }
  12682. static void ggml_compute_forward_ssm_scan(
  12683. const struct ggml_compute_params * params,
  12684. struct ggml_tensor * dst) {
  12685. switch (dst->src[0]->type) {
  12686. case GGML_TYPE_F32:
  12687. {
  12688. ggml_compute_forward_ssm_scan_f32(params, dst);
  12689. } break;
  12690. default:
  12691. {
  12692. GGML_ASSERT(false);
  12693. } break;
  12694. }
  12695. }
  12696. // ggml_compute_forward_win_part
  12697. static void ggml_compute_forward_win_part_f32(
  12698. const struct ggml_compute_params * params,
  12699. struct ggml_tensor * dst) {
  12700. const struct ggml_tensor * src0 = dst->src[0];
  12701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12702. return;
  12703. }
  12704. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12705. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12706. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12707. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12708. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12709. assert(ne00 == ne0);
  12710. assert(ne3 == nep0*nep1);
  12711. // TODO: optimize / multi-thread
  12712. for (int py = 0; py < nep1; ++py) {
  12713. for (int px = 0; px < nep0; ++px) {
  12714. const int64_t i3 = py*nep0 + px;
  12715. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12716. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12717. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12718. const int64_t i02 = py*w + i2;
  12719. const int64_t i01 = px*w + i1;
  12720. const int64_t i00 = i0;
  12721. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12722. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12723. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12724. ((float *) dst->data)[i] = 0.0f;
  12725. } else {
  12726. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12727. }
  12728. }
  12729. }
  12730. }
  12731. }
  12732. }
  12733. }
  12734. static void ggml_compute_forward_win_part(
  12735. const struct ggml_compute_params * params,
  12736. struct ggml_tensor * dst) {
  12737. const struct ggml_tensor * src0 = dst->src[0];
  12738. switch (src0->type) {
  12739. case GGML_TYPE_F32:
  12740. {
  12741. ggml_compute_forward_win_part_f32(params, dst);
  12742. } break;
  12743. default:
  12744. {
  12745. GGML_ASSERT(false);
  12746. } break;
  12747. }
  12748. }
  12749. // ggml_compute_forward_win_unpart
  12750. static void ggml_compute_forward_win_unpart_f32(
  12751. const struct ggml_compute_params * params,
  12752. struct ggml_tensor * dst) {
  12753. const struct ggml_tensor * src0 = dst->src[0];
  12754. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12755. return;
  12756. }
  12757. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12758. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12759. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12760. // padding
  12761. const int px = (w - ne1%w)%w;
  12762. //const int py = (w - ne2%w)%w;
  12763. const int npx = (px + ne1)/w;
  12764. //const int npy = (py + ne2)/w;
  12765. assert(ne0 == ne00);
  12766. // TODO: optimize / multi-thread
  12767. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12768. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12769. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12770. const int ip2 = i2/w;
  12771. const int ip1 = i1/w;
  12772. const int64_t i02 = i2%w;
  12773. const int64_t i01 = i1%w;
  12774. const int64_t i00 = i0;
  12775. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12776. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12777. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12778. }
  12779. }
  12780. }
  12781. }
  12782. static void ggml_compute_forward_win_unpart(
  12783. const struct ggml_compute_params * params,
  12784. struct ggml_tensor * dst) {
  12785. const struct ggml_tensor * src0 = dst->src[0];
  12786. switch (src0->type) {
  12787. case GGML_TYPE_F32:
  12788. {
  12789. ggml_compute_forward_win_unpart_f32(params, dst);
  12790. } break;
  12791. default:
  12792. {
  12793. GGML_ASSERT(false);
  12794. } break;
  12795. }
  12796. }
  12797. //gmml_compute_forward_unary
  12798. static void ggml_compute_forward_unary(
  12799. const struct ggml_compute_params * params,
  12800. struct ggml_tensor * dst) {
  12801. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12802. switch (op) {
  12803. case GGML_UNARY_OP_ABS:
  12804. {
  12805. ggml_compute_forward_abs(params, dst);
  12806. } break;
  12807. case GGML_UNARY_OP_SGN:
  12808. {
  12809. ggml_compute_forward_sgn(params, dst);
  12810. } break;
  12811. case GGML_UNARY_OP_NEG:
  12812. {
  12813. ggml_compute_forward_neg(params, dst);
  12814. } break;
  12815. case GGML_UNARY_OP_STEP:
  12816. {
  12817. ggml_compute_forward_step(params, dst);
  12818. } break;
  12819. case GGML_UNARY_OP_TANH:
  12820. {
  12821. ggml_compute_forward_tanh(params, dst);
  12822. } break;
  12823. case GGML_UNARY_OP_ELU:
  12824. {
  12825. ggml_compute_forward_elu(params, dst);
  12826. } break;
  12827. case GGML_UNARY_OP_RELU:
  12828. {
  12829. ggml_compute_forward_relu(params, dst);
  12830. } break;
  12831. case GGML_UNARY_OP_GELU:
  12832. {
  12833. ggml_compute_forward_gelu(params, dst);
  12834. } break;
  12835. case GGML_UNARY_OP_GELU_QUICK:
  12836. {
  12837. ggml_compute_forward_gelu_quick(params, dst);
  12838. } break;
  12839. case GGML_UNARY_OP_SILU:
  12840. {
  12841. ggml_compute_forward_silu(params, dst);
  12842. } break;
  12843. case GGML_UNARY_OP_HARDSWISH:
  12844. {
  12845. ggml_compute_forward_hardswish(params, dst);
  12846. } break;
  12847. case GGML_UNARY_OP_HARDSIGMOID:
  12848. {
  12849. ggml_compute_forward_hardsigmoid(params, dst);
  12850. } break;
  12851. default:
  12852. {
  12853. GGML_ASSERT(false);
  12854. } break;
  12855. }
  12856. }
  12857. // ggml_compute_forward_get_rel_pos
  12858. static void ggml_compute_forward_get_rel_pos_f16(
  12859. const struct ggml_compute_params * params,
  12860. struct ggml_tensor * dst) {
  12861. const struct ggml_tensor * src0 = dst->src[0];
  12862. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12863. return;
  12864. }
  12865. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12866. GGML_TENSOR_UNARY_OP_LOCALS
  12867. const int64_t w = ne1;
  12868. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12869. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12870. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12871. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12872. const int64_t pos = (w - i1 - 1) + i2;
  12873. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12874. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12875. }
  12876. }
  12877. }
  12878. }
  12879. static void ggml_compute_forward_get_rel_pos(
  12880. const struct ggml_compute_params * params,
  12881. struct ggml_tensor * dst) {
  12882. const struct ggml_tensor * src0 = dst->src[0];
  12883. switch (src0->type) {
  12884. case GGML_TYPE_F16:
  12885. {
  12886. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12887. } break;
  12888. default:
  12889. {
  12890. GGML_ASSERT(false);
  12891. } break;
  12892. }
  12893. }
  12894. // ggml_compute_forward_add_rel_pos
  12895. static void ggml_compute_forward_add_rel_pos_f32(
  12896. const struct ggml_compute_params * params,
  12897. struct ggml_tensor * dst) {
  12898. const struct ggml_tensor * src0 = dst->src[0];
  12899. const struct ggml_tensor * src1 = dst->src[1];
  12900. const struct ggml_tensor * src2 = dst->src[2];
  12901. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12902. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12903. if (params->ith != 0) {
  12904. return;
  12905. }
  12906. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12907. return;
  12908. }
  12909. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12910. return;
  12911. }
  12912. int64_t t0 = ggml_perf_time_us();
  12913. UNUSED(t0);
  12914. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12915. float * src1_data = (float *) src1->data;
  12916. float * src2_data = (float *) src2->data;
  12917. float * dst_data = (float *) dst->data;
  12918. const int64_t ne10 = src1->ne[0];
  12919. const int64_t ne11 = src1->ne[1];
  12920. const int64_t ne12 = src1->ne[2];
  12921. const int64_t ne13 = src1->ne[3];
  12922. const int ith = params->ith;
  12923. const int nth = params->nth;
  12924. // total patches in dst
  12925. const int np = ne13;
  12926. // patches per thread
  12927. const int dp = (np + nth - 1)/nth;
  12928. // patch range for this thread
  12929. const int ip0 = dp*ith;
  12930. const int ip1 = MIN(ip0 + dp, np);
  12931. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12932. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12933. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12934. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12935. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12936. const int64_t jp0 = jp1 + i10;
  12937. const float src1_e = src1_data[jp0];
  12938. const float src2_e = src2_data[jp0];
  12939. const int64_t jdh = jp0 * ne10;
  12940. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12941. for (int64_t j = 0; j < ne10; ++j) {
  12942. dst_data[jdh + j ] += src2_e;
  12943. dst_data[jdw + j*ne10] += src1_e;
  12944. }
  12945. }
  12946. }
  12947. }
  12948. }
  12949. }
  12950. static void ggml_compute_forward_add_rel_pos(
  12951. const struct ggml_compute_params * params,
  12952. struct ggml_tensor * dst) {
  12953. const struct ggml_tensor * src0 = dst->src[0];
  12954. switch (src0->type) {
  12955. case GGML_TYPE_F32:
  12956. {
  12957. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12958. } break;
  12959. default:
  12960. {
  12961. GGML_ASSERT(false);
  12962. } break;
  12963. }
  12964. }
  12965. // ggml_compute_forward_map_unary
  12966. static void ggml_compute_forward_map_unary_f32(
  12967. const struct ggml_compute_params * params,
  12968. struct ggml_tensor * dst,
  12969. const ggml_unary_op_f32_t fun) {
  12970. const struct ggml_tensor * src0 = dst->src[0];
  12971. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12973. return;
  12974. }
  12975. const int n = ggml_nrows(src0);
  12976. const int nc = src0->ne[0];
  12977. assert( dst->nb[0] == sizeof(float));
  12978. assert(src0->nb[0] == sizeof(float));
  12979. for (int i = 0; i < n; i++) {
  12980. fun(nc,
  12981. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12982. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12983. }
  12984. }
  12985. static void ggml_compute_forward_map_unary(
  12986. const struct ggml_compute_params * params,
  12987. struct ggml_tensor * dst,
  12988. const ggml_unary_op_f32_t fun) {
  12989. const struct ggml_tensor * src0 = dst->src[0];
  12990. switch (src0->type) {
  12991. case GGML_TYPE_F32:
  12992. {
  12993. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12994. } break;
  12995. default:
  12996. {
  12997. GGML_ASSERT(false);
  12998. } break;
  12999. }
  13000. }
  13001. // ggml_compute_forward_map_binary
  13002. static void ggml_compute_forward_map_binary_f32(
  13003. const struct ggml_compute_params * params,
  13004. struct ggml_tensor * dst,
  13005. const ggml_binary_op_f32_t fun) {
  13006. const struct ggml_tensor * src0 = dst->src[0];
  13007. const struct ggml_tensor * src1 = dst->src[1];
  13008. assert(params->ith == 0);
  13009. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13010. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13011. return;
  13012. }
  13013. const int n = ggml_nrows(src0);
  13014. const int nc = src0->ne[0];
  13015. assert( dst->nb[0] == sizeof(float));
  13016. assert(src0->nb[0] == sizeof(float));
  13017. assert(src1->nb[0] == sizeof(float));
  13018. for (int i = 0; i < n; i++) {
  13019. fun(nc,
  13020. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13021. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13022. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13023. }
  13024. }
  13025. static void ggml_compute_forward_map_binary(
  13026. const struct ggml_compute_params * params,
  13027. struct ggml_tensor * dst,
  13028. const ggml_binary_op_f32_t fun) {
  13029. const struct ggml_tensor * src0 = dst->src[0];
  13030. switch (src0->type) {
  13031. case GGML_TYPE_F32:
  13032. {
  13033. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13034. } break;
  13035. default:
  13036. {
  13037. GGML_ASSERT(false);
  13038. } break;
  13039. }
  13040. }
  13041. // ggml_compute_forward_map_custom1
  13042. static void ggml_compute_forward_map_custom1_f32(
  13043. const struct ggml_compute_params * params,
  13044. struct ggml_tensor * dst,
  13045. const ggml_custom1_op_f32_t fun) {
  13046. const struct ggml_tensor * a = dst->src[0];
  13047. assert(params->ith == 0);
  13048. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13049. return;
  13050. }
  13051. fun(dst, a);
  13052. }
  13053. // ggml_compute_forward_map_custom2
  13054. static void ggml_compute_forward_map_custom2_f32(
  13055. const struct ggml_compute_params * params,
  13056. struct ggml_tensor * dst,
  13057. const ggml_custom2_op_f32_t fun) {
  13058. const struct ggml_tensor * a = dst->src[0];
  13059. const struct ggml_tensor * b = dst->src[1];
  13060. assert(params->ith == 0);
  13061. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13062. return;
  13063. }
  13064. fun(dst, a, b);
  13065. }
  13066. // ggml_compute_forward_map_custom3
  13067. static void ggml_compute_forward_map_custom3_f32(
  13068. const struct ggml_compute_params * params,
  13069. struct ggml_tensor * dst,
  13070. const ggml_custom3_op_f32_t fun) {
  13071. const struct ggml_tensor * a = dst->src[0];
  13072. const struct ggml_tensor * b = dst->src[1];
  13073. const struct ggml_tensor * c = dst->src[1];
  13074. assert(params->ith == 0);
  13075. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13076. return;
  13077. }
  13078. fun(dst, a, b, c);
  13079. }
  13080. // ggml_compute_forward_map_custom1
  13081. static void ggml_compute_forward_map_custom1(
  13082. const struct ggml_compute_params * params,
  13083. struct ggml_tensor * dst) {
  13084. const struct ggml_tensor * a = dst->src[0];
  13085. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13086. return;
  13087. }
  13088. struct ggml_map_custom1_op_params p;
  13089. memcpy(&p, dst->op_params, sizeof(p));
  13090. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13091. }
  13092. // ggml_compute_forward_map_custom2
  13093. static void ggml_compute_forward_map_custom2(
  13094. const struct ggml_compute_params * params,
  13095. struct ggml_tensor * dst) {
  13096. const struct ggml_tensor * a = dst->src[0];
  13097. const struct ggml_tensor * b = dst->src[1];
  13098. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13099. return;
  13100. }
  13101. struct ggml_map_custom2_op_params p;
  13102. memcpy(&p, dst->op_params, sizeof(p));
  13103. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13104. }
  13105. // ggml_compute_forward_map_custom3
  13106. static void ggml_compute_forward_map_custom3(
  13107. const struct ggml_compute_params * params,
  13108. struct ggml_tensor * dst) {
  13109. const struct ggml_tensor * a = dst->src[0];
  13110. const struct ggml_tensor * b = dst->src[1];
  13111. const struct ggml_tensor * c = dst->src[2];
  13112. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13113. return;
  13114. }
  13115. struct ggml_map_custom3_op_params p;
  13116. memcpy(&p, dst->op_params, sizeof(p));
  13117. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13118. }
  13119. // ggml_compute_forward_cross_entropy_loss
  13120. static void ggml_compute_forward_cross_entropy_loss_f32(
  13121. const struct ggml_compute_params * params,
  13122. struct ggml_tensor * dst) {
  13123. const struct ggml_tensor * src0 = dst->src[0];
  13124. const struct ggml_tensor * src1 = dst->src[1];
  13125. GGML_ASSERT(ggml_is_contiguous(src0));
  13126. GGML_ASSERT(ggml_is_contiguous(src1));
  13127. GGML_ASSERT(ggml_is_scalar(dst));
  13128. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13129. const int ith = params->ith;
  13130. const int nth = params->nth;
  13131. float * sums = (float *) params->wdata;
  13132. // TODO: handle transposed/permuted matrices
  13133. const int nc = src0->ne[0];
  13134. const int nr = ggml_nrows(src0);
  13135. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13136. if (params->type == GGML_TASK_TYPE_INIT) {
  13137. if (ith == 0) {
  13138. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13139. }
  13140. return;
  13141. }
  13142. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13143. if (ith == 0) {
  13144. float * dp = (float *) dst->data;
  13145. ggml_vec_sum_f32(nth, dp, sums);
  13146. dp[0] *= -1.0f / (float) nr;
  13147. }
  13148. return;
  13149. }
  13150. const double eps = 1e-9;
  13151. // rows per thread
  13152. const int dr = (nr + nth - 1)/nth;
  13153. // row range for this thread
  13154. const int ir0 = dr*ith;
  13155. const int ir1 = MIN(ir0 + dr, nr);
  13156. for (int i1 = ir0; i1 < ir1; i1++) {
  13157. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13158. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13159. float * st = ((float *) params->wdata) + nth + ith*nc;
  13160. #ifndef NDEBUG
  13161. for (int i = 0; i < nc; ++i) {
  13162. //printf("p[%d] = %f\n", i, p[i]);
  13163. assert(!isnan(s0[i]));
  13164. assert(!isnan(s1[i]));
  13165. }
  13166. #endif
  13167. // soft_max
  13168. ggml_float sum = 0.0;
  13169. {
  13170. float max = -INFINITY;
  13171. ggml_vec_max_f32(nc, &max, s0);
  13172. uint16_t scvt; UNUSED(scvt);
  13173. for (int i = 0; i < nc; i++) {
  13174. if (s0[i] == -INFINITY) {
  13175. st[i] = 0.0f;
  13176. } else {
  13177. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13178. const float s = s0[i] - max;
  13179. const float val = expf(s);
  13180. #else
  13181. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13182. memcpy(&scvt, &s, sizeof(scvt));
  13183. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13184. #endif
  13185. sum += (ggml_float)val;
  13186. st[i] = val;
  13187. }
  13188. }
  13189. assert(sum > 0.0);
  13190. // sum = 1.0/sum;
  13191. }
  13192. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13193. sum = (1.0 - eps) / sum;
  13194. ggml_vec_scale_f32(nc, st, sum);
  13195. ggml_vec_add1_f32(nc, st, st, eps);
  13196. ggml_vec_log_f32(nc, st, st);
  13197. ggml_vec_mul_f32(nc, st, st, s1);
  13198. float st_sum = 0;
  13199. ggml_vec_sum_f32(nc, &st_sum, st);
  13200. sums[ith] += st_sum;
  13201. #ifndef NDEBUG
  13202. for (int i = 0; i < nc; ++i) {
  13203. assert(!isnan(st[i]));
  13204. assert(!isinf(st[i]));
  13205. }
  13206. #endif
  13207. }
  13208. }
  13209. static void ggml_compute_forward_cross_entropy_loss(
  13210. const struct ggml_compute_params * params,
  13211. struct ggml_tensor * dst) {
  13212. const struct ggml_tensor * src0 = dst->src[0];
  13213. switch (src0->type) {
  13214. case GGML_TYPE_F32:
  13215. {
  13216. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13217. } break;
  13218. default:
  13219. {
  13220. GGML_ASSERT(false);
  13221. } break;
  13222. }
  13223. }
  13224. // ggml_compute_forward_cross_entropy_loss_back
  13225. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13226. const struct ggml_compute_params * params,
  13227. struct ggml_tensor * dst) {
  13228. const struct ggml_tensor * src0 = dst->src[0];
  13229. const struct ggml_tensor * src1 = dst->src[1];
  13230. const struct ggml_tensor * opt0 = dst->src[2];
  13231. GGML_ASSERT(ggml_is_contiguous(dst));
  13232. GGML_ASSERT(ggml_is_contiguous(src0));
  13233. GGML_ASSERT(ggml_is_contiguous(src1));
  13234. GGML_ASSERT(ggml_is_contiguous(opt0));
  13235. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13236. const int64_t ith = params->ith;
  13237. const int64_t nth = params->nth;
  13238. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13239. return;
  13240. }
  13241. const double eps = 1e-9;
  13242. // TODO: handle transposed/permuted matrices
  13243. const int64_t nc = src0->ne[0];
  13244. const int64_t nr = ggml_nrows(src0);
  13245. // rows per thread
  13246. const int64_t dr = (nr + nth - 1)/nth;
  13247. // row range for this thread
  13248. const int64_t ir0 = dr*ith;
  13249. const int64_t ir1 = MIN(ir0 + dr, nr);
  13250. float * d = (float *) opt0->data;
  13251. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13252. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13253. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13254. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13255. #ifndef NDEBUG
  13256. for (int i = 0; i < nc; ++i) {
  13257. //printf("p[%d] = %f\n", i, p[i]);
  13258. assert(!isnan(s0[i]));
  13259. assert(!isnan(s1[i]));
  13260. }
  13261. #endif
  13262. // soft_max
  13263. ggml_float sum = 0.0;
  13264. {
  13265. float max = -INFINITY;
  13266. ggml_vec_max_f32(nc, &max, s0);
  13267. uint16_t scvt; UNUSED(scvt);
  13268. for (int i = 0; i < nc; i++) {
  13269. if (s0[i] == -INFINITY) {
  13270. ds0[i] = 0.0f;
  13271. } else {
  13272. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13273. const float s = s0[i] - max;
  13274. const float val = expf(s);
  13275. #else
  13276. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13277. memcpy(&scvt, &s, sizeof(scvt));
  13278. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13279. #endif
  13280. sum += (ggml_float)val;
  13281. ds0[i] = val;
  13282. }
  13283. }
  13284. assert(sum > 0.0);
  13285. sum = (1.0 - eps)/sum;
  13286. }
  13287. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13288. ggml_vec_scale_f32(nc, ds0, sum);
  13289. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13290. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13291. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13292. #ifndef NDEBUG
