ggml.c 741 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. typedef atomic_int atomic_flag;
  53. #define ATOMIC_FLAG_INIT 0
  54. static void atomic_store(atomic_int * ptr, LONG val) {
  55. InterlockedExchange(ptr, val);
  56. }
  57. static LONG atomic_load(atomic_int * ptr) {
  58. return InterlockedCompareExchange(ptr, 0, 0);
  59. }
  60. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  61. return InterlockedExchangeAdd(ptr, inc);
  62. }
  63. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  64. return atomic_fetch_add(ptr, -(dec));
  65. }
  66. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  67. return InterlockedExchange(ptr, 1);
  68. }
  69. static void atomic_flag_clear(atomic_flag * ptr) {
  70. InterlockedExchange(ptr, 0);
  71. }
  72. typedef HANDLE pthread_t;
  73. typedef DWORD thread_ret_t;
  74. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  75. (void) unused;
  76. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  77. if (handle == NULL)
  78. {
  79. return EAGAIN;
  80. }
  81. *out = handle;
  82. return 0;
  83. }
  84. static int pthread_join(pthread_t thread, void * unused) {
  85. (void) unused;
  86. int ret = (int) WaitForSingleObject(thread, INFINITE);
  87. CloseHandle(thread);
  88. return ret;
  89. }
  90. static int sched_yield (void) {
  91. Sleep (0);
  92. return 0;
  93. }
  94. #else
  95. #include <pthread.h>
  96. #include <stdatomic.h>
  97. typedef void * thread_ret_t;
  98. #include <sys/types.h>
  99. #include <sys/stat.h>
  100. #include <unistd.h>
  101. #endif
  102. typedef pthread_t ggml_thread_t;
  103. #ifdef GGML_USE_CPU_HBM
  104. #include <hbwmalloc.h>
  105. #endif
  106. #if defined(__APPLE__)
  107. #include <TargetConditionals.h>
  108. #endif
  109. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  110. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  111. #include <sys/wait.h>
  112. void ggml_print_backtrace(void) {
  113. /*
  114. #include <execinfo.h>
  115. #include <dlfcn.h>
  116. void * trace[100];
  117. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  118. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  119. */
  120. // backtrack_symbols does not show line numbers, use gdb instead
  121. char attach[32];
  122. snprintf(attach, sizeof(attach), "attach %d", getpid());
  123. int pid = fork();
  124. if (pid == 0) {
  125. execlp("gdb", "gdb", "--batch",
  126. "-ex", "set style enabled on",
  127. "-ex", attach,
  128. "-ex", "bt -frame-info source-and-location",
  129. "-ex", "detach",
  130. "-ex", "quit",
  131. (char *) NULL);
  132. } else {
  133. waitpid(pid, NULL, 0);
  134. }
  135. }
  136. #else
  137. void ggml_print_backtrace(void) {
  138. // platform not supported
  139. }
  140. #endif
  141. /*#define GGML_PERF*/
  142. #define GGML_DEBUG 0
  143. #define GGML_GELU_FP16
  144. #define GGML_GELU_QUICK_FP16
  145. #define GGML_SOFT_MAX_UNROLL 4
  146. #define GGML_VEC_DOT_UNROLL 2
  147. #define GGML_VEC_MAD_UNROLL 32
  148. //
  149. // logging
  150. //
  151. #if (GGML_DEBUG >= 1)
  152. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  153. #else
  154. #define GGML_PRINT_DEBUG(...)
  155. #endif
  156. #if (GGML_DEBUG >= 5)
  157. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  158. #else
  159. #define GGML_PRINT_DEBUG_5(...)
  160. #endif
  161. #if (GGML_DEBUG >= 10)
  162. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  163. #else
  164. #define GGML_PRINT_DEBUG_10(...)
  165. #endif
  166. #define GGML_PRINT(...) printf(__VA_ARGS__)
  167. //
  168. // end of logging block
  169. //
  170. #ifdef GGML_USE_ACCELERATE
  171. // uncomment to use vDSP for soft max computation
  172. // note: not sure if it is actually faster
  173. //#define GGML_SOFT_MAX_ACCELERATE
  174. #endif
  175. #if defined(_MSC_VER) || defined(__MINGW32__)
  176. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  177. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  178. #else
  179. inline static void * ggml_aligned_malloc(size_t size) {
  180. if (size == 0) {
  181. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  182. return NULL;
  183. }
  184. void * aligned_memory = NULL;
  185. #ifdef GGML_USE_CPU_HBM
  186. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  187. #elif GGML_USE_METAL
  188. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  189. #else
  190. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  191. #endif
  192. if (result != 0) {
  193. // Handle allocation failure
  194. const char *error_desc = "unknown allocation error";
  195. switch (result) {
  196. case EINVAL:
  197. error_desc = "invalid alignment value";
  198. break;
  199. case ENOMEM:
  200. error_desc = "insufficient memory";
  201. break;
  202. }
  203. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. return NULL;
  206. }
  207. return aligned_memory;
  208. }
  209. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  210. #ifdef GGML_USE_CPU_HBM
  211. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  212. #else
  213. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  214. #endif
  215. #endif
  216. inline static void * ggml_malloc(size_t size) {
  217. if (size == 0) {
  218. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  219. return NULL;
  220. }
  221. void * result = malloc(size);
  222. if (result == NULL) {
  223. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  224. GGML_ASSERT(false);
  225. }
  226. return result;
  227. }
  228. // calloc
  229. inline static void * ggml_calloc(size_t num, size_t size) {
  230. if (num == 0 || size == 0) {
  231. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  232. return NULL;
  233. }
  234. void * result = calloc(num, size);
  235. if (result == NULL) {
  236. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  237. GGML_ASSERT(false);
  238. }
  239. return result;
  240. }
  241. #define GGML_MALLOC(size) ggml_malloc(size)
  242. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  243. #define GGML_FREE(ptr) free(ptr)
  244. #define UNUSED GGML_UNUSED
  245. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  246. #if defined(GGML_USE_ACCELERATE)
  247. #include <Accelerate/Accelerate.h>
  248. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  249. #include "ggml-opencl.h"
  250. #endif
  251. #elif defined(GGML_USE_OPENBLAS)
  252. #if defined(GGML_BLAS_USE_MKL)
  253. #include <mkl.h>
  254. #else
  255. #include <cblas.h>
  256. #endif
  257. #elif defined(GGML_USE_CLBLAST)
  258. #include "ggml-opencl.h"
  259. #endif
  260. // floating point type used to accumulate sums
  261. typedef double ggml_float;
  262. #undef MIN
  263. #undef MAX
  264. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  265. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  266. //
  267. // global data
  268. //
  269. // precomputed gelu table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  271. // precomputed quick gelu table for f16 (128 KB)
  272. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  274. float ggml_table_f32_f16[1 << 16];
  275. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  276. switch (status) {
  277. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  278. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  279. case GGML_STATUS_SUCCESS: return "GGML status: success";
  280. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  281. }
  282. return "GGML status: unknown";
  283. }
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  286. return GGML_FP16_TO_FP32(x);
  287. }
  288. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  289. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  290. return GGML_FP32_TO_FP16(x);
  291. }
  292. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  293. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  294. return GGML_BF16_TO_FP32(x); // it just left shifts
  295. }
  296. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  297. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  298. return GGML_FP32_TO_BF16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  301. for (int64_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  306. int64_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  324. int64_t i = 0;
  325. #if defined(__AVX512F__)
  326. for (; i + 16 <= n; i += 16) {
  327. _mm512_storeu_ps(y + i,
  328. _mm512_castsi512_ps(
  329. _mm512_slli_epi32(
  330. _mm512_cvtepu16_epi32(
  331. _mm256_loadu_si256(
  332. (const __m256i *)(x + i))),
  333. 16)));
  334. }
  335. #elif defined(__AVX2__)
  336. for (; i + 8 <= n; i += 8) {
  337. _mm256_storeu_ps(y + i,
  338. _mm256_castsi256_ps(
  339. _mm256_slli_epi32(
  340. _mm256_cvtepu16_epi32(
  341. _mm_loadu_si128(
  342. (const __m128i *)(x + i))),
  343. 16)));
  344. }
  345. #endif
  346. for (; i < n; i++) {
  347. y[i] = GGML_BF16_TO_FP32(x[i]);
  348. }
  349. }
  350. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  351. int i = 0;
  352. #if defined(__AVX512BF16__)
  353. for (; i + 32 <= n; i += 32) {
  354. _mm512_storeu_si512(
  355. (__m512i *)(y + i),
  356. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  357. _mm512_loadu_ps(x + i))));
  358. }
  359. #endif
  360. for (; i < n; i++) {
  361. y[i] = GGML_FP32_TO_BF16(x[i]);
  362. }
  363. }
  364. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  365. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  366. }
  367. //
  368. // timing
  369. //
  370. #if defined(_MSC_VER) || defined(__MINGW32__)
  371. static int64_t timer_freq, timer_start;
  372. void ggml_time_init(void) {
  373. LARGE_INTEGER t;
  374. QueryPerformanceFrequency(&t);
  375. timer_freq = t.QuadPart;
  376. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  377. // and the uptime is high enough.
  378. // We subtract the program start time to reduce the likelihood of that happening.
  379. QueryPerformanceCounter(&t);
  380. timer_start = t.QuadPart;
  381. }
  382. int64_t ggml_time_ms(void) {
  383. LARGE_INTEGER t;
  384. QueryPerformanceCounter(&t);
  385. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  386. }
  387. int64_t ggml_time_us(void) {
  388. LARGE_INTEGER t;
  389. QueryPerformanceCounter(&t);
  390. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  391. }
  392. #else
  393. void ggml_time_init(void) {}
  394. int64_t ggml_time_ms(void) {
  395. struct timespec ts;
  396. clock_gettime(CLOCK_MONOTONIC, &ts);
  397. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  398. }
  399. int64_t ggml_time_us(void) {
  400. struct timespec ts;
  401. clock_gettime(CLOCK_MONOTONIC, &ts);
  402. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  403. }
  404. #endif
  405. int64_t ggml_cycles(void) {
  406. return clock();
  407. }
  408. int64_t ggml_cycles_per_ms(void) {
  409. return CLOCKS_PER_SEC/1000;
  410. }
  411. #ifdef GGML_PERF
  412. #define ggml_perf_time_ms() ggml_time_ms()
  413. #define ggml_perf_time_us() ggml_time_us()
  414. #define ggml_perf_cycles() ggml_cycles()
  415. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  416. #else
  417. #define ggml_perf_time_ms() 0
  418. #define ggml_perf_time_us() 0
  419. #define ggml_perf_cycles() 0
  420. #define ggml_perf_cycles_per_ms() 0
  421. #endif
  422. //
  423. // cross-platform UTF-8 file paths
  424. //
  425. #ifdef _WIN32
  426. static wchar_t * ggml_mbstowcs(const char * mbs) {
  427. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  428. if (!wlen) {
  429. errno = EINVAL;
  430. return NULL;
  431. }
  432. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  433. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  434. if (!wlen) {
  435. GGML_FREE(wbuf);
  436. errno = EINVAL;
  437. return NULL;
  438. }
  439. return wbuf;
  440. }
  441. #endif
  442. FILE * ggml_fopen(const char * fname, const char * mode) {
  443. #ifdef _WIN32
  444. FILE * file = NULL;
  445. // convert fname (UTF-8)
  446. wchar_t * wfname = ggml_mbstowcs(fname);
  447. if (wfname) {
  448. // convert mode (ANSI)
  449. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  450. wchar_t * wmode_p = wmode;
  451. do {
  452. *wmode_p++ = (wchar_t)*mode;
  453. } while (*mode++);
  454. // open file
  455. file = _wfopen(wfname, wmode);
  456. GGML_FREE(wfname);
  457. GGML_FREE(wmode);
  458. }
  459. return file;
  460. #else
  461. return fopen(fname, mode);
  462. #endif
  463. }
  464. //
  465. // cache line
  466. //
  467. #if defined(__cpp_lib_hardware_interference_size)
  468. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  469. #else
  470. #if defined(__POWER9_VECTOR__)
  471. #define CACHE_LINE_SIZE 128
  472. #else
  473. #define CACHE_LINE_SIZE 64
  474. #endif
  475. #endif
  476. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  477. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  478. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  479. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  480. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  481. [GGML_TYPE_I8] = {
  482. .type_name = "i8",
  483. .blck_size = 1,
  484. .type_size = sizeof(int8_t),
  485. .is_quantized = false,
  486. },
  487. [GGML_TYPE_I16] = {
  488. .type_name = "i16",
  489. .blck_size = 1,
  490. .type_size = sizeof(int16_t),
  491. .is_quantized = false,
  492. },
  493. [GGML_TYPE_I32] = {
  494. .type_name = "i32",
  495. .blck_size = 1,
  496. .type_size = sizeof(int32_t),
  497. .is_quantized = false,
  498. },
  499. [GGML_TYPE_I64] = {
  500. .type_name = "i64",
  501. .blck_size = 1,
  502. .type_size = sizeof(int64_t),
  503. .is_quantized = false,
  504. },
  505. [GGML_TYPE_F64] = {
  506. .type_name = "f64",
  507. .blck_size = 1,
  508. .type_size = sizeof(double),
  509. .is_quantized = false,
  510. .nrows = 1,
  511. },
  512. [GGML_TYPE_F32] = {
  513. .type_name = "f32",
  514. .blck_size = 1,
  515. .type_size = sizeof(float),
  516. .is_quantized = false,
  517. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  518. .vec_dot_type = GGML_TYPE_F32,
  519. .nrows = 1,
  520. },
  521. [GGML_TYPE_F16] = {
  522. .type_name = "f16",
  523. .blck_size = 1,
  524. .type_size = sizeof(ggml_fp16_t),
  525. .is_quantized = false,
  526. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  527. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  528. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  529. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  530. .vec_dot_type = GGML_TYPE_F16,
  531. .nrows = 1,
  532. },
  533. [GGML_TYPE_Q4_0] = {
  534. .type_name = "q4_0",
  535. .blck_size = QK4_0,
  536. .type_size = sizeof(block_q4_0),
  537. .is_quantized = true,
  538. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  539. .from_float = quantize_row_q4_0,
  540. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  541. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  542. .vec_dot_type = GGML_TYPE_Q8_0,
  543. #if defined (__ARM_FEATURE_MATMUL_INT8)
  544. .nrows = 2,
  545. #else
  546. .nrows = 1,
  547. #endif
  548. },
  549. [GGML_TYPE_Q4_1] = {
  550. .type_name = "q4_1",
  551. .blck_size = QK4_1,
  552. .type_size = sizeof(block_q4_1),
  553. .is_quantized = true,
  554. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  555. .from_float = quantize_row_q4_1,
  556. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  557. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  558. .vec_dot_type = GGML_TYPE_Q8_1,
  559. #if defined (__ARM_FEATURE_MATMUL_INT8)
  560. .nrows = 2,
  561. #else
  562. .nrows = 1,
  563. #endif
  564. },
  565. [4] = { // GGML_TYPE_Q4_2
  566. .type_name = "DEPRECATED",
  567. .blck_size = 0,
  568. .type_size = 0,
  569. .is_quantized = false,
  570. .to_float = NULL,
  571. .from_float = NULL,
  572. .from_float_reference = NULL,
  573. .vec_dot = NULL,
  574. .vec_dot_type = GGML_TYPE_COUNT,
  575. .nrows = 1,
  576. },
  577. [5] = { // GGML_TYPE_Q4_3
  578. .type_name = "DEPRECATED",
  579. .blck_size = 0,
  580. .type_size = 0,
  581. .is_quantized = false,
  582. .to_float = NULL,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = NULL,
  586. .vec_dot_type = GGML_TYPE_COUNT,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_Q5_0] = {
  590. .type_name = "q5_0",
  591. .blck_size = QK5_0,
  592. .type_size = sizeof(block_q5_0),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  595. .from_float = quantize_row_q5_0,
  596. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  597. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  598. .vec_dot_type = GGML_TYPE_Q8_0,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_Q5_1] = {
  602. .type_name = "q5_1",
  603. .blck_size = QK5_1,
  604. .type_size = sizeof(block_q5_1),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  607. .from_float = quantize_row_q5_1,
  608. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  609. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  610. .vec_dot_type = GGML_TYPE_Q8_1,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_Q8_0] = {
  614. .type_name = "q8_0",
  615. .blck_size = QK8_0,
  616. .type_size = sizeof(block_q8_0),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  619. .from_float = quantize_row_q8_0,
  620. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  621. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  622. .vec_dot_type = GGML_TYPE_Q8_0,
  623. #if defined (__ARM_FEATURE_MATMUL_INT8)
  624. .nrows = 2,
  625. #else
  626. .nrows = 1,
  627. #endif
  628. },
  629. [GGML_TYPE_Q8_1] = {
  630. .type_name = "q8_1",
  631. .blck_size = QK8_1,
  632. .type_size = sizeof(block_q8_1),
  633. .is_quantized = true,
  634. .from_float = quantize_row_q8_1,
  635. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  636. .vec_dot_type = GGML_TYPE_Q8_1,
  637. .nrows = 1,
  638. },
  639. [GGML_TYPE_Q2_K] = {
  640. .type_name = "q2_K",
  641. .blck_size = QK_K,
  642. .type_size = sizeof(block_q2_K),
  643. .is_quantized = true,
  644. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  645. .from_float = quantize_row_q2_K,
  646. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  647. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  648. .vec_dot_type = GGML_TYPE_Q8_K,
  649. .nrows = 1,
  650. },
  651. [GGML_TYPE_Q3_K] = {
  652. .type_name = "q3_K",
  653. .blck_size = QK_K,
  654. .type_size = sizeof(block_q3_K),
  655. .is_quantized = true,
  656. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  657. .from_float = quantize_row_q3_K,
  658. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  659. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  660. .vec_dot_type = GGML_TYPE_Q8_K,
  661. .nrows = 1,
  662. },
  663. [GGML_TYPE_Q4_K] = {
  664. .type_name = "q4_K",
  665. .blck_size = QK_K,
  666. .type_size = sizeof(block_q4_K),
  667. .is_quantized = true,
  668. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  669. .from_float = quantize_row_q4_K,
  670. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  671. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  672. .vec_dot_type = GGML_TYPE_Q8_K,
  673. .nrows = 1,
  674. },
  675. [GGML_TYPE_Q5_K] = {
  676. .type_name = "q5_K",
  677. .blck_size = QK_K,
  678. .type_size = sizeof(block_q5_K),
  679. .is_quantized = true,
  680. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  681. .from_float = quantize_row_q5_K,
  682. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  683. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  684. .vec_dot_type = GGML_TYPE_Q8_K,
  685. .nrows = 1,
  686. },
  687. [GGML_TYPE_Q6_K] = {
  688. .type_name = "q6_K",
  689. .blck_size = QK_K,
  690. .type_size = sizeof(block_q6_K),
  691. .is_quantized = true,
  692. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  693. .from_float = quantize_row_q6_K,
  694. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  695. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  696. .vec_dot_type = GGML_TYPE_Q8_K,
  697. .nrows = 1,
  698. },
  699. [GGML_TYPE_IQ2_XXS] = {
  700. .type_name = "iq2_xxs",
  701. .blck_size = QK_K,
  702. .type_size = sizeof(block_iq2_xxs),
  703. .is_quantized = true,
  704. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  705. .from_float = NULL,
  706. .from_float_reference = NULL,
  707. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  708. .vec_dot_type = GGML_TYPE_Q8_K,
  709. .nrows = 1,
  710. },
  711. [GGML_TYPE_IQ2_XS] = {
  712. .type_name = "iq2_xs",
  713. .blck_size = QK_K,
  714. .type_size = sizeof(block_iq2_xs),
  715. .is_quantized = true,
  716. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  717. .from_float = NULL,
  718. .from_float_reference = NULL,
  719. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  720. .vec_dot_type = GGML_TYPE_Q8_K,
  721. .nrows = 1,
  722. },
  723. [GGML_TYPE_IQ3_XXS] = {
  724. .type_name = "iq3_xxs",
  725. .blck_size = QK_K,
  726. .type_size = sizeof(block_iq3_xxs),
  727. .is_quantized = true,
  728. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  729. .from_float = quantize_row_iq3_xxs,
  730. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  731. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  732. .vec_dot_type = GGML_TYPE_Q8_K,
  733. .nrows = 1,
  734. },
  735. [GGML_TYPE_IQ3_S] = {
  736. .type_name = "iq3_s",
  737. .blck_size = QK_K,
  738. .type_size = sizeof(block_iq3_s),
  739. .is_quantized = true,
  740. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  741. .from_float = quantize_row_iq3_s,
  742. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  743. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  744. .vec_dot_type = GGML_TYPE_Q8_K,
  745. .nrows = 1,
  746. },
  747. [GGML_TYPE_IQ2_S] = {
  748. .type_name = "iq2_s",
  749. .blck_size = QK_K,
  750. .type_size = sizeof(block_iq2_s),
  751. .is_quantized = true,
  752. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  753. .from_float = quantize_row_iq2_s,
  754. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  755. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  756. .vec_dot_type = GGML_TYPE_Q8_K,
  757. .nrows = 1,
  758. },
  759. [GGML_TYPE_IQ1_S] = {
  760. .type_name = "iq1_s",
  761. .blck_size = QK_K,
  762. .type_size = sizeof(block_iq1_s),
  763. .is_quantized = true,
  764. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  765. .from_float = NULL,
  766. .from_float_reference = NULL,
  767. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  768. .vec_dot_type = GGML_TYPE_Q8_K,
  769. .nrows = 1,
  770. },
  771. [GGML_TYPE_IQ1_M] = {
  772. .type_name = "iq1_m",
  773. .blck_size = QK_K,
  774. .type_size = sizeof(block_iq1_m),
  775. .is_quantized = true,
  776. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  777. .from_float = NULL,
  778. .from_float_reference = NULL,
  779. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  780. .vec_dot_type = GGML_TYPE_Q8_K,
  781. .nrows = 1,
  782. },
  783. [GGML_TYPE_IQ4_NL] = {
  784. .type_name = "iq4_nl",
  785. .blck_size = QK4_NL,
  786. .type_size = sizeof(block_iq4_nl),
  787. .is_quantized = true,
  788. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  789. .from_float = quantize_row_iq4_nl,
  790. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  791. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  792. .vec_dot_type = GGML_TYPE_Q8_0,
  793. .nrows = 1,
  794. },
  795. [GGML_TYPE_IQ4_XS] = {
  796. .type_name = "iq4_xs",
  797. .blck_size = QK_K,
  798. .type_size = sizeof(block_iq4_xs),
  799. .is_quantized = true,
  800. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  801. .from_float = quantize_row_iq4_xs,
  802. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  803. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  804. .vec_dot_type = GGML_TYPE_Q8_K,
  805. .nrows = 1,
  806. },
  807. [GGML_TYPE_Q8_K] = {
  808. .type_name = "q8_K",
  809. .blck_size = QK_K,
  810. .type_size = sizeof(block_q8_K),
  811. .is_quantized = true,
  812. .from_float = quantize_row_q8_K,
  813. },
  814. [GGML_TYPE_BF16] = {
  815. .type_name = "bf16",
  816. .blck_size = 1,
  817. .type_size = sizeof(ggml_bf16_t),
  818. .is_quantized = false,
  819. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  820. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  821. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  822. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  823. .vec_dot_type = GGML_TYPE_BF16,
  824. .nrows = 1,
  825. }
  826. };
  827. // For internal test use
  828. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  829. GGML_ASSERT(type < GGML_TYPE_COUNT);
  830. return type_traits[type];
  831. }
  832. //
  833. // simd mappings
  834. //
  835. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  836. // we then implement the fundamental computation operations below using only these macros
  837. // adding support for new architectures requires to define the corresponding SIMD macros
  838. //
  839. // GGML_F32_STEP / GGML_F16_STEP
  840. // number of elements to process in a single step
  841. //
  842. // GGML_F32_EPR / GGML_F16_EPR
  843. // number of elements to fit in a single register
  844. //
  845. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  846. #define GGML_SIMD
  847. // F32 NEON
  848. #define GGML_F32_STEP 16
  849. #define GGML_F32_EPR 4
  850. #define GGML_F32x4 float32x4_t
  851. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  852. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  853. #define GGML_F32x4_LOAD vld1q_f32
  854. #define GGML_F32x4_STORE vst1q_f32
  855. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  856. #define GGML_F32x4_ADD vaddq_f32
  857. #define GGML_F32x4_MUL vmulq_f32
  858. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 NEON
  885. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  886. #define GGML_F16_STEP 32
  887. #define GGML_F16_EPR 8
  888. #define GGML_F16x8 float16x8_t
  889. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  890. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  891. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  892. #define GGML_F16x8_STORE vst1q_f16
  893. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  894. #define GGML_F16x8_ADD vaddq_f16
  895. #define GGML_F16x8_MUL vmulq_f16
  896. #define GGML_F16x8_REDUCE(res, x) \
  897. do { \
  898. int offset = GGML_F16_ARR >> 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. offset >>= 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  911. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  912. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  913. } while (0)
  914. #define GGML_F16_VEC GGML_F16x8
  915. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  916. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  917. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  918. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  919. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  920. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  921. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  922. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  923. #else
  924. // if FP16 vector arithmetic is not supported, we use FP32 instead
  925. // and take advantage of the vcvt_ functions to convert to/from FP16
  926. #define GGML_F16_STEP 16
  927. #define GGML_F16_EPR 4
  928. #define GGML_F32Cx4 float32x4_t
  929. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  930. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  931. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  932. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  933. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  934. #define GGML_F32Cx4_ADD vaddq_f32
  935. #define GGML_F32Cx4_MUL vmulq_f32
  936. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  937. #define GGML_F16_VEC GGML_F32Cx4
  938. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  939. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  940. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  941. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  942. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  943. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  944. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  945. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  946. #endif
  947. #elif defined(__AVX512F__)
  948. #define GGML_SIMD
  949. // F32 AVX512
  950. #define GGML_F32_STEP 64
  951. #define GGML_F32_EPR 16
  952. #define GGML_F32x16 __m512
  953. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  954. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  955. #define GGML_F32x16_LOAD _mm512_loadu_ps
  956. #define GGML_F32x16_STORE _mm512_storeu_ps
  957. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  958. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  959. #define GGML_F32x16_ADD _mm512_add_ps
  960. #define GGML_F32x16_MUL _mm512_mul_ps
  961. #define GGML_F32x16_REDUCE(res, x) \
  962. do { \
  963. int offset = GGML_F32_ARR >> 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. offset >>= 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. res = _mm512_reduce_add_ps(x[0]); \
  976. } while (0)
  977. // TODO: is this optimal ?
  978. #define GGML_F32_VEC GGML_F32x16
  979. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  980. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  981. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  982. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  983. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  984. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  985. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  986. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  987. // F16 AVX512
  988. // F16 AVX
  989. #define GGML_F16_STEP 64
  990. #define GGML_F16_EPR 16
  991. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  992. #define GGML_F32Cx16 __m512
  993. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  994. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  995. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  996. // so F16C guard isn't required
  997. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  998. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  999. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1000. #define GGML_F32Cx16_ADD _mm512_add_ps
  1001. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1002. #define GGML_F32Cx16_REDUCE(res, x) \
  1003. do { \
  1004. int offset = GGML_F32_ARR >> 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. offset >>= 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. res = _mm512_reduce_add_ps(x[0]); \
  1017. } while (0)
  1018. #define GGML_F16_VEC GGML_F32Cx16
  1019. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1020. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1021. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1022. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1023. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1024. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1025. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1026. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1027. #elif defined(__AVX__)
  1028. #define GGML_SIMD
  1029. // F32 AVX
  1030. #define GGML_F32_STEP 32
  1031. #define GGML_F32_EPR 8
  1032. #define GGML_F32x8 __m256
  1033. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1034. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1035. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1036. #define GGML_F32x8_STORE _mm256_storeu_ps
  1037. #if defined(__FMA__)
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1039. #else
  1040. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1041. #endif
  1042. #define GGML_F32x8_ADD _mm256_add_ps
  1043. #define GGML_F32x8_MUL _mm256_mul_ps
  1044. #define GGML_F32x8_REDUCE(res, x) \
  1045. do { \
  1046. int offset = GGML_F32_ARR >> 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. offset >>= 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1059. _mm256_extractf128_ps(x[0], 1)); \
  1060. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1061. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1062. } while (0)
  1063. // TODO: is this optimal ?
  1064. #define GGML_F32_VEC GGML_F32x8
  1065. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1066. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1067. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1068. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1069. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1070. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1071. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1072. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1073. // F16 AVX
  1074. #define GGML_F16_STEP 32
  1075. #define GGML_F16_EPR 8
  1076. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1077. #define GGML_F32Cx8 __m256
  1078. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1079. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1080. #if defined(__F16C__)
  1081. // the _mm256_cvt intrinsics require F16C
  1082. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1083. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1084. #else
  1085. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1086. float tmp[8];
  1087. for (int i = 0; i < 8; i++) {
  1088. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1089. }
  1090. return _mm256_loadu_ps(tmp);
  1091. }
  1092. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1093. float arr[8];
  1094. _mm256_storeu_ps(arr, y);
  1095. for (int i = 0; i < 8; i++)
  1096. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1097. }
  1098. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1099. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1100. #endif
  1101. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1102. #define GGML_F32Cx8_ADD _mm256_add_ps
  1103. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1104. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1105. #define GGML_F16_VEC GGML_F32Cx8
  1106. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1107. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1108. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1109. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1110. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1111. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1112. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1113. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1114. #elif defined(__POWER9_VECTOR__)
  1115. #define GGML_SIMD
  1116. // F32 POWER9
  1117. #define GGML_F32_STEP 32
  1118. #define GGML_F32_EPR 4
  1119. #define GGML_F32x4 vector float
  1120. #define GGML_F32x4_ZERO 0.0f
  1121. #define GGML_F32x4_SET1 vec_splats
  1122. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1123. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1124. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1125. #define GGML_F32x4_ADD vec_add
  1126. #define GGML_F32x4_MUL vec_mul
  1127. #define GGML_F32x4_REDUCE(res, x) \
  1128. { \
  1129. int offset = GGML_F32_ARR >> 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. offset >>= 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. res = vec_extract(x[0], 0) + \
  1142. vec_extract(x[0], 1) + \
  1143. vec_extract(x[0], 2) + \
  1144. vec_extract(x[0], 3); \
  1145. }
  1146. #define GGML_F32_VEC GGML_F32x4
  1147. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1148. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1149. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1150. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1151. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1152. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1153. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1154. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1155. // F16 POWER9
  1156. #define GGML_F16_STEP GGML_F32_STEP
  1157. #define GGML_F16_EPR GGML_F32_EPR
  1158. #define GGML_F16_VEC GGML_F32x4
  1159. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1160. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1161. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1166. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1167. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1168. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1169. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1170. #define GGML_F16_VEC_STORE(p, r, i) \
  1171. if (i & 0x1) \
  1172. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1173. r[i - GGML_ENDIAN_BYTE(0)]), \
  1174. 0, p - GGML_F16_EPR)
  1175. #elif defined(__wasm_simd128__)
  1176. #define GGML_SIMD
  1177. // F32 WASM
  1178. #define GGML_F32_STEP 16
  1179. #define GGML_F32_EPR 4
  1180. #define GGML_F32x4 v128_t
  1181. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1182. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1183. #define GGML_F32x4_LOAD wasm_v128_load
  1184. #define GGML_F32x4_STORE wasm_v128_store
  1185. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1186. #define GGML_F32x4_ADD wasm_f32x4_add
  1187. #define GGML_F32x4_MUL wasm_f32x4_mul
  1188. #define GGML_F32x4_REDUCE(res, x) \
  1189. { \
  1190. int offset = GGML_F32_ARR >> 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. offset >>= 1; \
  1195. for (int i = 0; i < offset; ++i) { \
  1196. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1197. } \
  1198. offset >>= 1; \
  1199. for (int i = 0; i < offset; ++i) { \
  1200. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1201. } \
  1202. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1203. wasm_f32x4_extract_lane(x[0], 1) + \
  1204. wasm_f32x4_extract_lane(x[0], 2) + \
  1205. wasm_f32x4_extract_lane(x[0], 3); \
  1206. }
  1207. #define GGML_F32_VEC GGML_F32x4
  1208. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1209. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1210. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1211. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1212. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1213. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1214. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1215. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1216. // F16 WASM
  1217. #define GGML_F16_STEP 16
  1218. #define GGML_F16_EPR 4
  1219. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1220. float tmp[4];
  1221. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1222. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1223. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1224. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1225. return wasm_v128_load(tmp);
  1226. }
  1227. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1228. float tmp[4];
  1229. wasm_v128_store(tmp, x);
  1230. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1231. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1232. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1233. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1234. }
  1235. #define GGML_F16x4 v128_t
  1236. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1237. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1238. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1239. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1240. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1241. #define GGML_F16x4_ADD wasm_f32x4_add
  1242. #define GGML_F16x4_MUL wasm_f32x4_mul
  1243. #define GGML_F16x4_REDUCE(res, x) \
  1244. { \
  1245. int offset = GGML_F16_ARR >> 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. offset >>= 1; \
  1250. for (int i = 0; i < offset; ++i) { \
  1251. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1252. } \
  1253. offset >>= 1; \
  1254. for (int i = 0; i < offset; ++i) { \
  1255. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1256. } \
  1257. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1258. wasm_f32x4_extract_lane(x[0], 1) + \
  1259. wasm_f32x4_extract_lane(x[0], 2) + \
  1260. wasm_f32x4_extract_lane(x[0], 3); \
  1261. }
  1262. #define GGML_F16_VEC GGML_F16x4
  1263. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1271. #elif defined(__SSE3__)
  1272. #define GGML_SIMD
  1273. // F32 SSE
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 4
  1276. #define GGML_F32x4 __m128
  1277. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1278. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1279. #define GGML_F32x4_LOAD _mm_loadu_ps
  1280. #define GGML_F32x4_STORE _mm_storeu_ps
  1281. #if defined(__FMA__)
  1282. // TODO: Does this work?
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1284. #else
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1286. #endif
  1287. #define GGML_F32x4_ADD _mm_add_ps
  1288. #define GGML_F32x4_MUL _mm_mul_ps
  1289. #define GGML_F32x4_REDUCE(res, x) \
  1290. { \
  1291. int offset = GGML_F32_ARR >> 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. offset >>= 1; \
  1296. for (int i = 0; i < offset; ++i) { \
  1297. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1298. } \
  1299. offset >>= 1; \
  1300. for (int i = 0; i < offset; ++i) { \
  1301. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1302. } \
  1303. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1304. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1305. }
  1306. // TODO: is this optimal ?
  1307. #define GGML_F32_VEC GGML_F32x4
  1308. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1309. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1310. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1311. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1312. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1313. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1314. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1315. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1316. // F16 SSE
  1317. #define GGML_F16_STEP 32
  1318. #define GGML_F16_EPR 4
  1319. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1320. float tmp[4];
  1321. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1322. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1323. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1324. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1325. return _mm_loadu_ps(tmp);
  1326. }
  1327. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1328. float arr[4];
  1329. _mm_storeu_ps(arr, y);
  1330. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1331. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1332. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1333. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1334. }
  1335. #define GGML_F32Cx4 __m128
  1336. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1337. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1338. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1339. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1340. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1341. #define GGML_F32Cx4_ADD _mm_add_ps
  1342. #define GGML_F32Cx4_MUL _mm_mul_ps
  1343. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1344. #define GGML_F16_VEC GGML_F32Cx4
  1345. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1346. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1347. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1348. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1349. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1350. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1351. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1352. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1353. #elif defined(__loongarch_asx)
  1354. #define GGML_SIMD
  1355. // F32 LASX
  1356. #define GGML_F32_STEP 32
  1357. #define GGML_F32_EPR 8
  1358. #define GGML_F32x8 __m256
  1359. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1360. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1361. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1362. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1363. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1364. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1365. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1366. #define GGML_F32x8_REDUCE(res, x) \
  1367. do { \
  1368. int offset = GGML_F32_ARR >> 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. offset >>= 1; \
  1373. for (int i = 0; i < offset; ++i) { \
  1374. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1375. } \
  1376. offset >>= 1; \
  1377. for (int i = 0; i < offset; ++i) { \
  1378. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1379. } \
  1380. float *tmp_p = (float *)&x[0]; \
  1381. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1382. } while (0)
  1383. // TODO: is this optimal ?