  13293. for (int i = 0; i < nc; ++i) {
  13294. assert(!isnan(ds0[i]));
  13295. assert(!isinf(ds0[i]));
  13296. }
  13297. #endif
  13298. }
  13299. }
  13300. static void ggml_compute_forward_cross_entropy_loss_back(
  13301. const struct ggml_compute_params * params,
  13302. struct ggml_tensor * dst) {
  13303. const struct ggml_tensor * src0 = dst->src[0];
  13304. switch (src0->type) {
  13305. case GGML_TYPE_F32:
  13306. {
  13307. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13308. } break;
  13309. default:
  13310. {
  13311. GGML_ASSERT(false);
  13312. } break;
  13313. }
  13314. }
  13315. /////////////////////////////////
  13316. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13317. GGML_ASSERT(params);
  13318. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13319. return;
  13320. }
  13321. switch (tensor->op) {
  13322. case GGML_OP_DUP:
  13323. {
  13324. ggml_compute_forward_dup(params, tensor);
  13325. } break;
  13326. case GGML_OP_ADD:
  13327. {
  13328. ggml_compute_forward_add(params, tensor);
  13329. } break;
  13330. case GGML_OP_ADD1:
  13331. {
  13332. ggml_compute_forward_add1(params, tensor);
  13333. } break;
  13334. case GGML_OP_ACC:
  13335. {
  13336. ggml_compute_forward_acc(params, tensor);
  13337. } break;
  13338. case GGML_OP_SUB:
  13339. {
  13340. ggml_compute_forward_sub(params, tensor);
  13341. } break;
  13342. case GGML_OP_MUL:
  13343. {
  13344. ggml_compute_forward_mul(params, tensor);
  13345. } break;
  13346. case GGML_OP_DIV:
  13347. {
  13348. ggml_compute_forward_div(params, tensor);
  13349. } break;
  13350. case GGML_OP_SQR:
  13351. {
  13352. ggml_compute_forward_sqr(params, tensor);
  13353. } break;
  13354. case GGML_OP_SQRT:
  13355. {
  13356. ggml_compute_forward_sqrt(params, tensor);
  13357. } break;
  13358. case GGML_OP_LOG:
  13359. {
  13360. ggml_compute_forward_log(params, tensor);
  13361. } break;
  13362. case GGML_OP_SUM:
  13363. {
  13364. ggml_compute_forward_sum(params, tensor);
  13365. } break;
  13366. case GGML_OP_SUM_ROWS:
  13367. {
  13368. ggml_compute_forward_sum_rows(params, tensor);
  13369. } break;
  13370. case GGML_OP_MEAN:
  13371. {
  13372. ggml_compute_forward_mean(params, tensor);
  13373. } break;
  13374. case GGML_OP_ARGMAX:
  13375. {
  13376. ggml_compute_forward_argmax(params, tensor);
  13377. } break;
  13378. case GGML_OP_REPEAT:
  13379. {
  13380. ggml_compute_forward_repeat(params, tensor);
  13381. } break;
  13382. case GGML_OP_REPEAT_BACK:
  13383. {
  13384. ggml_compute_forward_repeat_back(params, tensor);
  13385. } break;
  13386. case GGML_OP_CONCAT:
  13387. {
  13388. ggml_compute_forward_concat(params, tensor);
  13389. } break;
  13390. case GGML_OP_SILU_BACK:
  13391. {
  13392. ggml_compute_forward_silu_back(params, tensor);
  13393. } break;
  13394. case GGML_OP_NORM:
  13395. {
  13396. ggml_compute_forward_norm(params, tensor);
  13397. } break;
  13398. case GGML_OP_RMS_NORM:
  13399. {
  13400. ggml_compute_forward_rms_norm(params, tensor);
  13401. } break;
  13402. case GGML_OP_RMS_NORM_BACK:
  13403. {
  13404. ggml_compute_forward_rms_norm_back(params, tensor);
  13405. } break;
  13406. case GGML_OP_GROUP_NORM:
  13407. {
  13408. ggml_compute_forward_group_norm(params, tensor);
  13409. } break;
  13410. case GGML_OP_MUL_MAT:
  13411. {
  13412. ggml_compute_forward_mul_mat(params, tensor);
  13413. } break;
  13414. case GGML_OP_MUL_MAT_ID:
  13415. {
  13416. ggml_compute_forward_mul_mat_id(params, tensor);
  13417. } break;
  13418. case GGML_OP_OUT_PROD:
  13419. {
  13420. ggml_compute_forward_out_prod(params, tensor);
  13421. } break;
  13422. case GGML_OP_SCALE:
  13423. {
  13424. ggml_compute_forward_scale(params, tensor);
  13425. } break;
  13426. case GGML_OP_SET:
  13427. {
  13428. ggml_compute_forward_set(params, tensor);
  13429. } break;
  13430. case GGML_OP_CPY:
  13431. {
  13432. ggml_compute_forward_cpy(params, tensor);
  13433. } break;
  13434. case GGML_OP_CONT:
  13435. {
  13436. ggml_compute_forward_cont(params, tensor);
  13437. } break;
  13438. case GGML_OP_RESHAPE:
  13439. {
  13440. ggml_compute_forward_reshape(params, tensor);
  13441. } break;
  13442. case GGML_OP_VIEW:
  13443. {
  13444. ggml_compute_forward_view(params, tensor);
  13445. } break;
  13446. case GGML_OP_PERMUTE:
  13447. {
  13448. ggml_compute_forward_permute(params, tensor);
  13449. } break;
  13450. case GGML_OP_TRANSPOSE:
  13451. {
  13452. ggml_compute_forward_transpose(params, tensor);
  13453. } break;
  13454. case GGML_OP_GET_ROWS:
  13455. {
  13456. ggml_compute_forward_get_rows(params, tensor);
  13457. } break;
  13458. case GGML_OP_GET_ROWS_BACK:
  13459. {
  13460. ggml_compute_forward_get_rows_back(params, tensor);
  13461. } break;
  13462. case GGML_OP_DIAG:
  13463. {
  13464. ggml_compute_forward_diag(params, tensor);
  13465. } break;
  13466. case GGML_OP_DIAG_MASK_INF:
  13467. {
  13468. ggml_compute_forward_diag_mask_inf(params, tensor);
  13469. } break;
  13470. case GGML_OP_DIAG_MASK_ZERO:
  13471. {
  13472. ggml_compute_forward_diag_mask_zero(params, tensor);
  13473. } break;
  13474. case GGML_OP_SOFT_MAX:
  13475. {
  13476. ggml_compute_forward_soft_max(params, tensor);
  13477. } break;
  13478. case GGML_OP_SOFT_MAX_BACK:
  13479. {
  13480. ggml_compute_forward_soft_max_back(params, tensor);
  13481. } break;
  13482. case GGML_OP_ROPE:
  13483. {
  13484. ggml_compute_forward_rope(params, tensor);
  13485. } break;
  13486. case GGML_OP_ROPE_BACK:
  13487. {
  13488. ggml_compute_forward_rope_back(params, tensor);
  13489. } break;
  13490. case GGML_OP_ALIBI:
  13491. {
  13492. ggml_compute_forward_alibi(params, tensor);
  13493. } break;
  13494. case GGML_OP_CLAMP:
  13495. {
  13496. ggml_compute_forward_clamp(params, tensor);
  13497. } break;
  13498. case GGML_OP_CONV_TRANSPOSE_1D:
  13499. {
  13500. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13501. } break;
  13502. case GGML_OP_IM2COL:
  13503. {
  13504. ggml_compute_forward_im2col(params, tensor);
  13505. } break;
  13506. case GGML_OP_CONV_TRANSPOSE_2D:
  13507. {
  13508. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13509. } break;
  13510. case GGML_OP_POOL_1D:
  13511. {
  13512. ggml_compute_forward_pool_1d(params, tensor);
  13513. } break;
  13514. case GGML_OP_POOL_2D:
  13515. {
  13516. ggml_compute_forward_pool_2d(params, tensor);
  13517. } break;
  13518. case GGML_OP_UPSCALE:
  13519. {
  13520. ggml_compute_forward_upscale(params, tensor);
  13521. } break;
  13522. case GGML_OP_PAD:
  13523. {
  13524. ggml_compute_forward_pad(params, tensor);
  13525. } break;
  13526. case GGML_OP_ARANGE:
  13527. {
  13528. ggml_compute_forward_arange(params, tensor);
  13529. } break;
  13530. case GGML_OP_TIMESTEP_EMBEDDING:
  13531. {
  13532. ggml_compute_forward_timestep_embedding(params, tensor);
  13533. } break;
  13534. case GGML_OP_ARGSORT:
  13535. {
  13536. ggml_compute_forward_argsort(params, tensor);
  13537. } break;
  13538. case GGML_OP_LEAKY_RELU:
  13539. {
  13540. ggml_compute_forward_leaky_relu(params, tensor);
  13541. } break;
  13542. case GGML_OP_FLASH_ATTN:
  13543. {
  13544. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13545. GGML_ASSERT(t == 0 || t == 1);
  13546. const bool masked = t != 0;
  13547. ggml_compute_forward_flash_attn(params, masked, tensor);
  13548. } break;
  13549. case GGML_OP_FLASH_ATTN_EXT:
  13550. {
  13551. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13552. } break;
  13553. case GGML_OP_FLASH_FF:
  13554. {
  13555. ggml_compute_forward_flash_ff(params, tensor);
  13556. } break;
  13557. case GGML_OP_FLASH_ATTN_BACK:
  13558. {
  13559. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13560. GGML_ASSERT(t == 0 || t == 1);
  13561. bool masked = t != 0;
  13562. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13563. } break;
  13564. case GGML_OP_SSM_CONV:
  13565. {
  13566. ggml_compute_forward_ssm_conv(params, tensor);
  13567. } break;
  13568. case GGML_OP_SSM_SCAN:
  13569. {
  13570. ggml_compute_forward_ssm_scan(params, tensor);
  13571. } break;
  13572. case GGML_OP_WIN_PART:
  13573. {
  13574. ggml_compute_forward_win_part(params, tensor);
  13575. } break;
  13576. case GGML_OP_WIN_UNPART:
  13577. {
  13578. ggml_compute_forward_win_unpart(params, tensor);
  13579. } break;
  13580. case GGML_OP_UNARY:
  13581. {
  13582. ggml_compute_forward_unary(params, tensor);
  13583. } break;
  13584. case GGML_OP_GET_REL_POS:
  13585. {
  13586. ggml_compute_forward_get_rel_pos(params, tensor);
  13587. } break;
  13588. case GGML_OP_ADD_REL_POS:
  13589. {
  13590. ggml_compute_forward_add_rel_pos(params, tensor);
  13591. } break;
  13592. case GGML_OP_MAP_UNARY:
  13593. {
  13594. ggml_unary_op_f32_t fun;
  13595. memcpy(&fun, tensor->op_params, sizeof(fun));
  13596. ggml_compute_forward_map_unary(params, tensor, fun);
  13597. }
  13598. break;
  13599. case GGML_OP_MAP_BINARY:
  13600. {
  13601. ggml_binary_op_f32_t fun;
  13602. memcpy(&fun, tensor->op_params, sizeof(fun));
  13603. ggml_compute_forward_map_binary(params, tensor, fun);
  13604. }
  13605. break;
  13606. case GGML_OP_MAP_CUSTOM1_F32:
  13607. {
  13608. ggml_custom1_op_f32_t fun;
  13609. memcpy(&fun, tensor->op_params, sizeof(fun));
  13610. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13611. }
  13612. break;
  13613. case GGML_OP_MAP_CUSTOM2_F32:
  13614. {
  13615. ggml_custom2_op_f32_t fun;
  13616. memcpy(&fun, tensor->op_params, sizeof(fun));
  13617. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13618. }
  13619. break;
  13620. case GGML_OP_MAP_CUSTOM3_F32:
  13621. {
  13622. ggml_custom3_op_f32_t fun;
  13623. memcpy(&fun, tensor->op_params, sizeof(fun));
  13624. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13625. }
  13626. break;
  13627. case GGML_OP_MAP_CUSTOM1:
  13628. {
  13629. ggml_compute_forward_map_custom1(params, tensor);
  13630. }
  13631. break;
  13632. case GGML_OP_MAP_CUSTOM2:
  13633. {
  13634. ggml_compute_forward_map_custom2(params, tensor);
  13635. }
  13636. break;
  13637. case GGML_OP_MAP_CUSTOM3:
  13638. {
  13639. ggml_compute_forward_map_custom3(params, tensor);
  13640. }
  13641. break;
  13642. case GGML_OP_CROSS_ENTROPY_LOSS:
  13643. {
  13644. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13645. }
  13646. break;
  13647. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13648. {
  13649. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13650. }
  13651. break;
  13652. case GGML_OP_NONE:
  13653. {
  13654. // nop
  13655. } break;
  13656. case GGML_OP_COUNT:
  13657. {
  13658. GGML_ASSERT(false);
  13659. } break;
  13660. }
  13661. }
  13662. ////////////////////////////////////////////////////////////////////////////////
  13663. static size_t ggml_hash_size(size_t min_sz) {
  13664. // next primes after powers of two
  13665. static const size_t primes[] = {
  13666. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13667. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13668. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13669. 16777259, 33554467, 67108879, 134217757, 268435459,
  13670. 536870923, 1073741827, 2147483659
  13671. };
  13672. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13673. // find the smallest prime that is larger or equal to min_sz
  13674. size_t l = 0;
  13675. size_t r = n_primes;
  13676. while (l < r) {
  13677. size_t m = (l + r)/2;
  13678. if (primes[m] < min_sz) {
  13679. l = m + 1;
  13680. } else {
  13681. r = m;
  13682. }
  13683. }
  13684. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13685. return sz;
  13686. }
  13687. static size_t ggml_hash(const void * p) {
  13688. return (size_t)p;
  13689. }
  13690. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13691. size_t h = ggml_hash(key) % hash_set.size;
  13692. // linear probing
  13693. size_t i = h;
  13694. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13695. i = (i + 1) % hash_set.size;
  13696. if (i == h) {
  13697. // visited all hash table entries -> not found
  13698. return GGML_HASHTABLE_FULL;
  13699. }
  13700. }
  13701. return i;
  13702. }
  13703. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13704. size_t i = ggml_hash_find(hash_set, key);
  13705. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13706. }
  13707. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13708. size_t i = ggml_hash_find(hash_set, key);
  13709. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13710. if (hash_set.keys[i] == key) {
  13711. return GGML_HASHTABLE_ALREADY_EXISTS;
  13712. }
  13713. // insert
  13714. GGML_ASSERT(hash_set.keys[i] == NULL);
  13715. hash_set.keys[i] = key;
  13716. return i;
  13717. }
  13718. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13719. size_t i = ggml_hash_find(hash_set, key);
  13720. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13721. hash_set.keys[i] = key;
  13722. return i;
  13723. }
  13724. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13725. size = ggml_hash_size(size);
  13726. struct ggml_hash_set result;
  13727. result.size = size;
  13728. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13729. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13730. return result;
  13731. }
  13732. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13733. GGML_FREE(hash_set.keys);
  13734. }
  13735. struct hash_map {
  13736. struct ggml_hash_set set;
  13737. struct ggml_tensor ** vals;
  13738. };
  13739. static struct hash_map * ggml_new_hash_map(size_t size) {
  13740. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13741. result->set = ggml_hash_set_new(size);
  13742. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13743. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13744. return result;
  13745. }
  13746. static void ggml_hash_map_free(struct hash_map * map) {
  13747. ggml_hash_set_free(map->set);
  13748. GGML_FREE(map->vals);
  13749. GGML_FREE(map);
  13750. }
  13751. // gradient checkpointing
  13752. static struct ggml_tensor * ggml_recompute_graph_node(
  13753. struct ggml_context * ctx,
  13754. struct ggml_cgraph * graph,
  13755. struct hash_map * replacements,
  13756. struct ggml_tensor * node) {
  13757. if (node == NULL) {
  13758. return NULL;
  13759. }
  13760. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13761. return node;
  13762. }
  13763. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13764. return node;
  13765. }
  13766. int count_children = 0;
  13767. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13768. if (node->src[k]) {
  13769. ++count_children;
  13770. }
  13771. }
  13772. if (count_children == 0) {
  13773. return node;
  13774. }
  13775. size_t i = ggml_hash_find(replacements->set, node);
  13776. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13777. if (replacements->set.keys[i] == node) {
  13778. return replacements->vals[i];
  13779. }
  13780. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13781. // insert clone into replacements
  13782. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13783. replacements->set.keys[i] = node;
  13784. replacements->vals[i] = clone;
  13785. clone->op = node->op;
  13786. clone->grad = node->grad;
  13787. clone->flags = node->flags;
  13788. clone->extra = node->extra;
  13789. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13790. clone->nb[k] = node->nb[k];
  13791. }
  13792. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13793. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13794. }
  13795. if (node->view_src != NULL) {
  13796. clone->data = (node->view_src->data == NULL)
  13797. ? NULL // view_src not yet allocated
  13798. : (char *) node->view_src->data // view_src already allocated
  13799. + node->view_offs;
  13800. clone->view_src = node->view_src;
  13801. clone->view_offs = node->view_offs;
  13802. }
  13803. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13804. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13805. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13806. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13807. return clone;
  13808. }
  13809. void ggml_build_backward_gradient_checkpointing(
  13810. struct ggml_context * ctx,
  13811. struct ggml_cgraph * gf,
  13812. struct ggml_cgraph * gb,
  13813. struct ggml_cgraph * gb_tmp,
  13814. struct ggml_tensor * * checkpoints,
  13815. int n_checkpoints) {
  13816. ggml_graph_cpy(gf, gb_tmp);
  13817. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13818. if (n_checkpoints <= 0) {
  13819. ggml_graph_cpy(gb_tmp, gb);
  13820. return;
  13821. }
  13822. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13823. // insert checkpoints in replacements
  13824. for (int i = 0; i < n_checkpoints; ++i) {
  13825. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13826. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13827. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13828. replacements->set.keys[k] = checkpoints[i];
  13829. replacements->vals[k] = checkpoints[i];
  13830. }
  13831. ggml_graph_cpy(gf, gb);
  13832. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13833. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13834. // by recomputing them from checkpoints
  13835. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13836. struct ggml_tensor * node = gb_tmp->nodes[i];
  13837. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13838. // insert new tensors recomputing src, reusing already made replacements,
  13839. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13840. // recurse for input tensors,
  13841. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13842. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13843. }
  13844. // insert rewritten backward node with replacements made into resulting backward graph gb
  13845. ggml_build_forward_expand(gb, node);
  13846. }
  13847. ggml_hash_map_free(replacements);
  13848. }
  13849. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13850. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13851. if (ggml_hash_contains(zero_table, a)) {
  13852. return b;
  13853. } else {
  13854. return ggml_add_impl(ctx, a, b, false);
  13855. }
  13856. }
  13857. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13858. if (ggml_hash_contains(zero_table, a)) {
  13859. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13860. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13861. } else {
  13862. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13863. }
  13864. }
  13865. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13866. if (ggml_hash_contains(zero_table, a)) {
  13867. return ggml_repeat(ctx, b, a);
  13868. } else {
  13869. return ggml_add1_impl(ctx, a, b, false);
  13870. }
  13871. }
  13872. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13873. if (ggml_hash_contains(zero_table, a)) {
  13874. return ggml_neg(ctx, b);
  13875. } else {
  13876. return ggml_sub_impl(ctx, a, b, false);
  13877. }
  13878. }
  13879. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13880. struct ggml_tensor * src0 = tensor->src[0];
  13881. struct ggml_tensor * src1 = tensor->src[1];
  13882. switch (tensor->op) {
  13883. case GGML_OP_DUP:
  13884. {
  13885. if (src0->grad) {
  13886. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13887. }
  13888. } break;
  13889. case GGML_OP_ADD:
  13890. {
  13891. if (src0->grad) {
  13892. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13893. }
  13894. if (src1->grad) {
  13895. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13896. }
  13897. } break;
  13898. case GGML_OP_ADD1:
  13899. {
  13900. if (src0->grad) {
  13901. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13902. }
  13903. if (src1->grad) {
  13904. src1->grad = ggml_add_or_set(ctx,
  13905. src1->grad,
  13906. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13907. zero_table);
  13908. }
  13909. } break;
  13910. case GGML_OP_ACC:
  13911. {
  13912. if (src0->grad) {
  13913. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13914. }
  13915. if (src1->grad) {
  13916. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13917. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13918. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13919. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13920. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13921. tensor->grad,
  13922. src1->grad->ne[0],
  13923. src1->grad->ne[1],
  13924. src1->grad->ne[2],
  13925. src1->grad->ne[3],
  13926. nb1, nb2, nb3, offset);
  13927. src1->grad =
  13928. ggml_add_or_set(ctx,
  13929. src1->grad,
  13930. ggml_reshape(ctx,
  13931. ggml_cont(ctx, tensor_grad_view),
  13932. src1->grad),
  13933. zero_table);
  13934. }
  13935. } break;
  13936. case GGML_OP_SUB:
  13937. {
  13938. if (src0->grad) {
  13939. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13940. }
  13941. if (src1->grad) {
  13942. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13943. }
  13944. } break;
  13945. case GGML_OP_MUL:
  13946. {
  13947. if (src0->grad) {
  13948. src0->grad =
  13949. ggml_add_or_set(ctx,
  13950. src0->grad,
  13951. ggml_mul(ctx, src1, tensor->grad),
  13952. zero_table);
  13953. }
  13954. if (src1->grad) {
  13955. src1->grad =
  13956. ggml_add_or_set(ctx,
  13957. src1->grad,
  13958. ggml_mul(ctx, src0, tensor->grad),
  13959. zero_table);
  13960. }
  13961. } break;
  13962. case GGML_OP_DIV:
  13963. {
  13964. if (src0->grad) {
  13965. src0->grad =
  13966. ggml_add_or_set(ctx,
  13967. src0->grad,
  13968. ggml_div(ctx, tensor->grad, src1),
  13969. zero_table);
  13970. }
  13971. if (src1->grad) {
  13972. src1->grad =
  13973. ggml_sub_or_set(ctx,
  13974. src1->grad,
  13975. ggml_mul(ctx,
  13976. tensor->grad,
  13977. ggml_div(ctx, tensor, src1)),
  13978. zero_table);
  13979. }