  1384. #define GGML_F32_VEC GGML_F32x8
  1385. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1386. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1387. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1388. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1389. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1390. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1391. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1392. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1393. // F16 LASX
  1394. #define GGML_F16_STEP 32
  1395. #define GGML_F16_EPR 8
  1396. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1397. #define GGML_F32Cx8 __m256
  1398. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1399. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1400. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1401. float tmp[8];
  1402. for (int i = 0; i < 8; i++) {
  1403. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1404. }
  1405. return (__m256)__lasx_xvld(tmp, 0);
  1406. }
  1407. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1408. float arr[8];
  1409. __lasx_xvst(y, arr, 0);
  1410. for (int i = 0; i < 8; i++) {
  1411. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1412. }
  1413. }
  1414. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1415. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1416. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1417. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1418. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1419. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1420. #define GGML_F16_VEC GGML_F32Cx8
  1421. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1422. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1423. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1424. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1425. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1426. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1427. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1428. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1429. #elif defined(__loongarch_sx)
  1430. #define GGML_SIMD
  1431. // F32 LSX
  1432. #define GGML_F32_STEP 32
  1433. #define GGML_F32_EPR 4
  1434. #define GGML_F32x4 __m128
  1435. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1436. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1437. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1438. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1439. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1440. #define GGML_F32x4_ADD __lsx_vfadd_s
  1441. #define GGML_F32x4_MUL __lsx_vfmul_s
  1442. #define GGML_F32x4_REDUCE(res, x) \
  1443. { \
  1444. int offset = GGML_F32_ARR >> 1; \
  1445. for (int i = 0; i < offset; ++i) { \
  1446. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1447. } \
  1448. offset >>= 1; \
  1449. for (int i = 0; i < offset; ++i) { \
  1450. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1451. } \
  1452. offset >>= 1; \
  1453. for (int i = 0; i < offset; ++i) { \
  1454. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1455. } \
  1456. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1457. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1458. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1459. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1460. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1461. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1462. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1463. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1464. }
  1465. #define GGML_F32_VEC GGML_F32x4
  1466. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1467. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1468. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1469. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1470. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1471. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1472. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1473. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1474. // F16 LSX
  1475. #define GGML_F16_STEP 32
  1476. #define GGML_F16_EPR 4
  1477. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1478. float tmp[4];
  1479. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1480. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1481. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1482. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1483. return __lsx_vld(tmp, 0);
  1484. }
  1485. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1486. float arr[4];
  1487. __lsx_vst(y, arr, 0);
  1488. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1489. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1490. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1491. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1492. }
  1493. #define GGML_F32Cx4 __m128
  1494. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1495. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1496. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1497. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1498. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1499. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1500. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1501. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1502. #define GGML_F16_VEC GGML_F32Cx4
  1503. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1504. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1505. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1506. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1507. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1508. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1509. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1510. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1511. #endif
  1512. // GGML_F32_ARR / GGML_F16_ARR
  1513. // number of registers to use per step
  1514. #ifdef GGML_SIMD
  1515. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1516. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1517. #endif
  1518. //
  1519. // ggml context
  1520. //
  1521. struct ggml_context {
  1522. size_t mem_size;
  1523. void* mem_buffer;
  1524. bool mem_buffer_owned;
  1525. bool no_alloc;
  1526. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1527. int n_objects;
  1528. struct ggml_object* objects_begin;
  1529. struct ggml_object* objects_end;
  1530. struct ggml_scratch scratch;
  1531. struct ggml_scratch scratch_save;
  1532. };
  1533. struct ggml_context_container {
  1534. bool used;
  1535. struct ggml_context context;
  1536. };
  1537. struct ggml_compute_state_shared {
  1538. const struct ggml_cgraph* cgraph;
  1539. const struct ggml_cplan* cplan;
  1540. int64_t perf_node_start_cycles;
  1541. int64_t perf_node_start_time_us;
  1542. const int n_threads;
  1543. // synchronization primitives
  1544. atomic_int n_active; // num active threads
  1545. atomic_int node_n; // active graph node
  1546. atomic_int node_task; // active graph node task phase
  1547. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1548. void* abort_callback_data;
  1549. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1550. };
  1551. struct ggml_compute_state {
  1552. ggml_thread_t thrd;
  1553. int ith;
  1554. struct ggml_compute_state_shared* shared;
  1555. enum ggml_status ec;
  1556. };
  1557. //
  1558. // fundamental operations
  1559. //
  1560. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1564. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1565. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1566. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1567. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1568. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1569. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1570. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1571. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1572. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1573. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1574. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1575. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1576. assert(nrc == 1);
  1577. UNUSED(nrc);
  1578. UNUSED(bx);
  1579. UNUSED(by);
  1580. UNUSED(bs);
  1581. #if defined(GGML_SIMD)
  1582. float sumf = 0.0f;
  1583. const int np = (n & ~(GGML_F32_STEP - 1));
  1584. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1585. GGML_F32_VEC ax[GGML_F32_ARR];
  1586. GGML_F32_VEC ay[GGML_F32_ARR];
  1587. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1588. for (int j = 0; j < GGML_F32_ARR; j++) {
  1589. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1590. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1591. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1592. }
  1593. }
  1594. // reduce sum0..sum3 to sum0
  1595. GGML_F32_VEC_REDUCE(sumf, sum);
  1596. // leftovers
  1597. for (int i = np; i < n; ++i) {
  1598. sumf += x[i]*y[i];
  1599. }
  1600. #else
  1601. // scalar
  1602. ggml_float sumf = 0.0;
  1603. for (int i = 0; i < n; ++i) {
  1604. sumf += (ggml_float)(x[i]*y[i]);
  1605. }
  1606. #endif
  1607. *s = sumf;
  1608. }
  1609. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1610. assert(nrc == 1);
  1611. UNUSED(nrc);
  1612. UNUSED(bx);
  1613. UNUSED(by);
  1614. UNUSED(bs);
  1615. int i = 0;
  1616. ggml_float sumf = 0;
  1617. #if defined(__AVX512BF16__)
  1618. __m512 c1 = _mm512_setzero_ps();
  1619. __m512 c2 = _mm512_setzero_ps();
  1620. for (; i + 64 <= n; i += 64) {
  1621. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1622. m512bh(_mm512_loadu_si512((y + i))));
  1623. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1624. m512bh(_mm512_loadu_si512((y + i + 32))));
  1625. }
  1626. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1627. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1628. #elif defined(__AVX512F__)
  1629. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1630. __m512 c1 = _mm512_setzero_ps();
  1631. __m512 c2 = _mm512_setzero_ps();
  1632. for (; i + 32 <= n; i += 32) {
  1633. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1634. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1635. }
  1636. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1637. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1638. #undef LOAD
  1639. #elif defined(__AVX2__)
  1640. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1641. __m256 c1 = _mm256_setzero_ps();
  1642. __m256 c2 = _mm256_setzero_ps();
  1643. __m256 c3 = _mm256_setzero_ps();
  1644. __m256 c4 = _mm256_setzero_ps();
  1645. for (; i + 32 <= n; i += 32) {
  1646. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1647. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1648. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1649. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1650. }
  1651. __m128 g;
  1652. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1653. _mm256_add_ps(c2, c4));
  1654. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1655. _mm256_castps256_ps128(c1));
  1656. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1657. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1658. sumf += (ggml_float)_mm_cvtss_f32(g);
  1659. #undef LOAD
  1660. #endif
  1661. for (; i < n; ++i) {
  1662. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1663. GGML_BF16_TO_FP32(y[i]));
  1664. }
  1665. *s = sumf;
  1666. }
  1667. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1668. assert(nrc == 1);
  1669. UNUSED(nrc);
  1670. UNUSED(bx);
  1671. UNUSED(by);
  1672. UNUSED(bs);
  1673. ggml_float sumf = 0.0;
  1674. #if defined(GGML_SIMD)
  1675. const int np = (n & ~(GGML_F16_STEP - 1));
  1676. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1677. GGML_F16_VEC ax[GGML_F16_ARR];
  1678. GGML_F16_VEC ay[GGML_F16_ARR];
  1679. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1680. for (int j = 0; j < GGML_F16_ARR; j++) {
  1681. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1682. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1683. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1684. }
  1685. }
  1686. // reduce sum0..sum3 to sum0
  1687. GGML_F16_VEC_REDUCE(sumf, sum);
  1688. // leftovers
  1689. for (int i = np; i < n; ++i) {
  1690. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1691. }
  1692. #else
  1693. for (int i = 0; i < n; ++i) {
  1694. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1695. }
  1696. #endif
  1697. *s = sumf;
  1698. }
  1699. // compute GGML_VEC_DOT_UNROLL dot products at once
  1700. // xs - x row stride in bytes
  1701. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1702. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1703. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1704. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1705. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1706. }
  1707. #if defined(GGML_SIMD)
  1708. const int np = (n & ~(GGML_F16_STEP - 1));
  1709. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1710. GGML_F16_VEC ax[GGML_F16_ARR];
  1711. GGML_F16_VEC ay[GGML_F16_ARR];
  1712. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1713. for (int j = 0; j < GGML_F16_ARR; j++) {
  1714. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1715. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1716. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1717. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1718. }
  1719. }
  1720. }
  1721. // reduce sum0..sum3 to sum0
  1722. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1723. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1724. }
  1725. // leftovers
  1726. for (int i = np; i < n; ++i) {
  1727. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1728. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1729. }
  1730. }
  1731. #else
  1732. for (int i = 0; i < n; ++i) {
  1733. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1734. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1735. }
  1736. }
  1737. #endif
  1738. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1739. s[i] = sumf[i];
  1740. }
  1741. }
  1742. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1743. #if defined(GGML_SIMD)
  1744. const int np = (n & ~(GGML_F32_STEP - 1));
  1745. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1746. GGML_F32_VEC ax[GGML_F32_ARR];
  1747. GGML_F32_VEC ay[GGML_F32_ARR];
  1748. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1749. for (int j = 0; j < GGML_F32_ARR; j++) {
  1750. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1751. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1752. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1753. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1754. }
  1755. }
  1756. // leftovers
  1757. for (int i = np; i < n; ++i) {
  1758. y[i] += x[i]*v;
  1759. }
  1760. #else
  1761. // scalar
  1762. for (int i = 0; i < n; ++i) {
  1763. y[i] += x[i]*v;
  1764. }
  1765. #endif
  1766. }
  1767. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1768. #if defined(GGML_SIMD)
  1769. const int np = (n & ~(GGML_F16_STEP - 1));
  1770. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1771. GGML_F16_VEC ax[GGML_F16_ARR];
  1772. GGML_F16_VEC ay[GGML_F16_ARR];
  1773. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1774. for (int j = 0; j < GGML_F16_ARR; j++) {
  1775. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1776. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1777. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1778. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1779. }
  1780. }
  1781. // leftovers
  1782. for (int i = np; i < n; ++i) {
  1783. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1784. }
  1785. #else
  1786. // scalar
  1787. for (int i = 0; i < n; ++i) {
  1788. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1789. }
  1790. #endif
  1791. }
  1792. // xs and vs are byte strides of x and v
  1793. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1794. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1795. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1796. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1797. x[i] = (const float *) ((const char *) xv + i*xs);
  1798. v[i] = (const float *) ((const char *) vv + i*vs);
  1799. }
  1800. #if defined(GGML_SIMD)
  1801. const int np = (n & ~(GGML_F32_STEP - 1));
  1802. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1803. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1804. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1805. }
  1806. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1807. GGML_F32_VEC ay[GGML_F32_ARR];
  1808. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1809. for (int j = 0; j < GGML_F32_ARR; j++) {
  1810. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1811. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1812. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1813. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1814. }
  1815. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1816. }
  1817. }
  1818. // leftovers
  1819. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1820. for (int i = np; i < n; ++i) {
  1821. y[i] += x[k][i]*v[k][0];
  1822. }
  1823. }
  1824. #else
  1825. // scalar
  1826. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1827. for (int i = 0; i < n; ++i) {
  1828. y[i] += x[k][i]*v[k][0];
  1829. }
  1830. }
  1831. #endif
  1832. }
  1833. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1834. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1835. #if defined(GGML_USE_ACCELERATE)
  1836. vDSP_vsmul(y, 1, &v, y, 1, n);
  1837. #elif defined(GGML_SIMD)
  1838. const int np = (n & ~(GGML_F32_STEP - 1));
  1839. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1840. GGML_F32_VEC ay[GGML_F32_ARR];
  1841. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1842. for (int j = 0; j < GGML_F32_ARR; j++) {
  1843. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1844. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1845. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1846. }
  1847. }
  1848. // leftovers
  1849. for (int i = np; i < n; ++i) {
  1850. y[i] *= v;
  1851. }
  1852. #else
  1853. // scalar
  1854. for (int i = 0; i < n; ++i) {
  1855. y[i] *= v;
  1856. }
  1857. #endif
  1858. }
  1859. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1860. #if defined(GGML_SIMD)
  1861. const int np = (n & ~(GGML_F16_STEP - 1));
  1862. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1863. GGML_F16_VEC ay[GGML_F16_ARR];
  1864. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1865. for (int j = 0; j < GGML_F16_ARR; j++) {
  1866. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1867. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1868. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1869. }
  1870. }
  1871. // leftovers
  1872. for (int i = np; i < n; ++i) {
  1873. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1874. }
  1875. #else
  1876. // scalar
  1877. for (int i = 0; i < n; ++i) {
  1878. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1879. }
  1880. #endif
  1881. }
  1882. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1883. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1884. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1885. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1886. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1887. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1888. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1889. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1890. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1891. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1892. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1893. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1894. // TODO: optimize performance
  1895. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1896. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1897. static const float GELU_COEF_A = 0.044715f;
  1898. static const float GELU_QUICK_COEF = -1.702f;
  1899. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1900. inline static float ggml_gelu_f32(float x) {
  1901. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1902. }
  1903. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1904. const uint16_t * i16 = (const uint16_t *) x;
  1905. for (int i = 0; i < n; ++i) {
  1906. y[i] = ggml_table_gelu_f16[i16[i]];
  1907. }
  1908. }
  1909. #ifdef GGML_GELU_FP16
  1910. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1911. uint16_t t;
  1912. for (int i = 0; i < n; ++i) {
  1913. if (x[i] <= -10.0f) {
  1914. y[i] = 0.0f;
  1915. } else if (x[i] >= 10.0f) {
  1916. y[i] = x[i];
  1917. } else {
  1918. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1919. memcpy(&t, &fp16, sizeof(uint16_t));
  1920. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1921. }
  1922. }
  1923. }
  1924. #else
  1925. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1926. for (int i = 0; i < n; ++i) {
  1927. y[i] = ggml_gelu_f32(x[i]);
  1928. }
  1929. }
  1930. #endif
  1931. inline static float ggml_gelu_quick_f32(float x) {
  1932. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1933. }
  1934. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1935. // const uint16_t * i16 = (const uint16_t *) x;
  1936. // for (int i = 0; i < n; ++i) {
  1937. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1938. // }
  1939. //}
  1940. #ifdef GGML_GELU_QUICK_FP16
  1941. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1942. uint16_t t;
  1943. for (int i = 0; i < n; ++i) {
  1944. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1945. memcpy(&t, &fp16, sizeof(uint16_t));
  1946. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1947. }
  1948. }
  1949. #else
  1950. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1951. for (int i = 0; i < n; ++i) {
  1952. y[i] = ggml_gelu_quick_f32(x[i]);
  1953. }
  1954. }
  1955. #endif
  1956. // Sigmoid Linear Unit (SiLU) function
  1957. inline static float ggml_silu_f32(float x) {
  1958. return x/(1.0f + expf(-x));
  1959. }
  1960. #if defined(__ARM_NEON) && defined(__aarch64__)
  1961. // adapted from arm limited optimized routine
  1962. // the maximum error is 1.45358 plus 0.5 ulps
  1963. // numbers above 88.38 will flush to infinity
  1964. // numbers beneath -103.97 will flush to zero
  1965. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1966. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1967. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1968. const float32x4_t n = vsubq_f32(z, r);
  1969. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1970. vdupq_n_f32(0x1.7f7d1cp-20f));
  1971. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1972. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1973. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1974. const float32x4_t u = vmulq_f32(b, b);
  1975. const float32x4_t j = vfmaq_f32(
  1976. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1977. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1978. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1979. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1980. return vfmaq_f32(k, j, k);
  1981. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1982. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1983. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1984. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1985. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1986. }
  1987. // computes silu x/(1+exp(-x)) in single precision vector
  1988. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1989. const float32x4_t one = vdupq_n_f32(1.0f);
  1990. const float32x4_t zero = vdupq_n_f32(0.0f);
  1991. const float32x4_t neg_x = vsubq_f32(zero, x);
  1992. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1993. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1994. return vdivq_f32(x, one_plus_exp_neg_x);
  1995. }
  1996. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1997. // adapted from arm limited optimized routine
  1998. // the maximum error is 1.45358 plus 0.5 ulps
  1999. // numbers above 88.38 will flush to infinity
  2000. // numbers beneath -103.97 will flush to zero
  2001. inline static __m512 ggml_v_expf(__m512 x) {
  2002. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2003. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2004. const __m512 n = _mm512_sub_ps(z, r);
  2005. const __m512 b =
  2006. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2007. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2008. const __mmask16 d =
  2009. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2010. const __m512 u = _mm512_mul_ps(b, b);
  2011. const __m512 j = _mm512_fmadd_ps(
  2012. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2013. _mm512_set1_ps(0x1.573e2ep-5f)),
  2014. u,
  2015. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2016. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2017. u,
  2018. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2019. const __m512 res = _mm512_scalef_ps(j, n);
  2020. if (_mm512_kortestz(d, d))
  2021. return res;
  2022. const __m512 zero = _mm512_setzero_ps();
  2023. const __m512 alt = _mm512_mask_blend_ps(
  2024. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2025. return _mm512_mask_blend_ps(d, res, alt);
  2026. }
  2027. // computes silu x/(1+exp(-x)) in single precision vector
  2028. inline static __m512 ggml_v_silu(__m512 x) {
  2029. const __m512 one = _mm512_set1_ps(1);
  2030. const __m512 zero = _mm512_setzero_ps();
  2031. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2032. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2033. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2034. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2035. }
  2036. #elif defined(__AVX2__) && defined(__FMA__)
  2037. // adapted from arm limited optimized routine
  2038. // the maximum error is 1.45358 plus 0.5 ulps
  2039. // numbers above 88.38 will flush to infinity
  2040. // numbers beneath -103.97 will flush to zero
  2041. inline static __m256 ggml_v_expf(__m256 x) {
  2042. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2043. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2044. const __m256 n = _mm256_sub_ps(z, r);
  2045. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2046. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2047. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2048. const __m256 k = _mm256_castsi256_ps(
  2049. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2050. const __m256i c = _mm256_castps_si256(
  2051. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2052. _mm256_set1_ps(126), _CMP_GT_OQ));
  2053. const __m256 u = _mm256_mul_ps(b, b);
  2054. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2055. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2056. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2057. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2058. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2059. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2060. return _mm256_fmadd_ps(j, k, k);
  2061. const __m256i g = _mm256_and_si256(
  2062. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2063. _mm256_set1_epi32(0x82000000u));
  2064. const __m256 s1 =
  2065. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2066. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2067. const __m256i d = _mm256_castps_si256(
  2068. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2069. _mm256_set1_ps(192), _CMP_GT_OQ));
  2070. return _mm256_or_ps(
  2071. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2072. _mm256_andnot_ps(
  2073. _mm256_castsi256_ps(d),
  2074. _mm256_or_ps(
  2075. _mm256_and_ps(_mm256_castsi256_ps(c),
  2076. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2077. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2078. }
  2079. // computes silu x/(1+exp(-x)) in single precision vector
  2080. inline static __m256 ggml_v_silu(__m256 x) {
  2081. const __m256 one = _mm256_set1_ps(1);
  2082. const __m256 zero = _mm256_setzero_ps();
  2083. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2084. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2085. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2086. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2087. }
  2088. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2089. #if defined(__FMA__)
  2090. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2091. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2092. #else
  2093. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2094. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2095. #endif
  2096. // adapted from arm limited optimized routine
  2097. // the maximum error is 1.45358 plus 0.5 ulps
  2098. // numbers above 88.38 will flush to infinity
  2099. // numbers beneath -103.97 will flush to zero
  2100. inline static __m128 ggml_v_expf(__m128 x) {
  2101. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2102. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2103. const __m128 n = _mm_sub_ps(z, r);
  2104. const __m128 b =
  2105. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2106. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2107. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2108. const __m128i c =
  2109. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2110. const __m128 u = _mm_mul_ps(b, b);
  2111. const __m128 j =
  2112. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2113. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2114. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2115. if (!_mm_movemask_epi8(c))
  2116. return MADD128(j, k, k);
  2117. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2118. _mm_set1_epi32(0x82000000u));
  2119. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2120. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2121. const __m128i d =
  2122. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2123. return _mm_or_ps(
  2124. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2125. _mm_andnot_ps(_mm_castsi128_ps(d),
  2126. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2127. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2128. }
  2129. // computes silu x/(1+exp(-x)) in single precision vector
  2130. inline static __m128 ggml_v_silu(__m128 x) {
  2131. const __m128 one = _mm_set1_ps(1);
  2132. const __m128 zero = _mm_setzero_ps();
  2133. const __m128 neg_x = _mm_sub_ps(zero, x);
  2134. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2135. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2136. return _mm_div_ps(x, one_plus_exp_neg_x);
  2137. }
  2138. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2139. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2140. int i = 0;
  2141. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2142. for (; i + 15 < n; i += 16) {
  2143. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2144. }
  2145. #elif defined(__AVX2__) && defined(__FMA__)
  2146. for (; i + 7 < n; i += 8) {
  2147. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__SSE2__)
  2150. for (; i + 3 < n; i += 4) {
  2151. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2152. }
  2153. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2154. for (; i + 3 < n; i += 4) {
  2155. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2156. }
  2157. #endif
  2158. for (; i < n; ++i) {
  2159. y[i] = ggml_silu_f32(x[i]);
  2160. }
  2161. }
  2162. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2163. int i = 0;
  2164. ggml_float sum = 0;
  2165. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2166. for (; i + 15 < n; i += 16) {
  2167. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2168. _mm512_set1_ps(max)));
  2169. _mm512_storeu_ps(y + i, val);
  2170. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2171. }
  2172. #elif defined(__AVX2__) && defined(__FMA__)
  2173. for (; i + 7 < n; i += 8) {
  2174. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2175. _mm256_set1_ps(max)));
  2176. _mm256_storeu_ps(y + i, val);
  2177. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2178. _mm256_castps256_ps128(val));
  2179. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2180. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2181. sum += (ggml_float)_mm_cvtss_f32(val2);
  2182. }
  2183. #elif defined(__SSE2__)
  2184. for (; i + 3 < n; i += 4) {
  2185. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2186. _mm_set1_ps(max)));
  2187. _mm_storeu_ps(y + i, val);
  2188. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2189. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2190. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2191. #else
  2192. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2193. val = _mm_add_ps(val, tmp);
  2194. tmp = _mm_movehl_ps(tmp, val);
  2195. val = _mm_add_ss(val, tmp);
  2196. #endif
  2197. sum += (ggml_float)_mm_cvtss_f32(val);
  2198. }
  2199. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2200. for (; i + 3 < n; i += 4) {
  2201. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2202. vdupq_n_f32(max)));
  2203. vst1q_f32(y + i, val);
  2204. sum += (ggml_float)vaddvq_f32(val);
  2205. }
  2206. #endif
  2207. for (; i < n; ++i) {
  2208. float val = expf(x[i] - max);
  2209. sum += (ggml_float)val;
  2210. y[i] = val;
  2211. }
  2212. return sum;
  2213. }
  2214. inline static float ggml_silu_backward_f32(float x, float dy) {
  2215. const float s = 1.0f/(1.0f + expf(-x));
  2216. return dy*s*(1.0f + x*(1.0f - s));
  2217. }
  2218. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2219. for (int i = 0; i < n; ++i) {
  2220. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2221. }
  2222. }
  2223. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2224. #ifndef GGML_USE_ACCELERATE
  2225. ggml_float sum = 0.0;
  2226. for (int i = 0; i < n; ++i) {
  2227. sum += (ggml_float)x[i];
  2228. }
  2229. *s = sum;
  2230. #else
  2231. vDSP_sve(x, 1, s, n);
  2232. #endif
  2233. }
  2234. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2235. ggml_float sum = 0.0;
  2236. for (int i = 0; i < n; ++i) {
  2237. sum += (ggml_float)x[i];
  2238. }
  2239. *s = sum;
  2240. }
  2241. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2242. float sum = 0.0f;
  2243. for (int i = 0; i < n; ++i) {
  2244. sum += GGML_FP16_TO_FP32(x[i]);
  2245. }
  2246. *s = sum;
  2247. }
  2248. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2249. float sum = 0.0f;
  2250. for (int i = 0; i < n; ++i) {
  2251. sum += GGML_BF16_TO_FP32(x[i]);
  2252. }
  2253. *s = sum;
  2254. }
  2255. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2256. #ifndef GGML_USE_ACCELERATE
  2257. float max = -INFINITY;
  2258. for (int i = 0; i < n; ++i) {
  2259. max = MAX(max, x[i]);
  2260. }
  2261. *s = max;
  2262. #else
  2263. vDSP_maxv(x, 1, s, n);
  2264. #endif
  2265. }
  2266. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2267. ggml_vec_norm_f32(n, s, x);
  2268. *s = 1.f/(*s);
  2269. }
  2270. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2271. float max = -INFINITY;
  2272. int idx = 0;
  2273. for (int i = 0; i < n; ++i) {
  2274. max = MAX(max, x[i]);
  2275. if (max == x[i]) { idx = i; }
  2276. }
  2277. *s = idx;
  2278. }
  2279. //
  2280. // data types
  2281. //
  2282. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2283. "NONE",
  2284. "DUP",
  2285. "ADD",
  2286. "ADD1",
  2287. "ACC",
  2288. "SUB",
  2289. "MUL",
  2290. "DIV",
  2291. "SQR",
  2292. "SQRT",
  2293. "LOG",
  2294. "SUM",
  2295. "SUM_ROWS",
  2296. "MEAN",
  2297. "ARGMAX",
  2298. "REPEAT",
  2299. "REPEAT_BACK",
  2300. "CONCAT",
  2301. "SILU_BACK",
  2302. "NORM",
  2303. "RMS_NORM",
  2304. "RMS_NORM_BACK",
  2305. "GROUP_NORM",
  2306. "MUL_MAT",
  2307. "MUL_MAT_ID",
  2308. "OUT_PROD",
  2309. "SCALE",
  2310. "SET",
  2311. "CPY",
  2312. "CONT",
  2313. "RESHAPE",
  2314. "VIEW",
  2315. "PERMUTE",
  2316. "TRANSPOSE",
  2317. "GET_ROWS",
  2318. "GET_ROWS_BACK",
  2319. "DIAG",
  2320. "DIAG_MASK_INF",
  2321. "DIAG_MASK_ZERO",
  2322. "SOFT_MAX",
  2323. "SOFT_MAX_BACK",
  2324. "ROPE",
  2325. "ROPE_BACK",
  2326. "CLAMP",
  2327. "CONV_TRANSPOSE_1D",
  2328. "IM2COL",
  2329. "CONV_TRANSPOSE_2D",
  2330. "POOL_1D",
  2331. "POOL_2D",
  2332. "UPSCALE",
  2333. "PAD",
  2334. "ARANGE",
  2335. "TIMESTEP_EMBEDDING",
  2336. "ARGSORT",
  2337. "LEAKY_RELU",
  2338. "FLASH_ATTN_EXT",
  2339. "FLASH_ATTN_BACK",
  2340. "SSM_CONV",
  2341. "SSM_SCAN",
  2342. "WIN_PART",
  2343. "WIN_UNPART",
  2344. "GET_REL_POS",
  2345. "ADD_REL_POS",
  2346. "UNARY",
  2347. "MAP_UNARY",
  2348. "MAP_BINARY",
  2349. "MAP_CUSTOM1_F32",
  2350. "MAP_CUSTOM2_F32",
  2351. "MAP_CUSTOM3_F32",
  2352. "MAP_CUSTOM1",
  2353. "MAP_CUSTOM2",
  2354. "MAP_CUSTOM3",
  2355. "CROSS_ENTROPY_LOSS",
  2356. "CROSS_ENTROPY_LOSS_BACK",
  2357. };
  2358. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2359. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2360. "none",
  2361. "x",
  2362. "x+y",
  2363. "x+y",
  2364. "view(x,nb,offset)+=y->x",
  2365. "x-y",
  2366. "x*y",
  2367. "x/y",
  2368. "x^2",
  2369. "√x",
  2370. "log(x)",
  2371. "Σx",
  2372. "Σx_k",
  2373. "Σx/n",
  2374. "argmax(x)",
  2375. "repeat(x)",
  2376. "repeat_back(x)",
  2377. "concat(x, y)",
  2378. "silu_back(x)",
  2379. "norm(x)",
  2380. "rms_norm(x)",
  2381. "rms_norm_back(x)",
  2382. "group_norm(x)",
  2383. "X*Y",
  2384. "X[i]*Y",
  2385. "X*Y",
  2386. "x*v",
  2387. "y-\\>view(x)",
  2388. "x-\\>y",
  2389. "cont(x)",
  2390. "reshape(x)",
  2391. "view(x)",
  2392. "permute(x)",
  2393. "transpose(x)",
  2394. "get_rows(x)",
  2395. "get_rows_back(x)",
  2396. "diag(x)",
  2397. "diag_mask_inf(x)",
  2398. "diag_mask_zero(x)",
  2399. "soft_max(x)",
  2400. "soft_max_back(x)",
  2401. "rope(x)",
  2402. "rope_back(x)",
  2403. "clamp(x)",
  2404. "conv_transpose_1d(x)",
  2405. "im2col(x)",
  2406. "conv_transpose_2d(x)",
  2407. "pool_1d(x)",
  2408. "pool_2d(x)",
  2409. "upscale(x)",
  2410. "pad(x)",
  2411. "arange(start, stop, step)",
  2412. "timestep_embedding(timesteps, dim, max_period)",
  2413. "argsort(x)",
  2414. "leaky_relu(x)",
  2415. "flash_attn_ext(x)",
  2416. "flash_attn_back(x)",
  2417. "ssm_conv(x)",
  2418. "ssm_scan(x)",
  2419. "win_part(x)",
  2420. "win_unpart(x)",
  2421. "get_rel_pos(x)",
  2422. "add_rel_pos(x)",
  2423. "unary(x)",
  2424. "f(x)",
  2425. "f(x,y)",
  2426. "custom_f32(x)",
  2427. "custom_f32(x,y)",
  2428. "custom_f32(x,y,z)",
  2429. "custom(x)",
  2430. "custom(x,y)",
  2431. "custom(x,y,z)",
  2432. "cross_entropy_loss(x,y)",
  2433. "cross_entropy_loss_back(x,y)",
  2434. };
  2435. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2436. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2437. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2438. "ABS",
  2439. "SGN",
  2440. "NEG",
  2441. "STEP",
  2442. "TANH",
  2443. "ELU",
  2444. "RELU",
  2445. "SIGMOID",
  2446. "GELU",
  2447. "GELU_QUICK",
  2448. "SILU",
  2449. "HARDSWISH",
  2450. "HARDSIGMOID",
  2451. };
  2452. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2453. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2454. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2455. // WARN:
  2456. // Mis-configuration can lead to problem that's hard to reason about:
  2457. // * At best it crash or talks nosense.
  2458. // * At worst it talks slightly difference but hard to perceive.
  2459. //
  2460. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2461. // Take care about compile options (e.g., GGML_USE_xxx).
  2462. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2463. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2464. static void ggml_setup_op_has_task_pass(void) {
  2465. { // INIT
  2466. bool * p = GGML_OP_HAS_INIT;
  2467. p[GGML_OP_ACC ] = true;
  2468. p[GGML_OP_MUL_MAT ] = true;
  2469. p[GGML_OP_MUL_MAT_ID ] = true;
  2470. p[GGML_OP_OUT_PROD ] = true;
  2471. p[GGML_OP_SET ] = true;
  2472. p[GGML_OP_GET_ROWS_BACK ] = true;
  2473. p[GGML_OP_DIAG_MASK_INF ] = true;
  2474. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2475. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2476. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2477. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2478. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2479. p[GGML_OP_ADD_REL_POS ] = true;
  2480. }
  2481. { // FINALIZE
  2482. bool * p = GGML_OP_HAS_FINALIZE;
  2483. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2484. }
  2485. }
  2486. //
  2487. // NUMA support
  2488. //
  2489. #define GGML_NUMA_MAX_NODES 8
  2490. #define GGML_NUMA_MAX_CPUS 512
  2491. struct ggml_numa_node {
  2492. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2493. uint32_t n_cpus;
  2494. };
  2495. struct ggml_numa_nodes {
  2496. enum ggml_numa_strategy numa_strategy;
  2497. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2498. uint32_t n_nodes;
  2499. uint32_t total_cpus; // hardware threads on system
  2500. uint32_t current_node; // node on which main process is execting
  2501. #if defined(__gnu_linux__)
  2502. cpu_set_t cpuset; // cpuset from numactl
  2503. #else
  2504. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2505. #endif
  2506. };
  2507. //
  2508. // ggml state
  2509. //
  2510. struct ggml_state {
  2511. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2512. struct ggml_numa_nodes numa;
  2513. };
  2514. // global state
  2515. static struct ggml_state g_state;
  2516. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2517. // barrier via spin lock
  2518. inline static void ggml_critical_section_start(void) {
  2519. while (atomic_flag_test_and_set(&g_state_critical)) {
  2520. // spin
  2521. sched_yield();
  2522. }
  2523. }
  2524. // TODO: make this somehow automatically executed
  2525. // some sort of "sentry" mechanism
  2526. inline static void ggml_critical_section_end(void) {
  2527. atomic_flag_clear(&g_state_critical);
  2528. }
  2529. #if defined(__gnu_linux__)
  2530. static cpu_set_t ggml_get_numa_affinity(void) {
  2531. cpu_set_t cpuset;
  2532. pthread_t thread;
  2533. thread = pthread_self();
  2534. CPU_ZERO(&cpuset);
  2535. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2536. return cpuset;
  2537. }
  2538. #else
  2539. static uint32_t ggml_get_numa_affinity(void) {
  2540. return 0; // no NUMA support
  2541. }
  2542. #endif
  2543. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2544. if (g_state.numa.n_nodes > 0) {
  2545. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2546. return;
  2547. }
  2548. #if defined(__gnu_linux__)
  2549. struct stat st;
  2550. char path[256];
  2551. int rv;
  2552. // set numa scheme
  2553. g_state.numa.numa_strategy = numa_flag;
  2554. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2555. g_state.numa.cpuset = ggml_get_numa_affinity();
  2556. // enumerate nodes
  2557. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2558. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2559. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2560. if (stat(path, &st) != 0) { break; }
  2561. ++g_state.numa.n_nodes;
  2562. }
  2563. // enumerate CPUs
  2564. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2565. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2566. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2567. if (stat(path, &st) != 0) { break; }
  2568. ++g_state.numa.total_cpus;
  2569. }
  2570. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2571. // figure out which node we're on
  2572. uint current_cpu;
  2573. int getcpu_ret = 0;
  2574. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2575. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2576. #else
  2577. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2578. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2579. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2580. # endif
  2581. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2582. #endif
  2583. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2584. g_state.numa.n_nodes = 0;
  2585. return;
  2586. }
  2587. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2588. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2589. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2590. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2591. node->n_cpus = 0;
  2592. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2593. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2594. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2595. if (stat(path, &st) == 0) {
  2596. node->cpus[node->n_cpus++] = c;
  2597. GGML_PRINT_DEBUG(" %u", c);
  2598. }
  2599. }
  2600. GGML_PRINT_DEBUG("\n");
  2601. }
  2602. if (ggml_is_numa()) {
  2603. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2604. if (fptr != NULL) {
  2605. char buf[42];
  2606. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2607. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2608. }
  2609. fclose(fptr);
  2610. }
  2611. }
  2612. #else
  2613. GGML_UNUSED(numa_flag);
  2614. // TODO
  2615. #endif
  2616. }
  2617. bool ggml_is_numa(void) {
  2618. return g_state.numa.n_nodes > 1;
  2619. }
  2620. ////////////////////////////////////////////////////////////////////////////////
  2621. void ggml_print_object(const struct ggml_object * obj) {
  2622. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2623. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2624. }
  2625. void ggml_print_objects(const struct ggml_context * ctx) {
  2626. struct ggml_object * obj = ctx->objects_begin;
  2627. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2628. while (obj != NULL) {
  2629. ggml_print_object(obj);
  2630. obj = obj->next;
  2631. }
  2632. GGML_PRINT("%s: --- end ---\n", __func__);
  2633. }
  2634. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2635. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2636. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2637. }
  2638. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2639. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2640. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2641. }
  2642. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2643. size_t nbytes;
  2644. size_t blck_size = ggml_blck_size(tensor->type);
  2645. if (blck_size == 1) {
  2646. nbytes = ggml_type_size(tensor->type);
  2647. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2648. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2649. }
  2650. }
  2651. else {
  2652. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2653. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2654. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2655. }
  2656. }
  2657. return nbytes;
  2658. }
  2659. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2660. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2661. }
  2662. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2663. return type_traits[type].blck_size;
  2664. }
  2665. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2666. return type_traits[type].type_size;
  2667. }
  2668. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2669. assert(ne % ggml_blck_size(type) == 0);
  2670. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2671. }
  2672. double ggml_type_sizef(enum ggml_type type) {
  2673. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2674. }
  2675. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2676. return type_traits[type].type_name;
  2677. }
  2678. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2679. return type_traits[type].is_quantized;
  2680. }
  2681. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2682. return GGML_OP_NAME[op];
  2683. }
  2684. const char * ggml_op_symbol(enum ggml_op op) {
  2685. return GGML_OP_SYMBOL[op];
  2686. }
  2687. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2688. return GGML_UNARY_OP_NAME[op];
  2689. }
  2690. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2691. if (t->op == GGML_OP_UNARY) {
  2692. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2693. return ggml_unary_op_name(uop);
  2694. }
  2695. else {
  2696. return ggml_op_name(t->op);
  2697. }
  2698. }
  2699. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2700. return ggml_type_size(tensor->type);
  2701. }
  2702. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2703. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2704. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2705. }
  2706. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2708. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2709. }
  2710. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2711. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2712. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2713. }
  2714. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2715. return tensor->ne[3] == 1;
  2716. }
  2717. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2718. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2719. if (tensor->ne[i] > 1) {
  2720. return i + 1;
  2721. }
  2722. }
  2723. return 1;
  2724. }
  2725. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2726. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2727. return (t0->ne[0] == t1->ne[0]) &&
  2728. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2729. (t1->ne[3]%t0->ne[3] == 0);
  2730. }
  2731. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2732. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2733. return (t0->ne[1] == t1->ne[1]) &&
  2734. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2735. (t1->ne[3]%t0->ne[3] == 0);
  2736. }
  2737. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2738. enum ggml_type wtype = GGML_TYPE_COUNT;
  2739. switch (ftype) {
  2740. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2741. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2742. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2743. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2744. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2745. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2746. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2747. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2748. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2749. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2750. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2751. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2752. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2753. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2754. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2755. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2756. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2757. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2758. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2759. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2760. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2761. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2762. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2763. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2764. }
  2765. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2766. return wtype;
  2767. }
  2768. size_t ggml_tensor_overhead(void) {
  2769. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2770. }
  2771. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2772. return tensor->nb[0] > tensor->nb[1];
  2773. }
  2774. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2775. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2776. return
  2777. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2778. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2779. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2780. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2781. }
  2782. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2783. return ggml_is_contiguous(tensor);
  2784. }
  2785. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2786. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2787. return
  2788. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2789. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2790. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2791. }
  2792. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2793. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2794. return
  2795. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2796. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2797. }
  2798. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2799. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2800. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2801. }
  2802. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2803. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2804. return
  2805. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2806. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2807. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2808. }
  2809. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2810. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2811. if (tensor->ne[i] == 0) {
  2812. // empty if any dimension has no elements
  2813. return true;
  2814. }
  2815. }
  2816. return false;
  2817. }
  2818. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2819. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2820. return
  2821. (t0->ne[0] == t1->ne[0] ) &&
  2822. (t0->ne[1] == t1->ne[1] ) &&
  2823. (t0->ne[2] == t1->ne[2] ) &&
  2824. (t0->ne[3] == t1->ne[3] );
  2825. }
  2826. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2827. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2828. return
  2829. (t0->nb[0] == t1->nb[0] ) &&
  2830. (t0->nb[1] == t1->nb[1] ) &&
  2831. (t0->nb[2] == t1->nb[2] ) &&
  2832. (t0->nb[3] == t1->nb[3] );
  2833. }
  2834. // check if t1 can be represented as a repeatition of t0
  2835. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2836. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2837. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2838. (t1->ne[0]%t0->ne[0] == 0) &&
  2839. (t1->ne[1]%t0->ne[1] == 0) &&
  2840. (t1->ne[2]%t0->ne[2] == 0) &&
  2841. (t1->ne[3]%t0->ne[3] == 0);
  2842. }
  2843. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2844. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2845. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2846. }
  2847. static inline int ggml_up32(int n) {
  2848. return (n + 31) & ~31;
  2849. }
  2850. //static inline int ggml_up64(int n) {
  2851. // return (n + 63) & ~63;
  2852. //}
  2853. static inline int ggml_up(int n, int m) {
  2854. // assert m is a power of 2
  2855. GGML_ASSERT((m & (m - 1)) == 0);
  2856. return (n + m - 1) & ~(m - 1);
  2857. }
  2858. // assert that pointer is aligned to GGML_MEM_ALIGN
  2859. #define ggml_assert_aligned(ptr) \
  2860. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2861. ////////////////////////////////////////////////////////////////////////////////
  2862. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2863. // make this function thread safe
  2864. ggml_critical_section_start();
  2865. static bool is_first_call = true;
  2866. if (is_first_call) {
  2867. // initialize time system (required on Windows)
  2868. ggml_time_init();
  2869. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2870. {
  2871. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2872. for (int i = 0; i < (1 << 16); ++i) {
  2873. union {
  2874. uint16_t u16;
  2875. ggml_fp16_t fp16;
  2876. } u = {i};
  2877. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2878. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2879. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2880. }
  2881. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2882. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2883. }
  2884. // initialize g_state
  2885. {
  2886. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2887. g_state = (struct ggml_state) {
  2888. /*.contexts =*/ { { 0 } },
  2889. /*.numa =*/ {
  2890. .n_nodes = 0,
  2891. .total_cpus = 0,
  2892. },
  2893. };
  2894. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2895. g_state.contexts[i].used = false;
  2896. }
  2897. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2898. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2899. }
  2900. #if defined(GGML_USE_CLBLAST)
  2901. ggml_cl_init();
  2902. #endif
  2903. ggml_setup_op_has_task_pass();
  2904. is_first_call = false;
  2905. }
  2906. // find non-used context in g_state
  2907. struct ggml_context * ctx = NULL;
  2908. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2909. if (!g_state.contexts[i].used) {
  2910. g_state.contexts[i].used = true;
  2911. ctx = &g_state.contexts[i].context;
  2912. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2913. break;
  2914. }
  2915. }
  2916. if (ctx == NULL) {
  2917. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2918. ggml_critical_section_end();
  2919. return NULL;
  2920. }
  2921. // allow to call ggml_init with 0 size
  2922. if (params.mem_size == 0) {
  2923. params.mem_size = GGML_MEM_ALIGN;
  2924. }
  2925. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2926. *ctx = (struct ggml_context) {
  2927. /*.mem_size =*/ mem_size,
  2928. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2929. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2930. /*.no_alloc =*/ params.no_alloc,
  2931. /*.no_alloc_save =*/ params.no_alloc,
  2932. /*.n_objects =*/ 0,
  2933. /*.objects_begin =*/ NULL,
  2934. /*.objects_end =*/ NULL,
  2935. /*.scratch =*/ { 0, 0, NULL, },
  2936. /*.scratch_save =*/ { 0, 0, NULL, },
  2937. };
  2938. GGML_ASSERT(ctx->mem_buffer != NULL);
  2939. ggml_assert_aligned(ctx->mem_buffer);
  2940. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2941. ggml_critical_section_end();
  2942. return ctx;
  2943. }