  13980. } break;
  13981. case GGML_OP_SQR:
  13982. {
  13983. if (src0->grad) {
  13984. src0->grad =
  13985. ggml_add_or_set(ctx,
  13986. src0->grad,
  13987. ggml_scale(ctx,
  13988. ggml_mul(ctx, src0, tensor->grad),
  13989. 2.0f),
  13990. zero_table);
  13991. }
  13992. } break;
  13993. case GGML_OP_SQRT:
  13994. {
  13995. if (src0->grad) {
  13996. src0->grad =
  13997. ggml_add_or_set(ctx,
  13998. src0->grad,
  13999. ggml_scale(ctx,
  14000. ggml_div(ctx,
  14001. tensor->grad,
  14002. tensor),
  14003. 0.5f),
  14004. zero_table);
  14005. }
  14006. } break;
  14007. case GGML_OP_LOG:
  14008. {
  14009. if (src0->grad) {
  14010. src0->grad =
  14011. ggml_add_or_set(ctx,
  14012. src0->grad,
  14013. ggml_div(ctx,
  14014. tensor->grad,
  14015. src0),
  14016. zero_table);
  14017. }
  14018. } break;
  14019. case GGML_OP_SUM:
  14020. {
  14021. if (src0->grad) {
  14022. src0->grad =
  14023. ggml_add1_or_set(ctx,
  14024. src0->grad,
  14025. tensor->grad,
  14026. zero_table);
  14027. }
  14028. } break;
  14029. case GGML_OP_SUM_ROWS:
  14030. {
  14031. if (src0->grad) {
  14032. src0->grad =
  14033. ggml_add_or_set(ctx,
  14034. src0->grad,
  14035. ggml_repeat(ctx,
  14036. tensor->grad,
  14037. src0->grad),
  14038. zero_table);
  14039. }
  14040. } break;
  14041. case GGML_OP_MEAN:
  14042. case GGML_OP_ARGMAX:
  14043. {
  14044. GGML_ASSERT(false); // TODO: implement
  14045. } break;
  14046. case GGML_OP_REPEAT:
  14047. {
  14048. // necessary for llama
  14049. if (src0->grad) {
  14050. src0->grad = ggml_add_or_set(ctx,
  14051. src0->grad,
  14052. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14053. zero_table);
  14054. }
  14055. } break;
  14056. case GGML_OP_REPEAT_BACK:
  14057. {
  14058. if (src0->grad) {
  14059. // TODO: test this
  14060. src0->grad = ggml_add_or_set(ctx,
  14061. src0->grad,
  14062. ggml_repeat(ctx, tensor->grad, src0->grad),
  14063. zero_table);
  14064. }
  14065. } break;
  14066. case GGML_OP_CONCAT:
  14067. {
  14068. GGML_ASSERT(false); // TODO: implement
  14069. } break;
  14070. case GGML_OP_SILU_BACK:
  14071. {
  14072. GGML_ASSERT(false); // TODO: not implemented
  14073. } break;
  14074. case GGML_OP_NORM:
  14075. {
  14076. GGML_ASSERT(false); // TODO: not implemented
  14077. } break;
  14078. case GGML_OP_RMS_NORM:
  14079. {
  14080. // necessary for llama
  14081. if (src0->grad) {
  14082. float eps;
  14083. memcpy(&eps, tensor->op_params, sizeof(float));
  14084. src0->grad = ggml_add_or_set(ctx,
  14085. src0->grad,
  14086. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14087. zero_table);
  14088. }
  14089. } break;
  14090. case GGML_OP_RMS_NORM_BACK:
  14091. {
  14092. GGML_ASSERT(false); // TODO: not implemented
  14093. } break;
  14094. case GGML_OP_GROUP_NORM:
  14095. {
  14096. GGML_ASSERT(false); // TODO: not implemented
  14097. } break;
  14098. case GGML_OP_MUL_MAT:
  14099. {
  14100. // https://cs231n.github.io/optimization-2/#staged
  14101. // # forward pass
  14102. // s0 = np.random.randn(5, 10)
  14103. // s1 = np.random.randn(10, 3)
  14104. // t = s0.dot(s1)
  14105. // # now suppose we had the gradient on t from above in the circuit
  14106. // dt = np.random.randn(*t.shape) # same shape as t
  14107. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14108. // ds1 = t.T.dot(dt)
  14109. // tensor.shape [m,p,qq,rr]
  14110. // src0.shape [n,m,q1,r1]
  14111. // src1.shape [n,p,qq,rr]
  14112. // necessary for llama
  14113. if (src0->grad) {
  14114. struct ggml_tensor * s1_tg =
  14115. ggml_out_prod(ctx, // [n,m,qq,rr]
  14116. src1, // [n,p,qq,rr]
  14117. tensor->grad); // [m,p,qq,rr]
  14118. const int64_t qq = s1_tg->ne[2];
  14119. const int64_t rr = s1_tg->ne[3];
  14120. const int64_t q1 = src0->ne[2];
  14121. const int64_t r1 = src0->ne[3];
  14122. const bool ne2_broadcasted = qq > q1;
  14123. const bool ne3_broadcasted = rr > r1;
  14124. if (ne2_broadcasted || ne3_broadcasted) {
  14125. // sum broadcast repetitions of s1_tg into shape of src0
  14126. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14127. }
  14128. src0->grad =
  14129. ggml_add_or_set(ctx,
  14130. src0->grad, // [n,m,q1,r1]
  14131. s1_tg, // [n,m,q1,r1]
  14132. zero_table);
  14133. }
  14134. if (src1->grad) {
  14135. src1->grad =
  14136. ggml_add_or_set(ctx,
  14137. src1->grad, // [n,p,qq,rr]
  14138. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14139. // ggml_cont(ctx, // [m,n,q1,r1]
  14140. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14141. // tensor->grad), // [m,p,qq,rr]
  14142. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14143. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14144. // // and then use ggml_out_prod
  14145. ggml_out_prod(ctx, // [n,p,qq,rr]
  14146. src0, // [n,m,q1,r1]
  14147. ggml_transpose(ctx, // [p,m,qq,rr]
  14148. tensor->grad)), // [m,p,qq,rr]
  14149. zero_table);
  14150. }
  14151. } break;
  14152. case GGML_OP_MUL_MAT_ID:
  14153. {
  14154. GGML_ASSERT(false); // TODO: not implemented
  14155. } break;
  14156. case GGML_OP_OUT_PROD:
  14157. {
  14158. GGML_ASSERT(false); // TODO: not implemented
  14159. } break;
  14160. case GGML_OP_SCALE:
  14161. {
  14162. // necessary for llama
  14163. if (src0->grad) {
  14164. float s;
  14165. memcpy(&s, tensor->op_params, sizeof(float));
  14166. src0->grad =
  14167. ggml_add_or_set(ctx,
  14168. src0->grad,
  14169. ggml_scale_impl(ctx, tensor->grad, s, false),
  14170. zero_table);
  14171. }
  14172. } break;
  14173. case GGML_OP_SET:
  14174. {
  14175. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14176. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14177. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14178. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14179. struct ggml_tensor * tensor_grad_view = NULL;
  14180. if (src0->grad || src1->grad) {
  14181. GGML_ASSERT(src0->type == tensor->type);
  14182. GGML_ASSERT(tensor->grad->type == tensor->type);
  14183. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14184. tensor_grad_view = ggml_view_4d(ctx,
  14185. tensor->grad,
  14186. src1->grad->ne[0],
  14187. src1->grad->ne[1],
  14188. src1->grad->ne[2],
  14189. src1->grad->ne[3],
  14190. nb1, nb2, nb3, offset);
  14191. }
  14192. if (src0->grad) {
  14193. src0->grad = ggml_add_or_set(ctx,
  14194. src0->grad,
  14195. ggml_acc_impl(ctx,
  14196. tensor->grad,
  14197. ggml_neg(ctx, tensor_grad_view),
  14198. nb1, nb2, nb3, offset, false),
  14199. zero_table);
  14200. }
  14201. if (src1->grad) {
  14202. src1->grad =
  14203. ggml_add_or_set(ctx,
  14204. src1->grad,
  14205. ggml_reshape(ctx,
  14206. ggml_cont(ctx, tensor_grad_view),
  14207. src1->grad),
  14208. zero_table);
  14209. }
  14210. } break;
  14211. case GGML_OP_CPY:
  14212. {
  14213. // necessary for llama
  14214. // cpy overwrites value of src1 by src0 and returns view(src1)
  14215. // the overwriting is mathematically equivalent to:
  14216. // tensor = src0 * 1 + src1 * 0
  14217. if (src0->grad) {
  14218. // dsrc0 = dtensor * 1
  14219. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14220. }
  14221. if (src1->grad) {
  14222. // dsrc1 = dtensor * 0 -> noop
  14223. }
  14224. } break;
  14225. case GGML_OP_CONT:
  14226. {
  14227. // same as cpy
  14228. if (src0->grad) {
  14229. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14230. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14231. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14232. }
  14233. } break;
  14234. case GGML_OP_RESHAPE:
  14235. {
  14236. // necessary for llama
  14237. if (src0->grad) {
  14238. src0->grad =
  14239. ggml_add_or_set(ctx, src0->grad,
  14240. ggml_reshape(ctx,
  14241. ggml_is_contiguous(tensor->grad)
  14242. ? tensor->grad
  14243. : ggml_cont(ctx, tensor->grad),
  14244. src0->grad),
  14245. zero_table);
  14246. }
  14247. } break;
  14248. case GGML_OP_VIEW:
  14249. {
  14250. // necessary for llama
  14251. if (src0->grad) {
  14252. size_t offset;
  14253. memcpy(&offset, tensor->op_params, sizeof(offset));
  14254. size_t nb1 = tensor->nb[1];
  14255. size_t nb2 = tensor->nb[2];
  14256. size_t nb3 = tensor->nb[3];
  14257. if (src0->type != src0->grad->type) {
  14258. // gradient is typically F32, but src0 could be other type
  14259. size_t ng = ggml_element_size(src0->grad);
  14260. size_t n0 = ggml_element_size(src0);
  14261. GGML_ASSERT(offset % n0 == 0);
  14262. GGML_ASSERT(nb1 % n0 == 0);
  14263. GGML_ASSERT(nb2 % n0 == 0);
  14264. GGML_ASSERT(nb3 % n0 == 0);
  14265. offset = (offset / n0) * ng;
  14266. nb1 = (nb1 / n0) * ng;
  14267. nb2 = (nb2 / n0) * ng;
  14268. nb3 = (nb3 / n0) * ng;
  14269. }
  14270. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14271. }
  14272. } break;
  14273. case GGML_OP_PERMUTE:
  14274. {
  14275. // necessary for llama
  14276. if (src0->grad) {
  14277. int32_t * axes = (int32_t *) tensor->op_params;
  14278. int axis0 = axes[0] & 0x3;
  14279. int axis1 = axes[1] & 0x3;
  14280. int axis2 = axes[2] & 0x3;
  14281. int axis3 = axes[3] & 0x3;
  14282. int axes_backward[4] = {0,0,0,0};
  14283. axes_backward[axis0] = 0;
  14284. axes_backward[axis1] = 1;
  14285. axes_backward[axis2] = 2;
  14286. axes_backward[axis3] = 3;
  14287. src0->grad =
  14288. ggml_add_or_set(ctx, src0->grad,
  14289. ggml_permute(ctx,
  14290. tensor->grad,
  14291. axes_backward[0],
  14292. axes_backward[1],
  14293. axes_backward[2],
  14294. axes_backward[3]),
  14295. zero_table);
  14296. }
  14297. } break;
  14298. case GGML_OP_TRANSPOSE:
  14299. {
  14300. // necessary for llama
  14301. if (src0->grad) {
  14302. src0->grad =
  14303. ggml_add_or_set(ctx, src0->grad,
  14304. ggml_transpose(ctx, tensor->grad),
  14305. zero_table);
  14306. }
  14307. } break;
  14308. case GGML_OP_GET_ROWS:
  14309. {
  14310. // necessary for llama (only for tokenizer)
  14311. if (src0->grad) {
  14312. src0->grad =
  14313. ggml_add_or_set(ctx, src0->grad,
  14314. // last ggml_get_rows_back argument src0->grad is only
  14315. // necessary to setup correct output shape
  14316. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14317. zero_table);
  14318. }
  14319. if (src1->grad) {
  14320. // noop
  14321. }
  14322. } break;
  14323. case GGML_OP_GET_ROWS_BACK:
  14324. {
  14325. GGML_ASSERT(false); // TODO: not implemented
  14326. } break;
  14327. case GGML_OP_DIAG:
  14328. {
  14329. GGML_ASSERT(false); // TODO: not implemented
  14330. } break;
  14331. case GGML_OP_DIAG_MASK_INF:
  14332. {
  14333. // necessary for llama
  14334. if (src0->grad) {
  14335. const int n_past = ((int32_t *) tensor->op_params)[0];
  14336. src0->grad =
  14337. ggml_add_or_set(ctx, src0->grad,
  14338. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14339. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14340. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14341. zero_table);
  14342. }
  14343. } break;
  14344. case GGML_OP_DIAG_MASK_ZERO:
  14345. {
  14346. // necessary for llama
  14347. if (src0->grad) {
  14348. const int n_past = ((int32_t *) tensor->op_params)[0];
  14349. src0->grad =
  14350. ggml_add_or_set(ctx, src0->grad,
  14351. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14352. zero_table);
  14353. }
  14354. } break;
  14355. case GGML_OP_SOFT_MAX:
  14356. {
  14357. // necessary for llama
  14358. if (src0->grad) {
  14359. src0->grad =
  14360. ggml_add_or_set(ctx, src0->grad,
  14361. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14362. zero_table);
  14363. }
  14364. } break;
  14365. case GGML_OP_SOFT_MAX_BACK:
  14366. {
  14367. GGML_ASSERT(false); // TODO: not implemented
  14368. } break;
  14369. case GGML_OP_ROPE:
  14370. {
  14371. // necessary for llama
  14372. if (src0->grad) {
  14373. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14374. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14375. const int mode = ((int32_t *) tensor->op_params)[2];
  14376. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14377. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14378. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14379. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14380. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14381. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14382. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14383. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14384. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14385. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14386. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14387. src0->grad = ggml_add_or_set(ctx,
  14388. src0->grad,
  14389. ggml_rope_back(ctx,
  14390. tensor->grad,
  14391. src1,
  14392. n_dims,
  14393. mode,
  14394. n_ctx,
  14395. n_orig_ctx,
  14396. freq_base,
  14397. freq_scale,
  14398. ext_factor,
  14399. attn_factor,
  14400. beta_fast,
  14401. beta_slow,
  14402. xpos_base,
  14403. xpos_down),
  14404. zero_table);
  14405. }
  14406. } break;
  14407. case GGML_OP_ROPE_BACK:
  14408. {
  14409. if (src0->grad) {
  14410. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14411. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14412. const int mode = ((int32_t *) tensor->op_params)[2];
  14413. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14414. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14415. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14416. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14417. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14418. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14419. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14420. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14421. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14422. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14423. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14424. src0->grad = ggml_add_or_set(ctx,
  14425. src0->grad,
  14426. ggml_rope_impl(ctx,
  14427. tensor->grad,
  14428. src1,
  14429. n_dims,
  14430. mode,
  14431. n_ctx,
  14432. n_orig_ctx,
  14433. freq_base,
  14434. freq_scale,
  14435. ext_factor,
  14436. attn_factor,
  14437. beta_fast,
  14438. beta_slow,
  14439. xpos_base,
  14440. xpos_down,
  14441. false),
  14442. zero_table);
  14443. }
  14444. } break;
  14445. case GGML_OP_ALIBI:
  14446. {
  14447. GGML_ASSERT(false); // TODO: not implemented
  14448. } break;
  14449. case GGML_OP_CLAMP:
  14450. {
  14451. GGML_ASSERT(false); // TODO: not implemented
  14452. } break;
  14453. case GGML_OP_CONV_TRANSPOSE_1D:
  14454. {
  14455. GGML_ASSERT(false); // TODO: not implemented
  14456. } break;
  14457. case GGML_OP_IM2COL:
  14458. {
  14459. GGML_ASSERT(false); // TODO: not implemented
  14460. } break;
  14461. case GGML_OP_CONV_TRANSPOSE_2D:
  14462. {
  14463. GGML_ASSERT(false); // TODO: not implemented
  14464. } break;
  14465. case GGML_OP_POOL_1D:
  14466. {
  14467. GGML_ASSERT(false); // TODO: not implemented
  14468. } break;
  14469. case GGML_OP_POOL_2D:
  14470. {
  14471. GGML_ASSERT(false); // TODO: not implemented
  14472. } break;
  14473. case GGML_OP_UPSCALE:
  14474. {
  14475. GGML_ASSERT(false); // TODO: not implemented
  14476. } break;
  14477. case GGML_OP_PAD:
  14478. {
  14479. GGML_ASSERT(false); // TODO: not implemented
  14480. } break;
  14481. case GGML_OP_ARANGE:
  14482. {
  14483. GGML_ASSERT(false); // TODO: not implemented
  14484. } break;
  14485. case GGML_OP_TIMESTEP_EMBEDDING:
  14486. {
  14487. GGML_ASSERT(false); // TODO: not implemented
  14488. } break;
  14489. case GGML_OP_ARGSORT:
  14490. {
  14491. GGML_ASSERT(false); // TODO: not implemented
  14492. } break;
  14493. case GGML_OP_LEAKY_RELU:
  14494. {
  14495. GGML_ASSERT(false); // TODO: not implemented
  14496. } break;
  14497. case GGML_OP_FLASH_ATTN:
  14498. case GGML_OP_FLASH_ATTN_EXT:
  14499. {
  14500. struct ggml_tensor * flash_grad = NULL;
  14501. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14502. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14503. GGML_ASSERT(t == 0 || t == 1);
  14504. bool masked = t != 0;
  14505. flash_grad =
  14506. ggml_flash_attn_back(ctx,
  14507. src0,
  14508. src1,
  14509. tensor->src[2],
  14510. tensor->grad,
  14511. masked);
  14512. }
  14513. struct ggml_tensor * src2 = tensor->src[2];
  14514. const int64_t elem_q = ggml_nelements(src0);
  14515. const int64_t elem_k = ggml_nelements(src1);
  14516. const int64_t elem_v = ggml_nelements(src2);
  14517. enum ggml_type result_type = flash_grad->type;
  14518. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14519. const size_t tsize = ggml_type_size(result_type);
  14520. const size_t offs_q = 0;
  14521. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14522. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14523. if (src0->grad) {
  14524. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14525. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14526. src0->grad = ggml_add_or_set(ctx,
  14527. src0->grad,
  14528. grad_q,
  14529. zero_table);
  14530. }
  14531. if (src1->grad) {
  14532. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14533. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14534. src1->grad = ggml_add_or_set(ctx,
  14535. src1->grad,
  14536. grad_k,
  14537. zero_table);
  14538. }
  14539. if (src2->grad) {
  14540. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14541. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14542. src2->grad = ggml_add_or_set(ctx,
  14543. src2->grad,
  14544. grad_v,
  14545. zero_table);
  14546. }
  14547. } break;
  14548. case GGML_OP_FLASH_FF:
  14549. {
  14550. GGML_ASSERT(false); // not supported
  14551. } break;
  14552. case GGML_OP_FLASH_ATTN_BACK:
  14553. {
  14554. GGML_ASSERT(false); // not supported
  14555. } break;
  14556. case GGML_OP_SSM_CONV:
  14557. case GGML_OP_SSM_SCAN:
  14558. {
  14559. GGML_ASSERT(false); // TODO: not implemented
  14560. } break;
  14561. case GGML_OP_WIN_PART:
  14562. case GGML_OP_WIN_UNPART:
  14563. case GGML_OP_UNARY:
  14564. {
  14565. switch (ggml_get_unary_op(tensor)) {
  14566. case GGML_UNARY_OP_ABS:
  14567. {
  14568. if (src0->grad) {
  14569. src0->grad =
  14570. ggml_add_or_set(ctx,
  14571. src0->grad,
  14572. ggml_mul(ctx,
  14573. ggml_sgn(ctx, src0),
  14574. tensor->grad),
  14575. zero_table);
  14576. }
  14577. } break;
  14578. case GGML_UNARY_OP_SGN:
  14579. {
  14580. if (src0->grad) {
  14581. // noop
  14582. }
  14583. } break;
  14584. case GGML_UNARY_OP_NEG:
  14585. {
  14586. if (src0->grad) {
  14587. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14588. }
  14589. } break;
  14590. case GGML_UNARY_OP_STEP:
  14591. {
  14592. if (src0->grad) {
  14593. // noop
  14594. }
  14595. } break;
  14596. case GGML_UNARY_OP_TANH:
  14597. {
  14598. GGML_ASSERT(false); // TODO: not implemented
  14599. } break;
  14600. case GGML_UNARY_OP_ELU:
  14601. {
  14602. GGML_ASSERT(false); // TODO: not implemented
  14603. } break;
  14604. case GGML_UNARY_OP_RELU:
  14605. {
  14606. if (src0->grad) {
  14607. src0->grad = ggml_add_or_set(ctx,
  14608. src0->grad,
  14609. ggml_mul(ctx,
  14610. ggml_step(ctx, src0),
  14611. tensor->grad),
  14612. zero_table);
  14613. }
  14614. } break;
  14615. case GGML_UNARY_OP_GELU:
  14616. {
  14617. GGML_ASSERT(false); // TODO: not implemented
  14618. } break;
  14619. case GGML_UNARY_OP_GELU_QUICK:
  14620. {
  14621. GGML_ASSERT(false); // TODO: not implemented
  14622. } break;
  14623. case GGML_UNARY_OP_SILU:
  14624. {
  14625. // necessary for llama
  14626. if (src0->grad) {
  14627. src0->grad = ggml_add_or_set(ctx,
  14628. src0->grad,
  14629. ggml_silu_back(ctx, src0, tensor->grad),
  14630. zero_table);
  14631. }
  14632. } break;
  14633. default:
  14634. GGML_ASSERT(false);
  14635. }
  14636. } break;
  14637. case GGML_OP_GET_REL_POS:
  14638. case GGML_OP_ADD_REL_POS:
  14639. case GGML_OP_MAP_UNARY:
  14640. case GGML_OP_MAP_BINARY:
  14641. case GGML_OP_MAP_CUSTOM1_F32:
  14642. case GGML_OP_MAP_CUSTOM2_F32:
  14643. case GGML_OP_MAP_CUSTOM3_F32:
  14644. case GGML_OP_MAP_CUSTOM1:
  14645. case GGML_OP_MAP_CUSTOM2:
  14646. case GGML_OP_MAP_CUSTOM3:
  14647. {
  14648. GGML_ASSERT(false); // not supported
  14649. } break;
  14650. case GGML_OP_CROSS_ENTROPY_LOSS:
  14651. {
  14652. if (src0->grad) {
  14653. src0->grad = ggml_add_or_set(ctx,
  14654. src0->grad,
  14655. ggml_cross_entropy_loss_back(ctx,
  14656. src0,
  14657. src1,
  14658. tensor->grad),
  14659. zero_table);
  14660. }
  14661. } break;
  14662. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14663. {
  14664. GGML_ASSERT(false); // not supported
  14665. } break;
  14666. case GGML_OP_NONE:
  14667. {
  14668. // nop
  14669. } break;
  14670. case GGML_OP_COUNT:
  14671. {
  14672. GGML_ASSERT(false);
  14673. } break;
  14674. }
  14675. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14676. if (tensor->src[i] && tensor->src[i]->grad) {
  14677. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14678. }
  14679. }
  14680. }
  14681. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14682. if (node->grad == NULL) {
  14683. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14684. // it can also happen during forward pass, if the user performs computations with constants
  14685. if (node->op != GGML_OP_NONE) {
  14686. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14687. }
  14688. }
  14689. // check if already visited
  14690. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14691. return;
  14692. }
  14693. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14694. const int k =
  14695. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14696. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14697. /* unknown order, just fall back to using i*/ i;
  14698. if (node->src[k]) {
  14699. ggml_visit_parents(cgraph, node->src[k]);
  14700. }
  14701. }
  14702. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14703. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14704. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14705. if (strlen(node->name) == 0) {
  14706. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14707. }
  14708. cgraph->leafs[cgraph->n_leafs] = node;
  14709. cgraph->n_leafs++;
  14710. } else {
  14711. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14712. if (strlen(node->name) == 0) {
  14713. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14714. }
  14715. cgraph->nodes[cgraph->n_nodes] = node;
  14716. if (cgraph->grads) {
  14717. cgraph->grads[cgraph->n_nodes] = node->grad;
  14718. }
  14719. cgraph->n_nodes++;
  14720. }
  14721. }
  14722. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14723. if (!expand) {
  14724. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14725. ggml_graph_clear(cgraph);
  14726. }
  14727. const int n0 = cgraph->n_nodes;
  14728. UNUSED(n0);
  14729. ggml_visit_parents(cgraph, tensor);
  14730. const int n_new = cgraph->n_nodes - n0;
  14731. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14732. if (n_new > 0) {
  14733. // the last added node should always be starting point
  14734. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14735. }
  14736. }
  14737. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14738. ggml_build_forward_impl(cgraph, tensor, true);
  14739. }
  14740. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14741. GGML_ASSERT(gf->n_nodes > 0);
  14742. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14743. if (keep) {
  14744. for (int i = 0; i < gf->n_nodes; i++) {
  14745. struct ggml_tensor * node = gf->nodes[i];
  14746. if (node->grad) {
  14747. node->grad = ggml_dup_tensor(ctx, node);
  14748. gf->grads[i] = node->grad;
  14749. }
  14750. }
  14751. }
  14752. // remember original gradients which start with zero values
  14753. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14754. for (int i = 0; i < gf->n_nodes; i++) {
  14755. if (gf->grads[i]) {
  14756. ggml_hash_insert(zero_table, gf->grads[i]);
  14757. }
  14758. }
  14759. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14760. struct ggml_tensor * node = gf->nodes[i];
  14761. // inplace operations to add gradients are not created by ggml_compute_backward
  14762. // use allocator to automatically make inplace operations
  14763. if (node->grad) {
  14764. ggml_compute_backward(ctx, node, zero_table);
  14765. }
  14766. }
  14767. for (int i = 0; i < gf->n_nodes; i++) {
  14768. struct ggml_tensor * node = gf->nodes[i];
  14769. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14770. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14771. ggml_build_forward_expand(gb, node->grad);
  14772. }
  14773. }
  14774. ggml_hash_set_free(zero_table);
  14775. }
  14776. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14777. size_t nbytes = sizeof(struct ggml_cgraph);
  14778. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14779. if (grads) {
  14780. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14781. }
  14782. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14783. return nbytes;
  14784. }
  14785. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14786. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14787. }
  14788. size_t ggml_graph_overhead(void) {
  14789. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14790. }
  14791. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14792. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14793. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14794. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14795. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14796. size_t hash_size = ggml_hash_size(size * 2);
  14797. struct ggml_tensor ** nodes_ptr = data_start;
  14798. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14799. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14800. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14801. // check that we allocated the correct amount of memory
  14802. assert(obj_size == (size_t) (
  14803. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14804. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14805. *cgraph = (struct ggml_cgraph) {
  14806. /*.size =*/ size,
  14807. /*.n_nodes =*/ 0,
  14808. /*.n_leafs =*/ 0,
  14809. /*.nodes =*/ nodes_ptr,
  14810. /*.grads =*/ grads_ptr,
  14811. /*.leafs =*/ leafs_ptr,
  14812. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14813. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14814. /*.perf_runs =*/ 0,
  14815. /*.perf_cycles =*/ 0,
  14816. /*.perf_time_us =*/ 0,
  14817. };
  14818. return cgraph;
  14819. }
  14820. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14821. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14822. }
  14823. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14824. struct ggml_cgraph cgraph = {
  14825. /*.size =*/ 0,
  14826. /*.n_nodes =*/ i1 - i0,
  14827. /*.n_leafs =*/ 0,
  14828. /*.nodes =*/ cgraph0->nodes + i0,
  14829. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14830. /*.leafs =*/ NULL,
  14831. /*.hash_table =*/ { 0, NULL },
  14832. /*.order =*/ cgraph0->order,
  14833. /*.perf_runs =*/ 0,
  14834. /*.perf_cycles =*/ 0,
  14835. /*.perf_time_us =*/ 0,
  14836. };
  14837. return cgraph;
  14838. }
  14839. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14840. GGML_ASSERT(dst->size >= src->n_leafs);
  14841. GGML_ASSERT(dst->size >= src->n_nodes);
  14842. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14843. dst->n_leafs = src->n_leafs;
  14844. dst->n_nodes = src->n_nodes;
  14845. dst->order = src->order;
  14846. for (int i = 0; i < src->n_leafs; ++i) {
  14847. dst->leafs[i] = src->leafs[i];
  14848. }
  14849. for (int i = 0; i < src->n_nodes; ++i) {
  14850. dst->nodes[i] = src->nodes[i];
  14851. }
  14852. if (src->grads) {
  14853. GGML_ASSERT(dst->grads != NULL);
  14854. for (int i = 0; i < src->n_nodes; ++i) {
  14855. dst->grads[i] = src->grads[i];
  14856. }
  14857. }
  14858. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14859. if (src->visited_hash_table.keys[i]) {
  14860. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14861. }
  14862. }
  14863. }
  14864. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14865. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14866. ggml_graph_cpy(cgraph, result);
  14867. return result;
  14868. }
  14869. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14870. GGML_ASSERT(cgraph->grads != NULL);
  14871. for (int i = 0; i < cgraph->n_nodes; i++) {
  14872. struct ggml_tensor * grad = cgraph->grads[i];
  14873. if (grad) {
  14874. ggml_set_zero(grad);
  14875. }
  14876. }
  14877. }
  14878. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14879. cgraph->n_leafs = 0;
  14880. cgraph->n_nodes = 0;
  14881. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14882. }
  14883. //
  14884. // thread data
  14885. //
  14886. // synchronization is done via busy loops
  14887. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14888. //
  14889. #ifdef __APPLE__
  14890. //#include <os/lock.h>
  14891. //
  14892. //typedef os_unfair_lock ggml_lock_t;
  14893. //
  14894. //#define ggml_lock_init(x) UNUSED(x)
  14895. //#define ggml_lock_destroy(x) UNUSED(x)
  14896. //#define ggml_lock_lock os_unfair_lock_lock
  14897. //#define ggml_lock_unlock os_unfair_lock_unlock
  14898. //
  14899. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14900. typedef int ggml_lock_t;
  14901. #define ggml_lock_init(x) UNUSED(x)
  14902. #define ggml_lock_destroy(x) UNUSED(x)
  14903. #define ggml_lock_lock(x) UNUSED(x)
  14904. #define ggml_lock_unlock(x) UNUSED(x)
  14905. #define GGML_LOCK_INITIALIZER 0
  14906. typedef pthread_t ggml_thread_t;
  14907. #define ggml_thread_create pthread_create
  14908. #define ggml_thread_join pthread_join
  14909. #else
  14910. //typedef pthread_spinlock_t ggml_lock_t;
  14911. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14912. //#define ggml_lock_destroy pthread_spin_destroy
  14913. //#define ggml_lock_lock pthread_spin_lock
  14914. //#define ggml_lock_unlock pthread_spin_unlock
  14915. typedef int ggml_lock_t;
  14916. #define ggml_lock_init(x) UNUSED(x)
  14917. #define ggml_lock_destroy(x) UNUSED(x)
  14918. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14919. #define ggml_lock_lock(x) _mm_pause()
  14920. #else
  14921. #define ggml_lock_lock(x) UNUSED(x)
  14922. #endif
  14923. #define ggml_lock_unlock(x) UNUSED(x)
  14924. #define GGML_LOCK_INITIALIZER 0
  14925. typedef pthread_t ggml_thread_t;
  14926. #define ggml_thread_create pthread_create
  14927. #define ggml_thread_join pthread_join
  14928. #endif
  14929. // Android's libc implementation "bionic" does not support setting affinity
  14930. #if defined(__gnu_linux__)
  14931. static void set_numa_thread_affinity(int thread_n) {
  14932. if (!ggml_is_numa()) {
  14933. return;
  14934. }
  14935. int node_num;
  14936. int rv;
  14937. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14938. switch(g_state.numa.numa_strategy) {
  14939. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14940. // run thread on node_num thread_n / (threads per node)
  14941. node_num = thread_n % g_state.numa.n_nodes;
  14942. break;
  14943. case GGML_NUMA_STRATEGY_ISOLATE:
  14944. // run thread on current_node
  14945. node_num = g_state.numa.current_node;
  14946. break;
  14947. case GGML_NUMA_STRATEGY_NUMACTL:
  14948. // use the cpuset that numactl gave us
  14949. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14950. if (rv) {
  14951. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14952. }
  14953. return;
  14954. default:
  14955. return;
  14956. }
  14957. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14958. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14959. CPU_ZERO_S(setsize, cpus);
  14960. for (size_t i = 0; i < node->n_cpus; ++i) {
  14961. CPU_SET_S(node->cpus[i], setsize, cpus);
  14962. }
  14963. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14964. if (rv) {
  14965. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14966. }
  14967. CPU_FREE(cpus);
  14968. }
  14969. static void clear_numa_thread_affinity(void) {
  14970. if (!ggml_is_numa()) {
  14971. return;
  14972. }
  14973. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14974. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14975. CPU_ZERO_S(setsize, cpus);
  14976. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14977. CPU_SET_S(i, setsize, cpus);
  14978. }
  14979. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14980. if (rv) {
  14981. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14982. }
  14983. CPU_FREE(cpus);
  14984. }
  14985. #else
  14986. // TODO: Windows etc.
  14987. // (the linux implementation may also work on BSD, someone should test)
  14988. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14989. static void clear_numa_thread_affinity(void) {}
  14990. #endif
  14991. struct ggml_compute_state_shared {
  14992. const struct ggml_cgraph * cgraph;
  14993. const struct ggml_cplan * cplan;
  14994. int64_t perf_node_start_cycles;
  14995. int64_t perf_node_start_time_us;
  14996. const int n_threads;
  14997. // synchronization primitives
  14998. atomic_int n_active; // num active threads
  14999. atomic_int node_n; // active graph node
  15000. atomic_int node_task; // active graph node task phase
  15001. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  15002. void * abort_callback_data;
  15003. };
  15004. struct ggml_compute_state {
  15005. ggml_thread_t thrd;
  15006. int ith;
  15007. struct ggml_compute_state_shared * shared;
  15008. enum ggml_status ec;
  15009. };
  15010. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15011. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15012. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15013. node->perf_runs++;
  15014. node->perf_cycles += cycles_cur;
  15015. node->perf_time_us += time_us_cur;
  15016. }
  15017. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15018. int n_tasks = 0;
  15019. if (ggml_is_empty(node)) {
  15020. // no need to multi-thread a no-op
  15021. n_tasks = 1;
  15022. return n_tasks;
  15023. }
  15024. switch (node->op) {
  15025. case GGML_OP_CPY:
  15026. case GGML_OP_DUP:
  15027. case GGML_OP_ADD:
  15028. case GGML_OP_ADD1:
  15029. case GGML_OP_ACC:
  15030. {
  15031. n_tasks = n_threads;
  15032. } break;
  15033. case GGML_OP_SUB:
  15034. case GGML_OP_SQR:
  15035. case GGML_OP_SQRT:
  15036. case GGML_OP_LOG:
  15037. case GGML_OP_SUM:
  15038. case GGML_OP_SUM_ROWS:
  15039. case GGML_OP_MEAN:
  15040. case GGML_OP_ARGMAX:
  15041. case GGML_OP_REPEAT:
  15042. case GGML_OP_REPEAT_BACK:
  15043. case GGML_OP_LEAKY_RELU:
  15044. {
  15045. n_tasks = 1;
  15046. } break;
  15047. case GGML_OP_UNARY:
  15048. switch (ggml_get_unary_op(node)) {
  15049. case GGML_UNARY_OP_ABS:
  15050. case GGML_UNARY_OP_SGN:
  15051. case GGML_UNARY_OP_NEG:
  15052. case GGML_UNARY_OP_STEP:
  15053. case GGML_UNARY_OP_TANH:
  15054. case GGML_UNARY_OP_ELU:
  15055. case GGML_UNARY_OP_RELU:
  15056. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15057. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15058. {
  15059. n_tasks = 1;
  15060. } break;
  15061. case GGML_UNARY_OP_GELU:
  15062. case GGML_UNARY_OP_GELU_QUICK:
  15063. case GGML_UNARY_OP_SILU:
  15064. {
  15065. n_tasks = n_threads;
  15066. } break;
  15067. default:
  15068. GGML_ASSERT(false);
  15069. }
  15070. break;
  15071. case GGML_OP_SILU_BACK:
  15072. case GGML_OP_MUL:
  15073. case GGML_OP_DIV:
  15074. case GGML_OP_NORM:
  15075. case GGML_OP_RMS_NORM:
  15076. case GGML_OP_RMS_NORM_BACK:
  15077. case GGML_OP_GROUP_NORM:
  15078. case GGML_OP_CONCAT:
  15079. {
  15080. n_tasks = n_threads;
  15081. } break;
  15082. case GGML_OP_MUL_MAT:
  15083. {
  15084. n_tasks = n_threads;
  15085. // TODO: use different scheduling for different matrix sizes
  15086. //const int nr0 = ggml_nrows(node->src[0]);
  15087. //const int nr1 = ggml_nrows(node->src[1]);
  15088. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15089. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15090. } break;
  15091. case GGML_OP_MUL_MAT_ID:
  15092. {
  15093. n_tasks = n_threads;
  15094. } break;
  15095. case GGML_OP_OUT_PROD:
  15096. {
  15097. n_tasks = n_threads;
  15098. } break;
  15099. case GGML_OP_GET_ROWS:
  15100. {
  15101. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15102. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15103. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15104. } break;
  15105. case GGML_OP_SCALE:
  15106. case GGML_OP_SET:
  15107. case GGML_OP_CONT:
  15108. case GGML_OP_RESHAPE:
  15109. case GGML_OP_VIEW:
  15110. case GGML_OP_PERMUTE:
  15111. case GGML_OP_TRANSPOSE:
  15112. case GGML_OP_GET_ROWS_BACK:
  15113. case GGML_OP_DIAG:
  15114. {
  15115. n_tasks = 1;
  15116. } break;
  15117. case GGML_OP_DIAG_MASK_ZERO:
  15118. case GGML_OP_DIAG_MASK_INF:
  15119. case GGML_OP_SOFT_MAX_BACK:
  15120. case GGML_OP_ROPE:
  15121. case GGML_OP_ROPE_BACK:
  15122. case GGML_OP_ADD_REL_POS:
  15123. {
  15124. n_tasks = n_threads;
  15125. } break;
  15126. case GGML_OP_ALIBI:
  15127. {
  15128. n_tasks = 1; //TODO
  15129. } break;
  15130. case GGML_OP_CLAMP:
  15131. {
  15132. n_tasks = 1; //TODO
  15133. } break;
  15134. case GGML_OP_SOFT_MAX:
  15135. {
  15136. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15137. } break;
  15138. case GGML_OP_CONV_TRANSPOSE_1D:
  15139. {
  15140. n_tasks = n_threads;
  15141. } break;
  15142. case GGML_OP_IM2COL:
  15143. {
  15144. n_tasks = n_threads;
  15145. } break;
  15146. case GGML_OP_CONV_TRANSPOSE_2D:
  15147. {
  15148. n_tasks = n_threads;
  15149. } break;
  15150. case GGML_OP_POOL_1D:
  15151. case GGML_OP_POOL_2D:
  15152. {
  15153. n_tasks = 1;
  15154. } break;
  15155. case GGML_OP_UPSCALE:
  15156. {
  15157. n_tasks = n_threads;
  15158. } break;
  15159. case GGML_OP_PAD:
  15160. {
  15161. n_tasks = n_threads;
  15162. } break;
  15163. case GGML_OP_ARANGE:
  15164. {
  15165. n_tasks = n_threads;
  15166. } break;
  15167. case GGML_OP_TIMESTEP_EMBEDDING:
  15168. {
  15169. n_tasks = n_threads;
  15170. } break;
  15171. case GGML_OP_ARGSORT:
  15172. {
  15173. n_tasks = n_threads;
  15174. } break;
  15175. case GGML_OP_FLASH_ATTN:
  15176. case GGML_OP_FLASH_ATTN_EXT:
  15177. {
  15178. n_tasks = n_threads;
  15179. } break;
  15180. case GGML_OP_FLASH_FF:
  15181. {
  15182. n_tasks = n_threads;
  15183. } break;
  15184. case GGML_OP_FLASH_ATTN_BACK:
  15185. {
  15186. n_tasks = n_threads;
  15187. } break;
  15188. case GGML_OP_SSM_CONV:
  15189. case GGML_OP_SSM_SCAN:
  15190. {
  15191. n_tasks = n_threads;
  15192. } break;
  15193. case GGML_OP_WIN_PART:
  15194. case GGML_OP_WIN_UNPART:
  15195. case GGML_OP_GET_REL_POS:
  15196. case GGML_OP_MAP_UNARY:
  15197. case GGML_OP_MAP_BINARY:
  15198. case GGML_OP_MAP_CUSTOM1_F32:
  15199. case GGML_OP_MAP_CUSTOM2_F32:
  15200. case GGML_OP_MAP_CUSTOM3_F32:
  15201. {
  15202. n_tasks = 1;
  15203. } break;
  15204. case GGML_OP_MAP_CUSTOM1:
  15205. {
  15206. struct ggml_map_custom1_op_params p;
  15207. memcpy(&p, node->op_params, sizeof(p));
  15208. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15209. n_tasks = n_threads;
  15210. } else {
  15211. n_tasks = MIN(p.n_tasks, n_threads);
  15212. }
  15213. } break;
  15214. case GGML_OP_MAP_CUSTOM2:
  15215. {
  15216. struct ggml_map_custom2_op_params p;
  15217. memcpy(&p, node->op_params, sizeof(p));
  15218. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15219. n_tasks = n_threads;
  15220. } else {
  15221. n_tasks = MIN(p.n_tasks, n_threads);
  15222. }
  15223. } break;
  15224. case GGML_OP_MAP_CUSTOM3:
  15225. {
  15226. struct ggml_map_custom3_op_params p;
  15227. memcpy(&p, node->op_params, sizeof(p));
  15228. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15229. n_tasks = n_threads;
  15230. } else {
  15231. n_tasks = MIN(p.n_tasks, n_threads);
  15232. }
  15233. } break;
  15234. case GGML_OP_CROSS_ENTROPY_LOSS:
  15235. {
  15236. n_tasks = n_threads;
  15237. } break;
  15238. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15239. {
  15240. n_tasks = n_threads;
  15241. } break;
  15242. case GGML_OP_NONE:
  15243. {
  15244. n_tasks = 1;
  15245. } break;
  15246. case GGML_OP_COUNT:
  15247. {
  15248. GGML_ASSERT(false);
  15249. } break;
  15250. default:
  15251. {
  15252. fprintf(stderr, "%s: op not implemented: ", __func__);
  15253. if (node->op < GGML_OP_COUNT) {
  15254. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15255. } else {
  15256. fprintf(stderr, "%d\n", node->op);
  15257. }
  15258. GGML_ASSERT(false);
  15259. } break;
  15260. }
  15261. assert(n_tasks > 0);
  15262. return n_tasks;
  15263. }
  15264. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15265. // wait for other threads to finish
  15266. const int last_node_n = * node_n;
  15267. while (true) {
  15268. if (do_yield) {
  15269. sched_yield();
  15270. }
  15271. * node_n = atomic_load(&state->shared->node_n);
  15272. if (* node_n != last_node_n) break;
  15273. }
  15274. }
  15275. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15276. // wait for other threads to finish
  15277. const int last_task_phase = * task_phase;
  15278. while (true) {
  15279. if (do_yield) {
  15280. sched_yield();
  15281. }
  15282. * task_phase = atomic_load(&state->shared->node_task);
  15283. if (* task_phase != last_task_phase) break;
  15284. }
  15285. }
  15286. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15287. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15288. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15289. const struct ggml_cplan * cplan = state->shared->cplan;
  15290. const int n_threads = state->shared->n_threads;
  15291. set_numa_thread_affinity(state->ith);
  15292. int node_n = -1;
  15293. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15294. while (true) {
  15295. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15296. state->shared->node_n += 1;
  15297. state->ec = GGML_STATUS_ABORTED;
  15298. return 0;
  15299. }
  15300. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15301. // all other threads are finished and spinning
  15302. // do finalize and init here so we don't have synchronize again
  15303. struct ggml_compute_params params = {
  15304. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15305. /*.ith =*/ 0,
  15306. /*.nth =*/ 0,
  15307. /*.wsize =*/ cplan->work_size,
  15308. /*.wdata =*/ cplan->work_data,
  15309. };
  15310. if (node_n != -1) {
  15311. /* FINALIZE */
  15312. struct ggml_tensor * node = cgraph->nodes[node_n];
  15313. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15314. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15315. ggml_compute_forward(&params, node);
  15316. }
  15317. ggml_graph_compute_perf_stats_node(node, state->shared);
  15318. }
  15319. // distribute new work or execute it direct if 1T
  15320. while (++node_n < cgraph->n_nodes) {
  15321. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15322. struct ggml_tensor * node = cgraph->nodes[node_n];
  15323. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15324. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15325. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15326. params.nth = n_tasks;
  15327. if (n_tasks == 1) {
  15328. /* INIT */
  15329. if (GGML_OP_HAS_INIT[node->op]) {
  15330. params.type = GGML_TASK_TYPE_INIT;
  15331. ggml_compute_forward(&params, node);
  15332. }
  15333. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15334. // they do something more efficient than spinning (?)