  2944. void ggml_free(struct ggml_context * ctx) {
  2945. if (ctx == NULL) {
  2946. return;
  2947. }
  2948. // make this function thread safe
  2949. ggml_critical_section_start();
  2950. bool found = false;
  2951. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2952. if (&g_state.contexts[i].context == ctx) {
  2953. g_state.contexts[i].used = false;
  2954. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2955. __func__, i, ggml_used_mem(ctx));
  2956. if (ctx->mem_buffer_owned) {
  2957. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2958. }
  2959. found = true;
  2960. break;
  2961. }
  2962. }
  2963. if (!found) {
  2964. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2965. }
  2966. ggml_critical_section_end();
  2967. }
  2968. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2969. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2970. }
  2971. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2972. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2973. ctx->scratch = scratch;
  2974. return result;
  2975. }
  2976. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2977. return ctx->no_alloc;
  2978. }
  2979. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2980. ctx->no_alloc = no_alloc;
  2981. }
  2982. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2983. return ctx->mem_buffer;
  2984. }
  2985. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2986. return ctx->mem_size;
  2987. }
  2988. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2989. size_t max_size = 0;
  2990. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2991. size_t bytes = ggml_nbytes(tensor);
  2992. max_size = MAX(max_size, bytes);
  2993. }
  2994. return max_size;
  2995. }
  2996. // IMPORTANT:
  2997. // when creating "opt" tensors, always save and load the scratch buffer
  2998. // this is an error prone process, but it is necessary to support inplace
  2999. // operators when using scratch buffers
  3000. // TODO: implement a better way
  3001. static void ggml_scratch_save(struct ggml_context * ctx) {
  3002. // this is needed to allow opt tensors to store their data
  3003. // TODO: again, need to find a better way
  3004. ctx->no_alloc_save = ctx->no_alloc;
  3005. ctx->no_alloc = false;
  3006. ctx->scratch_save = ctx->scratch;
  3007. ctx->scratch.data = NULL;
  3008. }
  3009. static void ggml_scratch_load(struct ggml_context * ctx) {
  3010. ctx->no_alloc = ctx->no_alloc_save;
  3011. ctx->scratch = ctx->scratch_save;
  3012. }
  3013. ////////////////////////////////////////////////////////////////////////////////
  3014. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3015. // always insert objects at the end of the context's memory pool
  3016. struct ggml_object * obj_cur = ctx->objects_end;
  3017. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3018. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3019. const size_t cur_end = cur_offs + cur_size;
  3020. // align to GGML_MEM_ALIGN
  3021. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3022. char * const mem_buffer = ctx->mem_buffer;
  3023. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3024. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3025. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3026. __func__, cur_end + size_needed, ctx->mem_size);
  3027. assert(false);
  3028. return NULL;
  3029. }
  3030. *obj_new = (struct ggml_object) {
  3031. .offs = cur_end + GGML_OBJECT_SIZE,
  3032. .size = size_needed,
  3033. .next = NULL,
  3034. .type = type,
  3035. };
  3036. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3037. if (obj_cur != NULL) {
  3038. obj_cur->next = obj_new;
  3039. } else {
  3040. // this is the first object in this context
  3041. ctx->objects_begin = obj_new;
  3042. }
  3043. ctx->objects_end = obj_new;
  3044. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3045. return obj_new;
  3046. }
  3047. static struct ggml_tensor * ggml_new_tensor_impl(
  3048. struct ggml_context * ctx,
  3049. enum ggml_type type,
  3050. int n_dims,
  3051. const int64_t * ne,
  3052. struct ggml_tensor * view_src,
  3053. size_t view_offs) {
  3054. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3055. // find the base tensor and absolute offset
  3056. if (view_src != NULL && view_src->view_src != NULL) {
  3057. view_offs += view_src->view_offs;
  3058. view_src = view_src->view_src;
  3059. }
  3060. size_t data_size = ggml_row_size(type, ne[0]);
  3061. for (int i = 1; i < n_dims; i++) {
  3062. data_size *= ne[i];
  3063. }
  3064. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3065. void * data = view_src != NULL ? view_src->data : NULL;
  3066. if (data != NULL) {
  3067. data = (char *) data + view_offs;
  3068. }
  3069. size_t obj_alloc_size = 0;
  3070. if (view_src == NULL && !ctx->no_alloc) {
  3071. if (ctx->scratch.data != NULL) {
  3072. // allocate tensor data in the scratch buffer
  3073. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3074. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3075. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3076. assert(false);
  3077. return NULL;
  3078. }
  3079. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3080. ctx->scratch.offs += data_size;
  3081. } else {
  3082. // allocate tensor data in the context's memory pool
  3083. obj_alloc_size = data_size;
  3084. }
  3085. }
  3086. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3087. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3088. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3089. #ifdef __clang__
  3090. // temporary until ggml_tensor::backend is removed
  3091. #pragma clang diagnostic push
  3092. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3093. #endif
  3094. *result = (struct ggml_tensor) {
  3095. /*.type =*/ type,
  3096. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3097. /*.buffer =*/ NULL,
  3098. /*.ne =*/ { 1, 1, 1, 1 },
  3099. /*.nb =*/ { 0, 0, 0, 0 },
  3100. /*.op =*/ GGML_OP_NONE,
  3101. /*.op_params =*/ { 0 },
  3102. /*.flags =*/ 0,
  3103. /*.grad =*/ NULL,
  3104. /*.src =*/ { NULL },
  3105. /*.perf_runs =*/ 0,
  3106. /*.perf_cycles =*/ 0,
  3107. /*.perf_time_us =*/ 0,
  3108. /*.view_src =*/ view_src,
  3109. /*.view_offs =*/ view_offs,
  3110. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3111. /*.name =*/ { 0 },
  3112. /*.extra =*/ NULL,
  3113. /*.padding =*/ { 0 },
  3114. };
  3115. #ifdef __clang__
  3116. #pragma clang diagnostic pop
  3117. #endif
  3118. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3119. //ggml_assert_aligned(result->data);
  3120. for (int i = 0; i < n_dims; i++) {
  3121. result->ne[i] = ne[i];
  3122. }
  3123. result->nb[0] = ggml_type_size(type);
  3124. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3125. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3126. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3127. }
  3128. ctx->n_objects++;
  3129. return result;
  3130. }
  3131. struct ggml_tensor * ggml_new_tensor(
  3132. struct ggml_context * ctx,
  3133. enum ggml_type type,
  3134. int n_dims,
  3135. const int64_t * ne) {
  3136. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3137. }
  3138. struct ggml_tensor * ggml_new_tensor_1d(
  3139. struct ggml_context * ctx,
  3140. enum ggml_type type,
  3141. int64_t ne0) {
  3142. return ggml_new_tensor(ctx, type, 1, &ne0);
  3143. }
  3144. struct ggml_tensor * ggml_new_tensor_2d(
  3145. struct ggml_context * ctx,
  3146. enum ggml_type type,
  3147. int64_t ne0,
  3148. int64_t ne1) {
  3149. const int64_t ne[2] = { ne0, ne1 };
  3150. return ggml_new_tensor(ctx, type, 2, ne);
  3151. }
  3152. struct ggml_tensor * ggml_new_tensor_3d(
  3153. struct ggml_context * ctx,
  3154. enum ggml_type type,
  3155. int64_t ne0,
  3156. int64_t ne1,
  3157. int64_t ne2) {
  3158. const int64_t ne[3] = { ne0, ne1, ne2 };
  3159. return ggml_new_tensor(ctx, type, 3, ne);
  3160. }
  3161. struct ggml_tensor * ggml_new_tensor_4d(
  3162. struct ggml_context * ctx,
  3163. enum ggml_type type,
  3164. int64_t ne0,
  3165. int64_t ne1,
  3166. int64_t ne2,
  3167. int64_t ne3) {
  3168. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3169. return ggml_new_tensor(ctx, type, 4, ne);
  3170. }
  3171. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3172. ggml_scratch_save(ctx);
  3173. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3174. ggml_scratch_load(ctx);
  3175. ggml_set_i32(result, value);
  3176. return result;
  3177. }
  3178. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3179. ggml_scratch_save(ctx);
  3180. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3181. ggml_scratch_load(ctx);
  3182. ggml_set_f32(result, value);
  3183. return result;
  3184. }
  3185. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3186. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3187. }
  3188. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3189. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3190. assert(params_size <= GGML_MAX_OP_PARAMS);
  3191. memcpy(tensor->op_params, params, params_size);
  3192. }
  3193. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3194. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3195. return ((const int32_t *)(tensor->op_params))[i];
  3196. }
  3197. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3198. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3199. return ((const float *)(tensor->op_params))[i];
  3200. }
  3201. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3202. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3203. ((int32_t *)(tensor->op_params))[i] = value;
  3204. }
  3205. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3206. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3207. ((float *)(tensor->op_params))[i] = value;
  3208. }
  3209. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3210. memset(tensor->data, 0, ggml_nbytes(tensor));
  3211. return tensor;
  3212. }
  3213. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3214. const int n = ggml_nrows(tensor);
  3215. const int nc = tensor->ne[0];
  3216. const size_t n1 = tensor->nb[1];
  3217. char * const data = tensor->data;
  3218. switch (tensor->type) {
  3219. case GGML_TYPE_I8:
  3220. {
  3221. assert(tensor->nb[0] == sizeof(int8_t));
  3222. for (int i = 0; i < n; i++) {
  3223. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3224. }
  3225. } break;
  3226. case GGML_TYPE_I16:
  3227. {
  3228. assert(tensor->nb[0] == sizeof(int16_t));
  3229. for (int i = 0; i < n; i++) {
  3230. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3231. }
  3232. } break;
  3233. case GGML_TYPE_I32:
  3234. {
  3235. assert(tensor->nb[0] == sizeof(int32_t));
  3236. for (int i = 0; i < n; i++) {
  3237. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3238. }
  3239. } break;
  3240. case GGML_TYPE_F16:
  3241. {
  3242. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3243. for (int i = 0; i < n; i++) {
  3244. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3245. }
  3246. } break;
  3247. case GGML_TYPE_BF16:
  3248. {
  3249. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3250. for (int i = 0; i < n; i++) {
  3251. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3252. }
  3253. } break;
  3254. case GGML_TYPE_F32:
  3255. {
  3256. assert(tensor->nb[0] == sizeof(float));
  3257. for (int i = 0; i < n; i++) {
  3258. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3259. }
  3260. } break;
  3261. default:
  3262. {
  3263. GGML_ASSERT(false);
  3264. } break;
  3265. }
  3266. return tensor;
  3267. }
  3268. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3269. const int n = ggml_nrows(tensor);
  3270. const int nc = tensor->ne[0];
  3271. const size_t n1 = tensor->nb[1];
  3272. char * const data = tensor->data;
  3273. switch (tensor->type) {
  3274. case GGML_TYPE_I8:
  3275. {
  3276. assert(tensor->nb[0] == sizeof(int8_t));
  3277. for (int i = 0; i < n; i++) {
  3278. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3279. }
  3280. } break;
  3281. case GGML_TYPE_I16:
  3282. {
  3283. assert(tensor->nb[0] == sizeof(int16_t));
  3284. for (int i = 0; i < n; i++) {
  3285. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3286. }
  3287. } break;
  3288. case GGML_TYPE_I32:
  3289. {
  3290. assert(tensor->nb[0] == sizeof(int32_t));
  3291. for (int i = 0; i < n; i++) {
  3292. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3293. }
  3294. } break;
  3295. case GGML_TYPE_F16:
  3296. {
  3297. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3298. for (int i = 0; i < n; i++) {
  3299. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3300. }
  3301. } break;
  3302. case GGML_TYPE_BF16:
  3303. {
  3304. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3305. for (int i = 0; i < n; i++) {
  3306. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3307. }
  3308. } break;
  3309. case GGML_TYPE_F32:
  3310. {
  3311. assert(tensor->nb[0] == sizeof(float));
  3312. for (int i = 0; i < n; i++) {
  3313. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3314. }
  3315. } break;
  3316. default:
  3317. {
  3318. GGML_ASSERT(false);
  3319. } break;
  3320. }
  3321. return tensor;
  3322. }
  3323. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3324. const int64_t ne2 = tensor->ne[2];
  3325. const int64_t ne1 = tensor->ne[1];
  3326. const int64_t ne0 = tensor->ne[0];
  3327. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3328. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3329. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3330. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3331. if (i0) {
  3332. * i0 = i0_;
  3333. }
  3334. if (i1) {
  3335. * i1 = i1_;
  3336. }
  3337. if (i2) {
  3338. * i2 = i2_;
  3339. }
  3340. if (i3) {
  3341. * i3 = i3_;
  3342. }
  3343. }
  3344. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3345. if (!ggml_is_contiguous(tensor)) {
  3346. int64_t id[4] = { 0, 0, 0, 0 };
  3347. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3348. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3349. }
  3350. switch (tensor->type) {
  3351. case GGML_TYPE_I8:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3354. return ((int8_t *)(tensor->data))[i];
  3355. }
  3356. case GGML_TYPE_I16:
  3357. {
  3358. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3359. return ((int16_t *)(tensor->data))[i];
  3360. }
  3361. case GGML_TYPE_I32:
  3362. {
  3363. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3364. return ((int32_t *)(tensor->data))[i];
  3365. }
  3366. case GGML_TYPE_F16:
  3367. {
  3368. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3369. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3370. }
  3371. case GGML_TYPE_BF16:
  3372. {
  3373. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3374. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3375. }
  3376. case GGML_TYPE_F32:
  3377. {
  3378. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3379. return ((float *)(tensor->data))[i];
  3380. }
  3381. default:
  3382. {
  3383. GGML_ASSERT(false);
  3384. }
  3385. }
  3386. return 0.0f;
  3387. }
  3388. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3389. if (!ggml_is_contiguous(tensor)) {
  3390. int64_t id[4] = { 0, 0, 0, 0 };
  3391. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3392. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3393. return;
  3394. }
  3395. switch (tensor->type) {
  3396. case GGML_TYPE_I8:
  3397. {
  3398. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3399. ((int8_t *)(tensor->data))[i] = value;
  3400. } break;
  3401. case GGML_TYPE_I16:
  3402. {
  3403. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3404. ((int16_t *)(tensor->data))[i] = value;
  3405. } break;
  3406. case GGML_TYPE_I32:
  3407. {
  3408. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3409. ((int32_t *)(tensor->data))[i] = value;
  3410. } break;
  3411. case GGML_TYPE_F16:
  3412. {
  3413. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3414. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3415. } break;
  3416. case GGML_TYPE_BF16:
  3417. {
  3418. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3419. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3420. } break;
  3421. case GGML_TYPE_F32:
  3422. {
  3423. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3424. ((float *)(tensor->data))[i] = value;
  3425. } break;
  3426. default:
  3427. {
  3428. GGML_ASSERT(false);
  3429. } break;
  3430. }
  3431. }
  3432. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3433. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3434. switch (tensor->type) {
  3435. case GGML_TYPE_I8:
  3436. return ((int8_t *) data)[0];
  3437. case GGML_TYPE_I16:
  3438. return ((int16_t *) data)[0];
  3439. case GGML_TYPE_I32:
  3440. return ((int32_t *) data)[0];
  3441. case GGML_TYPE_F16:
  3442. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3443. case GGML_TYPE_BF16:
  3444. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3445. case GGML_TYPE_F32:
  3446. return ((float *) data)[0];
  3447. default:
  3448. GGML_ASSERT(false);
  3449. }
  3450. return 0.0f;
  3451. }
  3452. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3453. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3454. switch (tensor->type) {
  3455. case GGML_TYPE_I8:
  3456. {
  3457. ((int8_t *)(data))[0] = value;
  3458. } break;
  3459. case GGML_TYPE_I16:
  3460. {
  3461. ((int16_t *)(data))[0] = value;
  3462. } break;
  3463. case GGML_TYPE_I32:
  3464. {
  3465. ((int32_t *)(data))[0] = value;
  3466. } break;
  3467. case GGML_TYPE_F16:
  3468. {
  3469. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3470. } break;
  3471. case GGML_TYPE_BF16:
  3472. {
  3473. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3474. } break;
  3475. case GGML_TYPE_F32:
  3476. {
  3477. ((float *)(data))[0] = value;
  3478. } break;
  3479. default:
  3480. {
  3481. GGML_ASSERT(false);
  3482. } break;
  3483. }
  3484. }
  3485. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3486. if (!ggml_is_contiguous(tensor)) {
  3487. int64_t id[4] = { 0, 0, 0, 0 };
  3488. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3489. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3490. }
  3491. switch (tensor->type) {
  3492. case GGML_TYPE_I8:
  3493. {
  3494. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3495. return ((int8_t *)(tensor->data))[i];
  3496. }
  3497. case GGML_TYPE_I16:
  3498. {
  3499. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3500. return ((int16_t *)(tensor->data))[i];
  3501. }
  3502. case GGML_TYPE_I32:
  3503. {
  3504. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3505. return ((int32_t *)(tensor->data))[i];
  3506. }
  3507. case GGML_TYPE_F16:
  3508. {
  3509. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3510. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3511. }
  3512. case GGML_TYPE_BF16:
  3513. {
  3514. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3515. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3516. }
  3517. case GGML_TYPE_F32:
  3518. {
  3519. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3520. return ((float *)(tensor->data))[i];
  3521. }
  3522. default:
  3523. {
  3524. GGML_ASSERT(false);
  3525. }
  3526. }
  3527. return 0.0f;
  3528. }
  3529. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3530. if (!ggml_is_contiguous(tensor)) {
  3531. int64_t id[4] = { 0, 0, 0, 0 };
  3532. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3533. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3534. return;
  3535. }
  3536. switch (tensor->type) {
  3537. case GGML_TYPE_I8:
  3538. {
  3539. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3540. ((int8_t *)(tensor->data))[i] = value;
  3541. } break;
  3542. case GGML_TYPE_I16:
  3543. {
  3544. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3545. ((int16_t *)(tensor->data))[i] = value;
  3546. } break;
  3547. case GGML_TYPE_I32:
  3548. {
  3549. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3550. ((int32_t *)(tensor->data))[i] = value;
  3551. } break;
  3552. case GGML_TYPE_F16:
  3553. {
  3554. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3555. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3556. } break;
  3557. case GGML_TYPE_BF16:
  3558. {
  3559. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3560. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3561. } break;
  3562. case GGML_TYPE_F32:
  3563. {
  3564. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3565. ((float *)(tensor->data))[i] = value;
  3566. } break;
  3567. default:
  3568. {
  3569. GGML_ASSERT(false);
  3570. } break;
  3571. }
  3572. }
  3573. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3574. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3575. switch (tensor->type) {
  3576. case GGML_TYPE_I8:
  3577. return ((int8_t *) data)[0];
  3578. case GGML_TYPE_I16:
  3579. return ((int16_t *) data)[0];
  3580. case GGML_TYPE_I32:
  3581. return ((int32_t *) data)[0];
  3582. case GGML_TYPE_F16:
  3583. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3584. case GGML_TYPE_BF16:
  3585. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3586. case GGML_TYPE_F32:
  3587. return ((float *) data)[0];
  3588. default:
  3589. GGML_ASSERT(false);
  3590. }
  3591. return 0.0f;
  3592. }
  3593. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3594. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3595. switch (tensor->type) {
  3596. case GGML_TYPE_I8:
  3597. {
  3598. ((int8_t *)(data))[0] = value;
  3599. } break;
  3600. case GGML_TYPE_I16:
  3601. {
  3602. ((int16_t *)(data))[0] = value;
  3603. } break;
  3604. case GGML_TYPE_I32:
  3605. {
  3606. ((int32_t *)(data))[0] = value;
  3607. } break;
  3608. case GGML_TYPE_F16:
  3609. {
  3610. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3611. } break;
  3612. case GGML_TYPE_BF16:
  3613. {
  3614. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3615. } break;
  3616. case GGML_TYPE_F32:
  3617. {
  3618. ((float *)(data))[0] = value;
  3619. } break;
  3620. default:
  3621. {
  3622. GGML_ASSERT(false);
  3623. } break;
  3624. }
  3625. }
  3626. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3627. return tensor->data;
  3628. }
  3629. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3630. assert(tensor->type == GGML_TYPE_F32);
  3631. return (float *)(tensor->data);
  3632. }
  3633. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3634. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3635. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3636. }
  3637. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3638. return tensor->name;
  3639. }
  3640. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3641. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3642. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3643. return tensor;
  3644. }
  3645. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3646. va_list args;
  3647. va_start(args, fmt);
  3648. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3649. va_end(args);
  3650. return tensor;
  3651. }
  3652. struct ggml_tensor * ggml_view_tensor(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * src) {
  3655. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3656. ggml_format_name(result, "%s (view)", src->name);
  3657. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3658. result->nb[i] = src->nb[i];
  3659. }
  3660. return result;
  3661. }
  3662. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3663. struct ggml_object * obj = ctx->objects_begin;
  3664. char * const mem_buffer = ctx->mem_buffer;
  3665. while (obj != NULL) {
  3666. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3667. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3668. }
  3669. obj = obj->next;
  3670. }
  3671. return NULL;
  3672. }
  3673. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3674. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3675. obj = obj->next;
  3676. char * const mem_buffer = ctx->mem_buffer;
  3677. while (obj != NULL) {
  3678. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3679. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3680. }
  3681. obj = obj->next;
  3682. }
  3683. return NULL;
  3684. }
  3685. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3686. struct ggml_object * obj = ctx->objects_begin;
  3687. char * const mem_buffer = ctx->mem_buffer;
  3688. while (obj != NULL) {
  3689. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3690. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3691. if (strcmp(cur->name, name) == 0) {
  3692. return cur;
  3693. }
  3694. }
  3695. obj = obj->next;
  3696. }
  3697. return NULL;
  3698. }
  3699. ////////////////////////////////////////////////////////////////////////////////
  3700. // ggml_dup
  3701. static struct ggml_tensor * ggml_dup_impl(
  3702. struct ggml_context * ctx,
  3703. struct ggml_tensor * a,
  3704. bool inplace) {
  3705. bool is_node = false;
  3706. if (!inplace && (a->grad)) {
  3707. is_node = true;
  3708. }
  3709. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3710. result->op = GGML_OP_DUP;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src[0] = a;
  3713. return result;
  3714. }
  3715. struct ggml_tensor * ggml_dup(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a) {
  3718. return ggml_dup_impl(ctx, a, false);
  3719. }
  3720. struct ggml_tensor * ggml_dup_inplace(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a) {
  3723. return ggml_dup_impl(ctx, a, true);
  3724. }
  3725. // ggml_add
  3726. static struct ggml_tensor * ggml_add_impl(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. struct ggml_tensor * b,
  3730. bool inplace) {
  3731. GGML_ASSERT(ggml_can_repeat(b, a));
  3732. bool is_node = false;
  3733. if (!inplace && (a->grad || b->grad)) {
  3734. // TODO: support backward pass for broadcasting
  3735. GGML_ASSERT(ggml_are_same_shape(a, b));
  3736. is_node = true;
  3737. }
  3738. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3739. result->op = GGML_OP_ADD;
  3740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3741. result->src[0] = a;
  3742. result->src[1] = b;
  3743. return result;
  3744. }
  3745. struct ggml_tensor * ggml_add(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b) {
  3749. return ggml_add_impl(ctx, a, b, false);
  3750. }
  3751. struct ggml_tensor * ggml_add_inplace(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. struct ggml_tensor * b) {
  3755. return ggml_add_impl(ctx, a, b, true);
  3756. }
  3757. // ggml_add_cast
  3758. static struct ggml_tensor * ggml_add_cast_impl(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. struct ggml_tensor * b,
  3762. enum ggml_type type) {
  3763. // TODO: support less-strict constraint
  3764. // GGML_ASSERT(ggml_can_repeat(b, a));
  3765. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3766. // currently only supported for quantized input and f16
  3767. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3768. a->type == GGML_TYPE_F16 ||
  3769. a->type == GGML_TYPE_BF16);
  3770. bool is_node = false;
  3771. if (a->grad || b->grad) {
  3772. // TODO: support backward pass for broadcasting
  3773. GGML_ASSERT(ggml_are_same_shape(a, b));
  3774. is_node = true;
  3775. }
  3776. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3777. result->op = GGML_OP_ADD;
  3778. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3779. result->src[0] = a;
  3780. result->src[1] = b;
  3781. return result;
  3782. }
  3783. struct ggml_tensor * ggml_add_cast(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. struct ggml_tensor * b,
  3787. enum ggml_type type) {
  3788. return ggml_add_cast_impl(ctx, a, b, type);
  3789. }
  3790. // ggml_add1
  3791. static struct ggml_tensor * ggml_add1_impl(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. struct ggml_tensor * b,
  3795. bool inplace) {
  3796. GGML_ASSERT(ggml_is_scalar(b));
  3797. GGML_ASSERT(ggml_is_padded_1d(a));
  3798. bool is_node = false;
  3799. if (a->grad || b->grad) {
  3800. is_node = true;
  3801. }
  3802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3803. result->op = GGML_OP_ADD1;
  3804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3805. result->src[0] = a;
  3806. result->src[1] = b;
  3807. return result;
  3808. }
  3809. struct ggml_tensor * ggml_add1(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a,
  3812. struct ggml_tensor * b) {
  3813. return ggml_add1_impl(ctx, a, b, false);
  3814. }
  3815. struct ggml_tensor * ggml_add1_inplace(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a,
  3818. struct ggml_tensor * b) {
  3819. return ggml_add1_impl(ctx, a, b, true);
  3820. }
  3821. // ggml_acc
  3822. static struct ggml_tensor * ggml_acc_impl(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. struct ggml_tensor * b,
  3826. size_t nb1,
  3827. size_t nb2,
  3828. size_t nb3,
  3829. size_t offset,
  3830. bool inplace) {
  3831. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3832. GGML_ASSERT(ggml_is_contiguous(a));
  3833. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3834. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3835. bool is_node = false;
  3836. if (!inplace && (a->grad || b->grad)) {
  3837. is_node = true;
  3838. }
  3839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3840. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3841. ggml_set_op_params(result, params, sizeof(params));
  3842. result->op = GGML_OP_ACC;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src[0] = a;
  3845. result->src[1] = b;
  3846. return result;
  3847. }
  3848. struct ggml_tensor * ggml_acc(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b,
  3852. size_t nb1,
  3853. size_t nb2,
  3854. size_t nb3,
  3855. size_t offset) {
  3856. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3857. }
  3858. struct ggml_tensor * ggml_acc_inplace(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. struct ggml_tensor * b,
  3862. size_t nb1,
  3863. size_t nb2,
  3864. size_t nb3,
  3865. size_t offset) {
  3866. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3867. }
  3868. // ggml_sub
  3869. static struct ggml_tensor * ggml_sub_impl(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b,
  3873. bool inplace) {
  3874. GGML_ASSERT(ggml_are_same_shape(a, b));
  3875. bool is_node = false;
  3876. if (!inplace && (a->grad || b->grad)) {
  3877. is_node = true;
  3878. }
  3879. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3880. result->op = GGML_OP_SUB;
  3881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3882. result->src[0] = a;
  3883. result->src[1] = b;
  3884. return result;
  3885. }
  3886. struct ggml_tensor * ggml_sub(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. struct ggml_tensor * b) {
  3890. return ggml_sub_impl(ctx, a, b, false);
  3891. }
  3892. struct ggml_tensor * ggml_sub_inplace(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a,
  3895. struct ggml_tensor * b) {
  3896. return ggml_sub_impl(ctx, a, b, true);
  3897. }
  3898. // ggml_mul
  3899. static struct ggml_tensor * ggml_mul_impl(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a,
  3902. struct ggml_tensor * b,
  3903. bool inplace) {
  3904. GGML_ASSERT(ggml_can_repeat(b, a));
  3905. bool is_node = false;
  3906. if (!inplace && (a->grad || b->grad)) {
  3907. // TODO: support backward pass for broadcasting
  3908. GGML_ASSERT(ggml_are_same_shape(a, b));
  3909. is_node = true;
  3910. }
  3911. if (inplace) {
  3912. GGML_ASSERT(!is_node);
  3913. }
  3914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3915. result->op = GGML_OP_MUL;
  3916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3917. result->src[0] = a;
  3918. result->src[1] = b;
  3919. return result;
  3920. }
  3921. struct ggml_tensor * ggml_mul(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b) {
  3925. return ggml_mul_impl(ctx, a, b, false);
  3926. }
  3927. struct ggml_tensor * ggml_mul_inplace(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. struct ggml_tensor * b) {
  3931. return ggml_mul_impl(ctx, a, b, true);
  3932. }
  3933. // ggml_div
  3934. static struct ggml_tensor * ggml_div_impl(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b,
  3938. bool inplace) {
  3939. GGML_ASSERT(ggml_can_repeat(b, a));
  3940. bool is_node = false;
  3941. if (!inplace && (a->grad || b->grad)) {
  3942. is_node = true;
  3943. }
  3944. if (inplace) {
  3945. GGML_ASSERT(!is_node);
  3946. }
  3947. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3948. result->op = GGML_OP_DIV;
  3949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3950. result->src[0] = a;
  3951. result->src[1] = b;
  3952. return result;
  3953. }
  3954. struct ggml_tensor * ggml_div(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. struct ggml_tensor * b) {
  3958. return ggml_div_impl(ctx, a, b, false);
  3959. }
  3960. struct ggml_tensor * ggml_div_inplace(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. struct ggml_tensor * b) {
  3964. return ggml_div_impl(ctx, a, b, true);
  3965. }
  3966. // ggml_sqr
  3967. static struct ggml_tensor * ggml_sqr_impl(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a,
  3970. bool inplace) {
  3971. bool is_node = false;
  3972. if (!inplace && (a->grad)) {
  3973. is_node = true;
  3974. }
  3975. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3976. result->op = GGML_OP_SQR;
  3977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3978. result->src[0] = a;
  3979. return result;
  3980. }
  3981. struct ggml_tensor * ggml_sqr(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a) {
  3984. return ggml_sqr_impl(ctx, a, false);
  3985. }
  3986. struct ggml_tensor * ggml_sqr_inplace(
  3987. struct ggml_context * ctx,
  3988. struct ggml_tensor * a) {
  3989. return ggml_sqr_impl(ctx, a, true);
  3990. }
  3991. // ggml_sqrt
  3992. static struct ggml_tensor * ggml_sqrt_impl(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a,
  3995. bool inplace) {
  3996. bool is_node = false;
  3997. if (!inplace && (a->grad)) {
  3998. is_node = true;
  3999. }
  4000. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4001. result->op = GGML_OP_SQRT;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src[0] = a;
  4004. return result;
  4005. }
  4006. struct ggml_tensor * ggml_sqrt(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a) {
  4009. return ggml_sqrt_impl(ctx, a, false);
  4010. }
  4011. struct ggml_tensor * ggml_sqrt_inplace(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a) {
  4014. return ggml_sqrt_impl(ctx, a, true);
  4015. }
  4016. // ggml_log
  4017. static struct ggml_tensor * ggml_log_impl(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. bool inplace) {
  4021. bool is_node = false;
  4022. if (!inplace && (a->grad)) {
  4023. is_node = true;
  4024. }
  4025. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4026. result->op = GGML_OP_LOG;
  4027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4028. result->src[0] = a;
  4029. return result;
  4030. }
  4031. struct ggml_tensor * ggml_log(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a) {
  4034. return ggml_log_impl(ctx, a, false);
  4035. }
  4036. struct ggml_tensor * ggml_log_inplace(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a) {
  4039. return ggml_log_impl(ctx, a, true);
  4040. }
  4041. // ggml_sum
  4042. struct ggml_tensor * ggml_sum(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a) {
  4045. bool is_node = false;
  4046. if (a->grad) {
  4047. is_node = true;
  4048. }
  4049. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4050. result->op = GGML_OP_SUM;
  4051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4052. result->src[0] = a;
  4053. return result;
  4054. }
  4055. // ggml_sum_rows
  4056. struct ggml_tensor * ggml_sum_rows(
  4057. struct ggml_context * ctx,
  4058. struct ggml_tensor * a) {
  4059. bool is_node = false;
  4060. if (a->grad) {
  4061. is_node = true;
  4062. }
  4063. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4064. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4065. ne[i] = a->ne[i];
  4066. }
  4067. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4068. result->op = GGML_OP_SUM_ROWS;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src[0] = a;
  4071. return result;
  4072. }
  4073. // ggml_mean
  4074. struct ggml_tensor * ggml_mean(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a) {
  4077. bool is_node = false;
  4078. if (a->grad) {
  4079. GGML_ASSERT(false); // TODO: implement
  4080. is_node = true;
  4081. }
  4082. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4083. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4084. result->op = GGML_OP_MEAN;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src[0] = a;
  4087. return result;
  4088. }
  4089. // ggml_argmax
  4090. struct ggml_tensor * ggml_argmax(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a) {
  4093. GGML_ASSERT(ggml_is_matrix(a));
  4094. bool is_node = false;
  4095. if (a->grad) {
  4096. GGML_ASSERT(false);
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4100. result->op = GGML_OP_ARGMAX;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src[0] = a;
  4103. return result;
  4104. }
  4105. // ggml_repeat
  4106. struct ggml_tensor * ggml_repeat(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a,
  4109. struct ggml_tensor * b) {
  4110. GGML_ASSERT(ggml_can_repeat(a, b));
  4111. bool is_node = false;
  4112. if (a->grad) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4116. result->op = GGML_OP_REPEAT;
  4117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4118. result->src[0] = a;
  4119. return result;
  4120. }
  4121. // ggml_repeat_back
  4122. struct ggml_tensor * ggml_repeat_back(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. struct ggml_tensor * b) {
  4126. GGML_ASSERT(ggml_can_repeat(b, a));
  4127. bool is_node = false;
  4128. if (a->grad) {
  4129. is_node = true;
  4130. }
  4131. if (ggml_are_same_shape(a, b) && !is_node) {
  4132. return a;
  4133. }
  4134. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4135. result->op = GGML_OP_REPEAT_BACK;
  4136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4137. result->src[0] = a;
  4138. return result;
  4139. }
  4140. // ggml_concat
  4141. struct ggml_tensor * ggml_concat(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b,
  4145. int dim) {
  4146. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4147. int64_t ne[GGML_MAX_DIMS];
  4148. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4149. if (d == dim) {
  4150. ne[d] = a->ne[d] + b->ne[d];
  4151. continue;
  4152. }
  4153. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4154. ne[d] = a->ne[d];
  4155. }
  4156. bool is_node = false;
  4157. if (a->grad || b->grad) {
  4158. is_node = true;
  4159. }
  4160. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4161. ggml_set_op_params_i32(result, 0, dim);
  4162. result->op = GGML_OP_CONCAT;
  4163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4164. result->src[0] = a;
  4165. result->src[1] = b;
  4166. return result;
  4167. }
  4168. // ggml_abs
  4169. struct ggml_tensor * ggml_abs(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a) {
  4172. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4173. }
  4174. struct ggml_tensor * ggml_abs_inplace(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a) {
  4177. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4178. }
  4179. // ggml_sgn
  4180. struct ggml_tensor * ggml_sgn(
  4181. struct ggml_context * ctx,
  4182. struct ggml_tensor * a) {
  4183. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4184. }
  4185. struct ggml_tensor * ggml_sgn_inplace(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a) {
  4188. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4189. }
  4190. // ggml_neg
  4191. struct ggml_tensor * ggml_neg(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a) {
  4194. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4195. }
  4196. struct ggml_tensor * ggml_neg_inplace(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a) {
  4199. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4200. }
  4201. // ggml_step
  4202. struct ggml_tensor * ggml_step(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a) {
  4205. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4206. }
  4207. struct ggml_tensor * ggml_step_inplace(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4211. }
  4212. // ggml_tanh
  4213. struct ggml_tensor * ggml_tanh(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4217. }
  4218. struct ggml_tensor * ggml_tanh_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4222. }
  4223. // ggml_elu
  4224. struct ggml_tensor * ggml_elu(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a) {
  4227. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4228. }
  4229. struct ggml_tensor * ggml_elu_inplace(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a) {
  4232. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4233. }
  4234. // ggml_relu
  4235. struct ggml_tensor * ggml_relu(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a) {
  4238. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4239. }
  4240. struct ggml_tensor * ggml_relu_inplace(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a) {
  4243. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4244. }
  4245. // ggml_leaky_relu
  4246. struct ggml_tensor * ggml_leaky_relu(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4249. bool is_node = false;
  4250. if (!inplace && (a->grad)) {
  4251. is_node = true;
  4252. }
  4253. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4254. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4255. result->op = GGML_OP_LEAKY_RELU;
  4256. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4257. result->src[0] = a;
  4258. return result;
  4259. }
  4260. // ggml_sigmoid
  4261. struct ggml_tensor * ggml_sigmoid(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a) {
  4264. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4265. }
  4266. struct ggml_tensor * ggml_sigmoid_inplace(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a) {
  4269. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4270. }
  4271. // ggml_gelu
  4272. struct ggml_tensor * ggml_gelu(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4276. }
  4277. struct ggml_tensor * ggml_gelu_inplace(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4281. }
  4282. // ggml_gelu_quick
  4283. struct ggml_tensor * ggml_gelu_quick(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4287. }
  4288. struct ggml_tensor * ggml_gelu_quick_inplace(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a) {
  4291. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4292. }
  4293. // ggml_silu
  4294. struct ggml_tensor * ggml_silu(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a) {
  4297. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4298. }
  4299. struct ggml_tensor * ggml_silu_inplace(
  4300. struct ggml_context * ctx,
  4301. struct ggml_tensor * a) {
  4302. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4303. }
  4304. // ggml_silu_back
  4305. struct ggml_tensor * ggml_silu_back(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a,
  4308. struct ggml_tensor * b) {
  4309. bool is_node = false;
  4310. if (a->grad || b->grad) {
  4311. // TODO: implement backward
  4312. is_node = true;
  4313. }
  4314. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4315. result->op = GGML_OP_SILU_BACK;
  4316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4317. result->src[0] = a;
  4318. result->src[1] = b;
  4319. return result;
  4320. }
  4321. // ggml hardswish
  4322. struct ggml_tensor * ggml_hardswish(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a) {
  4325. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4326. }
  4327. // ggml hardsigmoid
  4328. struct ggml_tensor * ggml_hardsigmoid(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a) {
  4331. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4332. }
  4333. // ggml_norm
  4334. static struct ggml_tensor * ggml_norm_impl(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. float eps,
  4338. bool inplace) {
  4339. bool is_node = false;
  4340. if (!inplace && (a->grad)) {
  4341. GGML_ASSERT(false); // TODO: implement backward
  4342. is_node = true;
  4343. }
  4344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4345. ggml_set_op_params(result, &eps, sizeof(eps));
  4346. result->op = GGML_OP_NORM;
  4347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4348. result->src[0] = a;
  4349. return result;
  4350. }
  4351. struct ggml_tensor * ggml_norm(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. float eps) {
  4355. return ggml_norm_impl(ctx, a, eps, false);
  4356. }
  4357. struct ggml_tensor * ggml_norm_inplace(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. float eps) {
  4361. return ggml_norm_impl(ctx, a, eps, true);
  4362. }
  4363. // ggml_rms_norm
  4364. static struct ggml_tensor * ggml_rms_norm_impl(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a,
  4367. float eps,
  4368. bool inplace) {
  4369. bool is_node = false;
  4370. if (!inplace && (a->grad)) {
  4371. is_node = true;
  4372. }
  4373. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4374. ggml_set_op_params(result, &eps, sizeof(eps));
  4375. result->op = GGML_OP_RMS_NORM;
  4376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4377. result->src[0] = a;
  4378. return result;
  4379. }
  4380. struct ggml_tensor * ggml_rms_norm(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. float eps) {
  4384. return ggml_rms_norm_impl(ctx, a, eps, false);
  4385. }
  4386. struct ggml_tensor * ggml_rms_norm_inplace(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. float eps) {
  4390. return ggml_rms_norm_impl(ctx, a, eps, true);
  4391. }
  4392. // ggml_rms_norm_back
  4393. struct ggml_tensor * ggml_rms_norm_back(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a,
  4396. struct ggml_tensor * b,
  4397. float eps) {
  4398. bool is_node = false;
  4399. if (a->grad) {
  4400. // TODO: implement backward
  4401. is_node = true;
  4402. }
  4403. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4404. ggml_set_op_params(result, &eps, sizeof(eps));
  4405. result->op = GGML_OP_RMS_NORM_BACK;
  4406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4407. result->src[0] = a;
  4408. result->src[1] = b;
  4409. return result;
  4410. }
  4411. // ggml_group_norm
  4412. static struct ggml_tensor * ggml_group_norm_impl(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. int n_groups,
  4416. bool inplace) {
  4417. bool is_node = false;
  4418. if (!inplace && (a->grad)) {
  4419. GGML_ASSERT(false); // TODO: implement backward
  4420. is_node = true;
  4421. }
  4422. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4423. result->op_params[0] = n_groups;
  4424. result->op = GGML_OP_GROUP_NORM;
  4425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4426. result->src[0] = a;
  4427. return result;
  4428. }
  4429. struct ggml_tensor * ggml_group_norm(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. int n_groups) {
  4433. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4434. }
  4435. struct ggml_tensor * ggml_group_norm_inplace(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. int n_groups) {
  4439. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4440. }
  4441. // ggml_mul_mat
  4442. struct ggml_tensor * ggml_mul_mat(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. struct ggml_tensor * b) {
  4446. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4447. GGML_ASSERT(!ggml_is_transposed(a));
  4448. bool is_node = false;
  4449. if (a->grad || b->grad) {
  4450. is_node = true;
  4451. }
  4452. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4453. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4454. result->op = GGML_OP_MUL_MAT;
  4455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4456. result->src[0] = a;
  4457. result->src[1] = b;
  4458. return result;
  4459. }
  4460. void ggml_mul_mat_set_prec(
  4461. struct ggml_tensor * a,
  4462. enum ggml_prec prec) {
  4463. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4464. const int32_t prec_i32 = (int32_t) prec;
  4465. ggml_set_op_params_i32(a, 0, prec_i32);
  4466. }
  4467. // ggml_mul_mat_id
  4468. /*
  4469. c = ggml_mul_mat_id(ctx, as, b, ids);
  4470. as -> [cols, rows, n_expert]
  4471. ids -> [n_experts_used, n_tokens] (i32)
  4472. b -> [cols, n_expert_used, n_tokens]
  4473. c -> [cols, n_expert_used, n_tokens]
  4474. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4475. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4476. */
  4477. struct ggml_tensor * ggml_mul_mat_id(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * as,
  4480. struct ggml_tensor * b,
  4481. struct ggml_tensor * ids) {
  4482. GGML_ASSERT(!ggml_is_transposed(as));
  4483. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4484. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4485. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4486. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4487. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4488. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4489. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4490. bool is_node = false;
  4491. if (as->grad || b->grad) {
  4492. is_node = true;
  4493. }
  4494. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4495. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4496. result->op = GGML_OP_MUL_MAT_ID;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = as;
  4499. result->src[1] = b;
  4500. result->src[2] = ids;
  4501. return result;
  4502. }
  4503. // ggml_out_prod
  4504. struct ggml_tensor * ggml_out_prod(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. struct ggml_tensor * b) {
  4508. GGML_ASSERT(ggml_can_out_prod(a, b));
  4509. GGML_ASSERT(!ggml_is_transposed(a));
  4510. bool is_node = false;
  4511. if (a->grad || b->grad) {
  4512. is_node = true;
  4513. }
  4514. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4515. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4516. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4517. result->op = GGML_OP_OUT_PROD;
  4518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4519. result->src[0] = a;
  4520. result->src[1] = b;
  4521. return result;
  4522. }
  4523. // ggml_scale
  4524. static struct ggml_tensor * ggml_scale_impl(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. float s,
  4528. bool inplace) {
  4529. GGML_ASSERT(ggml_is_padded_1d(a));
  4530. bool is_node = false;
  4531. if (a->grad) {
  4532. is_node = true;
  4533. }
  4534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4535. ggml_set_op_params(result, &s, sizeof(s));
  4536. result->op = GGML_OP_SCALE;
  4537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4538. result->src[0] = a;
  4539. return result;
  4540. }
  4541. struct ggml_tensor * ggml_scale(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a,
  4544. float s) {
  4545. return ggml_scale_impl(ctx, a, s, false);
  4546. }
  4547. struct ggml_tensor * ggml_scale_inplace(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. float s) {
  4551. return ggml_scale_impl(ctx, a, s, true);
  4552. }
  4553. // ggml_set
  4554. static struct ggml_tensor * ggml_set_impl(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. struct ggml_tensor * b,
  4558. size_t nb1,
  4559. size_t nb2,
  4560. size_t nb3,
  4561. size_t offset,
  4562. bool inplace) {
  4563. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4564. bool is_node = false;
  4565. if (a->grad || b->grad) {
  4566. is_node = true;
  4567. }
  4568. // make a view of the destination
  4569. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4570. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4571. ggml_set_op_params(result, params, sizeof(params));
  4572. result->op = GGML_OP_SET;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src[0] = a;
  4575. result->src[1] = b;
  4576. return result;
  4577. }
  4578. struct ggml_tensor * ggml_set(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. size_t nb1,
  4583. size_t nb2,
  4584. size_t nb3,
  4585. size_t offset) {
  4586. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4587. }
  4588. struct ggml_tensor * ggml_set_inplace(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. size_t nb1,
  4593. size_t nb2,
  4594. size_t nb3,
  4595. size_t offset) {
  4596. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4597. }
  4598. struct ggml_tensor * ggml_set_1d(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. struct ggml_tensor * b,
  4602. size_t offset) {
  4603. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4604. }
  4605. struct ggml_tensor * ggml_set_1d_inplace(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. struct ggml_tensor * b,
  4609. size_t offset) {
  4610. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4611. }
  4612. struct ggml_tensor * ggml_set_2d(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. struct ggml_tensor * b,
  4616. size_t nb1,
  4617. size_t offset) {
  4618. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4619. }
  4620. struct ggml_tensor * ggml_set_2d_inplace(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. struct ggml_tensor * b,
  4624. size_t nb1,
  4625. size_t offset) {
  4626. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4627. }
  4628. // ggml_cpy
  4629. static struct ggml_tensor * ggml_cpy_impl(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a,
  4632. struct ggml_tensor * b) {
  4633. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4634. bool is_node = false;
  4635. if (a->grad || b->grad) {
  4636. // inplace is false and either one have a grad
  4637. is_node = true;
  4638. }
  4639. // make a view of the destination
  4640. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4641. if (strlen(b->name) > 0) {
  4642. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4643. } else {
  4644. ggml_format_name(result, "%s (copy)", a->name);
  4645. }
  4646. result->op = GGML_OP_CPY;
  4647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4648. result->src[0] = a;
  4649. result->src[1] = b;
  4650. return result;
  4651. }
  4652. struct ggml_tensor * ggml_cpy(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a,
  4655. struct ggml_tensor * b) {
  4656. return ggml_cpy_impl(ctx, a, b);
  4657. }
  4658. struct ggml_tensor * ggml_cast(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. enum ggml_type type) {
  4662. bool is_node = false;
  4663. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4664. ggml_format_name(result, "%s (copy)", a->name);
  4665. result->op = GGML_OP_CPY;
  4666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4667. result->src[0] = a;
  4668. result->src[1] = result;
  4669. return result;
  4670. }
  4671. // ggml_cont
  4672. static struct ggml_tensor * ggml_cont_impl(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a) {
  4675. bool is_node = false;
  4676. if (a->grad) {
  4677. is_node = true;
  4678. }
  4679. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4680. ggml_format_name(result, "%s (cont)", a->name);
  4681. result->op = GGML_OP_CONT;
  4682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4683. result->src[0] = a;
  4684. return result;
  4685. }
  4686. struct ggml_tensor * ggml_cont(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a) {
  4689. return ggml_cont_impl(ctx, a);
  4690. }
  4691. // make contiguous, with new shape
  4692. GGML_API struct ggml_tensor * ggml_cont_1d(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. int64_t ne0) {
  4696. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4697. }
  4698. GGML_API struct ggml_tensor * ggml_cont_2d(
  4699. struct ggml_context * ctx,
  4700. struct ggml_tensor * a,
  4701. int64_t ne0,
  4702. int64_t ne1) {
  4703. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4704. }
  4705. GGML_API struct ggml_tensor * ggml_cont_3d(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. int64_t ne0,
  4709. int64_t ne1,
  4710. int64_t ne2) {
  4711. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4712. }
  4713. struct ggml_tensor * ggml_cont_4d(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. int64_t ne0,
  4717. int64_t ne1,
  4718. int64_t ne2,
  4719. int64_t ne3) {
  4720. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4721. bool is_node = false;
  4722. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4723. ggml_format_name(result, "%s (cont)", a->name);
  4724. result->op = GGML_OP_CONT;
  4725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4726. result->src[0] = a;
  4727. return result;
  4728. }
  4729. // ggml_reshape
  4730. struct ggml_tensor * ggml_reshape(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. struct ggml_tensor * b) {
  4734. GGML_ASSERT(ggml_is_contiguous(a));
  4735. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4736. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. is_node = true;
  4740. }
  4741. if (b->grad) {
  4742. // gradient propagation is not supported
  4743. //GGML_ASSERT(false);
  4744. }
  4745. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4746. ggml_format_name(result, "%s (reshaped)", a->name);
  4747. result->op = GGML_OP_RESHAPE;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src[0] = a;
  4750. return result;
  4751. }
  4752. struct ggml_tensor * ggml_reshape_1d(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. int64_t ne0) {
  4756. GGML_ASSERT(ggml_is_contiguous(a));
  4757. GGML_ASSERT(ggml_nelements(a) == ne0);
  4758. bool is_node = false;
  4759. if (a->grad) {
  4760. is_node = true;
  4761. }
  4762. const int64_t ne[1] = { ne0 };
  4763. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4764. ggml_format_name(result, "%s (reshaped)", a->name);
  4765. result->op = GGML_OP_RESHAPE;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src[0] = a;