  15335. params.type = GGML_TASK_TYPE_COMPUTE;
  15336. ggml_compute_forward(&params, node);
  15337. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15338. params.type = GGML_TASK_TYPE_FINALIZE;
  15339. ggml_compute_forward(&params, node);
  15340. }
  15341. ggml_graph_compute_perf_stats_node(node, state->shared);
  15342. } else {
  15343. break;
  15344. }
  15345. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15346. break;
  15347. }
  15348. }
  15349. task_phase = GGML_TASK_TYPE_INIT;
  15350. atomic_store(&state->shared->n_active, n_threads);
  15351. atomic_store(&state->shared->node_n, node_n);
  15352. atomic_store(&state->shared->node_task, task_phase);
  15353. } else {
  15354. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15355. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15356. }
  15357. // check if we should stop
  15358. if (node_n >= cgraph->n_nodes) break;
  15359. /* INIT & COMPUTE */
  15360. struct ggml_tensor * node = cgraph->nodes[node_n];
  15361. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15362. struct ggml_compute_params params = {
  15363. /*.type =*/ GGML_TASK_TYPE_INIT,
  15364. /*.ith =*/ state->ith,
  15365. /*.nth =*/ n_tasks,
  15366. /*.wsize =*/ cplan->work_size,
  15367. /*.wdata =*/ cplan->work_data,
  15368. };
  15369. if (state->ith < n_tasks) {
  15370. if (GGML_OP_HAS_INIT[node->op]) {
  15371. ggml_compute_forward(&params, node);
  15372. }
  15373. }
  15374. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15375. task_phase = GGML_TASK_TYPE_COMPUTE;
  15376. atomic_store(&state->shared->n_active, n_threads);
  15377. atomic_store(&state->shared->node_task, task_phase);
  15378. }
  15379. else {
  15380. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15381. // depending on the workload and the operating system.
  15382. // since it is not clear what is the best approach, it should potentially become user-configurable
  15383. // ref: https://github.com/ggerganov/ggml/issues/291
  15384. // UPD: adding the do_yield flag seems to resolve the issue universally
  15385. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15386. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15387. }
  15388. if (state->ith < n_tasks) {
  15389. params.type = GGML_TASK_TYPE_COMPUTE;
  15390. ggml_compute_forward(&params, node);
  15391. }
  15392. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15393. task_phase = GGML_TASK_TYPE_FINALIZE;
  15394. atomic_store(&state->shared->n_active, n_threads);
  15395. atomic_store(&state->shared->node_task, task_phase);
  15396. }
  15397. else {
  15398. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15399. }
  15400. }
  15401. return 0;
  15402. }
  15403. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15404. if (n_threads <= 0) {
  15405. n_threads = GGML_DEFAULT_N_THREADS;
  15406. }
  15407. size_t work_size = 0;
  15408. struct ggml_cplan cplan;
  15409. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15410. int max_tasks = 1;
  15411. // thread scheduling for the different operations + work buffer size estimation
  15412. for (int i = 0; i < cgraph->n_nodes; i++) {
  15413. struct ggml_tensor * node = cgraph->nodes[i];
  15414. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15415. max_tasks = MAX(max_tasks, n_tasks);
  15416. size_t cur = 0;
  15417. switch (node->op) {
  15418. case GGML_OP_CPY:
  15419. case GGML_OP_DUP:
  15420. {
  15421. if (ggml_is_quantized(node->type)) {
  15422. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15423. }
  15424. } break;
  15425. case GGML_OP_ADD:
  15426. case GGML_OP_ADD1:
  15427. {
  15428. if (ggml_is_quantized(node->src[0]->type)) {
  15429. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15430. }
  15431. } break;
  15432. case GGML_OP_ACC:
  15433. {
  15434. if (ggml_is_quantized(node->src[0]->type)) {
  15435. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15436. }
  15437. } break;
  15438. case GGML_OP_MUL_MAT:
  15439. {
  15440. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15441. #if defined(GGML_USE_CLBLAST)
  15442. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15443. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15444. } else
  15445. #endif
  15446. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15447. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15448. if (node->src[0]->type != GGML_TYPE_F32) {
  15449. // here we need memory for fully dequantized matrix from src0
  15450. // take into account that src0 can be broadcasted into src1[2,3]
  15451. cur = ggml_type_size(GGML_TYPE_F32)
  15452. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15453. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15454. }
  15455. } else
  15456. #endif
  15457. if (node->src[1]->type != vec_dot_type) {
  15458. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15459. }
  15460. } break;
  15461. case GGML_OP_MUL_MAT_ID:
  15462. {
  15463. cur = 0;
  15464. const struct ggml_tensor * src0 = node->src[0];
  15465. const struct ggml_tensor * src1 = node->src[1];
  15466. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15467. if (src1->type != vec_dot_type) {
  15468. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15469. }
  15470. const int n_as = src0->ne[2];
  15471. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15472. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15473. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15474. } break;
  15475. case GGML_OP_OUT_PROD:
  15476. {
  15477. if (ggml_is_quantized(node->src[0]->type)) {
  15478. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15479. }
  15480. } break;
  15481. case GGML_OP_SOFT_MAX:
  15482. case GGML_OP_ROPE:
  15483. {
  15484. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15485. } break;
  15486. case GGML_OP_CONV_TRANSPOSE_1D:
  15487. {
  15488. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15489. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15490. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15491. const int64_t ne00 = node->src[0]->ne[0]; // K
  15492. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15493. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15494. const int64_t ne10 = node->src[1]->ne[0]; // L
  15495. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15496. if (node->src[0]->type == GGML_TYPE_F16 &&
  15497. node->src[1]->type == GGML_TYPE_F32) {
  15498. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15499. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15500. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15501. node->src[1]->type == GGML_TYPE_F32) {
  15502. cur += sizeof(float)*ne00*ne01*ne02;
  15503. cur += sizeof(float)*ne10*ne11;
  15504. } else {
  15505. GGML_ASSERT(false);
  15506. }
  15507. } break;
  15508. case GGML_OP_CONV_TRANSPOSE_2D:
  15509. {
  15510. const int64_t ne00 = node->src[0]->ne[0]; // W
  15511. const int64_t ne01 = node->src[0]->ne[1]; // H
  15512. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15513. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15514. const int64_t ne10 = node->src[1]->ne[0]; // W
  15515. const int64_t ne11 = node->src[1]->ne[1]; // H
  15516. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15517. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15518. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15519. } break;
  15520. case GGML_OP_FLASH_ATTN:
  15521. {
  15522. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15523. if (node->src[1]->type == GGML_TYPE_F32) {
  15524. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15525. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15526. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15527. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15528. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15529. }
  15530. } break;
  15531. case GGML_OP_FLASH_ATTN_EXT:
  15532. {
  15533. const int64_t ne00 = node->src[0]->ne[0]; // D
  15534. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  15535. } break;
  15536. case GGML_OP_FLASH_FF:
  15537. {
  15538. if (node->src[1]->type == GGML_TYPE_F32) {
  15539. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15540. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15541. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15542. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15543. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15544. }
  15545. } break;
  15546. case GGML_OP_FLASH_ATTN_BACK:
  15547. {
  15548. const int64_t D = node->src[0]->ne[0];
  15549. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15550. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15551. if (node->src[1]->type == GGML_TYPE_F32) {
  15552. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15553. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15554. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15555. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15556. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15557. }
  15558. } break;
  15559. case GGML_OP_CROSS_ENTROPY_LOSS:
  15560. {
  15561. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15562. } break;
  15563. case GGML_OP_COUNT:
  15564. {
  15565. GGML_ASSERT(false);
  15566. } break;
  15567. default:
  15568. break;
  15569. }
  15570. work_size = MAX(work_size, cur);
  15571. }
  15572. if (work_size > 0) {
  15573. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15574. }
  15575. cplan.n_threads = MIN(max_tasks, n_threads);
  15576. cplan.work_size = work_size;
  15577. cplan.work_data = NULL;
  15578. return cplan;
  15579. }
  15580. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15581. {
  15582. GGML_ASSERT(cplan);
  15583. GGML_ASSERT(cplan->n_threads > 0);
  15584. if (cplan->work_size > 0) {
  15585. GGML_ASSERT(cplan->work_data);
  15586. }
  15587. }
  15588. const int n_threads = cplan->n_threads;
  15589. struct ggml_compute_state_shared state_shared = {
  15590. /*.cgraph =*/ cgraph,
  15591. /*.cgraph_plan =*/ cplan,
  15592. /*.perf_node_start_cycles =*/ 0,
  15593. /*.perf_node_start_time_us =*/ 0,
  15594. /*.n_threads =*/ n_threads,
  15595. /*.n_active =*/ n_threads,
  15596. /*.node_n =*/ -1,
  15597. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15598. /*.abort_callback =*/ NULL,
  15599. /*.abort_callback_data =*/ NULL,
  15600. };
  15601. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15602. // create thread pool
  15603. if (n_threads > 1) {
  15604. for (int j = 1; j < n_threads; ++j) {
  15605. workers[j] = (struct ggml_compute_state) {
  15606. .thrd = 0,
  15607. .ith = j,
  15608. .shared = &state_shared,
  15609. .ec = GGML_STATUS_SUCCESS,
  15610. };
  15611. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15612. GGML_ASSERT(rc == 0);
  15613. UNUSED(rc);
  15614. }
  15615. }
  15616. workers[0].ith = 0;
  15617. workers[0].shared = &state_shared;
  15618. workers[0].ec = GGML_STATUS_SUCCESS;
  15619. const int64_t perf_start_cycles = ggml_perf_cycles();
  15620. const int64_t perf_start_time_us = ggml_perf_time_us();
  15621. // this is a work thread too
  15622. ggml_graph_compute_thread(&workers[0]);
  15623. enum ggml_status compute_status = workers[0].ec;
  15624. // don't leave affinity set on the main thread
  15625. clear_numa_thread_affinity();
  15626. // join or kill thread pool
  15627. if (n_threads > 1) {
  15628. for (int j = 1; j < n_threads; j++) {
  15629. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15630. GGML_ASSERT(rc == 0);
  15631. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15632. compute_status = workers[j].ec;
  15633. }
  15634. }
  15635. // performance stats (graph)
  15636. {
  15637. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15638. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15639. cgraph->perf_runs++;
  15640. cgraph->perf_cycles += perf_cycles_cur;
  15641. cgraph->perf_time_us += perf_time_us_cur;
  15642. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15643. __func__, cgraph->perf_runs,
  15644. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15645. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15646. (double) perf_time_us_cur / 1000.0,
  15647. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15648. }
  15649. return compute_status;
  15650. }
  15651. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15652. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15653. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15654. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15655. return ggml_graph_compute(cgraph, &cplan);
  15656. }
  15657. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15658. for (int i = 0; i < cgraph->n_leafs; i++) {
  15659. struct ggml_tensor * leaf = cgraph->leafs[i];
  15660. if (strcmp(leaf->name, name) == 0) {
  15661. return leaf;
  15662. }
  15663. }
  15664. for (int i = 0; i < cgraph->n_nodes; i++) {
  15665. struct ggml_tensor * node = cgraph->nodes[i];
  15666. if (strcmp(node->name, name) == 0) {
  15667. return node;
  15668. }
  15669. }
  15670. return NULL;
  15671. }
  15672. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15673. const int64_t * ne = tensor->ne;
  15674. const size_t * nb = tensor->nb;
  15675. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15676. ggml_type_name(tensor->type),
  15677. ggml_op_name (tensor->op),
  15678. ggml_n_dims(tensor),
  15679. ne[0], ne[1], ne[2], ne[3],
  15680. nb[0], nb[1], nb[2], nb[3],
  15681. tensor->data,
  15682. tensor->name);
  15683. }
  15684. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15685. const int64_t * ne = tensor->ne;
  15686. const size_t * nb = tensor->nb;
  15687. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15688. arg,
  15689. ggml_type_name(tensor->type),
  15690. ggml_op_name (tensor->op),
  15691. ggml_n_dims(tensor),
  15692. ne[0], ne[1], ne[2], ne[3],
  15693. nb[0], nb[1], nb[2], nb[3],
  15694. tensor->data,
  15695. tensor->name);
  15696. }
  15697. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15698. uint64_t size_eval = 0;
  15699. // compute size of intermediate results
  15700. // TODO: does not take into account scratch buffers !!!!
  15701. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15702. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15703. }
  15704. // print
  15705. {
  15706. FILE * fout = stdout;
  15707. fprintf(fout, "\n");
  15708. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15709. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15710. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15711. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15712. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15713. // header
  15714. fprintf(fout, "\n");
  15715. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15716. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15717. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15718. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15719. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15720. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15721. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15722. }
  15723. // header
  15724. fprintf(fout, "\n");
  15725. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15726. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15727. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15728. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15729. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15730. if (cgraph->nodes[i]->src[j]) {
  15731. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15732. }
  15733. }
  15734. fprintf(fout, "\n");
  15735. }
  15736. fprintf(fout, "\n");
  15737. }
  15738. // write binary data
  15739. {
  15740. FILE * fout = ggml_fopen(fname, "wb");
  15741. if (!fout) {
  15742. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15743. return;
  15744. }
  15745. // header
  15746. {
  15747. const uint32_t magic = GGML_FILE_MAGIC;
  15748. const uint32_t version = GGML_FILE_VERSION;
  15749. const uint32_t n_leafs = cgraph->n_leafs;
  15750. const uint32_t n_nodes = cgraph->n_nodes;
  15751. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15752. fwrite(&version, sizeof(uint32_t), 1, fout);
  15753. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15754. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15755. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15756. }
  15757. // leafs
  15758. {
  15759. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15760. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15761. const uint32_t type = tensor->type;
  15762. const uint32_t op = tensor->op;
  15763. fwrite(&type, sizeof(uint32_t), 1, fout);
  15764. fwrite(&op, sizeof(uint32_t), 1, fout);
  15765. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15766. const uint64_t ne = tensor->ne[j];
  15767. const uint64_t nb = tensor->nb[j];
  15768. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15769. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15770. }
  15771. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15772. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15773. // dump the data
  15774. // TODO: pad this to 32 byte boundary
  15775. {
  15776. const size_t size = ggml_nbytes(tensor);
  15777. fwrite(tensor->data, sizeof(char), size, fout);
  15778. }
  15779. }
  15780. }
  15781. // nodes
  15782. {
  15783. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15784. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15785. const uint32_t type = tensor->type;
  15786. const uint32_t op = tensor->op;
  15787. fwrite(&type, sizeof(uint32_t), 1, fout);
  15788. fwrite(&op, sizeof(uint32_t), 1, fout);
  15789. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15790. const uint64_t ne = tensor->ne[j];
  15791. const uint64_t nb = tensor->nb[j];
  15792. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15793. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15794. }
  15795. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15796. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15797. // output the op arguments
  15798. {
  15799. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15800. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15801. args[j] = tensor->src[j];
  15802. }
  15803. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15804. if (args[j]) {
  15805. int32_t idx = -1;
  15806. // check if leaf
  15807. {
  15808. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15809. if (args[j] == cgraph->leafs[k]) {
  15810. idx = k;
  15811. break;
  15812. }
  15813. }
  15814. }
  15815. // check if node
  15816. if (idx == -1) {
  15817. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15818. if (args[j] == cgraph->nodes[k]) {
  15819. idx = cgraph->n_leafs + k;
  15820. break;
  15821. }
  15822. }
  15823. }
  15824. if (idx == -1) {
  15825. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15826. fclose(fout);
  15827. return;
  15828. }
  15829. fwrite(&idx, sizeof(int32_t), 1, fout);
  15830. } else {
  15831. const int32_t nul = -1;
  15832. fwrite(&nul, sizeof(int32_t), 1, fout);
  15833. }
  15834. }
  15835. }
  15836. }
  15837. }
  15838. fclose(fout);
  15839. }
  15840. }
  15841. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15842. assert(*ctx_data == NULL);
  15843. assert(*ctx_eval == NULL);
  15844. struct ggml_cgraph * result = NULL;
  15845. struct ggml_tensor * data = NULL;
  15846. // read file into data
  15847. {
  15848. FILE * fin = ggml_fopen(fname, "rb");
  15849. if (!fin) {
  15850. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15851. return result;
  15852. }
  15853. size_t fsize = 0;
  15854. fseek(fin, 0, SEEK_END);
  15855. fsize = ftell(fin);
  15856. fseek(fin, 0, SEEK_SET);
  15857. // create the data context
  15858. {
  15859. const size_t overhead = 1*ggml_tensor_overhead();
  15860. struct ggml_init_params params = {
  15861. .mem_size = fsize + overhead,
  15862. .mem_buffer = NULL,
  15863. .no_alloc = false,
  15864. };
  15865. *ctx_data = ggml_init(params);
  15866. if (!*ctx_data) {
  15867. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15868. fclose(fin);
  15869. return result;
  15870. }
  15871. }
  15872. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15873. {
  15874. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15875. if (ret != fsize) {
  15876. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15877. fclose(fin);
  15878. return result;
  15879. }
  15880. }
  15881. fclose(fin);
  15882. }
  15883. // populate result
  15884. {
  15885. char * ptr = (char *) data->data;
  15886. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15887. if (magic != GGML_FILE_MAGIC) {
  15888. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15889. return result;
  15890. }
  15891. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15892. if (version != GGML_FILE_VERSION) {
  15893. fprintf(stderr, "%s: invalid version number\n", __func__);
  15894. return result;
  15895. }
  15896. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15897. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15898. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15899. const int graph_size = MAX(n_leafs, n_nodes);
  15900. // create the data context
  15901. {
  15902. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15903. struct ggml_init_params params = {
  15904. .mem_size = size_eval + overhead,
  15905. .mem_buffer = NULL,
  15906. .no_alloc = true,
  15907. };
  15908. *ctx_eval = ggml_init(params);
  15909. if (!*ctx_eval) {
  15910. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15911. return result;
  15912. }
  15913. }
  15914. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15915. result->n_leafs = n_leafs;
  15916. result->n_nodes = n_nodes;
  15917. // leafs
  15918. {
  15919. uint32_t type;
  15920. uint32_t op;
  15921. for (uint32_t i = 0; i < n_leafs; ++i) {
  15922. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15923. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15924. int64_t ne[GGML_MAX_DIMS];
  15925. size_t nb[GGML_MAX_DIMS];
  15926. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15927. uint64_t ne_cur;
  15928. uint64_t nb_cur;
  15929. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15930. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15931. ne[j] = ne_cur;
  15932. nb[j] = nb_cur;
  15933. }
  15934. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15935. tensor->op = (enum ggml_op) op;
  15936. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15937. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15938. tensor->data = (void *) ptr;
  15939. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15940. tensor->nb[j] = nb[j];
  15941. }
  15942. result->leafs[i] = tensor;
  15943. ptr += ggml_nbytes(tensor);
  15944. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15945. }
  15946. }
  15947. ggml_set_no_alloc(*ctx_eval, false);
  15948. // nodes
  15949. {
  15950. uint32_t type;
  15951. uint32_t op;
  15952. for (uint32_t i = 0; i < n_nodes; ++i) {
  15953. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15954. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15955. enum ggml_op eop = (enum ggml_op) op;
  15956. int64_t ne[GGML_MAX_DIMS];
  15957. size_t nb[GGML_MAX_DIMS];
  15958. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15959. uint64_t ne_cur;
  15960. uint64_t nb_cur;
  15961. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15962. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15963. ne[j] = ne_cur;
  15964. nb[j] = nb_cur;
  15965. }
  15966. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15967. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15968. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15969. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15970. // parse args
  15971. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15972. const int32_t arg_idx = ptr_arg_idx[j];
  15973. if (arg_idx == -1) {
  15974. continue;
  15975. }
  15976. if (arg_idx < result->n_leafs) {
  15977. args[j] = result->leafs[arg_idx];
  15978. } else {
  15979. args[j] = result->nodes[arg_idx - result->n_leafs];
  15980. }
  15981. }
  15982. // create the tensor
  15983. // "view" operations are handled differently
  15984. // TODO: handle inplace ops - currently a copy is always made
  15985. struct ggml_tensor * tensor = NULL;
  15986. switch (eop) {
  15987. // TODO: implement other view ops
  15988. case GGML_OP_RESHAPE:
  15989. {
  15990. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15991. } break;
  15992. case GGML_OP_VIEW:
  15993. {
  15994. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15995. size_t offs;
  15996. memcpy(&offs, ptr_op_params, sizeof(offs));
  15997. tensor->data = ((char *) tensor->data) + offs;
  15998. } break;
  15999. case GGML_OP_TRANSPOSE:
  16000. {
  16001. tensor = ggml_transpose(*ctx_eval, args[0]);
  16002. } break;
  16003. case GGML_OP_PERMUTE:
  16004. {
  16005. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16006. } break;
  16007. default:
  16008. {
  16009. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16010. tensor->op = eop;
  16011. } break;
  16012. }
  16013. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16014. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16015. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16016. tensor->nb[j] = nb[j];
  16017. }
  16018. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16019. tensor->src[j] = args[j];
  16020. }
  16021. result->nodes[i] = tensor;
  16022. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16023. }
  16024. }
  16025. }
  16026. return result;
  16027. }
  16028. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16029. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16030. GGML_PRINT("=== GRAPH ===\n");
  16031. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16032. for (int i = 0; i < cgraph->n_nodes; i++) {
  16033. struct ggml_tensor * node = cgraph->nodes[i];
  16034. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16035. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16036. i,
  16037. node->ne[0], node->ne[1], node->ne[2],
  16038. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16039. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16040. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16041. (double) node->perf_time_us / 1000.0,
  16042. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16043. }
  16044. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16045. for (int i = 0; i < cgraph->n_leafs; i++) {
  16046. struct ggml_tensor * node = cgraph->leafs[i];
  16047. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16048. i,
  16049. node->ne[0], node->ne[1],
  16050. ggml_op_name(node->op),
  16051. ggml_get_name(node));
  16052. }
  16053. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16054. if (perf_total_per_op_us[i] == 0) {
  16055. continue;
  16056. }
  16057. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16058. }
  16059. GGML_PRINT("========================================\n");
  16060. }
  16061. // check if node is part of the graph
  16062. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16063. if (cgraph == NULL) {
  16064. return true;
  16065. }
  16066. for (int i = 0; i < cgraph->n_nodes; i++) {
  16067. if (cgraph->nodes[i] == node) {
  16068. return true;
  16069. }
  16070. }
  16071. return false;
  16072. }
  16073. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16074. for (int i = 0; i < cgraph->n_nodes; i++) {
  16075. struct ggml_tensor * parent = cgraph->nodes[i];
  16076. if (parent->grad == node) {
  16077. return parent;
  16078. }
  16079. }
  16080. return NULL;
  16081. }
  16082. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16083. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16084. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16085. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16086. gparent0 ? (void *) gparent0 : (void *) parent,
  16087. gparent0 ? "g" : "x",
  16088. gparent ? (void *) gparent : (void *) node,
  16089. gparent ? "g" : "x",
  16090. gparent ? "empty" : "vee",
  16091. gparent ? "dashed" : "solid",
  16092. label);
  16093. }
  16094. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16095. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16096. (void *) parent, "x",
  16097. (void *) node, "x",
  16098. label);
  16099. }
  16100. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16101. char color[16];
  16102. FILE * fp = ggml_fopen(filename, "w");
  16103. GGML_ASSERT(fp);
  16104. fprintf(fp, "digraph G {\n");
  16105. fprintf(fp, " newrank = true;\n");
  16106. fprintf(fp, " rankdir = LR;\n");
  16107. for (int i = 0; i < gb->n_nodes; i++) {
  16108. struct ggml_tensor * node = gb->nodes[i];
  16109. if (ggml_graph_get_parent(gb, node) != NULL) {
  16110. continue;
  16111. }
  16112. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16113. snprintf(color, sizeof(color), "yellow");
  16114. } else if (node->grad) {
  16115. if (ggml_graph_find(gf, node)) {
  16116. snprintf(color, sizeof(color), "green");
  16117. } else {
  16118. snprintf(color, sizeof(color), "lightblue");
  16119. }
  16120. } else {
  16121. snprintf(color, sizeof(color), "white");
  16122. }
  16123. fprintf(fp, " \"%p\" [ "
  16124. "style = filled; fillcolor = %s; shape = record; "
  16125. "label=\"",
  16126. (void *) node, color);
  16127. if (strlen(node->name) > 0) {
  16128. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16129. } else {
  16130. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16131. }
  16132. if (ggml_is_matrix(node)) {
  16133. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16134. } else {
  16135. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16136. }
  16137. if (node->grad) {
  16138. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16139. } else {
  16140. fprintf(fp, "\"; ]\n");
  16141. }
  16142. }
  16143. for (int i = 0; i < gb->n_leafs; i++) {
  16144. struct ggml_tensor * node = gb->leafs[i];
  16145. snprintf(color, sizeof(color), "pink");
  16146. fprintf(fp, " \"%p\" [ "
  16147. "style = filled; fillcolor = %s; shape = record; "
  16148. "label=\"<x>",
  16149. (void *) node, color);
  16150. if (strlen(node->name) > 0) {
  16151. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16152. } else {
  16153. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16154. }
  16155. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16156. if (ggml_nelements(node) < 5) {
  16157. fprintf(fp, " | (");
  16158. for (int j = 0; j < ggml_nelements(node); j++) {
  16159. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16160. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16161. }
  16162. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  16163. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16164. }
  16165. else {
  16166. fprintf(fp, "#");
  16167. }
  16168. if (j < ggml_nelements(node) - 1) {
  16169. fprintf(fp, ", ");
  16170. }
  16171. }
  16172. fprintf(fp, ")");
  16173. }
  16174. fprintf(fp, "\"; ]\n");
  16175. }
  16176. for (int i = 0; i < gb->n_nodes; i++) {
  16177. struct ggml_tensor * node = gb->nodes[i];
  16178. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16179. if (node->src[j]) {
  16180. char label[16];
  16181. snprintf(label, sizeof(label), "src %d", j);
  16182. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16183. }
  16184. }
  16185. }
  16186. for (int i = 0; i < gb->n_leafs; i++) {
  16187. struct ggml_tensor * node = gb->leafs[i];
  16188. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16189. if (node->src[j]) {
  16190. char label[16];
  16191. snprintf(label, sizeof(label), "src %d", j);
  16192. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16193. }
  16194. }
  16195. }
  16196. fprintf(fp, "}\n");
  16197. fclose(fp);
  16198. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16199. }
  16200. ////////////////////////////////////////////////////////////////////////////////
  16201. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16202. int i = 0;
  16203. for (int p = 0; p < np; ++p) {
  16204. const int64_t ne = ggml_nelements(ps[p]) ;
  16205. // TODO: add function to set tensor from array
  16206. for (int64_t j = 0; j < ne; ++j) {
  16207. ggml_set_f32_1d(ps[p], j, x[i++]);
  16208. }
  16209. }
  16210. }
  16211. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16212. int i = 0;
  16213. for (int p = 0; p < np; ++p) {
  16214. const int64_t ne = ggml_nelements(ps[p]) ;
  16215. // TODO: add function to get all elements at once
  16216. for (int64_t j = 0; j < ne; ++j) {
  16217. x[i++] = ggml_get_f32_1d(ps[p], j);
  16218. }
  16219. }
  16220. }
  16221. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16222. int64_t i = 0;
  16223. for (int p = 0; p < np; ++p) {
  16224. const int64_t ne = ggml_nelements(ps[p]) ;
  16225. // TODO: add function to get all elements at once
  16226. for (int64_t j = 0; j < ne; ++j) {
  16227. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16228. }
  16229. }
  16230. }
  16231. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16232. int64_t i = 0;
  16233. for (int p = 0; p < np; ++p) {
  16234. const int64_t ne = ggml_nelements(ps[p]) ;
  16235. // TODO: add function to get all elements at once
  16236. for (int64_t j = 0; j < ne; ++j) {
  16237. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16238. }
  16239. }
  16240. }
  16241. //
  16242. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16243. //
  16244. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16245. //
  16246. static enum ggml_opt_result ggml_opt_adam(
  16247. struct ggml_context * ctx,
  16248. struct ggml_opt_context * opt,
  16249. struct ggml_opt_params params,
  16250. struct ggml_tensor * f,
  16251. struct ggml_cgraph * gf,
  16252. struct ggml_cgraph * gb,
  16253. ggml_opt_callback callback,
  16254. void * callback_data) {
  16255. GGML_ASSERT(ggml_is_scalar(f));
  16256. // these will store the parameters we want to optimize
  16257. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16258. int np = 0;
  16259. int64_t nx = 0;
  16260. for (int i = 0; i < gf->n_nodes; ++i) {
  16261. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16262. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16263. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16264. ps[np++] = gf->nodes[i];
  16265. nx += ggml_nelements(gf->nodes[i]);
  16266. }
  16267. }
  16268. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16269. int iter = opt->iter;
  16270. ggml_opt_init(opt->ctx, opt, params, nx);
  16271. opt->iter = iter;
  16272. }
  16273. // constants
  16274. float sched = params.adam.sched;
  16275. const float alpha = params.adam.alpha;
  16276. const float decay = params.adam.decay * alpha;
  16277. const float beta1 = params.adam.beta1;
  16278. const float beta2 = params.adam.beta2;
  16279. const float eps = params.adam.eps;
  16280. const float gclip = params.adam.gclip;
  16281. const int decay_min_ndim = params.adam.decay_min_ndim;
  16282. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16283. const float accum_norm = 1.0f / (float) n_accum;
  16284. float * g = opt->adam.g->data; // gradients
  16285. float * m = opt->adam.m->data; // first moment
  16286. float * v = opt->adam.v->data; // second moment
  16287. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16288. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16289. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16290. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16291. bool cancel = false;
  16292. // compute the function value
  16293. float fx = 0;
  16294. ggml_set_zero(opt->adam.g);
  16295. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16296. if (callback) {
  16297. callback(callback_data, accum_step, &sched, &cancel);
  16298. if (cancel) {
  16299. return GGML_OPT_RESULT_CANCEL;
  16300. }
  16301. }
  16302. // ggml_graph_reset (gf);
  16303. ggml_set_f32 (f->grad, 1.0f);
  16304. ggml_graph_compute(gb, &cplan);
  16305. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16306. fx += ggml_get_f32_1d(f, 0);
  16307. }
  16308. fx *= accum_norm;
  16309. opt->adam.fx_prev = fx;
  16310. opt->adam.fx_best = opt->adam.fx_prev;
  16311. if (pf) {
  16312. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16313. }
  16314. opt->loss_before = opt->adam.fx_prev;
  16315. opt->loss_after = opt->adam.fx_prev;
  16316. // initialize
  16317. if (opt->just_initialized) {
  16318. opt->adam.n_no_improvement = 0;
  16319. opt->just_initialized = false;
  16320. }
  16321. float * fx_best = &opt->adam.fx_best;
  16322. float * fx_prev = &opt->adam.fx_prev;
  16323. int * n_no_improvement = &opt->adam.n_no_improvement;
  16324. int iter0 = opt->iter;
  16325. // run the optimizer
  16326. for (int t = 0; t < params.adam.n_iter; ++t) {
  16327. opt->iter = iter0 + t + 1;
  16328. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16329. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16330. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16331. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16332. for (int i = 0; i < np; ++i) {
  16333. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16334. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16335. }
  16336. const int64_t t_start_wall = ggml_time_us();
  16337. const int64_t t_start_cpu = ggml_cycles();
  16338. UNUSED(t_start_wall);
  16339. UNUSED(t_start_cpu);
  16340. {
  16341. float gnorm = 1.0f;
  16342. if (gclip > 0.0f) {
  16343. // gradient clipping
  16344. ggml_float sum = 0.0;
  16345. for (int64_t i = 0; i < nx; ++i) {
  16346. sum += (ggml_float)(g[i]*g[i]);
  16347. }
  16348. ggml_float norm = sqrt(sum);
  16349. if (norm > (ggml_float) gclip) {
  16350. gnorm = (float) ((ggml_float) gclip / norm);
  16351. }
  16352. }
  16353. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16354. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16355. int64_t i = 0;
  16356. for (int p = 0; p < np; ++p) {
  16357. const int64_t ne = ggml_nelements(ps[p]);
  16358. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16359. for (int64_t j = 0; j < ne; ++j) {
  16360. float x = ggml_get_f32_1d(ps[p], j);
  16361. float g_ = g[i]*gnorm;
  16362. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16363. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16364. float mh = m[i]*beta1h;
  16365. float vh = v[i]*beta2h;
  16366. vh = sqrtf(vh) + eps;
  16367. x = x*(1.0f - p_decay) - mh/vh;
  16368. ggml_set_f32_1d(ps[p], j, x);
  16369. ++i;
  16370. }
  16371. }
  16372. }
  16373. fx = 0;
  16374. ggml_set_zero(opt->adam.g);
  16375. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16376. if (callback) {
  16377. callback(callback_data, accum_step, &sched, &cancel);
  16378. if (cancel) {
  16379. return GGML_OPT_RESULT_CANCEL;;
  16380. }
  16381. }
  16382. // ggml_graph_reset (gf);
  16383. ggml_set_f32 (f->grad, 1.0f);
  16384. ggml_graph_compute(gb, &cplan);
  16385. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16386. fx += ggml_get_f32_1d(f, 0);
  16387. }
  16388. fx *= accum_norm;
  16389. opt->loss_after = fx;
  16390. // check convergence
  16391. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16392. GGML_PRINT_DEBUG("converged\n");
  16393. return GGML_OPT_RESULT_OK;
  16394. }
  16395. // delta-based convergence test
  16396. if (pf != NULL) {
  16397. // need at least params.past iterations to start checking for convergence
  16398. if (params.past <= iter0 + t) {
  16399. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16400. if (fabsf(rate) < params.delta) {
  16401. return GGML_OPT_RESULT_OK;
  16402. }
  16403. }
  16404. pf[(iter0 + t)%params.past] = fx;
  16405. }
  16406. // check for improvement
  16407. if (params.max_no_improvement > 0) {
  16408. if (fx_best[0] > fx) {
  16409. fx_best[0] = fx;
  16410. n_no_improvement[0] = 0;
  16411. } else {
  16412. ++n_no_improvement[0];
  16413. if (n_no_improvement[0] >= params.max_no_improvement) {
  16414. return GGML_OPT_RESULT_OK;
  16415. }
  16416. }
  16417. }
  16418. fx_prev[0] = fx;
  16419. {
  16420. const int64_t t_end_cpu = ggml_cycles();
  16421. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16422. UNUSED(t_end_cpu);
  16423. const int64_t t_end_wall = ggml_time_us();
  16424. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16425. UNUSED(t_end_wall);
  16426. }
  16427. }
  16428. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16429. }
  16430. //
  16431. // L-BFGS
  16432. //
  16433. // the L-BFGS implementation below is based on the following implementation:
  16434. //
  16435. // https://github.com/chokkan/liblbfgs
  16436. //
  16437. struct ggml_lbfgs_iteration_data {
  16438. float alpha;
  16439. float ys;
  16440. float * s;
  16441. float * y;
  16442. };
  16443. static enum ggml_opt_result linesearch_backtracking(
  16444. const struct ggml_opt_params * params,
  16445. int nx,
  16446. float * x,
  16447. float * fx,
  16448. float * g,
  16449. float * d,
  16450. float * step,
  16451. const float * xp,
  16452. struct ggml_tensor * f,
  16453. struct ggml_cgraph * gb,
  16454. struct ggml_cplan * cplan,
  16455. const int np,
  16456. struct ggml_tensor * ps[],
  16457. bool * cancel,
  16458. ggml_opt_callback callback,
  16459. void * callback_data) {
  16460. int count = 0;
  16461. float width = 0.0f;
  16462. float dg = 0.0f;
  16463. float finit = 0.0f;
  16464. float dginit = 0.0f;
  16465. float dgtest = 0.0f;
  16466. const float dec = 0.5f;
  16467. const float inc = 2.1f;
  16468. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16469. const float accum_norm = 1.0f / (float) n_accum;
  16470. if (*step <= 0.f) {
  16471. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16472. }
  16473. // compute the initial gradient in the search direction
  16474. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16475. // make sure that d points to a descent direction
  16476. if (0 < dginit) {
  16477. return GGML_LINESEARCH_FAIL;
  16478. }
  16479. // initialize local variables
  16480. finit = *fx;
  16481. dgtest = params->lbfgs.ftol*dginit;
  16482. while (true) {
  16483. ggml_vec_cpy_f32(nx, x, xp);
  16484. ggml_vec_mad_f32(nx, x, d, *step);
  16485. // evaluate the function and gradient values
  16486. {
  16487. ggml_opt_set_params(np, ps, x);
  16488. *fx = 0;
  16489. memset(g, 0, sizeof(float)*nx);
  16490. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16491. if (callback) {
  16492. // LBFG-S does not support learning rate -> ignore learning schedule
  16493. float sched = 0;
  16494. callback(callback_data, accum_step, &sched, cancel);
  16495. if (*cancel) {
  16496. return GGML_OPT_RESULT_CANCEL;
  16497. }
  16498. }
  16499. // ggml_graph_reset (gf);
  16500. ggml_set_f32 (f->grad, 1.0f);
  16501. ggml_graph_compute(gb, cplan);
  16502. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16503. *fx += ggml_get_f32_1d(f, 0);
  16504. }
  16505. *fx *= accum_norm;
  16506. }
  16507. ++count;
  16508. if (*fx > finit + (*step)*dgtest) {
  16509. width = dec;
  16510. } else {
  16511. // Armijo condition is satisfied
  16512. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16513. return count;
  16514. }
  16515. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16516. // check the Wolfe condition
  16517. if (dg < params->lbfgs.wolfe * dginit) {
  16518. width = inc;
  16519. } else {
  16520. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16521. // regular Wolfe conditions
  16522. return count;
  16523. }
  16524. if(dg > -params->lbfgs.wolfe*dginit) {
  16525. width = dec;
  16526. } else {
  16527. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16528. return count;
  16529. }
  16530. }
  16531. }
  16532. if (*step < params->lbfgs.min_step) {
  16533. return GGML_LINESEARCH_MINIMUM_STEP;
  16534. }
  16535. if (*step > params->lbfgs.max_step) {
  16536. return GGML_LINESEARCH_MAXIMUM_STEP;
  16537. }
  16538. if (params->lbfgs.max_linesearch <= count) {
  16539. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16540. }
  16541. (*step) *= width;
  16542. }
  16543. GGML_ASSERT(false && "line search failed");
  16544. return GGML_LINESEARCH_FAIL;
  16545. }
  16546. static enum ggml_opt_result ggml_opt_lbfgs(
  16547. struct ggml_context * ctx,
  16548. struct ggml_opt_context * opt,
  16549. struct ggml_opt_params params,
  16550. struct ggml_tensor * f,
  16551. struct ggml_cgraph * gf,
  16552. struct ggml_cgraph * gb,
  16553. ggml_opt_callback callback,
  16554. void * callback_data) {
  16555. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16556. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16557. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16558. return GGML_OPT_RESULT_INVALID_WOLFE;
  16559. }
  16560. }
  16561. const int m = params.lbfgs.m;
  16562. // these will store the parameters we want to optimize
  16563. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16564. int np = 0;
  16565. int nx = 0;
  16566. for (int i = 0; i < gf->n_nodes; ++i) {
  16567. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16568. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16569. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16570. ps[np++] = gf->nodes[i];
  16571. nx += ggml_nelements(gf->nodes[i]);
  16572. }
  16573. }
  16574. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16575. int iter = opt->iter;
  16576. ggml_opt_init(ctx, opt, params, nx);
  16577. opt->iter = iter;
  16578. }
  16579. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16580. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16581. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16582. float * x = opt->lbfgs.x->data; // current parameters
  16583. float * xp = opt->lbfgs.xp->data; // previous parameters
  16584. float * g = opt->lbfgs.g->data; // current gradient
  16585. float * gp = opt->lbfgs.gp->data; // previous gradient
  16586. float * d = opt->lbfgs.d->data; // search direction
  16587. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16588. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16589. const float accum_norm = 1.0f / (float) n_accum;
  16590. float fx = 0.0f; // cost function value
  16591. float xnorm = 0.0f; // ||x||
  16592. float gnorm = 0.0f; // ||g||
  16593. // initialize x from the graph nodes
  16594. ggml_opt_get_params(np, ps, x);
  16595. // the L-BFGS memory
  16596. float * lm_alpha = opt->lbfgs.lmal->data;
  16597. float * lm_ys = opt->lbfgs.lmys->data;
  16598. float * lm_s = opt->lbfgs.lms->data;
  16599. float * lm_y = opt->lbfgs.lmy->data;
  16600. bool cancel = false;
  16601. // evaluate the function value and its gradient
  16602. {
  16603. ggml_opt_set_params(np, ps, x);
  16604. fx = 0;
  16605. memset(g, 0, sizeof(float)*nx);
  16606. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16607. if (callback) {
  16608. // LBFG-S does not support learning rate -> ignore learning schedule
  16609. float sched = 0;
  16610. callback(callback_data, accum_step, &sched, &cancel);
  16611. if (cancel) {
  16612. return GGML_OPT_RESULT_CANCEL;
  16613. }
  16614. }
  16615. // ggml_graph_reset (gf);
  16616. ggml_set_f32 (f->grad, 1.0f);
  16617. ggml_graph_compute(gb, &cplan);
  16618. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16619. fx += ggml_get_f32_1d(f, 0);
  16620. }
  16621. fx *= accum_norm;
  16622. opt->loss_before = fx;
  16623. opt->loss_after = fx;
  16624. }
  16625. // search direction = -gradient
  16626. ggml_vec_neg_f32(nx, d, g);
  16627. // ||x||, ||g||
  16628. ggml_vec_norm_f32(nx, &xnorm, x);
  16629. ggml_vec_norm_f32(nx, &gnorm, g);
  16630. if (xnorm < 1.0f) {
  16631. xnorm = 1.0f;
  16632. }
  16633. // already optimized
  16634. if (gnorm/xnorm <= params.lbfgs.eps) {
  16635. return GGML_OPT_RESULT_OK;
  16636. }
  16637. if (opt->just_initialized) {
  16638. if (pf) {
  16639. pf[0] = fx;
  16640. }
  16641. opt->lbfgs.fx_best = fx;
  16642. // initial step
  16643. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16644. opt->lbfgs.j = 0;
  16645. opt->lbfgs.k = 1;
  16646. opt->lbfgs.end = 0;
  16647. opt->lbfgs.n_no_improvement = 0;
  16648. opt->just_initialized = false;
  16649. }
  16650. float * fx_best = &opt->lbfgs.fx_best;
  16651. float * step = &opt->lbfgs.step;
  16652. int * j = &opt->lbfgs.j;
  16653. int * k = &opt->lbfgs.k;
  16654. int * end = &opt->lbfgs.end;
  16655. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16656. int ls = 0;
  16657. int bound = 0;
  16658. float ys = 0.0f;
  16659. float yy = 0.0f;
  16660. float beta = 0.0f;
  16661. int it = 0;
  16662. while (true) {
  16663. // store the current position and gradient vectors
  16664. ggml_vec_cpy_f32(nx, xp, x);
  16665. ggml_vec_cpy_f32(nx, gp, g);
  16666. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16667. // to determine if the optimization should be cancelled
  16668. // this is a simple change, but not doing this atm, since I don't have a nice
  16669. // way to test and don't want to break something with so many changes lined up
  16670. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16671. if (cancel) {
  16672. return GGML_OPT_RESULT_CANCEL;
  16673. }
  16674. if (ls < 0) {
  16675. // linesearch failed - go back to the previous point and return
  16676. ggml_vec_cpy_f32(nx, x, xp);
  16677. ggml_vec_cpy_f32(nx, g, gp);
  16678. return ls;
  16679. }
  16680. opt->loss_after = fx;
  16681. ggml_vec_norm_f32(nx, &xnorm, x);
  16682. ggml_vec_norm_f32(nx, &gnorm, g);
  16683. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16684. if (xnorm < 1.0f) {
  16685. xnorm = 1.0f;
  16686. }
  16687. if (gnorm/xnorm <= params.lbfgs.eps) {
  16688. // converged
  16689. return GGML_OPT_RESULT_OK;
  16690. }
  16691. // delta-based convergence test
  16692. if (pf != NULL) {
  16693. // need at least params.past iterations to start checking for convergence
  16694. if (params.past <= k[0]) {
  16695. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16696. if (fabsf(rate) < params.delta) {
  16697. return GGML_OPT_RESULT_OK;
  16698. }
  16699. }
  16700. pf[k[0]%params.past] = fx;
  16701. }
  16702. // check for improvement
  16703. if (params.max_no_improvement > 0) {
  16704. if (fx < fx_best[0]) {
  16705. fx_best[0] = fx;
  16706. n_no_improvement[0] = 0;
  16707. } else {
  16708. n_no_improvement[0]++;
  16709. if (n_no_improvement[0] >= params.max_no_improvement) {
  16710. return GGML_OPT_RESULT_OK;
  16711. }
  16712. }
  16713. }
  16714. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16715. // reached the maximum number of iterations
  16716. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16717. }
  16718. // update vectors s and y:
  16719. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16720. // y_{k+1} = g_{k+1} - g_{k}.