  4768. return result;
  4769. }
  4770. struct ggml_tensor * ggml_reshape_2d(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. int64_t ne0,
  4774. int64_t ne1) {
  4775. GGML_ASSERT(ggml_is_contiguous(a));
  4776. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4777. bool is_node = false;
  4778. if (a->grad) {
  4779. is_node = true;
  4780. }
  4781. const int64_t ne[2] = { ne0, ne1 };
  4782. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4783. ggml_format_name(result, "%s (reshaped)", a->name);
  4784. result->op = GGML_OP_RESHAPE;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src[0] = a;
  4787. return result;
  4788. }
  4789. struct ggml_tensor * ggml_reshape_3d(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. int64_t ne0,
  4793. int64_t ne1,
  4794. int64_t ne2) {
  4795. GGML_ASSERT(ggml_is_contiguous(a));
  4796. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4797. bool is_node = false;
  4798. if (a->grad) {
  4799. is_node = true;
  4800. }
  4801. const int64_t ne[3] = { ne0, ne1, ne2 };
  4802. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4803. ggml_format_name(result, "%s (reshaped)", a->name);
  4804. result->op = GGML_OP_RESHAPE;
  4805. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4806. result->src[0] = a;
  4807. return result;
  4808. }
  4809. struct ggml_tensor * ggml_reshape_4d(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. int64_t ne0,
  4813. int64_t ne1,
  4814. int64_t ne2,
  4815. int64_t ne3) {
  4816. GGML_ASSERT(ggml_is_contiguous(a));
  4817. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4818. bool is_node = false;
  4819. if (a->grad) {
  4820. is_node = true;
  4821. }
  4822. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4823. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4824. ggml_format_name(result, "%s (reshaped)", a->name);
  4825. result->op = GGML_OP_RESHAPE;
  4826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4827. result->src[0] = a;
  4828. return result;
  4829. }
  4830. static struct ggml_tensor * ggml_view_impl(
  4831. struct ggml_context * ctx,
  4832. struct ggml_tensor * a,
  4833. int n_dims,
  4834. const int64_t * ne,
  4835. size_t offset) {
  4836. bool is_node = false;
  4837. if (a->grad) {
  4838. is_node = true;
  4839. }
  4840. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4841. ggml_format_name(result, "%s (view)", a->name);
  4842. ggml_set_op_params(result, &offset, sizeof(offset));
  4843. result->op = GGML_OP_VIEW;
  4844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4845. result->src[0] = a;
  4846. return result;
  4847. }
  4848. // ggml_view_1d
  4849. struct ggml_tensor * ggml_view_1d(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. int64_t ne0,
  4853. size_t offset) {
  4854. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4855. return result;
  4856. }
  4857. // ggml_view_2d
  4858. struct ggml_tensor * ggml_view_2d(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. int64_t ne0,
  4862. int64_t ne1,
  4863. size_t nb1,
  4864. size_t offset) {
  4865. const int64_t ne[2] = { ne0, ne1 };
  4866. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4867. result->nb[1] = nb1;
  4868. result->nb[2] = result->nb[1]*ne1;
  4869. result->nb[3] = result->nb[2];
  4870. return result;
  4871. }
  4872. // ggml_view_3d
  4873. struct ggml_tensor * ggml_view_3d(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. int64_t ne0,
  4877. int64_t ne1,
  4878. int64_t ne2,
  4879. size_t nb1,
  4880. size_t nb2,
  4881. size_t offset) {
  4882. const int64_t ne[3] = { ne0, ne1, ne2 };
  4883. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4884. result->nb[1] = nb1;
  4885. result->nb[2] = nb2;
  4886. result->nb[3] = result->nb[2]*ne2;
  4887. return result;
  4888. }
  4889. // ggml_view_4d
  4890. struct ggml_tensor * ggml_view_4d(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. int64_t ne0,
  4894. int64_t ne1,
  4895. int64_t ne2,
  4896. int64_t ne3,
  4897. size_t nb1,
  4898. size_t nb2,
  4899. size_t nb3,
  4900. size_t offset) {
  4901. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4902. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4903. result->nb[1] = nb1;
  4904. result->nb[2] = nb2;
  4905. result->nb[3] = nb3;
  4906. return result;
  4907. }
  4908. // ggml_permute
  4909. struct ggml_tensor * ggml_permute(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. int axis0,
  4913. int axis1,
  4914. int axis2,
  4915. int axis3) {
  4916. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4917. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4918. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4919. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4920. GGML_ASSERT(axis0 != axis1);
  4921. GGML_ASSERT(axis0 != axis2);
  4922. GGML_ASSERT(axis0 != axis3);
  4923. GGML_ASSERT(axis1 != axis2);
  4924. GGML_ASSERT(axis1 != axis3);
  4925. GGML_ASSERT(axis2 != axis3);
  4926. bool is_node = false;
  4927. if (a->grad) {
  4928. is_node = true;
  4929. }
  4930. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4931. ggml_format_name(result, "%s (permuted)", a->name);
  4932. int ne[GGML_MAX_DIMS];
  4933. int nb[GGML_MAX_DIMS];
  4934. ne[axis0] = a->ne[0];
  4935. ne[axis1] = a->ne[1];
  4936. ne[axis2] = a->ne[2];
  4937. ne[axis3] = a->ne[3];
  4938. nb[axis0] = a->nb[0];
  4939. nb[axis1] = a->nb[1];
  4940. nb[axis2] = a->nb[2];
  4941. nb[axis3] = a->nb[3];
  4942. result->ne[0] = ne[0];
  4943. result->ne[1] = ne[1];
  4944. result->ne[2] = ne[2];
  4945. result->ne[3] = ne[3];
  4946. result->nb[0] = nb[0];
  4947. result->nb[1] = nb[1];
  4948. result->nb[2] = nb[2];
  4949. result->nb[3] = nb[3];
  4950. result->op = GGML_OP_PERMUTE;
  4951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4952. result->src[0] = a;
  4953. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4954. ggml_set_op_params(result, params, sizeof(params));
  4955. return result;
  4956. }
  4957. // ggml_transpose
  4958. struct ggml_tensor * ggml_transpose(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a) {
  4961. bool is_node = false;
  4962. if (a->grad) {
  4963. is_node = true;
  4964. }
  4965. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4966. ggml_format_name(result, "%s (transposed)", a->name);
  4967. result->ne[0] = a->ne[1];
  4968. result->ne[1] = a->ne[0];
  4969. result->nb[0] = a->nb[1];
  4970. result->nb[1] = a->nb[0];
  4971. result->op = GGML_OP_TRANSPOSE;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src[0] = a;
  4974. return result;
  4975. }
  4976. // ggml_get_rows
  4977. struct ggml_tensor * ggml_get_rows(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a,
  4980. struct ggml_tensor * b) {
  4981. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4982. GGML_ASSERT(b->ne[3] == 1);
  4983. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4984. bool is_node = false;
  4985. if (a->grad || b->grad) {
  4986. is_node = true;
  4987. }
  4988. // TODO: implement non F32 return
  4989. enum ggml_type type = GGML_TYPE_F32;
  4990. if (a->type == GGML_TYPE_I32) {
  4991. type = a->type;
  4992. }
  4993. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4994. result->op = GGML_OP_GET_ROWS;
  4995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4996. result->src[0] = a;
  4997. result->src[1] = b;
  4998. return result;
  4999. }
  5000. // ggml_get_rows_back
  5001. struct ggml_tensor * ggml_get_rows_back(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b,
  5005. struct ggml_tensor * c) {
  5006. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5007. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5008. bool is_node = false;
  5009. if (a->grad || b->grad) {
  5010. is_node = true;
  5011. }
  5012. // TODO: implement non F32 return
  5013. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5014. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5015. result->op = GGML_OP_GET_ROWS_BACK;
  5016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5017. result->src[0] = a;
  5018. result->src[1] = b;
  5019. return result;
  5020. }
  5021. // ggml_diag
  5022. struct ggml_tensor * ggml_diag(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a) {
  5025. GGML_ASSERT(a->ne[1] == 1);
  5026. bool is_node = false;
  5027. if (a->grad) {
  5028. is_node = true;
  5029. }
  5030. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5031. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5032. result->op = GGML_OP_DIAG;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = a;
  5035. return result;
  5036. }
  5037. // ggml_diag_mask_inf
  5038. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. int n_past,
  5042. bool inplace) {
  5043. bool is_node = false;
  5044. if (a->grad) {
  5045. is_node = true;
  5046. }
  5047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5048. int32_t params[] = { n_past };
  5049. ggml_set_op_params(result, params, sizeof(params));
  5050. result->op = GGML_OP_DIAG_MASK_INF;
  5051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5052. result->src[0] = a;
  5053. return result;
  5054. }
  5055. struct ggml_tensor * ggml_diag_mask_inf(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. int n_past) {
  5059. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5060. }
  5061. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. int n_past) {
  5065. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5066. }
  5067. // ggml_diag_mask_zero
  5068. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. int n_past,
  5072. bool inplace) {
  5073. bool is_node = false;
  5074. if (a->grad) {
  5075. is_node = true;
  5076. }
  5077. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5078. int32_t params[] = { n_past };
  5079. ggml_set_op_params(result, params, sizeof(params));
  5080. result->op = GGML_OP_DIAG_MASK_ZERO;
  5081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5082. result->src[0] = a;
  5083. return result;
  5084. }
  5085. struct ggml_tensor * ggml_diag_mask_zero(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. int n_past) {
  5089. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5090. }
  5091. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5092. struct ggml_context * ctx,
  5093. struct ggml_tensor * a,
  5094. int n_past) {
  5095. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5096. }
  5097. // ggml_soft_max
  5098. static struct ggml_tensor * ggml_soft_max_impl(
  5099. struct ggml_context * ctx,
  5100. struct ggml_tensor * a,
  5101. struct ggml_tensor * mask,
  5102. float scale,
  5103. float max_bias,
  5104. bool inplace) {
  5105. GGML_ASSERT(ggml_is_contiguous(a));
  5106. if (mask) {
  5107. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5108. GGML_ASSERT(ggml_is_contiguous(mask));
  5109. GGML_ASSERT(ggml_is_matrix(mask));
  5110. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5111. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5112. }
  5113. if (max_bias > 0.0f) {
  5114. GGML_ASSERT(mask);
  5115. }
  5116. bool is_node = false;
  5117. if (a->grad) {
  5118. is_node = true;
  5119. }
  5120. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5121. float params[] = { scale, max_bias };
  5122. ggml_set_op_params(result, params, sizeof(params));
  5123. result->op = GGML_OP_SOFT_MAX;
  5124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5125. result->src[0] = a;
  5126. result->src[1] = mask;
  5127. return result;
  5128. }
  5129. struct ggml_tensor * ggml_soft_max(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a) {
  5132. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5133. }
  5134. struct ggml_tensor * ggml_soft_max_inplace(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a) {
  5137. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5138. }
  5139. struct ggml_tensor * ggml_soft_max_ext(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * mask,
  5143. float scale,
  5144. float max_bias) {
  5145. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5146. }
  5147. // ggml_soft_max_back
  5148. static struct ggml_tensor * ggml_soft_max_back_impl(
  5149. struct ggml_context * ctx,
  5150. struct ggml_tensor * a,
  5151. struct ggml_tensor * b,
  5152. bool inplace) {
  5153. bool is_node = false;
  5154. if (a->grad || b->grad) {
  5155. is_node = true; // TODO : implement backward pass
  5156. }
  5157. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5158. result->op = GGML_OP_SOFT_MAX_BACK;
  5159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5160. result->src[0] = a;
  5161. result->src[1] = b;
  5162. return result;
  5163. }
  5164. struct ggml_tensor * ggml_soft_max_back(
  5165. struct ggml_context * ctx,
  5166. struct ggml_tensor * a,
  5167. struct ggml_tensor * b) {
  5168. return ggml_soft_max_back_impl(ctx, a, b, false);
  5169. }
  5170. struct ggml_tensor * ggml_soft_max_back_inplace(
  5171. struct ggml_context * ctx,
  5172. struct ggml_tensor * a,
  5173. struct ggml_tensor * b) {
  5174. return ggml_soft_max_back_impl(ctx, a, b, true);
  5175. }
  5176. // ggml_rope
  5177. static struct ggml_tensor * ggml_rope_impl(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * a,
  5180. struct ggml_tensor * b,
  5181. struct ggml_tensor * c,
  5182. int n_dims,
  5183. int mode,
  5184. int n_ctx,
  5185. int n_orig_ctx,
  5186. float freq_base,
  5187. float freq_scale,
  5188. float ext_factor,
  5189. float attn_factor,
  5190. float beta_fast,
  5191. float beta_slow,
  5192. float xpos_base,
  5193. bool xpos_down,
  5194. bool inplace) {
  5195. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5196. GGML_ASSERT(ggml_is_vector(b));
  5197. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5198. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5199. if (c) {
  5200. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5201. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5202. }
  5203. bool is_node = false;
  5204. if (a->grad) {
  5205. is_node = true;
  5206. }
  5207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5208. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5209. memcpy(params + 5, &freq_base, sizeof(float));
  5210. memcpy(params + 6, &freq_scale, sizeof(float));
  5211. memcpy(params + 7, &ext_factor, sizeof(float));
  5212. memcpy(params + 8, &attn_factor, sizeof(float));
  5213. memcpy(params + 9, &beta_fast, sizeof(float));
  5214. memcpy(params + 10, &beta_slow, sizeof(float));
  5215. memcpy(params + 11, &xpos_base, sizeof(float));
  5216. memcpy(params + 12, &xpos_down, sizeof(bool));
  5217. ggml_set_op_params(result, params, sizeof(params));
  5218. result->op = GGML_OP_ROPE;
  5219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5220. result->src[0] = a;
  5221. result->src[1] = b;
  5222. result->src[2] = c;
  5223. return result;
  5224. }
  5225. struct ggml_tensor * ggml_rope(
  5226. struct ggml_context * ctx,
  5227. struct ggml_tensor * a,
  5228. struct ggml_tensor * b,
  5229. int n_dims,
  5230. int mode,
  5231. int n_ctx) {
  5232. return ggml_rope_impl(
  5233. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5234. );
  5235. }
  5236. struct ggml_tensor * ggml_rope_inplace(
  5237. struct ggml_context * ctx,
  5238. struct ggml_tensor * a,
  5239. struct ggml_tensor * b,
  5240. int n_dims,
  5241. int mode,
  5242. int n_ctx) {
  5243. return ggml_rope_impl(
  5244. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5245. );
  5246. }
  5247. struct ggml_tensor * ggml_rope_ext(
  5248. struct ggml_context * ctx,
  5249. struct ggml_tensor * a,
  5250. struct ggml_tensor * b,
  5251. struct ggml_tensor * c,
  5252. int n_dims,
  5253. int mode,
  5254. int n_ctx,
  5255. int n_orig_ctx,
  5256. float freq_base,
  5257. float freq_scale,
  5258. float ext_factor,
  5259. float attn_factor,
  5260. float beta_fast,
  5261. float beta_slow) {
  5262. return ggml_rope_impl(
  5263. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5264. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5265. );
  5266. }
  5267. struct ggml_tensor * ggml_rope_ext_inplace(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. struct ggml_tensor * b,
  5271. struct ggml_tensor * c,
  5272. int n_dims,
  5273. int mode,
  5274. int n_ctx,
  5275. int n_orig_ctx,
  5276. float freq_base,
  5277. float freq_scale,
  5278. float ext_factor,
  5279. float attn_factor,
  5280. float beta_fast,
  5281. float beta_slow) {
  5282. return ggml_rope_impl(
  5283. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5284. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5285. );
  5286. }
  5287. struct ggml_tensor * ggml_rope_custom(
  5288. struct ggml_context * ctx,
  5289. struct ggml_tensor * a,
  5290. struct ggml_tensor * b,
  5291. int n_dims,
  5292. int mode,
  5293. int n_ctx,
  5294. int n_orig_ctx,
  5295. float freq_base,
  5296. float freq_scale,
  5297. float ext_factor,
  5298. float attn_factor,
  5299. float beta_fast,
  5300. float beta_slow) {
  5301. return ggml_rope_impl(
  5302. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5303. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5304. );
  5305. }
  5306. struct ggml_tensor * ggml_rope_custom_inplace(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * a,
  5309. struct ggml_tensor * b,
  5310. int n_dims,
  5311. int mode,
  5312. int n_ctx,
  5313. int n_orig_ctx,
  5314. float freq_base,
  5315. float freq_scale,
  5316. float ext_factor,
  5317. float attn_factor,
  5318. float beta_fast,
  5319. float beta_slow) {
  5320. return ggml_rope_impl(
  5321. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5322. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5323. );
  5324. }
  5325. struct ggml_tensor * ggml_rope_xpos_inplace(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * a,
  5328. struct ggml_tensor * b,
  5329. int n_dims,
  5330. float base,
  5331. bool down) {
  5332. return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5333. }
  5334. // ggml_rope_back
  5335. struct ggml_tensor * ggml_rope_back(
  5336. struct ggml_context * ctx,
  5337. struct ggml_tensor * a,
  5338. struct ggml_tensor * b,
  5339. struct ggml_tensor * c,
  5340. int n_dims,
  5341. int mode,
  5342. int n_ctx,
  5343. int n_orig_ctx,
  5344. float freq_base,
  5345. float freq_scale,
  5346. float ext_factor,
  5347. float attn_factor,
  5348. float beta_fast,
  5349. float beta_slow,
  5350. float xpos_base,
  5351. bool xpos_down) {
  5352. GGML_ASSERT(ggml_is_vector(b));
  5353. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5354. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5355. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5356. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5357. bool is_node = false;
  5358. if (a->grad) {
  5359. is_node = false; // TODO: implement backward
  5360. }
  5361. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5362. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5363. memcpy(params + 5, &freq_base, sizeof(float));
  5364. memcpy(params + 6, &freq_scale, sizeof(float));
  5365. memcpy(params + 7, &ext_factor, sizeof(float));
  5366. memcpy(params + 8, &attn_factor, sizeof(float));
  5367. memcpy(params + 9, &beta_fast, sizeof(float));
  5368. memcpy(params + 10, &beta_slow, sizeof(float));
  5369. memcpy(params + 11, &xpos_base, sizeof(float));
  5370. memcpy(params + 12, &xpos_down, sizeof(bool));
  5371. ggml_set_op_params(result, params, sizeof(params));
  5372. result->op = GGML_OP_ROPE_BACK;
  5373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5374. result->src[0] = a;
  5375. result->src[1] = b;
  5376. return result;
  5377. }
  5378. // ggml_clamp
  5379. struct ggml_tensor * ggml_clamp(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. float min,
  5383. float max) {
  5384. bool is_node = false;
  5385. if (a->grad) {
  5386. GGML_ASSERT(false); // TODO: implement backward
  5387. is_node = true;
  5388. }
  5389. // TODO: when implement backward, fix this:
  5390. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5391. float params[] = { min, max };
  5392. ggml_set_op_params(result, params, sizeof(params));
  5393. result->op = GGML_OP_CLAMP;
  5394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5395. result->src[0] = a;
  5396. return result;
  5397. }
  5398. // ggml_conv_1d
  5399. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5400. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5401. }
  5402. GGML_API struct ggml_tensor * ggml_conv_1d(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. struct ggml_tensor * b,
  5406. int s0,
  5407. int p0,
  5408. int d0) {
  5409. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5410. struct ggml_tensor * result =
  5411. ggml_mul_mat(ctx,
  5412. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5413. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5414. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5415. return result;
  5416. }
  5417. // ggml_conv_1d_ph
  5418. struct ggml_tensor* ggml_conv_1d_ph(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * a,
  5421. struct ggml_tensor * b,
  5422. int s,
  5423. int d) {
  5424. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5425. }
  5426. // ggml_conv_transpose_1d
  5427. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5428. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5429. }
  5430. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. struct ggml_tensor * b,
  5434. int s0,
  5435. int p0,
  5436. int d0) {
  5437. GGML_ASSERT(ggml_is_matrix(b));
  5438. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5439. GGML_ASSERT(a->ne[3] == 1);
  5440. GGML_ASSERT(p0 == 0);
  5441. GGML_ASSERT(d0 == 1);
  5442. bool is_node = false;
  5443. if (a->grad || b->grad) {
  5444. GGML_ASSERT(false); // TODO: implement backward
  5445. is_node = true;
  5446. }
  5447. const int64_t ne[4] = {
  5448. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5449. a->ne[1], b->ne[2], 1,
  5450. };
  5451. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5452. int32_t params[] = { s0, p0, d0 };
  5453. ggml_set_op_params(result, params, sizeof(params));
  5454. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5456. result->src[0] = a;
  5457. result->src[1] = b;
  5458. return result;
  5459. }
  5460. // ggml_conv_depthwise
  5461. struct ggml_tensor * ggml_conv_depthwise_2d(
  5462. struct ggml_context * ctx,
  5463. struct ggml_tensor * a,
  5464. struct ggml_tensor * b,
  5465. int s0,
  5466. int s1,
  5467. int p0,
  5468. int p1,
  5469. int d0,
  5470. int d1) {
  5471. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5472. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5473. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5474. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5475. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5476. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5477. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5478. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5479. return result;
  5480. }
  5481. // ggml_conv_2d
  5482. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5483. // a: [OC,IC, KH, KW]
  5484. // b: [N, IC, IH, IW]
  5485. // result: [N, OH, OW, IC*KH*KW]
  5486. struct ggml_tensor * ggml_im2col(
  5487. struct ggml_context * ctx,
  5488. struct ggml_tensor * a,
  5489. struct ggml_tensor * b,
  5490. int s0,
  5491. int s1,
  5492. int p0,
  5493. int p1,
  5494. int d0,
  5495. int d1,
  5496. bool is_2D,
  5497. enum ggml_type dst_type) {
  5498. if(is_2D) {
  5499. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5500. } else {
  5501. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5502. }
  5503. bool is_node = false;
  5504. if (a->grad || b->grad) {
  5505. GGML_ASSERT(false); // TODO: implement backward
  5506. is_node = true;
  5507. }
  5508. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5509. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5510. const int64_t ne[4] = {
  5511. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5512. OW,
  5513. is_2D ? OH : b->ne[2],
  5514. is_2D ? b->ne[3] : 1,
  5515. };
  5516. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5517. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5518. ggml_set_op_params(result, params, sizeof(params));
  5519. result->op = GGML_OP_IM2COL;
  5520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5521. result->src[0] = a;
  5522. result->src[1] = b;
  5523. return result;
  5524. }
  5525. // a: [OC,IC, KH, KW]
  5526. // b: [N, IC, IH, IW]
  5527. // result: [N, OC, OH, OW]
  5528. struct ggml_tensor * ggml_conv_2d(
  5529. struct ggml_context * ctx,
  5530. struct ggml_tensor * a,
  5531. struct ggml_tensor * b,
  5532. int s0,
  5533. int s1,
  5534. int p0,
  5535. int p1,
  5536. int d0,
  5537. int d1) {
  5538. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5539. struct ggml_tensor * result =
  5540. ggml_mul_mat(ctx,
  5541. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5542. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5543. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5544. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5545. return result;
  5546. }
  5547. // ggml_conv_2d_sk_p0
  5548. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5549. struct ggml_context * ctx,
  5550. struct ggml_tensor * a,
  5551. struct ggml_tensor * b) {
  5552. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5553. }
  5554. // ggml_conv_2d_s1_ph
  5555. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. struct ggml_tensor * b) {
  5559. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5560. }
  5561. // ggml_conv_transpose_2d_p0
  5562. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5563. return (ins - 1) * s - 2 * p + ks;
  5564. }
  5565. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. struct ggml_tensor * b,
  5569. int stride) {
  5570. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5571. bool is_node = false;
  5572. if (a->grad || b->grad) {
  5573. GGML_ASSERT(false); // TODO: implement backward
  5574. is_node = true;
  5575. }
  5576. const int64_t ne[4] = {
  5577. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5578. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5579. a->ne[2], b->ne[3],
  5580. };
  5581. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5582. ggml_set_op_params_i32(result, 0, stride);
  5583. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5585. result->src[0] = a;
  5586. result->src[1] = b;
  5587. return result;
  5588. }
  5589. // ggml_pool_*
  5590. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5591. return (ins + 2 * p - ks) / s + 1;
  5592. }
  5593. // ggml_pool_1d
  5594. struct ggml_tensor * ggml_pool_1d(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. enum ggml_op_pool op,
  5598. int k0,
  5599. int s0,
  5600. int p0) {
  5601. bool is_node = false;
  5602. if (a->grad) {
  5603. GGML_ASSERT(false); // TODO: implement backward
  5604. is_node = true;
  5605. }
  5606. const int64_t ne[4] = {
  5607. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5608. a->ne[1],
  5609. a->ne[2],
  5610. a->ne[3],
  5611. };
  5612. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5613. int32_t params[] = { op, k0, s0, p0 };
  5614. ggml_set_op_params(result, params, sizeof(params));
  5615. result->op = GGML_OP_POOL_1D;
  5616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5617. result->src[0] = a;
  5618. return result;
  5619. }
  5620. // ggml_pool_2d
  5621. struct ggml_tensor * ggml_pool_2d(
  5622. struct ggml_context * ctx,
  5623. struct ggml_tensor * a,
  5624. enum ggml_op_pool op,
  5625. int k0,
  5626. int k1,
  5627. int s0,
  5628. int s1,
  5629. float p0,
  5630. float p1) {
  5631. bool is_node = false;
  5632. if (a->grad) {
  5633. GGML_ASSERT(false); // TODO: implement backward
  5634. is_node = true;
  5635. }
  5636. struct ggml_tensor * result;
  5637. const int64_t ne[3] = {
  5638. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5639. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5640. a->ne[2],
  5641. };
  5642. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5643. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5644. ggml_set_op_params(result, params, sizeof(params));
  5645. result->op = GGML_OP_POOL_2D;
  5646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5647. result->src[0] = a;
  5648. return result;
  5649. }
  5650. // ggml_upscale
  5651. static struct ggml_tensor * ggml_upscale_impl(
  5652. struct ggml_context * ctx,
  5653. struct ggml_tensor * a,
  5654. int ne0,
  5655. int ne1,
  5656. int ne2,
  5657. int ne3) {
  5658. bool is_node = false;
  5659. if (a->grad) {
  5660. GGML_ASSERT(false); // TODO: implement backward
  5661. is_node = true;
  5662. }
  5663. GGML_ASSERT(a->ne[0] <= ne0);
  5664. GGML_ASSERT(a->ne[1] <= ne1);
  5665. GGML_ASSERT(a->ne[2] <= ne2);
  5666. GGML_ASSERT(a->ne[3] <= ne3);
  5667. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5668. ne0,
  5669. ne1,
  5670. ne2,
  5671. ne3
  5672. );
  5673. result->op = GGML_OP_UPSCALE;
  5674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5675. result->src[0] = a;
  5676. return result;
  5677. }
  5678. struct ggml_tensor * ggml_upscale(
  5679. struct ggml_context * ctx,
  5680. struct ggml_tensor * a,
  5681. int scale_factor) {
  5682. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5683. }
  5684. struct ggml_tensor * ggml_upscale_ext(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. int ne0,
  5688. int ne1,
  5689. int ne2,
  5690. int ne3) {
  5691. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5692. }
  5693. // ggml_pad
  5694. struct ggml_tensor * ggml_pad(
  5695. struct ggml_context * ctx,
  5696. struct ggml_tensor * a,
  5697. int p0, int p1, int p2, int p3) {
  5698. bool is_node = false;
  5699. if (a->grad) {
  5700. GGML_ASSERT(false); // TODO: implement backward
  5701. is_node = true;
  5702. }
  5703. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5704. a->ne[0] + p0,
  5705. a->ne[1] + p1,
  5706. a->ne[2] + p2,
  5707. a->ne[3] + p3);
  5708. result->op = GGML_OP_PAD;
  5709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5710. result->src[0] = a;
  5711. return result;
  5712. }
  5713. // ggml_arange
  5714. struct ggml_tensor * ggml_arange(
  5715. struct ggml_context * ctx,
  5716. float start,
  5717. float stop,
  5718. float step) {
  5719. GGML_ASSERT(stop > start);
  5720. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5721. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5722. result->op = GGML_OP_ARANGE;
  5723. ggml_set_op_params_f32(result, 0, start);
  5724. ggml_set_op_params_f32(result, 1, stop);
  5725. ggml_set_op_params_f32(result, 2, step);
  5726. return result;
  5727. }
  5728. // ggml_timestep_embedding
  5729. struct ggml_tensor * ggml_timestep_embedding(
  5730. struct ggml_context * ctx,
  5731. struct ggml_tensor * timesteps,
  5732. int dim,
  5733. int max_period) {
  5734. bool is_node = false;
  5735. if (timesteps->grad) {
  5736. GGML_ASSERT(false); // TODO: implement backward
  5737. is_node = true;
  5738. }
  5739. int actual_dim = dim;
  5740. if (dim % 2 != 0) {
  5741. actual_dim = dim + 1;
  5742. }
  5743. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5744. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5745. ggml_set_op_params_i32(result, 0, dim);
  5746. ggml_set_op_params_i32(result, 1, max_period);
  5747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5748. result->src[0] = timesteps;
  5749. return result;
  5750. }
  5751. // ggml_argsort
  5752. struct ggml_tensor * ggml_argsort(
  5753. struct ggml_context * ctx,
  5754. struct ggml_tensor * a,
  5755. enum ggml_sort_order order) {
  5756. bool is_node = false;
  5757. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5758. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5759. result->op = GGML_OP_ARGSORT;
  5760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5761. result->src[0] = a;
  5762. return result;
  5763. }
  5764. // ggml_top_k
  5765. struct ggml_tensor * ggml_top_k(
  5766. struct ggml_context * ctx,
  5767. struct ggml_tensor * a,
  5768. int k) {
  5769. GGML_ASSERT(a->ne[0] >= k);
  5770. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5771. result = ggml_view_4d(ctx, result,
  5772. k, result->ne[1], result->ne[2], result->ne[3],
  5773. result->nb[1], result->nb[2], result->nb[3],
  5774. 0);
  5775. return result;
  5776. }
  5777. // ggml_flash_attn_ext
  5778. struct ggml_tensor * ggml_flash_attn_ext(
  5779. struct ggml_context * ctx,
  5780. struct ggml_tensor * q,
  5781. struct ggml_tensor * k,
  5782. struct ggml_tensor * v,
  5783. struct ggml_tensor * mask,
  5784. float scale,
  5785. float max_bias) {
  5786. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5787. // TODO: check if vT can be multiplied by (k*qT)
  5788. if (mask) {
  5789. GGML_ASSERT(ggml_is_contiguous(mask));
  5790. GGML_ASSERT(mask->ne[2] == 1);
  5791. GGML_ASSERT(mask->ne[3] == 1);
  5792. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5793. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5794. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5795. }
  5796. if (max_bias > 0.0f) {
  5797. GGML_ASSERT(mask);
  5798. }
  5799. bool is_node = false;
  5800. if (q->grad || k->grad || v->grad) {
  5801. is_node = true;
  5802. }
  5803. // permute(0, 2, 1, 3)
  5804. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5805. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5806. float params[] = { scale, max_bias };
  5807. ggml_set_op_params(result, params, sizeof(params));
  5808. result->op = GGML_OP_FLASH_ATTN_EXT;
  5809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5810. result->src[0] = q;
  5811. result->src[1] = k;
  5812. result->src[2] = v;
  5813. result->src[3] = mask;
  5814. return result;
  5815. }
  5816. void ggml_flash_attn_ext_set_prec(
  5817. struct ggml_tensor * a,
  5818. enum ggml_prec prec) {
  5819. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5820. const int32_t prec_i32 = (int32_t) prec;
  5821. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5822. }
  5823. // ggml_flash_attn_back
  5824. struct ggml_tensor * ggml_flash_attn_back(
  5825. struct ggml_context * ctx,
  5826. struct ggml_tensor * q,
  5827. struct ggml_tensor * k,
  5828. struct ggml_tensor * v,
  5829. struct ggml_tensor * d,
  5830. bool masked) {
  5831. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5832. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5833. // TODO: check if vT can be multiplied by (k*qT)
  5834. // d shape [D,N,ne2,ne3]
  5835. // q shape [D,N,ne2,ne3]
  5836. // k shape [D,M,kvne2,ne3]
  5837. // v shape [M,D,kvne2,ne3]
  5838. const int64_t D = q->ne[0];
  5839. const int64_t N = q->ne[1];
  5840. const int64_t M = k->ne[1];
  5841. const int64_t ne2 = q->ne[2];
  5842. const int64_t ne3 = q->ne[3];
  5843. const int64_t kvne2 = k->ne[2];
  5844. GGML_ASSERT(k->ne[0] == D);
  5845. GGML_ASSERT(v->ne[0] == M);
  5846. GGML_ASSERT(v->ne[1] == D);
  5847. GGML_ASSERT(d->ne[0] == D);
  5848. GGML_ASSERT(d->ne[1] == N);
  5849. GGML_ASSERT(k->ne[2] == kvne2);
  5850. GGML_ASSERT(k->ne[3] == ne3);
  5851. GGML_ASSERT(v->ne[2] == kvne2);
  5852. GGML_ASSERT(v->ne[3] == ne3);
  5853. GGML_ASSERT(d->ne[2] == ne2);
  5854. GGML_ASSERT(d->ne[3] == ne3);
  5855. GGML_ASSERT(ne2 % kvne2 == 0);
  5856. bool is_node = false;
  5857. if (q->grad || k->grad || v->grad) {
  5858. // when using this operation (in backwards pass) these grads are set.
  5859. // we don't want to create (big) grad of our result, so is_node is false.
  5860. is_node = false;
  5861. }
  5862. // store gradients of q, k and v as continuous tensors concatenated in result.
  5863. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5864. const int64_t elem_q = ggml_nelements(q);
  5865. const int64_t elem_k = ggml_nelements(k);
  5866. const int64_t elem_v = ggml_nelements(v);
  5867. enum ggml_type result_type = GGML_TYPE_F32;
  5868. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5869. const size_t tsize = ggml_type_size(result_type);
  5870. const size_t offs_q = 0;
  5871. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5872. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5873. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5874. const size_t nelements = (end + tsize - 1)/tsize;
  5875. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5876. int32_t masked_i = masked ? 1 : 0;
  5877. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5878. result->op = GGML_OP_FLASH_ATTN_BACK;
  5879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5880. result->src[0] = q;
  5881. result->src[1] = k;
  5882. result->src[2] = v;
  5883. result->src[3] = d;
  5884. return result;
  5885. }
  5886. // ggml_ssm_conv
  5887. struct ggml_tensor * ggml_ssm_conv(
  5888. struct ggml_context * ctx,
  5889. struct ggml_tensor * s,
  5890. struct ggml_tensor * x,
  5891. struct ggml_tensor * c,
  5892. struct ggml_tensor * sq) {
  5893. GGML_ASSERT(ggml_is_3d(s));
  5894. GGML_ASSERT(ggml_is_matrix(x));
  5895. GGML_ASSERT(ggml_is_matrix(c));
  5896. GGML_ASSERT(ggml_is_matrix(sq));
  5897. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5898. const int64_t d_conv = c->ne[0];
  5899. const int64_t d_inner = c->ne[1];
  5900. const int64_t n_tokens = x->ne[1];
  5901. const int64_t n_kv = s->ne[2];
  5902. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5903. GGML_ASSERT( s->ne[1] == d_inner);
  5904. GGML_ASSERT( x->ne[0] == d_inner);
  5905. GGML_ASSERT(sq->ne[0] == n_kv);
  5906. GGML_ASSERT(sq->ne[1] == n_tokens);
  5907. bool is_node = false;
  5908. if (s->grad || x->grad || c->grad || sq->grad) {
  5909. GGML_ASSERT(false); // TODO: implement
  5910. is_node = true;
  5911. }
  5912. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5913. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5914. result->op = GGML_OP_SSM_CONV;
  5915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5916. result->src[0] = s;
  5917. result->src[1] = x;
  5918. result->src[2] = c;
  5919. result->src[3] = sq;
  5920. return result;
  5921. }
  5922. // ggml_ssm_scan
  5923. struct ggml_tensor * ggml_ssm_scan(
  5924. struct ggml_context * ctx,
  5925. struct ggml_tensor * s,
  5926. struct ggml_tensor * x,
  5927. struct ggml_tensor * dt,
  5928. struct ggml_tensor * A,
  5929. struct ggml_tensor * B,
  5930. struct ggml_tensor * C,
  5931. struct ggml_tensor * sq) {
  5932. GGML_ASSERT(ggml_is_contiguous(s));
  5933. GGML_ASSERT(ggml_is_contiguous(x));
  5934. GGML_ASSERT(ggml_is_contiguous(dt));
  5935. GGML_ASSERT(ggml_is_contiguous(A));
  5936. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5937. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5938. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5939. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5940. {
  5941. const int64_t d_state = s->ne[0];
  5942. const int64_t d_inner = s->ne[1];
  5943. const int64_t n_tokens = x->ne[1];
  5944. GGML_ASSERT(x->ne[0] == d_inner);
  5945. GGML_ASSERT(A->ne[0] == d_state);
  5946. GGML_ASSERT(A->ne[1] == d_inner);
  5947. GGML_ASSERT(B->ne[0] == d_state);
  5948. GGML_ASSERT(B->ne[1] == n_tokens);
  5949. GGML_ASSERT(C->ne[0] == d_state);
  5950. GGML_ASSERT(C->ne[1] == n_tokens);
  5951. }
  5952. bool is_node = false;
  5953. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5954. GGML_ASSERT(false); // TODO: implement
  5955. is_node = true;
  5956. }
  5957. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5958. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5959. result->op = GGML_OP_SSM_SCAN;
  5960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5961. result->src[0] = s;
  5962. result->src[1] = x;
  5963. result->src[2] = dt;
  5964. result->src[3] = A;
  5965. result->src[4] = B;
  5966. result->src[5] = C;
  5967. result->src[6] = sq;
  5968. return result;
  5969. }
  5970. // ggml_win_part
  5971. struct ggml_tensor * ggml_win_part(
  5972. struct ggml_context * ctx,
  5973. struct ggml_tensor * a,
  5974. int w) {
  5975. GGML_ASSERT(a->ne[3] == 1);
  5976. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5977. bool is_node = false;
  5978. if (a->grad) {
  5979. GGML_ASSERT(false); // TODO: implement backward
  5980. is_node = true;
  5981. }
  5982. // padding
  5983. const int px = (w - a->ne[1]%w)%w;
  5984. const int py = (w - a->ne[2]%w)%w;
  5985. const int npx = (px + a->ne[1])/w;
  5986. const int npy = (py + a->ne[2])/w;
  5987. const int np = npx*npy;
  5988. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5989. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5990. int32_t params[] = { npx, npy, w };
  5991. ggml_set_op_params(result, params, sizeof(params));
  5992. result->op = GGML_OP_WIN_PART;
  5993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5994. result->src[0] = a;
  5995. return result;
  5996. }
  5997. // ggml_win_unpart
  5998. struct ggml_tensor * ggml_win_unpart(
  5999. struct ggml_context * ctx,
  6000. struct ggml_tensor * a,
  6001. int w0,
  6002. int h0,
  6003. int w) {
  6004. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6005. bool is_node = false;
  6006. if (a->grad) {
  6007. GGML_ASSERT(false); // TODO: implement backward
  6008. is_node = true;
  6009. }
  6010. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6011. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6012. int32_t params[] = { w };
  6013. ggml_set_op_params(result, params, sizeof(params));
  6014. result->op = GGML_OP_WIN_UNPART;
  6015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6016. result->src[0] = a;
  6017. return result;
  6018. }
  6019. // ggml_get_rel_pos
  6020. struct ggml_tensor * ggml_get_rel_pos(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * a,
  6023. int qh,
  6024. int kh) {
  6025. GGML_ASSERT(qh == kh);
  6026. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6027. bool is_node = false;
  6028. if (a->grad) {
  6029. GGML_ASSERT(false); // TODO: implement backward
  6030. is_node = true;
  6031. }
  6032. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6033. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6034. result->op = GGML_OP_GET_REL_POS;
  6035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6036. result->src[0] = a;
  6037. return result;
  6038. }
  6039. // ggml_add_rel_pos
  6040. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6041. struct ggml_context * ctx,
  6042. struct ggml_tensor * a,
  6043. struct ggml_tensor * pw,
  6044. struct ggml_tensor * ph,
  6045. bool inplace) {
  6046. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6047. GGML_ASSERT(ggml_is_contiguous(a));
  6048. GGML_ASSERT(ggml_is_contiguous(pw));
  6049. GGML_ASSERT(ggml_is_contiguous(ph));
  6050. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6051. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6052. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6053. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6054. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6055. bool is_node = false;
  6056. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6057. is_node = true;
  6058. }
  6059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6060. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6061. result->op = GGML_OP_ADD_REL_POS;
  6062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6063. result->src[0] = a;
  6064. result->src[1] = pw;
  6065. result->src[2] = ph;
  6066. return result;
  6067. }
  6068. struct ggml_tensor * ggml_add_rel_pos(
  6069. struct ggml_context * ctx,
  6070. struct ggml_tensor * a,
  6071. struct ggml_tensor * pw,
  6072. struct ggml_tensor * ph) {
  6073. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6074. }
  6075. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6076. struct ggml_context * ctx,
  6077. struct ggml_tensor * a,
  6078. struct ggml_tensor * pw,
  6079. struct ggml_tensor * ph) {
  6080. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6081. }
  6082. // gmml_unary
  6083. static struct ggml_tensor * ggml_unary_impl(
  6084. struct ggml_context * ctx,
  6085. struct ggml_tensor * a,
  6086. enum ggml_unary_op op,
  6087. bool inplace) {
  6088. bool is_node = false;
  6089. if (!inplace && (a->grad)) {
  6090. is_node = true;
  6091. }
  6092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6093. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6094. result->op = GGML_OP_UNARY;
  6095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6096. result->src[0] = a;
  6097. return result;
  6098. }
  6099. struct ggml_tensor * ggml_unary(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. enum ggml_unary_op op) {
  6103. return ggml_unary_impl(ctx, a, op, false);
  6104. }
  6105. struct ggml_tensor * ggml_unary_inplace(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. enum ggml_unary_op op) {
  6109. return ggml_unary_impl(ctx, a, op, true);
  6110. }
  6111. // ggml_map_unary
  6112. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6113. struct ggml_context * ctx,
  6114. struct ggml_tensor * a,
  6115. const ggml_unary_op_f32_t fun,
  6116. bool inplace) {
  6117. bool is_node = false;
  6118. if (!inplace && a->grad) {
  6119. is_node = true;
  6120. }
  6121. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6122. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6123. result->op = GGML_OP_MAP_UNARY;
  6124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6125. result->src[0] = a;
  6126. return result;
  6127. }
  6128. struct ggml_tensor * ggml_map_unary_f32(
  6129. struct ggml_context * ctx,
  6130. struct ggml_tensor * a,
  6131. const ggml_unary_op_f32_t fun) {
  6132. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6133. }
  6134. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. const ggml_unary_op_f32_t fun) {
  6138. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6139. }
  6140. // ggml_map_binary
  6141. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. struct ggml_tensor * b,
  6145. const ggml_binary_op_f32_t fun,
  6146. bool inplace) {
  6147. GGML_ASSERT(ggml_are_same_shape(a, b));
  6148. bool is_node = false;
  6149. if (!inplace && (a->grad || b->grad)) {
  6150. is_node = true;
  6151. }
  6152. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6153. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6154. result->op = GGML_OP_MAP_BINARY;
  6155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6156. result->src[0] = a;
  6157. result->src[1] = b;
  6158. return result;
  6159. }
  6160. struct ggml_tensor * ggml_map_binary_f32(
  6161. struct ggml_context * ctx,
  6162. struct ggml_tensor * a,
  6163. struct ggml_tensor * b,
  6164. const ggml_binary_op_f32_t fun) {
  6165. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6166. }
  6167. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6168. struct ggml_context * ctx,
  6169. struct ggml_tensor * a,
  6170. struct ggml_tensor * b,
  6171. const ggml_binary_op_f32_t fun) {
  6172. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6173. }
  6174. // ggml_map_custom1_f32
  6175. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6176. struct ggml_context * ctx,
  6177. struct ggml_tensor * a,
  6178. const ggml_custom1_op_f32_t fun,
  6179. bool inplace) {
  6180. bool is_node = false;
  6181. if (!inplace && a->grad) {
  6182. is_node = true;
  6183. }
  6184. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6185. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6186. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6188. result->src[0] = a;
  6189. return result;
  6190. }
  6191. struct ggml_tensor * ggml_map_custom1_f32(
  6192. struct ggml_context * ctx,
  6193. struct ggml_tensor * a,
  6194. const ggml_custom1_op_f32_t fun) {
  6195. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6196. }
  6197. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6198. struct ggml_context * ctx,
  6199. struct ggml_tensor * a,
  6200. const ggml_custom1_op_f32_t fun) {
  6201. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6202. }
  6203. // ggml_map_custom2_f32
  6204. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6205. struct ggml_context * ctx,
  6206. struct ggml_tensor * a,
  6207. struct ggml_tensor * b,
  6208. const ggml_custom2_op_f32_t fun,
  6209. bool inplace) {
  6210. bool is_node = false;
  6211. if (!inplace && (a->grad || b->grad)) {
  6212. is_node = true;
  6213. }
  6214. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6215. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6216. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6218. result->src[0] = a;
  6219. result->src[1] = b;
  6220. return result;
  6221. }
  6222. struct ggml_tensor * ggml_map_custom2_f32(
  6223. struct ggml_context * ctx,
  6224. struct ggml_tensor * a,
  6225. struct ggml_tensor * b,
  6226. const ggml_custom2_op_f32_t fun) {
  6227. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6228. }
  6229. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6230. struct ggml_context * ctx,
  6231. struct ggml_tensor * a,
  6232. struct ggml_tensor * b,
  6233. const ggml_custom2_op_f32_t fun) {
  6234. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6235. }
  6236. // ggml_map_custom3_f32
  6237. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6238. struct ggml_context * ctx,
  6239. struct ggml_tensor * a,
  6240. struct ggml_tensor * b,
  6241. struct ggml_tensor * c,
  6242. const ggml_custom3_op_f32_t fun,
  6243. bool inplace) {
  6244. bool is_node = false;
  6245. if (!inplace && (a->grad || b->grad || c->grad)) {
  6246. is_node = true;
  6247. }
  6248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6249. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6250. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6252. result->src[0] = a;
  6253. result->src[1] = b;
  6254. result->src[2] = c;
  6255. return result;
  6256. }
  6257. struct ggml_tensor * ggml_map_custom3_f32(
  6258. struct ggml_context * ctx,
  6259. struct ggml_tensor * a,
  6260. struct ggml_tensor * b,
  6261. struct ggml_tensor * c,
  6262. const ggml_custom3_op_f32_t fun) {
  6263. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6264. }
  6265. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6266. struct ggml_context * ctx,
  6267. struct ggml_tensor * a,
  6268. struct ggml_tensor * b,
  6269. struct ggml_tensor * c,
  6270. const ggml_custom3_op_f32_t fun) {
  6271. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6272. }
  6273. // ggml_map_custom1
  6274. struct ggml_map_custom1_op_params {
  6275. ggml_custom1_op_t fun;
  6276. int n_tasks;
  6277. void * userdata;
  6278. };
  6279. static struct ggml_tensor * ggml_map_custom1_impl(
  6280. struct ggml_context * ctx,
  6281. struct ggml_tensor * a,
  6282. const ggml_custom1_op_t fun,
  6283. int n_tasks,
  6284. void * userdata,
  6285. bool inplace) {
  6286. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6287. bool is_node = false;
  6288. if (!inplace && a->grad) {
  6289. is_node = true;
  6290. }
  6291. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6292. struct ggml_map_custom1_op_params params = {
  6293. /*.fun =*/ fun,
  6294. /*.n_tasks =*/ n_tasks,
  6295. /*.userdata =*/ userdata
  6296. };
  6297. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6298. result->op = GGML_OP_MAP_CUSTOM1;
  6299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6300. result->src[0] = a;
  6301. return result;
  6302. }
  6303. struct ggml_tensor * ggml_map_custom1(
  6304. struct ggml_context * ctx,
  6305. struct ggml_tensor * a,
  6306. const ggml_custom1_op_t fun,
  6307. int n_tasks,
  6308. void * userdata) {
  6309. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6310. }
  6311. struct ggml_tensor * ggml_map_custom1_inplace(
  6312. struct ggml_context * ctx,
  6313. struct ggml_tensor * a,
  6314. const ggml_custom1_op_t fun,
  6315. int n_tasks,
  6316. void * userdata) {
  6317. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6318. }
  6319. // ggml_map_custom2
  6320. struct ggml_map_custom2_op_params {
  6321. ggml_custom2_op_t fun;
  6322. int n_tasks;
  6323. void * userdata;
  6324. };
  6325. static struct ggml_tensor * ggml_map_custom2_impl(
  6326. struct ggml_context * ctx,
  6327. struct ggml_tensor * a,
  6328. struct ggml_tensor * b,
  6329. const ggml_custom2_op_t fun,
  6330. int n_tasks,
  6331. void * userdata,
  6332. bool inplace) {
  6333. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6334. bool is_node = false;
  6335. if (!inplace && (a->grad || b->grad)) {
  6336. is_node = true;
  6337. }
  6338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6339. struct ggml_map_custom2_op_params params = {
  6340. /*.fun =*/ fun,
  6341. /*.n_tasks =*/ n_tasks,
  6342. /*.userdata =*/ userdata
  6343. };
  6344. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6345. result->op = GGML_OP_MAP_CUSTOM2;
  6346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6347. result->src[0] = a;
  6348. result->src[1] = b;
  6349. return result;
  6350. }
  6351. struct ggml_tensor * ggml_map_custom2(
  6352. struct ggml_context * ctx,
  6353. struct ggml_tensor * a,
  6354. struct ggml_tensor * b,
  6355. const ggml_custom2_op_t fun,
  6356. int n_tasks,
  6357. void * userdata) {
  6358. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6359. }
  6360. struct ggml_tensor * ggml_map_custom2_inplace(
  6361. struct ggml_context * ctx,
  6362. struct ggml_tensor * a,
  6363. struct ggml_tensor * b,
  6364. const ggml_custom2_op_t fun,
  6365. int n_tasks,
  6366. void * userdata) {
  6367. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6368. }
  6369. // ggml_map_custom3
  6370. struct ggml_map_custom3_op_params {
  6371. ggml_custom3_op_t fun;
  6372. int n_tasks;
  6373. void * userdata;
  6374. };
  6375. static struct ggml_tensor * ggml_map_custom3_impl(
  6376. struct ggml_context * ctx,
  6377. struct ggml_tensor * a,
  6378. struct ggml_tensor * b,
  6379. struct ggml_tensor * c,
  6380. const ggml_custom3_op_t fun,
  6381. int n_tasks,
  6382. void * userdata,
  6383. bool inplace) {
  6384. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6385. bool is_node = false;
  6386. if (!inplace && (a->grad || b->grad || c->grad)) {
  6387. is_node = true;
  6388. }
  6389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6390. struct ggml_map_custom3_op_params params = {
  6391. /*.fun =*/ fun,
  6392. /*.n_tasks =*/ n_tasks,
  6393. /*.userdata =*/ userdata
  6394. };
  6395. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6396. result->op = GGML_OP_MAP_CUSTOM3;
  6397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6398. result->src[0] = a;
  6399. result->src[1] = b;
  6400. result->src[2] = c;
  6401. return result;
  6402. }
  6403. struct ggml_tensor * ggml_map_custom3(
  6404. struct ggml_context * ctx,
  6405. struct ggml_tensor * a,
  6406. struct ggml_tensor * b,
  6407. struct ggml_tensor * c,
  6408. const ggml_custom3_op_t fun,
  6409. int n_tasks,
  6410. void * userdata) {
  6411. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6412. }
  6413. struct ggml_tensor * ggml_map_custom3_inplace(
  6414. struct ggml_context * ctx,
  6415. struct ggml_tensor * a,
  6416. struct ggml_tensor * b,
  6417. struct ggml_tensor * c,
  6418. const ggml_custom3_op_t fun,
  6419. int n_tasks,
  6420. void * userdata) {
  6421. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6422. }
  6423. // ggml_cross_entropy_loss
  6424. struct ggml_tensor * ggml_cross_entropy_loss(
  6425. struct ggml_context * ctx,
  6426. struct ggml_tensor * a,
  6427. struct ggml_tensor * b) {
  6428. GGML_ASSERT(ggml_are_same_shape(a, b));
  6429. bool is_node = false;
  6430. if (a->grad || b->grad) {
  6431. is_node = true;
  6432. }
  6433. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6434. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6436. result->src[0] = a;
  6437. result->src[1] = b;
  6438. return result;
  6439. }
  6440. // ggml_cross_entropy_loss_back
  6441. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6442. struct ggml_context * ctx,
  6443. struct ggml_tensor * a,
  6444. struct ggml_tensor * b,
  6445. struct ggml_tensor * c) {
  6446. GGML_ASSERT(ggml_are_same_shape(a, b));
  6447. GGML_ASSERT(ggml_is_scalar(c));
  6448. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6449. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6450. result->grad = NULL;
  6451. result->src[0] = a;
  6452. result->src[1] = b;
  6453. result->src[2] = c;
  6454. return result;
  6455. }
  6456. ////////////////////////////////////////////////////////////////////////////////
  6457. void ggml_set_param(
  6458. struct ggml_context * ctx,
  6459. struct ggml_tensor * tensor) {
  6460. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6461. GGML_ASSERT(tensor->grad == NULL);
  6462. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6463. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6464. }
  6465. // ggml_compute_forward_dup
  6466. static void ggml_compute_forward_dup_same_cont(
  6467. const struct ggml_compute_params * params,
  6468. struct ggml_tensor * dst) {
  6469. const struct ggml_tensor * src0 = dst->src[0];
  6470. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6471. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6472. GGML_ASSERT(src0->type == dst->type);
  6473. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6474. return;
  6475. }
  6476. const size_t nb00 = src0->nb[0];
  6477. const size_t nb0 = dst->nb[0];
  6478. const int ith = params->ith; // thread index
  6479. const int nth = params->nth; // number of threads
  6480. // parallelize by elements
  6481. const int ne = ggml_nelements(dst);
  6482. const int dr = (ne + nth - 1) / nth;
  6483. const int ie0 = dr * ith;
  6484. const int ie1 = MIN(ie0 + dr, ne);
  6485. if (ie0 < ie1) {
  6486. memcpy(
  6487. ((char *) dst->data + ie0*nb0),
  6488. ((char *) src0->data + ie0*nb00),
  6489. (ie1 - ie0) * ggml_type_size(src0->type));
  6490. }
  6491. }
  6492. static void ggml_compute_forward_dup_f16(
  6493. const struct ggml_compute_params * params,
  6494. struct ggml_tensor * dst) {
  6495. const struct ggml_tensor * src0 = dst->src[0];