  16721. //
  16722. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16723. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16724. // compute scalars ys and yy:
  16725. // ys = y^t \cdot s -> 1 / \rho.
  16726. // yy = y^t \cdot y.
  16727. //
  16728. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16729. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16730. lm_ys[end[0]] = ys;
  16731. // find new search direction
  16732. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16733. bound = (m <= k[0]) ? m : k[0];
  16734. k[0]++;
  16735. it++;
  16736. end[0] = (end[0] + 1)%m;
  16737. // initialize search direction with -g
  16738. ggml_vec_neg_f32(nx, d, g);
  16739. j[0] = end[0];
  16740. for (int i = 0; i < bound; ++i) {
  16741. j[0] = (j[0] + m - 1) % m;
  16742. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16743. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16744. lm_alpha[j[0]] /= lm_ys[j[0]];
  16745. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16746. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16747. }
  16748. ggml_vec_scale_f32(nx, d, ys/yy);
  16749. for (int i = 0; i < bound; ++i) {
  16750. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16751. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16752. beta /= lm_ys[j[0]];
  16753. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16754. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16755. j[0] = (j[0] + 1)%m;
  16756. }
  16757. step[0] = 1.0;
  16758. }
  16759. GGML_ASSERT(false && "lbfgs failed");
  16760. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16761. }
  16762. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16763. struct ggml_opt_params result;
  16764. switch (type) {
  16765. case GGML_OPT_TYPE_ADAM:
  16766. {
  16767. result = (struct ggml_opt_params) {
  16768. .type = GGML_OPT_TYPE_ADAM,
  16769. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16770. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16771. .past = 0,
  16772. .delta = 1e-5f,
  16773. .max_no_improvement = 100,
  16774. .print_forward_graph = true,
  16775. .print_backward_graph = true,
  16776. .n_gradient_accumulation = 1,
  16777. .adam = {
  16778. .n_iter = 10000,
  16779. .sched = 1.000f,
  16780. .decay = 0.0f,
  16781. .decay_min_ndim = 2,
  16782. .alpha = 0.001f,
  16783. .beta1 = 0.9f,
  16784. .beta2 = 0.999f,
  16785. .eps = 1e-8f,
  16786. .eps_f = 1e-5f,
  16787. .eps_g = 1e-3f,
  16788. .gclip = 0.0f,
  16789. },
  16790. };
  16791. } break;
  16792. case GGML_OPT_TYPE_LBFGS:
  16793. {
  16794. result = (struct ggml_opt_params) {
  16795. .type = GGML_OPT_TYPE_LBFGS,
  16796. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16797. .n_threads = 1,
  16798. .past = 0,
  16799. .delta = 1e-5f,
  16800. .max_no_improvement = 0,
  16801. .print_forward_graph = true,
  16802. .print_backward_graph = true,
  16803. .n_gradient_accumulation = 1,
  16804. .lbfgs = {
  16805. .m = 6,
  16806. .n_iter = 100,
  16807. .max_linesearch = 20,
  16808. .eps = 1e-5f,
  16809. .ftol = 1e-4f,
  16810. .wolfe = 0.9f,
  16811. .min_step = 1e-20f,
  16812. .max_step = 1e+20f,
  16813. .linesearch = GGML_LINESEARCH_DEFAULT,
  16814. },
  16815. };
  16816. } break;
  16817. }
  16818. return result;
  16819. }
  16820. GGML_API void ggml_opt_init(
  16821. struct ggml_context * ctx,
  16822. struct ggml_opt_context * opt,
  16823. struct ggml_opt_params params,
  16824. int64_t nx) {
  16825. opt->ctx = ctx;
  16826. opt->params = params;
  16827. opt->iter = 0;
  16828. opt->nx = nx;
  16829. opt->just_initialized = true;
  16830. if (opt->ctx == NULL) {
  16831. struct ggml_init_params ctx_opt_params;
  16832. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16833. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16834. if (opt->params.past > 0) {
  16835. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16836. }
  16837. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16838. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16839. if (opt->params.past > 0) {
  16840. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16841. }
  16842. }
  16843. ctx_opt_params.mem_buffer = NULL;
  16844. ctx_opt_params.no_alloc = false;
  16845. opt->ctx = ggml_init(ctx_opt_params);
  16846. }
  16847. switch (opt->params.type) {
  16848. case GGML_OPT_TYPE_ADAM:
  16849. {
  16850. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16851. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16852. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16853. opt->adam.pf = params.past > 0
  16854. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16855. : NULL;
  16856. ggml_set_zero(opt->adam.m);
  16857. ggml_set_zero(opt->adam.v);
  16858. if (opt->adam.pf) {
  16859. ggml_set_zero(opt->adam.pf);
  16860. }
  16861. } break;
  16862. case GGML_OPT_TYPE_LBFGS:
  16863. {
  16864. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16865. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16866. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16867. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16868. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16869. opt->lbfgs.pf = params.past > 0
  16870. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16871. : NULL;
  16872. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16873. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16874. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16875. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16876. ggml_set_zero(opt->lbfgs.x);
  16877. ggml_set_zero(opt->lbfgs.xp);
  16878. ggml_set_zero(opt->lbfgs.g);
  16879. ggml_set_zero(opt->lbfgs.gp);
  16880. ggml_set_zero(opt->lbfgs.d);
  16881. if (opt->lbfgs.pf) {
  16882. ggml_set_zero(opt->lbfgs.pf);
  16883. }
  16884. ggml_set_zero(opt->lbfgs.lmal);
  16885. ggml_set_zero(opt->lbfgs.lmys);
  16886. ggml_set_zero(opt->lbfgs.lms);
  16887. ggml_set_zero(opt->lbfgs.lmy);
  16888. } break;
  16889. }
  16890. }
  16891. enum ggml_opt_result ggml_opt(
  16892. struct ggml_context * ctx,
  16893. struct ggml_opt_params params,
  16894. struct ggml_tensor * f) {
  16895. bool free_ctx = false;
  16896. if (ctx == NULL) {
  16897. struct ggml_init_params params_ctx = {
  16898. .mem_size = 16*1024*1024,
  16899. .mem_buffer = NULL,
  16900. .no_alloc = false,
  16901. };
  16902. ctx = ggml_init(params_ctx);
  16903. if (ctx == NULL) {
  16904. return GGML_OPT_RESULT_NO_CONTEXT;
  16905. }
  16906. free_ctx = true;
  16907. }
  16908. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16909. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16910. ggml_opt_init(ctx, opt, params, 0);
  16911. result = ggml_opt_resume(ctx, opt, f);
  16912. if (free_ctx) {
  16913. ggml_free(ctx);
  16914. }
  16915. return result;
  16916. }
  16917. enum ggml_opt_result ggml_opt_resume(
  16918. struct ggml_context * ctx,
  16919. struct ggml_opt_context * opt,
  16920. struct ggml_tensor * f) {
  16921. // build forward + backward compute graphs
  16922. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16923. ggml_build_forward_expand(gf, f);
  16924. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16925. ggml_build_backward_expand(ctx, gf, gb, true);
  16926. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16927. }
  16928. enum ggml_opt_result ggml_opt_resume_g(
  16929. struct ggml_context * ctx,
  16930. struct ggml_opt_context * opt,
  16931. struct ggml_tensor * f,
  16932. struct ggml_cgraph * gf,
  16933. struct ggml_cgraph * gb,
  16934. ggml_opt_callback callback,
  16935. void * callback_data) {
  16936. // build forward + backward compute graphs
  16937. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16938. switch (opt->params.type) {
  16939. case GGML_OPT_TYPE_ADAM:
  16940. {
  16941. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16942. } break;
  16943. case GGML_OPT_TYPE_LBFGS:
  16944. {
  16945. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16946. } break;
  16947. }
  16948. if (opt->params.print_forward_graph) {
  16949. ggml_graph_print (gf);
  16950. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16951. }
  16952. if (opt->params.print_backward_graph) {
  16953. ggml_graph_print (gb);
  16954. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16955. }
  16956. return result;
  16957. }
  16958. ////////////////////////////////////////////////////////////////////////////////
  16959. void ggml_set_input(struct ggml_tensor * tensor) {
  16960. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16961. }
  16962. void ggml_set_output(struct ggml_tensor * tensor) {
  16963. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16964. }
  16965. ////////////////////////////////////////////////////////////////////////////////
  16966. void ggml_quantize_init(enum ggml_type type) {
  16967. ggml_critical_section_start();
  16968. switch (type) {
  16969. case GGML_TYPE_IQ2_XXS:
  16970. case GGML_TYPE_IQ2_XS:
  16971. case GGML_TYPE_IQ2_S:
  16972. case GGML_TYPE_IQ1_S:
  16973. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16974. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16975. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16976. default: // nothing
  16977. break;
  16978. }
  16979. ggml_critical_section_end();
  16980. }
  16981. void ggml_quantize_free(void) {
  16982. ggml_critical_section_start();
  16983. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16984. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16985. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16986. iq3xs_free_impl(256);
  16987. ggml_critical_section_end();
  16988. }
  16989. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16990. return
  16991. type == GGML_TYPE_IQ2_XXS ||
  16992. type == GGML_TYPE_IQ2_XS ||
  16993. type == GGML_TYPE_IQ1_S;// ||
  16994. //type == GGML_TYPE_IQ1_M;
  16995. }
  16996. size_t ggml_quantize_chunk(
  16997. enum ggml_type type,
  16998. const float * src,
  16999. void * dst,
  17000. int64_t start,
  17001. int64_t nrows,
  17002. int64_t n_per_row,
  17003. const float * imatrix) {
  17004. const int64_t n = (int64_t) nrows * n_per_row;
  17005. if (ggml_quantize_requires_imatrix(type)) {
  17006. GGML_ASSERT(imatrix != NULL);
  17007. }
  17008. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17009. GGML_ASSERT(start % n_per_row == 0);
  17010. ggml_quantize_init(type); // this is noop if already initialized
  17011. const size_t start_row = start / n_per_row;
  17012. const size_t row_size = ggml_row_size(type, n_per_row);
  17013. size_t result = 0;
  17014. switch (type) {
  17015. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17016. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17017. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17018. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17019. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17020. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17021. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17022. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17023. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17024. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17025. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17026. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17027. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17028. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17029. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17030. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17031. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17032. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17033. #if QK_K == 64
  17034. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17035. #else
  17036. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17037. #endif
  17038. case GGML_TYPE_F16:
  17039. {
  17040. size_t elemsize = sizeof(ggml_fp16_t);
  17041. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17042. result = n * elemsize;
  17043. } break;
  17044. case GGML_TYPE_F32:
  17045. {
  17046. size_t elemsize = sizeof(float);
  17047. result = n * elemsize;
  17048. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17049. } break;
  17050. default:
  17051. assert(false);
  17052. }
  17053. GGML_ASSERT(result == nrows * row_size);
  17054. return result;
  17055. }
  17056. ////////////////////////////////////////////////////////////////////////////////
  17057. struct gguf_str {
  17058. uint64_t n; // GGUFv2
  17059. char * data;
  17060. };
  17061. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17062. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17063. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17064. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17065. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17066. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17067. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17068. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17069. [GGUF_TYPE_BOOL] = sizeof(bool),
  17070. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17071. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17072. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17073. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17074. [GGUF_TYPE_ARRAY] = 0, // undefined
  17075. };
  17076. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17077. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17078. [GGUF_TYPE_UINT8] = "u8",
  17079. [GGUF_TYPE_INT8] = "i8",
  17080. [GGUF_TYPE_UINT16] = "u16",
  17081. [GGUF_TYPE_INT16] = "i16",
  17082. [GGUF_TYPE_UINT32] = "u32",
  17083. [GGUF_TYPE_INT32] = "i32",
  17084. [GGUF_TYPE_FLOAT32] = "f32",
  17085. [GGUF_TYPE_BOOL] = "bool",
  17086. [GGUF_TYPE_STRING] = "str",
  17087. [GGUF_TYPE_ARRAY] = "arr",
  17088. [GGUF_TYPE_UINT64] = "u64",
  17089. [GGUF_TYPE_INT64] = "i64",
  17090. [GGUF_TYPE_FLOAT64] = "f64",
  17091. };
  17092. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17093. union gguf_value {
  17094. uint8_t uint8;
  17095. int8_t int8;
  17096. uint16_t uint16;
  17097. int16_t int16;
  17098. uint32_t uint32;
  17099. int32_t int32;
  17100. float float32;
  17101. uint64_t uint64;
  17102. int64_t int64;
  17103. double float64;
  17104. bool bool_;
  17105. struct gguf_str str;
  17106. struct {
  17107. enum gguf_type type;
  17108. uint64_t n; // GGUFv2
  17109. void * data;
  17110. } arr;
  17111. };
  17112. struct gguf_kv {
  17113. struct gguf_str key;
  17114. enum gguf_type type;
  17115. union gguf_value value;
  17116. };
  17117. struct gguf_header {
  17118. char magic[4];
  17119. uint32_t version;
  17120. uint64_t n_tensors; // GGUFv2
  17121. uint64_t n_kv; // GGUFv2
  17122. };
  17123. struct gguf_tensor_info {
  17124. struct gguf_str name;
  17125. uint32_t n_dims;
  17126. uint64_t ne[GGML_MAX_DIMS];
  17127. enum ggml_type type;
  17128. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17129. // for writing API
  17130. const void * data;
  17131. size_t size;
  17132. };
  17133. struct gguf_context {
  17134. struct gguf_header header;
  17135. struct gguf_kv * kv;
  17136. struct gguf_tensor_info * infos;
  17137. size_t alignment;
  17138. size_t offset; // offset of `data` from beginning of file
  17139. size_t size; // size of `data` in bytes
  17140. //uint8_t * padding;
  17141. void * data;
  17142. };
  17143. static size_t gguf_type_size(enum gguf_type type) {
  17144. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17145. return GGUF_TYPE_SIZE[type];
  17146. }
  17147. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17148. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17149. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17150. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17151. GGML_ASSERT(info->ne[i] > 0);
  17152. }
  17153. // prevent overflow for total number of elements
  17154. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17155. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17156. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17157. }
  17158. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17159. const size_t n = fread(dst, 1, size, file);
  17160. *offset += n;
  17161. return n == size;
  17162. }
  17163. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17164. p->n = 0;
  17165. p->data = NULL;
  17166. bool ok = true;
  17167. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17168. // early exit if string length is invalid, prevents from integer overflow
  17169. if (p->n == SIZE_MAX) {
  17170. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17171. return false;
  17172. }
  17173. p->data = GGML_CALLOC(p->n + 1, 1);
  17174. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17175. return ok;
  17176. }
  17177. static void gguf_free_kv(struct gguf_kv * kv) {
  17178. if (kv->key.data) {
  17179. GGML_FREE(kv->key.data);
  17180. }
  17181. if (kv->type == GGUF_TYPE_STRING) {
  17182. if (kv->value.str.data) {
  17183. GGML_FREE(kv->value.str.data);
  17184. }
  17185. }
  17186. if (kv->type == GGUF_TYPE_ARRAY) {
  17187. if (kv->value.arr.data) {
  17188. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17189. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17190. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17191. if (str->data) {
  17192. GGML_FREE(str->data);
  17193. }
  17194. }
  17195. }
  17196. GGML_FREE(kv->value.arr.data);
  17197. }
  17198. }
  17199. }
  17200. struct gguf_context * gguf_init_empty(void) {
  17201. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17202. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17203. ctx->header.version = GGUF_VERSION;
  17204. ctx->header.n_tensors = 0;
  17205. ctx->header.n_kv = 0;
  17206. ctx->kv = NULL;
  17207. ctx->infos = NULL;
  17208. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17209. ctx->offset = 0;
  17210. ctx->size = 0;
  17211. ctx->data = NULL;
  17212. return ctx;
  17213. }
  17214. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17215. FILE * file = ggml_fopen(fname, "rb");
  17216. if (!file) {
  17217. return NULL;
  17218. }
  17219. // offset from start of file
  17220. size_t offset = 0;
  17221. char magic[4];
  17222. // check the magic before making allocations
  17223. {
  17224. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17225. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17226. if (magic[i] != GGUF_MAGIC[i]) {
  17227. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17228. fclose(file);
  17229. return NULL;
  17230. }
  17231. }
  17232. }
  17233. bool ok = true;
  17234. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17235. // read the header
  17236. {
  17237. strncpy(ctx->header.magic, magic, 4);
  17238. ctx->kv = NULL;
  17239. ctx->infos = NULL;
  17240. ctx->data = NULL;
  17241. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17242. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17243. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17244. if (ctx->header.version == 1) {
  17245. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17246. fclose(file);
  17247. gguf_free(ctx);
  17248. return NULL;
  17249. }
  17250. // sanity-checks to prevent from integer/buffer overflows
  17251. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17252. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17253. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17254. if (!ok) {
  17255. fprintf(stderr, "%s: failed to read header\n", __func__);
  17256. fclose(file);
  17257. gguf_free(ctx);
  17258. return NULL;
  17259. }
  17260. }
  17261. // read the kv pairs
  17262. {
  17263. const uint64_t n_kv = ctx->header.n_kv;
  17264. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17265. ctx->header.n_kv = 0;
  17266. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17267. for (uint64_t i = 0; i < n_kv; ++i) {
  17268. struct gguf_kv * kv = &ctx->kv[i];
  17269. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17270. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17271. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17272. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17273. switch (kv->type) {
  17274. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17275. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17276. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17277. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17278. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17279. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17280. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17281. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17282. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17283. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17284. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17285. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17286. case GGUF_TYPE_ARRAY:
  17287. {
  17288. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17289. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17290. switch (kv->value.arr.type) {
  17291. case GGUF_TYPE_UINT8:
  17292. case GGUF_TYPE_INT8:
  17293. case GGUF_TYPE_UINT16:
  17294. case GGUF_TYPE_INT16:
  17295. case GGUF_TYPE_UINT32:
  17296. case GGUF_TYPE_INT32:
  17297. case GGUF_TYPE_FLOAT32:
  17298. case GGUF_TYPE_UINT64:
  17299. case GGUF_TYPE_INT64:
  17300. case GGUF_TYPE_FLOAT64:
  17301. case GGUF_TYPE_BOOL:
  17302. {
  17303. // prevent from integer overflow in the malloc below
  17304. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17305. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17306. fclose(file);
  17307. gguf_free(ctx);
  17308. return NULL;
  17309. }
  17310. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17311. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17312. } break;
  17313. case GGUF_TYPE_STRING:
  17314. {
  17315. // prevent from integer overflow in the malloc below
  17316. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17317. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17318. fclose(file);
  17319. gguf_free(ctx);
  17320. return NULL;
  17321. }
  17322. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17323. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17324. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17325. }
  17326. } break;
  17327. case GGUF_TYPE_ARRAY:
  17328. default: GGML_ASSERT(false && "invalid type"); break;
  17329. }
  17330. } break;
  17331. default: GGML_ASSERT(false && "invalid type");
  17332. }
  17333. if (!ok) {
  17334. break;
  17335. }
  17336. ctx->header.n_kv++;
  17337. }
  17338. if (!ok) {
  17339. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17340. fclose(file);
  17341. gguf_free(ctx);
  17342. return NULL;
  17343. }
  17344. }
  17345. // read the tensor infos
  17346. {
  17347. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17348. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17349. struct gguf_tensor_info * info = &ctx->infos[i];
  17350. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17351. info->ne[j] = 1;
  17352. }
  17353. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17354. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17355. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17356. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17357. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17358. }
  17359. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17360. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17361. // TODO: return an error instead of crashing with GGML_ASSERT
  17362. gguf_tensor_info_sanitize(info);
  17363. // make sure there is no duplicated tensor names
  17364. for (uint64_t j = 0; j < i; ++j) {
  17365. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17366. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17367. ok = false;
  17368. }
  17369. }
  17370. if (!ok) {
  17371. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17372. fclose(file);
  17373. gguf_free(ctx);
  17374. return NULL;
  17375. }
  17376. }
  17377. }
  17378. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17379. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17380. if (alignment_idx != -1) {
  17381. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17382. }
  17383. // we require the data section to be aligned, so take into account any padding
  17384. {
  17385. const size_t offset_pad = offset % ctx->alignment;
  17386. if (offset_pad != 0) {
  17387. offset += ctx->alignment - offset_pad;
  17388. fseek(file, offset, SEEK_SET);
  17389. }
  17390. }
  17391. // store the current file offset - this is where the data section starts
  17392. ctx->offset = offset;
  17393. // compute the total size of the data section, taking into account the alignment
  17394. {
  17395. ctx->size = 0;
  17396. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17397. struct gguf_tensor_info * info = &ctx->infos[i];
  17398. const int64_t ne =
  17399. (int64_t) info->ne[0] *
  17400. (int64_t) info->ne[1] *
  17401. (int64_t) info->ne[2] *
  17402. (int64_t) info->ne[3];
  17403. if (ne % ggml_blck_size(info->type) != 0) {
  17404. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17405. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17406. fclose(file);
  17407. gguf_free(ctx);
  17408. return NULL;
  17409. }
  17410. const size_t size_cur = ggml_row_size(info->type, ne);
  17411. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17412. }
  17413. }
  17414. // load the tensor data only if requested
  17415. if (params.ctx != NULL) {
  17416. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17417. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17418. // the ggml_tensor structs to the appropriate locations in the binary blob
  17419. // compute the exact size needed for the new ggml_context
  17420. const size_t mem_size =
  17421. params.no_alloc ?