  6496. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6497. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6498. return;
  6499. }
  6500. GGML_TENSOR_UNARY_OP_LOCALS
  6501. const int ith = params->ith; // thread index
  6502. const int nth = params->nth; // number of threads
  6503. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6504. ggml_compute_forward_dup_same_cont(params, dst);
  6505. return;
  6506. }
  6507. // parallelize by rows
  6508. const int nr = ne01;
  6509. // number of rows per thread
  6510. const int dr = (nr + nth - 1) / nth;
  6511. // row range for this thread
  6512. const int ir0 = dr * ith;
  6513. const int ir1 = MIN(ir0 + dr, nr);
  6514. if (src0->type == dst->type &&
  6515. ne00 == ne0 &&
  6516. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6517. // copy by rows
  6518. const size_t rs = ne00*nb00;
  6519. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6520. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6521. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6522. memcpy(
  6523. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6524. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6525. rs);
  6526. }
  6527. }
  6528. }
  6529. return;
  6530. }
  6531. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6532. if (ggml_is_contiguous(dst)) {
  6533. if (nb00 == sizeof(ggml_fp16_t)) {
  6534. if (dst->type == GGML_TYPE_F16) {
  6535. size_t id = 0;
  6536. const size_t rs = ne00 * nb00;
  6537. char * dst_ptr = (char *) dst->data;
  6538. for (int i03 = 0; i03 < ne03; i03++) {
  6539. for (int i02 = 0; i02 < ne02; i02++) {
  6540. id += rs * ir0;
  6541. for (int i01 = ir0; i01 < ir1; i01++) {
  6542. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6543. memcpy(dst_ptr + id, src0_ptr, rs);
  6544. id += rs;
  6545. }
  6546. id += rs * (ne01 - ir1);
  6547. }
  6548. }
  6549. } else if (dst->type == GGML_TYPE_F32) {
  6550. size_t id = 0;
  6551. float * dst_ptr = (float *) dst->data;
  6552. for (int i03 = 0; i03 < ne03; i03++) {
  6553. for (int i02 = 0; i02 < ne02; i02++) {
  6554. id += ne00 * ir0;
  6555. for (int i01 = ir0; i01 < ir1; i01++) {
  6556. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6557. for (int i00 = 0; i00 < ne00; i00++) {
  6558. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6559. id++;
  6560. }
  6561. }
  6562. id += ne00 * (ne01 - ir1);
  6563. }
  6564. }
  6565. } else if (type_traits[dst->type].from_float) {
  6566. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6567. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6568. size_t id = 0;
  6569. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6570. char * dst_ptr = (char *) dst->data;
  6571. for (int i03 = 0; i03 < ne03; i03++) {
  6572. for (int i02 = 0; i02 < ne02; i02++) {
  6573. id += rs * ir0;
  6574. for (int i01 = ir0; i01 < ir1; i01++) {
  6575. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6576. for (int i00 = 0; i00 < ne00; i00++) {
  6577. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6578. }
  6579. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6580. id += rs;
  6581. }
  6582. id += rs * (ne01 - ir1);
  6583. }
  6584. }
  6585. } else {
  6586. GGML_ASSERT(false); // TODO: implement
  6587. }
  6588. } else {
  6589. //printf("%s: this is not optimal - fix me\n", __func__);
  6590. if (dst->type == GGML_TYPE_F32) {
  6591. size_t id = 0;
  6592. float * dst_ptr = (float *) dst->data;
  6593. for (int i03 = 0; i03 < ne03; i03++) {
  6594. for (int i02 = 0; i02 < ne02; i02++) {
  6595. id += ne00 * ir0;
  6596. for (int i01 = ir0; i01 < ir1; i01++) {
  6597. for (int i00 = 0; i00 < ne00; i00++) {
  6598. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6599. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6600. id++;
  6601. }
  6602. }
  6603. id += ne00 * (ne01 - ir1);
  6604. }
  6605. }
  6606. } else if (dst->type == GGML_TYPE_F16) {
  6607. size_t id = 0;
  6608. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6609. for (int i03 = 0; i03 < ne03; i03++) {
  6610. for (int i02 = 0; i02 < ne02; i02++) {
  6611. id += ne00 * ir0;
  6612. for (int i01 = ir0; i01 < ir1; i01++) {
  6613. for (int i00 = 0; i00 < ne00; i00++) {
  6614. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6615. dst_ptr[id] = *src0_ptr;
  6616. id++;
  6617. }
  6618. }
  6619. id += ne00 * (ne01 - ir1);
  6620. }
  6621. }
  6622. } else {
  6623. GGML_ASSERT(false); // TODO: implement
  6624. }
  6625. }
  6626. return;
  6627. }
  6628. // dst counters
  6629. int64_t i10 = 0;
  6630. int64_t i11 = 0;
  6631. int64_t i12 = 0;
  6632. int64_t i13 = 0;
  6633. if (dst->type == GGML_TYPE_F16) {
  6634. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6635. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6636. i10 += ne00 * ir0;
  6637. while (i10 >= ne0) {
  6638. i10 -= ne0;
  6639. if (++i11 == ne1) {
  6640. i11 = 0;
  6641. if (++i12 == ne2) {
  6642. i12 = 0;
  6643. if (++i13 == ne3) {
  6644. i13 = 0;
  6645. }
  6646. }
  6647. }
  6648. }
  6649. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6650. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6651. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6652. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6653. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6654. if (++i10 == ne00) {
  6655. i10 = 0;
  6656. if (++i11 == ne01) {
  6657. i11 = 0;
  6658. if (++i12 == ne02) {
  6659. i12 = 0;
  6660. if (++i13 == ne03) {
  6661. i13 = 0;
  6662. }
  6663. }
  6664. }
  6665. }
  6666. }
  6667. }
  6668. i10 += ne00 * (ne01 - ir1);
  6669. while (i10 >= ne0) {
  6670. i10 -= ne0;
  6671. if (++i11 == ne1) {
  6672. i11 = 0;
  6673. if (++i12 == ne2) {
  6674. i12 = 0;
  6675. if (++i13 == ne3) {
  6676. i13 = 0;
  6677. }
  6678. }
  6679. }
  6680. }
  6681. }
  6682. }
  6683. } else if (dst->type == GGML_TYPE_F32) {
  6684. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6685. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6686. i10 += ne00 * ir0;
  6687. while (i10 >= ne0) {
  6688. i10 -= ne0;
  6689. if (++i11 == ne1) {
  6690. i11 = 0;
  6691. if (++i12 == ne2) {
  6692. i12 = 0;
  6693. if (++i13 == ne3) {
  6694. i13 = 0;
  6695. }
  6696. }
  6697. }
  6698. }
  6699. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6700. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6701. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6702. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6703. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6704. if (++i10 == ne0) {
  6705. i10 = 0;
  6706. if (++i11 == ne1) {
  6707. i11 = 0;
  6708. if (++i12 == ne2) {
  6709. i12 = 0;
  6710. if (++i13 == ne3) {
  6711. i13 = 0;
  6712. }
  6713. }
  6714. }
  6715. }
  6716. }
  6717. }
  6718. i10 += ne00 * (ne01 - ir1);
  6719. while (i10 >= ne0) {
  6720. i10 -= ne0;
  6721. if (++i11 == ne1) {
  6722. i11 = 0;
  6723. if (++i12 == ne2) {
  6724. i12 = 0;
  6725. if (++i13 == ne3) {
  6726. i13 = 0;
  6727. }
  6728. }
  6729. }
  6730. }
  6731. }
  6732. }
  6733. } else {
  6734. GGML_ASSERT(false); // TODO: implement
  6735. }
  6736. }
  6737. static void ggml_compute_forward_dup_bf16(
  6738. const struct ggml_compute_params * params,
  6739. struct ggml_tensor * dst) {
  6740. const struct ggml_tensor * src0 = dst->src[0];
  6741. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6742. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6743. return;
  6744. }
  6745. GGML_TENSOR_UNARY_OP_LOCALS
  6746. const int ith = params->ith; // thread index
  6747. const int nth = params->nth; // number of threads
  6748. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6749. ggml_compute_forward_dup_same_cont(params, dst);
  6750. return;
  6751. }
  6752. // parallelize by rows
  6753. const int nr = ne01;
  6754. // number of rows per thread
  6755. const int dr = (nr + nth - 1) / nth;
  6756. // row range for this thread
  6757. const int ir0 = dr * ith;
  6758. const int ir1 = MIN(ir0 + dr, nr);
  6759. if (src0->type == dst->type &&
  6760. ne00 == ne0 &&
  6761. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6762. // copy by rows
  6763. const size_t rs = ne00*nb00;
  6764. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6765. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6766. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6767. memcpy(
  6768. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6769. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6770. rs);
  6771. }
  6772. }
  6773. }
  6774. return;
  6775. }
  6776. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6777. if (ggml_is_contiguous(dst)) {
  6778. if (nb00 == sizeof(ggml_bf16_t)) {
  6779. if (dst->type == GGML_TYPE_BF16) {
  6780. size_t id = 0;
  6781. const size_t rs = ne00 * nb00;
  6782. char * dst_ptr = (char *) dst->data;
  6783. for (int i03 = 0; i03 < ne03; i03++) {
  6784. for (int i02 = 0; i02 < ne02; i02++) {
  6785. id += rs * ir0;
  6786. for (int i01 = ir0; i01 < ir1; i01++) {
  6787. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6788. memcpy(dst_ptr + id, src0_ptr, rs);
  6789. id += rs;
  6790. }
  6791. id += rs * (ne01 - ir1);
  6792. }
  6793. }
  6794. } else if (dst->type == GGML_TYPE_F16) {
  6795. size_t id = 0;
  6796. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6797. for (int i03 = 0; i03 < ne03; i03++) {
  6798. for (int i02 = 0; i02 < ne02; i02++) {
  6799. id += ne00 * ir0;
  6800. for (int i01 = ir0; i01 < ir1; i01++) {
  6801. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6802. for (int i00 = 0; i00 < ne00; i00++) {
  6803. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6804. id++;
  6805. }
  6806. }
  6807. id += ne00 * (ne01 - ir1);
  6808. }
  6809. }
  6810. } else if (dst->type == GGML_TYPE_F32) {
  6811. size_t id = 0;
  6812. float * dst_ptr = (float *) dst->data;
  6813. for (int i03 = 0; i03 < ne03; i03++) {
  6814. for (int i02 = 0; i02 < ne02; i02++) {
  6815. id += ne00 * ir0;
  6816. for (int i01 = ir0; i01 < ir1; i01++) {
  6817. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6818. for (int i00 = 0; i00 < ne00; i00++) {
  6819. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6820. id++;
  6821. }
  6822. }
  6823. id += ne00 * (ne01 - ir1);
  6824. }
  6825. }
  6826. } else if (type_traits[dst->type].from_float) {
  6827. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6828. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6829. size_t id = 0;
  6830. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6831. char * dst_ptr = (char *) dst->data;
  6832. for (int i03 = 0; i03 < ne03; i03++) {
  6833. for (int i02 = 0; i02 < ne02; i02++) {
  6834. id += rs * ir0;
  6835. for (int i01 = ir0; i01 < ir1; i01++) {
  6836. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6837. for (int i00 = 0; i00 < ne00; i00++) {
  6838. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6839. }
  6840. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6841. id += rs;
  6842. }
  6843. id += rs * (ne01 - ir1);
  6844. }
  6845. }
  6846. } else {
  6847. GGML_ASSERT(false); // TODO: implement
  6848. }
  6849. } else {
  6850. //printf("%s: this is not optimal - fix me\n", __func__);
  6851. if (dst->type == GGML_TYPE_F32) {
  6852. size_t id = 0;
  6853. float * dst_ptr = (float *) dst->data;
  6854. for (int i03 = 0; i03 < ne03; i03++) {
  6855. for (int i02 = 0; i02 < ne02; i02++) {
  6856. id += ne00 * ir0;
  6857. for (int i01 = ir0; i01 < ir1; i01++) {
  6858. for (int i00 = 0; i00 < ne00; i00++) {
  6859. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6860. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6861. id++;
  6862. }
  6863. }
  6864. id += ne00 * (ne01 - ir1);
  6865. }
  6866. }
  6867. } else if (dst->type == GGML_TYPE_BF16) {
  6868. size_t id = 0;
  6869. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6870. for (int i03 = 0; i03 < ne03; i03++) {
  6871. for (int i02 = 0; i02 < ne02; i02++) {
  6872. id += ne00 * ir0;
  6873. for (int i01 = ir0; i01 < ir1; i01++) {
  6874. for (int i00 = 0; i00 < ne00; i00++) {
  6875. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6876. dst_ptr[id] = *src0_ptr;
  6877. id++;
  6878. }
  6879. }
  6880. id += ne00 * (ne01 - ir1);
  6881. }
  6882. }
  6883. } else if (dst->type == GGML_TYPE_F16) {
  6884. size_t id = 0;
  6885. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6886. for (int i03 = 0; i03 < ne03; i03++) {
  6887. for (int i02 = 0; i02 < ne02; i02++) {
  6888. id += ne00 * ir0;
  6889. for (int i01 = ir0; i01 < ir1; i01++) {
  6890. for (int i00 = 0; i00 < ne00; i00++) {
  6891. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6892. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6893. id++;
  6894. }
  6895. }
  6896. id += ne00 * (ne01 - ir1);
  6897. }
  6898. }
  6899. } else {
  6900. GGML_ASSERT(false); // TODO: implement
  6901. }
  6902. }
  6903. return;
  6904. }
  6905. // dst counters
  6906. int64_t i10 = 0;
  6907. int64_t i11 = 0;
  6908. int64_t i12 = 0;
  6909. int64_t i13 = 0;
  6910. if (dst->type == GGML_TYPE_BF16) {
  6911. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6912. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6913. i10 += ne00 * ir0;
  6914. while (i10 >= ne0) {
  6915. i10 -= ne0;
  6916. if (++i11 == ne1) {
  6917. i11 = 0;
  6918. if (++i12 == ne2) {
  6919. i12 = 0;
  6920. if (++i13 == ne3) {
  6921. i13 = 0;
  6922. }
  6923. }
  6924. }
  6925. }
  6926. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6927. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6928. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6929. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6930. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6931. if (++i10 == ne00) {
  6932. i10 = 0;
  6933. if (++i11 == ne01) {
  6934. i11 = 0;
  6935. if (++i12 == ne02) {
  6936. i12 = 0;
  6937. if (++i13 == ne03) {
  6938. i13 = 0;
  6939. }
  6940. }
  6941. }
  6942. }
  6943. }
  6944. }
  6945. i10 += ne00 * (ne01 - ir1);
  6946. while (i10 >= ne0) {
  6947. i10 -= ne0;
  6948. if (++i11 == ne1) {
  6949. i11 = 0;
  6950. if (++i12 == ne2) {
  6951. i12 = 0;
  6952. if (++i13 == ne3) {
  6953. i13 = 0;
  6954. }
  6955. }
  6956. }
  6957. }
  6958. }
  6959. }
  6960. } else if (dst->type == GGML_TYPE_F16) {
  6961. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6962. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6963. i10 += ne00 * ir0;
  6964. while (i10 >= ne0) {
  6965. i10 -= ne0;
  6966. if (++i11 == ne1) {
  6967. i11 = 0;
  6968. if (++i12 == ne2) {
  6969. i12 = 0;
  6970. if (++i13 == ne3) {
  6971. i13 = 0;
  6972. }
  6973. }
  6974. }
  6975. }
  6976. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6978. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6979. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6980. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6981. if (++i10 == ne0) {
  6982. i10 = 0;
  6983. if (++i11 == ne1) {
  6984. i11 = 0;
  6985. if (++i12 == ne2) {
  6986. i12 = 0;
  6987. if (++i13 == ne3) {
  6988. i13 = 0;
  6989. }
  6990. }
  6991. }
  6992. }
  6993. }
  6994. }
  6995. i10 += ne00 * (ne01 - ir1);
  6996. while (i10 >= ne0) {
  6997. i10 -= ne0;
  6998. if (++i11 == ne1) {
  6999. i11 = 0;
  7000. if (++i12 == ne2) {
  7001. i12 = 0;
  7002. if (++i13 == ne3) {
  7003. i13 = 0;
  7004. }
  7005. }
  7006. }
  7007. }
  7008. }
  7009. }
  7010. } else if (dst->type == GGML_TYPE_F32) {
  7011. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7012. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7013. i10 += ne00 * ir0;
  7014. while (i10 >= ne0) {
  7015. i10 -= ne0;
  7016. if (++i11 == ne1) {
  7017. i11 = 0;
  7018. if (++i12 == ne2) {
  7019. i12 = 0;
  7020. if (++i13 == ne3) {
  7021. i13 = 0;
  7022. }
  7023. }
  7024. }
  7025. }
  7026. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7027. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7028. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7029. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7030. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7031. if (++i10 == ne0) {
  7032. i10 = 0;
  7033. if (++i11 == ne1) {
  7034. i11 = 0;
  7035. if (++i12 == ne2) {
  7036. i12 = 0;
  7037. if (++i13 == ne3) {
  7038. i13 = 0;
  7039. }
  7040. }
  7041. }
  7042. }
  7043. }
  7044. }
  7045. i10 += ne00 * (ne01 - ir1);
  7046. while (i10 >= ne0) {
  7047. i10 -= ne0;
  7048. if (++i11 == ne1) {
  7049. i11 = 0;
  7050. if (++i12 == ne2) {
  7051. i12 = 0;
  7052. if (++i13 == ne3) {
  7053. i13 = 0;
  7054. }
  7055. }
  7056. }
  7057. }
  7058. }
  7059. }
  7060. } else {
  7061. GGML_ASSERT(false); // TODO: implement
  7062. }
  7063. }
  7064. static void ggml_compute_forward_dup_f32(
  7065. const struct ggml_compute_params * params,
  7066. struct ggml_tensor * dst) {
  7067. const struct ggml_tensor * src0 = dst->src[0];
  7068. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7069. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7070. return;
  7071. }
  7072. GGML_TENSOR_UNARY_OP_LOCALS
  7073. const int ith = params->ith; // thread index
  7074. const int nth = params->nth; // number of threads
  7075. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7076. ggml_compute_forward_dup_same_cont(params, dst);
  7077. return;
  7078. }
  7079. // parallelize by rows
  7080. const int nr = ne01;
  7081. // number of rows per thread
  7082. const int dr = (nr + nth - 1) / nth;
  7083. // row range for this thread
  7084. const int ir0 = dr * ith;
  7085. const int ir1 = MIN(ir0 + dr, nr);
  7086. if (src0->type == dst->type &&
  7087. ne00 == ne0 &&
  7088. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7089. // copy by rows
  7090. const size_t rs = ne00*nb00;
  7091. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7092. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7093. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7094. memcpy(
  7095. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7096. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7097. rs);
  7098. }
  7099. }
  7100. }
  7101. return;
  7102. }
  7103. if (ggml_is_contiguous(dst)) {
  7104. // TODO: simplify
  7105. if (nb00 == sizeof(float)) {
  7106. if (dst->type == GGML_TYPE_F32) {
  7107. size_t id = 0;
  7108. const size_t rs = ne00 * nb00;
  7109. char * dst_ptr = (char *) dst->data;
  7110. for (int i03 = 0; i03 < ne03; i03++) {
  7111. for (int i02 = 0; i02 < ne02; i02++) {
  7112. id += rs * ir0;
  7113. for (int i01 = ir0; i01 < ir1; i01++) {
  7114. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7115. memcpy(dst_ptr + id, src0_ptr, rs);
  7116. id += rs;
  7117. }
  7118. id += rs * (ne01 - ir1);
  7119. }
  7120. }
  7121. } else if (type_traits[dst->type].from_float) {
  7122. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7123. size_t id = 0;
  7124. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7125. char * dst_ptr = (char *) dst->data;
  7126. for (int i03 = 0; i03 < ne03; i03++) {
  7127. for (int i02 = 0; i02 < ne02; i02++) {
  7128. id += rs * ir0;
  7129. for (int i01 = ir0; i01 < ir1; i01++) {
  7130. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7131. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7132. id += rs;
  7133. }
  7134. id += rs * (ne01 - ir1);
  7135. }
  7136. }
  7137. } else {
  7138. GGML_ASSERT(false); // TODO: implement
  7139. }
  7140. } else {
  7141. //printf("%s: this is not optimal - fix me\n", __func__);
  7142. if (dst->type == GGML_TYPE_F32) {
  7143. size_t id = 0;
  7144. float * dst_ptr = (float *) dst->data;
  7145. for (int i03 = 0; i03 < ne03; i03++) {
  7146. for (int i02 = 0; i02 < ne02; i02++) {
  7147. id += ne00 * ir0;
  7148. for (int i01 = ir0; i01 < ir1; i01++) {
  7149. for (int i00 = 0; i00 < ne00; i00++) {
  7150. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7151. dst_ptr[id] = *src0_ptr;
  7152. id++;
  7153. }
  7154. }
  7155. id += ne00 * (ne01 - ir1);
  7156. }
  7157. }
  7158. } else if (dst->type == GGML_TYPE_F16) {
  7159. size_t id = 0;
  7160. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7161. for (int i03 = 0; i03 < ne03; i03++) {
  7162. for (int i02 = 0; i02 < ne02; i02++) {
  7163. id += ne00 * ir0;
  7164. for (int i01 = ir0; i01 < ir1; i01++) {
  7165. for (int i00 = 0; i00 < ne00; i00++) {
  7166. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7167. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7168. id++;
  7169. }
  7170. }
  7171. id += ne00 * (ne01 - ir1);
  7172. }
  7173. }
  7174. } else if (dst->type == GGML_TYPE_BF16) {
  7175. size_t id = 0;
  7176. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7177. for (int i03 = 0; i03 < ne03; i03++) {
  7178. for (int i02 = 0; i02 < ne02; i02++) {
  7179. id += ne00 * ir0;
  7180. for (int i01 = ir0; i01 < ir1; i01++) {
  7181. for (int i00 = 0; i00 < ne00; i00++) {
  7182. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7183. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7184. id++;
  7185. }
  7186. }
  7187. id += ne00 * (ne01 - ir1);
  7188. }
  7189. }
  7190. } else {
  7191. GGML_ASSERT(false); // TODO: implement
  7192. }
  7193. }
  7194. return;
  7195. }
  7196. // dst counters
  7197. int64_t i10 = 0;
  7198. int64_t i11 = 0;
  7199. int64_t i12 = 0;
  7200. int64_t i13 = 0;
  7201. if (dst->type == GGML_TYPE_F32) {
  7202. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7203. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7204. i10 += ne00 * ir0;
  7205. while (i10 >= ne0) {
  7206. i10 -= ne0;
  7207. if (++i11 == ne1) {
  7208. i11 = 0;
  7209. if (++i12 == ne2) {
  7210. i12 = 0;
  7211. if (++i13 == ne3) {
  7212. i13 = 0;
  7213. }
  7214. }
  7215. }
  7216. }
  7217. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7218. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7219. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7220. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7221. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7222. if (++i10 == ne0) {
  7223. i10 = 0;
  7224. if (++i11 == ne1) {
  7225. i11 = 0;
  7226. if (++i12 == ne2) {
  7227. i12 = 0;
  7228. if (++i13 == ne3) {
  7229. i13 = 0;
  7230. }
  7231. }
  7232. }
  7233. }
  7234. }
  7235. }
  7236. i10 += ne00 * (ne01 - ir1);
  7237. while (i10 >= ne0) {
  7238. i10 -= ne0;
  7239. if (++i11 == ne1) {
  7240. i11 = 0;
  7241. if (++i12 == ne2) {
  7242. i12 = 0;
  7243. if (++i13 == ne3) {
  7244. i13 = 0;
  7245. }
  7246. }
  7247. }
  7248. }
  7249. }
  7250. }
  7251. } else if (dst->type == GGML_TYPE_F16) {
  7252. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7253. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7254. i10 += ne00 * ir0;
  7255. while (i10 >= ne0) {
  7256. i10 -= ne0;
  7257. if (++i11 == ne1) {
  7258. i11 = 0;
  7259. if (++i12 == ne2) {
  7260. i12 = 0;
  7261. if (++i13 == ne3) {
  7262. i13 = 0;
  7263. }
  7264. }
  7265. }
  7266. }
  7267. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7268. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7269. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7270. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7271. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7272. if (++i10 == ne0) {
  7273. i10 = 0;
  7274. if (++i11 == ne1) {
  7275. i11 = 0;
  7276. if (++i12 == ne2) {
  7277. i12 = 0;
  7278. if (++i13 == ne3) {
  7279. i13 = 0;
  7280. }
  7281. }
  7282. }
  7283. }
  7284. }
  7285. }
  7286. i10 += ne00 * (ne01 - ir1);
  7287. while (i10 >= ne0) {
  7288. i10 -= ne0;
  7289. if (++i11 == ne1) {
  7290. i11 = 0;
  7291. if (++i12 == ne2) {
  7292. i12 = 0;
  7293. if (++i13 == ne3) {
  7294. i13 = 0;
  7295. }
  7296. }
  7297. }
  7298. }
  7299. }
  7300. }
  7301. } else if (dst->type == GGML_TYPE_BF16) {
  7302. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7303. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7304. i10 += ne00 * ir0;
  7305. while (i10 >= ne0) {
  7306. i10 -= ne0;
  7307. if (++i11 == ne1) {
  7308. i11 = 0;
  7309. if (++i12 == ne2) {
  7310. i12 = 0;
  7311. if (++i13 == ne3) {
  7312. i13 = 0;
  7313. }
  7314. }
  7315. }
  7316. }
  7317. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7318. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7319. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7320. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7321. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7322. if (++i10 == ne0) {
  7323. i10 = 0;
  7324. if (++i11 == ne1) {
  7325. i11 = 0;
  7326. if (++i12 == ne2) {
  7327. i12 = 0;
  7328. if (++i13 == ne3) {
  7329. i13 = 0;
  7330. }
  7331. }
  7332. }
  7333. }
  7334. }
  7335. }
  7336. i10 += ne00 * (ne01 - ir1);
  7337. while (i10 >= ne0) {
  7338. i10 -= ne0;
  7339. if (++i11 == ne1) {
  7340. i11 = 0;
  7341. if (++i12 == ne2) {
  7342. i12 = 0;
  7343. if (++i13 == ne3) {
  7344. i13 = 0;
  7345. }
  7346. }
  7347. }
  7348. }
  7349. }
  7350. }
  7351. } else {
  7352. GGML_ASSERT(false); // TODO: implement
  7353. }
  7354. }
  7355. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7356. static void ggml_compute_forward_dup_bytes(
  7357. const struct ggml_compute_params * params,
  7358. struct ggml_tensor * dst) {
  7359. const struct ggml_tensor * src0 = dst->src[0];
  7360. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7361. GGML_ASSERT(src0->type == dst->type);
  7362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7363. return;
  7364. }
  7365. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7366. ggml_compute_forward_dup_same_cont(params, dst);
  7367. return;
  7368. }
  7369. GGML_TENSOR_UNARY_OP_LOCALS;
  7370. const size_t type_size = ggml_type_size(src0->type);
  7371. const int ith = params->ith; // thread index
  7372. const int nth = params->nth; // number of threads
  7373. // parallelize by rows
  7374. const int nr = ne01;
  7375. // number of rows per thread
  7376. const int dr = (nr + nth - 1) / nth;
  7377. // row range for this thread
  7378. const int ir0 = dr * ith;
  7379. const int ir1 = MIN(ir0 + dr, nr);
  7380. if (src0->type == dst->type &&
  7381. ne00 == ne0 &&
  7382. nb00 == type_size && nb0 == type_size) {
  7383. // copy by rows
  7384. const size_t rs = ne00 * type_size;
  7385. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7386. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7387. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7388. memcpy(
  7389. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7390. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7391. rs);
  7392. }
  7393. }
  7394. }
  7395. return;
  7396. }
  7397. if (ggml_is_contiguous(dst)) {
  7398. size_t id = 0;
  7399. char * dst_ptr = (char *) dst->data;
  7400. const size_t rs = ne00 * type_size;
  7401. if (nb00 == type_size) {
  7402. // src0 is contigous on first dimension, copy by rows
  7403. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7404. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7405. id += rs * ir0;
  7406. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7407. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7408. memcpy(dst_ptr + id, src0_ptr, rs);
  7409. id += rs;
  7410. }
  7411. id += rs * (ne01 - ir1);
  7412. }
  7413. }
  7414. } else {
  7415. //printf("%s: this is not optimal - fix me\n", __func__);
  7416. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7417. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7418. id += rs * ir0;
  7419. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7420. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7421. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7422. memcpy(dst_ptr + id, src0_ptr, type_size);
  7423. id += type_size;
  7424. }
  7425. }
  7426. id += rs * (ne01 - ir1);
  7427. }
  7428. }
  7429. }
  7430. return;
  7431. }
  7432. // dst counters
  7433. int64_t i10 = 0;
  7434. int64_t i11 = 0;
  7435. int64_t i12 = 0;
  7436. int64_t i13 = 0;
  7437. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7438. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7439. i10 += ne00 * ir0;
  7440. while (i10 >= ne0) {
  7441. i10 -= ne0;
  7442. if (++i11 == ne1) {
  7443. i11 = 0;
  7444. if (++i12 == ne2) {
  7445. i12 = 0;
  7446. if (++i13 == ne3) {
  7447. i13 = 0;
  7448. }
  7449. }
  7450. }
  7451. }
  7452. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7453. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7454. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7455. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7456. memcpy(dst_ptr, src0_ptr, type_size);
  7457. if (++i10 == ne0) {
  7458. i10 = 0;
  7459. if (++i11 == ne1) {
  7460. i11 = 0;
  7461. if (++i12 == ne2) {
  7462. i12 = 0;
  7463. if (++i13 == ne3) {
  7464. i13 = 0;
  7465. }
  7466. }
  7467. }
  7468. }
  7469. }
  7470. }
  7471. i10 += ne00 * (ne01 - ir1);
  7472. while (i10 >= ne0) {
  7473. i10 -= ne0;
  7474. if (++i11 == ne1) {
  7475. i11 = 0;
  7476. if (++i12 == ne2) {
  7477. i12 = 0;
  7478. if (++i13 == ne3) {
  7479. i13 = 0;
  7480. }
  7481. }
  7482. }
  7483. }
  7484. }
  7485. }
  7486. }
  7487. static void ggml_compute_forward_dup(
  7488. const struct ggml_compute_params * params,
  7489. struct ggml_tensor * dst) {
  7490. const struct ggml_tensor * src0 = dst->src[0];
  7491. if (src0->type == dst->type) {
  7492. ggml_compute_forward_dup_bytes(params, dst);
  7493. return;
  7494. }
  7495. switch (src0->type) {
  7496. case GGML_TYPE_F16:
  7497. {
  7498. ggml_compute_forward_dup_f16(params, dst);
  7499. } break;
  7500. case GGML_TYPE_BF16:
  7501. {
  7502. ggml_compute_forward_dup_bf16(params, dst);
  7503. } break;
  7504. case GGML_TYPE_F32:
  7505. {
  7506. ggml_compute_forward_dup_f32(params, dst);
  7507. } break;
  7508. default:
  7509. {
  7510. GGML_ASSERT(false);
  7511. } break;
  7512. }
  7513. }
  7514. // ggml_compute_forward_add
  7515. static void ggml_compute_forward_add_f32(
  7516. const struct ggml_compute_params * params,
  7517. struct ggml_tensor * dst) {
  7518. const struct ggml_tensor * src0 = dst->src[0];
  7519. const struct ggml_tensor * src1 = dst->src[1];
  7520. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7521. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7522. return;
  7523. }
  7524. const int ith = params->ith;
  7525. const int nth = params->nth;
  7526. #ifdef GGML_USE_CLBLAST
  7527. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7528. // TODO: OpenCL kernel support full broadcast
  7529. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7530. if (ith == 0) {
  7531. ggml_cl_add(src0, src1, dst);
  7532. }
  7533. return;
  7534. }
  7535. #endif
  7536. const int nr = ggml_nrows(src0);
  7537. GGML_TENSOR_BINARY_OP_LOCALS
  7538. GGML_ASSERT( nb0 == sizeof(float));
  7539. GGML_ASSERT(nb00 == sizeof(float));
  7540. // rows per thread
  7541. const int dr = (nr + nth - 1)/nth;
  7542. // row range for this thread
  7543. const int ir0 = dr*ith;
  7544. const int ir1 = MIN(ir0 + dr, nr);
  7545. if (nb10 == sizeof(float)) {
  7546. for (int ir = ir0; ir < ir1; ++ir) {
  7547. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7548. const int64_t i03 = ir/(ne02*ne01);
  7549. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7550. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7551. const int64_t i13 = i03 % ne13;
  7552. const int64_t i12 = i02 % ne12;
  7553. const int64_t i11 = i01 % ne11;
  7554. const int64_t nr0 = ne00 / ne10;
  7555. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7556. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7557. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7558. for (int64_t r = 0; r < nr0; ++r) {
  7559. #ifdef GGML_USE_ACCELERATE
  7560. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7561. #else
  7562. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7563. #endif
  7564. }
  7565. }
  7566. } else {
  7567. // src1 is not contiguous
  7568. for (int ir = ir0; ir < ir1; ++ir) {
  7569. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7570. const int64_t i03 = ir/(ne02*ne01);
  7571. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7572. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7573. const int64_t i13 = i03 % ne13;
  7574. const int64_t i12 = i02 % ne12;
  7575. const int64_t i11 = i01 % ne11;
  7576. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7577. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7578. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7579. const int64_t i10 = i0 % ne10;
  7580. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7581. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7582. }
  7583. }
  7584. }
  7585. }
  7586. static void ggml_compute_forward_add_f16_f32(
  7587. const struct ggml_compute_params * params,
  7588. struct ggml_tensor * dst) {
  7589. const struct ggml_tensor * src0 = dst->src[0];
  7590. const struct ggml_tensor * src1 = dst->src[1];
  7591. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7592. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7593. return;
  7594. }
  7595. const int ith = params->ith;
  7596. const int nth = params->nth;
  7597. const int nr = ggml_nrows(src0);
  7598. GGML_TENSOR_BINARY_OP_LOCALS
  7599. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7600. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7601. if (dst->type == GGML_TYPE_F32) {
  7602. GGML_ASSERT( nb0 == sizeof(float));
  7603. }
  7604. else {
  7605. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7606. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7607. }
  7608. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7609. // rows per thread
  7610. const int dr = (nr + nth - 1)/nth;
  7611. // row range for this thread
  7612. const int ir0 = dr*ith;
  7613. const int ir1 = MIN(ir0 + dr, nr);
  7614. if (nb10 == sizeof(float)) {
  7615. if (dst->type == GGML_TYPE_F16) {
  7616. for (int ir = ir0; ir < ir1; ++ir) {
  7617. // src0, src1 and dst are same shape => same indices
  7618. const int i3 = ir/(ne2*ne1);
  7619. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7620. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7621. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7622. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7623. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7624. for (int i = 0; i < ne0; i++) {
  7625. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7626. }
  7627. }
  7628. } else {
  7629. for (int ir = ir0; ir < ir1; ++ir) {
  7630. // src0, src1 and dst are same shape => same indices
  7631. const int i3 = ir/(ne2*ne1);
  7632. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7633. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7634. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7635. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7636. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7637. for (int i = 0; i < ne0; i++) {
  7638. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7639. }
  7640. }
  7641. }
  7642. }
  7643. else {
  7644. // src1 is not contiguous
  7645. GGML_ASSERT(false);
  7646. }
  7647. }
  7648. static void ggml_compute_forward_add_bf16_f32(
  7649. const struct ggml_compute_params * params,
  7650. struct ggml_tensor * dst) {
  7651. const struct ggml_tensor * src0 = dst->src[0];
  7652. const struct ggml_tensor * src1 = dst->src[1];
  7653. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7654. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7655. return;
  7656. }
  7657. const int ith = params->ith;
  7658. const int nth = params->nth;
  7659. const int nr = ggml_nrows(src0);
  7660. GGML_TENSOR_BINARY_OP_LOCALS
  7661. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7662. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7663. if (dst->type == GGML_TYPE_F32) {
  7664. GGML_ASSERT( nb0 == sizeof(float));
  7665. }
  7666. else {
  7667. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7668. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7669. }
  7670. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7671. // rows per thread
  7672. const int dr = (nr + nth - 1)/nth;
  7673. // row range for this thread
  7674. const int ir0 = dr*ith;
  7675. const int ir1 = MIN(ir0 + dr, nr);
  7676. if (nb10 == sizeof(float)) {
  7677. if (dst->type == GGML_TYPE_BF16) {
  7678. for (int ir = ir0; ir < ir1; ++ir) {
  7679. // src0, src1 and dst are same shape => same indices
  7680. const int i3 = ir/(ne2*ne1);
  7681. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7682. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7683. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7684. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7685. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7686. for (int i = 0; i < ne0; i++) {
  7687. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7688. }
  7689. }
  7690. } else {
  7691. for (int ir = ir0; ir < ir1; ++ir) {
  7692. // src0, src1 and dst are same shape => same indices
  7693. const int i3 = ir/(ne2*ne1);
  7694. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7695. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7696. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7697. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7698. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7699. for (int i = 0; i < ne0; i++) {
  7700. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7701. }
  7702. }
  7703. }
  7704. }
  7705. else {
  7706. // src1 is not contiguous
  7707. GGML_ASSERT(false);
  7708. }
  7709. }
  7710. static void ggml_compute_forward_add_f16_f16(
  7711. const struct ggml_compute_params * params,
  7712. struct ggml_tensor * dst) {
  7713. const struct ggml_tensor * src0 = dst->src[0];
  7714. const struct ggml_tensor * src1 = dst->src[1];
  7715. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7717. return;
  7718. }
  7719. const int ith = params->ith;
  7720. const int nth = params->nth;
  7721. const int nr = ggml_nrows(src0);
  7722. GGML_TENSOR_BINARY_OP_LOCALS
  7723. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7724. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7725. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7726. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7727. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7728. // rows per thread
  7729. const int dr = (nr + nth - 1)/nth;
  7730. // row range for this thread
  7731. const int ir0 = dr*ith;
  7732. const int ir1 = MIN(ir0 + dr, nr);
  7733. if (nb10 == sizeof(ggml_fp16_t)) {
  7734. for (int ir = ir0; ir < ir1; ++ir) {
  7735. // src0, src1 and dst are same shape => same indices
  7736. const int i3 = ir/(ne2*ne1);
  7737. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7738. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7739. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7740. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7741. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7742. for (int i = 0; i < ne0; i++) {
  7743. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7744. }
  7745. }
  7746. }
  7747. else {
  7748. // src1 is not contiguous
  7749. GGML_ASSERT(false);
  7750. }
  7751. }
  7752. static void ggml_compute_forward_add_bf16_bf16(
  7753. const struct ggml_compute_params * params,
  7754. struct ggml_tensor * dst) {
  7755. const struct ggml_tensor * src0 = dst->src[0];
  7756. const struct ggml_tensor * src1 = dst->src[1];
  7757. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7758. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7759. return;
  7760. }
  7761. const int ith = params->ith;
  7762. const int nth = params->nth;
  7763. const int nr = ggml_nrows(src0);
  7764. GGML_TENSOR_BINARY_OP_LOCALS
  7765. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7766. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7767. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7768. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7769. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7770. // rows per thread
  7771. const int dr = (nr + nth - 1)/nth;
  7772. // row range for this thread
  7773. const int ir0 = dr*ith;
  7774. const int ir1 = MIN(ir0 + dr, nr);
  7775. if (nb10 == sizeof(ggml_bf16_t)) {
  7776. for (int ir = ir0; ir < ir1; ++ir) {
  7777. // src0, src1 and dst are same shape => same indices
  7778. const int i3 = ir/(ne2*ne1);
  7779. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7780. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7781. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7782. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7783. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7784. for (int i = 0; i < ne0; i++) {
  7785. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7786. }
  7787. }
  7788. }
  7789. else {
  7790. // src1 is not contiguous
  7791. GGML_ASSERT(false);
  7792. }
  7793. }
  7794. static void ggml_compute_forward_add_q_f32(
  7795. const struct ggml_compute_params * params,
  7796. struct ggml_tensor * dst) {
  7797. const struct ggml_tensor * src0 = dst->src[0];
  7798. const struct ggml_tensor * src1 = dst->src[1];
  7799. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7800. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7801. return;
  7802. }
  7803. const int nr = ggml_nrows(src0);
  7804. GGML_TENSOR_BINARY_OP_LOCALS
  7805. const int ith = params->ith;
  7806. const int nth = params->nth;
  7807. const enum ggml_type type = src0->type;
  7808. const enum ggml_type dtype = dst->type;
  7809. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7810. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7811. // we don't support permuted src0 or src1
  7812. GGML_ASSERT(nb00 == ggml_type_size(type));
  7813. GGML_ASSERT(nb10 == sizeof(float));
  7814. // dst cannot be transposed or permuted
  7815. GGML_ASSERT(nb0 <= nb1);
  7816. GGML_ASSERT(nb1 <= nb2);
  7817. GGML_ASSERT(nb2 <= nb3);
  7818. GGML_ASSERT(ggml_is_quantized(src0->type));
  7819. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7820. // rows per thread
  7821. const int dr = (nr + nth - 1)/nth;
  7822. // row range for this thread
  7823. const int ir0 = dr*ith;
  7824. const int ir1 = MIN(ir0 + dr, nr);
  7825. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7826. for (int ir = ir0; ir < ir1; ++ir) {
  7827. // src0 indices
  7828. const int i03 = ir/(ne02*ne01);
  7829. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7830. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7831. // src1 and dst are same shape as src0 => same indices
  7832. const int i13 = i03;
  7833. const int i12 = i02;
  7834. const int i11 = i01;
  7835. const int i3 = i03;
  7836. const int i2 = i02;
  7837. const int i1 = i01;
  7838. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7839. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7840. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7841. assert(ne00 % 32 == 0);
  7842. // unquantize row from src0 to temp buffer
  7843. dequantize_row_q(src0_row, wdata, ne00);
  7844. // add src1
  7845. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7846. // quantize row to dst
  7847. if (quantize_row_q != NULL) {
  7848. quantize_row_q(wdata, dst_row, ne00);
  7849. } else {
  7850. memcpy(dst_row, wdata, ne0*nb0);
  7851. }
  7852. }
  7853. }
  7854. static void ggml_compute_forward_add(
  7855. const struct ggml_compute_params * params,
  7856. struct ggml_tensor * dst) {
  7857. const struct ggml_tensor * src0 = dst->src[0];
  7858. const struct ggml_tensor * src1 = dst->src[1];
  7859. switch (src0->type) {
  7860. case GGML_TYPE_F32:
  7861. {
  7862. if (src1->type == GGML_TYPE_F32) {
  7863. ggml_compute_forward_add_f32(params, dst);
  7864. }
  7865. else {
  7866. GGML_ASSERT(false);
  7867. }
  7868. } break;
  7869. case GGML_TYPE_F16:
  7870. {
  7871. if (src1->type == GGML_TYPE_F16) {
  7872. ggml_compute_forward_add_f16_f16(params, dst);
  7873. }
  7874. else if (src1->type == GGML_TYPE_F32) {
  7875. ggml_compute_forward_add_f16_f32(params, dst);
  7876. }
  7877. else {
  7878. GGML_ASSERT(false);
  7879. }
  7880. } break;
  7881. case GGML_TYPE_BF16:
  7882. {
  7883. if (src1->type == GGML_TYPE_BF16) {
  7884. ggml_compute_forward_add_bf16_bf16(params, dst);
  7885. }
  7886. else if (src1->type == GGML_TYPE_F32) {
  7887. ggml_compute_forward_add_bf16_f32(params, dst);
  7888. }
  7889. else {
  7890. GGML_ASSERT(false);
  7891. }
  7892. } break;
  7893. case GGML_TYPE_Q4_0:
  7894. case GGML_TYPE_Q4_1:
  7895. case GGML_TYPE_Q5_0:
  7896. case GGML_TYPE_Q5_1:
  7897. case GGML_TYPE_Q8_0:
  7898. case GGML_TYPE_Q2_K:
  7899. case GGML_TYPE_Q3_K:
  7900. case GGML_TYPE_Q4_K:
  7901. case GGML_TYPE_Q5_K:
  7902. case GGML_TYPE_Q6_K:
  7903. case GGML_TYPE_IQ2_XXS:
  7904. case GGML_TYPE_IQ2_XS:
  7905. case GGML_TYPE_IQ3_XXS:
  7906. case GGML_TYPE_IQ1_S:
  7907. case GGML_TYPE_IQ1_M:
  7908. case GGML_TYPE_IQ4_NL:
  7909. case GGML_TYPE_IQ4_XS:
  7910. case GGML_TYPE_IQ3_S:
  7911. case GGML_TYPE_IQ2_S:
  7912. {
  7913. ggml_compute_forward_add_q_f32(params, dst);
  7914. } break;
  7915. default:
  7916. {
  7917. GGML_ASSERT(false);
  7918. } break;
  7919. }
  7920. }
  7921. // ggml_compute_forward_add1
  7922. static void ggml_compute_forward_add1_f32(
  7923. const struct ggml_compute_params * params,
  7924. struct ggml_tensor * dst) {
  7925. const struct ggml_tensor * src0 = dst->src[0];
  7926. const struct ggml_tensor * src1 = dst->src[1];
  7927. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7928. GGML_ASSERT(ggml_is_scalar(src1));
  7929. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7930. return;
  7931. }
  7932. const int ith = params->ith;
  7933. const int nth = params->nth;
  7934. const int nr = ggml_nrows(src0);
  7935. GGML_TENSOR_UNARY_OP_LOCALS
  7936. GGML_ASSERT( nb0 == sizeof(float));
  7937. GGML_ASSERT(nb00 == sizeof(float));
  7938. // rows per thread
  7939. const int dr = (nr + nth - 1)/nth;
  7940. // row range for this thread
  7941. const int ir0 = dr*ith;
  7942. const int ir1 = MIN(ir0 + dr, nr);
  7943. for (int ir = ir0; ir < ir1; ++ir) {
  7944. // src0 and dst are same shape => same indices
  7945. const int i3 = ir/(ne2*ne1);
  7946. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7947. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7948. #ifdef GGML_USE_ACCELERATE
  7949. UNUSED(ggml_vec_add1_f32);
  7950. vDSP_vadd(
  7951. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7952. (float *) ((char *) src1->data), 0,
  7953. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7954. ne0);
  7955. #else
  7956. ggml_vec_add1_f32(ne0,
  7957. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7958. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7959. *(float *) src1->data);
  7960. #endif
  7961. }
  7962. }
  7963. static void ggml_compute_forward_add1_f16_f32(
  7964. const struct ggml_compute_params * params,
  7965. struct ggml_tensor * dst) {
  7966. const struct ggml_tensor * src0 = dst->src[0];
  7967. const struct ggml_tensor * src1 = dst->src[1];
  7968. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7969. GGML_ASSERT(ggml_is_scalar(src1));
  7970. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7971. return;
  7972. }
  7973. // scalar to add
  7974. const float v = *(float *) src1->data;
  7975. const int ith = params->ith;
  7976. const int nth = params->nth;
  7977. const int nr = ggml_nrows(src0);
  7978. GGML_TENSOR_UNARY_OP_LOCALS
  7979. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7980. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7981. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7982. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7983. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7984. // rows per thread
  7985. const int dr = (nr + nth - 1)/nth;
  7986. // row range for this thread
  7987. const int ir0 = dr*ith;
  7988. const int ir1 = MIN(ir0 + dr, nr);
  7989. for (int ir = ir0; ir < ir1; ++ir) {
  7990. // src0 and dst are same shape => same indices
  7991. const int i3 = ir/(ne2*ne1);
  7992. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7993. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7994. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7995. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7996. for (int i = 0; i < ne0; i++) {
  7997. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7998. }
  7999. }
  8000. }
  8001. static void ggml_compute_forward_add1_f16_f16(
  8002. const struct ggml_compute_params * params,
  8003. struct ggml_tensor * dst) {
  8004. const struct ggml_tensor * src0 = dst->src[0];
  8005. const struct ggml_tensor * src1 = dst->src[1];
  8006. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8007. GGML_ASSERT(ggml_is_scalar(src1));
  8008. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8009. return;
  8010. }
  8011. // scalar to add
  8012. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8013. const int ith = params->ith;
  8014. const int nth = params->nth;
  8015. const int nr = ggml_nrows(src0);
  8016. GGML_TENSOR_UNARY_OP_LOCALS
  8017. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8018. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8019. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8020. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8021. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8022. // rows per thread
  8023. const int dr = (nr + nth - 1)/nth;
  8024. // row range for this thread
  8025. const int ir0 = dr*ith;
  8026. const int ir1 = MIN(ir0 + dr, nr);
  8027. for (int ir = ir0; ir < ir1; ++ir) {
  8028. // src0 and dst are same shape => same indices
  8029. const int i3 = ir/(ne2*ne1);
  8030. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8031. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8032. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8033. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8034. for (int i = 0; i < ne0; i++) {
  8035. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8036. }
  8037. }
  8038. }
  8039. static void ggml_compute_forward_add1_q_f32(
  8040. const struct ggml_compute_params * params,
  8041. struct ggml_tensor * dst) {
  8042. const struct ggml_tensor * src0 = dst->src[0];
  8043. const struct ggml_tensor * src1 = dst->src[1];
  8044. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8045. GGML_ASSERT(ggml_is_scalar(src1));
  8046. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8047. return;
  8048. }
  8049. // scalar to add
  8050. const float v = *(float *) src1->data;
  8051. const int ith = params->ith;
  8052. const int nth = params->nth;
  8053. const int nr = ggml_nrows(src0);
  8054. GGML_TENSOR_UNARY_OP_LOCALS
  8055. const enum ggml_type type = src0->type;
  8056. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8057. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8058. // we don't support permuted src0
  8059. GGML_ASSERT(nb00 == ggml_type_size(type));
  8060. // dst cannot be transposed or permuted
  8061. GGML_ASSERT(nb0 <= nb1);
  8062. GGML_ASSERT(nb1 <= nb2);
  8063. GGML_ASSERT(nb2 <= nb3);
  8064. GGML_ASSERT(ggml_is_quantized(src0->type));
  8065. GGML_ASSERT(dst->type == src0->type);
  8066. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8067. // rows per thread
  8068. const int dr = (nr + nth - 1)/nth;
  8069. // row range for this thread
  8070. const int ir0 = dr*ith;
  8071. const int ir1 = MIN(ir0 + dr, nr);
  8072. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8073. for (int ir = ir0; ir < ir1; ++ir) {
  8074. // src0 and dst are same shape => same indices
  8075. const int i3 = ir/(ne2*ne1);
  8076. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8077. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8078. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8079. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8080. assert(ne0 % 32 == 0);
  8081. // unquantize row from src0 to temp buffer
  8082. dequantize_row_q(src0_row, wdata, ne0);
  8083. // add src1
  8084. ggml_vec_acc1_f32(ne0, wdata, v);
  8085. // quantize row to dst
  8086. quantize_row_q(wdata, dst_row, ne0);
  8087. }
  8088. }
  8089. static void ggml_compute_forward_add1_bf16_f32(
  8090. const struct ggml_compute_params * params,
  8091. struct ggml_tensor * dst) {
  8092. const struct ggml_tensor * src0 = dst->src[0];
  8093. const struct ggml_tensor * src1 = dst->src[1];
  8094. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8095. GGML_ASSERT(ggml_is_scalar(src1));
  8096. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8097. return;
  8098. }
  8099. // scalar to add
  8100. const float v = *(float *) src1->data;
  8101. const int ith = params->ith;
  8102. const int nth = params->nth;
  8103. const int nr = ggml_nrows(src0);
  8104. GGML_TENSOR_UNARY_OP_LOCALS
  8105. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8106. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8107. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8108. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8109. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8110. // rows per thread
  8111. const int dr = (nr + nth - 1)/nth;
  8112. // row range for this thread
  8113. const int ir0 = dr*ith;
  8114. const int ir1 = MIN(ir0 + dr, nr);
  8115. for (int ir = ir0; ir < ir1; ++ir) {
  8116. // src0 and dst are same shape => same indices
  8117. const int i3 = ir/(ne2*ne1);
  8118. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8119. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8120. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8121. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8122. for (int i = 0; i < ne0; i++) {
  8123. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8124. }
  8125. }
  8126. }
  8127. static void ggml_compute_forward_add1_bf16_bf16(
  8128. const struct ggml_compute_params * params,
  8129. struct ggml_tensor * dst) {
  8130. const struct ggml_tensor * src0 = dst->src[0];
  8131. const struct ggml_tensor * src1 = dst->src[1];
  8132. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8133. GGML_ASSERT(ggml_is_scalar(src1));
  8134. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8135. return;
  8136. }
  8137. // scalar to add
  8138. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8139. const int ith = params->ith;
  8140. const int nth = params->nth;
  8141. const int nr = ggml_nrows(src0);
  8142. GGML_TENSOR_UNARY_OP_LOCALS
  8143. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8144. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8145. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8146. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8147. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8148. // rows per thread
  8149. const int dr = (nr + nth - 1)/nth;
  8150. // row range for this thread
  8151. const int ir0 = dr*ith;
  8152. const int ir1 = MIN(ir0 + dr, nr);
  8153. for (int ir = ir0; ir < ir1; ++ir) {
  8154. // src0 and dst are same shape => same indices
  8155. const int i3 = ir/(ne2*ne1);
  8156. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8157. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8158. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8159. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8160. for (int i = 0; i < ne0; i++) {
  8161. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8162. }
  8163. }
  8164. }
  8165. static void ggml_compute_forward_add1(
  8166. const struct ggml_compute_params * params,
  8167. struct ggml_tensor * dst) {
  8168. const struct ggml_tensor * src0 = dst->src[0];
  8169. const struct ggml_tensor * src1 = dst->src[1];
  8170. switch (src0->type) {
  8171. case GGML_TYPE_F32:
  8172. {
  8173. ggml_compute_forward_add1_f32(params, dst);
  8174. } break;
  8175. case GGML_TYPE_F16:
  8176. {
  8177. if (src1->type == GGML_TYPE_F16) {
  8178. ggml_compute_forward_add1_f16_f16(params, dst);
  8179. }
  8180. else if (src1->type == GGML_TYPE_F32) {
  8181. ggml_compute_forward_add1_f16_f32(params, dst);
  8182. }
  8183. else {
  8184. GGML_ASSERT(false);
  8185. }
  8186. } break;
  8187. case GGML_TYPE_BF16:
  8188. {
  8189. if (src1->type == GGML_TYPE_BF16) {
  8190. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8191. }
  8192. else if (src1->type == GGML_TYPE_F32) {
  8193. ggml_compute_forward_add1_bf16_f32(params, dst);
  8194. }
  8195. else {
  8196. GGML_ASSERT(false);
  8197. }
  8198. } break;
  8199. case GGML_TYPE_Q4_0:
  8200. case GGML_TYPE_Q4_1:
  8201. case GGML_TYPE_Q5_0:
  8202. case GGML_TYPE_Q5_1:
  8203. case GGML_TYPE_Q8_0:
  8204. case GGML_TYPE_Q8_1:
  8205. case GGML_TYPE_Q2_K:
  8206. case GGML_TYPE_Q3_K:
  8207. case GGML_TYPE_Q4_K:
  8208. case GGML_TYPE_Q5_K:
  8209. case GGML_TYPE_Q6_K:
  8210. case GGML_TYPE_IQ2_XXS:
  8211. case GGML_TYPE_IQ2_XS:
  8212. case GGML_TYPE_IQ3_XXS:
  8213. case GGML_TYPE_IQ1_S:
  8214. case GGML_TYPE_IQ1_M:
  8215. case GGML_TYPE_IQ4_NL:
  8216. case GGML_TYPE_IQ4_XS:
  8217. case GGML_TYPE_IQ3_S:
  8218. case GGML_TYPE_IQ2_S:
  8219. {
  8220. ggml_compute_forward_add1_q_f32(params, dst);
  8221. } break;
  8222. default:
  8223. {
  8224. GGML_ASSERT(false);
  8225. } break;
  8226. }
  8227. }
  8228. // ggml_compute_forward_acc
  8229. static void ggml_compute_forward_acc_f32(
  8230. const struct ggml_compute_params * params,
  8231. struct ggml_tensor * dst) {
  8232. const struct ggml_tensor * src0 = dst->src[0];
  8233. const struct ggml_tensor * src1 = dst->src[1];
  8234. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8235. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8236. // view src0 and dst with these strides and data offset inbytes during acc
  8237. // nb0 is implicitly element_size because src0 and dst are contiguous
  8238. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8239. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8240. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8241. size_t offset = ((int32_t *) dst->op_params)[3];
  8242. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8243. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8244. if (params->ith != 0) {
  8245. return;
  8246. }
  8247. // memcpy needs to be synchronized across threads to avoid race conditions.