  17422. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17423. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17424. struct ggml_init_params pdata = {
  17425. .mem_size = mem_size,
  17426. .mem_buffer = NULL,
  17427. .no_alloc = params.no_alloc,
  17428. };
  17429. *params.ctx = ggml_init(pdata);
  17430. struct ggml_context * ctx_data = *params.ctx;
  17431. struct ggml_tensor * data = NULL;
  17432. if (!params.no_alloc) {
  17433. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17434. ok = ok && data != NULL;
  17435. // read the binary blob with the tensor data
  17436. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17437. if (!ok) {
  17438. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17439. fclose(file);
  17440. ggml_free(ctx_data);
  17441. gguf_free(ctx);
  17442. return NULL;
  17443. }
  17444. ctx->data = data->data;
  17445. }
  17446. ggml_set_no_alloc(ctx_data, true);
  17447. // create the tensors
  17448. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17449. const int64_t ne[GGML_MAX_DIMS] = {
  17450. ctx->infos[i].ne[0],
  17451. ctx->infos[i].ne[1],
  17452. ctx->infos[i].ne[2],
  17453. ctx->infos[i].ne[3],
  17454. };
  17455. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17456. ok = ok && cur != NULL;
  17457. if (!ok) {
  17458. break;
  17459. }
  17460. ggml_set_name(cur, ctx->infos[i].name.data);
  17461. // point the data member to the appropriate location in the binary blob using the tensor infos
  17462. if (!params.no_alloc) {
  17463. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17464. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17465. }
  17466. }
  17467. if (!ok) {
  17468. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17469. fclose(file);
  17470. ggml_free(ctx_data);
  17471. gguf_free(ctx);
  17472. return NULL;
  17473. }
  17474. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17475. }
  17476. fclose(file);
  17477. return ctx;
  17478. }
  17479. void gguf_free(struct gguf_context * ctx) {
  17480. if (ctx == NULL) {
  17481. return;
  17482. }
  17483. if (ctx->kv) {
  17484. // free string memory - not great..
  17485. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17486. gguf_free_kv(&ctx->kv[i]);
  17487. }
  17488. GGML_FREE(ctx->kv);
  17489. }
  17490. if (ctx->infos) {
  17491. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17492. struct gguf_tensor_info * info = &ctx->infos[i];
  17493. if (info->name.data) {
  17494. GGML_FREE(info->name.data);
  17495. }
  17496. }
  17497. GGML_FREE(ctx->infos);
  17498. }
  17499. GGML_FREE(ctx);
  17500. }
  17501. const char * gguf_type_name(enum gguf_type type) {
  17502. return GGUF_TYPE_NAME[type];
  17503. }
  17504. int gguf_get_version(const struct gguf_context * ctx) {
  17505. return ctx->header.version;
  17506. }
  17507. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17508. return ctx->alignment;
  17509. }
  17510. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17511. return ctx->offset;
  17512. }
  17513. void * gguf_get_data(const struct gguf_context * ctx) {
  17514. return ctx->data;
  17515. }
  17516. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17517. return ctx->header.n_kv;
  17518. }
  17519. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17520. // return -1 if key not found
  17521. int keyfound = -1;
  17522. const int n_kv = gguf_get_n_kv(ctx);
  17523. for (int i = 0; i < n_kv; ++i) {
  17524. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17525. keyfound = i;
  17526. break;
  17527. }
  17528. }
  17529. return keyfound;
  17530. }
  17531. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17532. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17533. return ctx->kv[key_id].key.data;
  17534. }
  17535. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17536. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17537. return ctx->kv[key_id].type;
  17538. }
  17539. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17540. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17541. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17542. return ctx->kv[key_id].value.arr.type;
  17543. }
  17544. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17545. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17546. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17547. return ctx->kv[key_id].value.arr.data;
  17548. }
  17549. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17550. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17551. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17552. struct gguf_kv * kv = &ctx->kv[key_id];
  17553. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17554. return str->data;
  17555. }
  17556. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17557. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17558. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17559. return ctx->kv[key_id].value.arr.n;
  17560. }
  17561. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17562. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17563. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17564. return ctx->kv[key_id].value.uint8;
  17565. }
  17566. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17567. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17568. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17569. return ctx->kv[key_id].value.int8;
  17570. }
  17571. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17572. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17573. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17574. return ctx->kv[key_id].value.uint16;
  17575. }
  17576. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17577. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17578. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17579. return ctx->kv[key_id].value.int16;
  17580. }
  17581. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17582. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17583. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17584. return ctx->kv[key_id].value.uint32;
  17585. }
  17586. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17587. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17588. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17589. return ctx->kv[key_id].value.int32;
  17590. }
  17591. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17592. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17593. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17594. return ctx->kv[key_id].value.float32;
  17595. }
  17596. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17597. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17598. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17599. return ctx->kv[key_id].value.uint64;
  17600. }
  17601. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17602. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17603. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17604. return ctx->kv[key_id].value.int64;
  17605. }
  17606. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17607. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17608. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17609. return ctx->kv[key_id].value.float64;
  17610. }
  17611. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17612. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17613. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17614. return ctx->kv[key_id].value.bool_;
  17615. }
  17616. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17617. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17618. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17619. return ctx->kv[key_id].value.str.data;
  17620. }
  17621. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17622. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17623. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17624. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17625. return &ctx->kv[key_id].value;
  17626. }
  17627. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17628. return ctx->header.n_tensors;
  17629. }
  17630. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17631. // return -1 if tensor not found
  17632. int tensorfound = -1;
  17633. const int n_tensors = gguf_get_n_tensors(ctx);
  17634. for (int i = 0; i < n_tensors; ++i) {
  17635. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17636. tensorfound = i;
  17637. break;
  17638. }
  17639. }
  17640. return tensorfound;
  17641. }
  17642. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17643. return ctx->infos[i].offset;
  17644. }
  17645. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17646. return ctx->infos[i].name.data;
  17647. }
  17648. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17649. return ctx->infos[i].type;
  17650. }
  17651. // returns the index
  17652. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17653. const int idx = gguf_find_key(ctx, key);
  17654. if (idx >= 0) {
  17655. return idx;
  17656. }
  17657. const int n_kv = gguf_get_n_kv(ctx);
  17658. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17659. ctx->kv[n_kv].key.n = strlen(key);
  17660. ctx->kv[n_kv].key.data = strdup(key);
  17661. ctx->header.n_kv++;
  17662. return n_kv;
  17663. }
  17664. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17665. const int idx = gguf_find_key(ctx, key);
  17666. if (idx >= 0) {
  17667. const int n_kv = gguf_get_n_kv(ctx);
  17668. gguf_free_kv(&ctx->kv[idx]);
  17669. for (int i = idx; i < n_kv-1; ++i) {
  17670. ctx->kv[i] = ctx->kv[i+1];
  17671. }
  17672. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17673. ctx->header.n_kv--;
  17674. }
  17675. }
  17676. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17677. const int idx = gguf_get_or_add_key(ctx, key);
  17678. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17679. ctx->kv[idx].value.uint8 = val;
  17680. }
  17681. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17682. const int idx = gguf_get_or_add_key(ctx, key);
  17683. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17684. ctx->kv[idx].value.int8 = val;
  17685. }
  17686. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17687. const int idx = gguf_get_or_add_key(ctx, key);
  17688. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17689. ctx->kv[idx].value.uint16 = val;
  17690. }
  17691. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17692. const int idx = gguf_get_or_add_key(ctx, key);
  17693. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17694. ctx->kv[idx].value.int16 = val;
  17695. }
  17696. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17697. const int idx = gguf_get_or_add_key(ctx, key);
  17698. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17699. ctx->kv[idx].value.uint32 = val;
  17700. }
  17701. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17702. const int idx = gguf_get_or_add_key(ctx, key);
  17703. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17704. ctx->kv[idx].value.int32 = val;
  17705. }
  17706. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17707. const int idx = gguf_get_or_add_key(ctx, key);
  17708. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17709. ctx->kv[idx].value.float32 = val;
  17710. }
  17711. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17712. const int idx = gguf_get_or_add_key(ctx, key);
  17713. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17714. ctx->kv[idx].value.uint64 = val;
  17715. }
  17716. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17717. const int idx = gguf_get_or_add_key(ctx, key);
  17718. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17719. ctx->kv[idx].value.int64 = val;
  17720. }
  17721. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17722. const int idx = gguf_get_or_add_key(ctx, key);
  17723. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17724. ctx->kv[idx].value.float64 = val;
  17725. }
  17726. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17727. const int idx = gguf_get_or_add_key(ctx, key);
  17728. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17729. ctx->kv[idx].value.bool_ = val;
  17730. }
  17731. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17732. const int idx = gguf_get_or_add_key(ctx, key);
  17733. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17734. ctx->kv[idx].value.str.n = strlen(val);
  17735. ctx->kv[idx].value.str.data = strdup(val);
  17736. }
  17737. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17738. const int idx = gguf_get_or_add_key(ctx, key);
  17739. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17740. ctx->kv[idx].value.arr.type = type;
  17741. ctx->kv[idx].value.arr.n = n;
  17742. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  17743. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17744. }
  17745. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17746. const int idx = gguf_get_or_add_key(ctx, key);
  17747. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17748. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17749. ctx->kv[idx].value.arr.n = n;
  17750. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  17751. for (int i = 0; i < n; i++) {
  17752. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17753. str->n = strlen(data[i]);
  17754. str->data = strdup(data[i]);
  17755. }
  17756. }
  17757. // set or add KV pairs from another context
  17758. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17759. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17760. switch (src->kv[i].type) {
  17761. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17762. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17763. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17764. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17765. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17766. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17767. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17768. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17769. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17770. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17771. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17772. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17773. case GGUF_TYPE_ARRAY:
  17774. {
  17775. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17776. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  17777. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17778. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17779. }
  17780. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17781. GGML_FREE((void *)data);
  17782. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17783. GGML_ASSERT(false && "nested arrays not supported");
  17784. } else {
  17785. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17786. }
  17787. } break;
  17788. default: GGML_ASSERT(false && "invalid type"); break;
  17789. }
  17790. }
  17791. }
  17792. void gguf_add_tensor(
  17793. struct gguf_context * ctx,
  17794. const struct ggml_tensor * tensor) {
  17795. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  17796. GGML_ASSERT(false && "duplicated tensor name");
  17797. }
  17798. const int idx = ctx->header.n_tensors;
  17799. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17800. ctx->infos[idx].name.n = strlen(tensor->name);
  17801. ctx->infos[idx].name.data = strdup(tensor->name);
  17802. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17803. ctx->infos[idx].ne[i] = 1;
  17804. }
  17805. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17806. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17807. ctx->infos[idx].ne[i] = tensor->ne[i];
  17808. }
  17809. ctx->infos[idx].type = tensor->type;
  17810. ctx->infos[idx].offset = 0;
  17811. ctx->infos[idx].data = tensor->data;
  17812. ctx->infos[idx].size = ggml_nbytes(tensor);
  17813. if (ctx->header.n_tensors > 0) {
  17814. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17815. }
  17816. ctx->header.n_tensors++;
  17817. }
  17818. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17819. const int idx = gguf_find_tensor(ctx, name);
  17820. if (idx < 0) {
  17821. GGML_ASSERT(false && "tensor not found");
  17822. }
  17823. ctx->infos[idx].type = type;
  17824. }
  17825. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17826. const int idx = gguf_find_tensor(ctx, name);
  17827. if (idx < 0) {
  17828. GGML_ASSERT(false && "tensor not found");
  17829. }
  17830. ctx->infos[idx].data = data;
  17831. ctx->infos[idx].size = size;
  17832. // update offsets
  17833. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17834. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17835. }
  17836. }
  17837. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17838. // fwrite(&val->n, sizeof(val->n), 1, file);
  17839. // fwrite(val->data, sizeof(char), val->n, file);
  17840. //}
  17841. //
  17842. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17843. // fwrite(val, sizeof(char), size, file);
  17844. //}
  17845. struct gguf_buf {
  17846. void * data;
  17847. size_t size;
  17848. size_t offset;
  17849. };
  17850. static struct gguf_buf gguf_buf_init(size_t size) {
  17851. struct gguf_buf buf = {
  17852. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  17853. /*buf.size =*/ size,
  17854. /*buf.offset =*/ 0,
  17855. };
  17856. return buf;
  17857. }
  17858. static void gguf_buf_free(struct gguf_buf buf) {
  17859. if (buf.data) {
  17860. GGML_FREE(buf.data);
  17861. }
  17862. }
  17863. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17864. if (buf->offset + size > buf->size) {
  17865. buf->size = 1.5*(buf->offset + size);
  17866. if (buf->data) {
  17867. buf->data = realloc(buf->data, buf->size);
  17868. }
  17869. }
  17870. }
  17871. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17872. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17873. if (buf->data) {
  17874. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17875. }
  17876. buf->offset += sizeof(val->n);
  17877. if (buf->data) {
  17878. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17879. }
  17880. buf->offset += val->n;
  17881. }
  17882. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17883. gguf_buf_grow(buf, el_size);
  17884. if (buf->data) {
  17885. memcpy((char *) buf->data + buf->offset, val, el_size);
  17886. }
  17887. buf->offset += el_size;
  17888. }
  17889. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17890. // write header
  17891. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17892. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17893. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17894. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17895. // write key-value pairs
  17896. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17897. struct gguf_kv * kv = &ctx->kv[i];
  17898. gguf_bwrite_str(buf, &kv->key);
  17899. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17900. switch (kv->type) {
  17901. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17902. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17903. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17904. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17905. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17906. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17907. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17908. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17909. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17910. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17911. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17912. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17913. case GGUF_TYPE_ARRAY:
  17914. {
  17915. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17916. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17917. switch (kv->value.arr.type) {
  17918. case GGUF_TYPE_UINT8:
  17919. case GGUF_TYPE_INT8:
  17920. case GGUF_TYPE_UINT16:
  17921. case GGUF_TYPE_INT16:
  17922. case GGUF_TYPE_UINT32:
  17923. case GGUF_TYPE_INT32:
  17924. case GGUF_TYPE_FLOAT32:
  17925. case GGUF_TYPE_UINT64:
  17926. case GGUF_TYPE_INT64:
  17927. case GGUF_TYPE_FLOAT64:
  17928. case GGUF_TYPE_BOOL:
  17929. {
  17930. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17931. } break;
  17932. case GGUF_TYPE_STRING:
  17933. {
  17934. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17935. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17936. }
  17937. } break;
  17938. case GGUF_TYPE_ARRAY:
  17939. default: GGML_ASSERT(false && "invalid type"); break;
  17940. }
  17941. } break;
  17942. default: GGML_ASSERT(false && "invalid type");
  17943. }
  17944. }
  17945. // write tensor infos
  17946. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17947. struct gguf_tensor_info * info = &ctx->infos[i];
  17948. gguf_bwrite_str(buf, &info->name);
  17949. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17950. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17951. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17952. }
  17953. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17954. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17955. }
  17956. // we require the data section to be aligned, so take into account any padding
  17957. {
  17958. const size_t offset = buf->offset;
  17959. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17960. if (offset_pad != offset) {
  17961. uint8_t pad = 0;
  17962. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17963. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17964. }
  17965. }
  17966. }
  17967. if (only_meta) {
  17968. return;
  17969. }
  17970. size_t offset = 0;
  17971. // write tensor data
  17972. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17973. struct gguf_tensor_info * info = &ctx->infos[i];
  17974. const size_t size = info->size;
  17975. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17976. gguf_bwrite_el(buf, info->data, size);
  17977. if (size_pad != size) {
  17978. uint8_t pad = 0;
  17979. for (size_t j = 0; j < size_pad - size; ++j) {
  17980. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17981. }
  17982. }
  17983. GGML_ASSERT(offset == info->offset);
  17984. offset += size_pad;
  17985. }
  17986. }
  17987. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17988. FILE * file = ggml_fopen(fname, "wb");
  17989. if (!file) {
  17990. GGML_ASSERT(false && "failed to open file for writing");
  17991. }
  17992. struct gguf_buf buf = gguf_buf_init(16*1024);
  17993. gguf_write_to_buf(ctx, &buf, only_meta);
  17994. fwrite(buf.data, 1, buf.offset, file);
  17995. gguf_buf_free(buf);
  17996. fclose(file);
  17997. }
  17998. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17999. // no allocs - only compute size
  18000. struct gguf_buf buf = gguf_buf_init(0);
  18001. gguf_write_to_buf(ctx, &buf, true);
  18002. return buf.offset;
  18003. }
  18004. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18005. struct gguf_buf buf = gguf_buf_init(16*1024);
  18006. gguf_write_to_buf(ctx, &buf, true);
  18007. memcpy(data, buf.data, buf.offset);
  18008. gguf_buf_free(buf);
  18009. }
  18010. ////////////////////////////////////////////////////////////////////////////////
  18011. int ggml_cpu_has_avx(void) {
  18012. #if defined(__AVX__)
  18013. return 1;
  18014. #else
  18015. return 0;
  18016. #endif
  18017. }
  18018. int ggml_cpu_has_avx_vnni(void) {
  18019. #if defined(__AVXVNNI__)
  18020. return 1;
  18021. #else
  18022. return 0;
  18023. #endif
  18024. }
  18025. int ggml_cpu_has_avx2(void) {
  18026. #if defined(__AVX2__)
  18027. return 1;
  18028. #else
  18029. return 0;
  18030. #endif
  18031. }
  18032. int ggml_cpu_has_avx512(void) {
  18033. #if defined(__AVX512F__)
  18034. return 1;
  18035. #else
  18036. return 0;
  18037. #endif
  18038. }
  18039. int ggml_cpu_has_avx512_vbmi(void) {
  18040. #if defined(__AVX512VBMI__)
  18041. return 1;
  18042. #else
  18043. return 0;
  18044. #endif
  18045. }
  18046. int ggml_cpu_has_avx512_vnni(void) {
  18047. #if defined(__AVX512VNNI__)
  18048. return 1;
  18049. #else
  18050. return 0;
  18051. #endif
  18052. }
  18053. int ggml_cpu_has_fma(void) {
  18054. #if defined(__FMA__)
  18055. return 1;
  18056. #else
  18057. return 0;
  18058. #endif
  18059. }
  18060. int ggml_cpu_has_neon(void) {
  18061. #if defined(__ARM_NEON)
  18062. return 1;
  18063. #else
  18064. return 0;
  18065. #endif
  18066. }
  18067. int ggml_cpu_has_arm_fma(void) {
  18068. #if defined(__ARM_FEATURE_FMA)
  18069. return 1;
  18070. #else
  18071. return 0;
  18072. #endif
  18073. }
  18074. int ggml_cpu_has_metal(void) {
  18075. #if defined(GGML_USE_METAL)
  18076. return 1;
  18077. #else
  18078. return 0;
  18079. #endif
  18080. }
  18081. int ggml_cpu_has_f16c(void) {
  18082. #if defined(__F16C__)
  18083. return 1;
  18084. #else
  18085. return 0;
  18086. #endif
  18087. }
  18088. int ggml_cpu_has_fp16_va(void) {
  18089. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18090. return 1;
  18091. #else
  18092. return 0;
  18093. #endif
  18094. }
  18095. int ggml_cpu_has_wasm_simd(void) {
  18096. #if defined(__wasm_simd128__)
  18097. return 1;
  18098. #else
  18099. return 0;
  18100. #endif
  18101. }
  18102. int ggml_cpu_has_blas(void) {
  18103. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18104. return 1;
  18105. #else
  18106. return 0;
  18107. #endif
  18108. }
  18109. int ggml_cpu_has_cuda(void) {
  18110. #if defined(GGML_USE_CUDA)
  18111. return 1;
  18112. #else
  18113. return 0;
  18114. #endif
  18115. }
  18116. int ggml_cpu_has_clblast(void) {
  18117. #if defined(GGML_USE_CLBLAST)
  18118. return 1;
  18119. #else
  18120. return 0;
  18121. #endif
  18122. }
  18123. int ggml_cpu_has_vulkan(void) {
  18124. #if defined(GGML_USE_VULKAN)
  18125. return 1;
  18126. #else
  18127. return 0;
  18128. #endif
  18129. }
  18130. int ggml_cpu_has_kompute(void) {
  18131. #if defined(GGML_USE_KOMPUTE)
  18132. return 1;
  18133. #else
  18134. return 0;
  18135. #endif
  18136. }
  18137. int ggml_cpu_has_sycl(void) {
  18138. #if defined(GGML_USE_SYCL)
  18139. return 1;
  18140. #else
  18141. return 0;
  18142. #endif
  18143. }
  18144. int ggml_cpu_has_gpublas(void) {
  18145. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18146. ggml_cpu_has_sycl();
  18147. }
  18148. int ggml_cpu_has_sse3(void) {
  18149. #if defined(__SSE3__)
  18150. return 1;
  18151. #else
  18152. return 0;
  18153. #endif
  18154. }
  18155. int ggml_cpu_has_ssse3(void) {
  18156. #if defined(__SSSE3__)
  18157. return 1;
  18158. #else
  18159. return 0;
  18160. #endif
  18161. }
  18162. int ggml_cpu_has_vsx(void) {
  18163. #if defined(__POWER9_VECTOR__)
  18164. return 1;
  18165. #else
  18166. return 0;
  18167. #endif
  18168. }
  18169. int ggml_cpu_has_matmul_int8(void) {
  18170. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18171. return 1;
  18172. #else
  18173. return 0;
  18174. #endif
  18175. }
  18176. ////////////////////////////////////////////////////////////////////////////////