  8248. // => do it in INIT phase
  8249. memcpy(
  8250. ((char *) dst->data),
  8251. ((char *) src0->data),
  8252. ggml_nbytes(dst));
  8253. }
  8254. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8255. return;
  8256. }
  8257. const int ith = params->ith;
  8258. const int nth = params->nth;
  8259. const int nr = ggml_nrows(src1);
  8260. const int nc = src1->ne[0];
  8261. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8262. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8263. // src0 and dst as viewed during acc
  8264. const size_t nb0 = ggml_element_size(src0);
  8265. const size_t nb00 = nb0;
  8266. const size_t nb01 = nb1;
  8267. const size_t nb02 = nb2;
  8268. const size_t nb03 = nb3;
  8269. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8270. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8271. GGML_ASSERT(nb10 == sizeof(float));
  8272. // rows per thread
  8273. const int dr = (nr + nth - 1)/nth;
  8274. // row range for this thread
  8275. const int ir0 = dr*ith;
  8276. const int ir1 = MIN(ir0 + dr, nr);
  8277. for (int ir = ir0; ir < ir1; ++ir) {
  8278. // src0 and dst are viewed with shape of src1 and offset
  8279. // => same indices
  8280. const int i3 = ir/(ne12*ne11);
  8281. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8282. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8283. #ifdef GGML_USE_ACCELERATE
  8284. vDSP_vadd(
  8285. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8286. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8287. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8288. #else
  8289. ggml_vec_add_f32(nc,
  8290. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8291. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8292. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8293. #endif
  8294. }
  8295. }
  8296. static void ggml_compute_forward_acc(
  8297. const struct ggml_compute_params * params,
  8298. struct ggml_tensor * dst) {
  8299. const struct ggml_tensor * src0 = dst->src[0];
  8300. switch (src0->type) {
  8301. case GGML_TYPE_F32:
  8302. {
  8303. ggml_compute_forward_acc_f32(params, dst);
  8304. } break;
  8305. case GGML_TYPE_F16:
  8306. case GGML_TYPE_BF16:
  8307. case GGML_TYPE_Q4_0:
  8308. case GGML_TYPE_Q4_1:
  8309. case GGML_TYPE_Q5_0:
  8310. case GGML_TYPE_Q5_1:
  8311. case GGML_TYPE_Q8_0:
  8312. case GGML_TYPE_Q8_1:
  8313. case GGML_TYPE_Q2_K:
  8314. case GGML_TYPE_Q3_K:
  8315. case GGML_TYPE_Q4_K:
  8316. case GGML_TYPE_Q5_K:
  8317. case GGML_TYPE_Q6_K:
  8318. case GGML_TYPE_IQ2_XXS:
  8319. case GGML_TYPE_IQ2_XS:
  8320. case GGML_TYPE_IQ3_XXS:
  8321. case GGML_TYPE_IQ1_S:
  8322. case GGML_TYPE_IQ1_M:
  8323. case GGML_TYPE_IQ4_NL:
  8324. case GGML_TYPE_IQ4_XS:
  8325. case GGML_TYPE_IQ3_S:
  8326. case GGML_TYPE_IQ2_S:
  8327. default:
  8328. {
  8329. GGML_ASSERT(false);
  8330. } break;
  8331. }
  8332. }
  8333. // ggml_compute_forward_sub
  8334. static void ggml_compute_forward_sub_f32(
  8335. const struct ggml_compute_params * params,
  8336. struct ggml_tensor * dst) {
  8337. const struct ggml_tensor * src0 = dst->src[0];
  8338. const struct ggml_tensor * src1 = dst->src[1];
  8339. assert(params->ith == 0);
  8340. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8341. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8342. return;
  8343. }
  8344. const int nr = ggml_nrows(src0);
  8345. GGML_TENSOR_BINARY_OP_LOCALS
  8346. GGML_ASSERT( nb0 == sizeof(float));
  8347. GGML_ASSERT(nb00 == sizeof(float));
  8348. if (nb10 == sizeof(float)) {
  8349. for (int ir = 0; ir < nr; ++ir) {
  8350. // src0, src1 and dst are same shape => same indices
  8351. const int i3 = ir/(ne2*ne1);
  8352. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8353. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8354. #ifdef GGML_USE_ACCELERATE
  8355. vDSP_vsub(
  8356. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8357. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8358. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8359. ne0);
  8360. #else
  8361. ggml_vec_sub_f32(ne0,
  8362. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8363. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8364. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8365. #endif
  8366. // }
  8367. // }
  8368. }
  8369. } else {
  8370. // src1 is not contiguous
  8371. for (int ir = 0; ir < nr; ++ir) {
  8372. // src0, src1 and dst are same shape => same indices
  8373. const int i3 = ir/(ne2*ne1);
  8374. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8375. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8376. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8377. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8378. for (int i0 = 0; i0 < ne0; i0++) {
  8379. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8380. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8381. }
  8382. }
  8383. }
  8384. }
  8385. static void ggml_compute_forward_sub(
  8386. const struct ggml_compute_params * params,
  8387. struct ggml_tensor * dst) {
  8388. const struct ggml_tensor * src0 = dst->src[0];
  8389. switch (src0->type) {
  8390. case GGML_TYPE_F32:
  8391. {
  8392. ggml_compute_forward_sub_f32(params, dst);
  8393. } break;
  8394. default:
  8395. {
  8396. GGML_ASSERT(false);
  8397. } break;
  8398. }
  8399. }
  8400. // ggml_compute_forward_mul
  8401. static void ggml_compute_forward_mul_f32(
  8402. const struct ggml_compute_params * params,
  8403. struct ggml_tensor * dst) {
  8404. const struct ggml_tensor * src0 = dst->src[0];
  8405. const struct ggml_tensor * src1 = dst->src[1];
  8406. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8407. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8408. return;
  8409. }
  8410. const int ith = params->ith;
  8411. const int nth = params->nth;
  8412. #if defined(GGML_USE_CLBLAST)
  8413. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8414. // TODO: OpenCL kernel support full broadcast
  8415. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8416. if (ith == 0) {
  8417. ggml_cl_mul(src0, src1, dst);
  8418. }
  8419. return;
  8420. }
  8421. #endif
  8422. const int64_t nr = ggml_nrows(src0);
  8423. GGML_TENSOR_BINARY_OP_LOCALS
  8424. GGML_ASSERT( nb0 == sizeof(float));
  8425. GGML_ASSERT(nb00 == sizeof(float));
  8426. if (nb10 == sizeof(float)) {
  8427. for (int64_t ir = ith; ir < nr; ir += nth) {
  8428. // src0 and dst are same shape => same indices
  8429. const int64_t i03 = ir/(ne02*ne01);
  8430. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8431. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8432. const int64_t i13 = i03 % ne13;
  8433. const int64_t i12 = i02 % ne12;
  8434. const int64_t i11 = i01 % ne11;
  8435. const int64_t nr0 = ne00 / ne10;
  8436. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8437. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8438. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8439. for (int64_t r = 0 ; r < nr0; ++r) {
  8440. #ifdef GGML_USE_ACCELERATE
  8441. UNUSED(ggml_vec_mul_f32);
  8442. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8443. #else
  8444. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8445. #endif
  8446. }
  8447. }
  8448. } else {
  8449. // src1 is not contiguous
  8450. for (int64_t ir = ith; ir < nr; ir += nth) {
  8451. // src0 and dst are same shape => same indices
  8452. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8453. const int64_t i03 = ir/(ne02*ne01);
  8454. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8455. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8456. const int64_t i13 = i03 % ne13;
  8457. const int64_t i12 = i02 % ne12;
  8458. const int64_t i11 = i01 % ne11;
  8459. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8460. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8461. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8462. const int64_t i10 = i0 % ne10;
  8463. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8464. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8465. }
  8466. }
  8467. }
  8468. }
  8469. static void ggml_compute_forward_mul(
  8470. const struct ggml_compute_params * params,
  8471. struct ggml_tensor * dst) {
  8472. const struct ggml_tensor * src0 = dst->src[0];
  8473. const struct ggml_tensor * src1 = dst->src[1];
  8474. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8475. switch (src0->type) {
  8476. case GGML_TYPE_F32:
  8477. {
  8478. ggml_compute_forward_mul_f32(params, dst);
  8479. } break;
  8480. default:
  8481. {
  8482. GGML_ASSERT(false);
  8483. } break;
  8484. }
  8485. }
  8486. // ggml_compute_forward_div
  8487. static void ggml_compute_forward_div_f32(
  8488. const struct ggml_compute_params * params,
  8489. struct ggml_tensor * dst) {
  8490. const struct ggml_tensor * src0 = dst->src[0];
  8491. const struct ggml_tensor * src1 = dst->src[1];
  8492. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8493. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8494. return;
  8495. }
  8496. const int ith = params->ith;
  8497. const int nth = params->nth;
  8498. const int64_t nr = ggml_nrows(src0);
  8499. GGML_TENSOR_BINARY_OP_LOCALS
  8500. GGML_ASSERT( nb0 == sizeof(float));
  8501. GGML_ASSERT(nb00 == sizeof(float));
  8502. if (nb10 == sizeof(float)) {
  8503. for (int64_t ir = ith; ir < nr; ir += nth) {
  8504. // src0 and dst are same shape => same indices
  8505. const int64_t i03 = ir/(ne02*ne01);
  8506. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8507. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8508. const int64_t i13 = i03 % ne13;
  8509. const int64_t i12 = i02 % ne12;
  8510. const int64_t i11 = i01 % ne11;
  8511. const int64_t nr0 = ne00 / ne10;
  8512. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8513. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8514. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8515. for (int64_t r = 0; r < nr0; ++r) {
  8516. #ifdef GGML_USE_ACCELERATE
  8517. UNUSED(ggml_vec_div_f32);
  8518. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8519. #else
  8520. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8521. #endif
  8522. }
  8523. }
  8524. } else {
  8525. // src1 is not contiguous
  8526. for (int64_t ir = ith; ir < nr; ir += nth) {
  8527. // src0 and dst are same shape => same indices
  8528. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8529. const int64_t i03 = ir/(ne02*ne01);
  8530. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8531. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8532. const int64_t i13 = i03 % ne13;
  8533. const int64_t i12 = i02 % ne12;
  8534. const int64_t i11 = i01 % ne11;
  8535. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8536. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8537. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8538. const int64_t i10 = i0 % ne10;
  8539. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8540. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8541. }
  8542. }
  8543. }
  8544. }
  8545. static void ggml_compute_forward_div(
  8546. const struct ggml_compute_params * params,
  8547. struct ggml_tensor * dst) {
  8548. const struct ggml_tensor * src0 = dst->src[0];
  8549. switch (src0->type) {
  8550. case GGML_TYPE_F32:
  8551. {
  8552. ggml_compute_forward_div_f32(params, dst);
  8553. } break;
  8554. default:
  8555. {
  8556. GGML_ASSERT(false);
  8557. } break;
  8558. }
  8559. }
  8560. // ggml_compute_forward_sqr
  8561. static void ggml_compute_forward_sqr_f32(
  8562. const struct ggml_compute_params * params,
  8563. struct ggml_tensor * dst) {
  8564. const struct ggml_tensor * src0 = dst->src[0];
  8565. assert(params->ith == 0);
  8566. assert(ggml_are_same_shape(src0, dst));
  8567. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8568. return;
  8569. }
  8570. const int n = ggml_nrows(src0);
  8571. const int nc = src0->ne[0];
  8572. assert( dst->nb[0] == sizeof(float));
  8573. assert(src0->nb[0] == sizeof(float));
  8574. for (int i = 0; i < n; i++) {
  8575. ggml_vec_sqr_f32(nc,
  8576. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8577. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8578. }
  8579. }
  8580. static void ggml_compute_forward_sqr(
  8581. const struct ggml_compute_params * params,
  8582. struct ggml_tensor * dst) {
  8583. const struct ggml_tensor * src0 = dst->src[0];
  8584. switch (src0->type) {
  8585. case GGML_TYPE_F32:
  8586. {
  8587. ggml_compute_forward_sqr_f32(params, dst);
  8588. } break;
  8589. default:
  8590. {
  8591. GGML_ASSERT(false);
  8592. } break;
  8593. }
  8594. }
  8595. // ggml_compute_forward_sqrt
  8596. static void ggml_compute_forward_sqrt_f32(
  8597. const struct ggml_compute_params * params,
  8598. struct ggml_tensor * dst) {
  8599. const struct ggml_tensor * src0 = dst->src[0];
  8600. assert(params->ith == 0);
  8601. assert(ggml_are_same_shape(src0, dst));
  8602. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8603. return;
  8604. }
  8605. const int n = ggml_nrows(src0);
  8606. const int nc = src0->ne[0];
  8607. assert( dst->nb[0] == sizeof(float));
  8608. assert(src0->nb[0] == sizeof(float));
  8609. for (int i = 0; i < n; i++) {
  8610. ggml_vec_sqrt_f32(nc,
  8611. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8612. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8613. }
  8614. }
  8615. static void ggml_compute_forward_sqrt(
  8616. const struct ggml_compute_params * params,
  8617. struct ggml_tensor * dst) {
  8618. const struct ggml_tensor * src0 = dst->src[0];
  8619. switch (src0->type) {
  8620. case GGML_TYPE_F32:
  8621. {
  8622. ggml_compute_forward_sqrt_f32(params, dst);
  8623. } break;
  8624. default:
  8625. {
  8626. GGML_ASSERT(false);
  8627. } break;
  8628. }
  8629. }
  8630. // ggml_compute_forward_log
  8631. static void ggml_compute_forward_log_f32(
  8632. const struct ggml_compute_params * params,
  8633. struct ggml_tensor * dst) {
  8634. const struct ggml_tensor * src0 = dst->src[0];
  8635. GGML_ASSERT(params->ith == 0);
  8636. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8637. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8638. return;
  8639. }
  8640. const int n = ggml_nrows(src0);
  8641. const int nc = src0->ne[0];
  8642. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8643. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8644. for (int i = 0; i < n; i++) {
  8645. ggml_vec_log_f32(nc,
  8646. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8647. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8648. }
  8649. }
  8650. static void ggml_compute_forward_log(
  8651. const struct ggml_compute_params * params,
  8652. struct ggml_tensor * dst) {
  8653. const struct ggml_tensor * src0 = dst->src[0];
  8654. switch (src0->type) {
  8655. case GGML_TYPE_F32:
  8656. {
  8657. ggml_compute_forward_log_f32(params, dst);
  8658. } break;
  8659. default:
  8660. {
  8661. GGML_ASSERT(false);
  8662. } break;
  8663. }
  8664. }
  8665. // ggml_compute_forward_sum
  8666. static void ggml_compute_forward_sum_f32(
  8667. const struct ggml_compute_params * params,
  8668. struct ggml_tensor * dst) {
  8669. const struct ggml_tensor * src0 = dst->src[0];
  8670. assert(params->ith == 0);
  8671. assert(ggml_is_scalar(dst));
  8672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8673. return;
  8674. }
  8675. assert(ggml_is_scalar(dst));
  8676. assert(src0->nb[0] == sizeof(float));
  8677. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8678. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8679. ggml_float sum = 0;
  8680. ggml_float row_sum = 0;
  8681. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8682. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8683. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8684. ggml_vec_sum_f32_ggf(ne00,
  8685. &row_sum,
  8686. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8687. sum += row_sum;
  8688. }
  8689. }
  8690. }
  8691. ((float *) dst->data)[0] = sum;
  8692. }
  8693. static void ggml_compute_forward_sum_f16(
  8694. const struct ggml_compute_params * params,
  8695. struct ggml_tensor * dst) {
  8696. const struct ggml_tensor * src0 = dst->src[0];
  8697. assert(params->ith == 0);
  8698. assert(ggml_is_scalar(dst));
  8699. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8700. return;
  8701. }
  8702. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8703. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8704. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8705. float sum = 0;
  8706. float row_sum = 0;
  8707. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8708. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8709. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8710. ggml_vec_sum_f16_ggf(ne00,
  8711. &row_sum,
  8712. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8713. sum += row_sum;
  8714. }
  8715. }
  8716. }
  8717. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8718. }
  8719. static void ggml_compute_forward_sum_bf16(
  8720. const struct ggml_compute_params * params,
  8721. struct ggml_tensor * dst) {
  8722. const struct ggml_tensor * src0 = dst->src[0];
  8723. assert(params->ith == 0);
  8724. assert(ggml_is_scalar(dst));
  8725. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8726. return;
  8727. }
  8728. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8729. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8730. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8731. float sum = 0;
  8732. float row_sum = 0;
  8733. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8734. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8735. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8736. ggml_vec_sum_bf16_ggf(ne00,
  8737. &row_sum,
  8738. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8739. sum += row_sum;
  8740. }
  8741. }
  8742. }
  8743. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8744. }
  8745. static void ggml_compute_forward_sum(
  8746. const struct ggml_compute_params * params,
  8747. struct ggml_tensor * dst) {
  8748. const struct ggml_tensor * src0 = dst->src[0];
  8749. switch (src0->type) {
  8750. case GGML_TYPE_F32:
  8751. {
  8752. ggml_compute_forward_sum_f32(params, dst);
  8753. } break;
  8754. case GGML_TYPE_F16:
  8755. {
  8756. ggml_compute_forward_sum_f16(params, dst);
  8757. } break;
  8758. case GGML_TYPE_BF16:
  8759. {
  8760. ggml_compute_forward_sum_bf16(params, dst);
  8761. } break;
  8762. default:
  8763. {
  8764. GGML_ASSERT(false);
  8765. } break;
  8766. }
  8767. }
  8768. // ggml_compute_forward_sum_rows
  8769. static void ggml_compute_forward_sum_rows_f32(
  8770. const struct ggml_compute_params * params,
  8771. struct ggml_tensor * dst) {
  8772. const struct ggml_tensor * src0 = dst->src[0];
  8773. GGML_ASSERT(params->ith == 0);
  8774. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8775. return;
  8776. }
  8777. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8778. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8779. GGML_TENSOR_UNARY_OP_LOCALS
  8780. GGML_ASSERT(ne0 == 1);
  8781. GGML_ASSERT(ne1 == ne01);
  8782. GGML_ASSERT(ne2 == ne02);
  8783. GGML_ASSERT(ne3 == ne03);
  8784. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8785. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8786. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8787. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8788. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8789. float row_sum = 0;
  8790. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8791. dst_row[0] = row_sum;
  8792. }
  8793. }
  8794. }
  8795. }
  8796. static void ggml_compute_forward_sum_rows(
  8797. const struct ggml_compute_params * params,
  8798. struct ggml_tensor * dst) {
  8799. const struct ggml_tensor * src0 = dst->src[0];
  8800. switch (src0->type) {
  8801. case GGML_TYPE_F32:
  8802. {
  8803. ggml_compute_forward_sum_rows_f32(params, dst);
  8804. } break;
  8805. default:
  8806. {
  8807. GGML_ASSERT(false);
  8808. } break;
  8809. }
  8810. }
  8811. // ggml_compute_forward_mean
  8812. static void ggml_compute_forward_mean_f32(
  8813. const struct ggml_compute_params * params,
  8814. struct ggml_tensor * dst) {
  8815. const struct ggml_tensor * src0 = dst->src[0];
  8816. assert(params->ith == 0);
  8817. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8818. return;
  8819. }
  8820. assert(src0->nb[0] == sizeof(float));
  8821. GGML_TENSOR_UNARY_OP_LOCALS
  8822. assert(ne0 == 1);
  8823. assert(ne1 == ne01);
  8824. assert(ne2 == ne02);
  8825. assert(ne3 == ne03);
  8826. UNUSED(ne0);
  8827. UNUSED(ne1);
  8828. UNUSED(ne2);
  8829. UNUSED(ne3);
  8830. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8831. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8832. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8833. ggml_vec_sum_f32(ne00,
  8834. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8835. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8836. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8837. }
  8838. }
  8839. }
  8840. }
  8841. static void ggml_compute_forward_mean(
  8842. const struct ggml_compute_params * params,
  8843. struct ggml_tensor * dst) {
  8844. const struct ggml_tensor * src0 = dst->src[0];
  8845. switch (src0->type) {
  8846. case GGML_TYPE_F32:
  8847. {
  8848. ggml_compute_forward_mean_f32(params, dst);
  8849. } break;
  8850. default:
  8851. {
  8852. GGML_ASSERT(false);
  8853. } break;
  8854. }
  8855. }
  8856. // ggml_compute_forward_argmax
  8857. static void ggml_compute_forward_argmax_f32(
  8858. const struct ggml_compute_params * params,
  8859. struct ggml_tensor * dst) {
  8860. const struct ggml_tensor * src0 = dst->src[0];
  8861. assert(params->ith == 0);
  8862. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8863. return;
  8864. }
  8865. assert(src0->nb[0] == sizeof(float));
  8866. assert(dst->nb[0] == sizeof(float));
  8867. const int64_t ne00 = src0->ne[0];
  8868. const int64_t ne01 = src0->ne[1];
  8869. const size_t nb01 = src0->nb[1];
  8870. const size_t nb0 = dst->nb[0];
  8871. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8872. float * src = (float *) ((char *) src0->data + i1*nb01);
  8873. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8874. int v = 0;
  8875. ggml_vec_argmax_f32(ne00, &v, src);
  8876. dst_[0] = v;
  8877. }
  8878. }
  8879. static void ggml_compute_forward_argmax(
  8880. const struct ggml_compute_params * params,
  8881. struct ggml_tensor * dst) {
  8882. const struct ggml_tensor * src0 = dst->src[0];
  8883. switch (src0->type) {
  8884. case GGML_TYPE_F32:
  8885. {
  8886. ggml_compute_forward_argmax_f32(params, dst);
  8887. } break;
  8888. default:
  8889. {
  8890. GGML_ASSERT(false);
  8891. } break;
  8892. }
  8893. }
  8894. // ggml_compute_forward_repeat
  8895. static void ggml_compute_forward_repeat_f32(
  8896. const struct ggml_compute_params * params,
  8897. struct ggml_tensor * dst) {
  8898. const struct ggml_tensor * src0 = dst->src[0];
  8899. GGML_ASSERT(params->ith == 0);
  8900. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8901. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8902. return;
  8903. }
  8904. GGML_TENSOR_UNARY_OP_LOCALS
  8905. // guaranteed to be an integer due to the check in ggml_can_repeat
  8906. const int nr0 = (int)(ne0/ne00);
  8907. const int nr1 = (int)(ne1/ne01);
  8908. const int nr2 = (int)(ne2/ne02);
  8909. const int nr3 = (int)(ne3/ne03);
  8910. // TODO: support for transposed / permuted tensors
  8911. GGML_ASSERT(nb0 == sizeof(float));
  8912. GGML_ASSERT(nb00 == sizeof(float));
  8913. // TODO: maybe this is not optimal?
  8914. for (int i3 = 0; i3 < nr3; i3++) {
  8915. for (int k3 = 0; k3 < ne03; k3++) {
  8916. for (int i2 = 0; i2 < nr2; i2++) {
  8917. for (int k2 = 0; k2 < ne02; k2++) {
  8918. for (int i1 = 0; i1 < nr1; i1++) {
  8919. for (int k1 = 0; k1 < ne01; k1++) {
  8920. for (int i0 = 0; i0 < nr0; i0++) {
  8921. ggml_vec_cpy_f32(ne00,
  8922. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8923. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8924. }
  8925. }
  8926. }
  8927. }
  8928. }
  8929. }
  8930. }
  8931. }
  8932. static void ggml_compute_forward_repeat_f16(
  8933. const struct ggml_compute_params * params,
  8934. struct ggml_tensor * dst) {
  8935. const struct ggml_tensor * src0 = dst->src[0];
  8936. GGML_ASSERT(params->ith == 0);
  8937. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8938. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8939. return;
  8940. }
  8941. GGML_TENSOR_UNARY_OP_LOCALS
  8942. // guaranteed to be an integer due to the check in ggml_can_repeat
  8943. const int nr0 = (int)(ne0/ne00);
  8944. const int nr1 = (int)(ne1/ne01);
  8945. const int nr2 = (int)(ne2/ne02);
  8946. const int nr3 = (int)(ne3/ne03);
  8947. // TODO: support for transposed / permuted tensors
  8948. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8949. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8950. // TODO: maybe this is not optimal?
  8951. for (int i3 = 0; i3 < nr3; i3++) {
  8952. for (int k3 = 0; k3 < ne03; k3++) {
  8953. for (int i2 = 0; i2 < nr2; i2++) {
  8954. for (int k2 = 0; k2 < ne02; k2++) {
  8955. for (int i1 = 0; i1 < nr1; i1++) {
  8956. for (int k1 = 0; k1 < ne01; k1++) {
  8957. for (int i0 = 0; i0 < nr0; i0++) {
  8958. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8959. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8960. // ggml_vec_cpy_f16(ne00, y, x)
  8961. for (int i = 0; i < ne00; ++i) {
  8962. y[i] = x[i];
  8963. }
  8964. }
  8965. }
  8966. }
  8967. }
  8968. }
  8969. }
  8970. }
  8971. }
  8972. static void ggml_compute_forward_repeat(
  8973. const struct ggml_compute_params * params,
  8974. struct ggml_tensor * dst) {
  8975. const struct ggml_tensor * src0 = dst->src[0];
  8976. switch (src0->type) {
  8977. case GGML_TYPE_F16:
  8978. case GGML_TYPE_BF16:
  8979. case GGML_TYPE_I16:
  8980. {
  8981. ggml_compute_forward_repeat_f16(params, dst);
  8982. } break;
  8983. case GGML_TYPE_F32:
  8984. case GGML_TYPE_I32:
  8985. {
  8986. ggml_compute_forward_repeat_f32(params, dst);
  8987. } break;
  8988. default:
  8989. {
  8990. GGML_ASSERT(false);
  8991. } break;
  8992. }
  8993. }
  8994. // ggml_compute_forward_repeat_back
  8995. static void ggml_compute_forward_repeat_back_f32(
  8996. const struct ggml_compute_params * params,
  8997. struct ggml_tensor * dst) {
  8998. const struct ggml_tensor * src0 = dst->src[0];
  8999. GGML_ASSERT(params->ith == 0);
  9000. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9001. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9002. return;
  9003. }
  9004. GGML_TENSOR_UNARY_OP_LOCALS
  9005. // guaranteed to be an integer due to the check in ggml_can_repeat
  9006. const int nr0 = (int)(ne00/ne0);
  9007. const int nr1 = (int)(ne01/ne1);
  9008. const int nr2 = (int)(ne02/ne2);
  9009. const int nr3 = (int)(ne03/ne3);
  9010. // TODO: support for transposed / permuted tensors
  9011. GGML_ASSERT(nb0 == sizeof(float));
  9012. GGML_ASSERT(nb00 == sizeof(float));
  9013. if (ggml_is_contiguous(dst)) {
  9014. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9015. } else {
  9016. for (int k3 = 0; k3 < ne3; k3++) {
  9017. for (int k2 = 0; k2 < ne2; k2++) {
  9018. for (int k1 = 0; k1 < ne1; k1++) {
  9019. ggml_vec_set_f32(ne0,
  9020. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9021. 0);
  9022. }
  9023. }
  9024. }
  9025. }
  9026. // TODO: maybe this is not optimal?
  9027. for (int i3 = 0; i3 < nr3; i3++) {
  9028. for (int k3 = 0; k3 < ne3; k3++) {
  9029. for (int i2 = 0; i2 < nr2; i2++) {
  9030. for (int k2 = 0; k2 < ne2; k2++) {
  9031. for (int i1 = 0; i1 < nr1; i1++) {
  9032. for (int k1 = 0; k1 < ne1; k1++) {
  9033. for (int i0 = 0; i0 < nr0; i0++) {
  9034. ggml_vec_acc_f32(ne0,
  9035. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9036. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9037. }
  9038. }
  9039. }
  9040. }
  9041. }
  9042. }
  9043. }
  9044. }
  9045. static void ggml_compute_forward_repeat_back(
  9046. const struct ggml_compute_params * params,
  9047. struct ggml_tensor * dst) {
  9048. const struct ggml_tensor * src0 = dst->src[0];
  9049. switch (src0->type) {
  9050. case GGML_TYPE_F32:
  9051. {
  9052. ggml_compute_forward_repeat_back_f32(params, dst);
  9053. } break;
  9054. default:
  9055. {
  9056. GGML_ASSERT(false);
  9057. } break;
  9058. }
  9059. }
  9060. // ggml_compute_forward_concat
  9061. static void ggml_compute_forward_concat_f32(
  9062. const struct ggml_compute_params * params,
  9063. struct ggml_tensor * dst) {
  9064. const struct ggml_tensor * src0 = dst->src[0];
  9065. const struct ggml_tensor * src1 = dst->src[1];
  9066. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9067. return;
  9068. }
  9069. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9070. const int ith = params->ith;
  9071. const int nth = params->nth;
  9072. GGML_TENSOR_BINARY_OP_LOCALS
  9073. // TODO: support for transposed / permuted tensors
  9074. GGML_ASSERT(nb0 == sizeof(float));
  9075. GGML_ASSERT(nb00 == sizeof(float));
  9076. GGML_ASSERT(nb10 == sizeof(float));
  9077. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9078. GGML_ASSERT(dim >= 0 && dim < 4);
  9079. int64_t o[4] = {0, 0, 0, 0};
  9080. o[dim] = src0->ne[dim];
  9081. const float * x;
  9082. // TODO: smarter multi-theading
  9083. for (int i3 = 0; i3 < ne3; i3++) {
  9084. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9085. for (int i1 = 0; i1 < ne1; i1++) {
  9086. for (int i0 = 0; i0 < ne0; i0++) {
  9087. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9088. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9089. } else {
  9090. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9091. }
  9092. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9093. *y = *x;
  9094. }
  9095. }
  9096. }
  9097. }
  9098. }
  9099. static void ggml_compute_forward_concat(
  9100. const struct ggml_compute_params * params,
  9101. struct ggml_tensor * dst) {
  9102. const struct ggml_tensor * src0 = dst->src[0];
  9103. switch (src0->type) {
  9104. case GGML_TYPE_F32:
  9105. case GGML_TYPE_I32:
  9106. {
  9107. ggml_compute_forward_concat_f32(params, dst);
  9108. } break;
  9109. default:
  9110. {
  9111. GGML_ASSERT(false);
  9112. } break;
  9113. }
  9114. }
  9115. // ggml_compute_forward_abs
  9116. static void ggml_compute_forward_abs_f32(
  9117. const struct ggml_compute_params * params,
  9118. struct ggml_tensor * dst) {
  9119. const struct ggml_tensor * src0 = dst->src[0];
  9120. assert(params->ith == 0);
  9121. assert(ggml_are_same_shape(src0, dst));
  9122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9123. return;
  9124. }
  9125. const int n = ggml_nrows(src0);
  9126. const int nc = src0->ne[0];
  9127. assert(dst->nb[0] == sizeof(float));
  9128. assert(src0->nb[0] == sizeof(float));
  9129. for (int i = 0; i < n; i++) {
  9130. ggml_vec_abs_f32(nc,
  9131. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9132. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9133. }
  9134. }
  9135. static void ggml_compute_forward_abs(
  9136. const struct ggml_compute_params * params,
  9137. struct ggml_tensor * dst) {
  9138. const struct ggml_tensor * src0 = dst->src[0];
  9139. switch (src0->type) {
  9140. case GGML_TYPE_F32:
  9141. {
  9142. ggml_compute_forward_abs_f32(params, dst);
  9143. } break;
  9144. default:
  9145. {
  9146. GGML_ASSERT(false);
  9147. } break;
  9148. }
  9149. }
  9150. // ggml_compute_forward_sgn
  9151. static void ggml_compute_forward_sgn_f32(
  9152. const struct ggml_compute_params * params,
  9153. struct ggml_tensor * dst) {
  9154. const struct ggml_tensor * src0 = dst->src[0];
  9155. assert(params->ith == 0);
  9156. assert(ggml_are_same_shape(src0, dst));
  9157. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9158. return;
  9159. }
  9160. const int n = ggml_nrows(src0);
  9161. const int nc = src0->ne[0];
  9162. assert(dst->nb[0] == sizeof(float));
  9163. assert(src0->nb[0] == sizeof(float));
  9164. for (int i = 0; i < n; i++) {
  9165. ggml_vec_sgn_f32(nc,
  9166. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9167. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9168. }
  9169. }
  9170. static void ggml_compute_forward_sgn(
  9171. const struct ggml_compute_params * params,
  9172. struct ggml_tensor * dst) {
  9173. const struct ggml_tensor * src0 = dst->src[0];
  9174. switch (src0->type) {
  9175. case GGML_TYPE_F32:
  9176. {
  9177. ggml_compute_forward_sgn_f32(params, dst);
  9178. } break;
  9179. default:
  9180. {
  9181. GGML_ASSERT(false);
  9182. } break;
  9183. }
  9184. }
  9185. // ggml_compute_forward_neg
  9186. static void ggml_compute_forward_neg_f32(
  9187. const struct ggml_compute_params * params,
  9188. struct ggml_tensor * dst) {
  9189. const struct ggml_tensor * src0 = dst->src[0];
  9190. assert(params->ith == 0);
  9191. assert(ggml_are_same_shape(src0, dst));
  9192. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9193. return;
  9194. }
  9195. const int n = ggml_nrows(src0);
  9196. const int nc = src0->ne[0];
  9197. assert(dst->nb[0] == sizeof(float));
  9198. assert(src0->nb[0] == sizeof(float));
  9199. for (int i = 0; i < n; i++) {
  9200. ggml_vec_neg_f32(nc,
  9201. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9202. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9203. }
  9204. }
  9205. static void ggml_compute_forward_neg(
  9206. const struct ggml_compute_params * params,
  9207. struct ggml_tensor * dst) {
  9208. const struct ggml_tensor * src0 = dst->src[0];
  9209. switch (src0->type) {
  9210. case GGML_TYPE_F32:
  9211. {
  9212. ggml_compute_forward_neg_f32(params, dst);
  9213. } break;
  9214. default:
  9215. {
  9216. GGML_ASSERT(false);
  9217. } break;
  9218. }
  9219. }
  9220. // ggml_compute_forward_step
  9221. static void ggml_compute_forward_step_f32(
  9222. const struct ggml_compute_params * params,
  9223. struct ggml_tensor * dst) {
  9224. const struct ggml_tensor * src0 = dst->src[0];
  9225. assert(params->ith == 0);
  9226. assert(ggml_are_same_shape(src0, dst));
  9227. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9228. return;
  9229. }
  9230. const int n = ggml_nrows(src0);
  9231. const int nc = src0->ne[0];
  9232. assert(dst->nb[0] == sizeof(float));
  9233. assert(src0->nb[0] == sizeof(float));
  9234. for (int i = 0; i < n; i++) {
  9235. ggml_vec_step_f32(nc,
  9236. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9237. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9238. }
  9239. }
  9240. static void ggml_compute_forward_step(
  9241. const struct ggml_compute_params * params,
  9242. struct ggml_tensor * dst) {
  9243. const struct ggml_tensor * src0 = dst->src[0];
  9244. switch (src0->type) {
  9245. case GGML_TYPE_F32:
  9246. {
  9247. ggml_compute_forward_step_f32(params, dst);
  9248. } break;
  9249. default:
  9250. {
  9251. GGML_ASSERT(false);
  9252. } break;
  9253. }
  9254. }
  9255. // ggml_compute_forward_tanh
  9256. static void ggml_compute_forward_tanh_f32(
  9257. const struct ggml_compute_params * params,
  9258. struct ggml_tensor * dst) {
  9259. const struct ggml_tensor * src0 = dst->src[0];
  9260. assert(params->ith == 0);
  9261. assert(ggml_are_same_shape(src0, dst));
  9262. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9263. return;
  9264. }
  9265. const int n = ggml_nrows(src0);
  9266. const int nc = src0->ne[0];
  9267. assert(dst->nb[0] == sizeof(float));
  9268. assert(src0->nb[0] == sizeof(float));
  9269. for (int i = 0; i < n; i++) {
  9270. ggml_vec_tanh_f32(nc,
  9271. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9272. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9273. }
  9274. }
  9275. static void ggml_compute_forward_tanh(
  9276. const struct ggml_compute_params * params,
  9277. struct ggml_tensor * dst) {
  9278. const struct ggml_tensor * src0 = dst->src[0];
  9279. switch (src0->type) {
  9280. case GGML_TYPE_F32:
  9281. {
  9282. ggml_compute_forward_tanh_f32(params, dst);
  9283. } break;
  9284. default:
  9285. {
  9286. GGML_ASSERT(false);
  9287. } break;
  9288. }
  9289. }
  9290. // ggml_compute_forward_elu
  9291. static void ggml_compute_forward_elu_f32(
  9292. const struct ggml_compute_params * params,
  9293. struct ggml_tensor * dst) {
  9294. const struct ggml_tensor * src0 = dst->src[0];
  9295. assert(params->ith == 0);
  9296. assert(ggml_are_same_shape(src0, dst));
  9297. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9298. return;
  9299. }
  9300. const int n = ggml_nrows(src0);
  9301. const int nc = src0->ne[0];
  9302. assert(dst->nb[0] == sizeof(float));
  9303. assert(src0->nb[0] == sizeof(float));
  9304. for (int i = 0; i < n; i++) {
  9305. ggml_vec_elu_f32(nc,
  9306. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9307. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9308. }
  9309. }
  9310. static void ggml_compute_forward_elu(
  9311. const struct ggml_compute_params * params,
  9312. struct ggml_tensor * dst) {
  9313. const struct ggml_tensor * src0 = dst->src[0];
  9314. switch (src0->type) {
  9315. case GGML_TYPE_F32:
  9316. {
  9317. ggml_compute_forward_elu_f32(params, dst);
  9318. } break;
  9319. default:
  9320. {
  9321. GGML_ASSERT(false);
  9322. } break;
  9323. }
  9324. }
  9325. // ggml_compute_forward_relu
  9326. static void ggml_compute_forward_relu_f32(
  9327. const struct ggml_compute_params * params,
  9328. struct ggml_tensor * dst) {
  9329. const struct ggml_tensor * src0 = dst->src[0];
  9330. assert(params->ith == 0);
  9331. assert(ggml_are_same_shape(src0, dst));
  9332. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9333. return;
  9334. }
  9335. const int n = ggml_nrows(src0);
  9336. const int nc = src0->ne[0];
  9337. assert(dst->nb[0] == sizeof(float));
  9338. assert(src0->nb[0] == sizeof(float));
  9339. for (int i = 0; i < n; i++) {
  9340. ggml_vec_relu_f32(nc,
  9341. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9342. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9343. }
  9344. }
  9345. static void ggml_compute_forward_relu(
  9346. const struct ggml_compute_params * params,
  9347. struct ggml_tensor * dst) {
  9348. const struct ggml_tensor * src0 = dst->src[0];
  9349. switch (src0->type) {
  9350. case GGML_TYPE_F32:
  9351. {
  9352. ggml_compute_forward_relu_f32(params, dst);
  9353. } break;
  9354. default:
  9355. {
  9356. GGML_ASSERT(false);
  9357. } break;
  9358. }
  9359. }
  9360. // ggml_compute_forward_sigmoid
  9361. static void ggml_compute_forward_sigmoid_f32(
  9362. const struct ggml_compute_params * params,
  9363. struct ggml_tensor * dst) {
  9364. const struct ggml_tensor * src0 = dst->src[0];
  9365. assert(params->ith == 0);
  9366. assert(ggml_are_same_shape(src0, dst));
  9367. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9368. return;
  9369. }
  9370. const int n = ggml_nrows(src0);
  9371. const int nc = src0->ne[0];
  9372. assert(dst->nb[0] == sizeof(float));
  9373. assert(src0->nb[0] == sizeof(float));
  9374. for (int i = 0; i < n; i++) {
  9375. ggml_vec_sigmoid_f32(nc,
  9376. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9377. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9378. }
  9379. }
  9380. static void ggml_compute_forward_sigmoid(
  9381. const struct ggml_compute_params * params,
  9382. struct ggml_tensor * dst) {
  9383. const struct ggml_tensor * src0 = dst->src[0];
  9384. switch (src0->type) {
  9385. case GGML_TYPE_F32:
  9386. {
  9387. ggml_compute_forward_sigmoid_f32(params, dst);
  9388. } break;
  9389. default:
  9390. {
  9391. GGML_ASSERT(false);
  9392. } break;
  9393. }
  9394. }
  9395. // ggml_compute_forward_gelu
  9396. static void ggml_compute_forward_gelu_f32(
  9397. const struct ggml_compute_params * params,
  9398. struct ggml_tensor * dst) {
  9399. const struct ggml_tensor * src0 = dst->src[0];
  9400. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9401. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9402. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9403. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9404. return;
  9405. }
  9406. const int ith = params->ith;
  9407. const int nth = params->nth;
  9408. const int nc = src0->ne[0];
  9409. const int nr = ggml_nrows(src0);
  9410. // rows per thread
  9411. const int dr = (nr + nth - 1)/nth;
  9412. // row range for this thread
  9413. const int ir0 = dr*ith;
  9414. const int ir1 = MIN(ir0 + dr, nr);
  9415. for (int i1 = ir0; i1 < ir1; i1++) {
  9416. ggml_vec_gelu_f32(nc,
  9417. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9418. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9419. #ifndef NDEBUG
  9420. for (int k = 0; k < nc; k++) {
  9421. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9422. UNUSED(x);
  9423. assert(!isnan(x));
  9424. assert(!isinf(x));
  9425. }
  9426. #endif
  9427. }
  9428. }
  9429. static void ggml_compute_forward_gelu(
  9430. const struct ggml_compute_params * params,
  9431. struct ggml_tensor * dst) {
  9432. const struct ggml_tensor * src0 = dst->src[0];
  9433. switch (src0->type) {
  9434. case GGML_TYPE_F32:
  9435. {
  9436. ggml_compute_forward_gelu_f32(params, dst);
  9437. } break;
  9438. default:
  9439. {
  9440. GGML_ASSERT(false);
  9441. } break;
  9442. }
  9443. }
  9444. // ggml_compute_forward_gelu_quick
  9445. static void ggml_compute_forward_gelu_quick_f32(
  9446. const struct ggml_compute_params * params,
  9447. struct ggml_tensor * dst) {
  9448. const struct ggml_tensor * src0 = dst->src[0];
  9449. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9450. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9451. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9452. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9453. return;
  9454. }
  9455. const int ith = params->ith;
  9456. const int nth = params->nth;
  9457. const int nc = src0->ne[0];
  9458. const int nr = ggml_nrows(src0);
  9459. // rows per thread
  9460. const int dr = (nr + nth - 1)/nth;
  9461. // row range for this thread
  9462. const int ir0 = dr*ith;
  9463. const int ir1 = MIN(ir0 + dr, nr);
  9464. for (int i1 = ir0; i1 < ir1; i1++) {
  9465. ggml_vec_gelu_quick_f32(nc,
  9466. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9467. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9468. #ifndef NDEBUG
  9469. for (int k = 0; k < nc; k++) {
  9470. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9471. UNUSED(x);
  9472. assert(!isnan(x));
  9473. assert(!isinf(x));
  9474. }
  9475. #endif
  9476. }
  9477. }
  9478. static void ggml_compute_forward_gelu_quick(
  9479. const struct ggml_compute_params * params,
  9480. struct ggml_tensor * dst) {
  9481. const struct ggml_tensor * src0 = dst->src[0];
  9482. switch (src0->type) {
  9483. case GGML_TYPE_F32:
  9484. {
  9485. ggml_compute_forward_gelu_quick_f32(params, dst);
  9486. } break;
  9487. default:
  9488. {
  9489. GGML_ASSERT(false);
  9490. } break;
  9491. }
  9492. }
  9493. // ggml_compute_forward_silu
  9494. static void ggml_compute_forward_silu_f32(
  9495. const struct ggml_compute_params * params,
  9496. struct ggml_tensor * dst) {
  9497. const struct ggml_tensor * src0 = dst->src[0];
  9498. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9499. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9500. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9501. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9502. return;
  9503. }
  9504. const int ith = params->ith;
  9505. const int nth = params->nth;
  9506. const int nc = src0->ne[0];
  9507. const int nr = ggml_nrows(src0);
  9508. // rows per thread
  9509. const int dr = (nr + nth - 1)/nth;
  9510. // row range for this thread
  9511. const int ir0 = dr*ith;
  9512. const int ir1 = MIN(ir0 + dr, nr);
  9513. for (int i1 = ir0; i1 < ir1; i1++) {
  9514. ggml_vec_silu_f32(nc,
  9515. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9516. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9517. #ifndef NDEBUG
  9518. for (int k = 0; k < nc; k++) {
  9519. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9520. UNUSED(x);
  9521. assert(!isnan(x));
  9522. assert(!isinf(x));
  9523. }
  9524. #endif
  9525. }
  9526. }
  9527. static void ggml_compute_forward_silu(
  9528. const struct ggml_compute_params * params,
  9529. struct ggml_tensor * dst) {
  9530. const struct ggml_tensor * src0 = dst->src[0];
  9531. switch (src0->type) {
  9532. case GGML_TYPE_F32:
  9533. {
  9534. ggml_compute_forward_silu_f32(params, dst);
  9535. } break;
  9536. default:
  9537. {
  9538. GGML_ASSERT(false);
  9539. } break;
  9540. }
  9541. }
  9542. // ggml_compute_forward_leaky_relu
  9543. static void ggml_compute_forward_leaky_relu_f32(
  9544. const struct ggml_compute_params * params,
  9545. struct ggml_tensor * dst) {
  9546. const struct ggml_tensor * src0 = dst->src[0];
  9547. assert(params->ith == 0);
  9548. assert(ggml_are_same_shape(src0, dst));
  9549. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9550. return;
  9551. }
  9552. const int n = ggml_nrows(src0);
  9553. const int nc = src0->ne[0];
  9554. float negative_slope;
  9555. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9556. assert(dst->nb[0] == sizeof(float));
  9557. assert(src0->nb[0] == sizeof(float));
  9558. for (int i = 0; i < n; i++) {
  9559. ggml_vec_leaky_relu_f32(nc,
  9560. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9561. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9562. }
  9563. }
  9564. static void ggml_compute_forward_leaky_relu(
  9565. const struct ggml_compute_params * params,
  9566. struct ggml_tensor * dst) {
  9567. const struct ggml_tensor * src0 = dst->src[0];
  9568. switch (src0->type) {
  9569. case GGML_TYPE_F32:
  9570. {
  9571. ggml_compute_forward_leaky_relu_f32(params, dst);
  9572. } break;
  9573. default:
  9574. {
  9575. GGML_ASSERT(false);
  9576. } break;
  9577. }
  9578. }
  9579. // ggml_compute_forward_silu_back
  9580. static void ggml_compute_forward_silu_back_f32(
  9581. const struct ggml_compute_params * params,
  9582. struct ggml_tensor * dst) {
  9583. const struct ggml_tensor * src0 = dst->src[0];
  9584. const struct ggml_tensor * grad = dst->src[1];
  9585. GGML_ASSERT(ggml_is_contiguous_1(grad));
  9586. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9587. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9588. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9589. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9590. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9591. return;
  9592. }
  9593. const int ith = params->ith;
  9594. const int nth = params->nth;
  9595. const int nc = src0->ne[0];
  9596. const int nr = ggml_nrows(src0);
  9597. // rows per thread
  9598. const int dr = (nr + nth - 1)/nth;
  9599. // row range for this thread
  9600. const int ir0 = dr*ith;
  9601. const int ir1 = MIN(ir0 + dr, nr);
  9602. for (int i1 = ir0; i1 < ir1; i1++) {
  9603. ggml_vec_silu_backward_f32(nc,
  9604. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9605. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9606. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9607. #ifndef NDEBUG
  9608. for (int k = 0; k < nc; k++) {
  9609. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9610. UNUSED(x);
  9611. assert(!isnan(x));
  9612. assert(!isinf(x));
  9613. }
  9614. #endif
  9615. }
  9616. }
  9617. static void ggml_compute_forward_silu_back(
  9618. const struct ggml_compute_params * params,
  9619. struct ggml_tensor * dst) {
  9620. const struct ggml_tensor * src0 = dst->src[0];
  9621. switch (src0->type) {
  9622. case GGML_TYPE_F32:
  9623. {
  9624. ggml_compute_forward_silu_back_f32(params, dst);
  9625. } break;
  9626. default:
  9627. {
  9628. GGML_ASSERT(false);
  9629. } break;
  9630. }
  9631. }
  9632. static void ggml_compute_forward_hardswish_f32(
  9633. const struct ggml_compute_params * params,
  9634. struct ggml_tensor * dst) {
  9635. const struct ggml_tensor * src0 = dst->src[0];
  9636. assert(params->ith == 0);
  9637. assert(ggml_are_same_shape(src0, dst));
  9638. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9639. return;
  9640. }
  9641. const int n = ggml_nrows(src0);
  9642. const int nc = src0->ne[0];
  9643. assert(dst->nb[0] == sizeof(float));
  9644. assert(src0->nb[0] == sizeof(float));
  9645. for (int i = 0; i < n; i++) {
  9646. ggml_vec_hardswish_f32(nc,
  9647. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9648. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9649. }
  9650. }
  9651. static void ggml_compute_forward_hardswish(
  9652. const struct ggml_compute_params * params,
  9653. struct ggml_tensor * dst) {
  9654. const struct ggml_tensor * src0 = dst->src[0];
  9655. switch (src0->type) {
  9656. case GGML_TYPE_F32:
  9657. {
  9658. ggml_compute_forward_hardswish_f32(params, dst);
  9659. } break;
  9660. default:
  9661. {
  9662. GGML_ASSERT(false);
  9663. } break;
  9664. }
  9665. }
  9666. static void ggml_compute_forward_hardsigmoid_f32(
  9667. const struct ggml_compute_params * params,
  9668. struct ggml_tensor * dst) {
  9669. const struct ggml_tensor * src0 = dst->src[0];
  9670. assert(params->ith == 0);
  9671. assert(ggml_are_same_shape(src0, dst));
  9672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9673. return;
  9674. }
  9675. const int n = ggml_nrows(src0);
  9676. const int nc = src0->ne[0];
  9677. assert(dst->nb[0] == sizeof(float));
  9678. assert(src0->nb[0] == sizeof(float));
  9679. for (int i = 0; i < n; i++) {
  9680. ggml_vec_hardsigmoid_f32(nc,
  9681. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9682. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9683. }
  9684. }
  9685. static void ggml_compute_forward_hardsigmoid(
  9686. const struct ggml_compute_params * params,
  9687. struct ggml_tensor * dst) {
  9688. const struct ggml_tensor * src0 = dst->src[0];
  9689. switch (src0->type) {
  9690. case GGML_TYPE_F32:
  9691. {
  9692. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9693. } break;
  9694. default:
  9695. {
  9696. GGML_ASSERT(false);
  9697. } break;
  9698. }
  9699. }
  9700. // ggml_compute_forward_norm
  9701. static void ggml_compute_forward_norm_f32(
  9702. const struct ggml_compute_params * params,
  9703. struct ggml_tensor * dst) {
  9704. const struct ggml_tensor * src0 = dst->src[0];
  9705. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9707. return;
  9708. }
  9709. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9710. const int ith = params->ith;
  9711. const int nth = params->nth;
  9712. GGML_TENSOR_UNARY_OP_LOCALS
  9713. float eps;
  9714. memcpy(&eps, dst->op_params, sizeof(float));
  9715. GGML_ASSERT(eps > 0.0f);
  9716. // TODO: optimize
  9717. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9718. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9719. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9720. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9721. ggml_float sum = 0.0;
  9722. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9723. sum += (ggml_float)x[i00];
  9724. }
  9725. float mean = sum/ne00;
  9726. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9727. ggml_float sum2 = 0.0;
  9728. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9729. float v = x[i00] - mean;
  9730. y[i00] = v;
  9731. sum2 += (ggml_float)(v*v);
  9732. }
  9733. float variance = sum2/ne00;
  9734. const float scale = 1.0f/sqrtf(variance + eps);
  9735. ggml_vec_scale_f32(ne00, y, scale);
  9736. }
  9737. }
  9738. }
  9739. }
  9740. static void ggml_compute_forward_norm(
  9741. const struct ggml_compute_params * params,
  9742. struct ggml_tensor * dst) {
  9743. const struct ggml_tensor * src0 = dst->src[0];
  9744. switch (src0->type) {
  9745. case GGML_TYPE_F32:
  9746. {
  9747. ggml_compute_forward_norm_f32(params, dst);
  9748. } break;
  9749. default:
  9750. {
  9751. GGML_ASSERT(false);
  9752. } break;
  9753. }
  9754. }
  9755. // ggml_compute_forward_group_rms_norm
  9756. static void ggml_compute_forward_rms_norm_f32(
  9757. const struct ggml_compute_params * params,
  9758. struct ggml_tensor * dst) {
  9759. const struct ggml_tensor * src0 = dst->src[0];
  9760. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9761. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9762. return;
  9763. }
  9764. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9765. const int ith = params->ith;
  9766. const int nth = params->nth;
  9767. GGML_TENSOR_UNARY_OP_LOCALS
  9768. float eps;
  9769. memcpy(&eps, dst->op_params, sizeof(float));
  9770. GGML_ASSERT(eps > 0.0f);
  9771. // TODO: optimize
  9772. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9773. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9774. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9775. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9776. ggml_float sum = 0.0;
  9777. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9778. sum += (ggml_float)(x[i00] * x[i00]);
  9779. }
  9780. const float mean = sum/ne00;
  9781. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9782. memcpy(y, x, ne00 * sizeof(float));
  9783. // for (int i00 = 0; i00 < ne00; i00++) {
  9784. // y[i00] = x[i00];
  9785. // }
  9786. const float scale = 1.0f/sqrtf(mean + eps);
  9787. ggml_vec_scale_f32(ne00, y, scale);
  9788. }
  9789. }
  9790. }
  9791. }
  9792. static void ggml_compute_forward_rms_norm(
  9793. const struct ggml_compute_params * params,
  9794. struct ggml_tensor * dst) {
  9795. const struct ggml_tensor * src0 = dst->src[0];
  9796. switch (src0->type) {
  9797. case GGML_TYPE_F32:
  9798. {
  9799. ggml_compute_forward_rms_norm_f32(params, dst);
  9800. } break;
  9801. default:
  9802. {
  9803. GGML_ASSERT(false);
  9804. } break;
  9805. }
  9806. }
  9807. static void ggml_compute_forward_rms_norm_back_f32(
  9808. const struct ggml_compute_params * params,
  9809. struct ggml_tensor * dst) {
  9810. const struct ggml_tensor * src0 = dst->src[0];
  9811. const struct ggml_tensor * src1 = dst->src[1];
  9812. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9813. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9814. return;
  9815. }
  9816. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9817. const int ith = params->ith;
  9818. const int nth = params->nth;
  9819. GGML_TENSOR_BINARY_OP_LOCALS
  9820. float eps;
  9821. memcpy(&eps, dst->op_params, sizeof(float));
  9822. // TODO: optimize
  9823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9825. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9826. // src1 is same shape as src0 => same indices
  9827. const int64_t i11 = i01;
  9828. const int64_t i12 = i02;
  9829. const int64_t i13 = i03;
  9830. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9831. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9832. ggml_float sum_xx = 0.0;
  9833. ggml_float sum_xdz = 0.0;
  9834. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9835. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9836. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9837. }
  9838. //const float mean = (float)(sum_xx)/ne00;
  9839. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9840. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9841. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9842. // we could cache rms from forward pass to improve performance.
  9843. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9844. //const float rms = sqrtf(mean_eps);
  9845. const float rrms = 1.0f / sqrtf(mean_eps);
  9846. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9847. {
  9848. // z = rms_norm(x)
  9849. //
  9850. // rms_norm(src0) =
  9851. // scale(
  9852. // src0,
  9853. // div(
  9854. // 1,
  9855. // sqrt(
  9856. // add(
  9857. // scale(
  9858. // sum(
  9859. // sqr(
  9860. // src0)),
  9861. // (1.0/N)),
  9862. // eps))));
  9863. // postorder:
  9864. // ## op args grad
  9865. // 00 param src0 grad[#00]
  9866. // 01 const 1
  9867. // 02 sqr (#00) grad[#02]
  9868. // 03 sum (#02) grad[#03]
  9869. // 04 const 1/N
  9870. // 05 scale (#03, #04) grad[#05]
  9871. // 06 const eps
  9872. // 07 add (#05, #06) grad[#07]
  9873. // 08 sqrt (#07) grad[#08]
  9874. // 09 div (#01,#08) grad[#09]
  9875. // 10 scale (#00,#09) grad[#10]
  9876. //
  9877. // backward pass, given grad[#10]
  9878. // #10: scale
  9879. // grad[#00] += scale(grad[#10],#09)
  9880. // grad[#09] += sum(mul(grad[#10],#00))
  9881. // #09: div
  9882. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9883. // #08: sqrt
  9884. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9885. // #07: add
  9886. // grad[#05] += grad[#07]
  9887. // #05: scale
  9888. // grad[#03] += scale(grad[#05],#04)
  9889. // #03: sum
  9890. // grad[#02] += repeat(grad[#03], #02)
  9891. // #02:
  9892. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9893. //
  9894. // substitute and simplify:
  9895. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9896. // grad[#02] = repeat(grad[#03], #02)
  9897. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9898. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9899. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9900. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9901. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9902. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9903. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9904. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9905. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9906. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9907. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9908. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9909. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9910. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9911. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9912. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9913. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9914. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9915. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9916. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9917. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9918. // a = b*c + d*e
  9919. // a = b*c*f/f + d*e*f/f
  9920. // a = (b*c*f + d*e*f)*(1/f)
  9921. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9922. // a = (b + d*e/c)*c
  9923. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9924. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9925. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9926. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9927. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9928. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9929. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9930. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9931. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9932. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9933. }
  9934. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9935. // post-order:
  9936. // dx := x
  9937. // dx := scale(dx,-mean_xdz/mean_eps)
  9938. // dx := add(dx, dz)
  9939. // dx := scale(dx, rrms)
  9940. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9941. ggml_vec_cpy_f32 (ne00, dx, x);
  9942. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9943. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9944. ggml_vec_acc_f32 (ne00, dx, dz);
  9945. ggml_vec_scale_f32(ne00, dx, rrms);
  9946. }
  9947. }
  9948. }
  9949. }
  9950. static void ggml_compute_forward_rms_norm_back(
  9951. const struct ggml_compute_params * params,
  9952. struct ggml_tensor * dst) {
  9953. const struct ggml_tensor * src0 = dst->src[0];
  9954. switch (src0->type) {
  9955. case GGML_TYPE_F32:
  9956. {
  9957. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9958. } break;
  9959. default:
  9960. {
  9961. GGML_ASSERT(false);
  9962. } break;
  9963. }
  9964. }
  9965. // ggml_compute_forward_group_norm
  9966. static void ggml_compute_forward_group_norm_f32(
  9967. const struct ggml_compute_params * params,
  9968. struct ggml_tensor * dst) {
  9969. const struct ggml_tensor * src0 = dst->src[0];
  9970. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9971. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9972. return;
  9973. }
  9974. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9975. const int ith = params->ith;
  9976. const int nth = params->nth;
  9977. GGML_TENSOR_UNARY_OP_LOCALS
  9978. const float eps = 1e-6f; // TODO: make this a parameter
  9979. // TODO: optimize
  9980. int n_channels = src0->ne[2];
  9981. int n_groups = dst->op_params[0];
  9982. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9983. for (int i = ith; i < n_groups; i += nth) {
  9984. int start = i * n_channels_per_group;
  9985. int end = start + n_channels_per_group;
  9986. if (end > n_channels) {
  9987. end = n_channels;
  9988. }
  9989. int step = end - start;
  9990. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9991. ggml_float sum = 0.0;
  9992. for (int64_t i02 = start; i02 < end; i02++) {
  9993. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9994. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9995. ggml_float sumr = 0.0;
  9996. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9997. sumr += (ggml_float)x[i00];
  9998. }
  9999. sum += sumr;
  10000. }
  10001. }
  10002. const float mean = sum / (ne00 * ne01 * step);
  10003. ggml_float sum2 = 0.0;
  10004. for (int64_t i02 = start; i02 < end; i02++) {
  10005. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10006. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10007. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10008. ggml_float sumr = 0.0;
  10009. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10010. float v = x[i00] - mean;
  10011. y[i00] = v;
  10012. sumr += (ggml_float)(v * v);
  10013. }
  10014. sum2 += sumr;
  10015. }
  10016. }
  10017. const float variance = sum2 / (ne00 * ne01 * step);
  10018. const float scale = 1.0f / sqrtf(variance + eps);
  10019. for (int64_t i02 = start; i02 < end; i02++) {
  10020. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10021. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10022. ggml_vec_scale_f32(ne00, y, scale);
  10023. }
  10024. }
  10025. }
  10026. }
  10027. }
  10028. static void ggml_compute_forward_group_norm(
  10029. const struct ggml_compute_params * params,
  10030. struct ggml_tensor * dst) {
  10031. const struct ggml_tensor * src0 = dst->src[0];
  10032. switch (src0->type) {
  10033. case GGML_TYPE_F32:
  10034. {
  10035. ggml_compute_forward_group_norm_f32(params, dst);
  10036. } break;
  10037. default:
  10038. {
  10039. GGML_ASSERT(false);
  10040. } break;
  10041. }
  10042. }
  10043. // ggml_compute_forward_mul_mat
  10044. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10045. // helper function to determine if it is better to use BLAS or not
  10046. // for large matrices, BLAS is faster
  10047. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10048. const struct ggml_tensor * src0 = dst->src[0];
  10049. const struct ggml_tensor * src1 = dst->src[1];
  10050. //const int64_t ne00 = src0->ne[0];
  10051. //const int64_t ne01 = src0->ne[1];
  10052. const int64_t ne10 = src1->ne[0];
  10053. const int64_t ne0 = dst->ne[0];
  10054. const int64_t ne1 = dst->ne[1];
  10055. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10056. // all the experts for each batch element and the processing would become incredibly slow
  10057. // TODO: find the optimal values for these
  10058. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10059. ggml_is_contiguous(src0) &&
  10060. ggml_is_contiguous(src1) &&
  10061. //src0->type == GGML_TYPE_F32 &&
  10062. src1->type == GGML_TYPE_F32 &&
  10063. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10064. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10065. return true;
  10066. }
  10067. return false;
  10068. }
  10069. #endif
  10070. static void ggml_compute_forward_mul_mat_one_chunk(
  10071. const struct ggml_compute_params * params,
  10072. struct ggml_tensor * dst,
  10073. const int64_t num_rows_per_vec_dot,
  10074. const int64_t ir0_start,
  10075. const int64_t ir0_end,
  10076. const int64_t ir1_start,
  10077. const int64_t ir1_end) {
  10078. const struct ggml_tensor * src0 = dst->src[0];
  10079. const struct ggml_tensor * src1 = dst->src[1];
  10080. GGML_TENSOR_BINARY_OP_LOCALS
  10081. const enum ggml_type type = src0->type;
  10082. const bool src1_cont = ggml_is_contiguous(src1);
  10083. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10084. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10085. // broadcast factors
  10086. const int64_t r2 = ne12 / ne02;
  10087. const int64_t r3 = ne13 / ne03;
  10088. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10089. // threads with no work simply yield (not sure if it helps)
  10090. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10091. return;
  10092. }
  10093. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10094. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10095. assert(ne12 % ne02 == 0);
  10096. assert(ne13 % ne03 == 0);
  10097. // block-tiling attempt
  10098. const int64_t blck_0 = 16;
  10099. const int64_t blck_1 = 16;
  10100. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10101. // attempt to reduce false-sharing (does not seem to make a difference)
  10102. // 16 * 2, accounting for mmla kernels
  10103. float tmp[32];
  10104. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10105. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10106. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10107. const int64_t i13 = (ir1 / (ne12 * ne1));
  10108. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10109. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10110. // broadcast src0 into src1
  10111. const int64_t i03 = i13 / r3;
  10112. const int64_t i02 = i12 / r2;
  10113. const int64_t i1 = i11;
  10114. const int64_t i2 = i12;
  10115. const int64_t i3 = i13;
  10116. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10117. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10118. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10119. // the original src1 data pointer, so we should index using the indices directly
  10120. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10121. const char * src1_col = (const char*)wdata +
  10122. (src1_cont || src1->type != vec_dot_type
  10123. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10124. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10125. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10126. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10127. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10128. //}
  10129. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10130. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10131. }
  10132. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10133. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10134. }
  10135. }
  10136. }
  10137. }
  10138. }
  10139. static void ggml_compute_forward_mul_mat(
  10140. const struct ggml_compute_params * params,
  10141. struct ggml_tensor * dst,
  10142. struct ggml_compute_state * state) {
  10143. const struct ggml_tensor * src0 = dst->src[0];
  10144. const struct ggml_tensor * src1 = dst->src[1];
  10145. int64_t t0 = ggml_perf_time_us();
  10146. UNUSED(t0);
  10147. GGML_TENSOR_BINARY_OP_LOCALS
  10148. const int ith = params->ith;
  10149. const int nth = params->nth;
  10150. const enum ggml_type type = src0->type;
  10151. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10152. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10153. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10154. GGML_ASSERT(ne0 == ne01);
  10155. GGML_ASSERT(ne1 == ne11);
  10156. GGML_ASSERT(ne2 == ne12);
  10157. GGML_ASSERT(ne3 == ne13);
  10158. // we don't support permuted src0 or src1
  10159. GGML_ASSERT(nb00 == ggml_type_size(type));
  10160. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10161. // dst cannot be transposed or permuted
  10162. GGML_ASSERT(nb0 == sizeof(float));
  10163. GGML_ASSERT(nb0 <= nb1);
  10164. GGML_ASSERT(nb1 <= nb2);
  10165. GGML_ASSERT(nb2 <= nb3);
  10166. // broadcast factors
  10167. const int64_t r2 = ne12 / ne02;
  10168. const int64_t r3 = ne13 / ne03;
  10169. UNUSED(r2);
  10170. UNUSED(r3);
  10171. // nb01 >= nb00 - src0 is not transposed
  10172. // compute by src0 rows
  10173. #if defined(GGML_USE_CLBLAST)
  10174. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10175. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10176. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10177. }
  10178. return;
  10179. }
  10180. #endif
  10181. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10182. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10183. const int64_t ne_plane = ne01*ne00;
  10184. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10185. UNUSED(desired_wsize);
  10186. if (params->type == GGML_TASK_TYPE_INIT) {
  10187. if (type != GGML_TYPE_F32) {
  10188. assert(params->wsize >= desired_wsize);
  10189. // parallelize by src0 rows
  10190. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10191. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10192. // broadcast src0 into src1 across 2nd,3rd dimension
  10193. const int64_t i03 = i13/r3;
  10194. const int64_t i02 = i12/r2;
  10195. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10196. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10197. ggml_to_float_t const to_float = type_traits[type].to_float;
  10198. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10199. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10200. }
  10201. }
  10202. }
  10203. }
  10204. return;
  10205. }
  10206. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10207. return;
  10208. }
  10209. // perform sgemm, parallelization controlled by blas lib
  10210. if (ith != 0) {
  10211. return;
  10212. }
  10213. //const int64_t tgemm0 = ggml_perf_time_us();
  10214. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10215. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10216. const int64_t i03 = i13/r3;
  10217. const int64_t i02 = i12/r2;
  10218. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10219. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10220. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10221. if (type != GGML_TYPE_F32) {
  10222. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10223. }
  10224. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10225. ne1, ne01, ne10,
  10226. 1.0f, y, ne10,
  10227. x, ne00,
  10228. 0.0f, d, ne01);
  10229. }
  10230. }
  10231. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10232. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10233. return;
  10234. }
  10235. #endif
  10236. #if GGML_USE_LLAMAFILE
  10237. const bool src1_cont = ggml_is_contiguous(src1);
  10238. if (src1_cont) {
  10239. for (int64_t i13 = 0; i13 < ne13; i13++)
  10240. for (int64_t i12 = 0; i12 < ne12; i12++)
  10241. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10242. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10243. nb01/ggml_type_size(src0->type),
  10244. (const char *)src1->data + i12*nb12 + i13*nb13,
  10245. nb11/ggml_type_size(src1->type),
  10246. (char *)dst->data + i12*nb2 + i13*nb3,
  10247. nb1/ggml_type_size(dst->type),
  10248. ith, nth,
  10249. params->type,
  10250. src0->type,
  10251. src1->type,
  10252. dst->type))
  10253. goto UseGgmlGemm1;
  10254. return;
  10255. }
  10256. UseGgmlGemm1:;
  10257. #endif
  10258. if (params->type == GGML_TASK_TYPE_INIT) {
  10259. if (ith != 0) {
  10260. return;
  10261. }
  10262. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10263. atomic_store(&state->shared->current_chunk, nth);
  10264. if (src1->type != vec_dot_type) {
  10265. char * wdata = params->wdata;
  10266. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10267. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10268. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10269. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10270. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10271. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10272. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10273. wdata += row_size;
  10274. }
  10275. }
  10276. }
  10277. }
  10278. return;
  10279. }
  10280. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10281. return;
  10282. }
  10283. #if GGML_USE_LLAMAFILE
  10284. if (src1->type != vec_dot_type) {
  10285. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10286. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10287. for (int64_t i13 = 0; i13 < ne13; i13++)
  10288. for (int64_t i12 = 0; i12 < ne12; i12++)
  10289. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10290. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10291. nb01/ggml_type_size(src0->type),
  10292. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10293. row_size/ggml_type_size(vec_dot_type),
  10294. (char *)dst->data + i12*nb2 + i13*nb3,
  10295. nb1/ggml_type_size(dst->type),
  10296. ith, nth,
  10297. params->type,
  10298. src0->type,
  10299. vec_dot_type,
  10300. dst->type))
  10301. goto UseGgmlGemm2;
  10302. return;
  10303. }
  10304. UseGgmlGemm2:;
  10305. #endif
  10306. #ifdef GGML_PERF
  10307. int chunks_executed = 0;
  10308. UNUSED(chunks_executed);
  10309. #endif
  10310. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10311. const int64_t nr0 = ne0;
  10312. // This is the size of the rest of the dimensions of the result
  10313. const int64_t nr1 = ne1 * ne2 * ne3;
  10314. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10315. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10316. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10317. // this check can be removed once they are extended to support odd numbered rows/cols too
  10318. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10319. num_rows_per_vec_dot = 1;
  10320. }
  10321. // Now select a reasonable chunk size.
  10322. int chunk_size = 16;
  10323. // We need to step up the size if it's small
  10324. if (nr0 == 1 || nr1 == 1) {
  10325. chunk_size = 64;
  10326. }
  10327. // distribute the work across the inner or outer loop based on which one is larger
  10328. // The number of chunks in the 0/1 dim.
  10329. // CEIL(nr0/chunk_size)
  10330. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10331. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10332. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10333. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10334. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10335. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10336. // distribute the thread work across the inner or outer loop based on which one is larger
  10337. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10338. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10339. }
  10340. // The number of elements in each chunk
  10341. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10342. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10343. //if (ith == 0)
  10344. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10345. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10346. int current_chunk = ith;
  10347. while (current_chunk < nchunk0 * nchunk1) {
  10348. const int64_t ith0 = current_chunk % nchunk0;
  10349. const int64_t ith1 = current_chunk / nchunk0;
  10350. const int64_t ir0_start = dr0 * ith0;
  10351. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10352. const int64_t ir1_start = dr1 * ith1;
  10353. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10354. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10355. #ifdef GGML_PERF
  10356. chunks_executed++;
  10357. #endif
  10358. if (nth >= nchunk0 * nchunk1) {
  10359. break;
  10360. }
  10361. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10362. }
  10363. #ifdef GGML_PERF
  10364. // These numbers are useful when trying to measure how well the threading scheduling works.
  10365. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10366. //float time = (ggml_perf_time_us() - t0);
  10367. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10368. #endif
  10369. }
  10370. // ggml_compute_forward_mul_mat_id
  10371. static void ggml_compute_forward_mul_mat_id(
  10372. const struct ggml_compute_params * params,
  10373. struct ggml_tensor * dst) {
  10374. const struct ggml_tensor * src0 = dst->src[0];
  10375. const struct ggml_tensor * src1 = dst->src[1];
  10376. const struct ggml_tensor * ids = dst->src[2];
  10377. GGML_TENSOR_BINARY_OP_LOCALS
  10378. const int ith = params->ith;
  10379. const int nth = params->nth;
  10380. const enum ggml_type type = src0->type;
  10381. const bool src1_cont = ggml_is_contiguous(src1);
  10382. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10383. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10384. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10385. // we don't support permuted src0 or src1
  10386. GGML_ASSERT(nb00 == ggml_type_size(type));
  10387. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10388. // dst cannot be transposed or permuted
  10389. GGML_ASSERT(nb0 == sizeof(float));
  10390. GGML_ASSERT(nb0 <= nb1);
  10391. GGML_ASSERT(nb1 <= nb2);
  10392. GGML_ASSERT(nb2 <= nb3);
  10393. // row groups
  10394. const int n_ids = ids->ne[0]; // n_expert_used
  10395. const int n_as = ne02; // n_expert
  10396. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10397. (char *) params->wdata :
  10398. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10399. struct mmid_row_mapping {
  10400. int32_t i1;
  10401. int32_t i2;
  10402. };
  10403. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10404. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10405. if (params->type == GGML_TASK_TYPE_INIT) {
  10406. if (ith != 0) {
  10407. return;
  10408. }
  10409. char * wdata = params->wdata;
  10410. if (src1->type != vec_dot_type) {
  10411. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10412. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10413. assert(src1->type == GGML_TYPE_F32);
  10414. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10415. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10416. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10417. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10418. wdata += row_size;
  10419. }
  10420. }
  10421. }
  10422. }
  10423. // initialize matrix_row_counts
  10424. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10425. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10426. // group rows by src0 matrix
  10427. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10428. for (int id = 0; id < n_ids; ++id) {
  10429. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10430. assert(i02 >= 0 && i02 < n_as);
  10431. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10432. matrix_row_counts[i02] += 1;
  10433. }
  10434. }
  10435. return;
  10436. }
  10437. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10438. return;
  10439. }
  10440. // compute each matrix multiplication in sequence
  10441. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10442. const int64_t cne1 = matrix_row_counts[cur_a];
  10443. if (cne1 == 0) {
  10444. continue;
  10445. }
  10446. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10447. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10448. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10449. const int64_t nr0 = ne01; // src0 rows
  10450. const int64_t nr1 = cne1; // src1 rows
  10451. // distribute the thread work across the inner or outer loop based on which one is larger
  10452. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10453. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10454. const int64_t ith0 = ith % nth0;
  10455. const int64_t ith1 = ith / nth0;
  10456. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10457. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10458. const int64_t ir010 = dr0*ith0;
  10459. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10460. const int64_t ir110 = dr1*ith1;
  10461. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10462. // threads with no work simply yield (not sure if it helps)
  10463. //if (ir010 >= ir011 || ir110 >= ir111) {
  10464. // sched_yield();
  10465. // continue;
  10466. //}
  10467. // block-tiling attempt
  10468. const int64_t blck_0 = 16;
  10469. const int64_t blck_1 = 16;
  10470. // attempt to reduce false-sharing (does not seem to make a difference)
  10471. float tmp[16];
  10472. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10473. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10474. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10475. const int64_t _i12 = ir1; // logical row index for this expert
  10476. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10477. const int id = row_mapping.i1; // selected expert index
  10478. const int64_t i11 = id % ne11;
  10479. const int64_t i12 = row_mapping.i2; // row index in src1
  10480. const int64_t i1 = id; // selected expert index
  10481. const int64_t i2 = i12; // row
  10482. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10483. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10484. // the original src1 data pointer, so we should index using the indices directly
  10485. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10486. const char * src1_col = (const char *) wdata +
  10487. (src1_cont || src1->type != vec_dot_type
  10488. ? (i11 + i12*ne11)*row_size
  10489. : (i11*nb11 + i12*nb12));
  10490. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10491. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10492. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10493. //}
  10494. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10495. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10496. }
  10497. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10498. }
  10499. }
  10500. }
  10501. }
  10502. #undef MMID_MATRIX_ROW
  10503. }
  10504. // ggml_compute_forward_out_prod
  10505. static void ggml_compute_forward_out_prod_f32(
  10506. const struct ggml_compute_params * params,
  10507. struct ggml_tensor * dst) {
  10508. const struct ggml_tensor * src0 = dst->src[0];
  10509. const struct ggml_tensor * src1 = dst->src[1];
  10510. // int64_t t0 = ggml_perf_time_us();
  10511. // UNUSED(t0);
  10512. GGML_TENSOR_BINARY_OP_LOCALS
  10513. const int ith = params->ith;
  10514. const int nth = params->nth;
  10515. GGML_ASSERT(ne0 == ne00);
  10516. GGML_ASSERT(ne1 == ne10);
  10517. GGML_ASSERT(ne2 == ne02);
  10518. GGML_ASSERT(ne02 == ne12);
  10519. GGML_ASSERT(ne3 == ne13);
  10520. GGML_ASSERT(ne03 == ne13);
  10521. // we don't support permuted src0 or src1
  10522. GGML_ASSERT(nb00 == sizeof(float));
  10523. // dst cannot be transposed or permuted
  10524. GGML_ASSERT(nb0 == sizeof(float));
  10525. // GGML_ASSERT(nb0 <= nb1);
  10526. // GGML_ASSERT(nb1 <= nb2);
  10527. // GGML_ASSERT(nb2 <= nb3);
  10528. // nb01 >= nb00 - src0 is not transposed
  10529. // compute by src0 rows
  10530. // TODO: #if defined(GGML_USE_CLBLAST)
  10531. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10532. bool use_blas = ggml_is_matrix(src0) &&
  10533. ggml_is_matrix(src1) &&
  10534. ggml_is_contiguous(src0) &&
  10535. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10536. #endif
  10537. if (params->type == GGML_TASK_TYPE_INIT) {
  10538. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10539. if (use_blas) {
  10540. return;
  10541. }
  10542. #endif
  10543. if (ith != 0) {
  10544. return;
  10545. }
  10546. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10547. return;
  10548. }
  10549. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10550. return;
  10551. }
  10552. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10553. if (use_blas) {
  10554. if (params->ith != 0) { // All threads other than the first do no work.
  10555. return;
  10556. }
  10557. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10558. // src0: (k,n)
  10559. // src1: (k,m)
  10560. // dst: (m,n)
  10561. //
  10562. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10563. // Also expressed as (major,minor)
  10564. // a: (m,k): so src1 transposed
  10565. // b: (k,n): so src0
  10566. // c: (m,n)
  10567. //
  10568. // However, if ggml_is_transposed(src1) is true, then
  10569. // src1->data already contains a transposed version, so sgemm mustn't
  10570. // transpose it further.
  10571. int n = src0->ne[0];
  10572. int k = src0->ne[1];
  10573. int m = src1->ne[0];
  10574. int transposeA, lda;
  10575. if (!ggml_is_transposed(src1)) {
  10576. transposeA = CblasTrans;
  10577. lda = m;
  10578. } else {
  10579. transposeA = CblasNoTrans;
  10580. lda = k;
  10581. }
  10582. float * a = (float *) ((char *) src1->data);
  10583. float * b = (float *) ((char *) src0->data);
  10584. float * c = (float *) ((char *) dst->data);
  10585. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10586. return;
  10587. }
  10588. #endif
  10589. // dst[:,:,:,:] = 0
  10590. // for i2,i3:
  10591. // for i1:
  10592. // for i01:
  10593. // for i0:
  10594. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10595. // parallelize by last three dimensions
  10596. // total rows in dst
  10597. const int64_t nr = ne1*ne2*ne3;
  10598. // rows per thread
  10599. const int64_t dr = (nr + nth - 1)/nth;
  10600. // row range for this thread
  10601. const int64_t ir0 = dr*ith;
  10602. const int64_t ir1 = MIN(ir0 + dr, nr);
  10603. // block-tiling attempt
  10604. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10605. const int64_t blck_1 = 16;
  10606. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10607. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10608. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10609. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10610. for (int64_t ir = bir; ir < bir1; ++ir) {
  10611. // dst indices
  10612. const int64_t i3 = ir/(ne2*ne1);
  10613. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10614. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10615. const int64_t i02 = i2;
  10616. const int64_t i03 = i3;
  10617. //const int64_t i10 = i1;
  10618. const int64_t i12 = i2;
  10619. const int64_t i13 = i3;
  10620. #if GGML_VEC_MAD_UNROLL > 2
  10621. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10622. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10623. const int64_t i11 = i01;
  10624. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10625. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10626. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10627. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10628. }
  10629. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10630. const int64_t i11 = i01;
  10631. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10632. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10633. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10634. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10635. }
  10636. #else
  10637. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10638. const int64_t i11 = i01;
  10639. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10640. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10641. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10642. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10643. }
  10644. #endif
  10645. }
  10646. }
  10647. }
  10648. //int64_t t1 = ggml_perf_time_us();
  10649. //static int64_t acc = 0;
  10650. //acc += t1 - t0;
  10651. //if (t1 - t0 > 10) {
  10652. // printf("\n");
  10653. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10654. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10655. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10656. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10657. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10658. //}
  10659. }
  10660. static void ggml_compute_forward_out_prod_q_f32(
  10661. const struct ggml_compute_params * params,
  10662. struct ggml_tensor * dst) {
  10663. const struct ggml_tensor * src0 = dst->src[0];
  10664. const struct ggml_tensor * src1 = dst->src[1];
  10665. // int64_t t0 = ggml_perf_time_us();
  10666. // UNUSED(t0);
  10667. GGML_TENSOR_BINARY_OP_LOCALS;
  10668. const int ith = params->ith;
  10669. const int nth = params->nth;
  10670. const enum ggml_type type = src0->type;
  10671. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10672. GGML_ASSERT(ne02 == ne12);
  10673. GGML_ASSERT(ne03 == ne13);
  10674. GGML_ASSERT(ne2 == ne12);
  10675. GGML_ASSERT(ne3 == ne13);
  10676. // we don't support permuted src0 dim0
  10677. GGML_ASSERT(nb00 == ggml_type_size(type));
  10678. // dst dim0 cannot be transposed or permuted
  10679. GGML_ASSERT(nb0 == sizeof(float));
  10680. // GGML_ASSERT(nb0 <= nb1);
  10681. // GGML_ASSERT(nb1 <= nb2);
  10682. // GGML_ASSERT(nb2 <= nb3);
  10683. GGML_ASSERT(ne0 == ne00);
  10684. GGML_ASSERT(ne1 == ne10);
  10685. GGML_ASSERT(ne2 == ne02);
  10686. GGML_ASSERT(ne3 == ne03);
  10687. // nb01 >= nb00 - src0 is not transposed
  10688. // compute by src0 rows
  10689. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10690. if (params->type == GGML_TASK_TYPE_INIT) {
  10691. if (ith != 0) {
  10692. return;
  10693. }
  10694. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10695. return;
  10696. }
  10697. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10698. return;
  10699. }
  10700. // parallelize by last three dimensions
  10701. // total rows in dst
  10702. const int64_t nr = ne1*ne2*ne3;
  10703. // rows per thread
  10704. const int64_t dr = (nr + nth - 1)/nth;
  10705. // row range for this thread
  10706. const int64_t ir0 = dr*ith;
  10707. const int64_t ir1 = MIN(ir0 + dr, nr);
  10708. // dst[:,:,:,:] = 0
  10709. // for i2,i3:
  10710. // for i1:
  10711. // for i01:
  10712. // for i0:
  10713. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10714. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10715. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10716. // dst indices
  10717. const int64_t i3 = ir/(ne2*ne1);
  10718. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10719. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10720. const int64_t i02 = i2;
  10721. const int64_t i03 = i3;
  10722. //const int64_t i10 = i1;
  10723. const int64_t i12 = i2;
  10724. const int64_t i13 = i3;
  10725. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10726. const int64_t i11 = i01;
  10727. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10728. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10729. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10730. dequantize_row_q(s0, wdata, ne0);
  10731. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10732. }
  10733. }
  10734. //int64_t t1 = ggml_perf_time_us();
  10735. //static int64_t acc = 0;
  10736. //acc += t1 - t0;
  10737. //if (t1 - t0 > 10) {
  10738. // printf("\n");
  10739. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10740. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10741. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10742. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10743. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10744. //}
  10745. }
  10746. static void ggml_compute_forward_out_prod(
  10747. const struct ggml_compute_params * params,
  10748. struct ggml_tensor * dst) {
  10749. const struct ggml_tensor * src0 = dst->src[0];
  10750. switch (src0->type) {
  10751. case GGML_TYPE_Q4_0:
  10752. case GGML_TYPE_Q4_1:
  10753. case GGML_TYPE_Q5_0:
  10754. case GGML_TYPE_Q5_1:
  10755. case GGML_TYPE_Q8_0:
  10756. case GGML_TYPE_Q2_K:
  10757. case GGML_TYPE_Q3_K:
  10758. case GGML_TYPE_Q4_K:
  10759. case GGML_TYPE_Q5_K:
  10760. case GGML_TYPE_Q6_K:
  10761. case GGML_TYPE_IQ2_XXS:
  10762. case GGML_TYPE_IQ2_XS:
  10763. case GGML_TYPE_IQ3_XXS:
  10764. case GGML_TYPE_IQ1_S:
  10765. case GGML_TYPE_IQ1_M:
  10766. case GGML_TYPE_IQ4_NL:
  10767. case GGML_TYPE_IQ4_XS:
  10768. case GGML_TYPE_IQ3_S:
  10769. case GGML_TYPE_IQ2_S:
  10770. {
  10771. ggml_compute_forward_out_prod_q_f32(params, dst);
  10772. } break;
  10773. case GGML_TYPE_F16:
  10774. {
  10775. GGML_ASSERT(false); // todo
  10776. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10777. } break;
  10778. case GGML_TYPE_F32:
  10779. {
  10780. ggml_compute_forward_out_prod_f32(params, dst);
  10781. } break;
  10782. default:
  10783. {
  10784. GGML_ASSERT(false);
  10785. } break;
  10786. }
  10787. }
  10788. // ggml_compute_forward_scale
  10789. static void ggml_compute_forward_scale_f32(
  10790. const struct ggml_compute_params * params,
  10791. struct ggml_tensor * dst) {
  10792. const struct ggml_tensor * src0 = dst->src[0];
  10793. GGML_ASSERT(ggml_is_contiguous(src0));
  10794. GGML_ASSERT(ggml_is_contiguous(dst));
  10795. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10797. return;
  10798. }
  10799. // scale factor
  10800. float v;
  10801. memcpy(&v, dst->op_params, sizeof(float));
  10802. const int ith = params->ith;
  10803. const int nth = params->nth;
  10804. const int nc = src0->ne[0];
  10805. const int nr = ggml_nrows(src0);
  10806. // rows per thread
  10807. const int dr = (nr + nth - 1)/nth;
  10808. // row range for this thread
  10809. const int ir0 = dr*ith;
  10810. const int ir1 = MIN(ir0 + dr, nr);
  10811. const size_t nb01 = src0->nb[1];
  10812. const size_t nb1 = dst->nb[1];
  10813. for (int i1 = ir0; i1 < ir1; i1++) {
  10814. if (dst->data != src0->data) {
  10815. // src0 is same shape as dst => same indices
  10816. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10817. }
  10818. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10819. }
  10820. }
  10821. static void ggml_compute_forward_scale(
  10822. const struct ggml_compute_params * params,
  10823. struct ggml_tensor * dst) {
  10824. const struct ggml_tensor * src0 = dst->src[0];
  10825. switch (src0->type) {
  10826. case GGML_TYPE_F32:
  10827. {
  10828. ggml_compute_forward_scale_f32(params, dst);
  10829. } break;
  10830. default:
  10831. {
  10832. GGML_ASSERT(false);
  10833. } break;
  10834. }
  10835. }
  10836. // ggml_compute_forward_set
  10837. static void ggml_compute_forward_set_f32(
  10838. const struct ggml_compute_params * params,
  10839. struct ggml_tensor * dst) {
  10840. const struct ggml_tensor * src0 = dst->src[0];
  10841. const struct ggml_tensor * src1 = dst->src[1];
  10842. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10843. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10844. // view src0 and dst with these strides and data offset inbytes during set
  10845. // nb0 is implicitly element_size because src0 and dst are contiguous
  10846. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10847. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10848. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10849. size_t offset = ((int32_t *) dst->op_params)[3];
  10850. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10851. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10852. if (params->ith != 0) {
  10853. return;
  10854. }
  10855. // memcpy needs to be synchronized across threads to avoid race conditions.
  10856. // => do it in INIT phase
  10857. memcpy(
  10858. ((char *) dst->data),
  10859. ((char *) src0->data),
  10860. ggml_nbytes(dst));
  10861. }
  10862. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10863. return;
  10864. }
  10865. const int ith = params->ith;
  10866. const int nth = params->nth;
  10867. const int nr = ggml_nrows(src1);
  10868. const int nc = src1->ne[0];
  10869. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10870. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10871. // src0 and dst as viewed during set
  10872. const size_t nb0 = ggml_element_size(src0);
  10873. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10874. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10875. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10876. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10877. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10878. GGML_ASSERT(nb10 == sizeof(float));
  10879. // rows per thread
  10880. const int dr = (nr + nth - 1)/nth;
  10881. // row range for this thread
  10882. const int ir0 = dr*ith;
  10883. const int ir1 = MIN(ir0 + dr, nr);
  10884. for (int ir = ir0; ir < ir1; ++ir) {
  10885. // src0 and dst are viewed with shape of src1 and offset
  10886. // => same indices
  10887. const int i3 = ir/(ne12*ne11);
  10888. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10889. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10890. ggml_vec_cpy_f32(nc,
  10891. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10892. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10893. }
  10894. }
  10895. static void ggml_compute_forward_set(
  10896. const struct ggml_compute_params * params,
  10897. struct ggml_tensor * dst) {
  10898. const struct ggml_tensor * src0 = dst->src[0];
  10899. switch (src0->type) {
  10900. case GGML_TYPE_F32:
  10901. {
  10902. ggml_compute_forward_set_f32(params, dst);
  10903. } break;
  10904. case GGML_TYPE_F16:
  10905. case GGML_TYPE_BF16:
  10906. case GGML_TYPE_Q4_0:
  10907. case GGML_TYPE_Q4_1:
  10908. case GGML_TYPE_Q5_0:
  10909. case GGML_TYPE_Q5_1:
  10910. case GGML_TYPE_Q8_0:
  10911. case GGML_TYPE_Q8_1:
  10912. case GGML_TYPE_Q2_K:
  10913. case GGML_TYPE_Q3_K:
  10914. case GGML_TYPE_Q4_K:
  10915. case GGML_TYPE_Q5_K:
  10916. case GGML_TYPE_Q6_K:
  10917. case GGML_TYPE_IQ2_XXS:
  10918. case GGML_TYPE_IQ2_XS:
  10919. case GGML_TYPE_IQ3_XXS:
  10920. case GGML_TYPE_IQ1_S:
  10921. case GGML_TYPE_IQ1_M:
  10922. case GGML_TYPE_IQ4_NL:
  10923. case GGML_TYPE_IQ4_XS:
  10924. case GGML_TYPE_IQ3_S:
  10925. case GGML_TYPE_IQ2_S:
  10926. default:
  10927. {
  10928. GGML_ASSERT(false);
  10929. } break;
  10930. }
  10931. }
  10932. // ggml_compute_forward_cpy
  10933. static void ggml_compute_forward_cpy(
  10934. const struct ggml_compute_params * params,
  10935. struct ggml_tensor * dst) {
  10936. ggml_compute_forward_dup(params, dst);
  10937. }
  10938. // ggml_compute_forward_cont
  10939. static void ggml_compute_forward_cont(
  10940. const struct ggml_compute_params * params,
  10941. struct ggml_tensor * dst) {
  10942. ggml_compute_forward_dup(params, dst);
  10943. }
  10944. // ggml_compute_forward_reshape
  10945. static void ggml_compute_forward_reshape(
  10946. const struct ggml_compute_params * params,
  10947. struct ggml_tensor * dst) {
  10948. // NOP
  10949. UNUSED(params);
  10950. UNUSED(dst);
  10951. }
  10952. // ggml_compute_forward_view
  10953. static void ggml_compute_forward_view(
  10954. const struct ggml_compute_params * params,
  10955. const struct ggml_tensor * dst) {
  10956. // NOP
  10957. UNUSED(params);
  10958. UNUSED(dst);
  10959. }
  10960. // ggml_compute_forward_permute
  10961. static void ggml_compute_forward_permute(
  10962. const struct ggml_compute_params * params,
  10963. const struct ggml_tensor * dst) {
  10964. // NOP
  10965. UNUSED(params);
  10966. UNUSED(dst);
  10967. }
  10968. // ggml_compute_forward_transpose
  10969. static void ggml_compute_forward_transpose(
  10970. const struct ggml_compute_params * params,
  10971. const struct ggml_tensor * dst) {
  10972. // NOP
  10973. UNUSED(params);
  10974. UNUSED(dst);
  10975. }
  10976. // ggml_compute_forward_get_rows
  10977. static void ggml_compute_forward_get_rows_q(
  10978. const struct ggml_compute_params * params,
  10979. struct ggml_tensor * dst) {
  10980. const struct ggml_tensor * src0 = dst->src[0];
  10981. const struct ggml_tensor * src1 = dst->src[1];
  10982. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10983. return;
  10984. }
  10985. GGML_TENSOR_BINARY_OP_LOCALS
  10986. const int64_t nc = ne00;
  10987. const int64_t nr = ggml_nelements(src1);
  10988. const enum ggml_type type = src0->type;
  10989. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10990. assert(ne0 == nc);
  10991. assert(ne02 == ne11);
  10992. assert(nb00 == ggml_type_size(type));
  10993. assert(ggml_nrows(dst) == nr);
  10994. const int ith = params->ith;
  10995. const int nth = params->nth;
  10996. // rows per thread
  10997. const int dr = (nr + nth - 1)/nth;
  10998. // row range for this thread
  10999. const int ir0 = dr*ith;
  11000. const int ir1 = MIN(ir0 + dr, nr);
  11001. for (int64_t i = ir0; i < ir1; ++i) {
  11002. const int64_t i12 = i/(ne11*ne10);
  11003. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11004. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11005. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11006. dequantize_row_q(
  11007. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11008. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11009. }
  11010. }
  11011. static void ggml_compute_forward_get_rows_f16(
  11012. const struct ggml_compute_params * params,
  11013. struct ggml_tensor * dst) {
  11014. const struct ggml_tensor * src0 = dst->src[0];
  11015. const struct ggml_tensor * src1 = dst->src[1];
  11016. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11017. return;
  11018. }
  11019. GGML_TENSOR_BINARY_OP_LOCALS
  11020. const int64_t nc = ne00;
  11021. const int64_t nr = ggml_nelements(src1);
  11022. assert(ne0 == nc);
  11023. assert(ne02 == ne11);
  11024. assert(nb00 == sizeof(ggml_fp16_t));
  11025. assert(ggml_nrows(dst) == nr);
  11026. const int ith = params->ith;
  11027. const int nth = params->nth;
  11028. // rows per thread
  11029. const int dr = (nr + nth - 1)/nth;
  11030. // row range for this thread
  11031. const int ir0 = dr*ith;
  11032. const int ir1 = MIN(ir0 + dr, nr);
  11033. for (int64_t i = ir0; i < ir1; ++i) {
  11034. const int64_t i12 = i/(ne11*ne10);
  11035. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11036. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11037. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11038. ggml_fp16_to_fp32_row(
  11039. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11040. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11041. }
  11042. }
  11043. static void ggml_compute_forward_get_rows_bf16(
  11044. const struct ggml_compute_params * params,
  11045. struct ggml_tensor * dst) {
  11046. const struct ggml_tensor * src0 = dst->src[0];
  11047. const struct ggml_tensor * src1 = dst->src[1];
  11048. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11049. return;
  11050. }
  11051. GGML_TENSOR_BINARY_OP_LOCALS
  11052. const int64_t nc = ne00;
  11053. const int64_t nr = ggml_nelements(src1);
  11054. assert(ne0 == nc);
  11055. assert(ne02 == ne11);
  11056. assert(nb00 == sizeof(ggml_bf16_t));
  11057. assert(ggml_nrows(dst) == nr);
  11058. const int ith = params->ith;
  11059. const int nth = params->nth;
  11060. // rows per thread
  11061. const int dr = (nr + nth - 1)/nth;
  11062. // row range for this thread
  11063. const int ir0 = dr*ith;
  11064. const int ir1 = MIN(ir0 + dr, nr);
  11065. for (int64_t i = ir0; i < ir1; ++i) {
  11066. const int64_t i12 = i/(ne11*ne10);
  11067. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11068. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11069. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11070. ggml_bf16_to_fp32_row(
  11071. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11072. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11073. }
  11074. }
  11075. static void ggml_compute_forward_get_rows_f32(
  11076. const struct ggml_compute_params * params,
  11077. struct ggml_tensor * dst) {
  11078. const struct ggml_tensor * src0 = dst->src[0];
  11079. const struct ggml_tensor * src1 = dst->src[1];
  11080. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11081. return;
  11082. }
  11083. GGML_TENSOR_BINARY_OP_LOCALS
  11084. const int64_t nc = ne00;
  11085. const int64_t nr = ggml_nelements(src1);
  11086. assert(ne0 == nc);
  11087. assert(ne02 == ne11);
  11088. assert(nb00 == sizeof(float));
  11089. assert(ggml_nrows(dst) == nr);
  11090. const int ith = params->ith;
  11091. const int nth = params->nth;
  11092. // rows per thread
  11093. const int dr = (nr + nth - 1)/nth;
  11094. // row range for this thread
  11095. const int ir0 = dr*ith;
  11096. const int ir1 = MIN(ir0 + dr, nr);
  11097. for (int64_t i = ir0; i < ir1; ++i) {
  11098. const int64_t i12 = i/(ne11*ne10);
  11099. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11100. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11101. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11102. ggml_vec_cpy_f32(nc,
  11103. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11104. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11105. }
  11106. }
  11107. static void ggml_compute_forward_get_rows(
  11108. const struct ggml_compute_params * params,
  11109. struct ggml_tensor * dst) {
  11110. const struct ggml_tensor * src0 = dst->src[0];
  11111. switch (src0->type) {
  11112. case GGML_TYPE_Q4_0:
  11113. case GGML_TYPE_Q4_1:
  11114. case GGML_TYPE_Q5_0:
  11115. case GGML_TYPE_Q5_1:
  11116. case GGML_TYPE_Q8_0:
  11117. case GGML_TYPE_Q8_1:
  11118. case GGML_TYPE_Q2_K:
  11119. case GGML_TYPE_Q3_K:
  11120. case GGML_TYPE_Q4_K:
  11121. case GGML_TYPE_Q5_K:
  11122. case GGML_TYPE_Q6_K:
  11123. case GGML_TYPE_IQ2_XXS:
  11124. case GGML_TYPE_IQ2_XS:
  11125. case GGML_TYPE_IQ3_XXS:
  11126. case GGML_TYPE_IQ1_S:
  11127. case GGML_TYPE_IQ1_M:
  11128. case GGML_TYPE_IQ4_NL:
  11129. case GGML_TYPE_IQ4_XS:
  11130. case GGML_TYPE_IQ3_S:
  11131. case GGML_TYPE_IQ2_S:
  11132. {
  11133. ggml_compute_forward_get_rows_q(params, dst);
  11134. } break;
  11135. case GGML_TYPE_F16:
  11136. {
  11137. ggml_compute_forward_get_rows_f16(params, dst);
  11138. } break;
  11139. case GGML_TYPE_BF16:
  11140. {
  11141. ggml_compute_forward_get_rows_bf16(params, dst);
  11142. } break;
  11143. case GGML_TYPE_F32:
  11144. case GGML_TYPE_I32:
  11145. {
  11146. ggml_compute_forward_get_rows_f32(params, dst);
  11147. } break;
  11148. default:
  11149. {
  11150. GGML_ASSERT(false);
  11151. } break;
  11152. }
  11153. //static bool first = true;
  11154. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11155. //if (first) {
  11156. // first = false;
  11157. //} else {
  11158. // for (int k = 0; k < dst->ne[1]; ++k) {
  11159. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11160. // for (int i = 0; i < 16; ++i) {
  11161. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11162. // }
  11163. // printf("\n");
  11164. // }
  11165. // printf("\n");
  11166. // }
  11167. // printf("\n");
  11168. // exit(0);
  11169. //}
  11170. }
  11171. // ggml_compute_forward_get_rows_back
  11172. static void ggml_compute_forward_get_rows_back_f32_f16(
  11173. const struct ggml_compute_params * params,
  11174. struct ggml_tensor * dst) {
  11175. const struct ggml_tensor * src0 = dst->src[0];
  11176. const struct ggml_tensor * src1 = dst->src[1];
  11177. GGML_ASSERT(params->ith == 0);
  11178. GGML_ASSERT(ggml_is_contiguous(dst));
  11179. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11180. if (params->type == GGML_TASK_TYPE_INIT) {
  11181. if (params->ith != 0) {
  11182. return;
  11183. }
  11184. memset(dst->data, 0, ggml_nbytes(dst));
  11185. }
  11186. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11187. return;
  11188. }
  11189. const int nc = src0->ne[0];
  11190. const int nr = ggml_nelements(src1);
  11191. GGML_ASSERT( dst->ne[0] == nc);
  11192. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11193. for (int i = 0; i < nr; ++i) {
  11194. const int r = ((int32_t *) src1->data)[i];
  11195. for (int j = 0; j < nc; ++j) {
  11196. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11197. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11198. }
  11199. }
  11200. }
  11201. static void ggml_compute_forward_get_rows_back_f32(
  11202. const struct ggml_compute_params * params,
  11203. struct ggml_tensor * dst) {
  11204. const struct ggml_tensor * src0 = dst->src[0];
  11205. const struct ggml_tensor * src1 = dst->src[1];
  11206. GGML_ASSERT(params->ith == 0);
  11207. GGML_ASSERT(ggml_is_contiguous(dst));
  11208. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11209. if (params->type == GGML_TASK_TYPE_INIT) {
  11210. if (params->ith != 0) {
  11211. return;
  11212. }
  11213. memset(dst->data, 0, ggml_nbytes(dst));
  11214. }
  11215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11216. return;
  11217. }
  11218. const int nc = src0->ne[0];
  11219. const int nr = ggml_nelements(src1);
  11220. GGML_ASSERT( dst->ne[0] == nc);
  11221. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11222. for (int i = 0; i < nr; ++i) {
  11223. const int r = ((int32_t *) src1->data)[i];
  11224. ggml_vec_add_f32(nc,
  11225. (float *) ((char *) dst->data + r*dst->nb[1]),
  11226. (float *) ((char *) dst->data + r*dst->nb[1]),
  11227. (float *) ((char *) src0->data + i*src0->nb[1]));
  11228. }
  11229. }
  11230. static void ggml_compute_forward_get_rows_back(
  11231. const struct ggml_compute_params * params,
  11232. struct ggml_tensor * dst) {
  11233. const struct ggml_tensor * src0 = dst->src[0];
  11234. switch (src0->type) {
  11235. case GGML_TYPE_F16:
  11236. {
  11237. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11238. } break;
  11239. case GGML_TYPE_F32:
  11240. {
  11241. ggml_compute_forward_get_rows_back_f32(params, dst);
  11242. } break;
  11243. default:
  11244. {
  11245. GGML_ASSERT(false);
  11246. } break;
  11247. }
  11248. //static bool first = true;
  11249. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11250. //if (first) {
  11251. // first = false;
  11252. //} else {
  11253. // for (int k = 0; k < dst->ne[1]; ++k) {
  11254. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11255. // for (int i = 0; i < 16; ++i) {
  11256. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11257. // }
  11258. // printf("\n");
  11259. // }
  11260. // printf("\n");
  11261. // }
  11262. // printf("\n");
  11263. // exit(0);
  11264. //}
  11265. }
  11266. // ggml_compute_forward_diag
  11267. static void ggml_compute_forward_diag_f32(
  11268. const struct ggml_compute_params * params,
  11269. struct ggml_tensor * dst) {
  11270. const struct ggml_tensor * src0 = dst->src[0];
  11271. GGML_ASSERT(params->ith == 0);
  11272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11273. return;
  11274. }
  11275. // TODO: handle transposed/permuted matrices
  11276. GGML_TENSOR_UNARY_OP_LOCALS
  11277. GGML_ASSERT(ne00 == ne0);
  11278. GGML_ASSERT(ne00 == ne1);
  11279. GGML_ASSERT(ne01 == 1);
  11280. GGML_ASSERT(ne02 == ne2);
  11281. GGML_ASSERT(ne03 == ne3);
  11282. GGML_ASSERT(nb00 == sizeof(float));
  11283. GGML_ASSERT(nb0 == sizeof(float));
  11284. for (int i3 = 0; i3 < ne3; i3++) {
  11285. for (int i2 = 0; i2 < ne2; i2++) {
  11286. for (int i1 = 0; i1 < ne1; i1++) {
  11287. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11288. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11289. for (int i0 = 0; i0 < i1; i0++) {
  11290. d[i0] = 0;
  11291. }
  11292. d[i1] = s[i1];
  11293. for (int i0 = i1+1; i0 < ne0; i0++) {
  11294. d[i0] = 0;
  11295. }
  11296. }
  11297. }
  11298. }
  11299. }
  11300. static void ggml_compute_forward_diag(
  11301. const struct ggml_compute_params * params,
  11302. struct ggml_tensor * dst) {
  11303. const struct ggml_tensor * src0 = dst->src[0];
  11304. switch (src0->type) {
  11305. case GGML_TYPE_F32:
  11306. {
  11307. ggml_compute_forward_diag_f32(params, dst);
  11308. } break;
  11309. default:
  11310. {
  11311. GGML_ASSERT(false);
  11312. } break;
  11313. }
  11314. }
  11315. // ggml_compute_forward_diag_mask_inf
  11316. static void ggml_compute_forward_diag_mask_f32(
  11317. const struct ggml_compute_params * params,
  11318. struct ggml_tensor * dst,
  11319. const float value) {
  11320. const struct ggml_tensor * src0 = dst->src[0];
  11321. const int ith = params->ith;
  11322. const int nth = params->nth;
  11323. const int n_past = ((int32_t *) dst->op_params)[0];
  11324. const bool inplace = src0->data == dst->data;
  11325. GGML_ASSERT(n_past >= 0);
  11326. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11327. if (ith != 0) {
  11328. return;
  11329. }
  11330. // memcpy needs to be synchronized across threads to avoid race conditions.
  11331. // => do it in INIT phase
  11332. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11333. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11334. memcpy(
  11335. ((char *) dst->data),
  11336. ((char *) src0->data),
  11337. ggml_nbytes(dst));
  11338. }
  11339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11340. return;
  11341. }
  11342. // TODO: handle transposed/permuted matrices
  11343. const int n = ggml_nrows(src0);
  11344. const int nc = src0->ne[0];
  11345. const int nr = src0->ne[1];
  11346. const int nz = n/nr;
  11347. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11348. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11349. for (int k = 0; k < nz; k++) {
  11350. for (int j = ith; j < nr; j += nth) {
  11351. for (int i = n_past; i < nc; i++) {
  11352. if (i > n_past + j) {
  11353. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11354. }
  11355. }
  11356. }
  11357. }
  11358. }
  11359. static void ggml_compute_forward_diag_mask_inf(
  11360. const struct ggml_compute_params * params,
  11361. struct ggml_tensor * dst) {
  11362. const struct ggml_tensor * src0 = dst->src[0];
  11363. switch (src0->type) {
  11364. case GGML_TYPE_F32:
  11365. {
  11366. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11367. } break;
  11368. default:
  11369. {
  11370. GGML_ASSERT(false);
  11371. } break;
  11372. }
  11373. }
  11374. static void ggml_compute_forward_diag_mask_zero(
  11375. const struct ggml_compute_params * params,
  11376. struct ggml_tensor * dst) {
  11377. const struct ggml_tensor * src0 = dst->src[0];
  11378. switch (src0->type) {
  11379. case GGML_TYPE_F32:
  11380. {
  11381. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11382. } break;
  11383. default:
  11384. {
  11385. GGML_ASSERT(false);
  11386. } break;
  11387. }
  11388. }
  11389. // ggml_compute_forward_soft_max
  11390. static void ggml_compute_forward_soft_max_f32(
  11391. const struct ggml_compute_params * params,
  11392. struct ggml_tensor * dst) {
  11393. const struct ggml_tensor * src0 = dst->src[0];
  11394. const struct ggml_tensor * src1 = dst->src[1];
  11395. assert(ggml_is_contiguous(dst));
  11396. assert(ggml_are_same_shape(src0, dst));
  11397. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11398. return;
  11399. }
  11400. float scale = 1.0f;
  11401. float max_bias = 0.0f;
  11402. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11403. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11404. // TODO: handle transposed/permuted matrices
  11405. const int ith = params->ith;
  11406. const int nth = params->nth;
  11407. GGML_TENSOR_UNARY_OP_LOCALS
  11408. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11409. // TODO: is this supposed to be ceil instead of floor?
  11410. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11411. const uint32_t n_head = ne02;
  11412. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11413. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11414. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11415. const int nc = src0->ne[0];
  11416. const int nr = ggml_nrows(src0);
  11417. // rows per thread
  11418. const int dr = (nr + nth - 1)/nth;
  11419. // row range for this thread
  11420. const int ir0 = dr*ith;
  11421. const int ir1 = MIN(ir0 + dr, nr);
  11422. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11423. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11424. for (int i1 = ir0; i1 < ir1; i1++) {
  11425. // ALiBi
  11426. const uint32_t h = (i1/ne01)%ne02; // head
  11427. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11428. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11429. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11430. // broadcast the mask across rows
  11431. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11432. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11433. ggml_vec_cpy_f32 (nc, wp, sp);
  11434. ggml_vec_scale_f32(nc, wp, scale);
  11435. if (mp_f32) {
  11436. if (use_f16) {
  11437. for (int i = 0; i < nc; ++i) {
  11438. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11439. }
  11440. } else {
  11441. for (int i = 0; i < nc; ++i) {
  11442. wp[i] += slope*mp_f32[i];
  11443. }
  11444. }
  11445. }
  11446. #ifndef NDEBUG
  11447. for (int i = 0; i < nc; ++i) {
  11448. //printf("p[%d] = %f\n", i, p[i]);
  11449. assert(!isnan(wp[i]));
  11450. }
  11451. #endif
  11452. float max = -INFINITY;
  11453. ggml_vec_max_f32(nc, &max, wp);
  11454. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11455. assert(sum > 0.0);
  11456. sum = 1.0/sum;
  11457. ggml_vec_scale_f32(nc, dp, sum);
  11458. #ifndef NDEBUG
  11459. for (int i = 0; i < nc; ++i) {
  11460. assert(!isnan(dp[i]));
  11461. assert(!isinf(dp[i]));
  11462. }
  11463. #endif
  11464. }
  11465. }
  11466. static void ggml_compute_forward_soft_max(
  11467. const struct ggml_compute_params * params,
  11468. struct ggml_tensor * dst) {
  11469. const struct ggml_tensor * src0 = dst->src[0];
  11470. switch (src0->type) {
  11471. case GGML_TYPE_F32:
  11472. {
  11473. ggml_compute_forward_soft_max_f32(params, dst);
  11474. } break;
  11475. default:
  11476. {
  11477. GGML_ASSERT(false);
  11478. } break;
  11479. }
  11480. }
  11481. // ggml_compute_forward_soft_max_back
  11482. static void ggml_compute_forward_soft_max_back_f32(
  11483. const struct ggml_compute_params * params,
  11484. struct ggml_tensor * dst) {
  11485. const struct ggml_tensor * src0 = dst->src[0];
  11486. const struct ggml_tensor * src1 = dst->src[1];
  11487. GGML_ASSERT(ggml_is_contiguous(src0));
  11488. GGML_ASSERT(ggml_is_contiguous(src1));
  11489. GGML_ASSERT(ggml_is_contiguous(dst));
  11490. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11491. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11493. return;
  11494. }
  11495. // TODO: handle transposed/permuted matrices
  11496. const int ith = params->ith;
  11497. const int nth = params->nth;
  11498. const int nc = src0->ne[0];
  11499. const int nr = ggml_nrows(src0);
  11500. // rows per thread
  11501. const int dr = (nr + nth - 1)/nth;
  11502. // row range for this thread
  11503. const int ir0 = dr*ith;
  11504. const int ir1 = MIN(ir0 + dr, nr);
  11505. for (int i1 = ir0; i1 < ir1; i1++) {
  11506. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11507. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11508. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11509. #ifndef NDEBUG
  11510. for (int i = 0; i < nc; ++i) {
  11511. //printf("p[%d] = %f\n", i, p[i]);
  11512. assert(!isnan(dy[i]));
  11513. assert(!isnan(y[i]));
  11514. }
  11515. #endif
  11516. // Jii = yi - yi*yi
  11517. // Jij = -yi*yj
  11518. // J = diag(y)-y.T*y
  11519. // dx = J * dy
  11520. // dxk = sum_i(Jki * dyi)
  11521. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11522. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11523. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11524. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11525. // dxk = -yk * dot(y, dy) + yk*dyk
  11526. // dxk = yk * (- dot(y, dy) + dyk)
  11527. // dxk = yk * (dyk - dot(y, dy))
  11528. //
  11529. // post-order:
  11530. // dot_y_dy := dot(y, dy)
  11531. // dx := dy
  11532. // dx := dx - dot_y_dy
  11533. // dx := dx * y
  11534. // linear runtime, no additional memory
  11535. float dot_y_dy = 0;
  11536. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11537. ggml_vec_cpy_f32 (nc, dx, dy);
  11538. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11539. ggml_vec_mul_f32 (nc, dx, dx, y);
  11540. #ifndef NDEBUG
  11541. for (int i = 0; i < nc; ++i) {
  11542. assert(!isnan(dx[i]));
  11543. assert(!isinf(dx[i]));
  11544. }
  11545. #endif
  11546. }
  11547. }
  11548. static void ggml_compute_forward_soft_max_back(
  11549. const struct ggml_compute_params * params,
  11550. struct ggml_tensor * dst) {
  11551. const struct ggml_tensor * src0 = dst->src[0];
  11552. switch (src0->type) {
  11553. case GGML_TYPE_F32:
  11554. {
  11555. ggml_compute_forward_soft_max_back_f32(params, dst);
  11556. } break;
  11557. default:
  11558. {
  11559. GGML_ASSERT(false);
  11560. } break;
  11561. }
  11562. }
  11563. // ggml_compute_forward_clamp
  11564. static void ggml_compute_forward_clamp_f32(
  11565. const struct ggml_compute_params * params,
  11566. struct ggml_tensor * dst) {
  11567. const struct ggml_tensor * src0 = dst->src[0];
  11568. assert(params->ith == 0);
  11569. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11570. return;
  11571. }
  11572. float min;
  11573. float max;
  11574. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11575. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11576. const int ith = params->ith;
  11577. const int nth = params->nth;
  11578. const int n = ggml_nrows(src0);
  11579. const int nc = src0->ne[0];
  11580. const size_t nb00 = src0->nb[0];
  11581. const size_t nb01 = src0->nb[1];
  11582. const size_t nb0 = dst->nb[0];
  11583. const size_t nb1 = dst->nb[1];
  11584. GGML_ASSERT( nb0 == sizeof(float));
  11585. GGML_ASSERT(nb00 == sizeof(float));
  11586. for (int j = ith; j < n; j += nth) {
  11587. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11588. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11589. for (int i = 0; i < nc; i++) {
  11590. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11591. }
  11592. }
  11593. }
  11594. static void ggml_compute_forward_clamp(
  11595. const struct ggml_compute_params * params,
  11596. struct ggml_tensor * dst) {
  11597. const struct ggml_tensor * src0 = dst->src[0];
  11598. switch (src0->type) {
  11599. case GGML_TYPE_F32:
  11600. {
  11601. ggml_compute_forward_clamp_f32(params, dst);
  11602. } break;
  11603. case GGML_TYPE_F16:
  11604. case GGML_TYPE_BF16:
  11605. case GGML_TYPE_Q4_0:
  11606. case GGML_TYPE_Q4_1:
  11607. case GGML_TYPE_Q5_0:
  11608. case GGML_TYPE_Q5_1:
  11609. case GGML_TYPE_Q8_0:
  11610. case GGML_TYPE_Q8_1:
  11611. case GGML_TYPE_Q2_K:
  11612. case GGML_TYPE_Q3_K:
  11613. case GGML_TYPE_Q4_K:
  11614. case GGML_TYPE_Q5_K:
  11615. case GGML_TYPE_Q6_K:
  11616. case GGML_TYPE_IQ2_XXS:
  11617. case GGML_TYPE_IQ2_XS:
  11618. case GGML_TYPE_IQ3_XXS:
  11619. case GGML_TYPE_IQ1_S:
  11620. case GGML_TYPE_IQ1_M:
  11621. case GGML_TYPE_IQ4_NL:
  11622. case GGML_TYPE_IQ4_XS:
  11623. case GGML_TYPE_IQ3_S:
  11624. case GGML_TYPE_IQ2_S:
  11625. case GGML_TYPE_Q8_K:
  11626. case GGML_TYPE_I8:
  11627. case GGML_TYPE_I16:
  11628. case GGML_TYPE_I32:
  11629. case GGML_TYPE_I64:
  11630. case GGML_TYPE_F64:
  11631. case GGML_TYPE_COUNT:
  11632. {
  11633. GGML_ASSERT(false);
  11634. } break;
  11635. }
  11636. }
  11637. // ggml_compute_forward_rope
  11638. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11639. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11640. return 1 - MIN(1, MAX(0, y));
  11641. }
  11642. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11643. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11644. static void rope_yarn(
  11645. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11646. float * cos_theta, float * sin_theta
  11647. ) {
  11648. // Get n-d rotational scaling corrected for extrapolation
  11649. float theta_interp = freq_scale * theta_extrap;
  11650. float theta = theta_interp;
  11651. if (ext_factor != 0.0f) {
  11652. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11653. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11654. // Get n-d magnitude scaling corrected for interpolation
  11655. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11656. }
  11657. *cos_theta = cosf(theta) * mscale;
  11658. *sin_theta = sinf(theta) * mscale;
  11659. }
  11660. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11661. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11662. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11663. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11664. }
  11665. static void ggml_rope_cache_init(
  11666. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11667. float * cache, float sin_sign, float theta_scale
  11668. ) {
  11669. float theta = theta_base;
  11670. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11671. rope_yarn(
  11672. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11673. );
  11674. cache[i0 + 1] *= sin_sign;
  11675. theta *= theta_scale;
  11676. }
  11677. }
  11678. GGML_CALL void ggml_rope_yarn_corr_dims(
  11679. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11680. ) {
  11681. // start and end correction dims
  11682. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11683. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11684. dims[0] = MAX(0, start);
  11685. dims[1] = MIN(n_dims - 1, end);
  11686. }
  11687. static void ggml_compute_forward_rope_f32(
  11688. const struct ggml_compute_params * params,
  11689. struct ggml_tensor * dst,
  11690. const bool forward) {
  11691. const struct ggml_tensor * src0 = dst->src[0];
  11692. const struct ggml_tensor * src1 = dst->src[1];
  11693. const struct ggml_tensor * src2 = dst->src[2];
  11694. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11695. return;
  11696. }
  11697. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11698. // these two only relevant for xPos RoPE:
  11699. float xpos_base;
  11700. bool xpos_down;
  11701. //const int n_past = ((int32_t *) dst->op_params)[0];
  11702. const int n_dims = ((int32_t *) dst->op_params)[1];
  11703. const int mode = ((int32_t *) dst->op_params)[2];
  11704. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11705. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11706. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11707. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11708. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11709. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11710. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11711. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11712. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11713. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11714. GGML_TENSOR_UNARY_OP_LOCALS
  11715. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11716. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11717. GGML_ASSERT(nb00 == sizeof(float));
  11718. const int ith = params->ith;
  11719. const int nth = params->nth;
  11720. const int nr = ggml_nrows(dst);
  11721. GGML_ASSERT(n_dims <= ne0);
  11722. GGML_ASSERT(n_dims % 2 == 0);
  11723. // rows per thread
  11724. const int dr = (nr + nth - 1)/nth;
  11725. // row range for this thread
  11726. const int ir0 = dr*ith;
  11727. const int ir1 = MIN(ir0 + dr, nr);
  11728. // row index used to determine which thread to use
  11729. int ir = 0;
  11730. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11731. float corr_dims[2];
  11732. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11733. const bool is_neox = mode & 2;
  11734. const bool is_glm = mode & 4;
  11735. const float * freq_factors = NULL;
  11736. if (is_neox) {
  11737. if (src2 != NULL) {
  11738. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11739. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11740. freq_factors = (const float *) src2->data;
  11741. }
  11742. } else {
  11743. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11744. }
  11745. // backward process uses inverse rotation by cos and sin.
  11746. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11747. // this essentially just switches the sign of sin.
  11748. const float sin_sign = forward ? 1.0f : -1.0f;
  11749. const int32_t * pos = (const int32_t *) src1->data;
  11750. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11751. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11752. const int64_t p = pos[i2];
  11753. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11754. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11755. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11756. }
  11757. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11758. if (ir++ < ir0) continue;
  11759. if (ir > ir1) break;
  11760. float theta_base = (float)p;
  11761. if (is_glm) {
  11762. theta_base = MIN(p, n_ctx - 2);
  11763. float block_theta = MAX(p - (n_ctx - 2), 0);
  11764. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11765. const float cos_theta = cosf(theta_base);
  11766. const float sin_theta = sinf(theta_base) * sin_sign;
  11767. const float cos_block_theta = cosf(block_theta);
  11768. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11769. theta_base *= theta_scale;
  11770. block_theta *= theta_scale;
  11771. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11772. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11773. const float x0 = src[0];
  11774. const float x1 = src[n_dims/2];
  11775. const float x2 = src[n_dims];
  11776. const float x3 = src[n_dims/2*3];
  11777. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11778. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11779. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11780. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11781. }
  11782. } else if (!is_neox) {
  11783. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11784. const float cos_theta = cache[i0 + 0];
  11785. const float sin_theta = cache[i0 + 1];
  11786. // zeta scaling for xPos only:
  11787. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11788. if (xpos_down) zeta = 1.0f / zeta;
  11789. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11790. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11791. const float x0 = src[0];
  11792. const float x1 = src[1];
  11793. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11794. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11795. }
  11796. } else {
  11797. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11798. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11799. if (ic < n_dims) {
  11800. const int64_t i0 = ic/2;
  11801. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11802. float cos_theta, sin_theta;
  11803. rope_yarn(
  11804. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11805. &cos_theta, &sin_theta
  11806. );
  11807. sin_theta *= sin_sign;
  11808. theta_base *= theta_scale;
  11809. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11810. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11811. const float x0 = src[0];
  11812. const float x1 = src[n_dims/2];
  11813. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11814. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11815. } else {
  11816. const int64_t i0 = ic;
  11817. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11818. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11819. dst_data[0] = src[0];
  11820. dst_data[1] = src[1];
  11821. }
  11822. }
  11823. }
  11824. }
  11825. }
  11826. }
  11827. }
  11828. // TODO: deduplicate f16/f32 code
  11829. static void ggml_compute_forward_rope_f16(
  11830. const struct ggml_compute_params * params,
  11831. struct ggml_tensor * dst,
  11832. const bool forward) {
  11833. const struct ggml_tensor * src0 = dst->src[0];
  11834. const struct ggml_tensor * src1 = dst->src[1];
  11835. const struct ggml_tensor * src2 = dst->src[2];
  11836. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11837. return;
  11838. }
  11839. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11840. //const int n_past = ((int32_t *) dst->op_params)[0];
  11841. const int n_dims = ((int32_t *) dst->op_params)[1];
  11842. const int mode = ((int32_t *) dst->op_params)[2];
  11843. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11844. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11845. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11846. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11847. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11848. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11849. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11850. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11851. GGML_TENSOR_UNARY_OP_LOCALS
  11852. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11853. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11854. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11855. const int ith = params->ith;
  11856. const int nth = params->nth;
  11857. const int nr = ggml_nrows(dst);
  11858. GGML_ASSERT(n_dims <= ne0);
  11859. GGML_ASSERT(n_dims % 2 == 0);
  11860. // rows per thread
  11861. const int dr = (nr + nth - 1)/nth;
  11862. // row range for this thread
  11863. const int ir0 = dr*ith;
  11864. const int ir1 = MIN(ir0 + dr, nr);
  11865. // row index used to determine which thread to use
  11866. int ir = 0;
  11867. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11868. float corr_dims[2];
  11869. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11870. const bool is_neox = mode & 2;
  11871. const bool is_glm = mode & 4;
  11872. const float * freq_factors = NULL;
  11873. if (is_neox) {
  11874. if (src2 != NULL) {
  11875. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11876. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11877. freq_factors = (const float *) src2->data;
  11878. }
  11879. } else {
  11880. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11881. }
  11882. // backward process uses inverse rotation by cos and sin.
  11883. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11884. // this essentially just switches the sign of sin.
  11885. const float sin_sign = forward ? 1.0f : -1.0f;
  11886. const int32_t * pos = (const int32_t *) src1->data;
  11887. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11888. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11889. const int64_t p = pos[i2];
  11890. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11891. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11892. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11893. }
  11894. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11895. if (ir++ < ir0) continue;
  11896. if (ir > ir1) break;
  11897. float theta_base = (float)p;
  11898. if (is_glm) {
  11899. theta_base = MIN(p, n_ctx - 2);
  11900. float block_theta = MAX(p - (n_ctx - 2), 0);
  11901. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11902. const float cos_theta = cosf(theta_base);
  11903. const float sin_theta = sinf(theta_base) * sin_sign;
  11904. const float cos_block_theta = cosf(block_theta);
  11905. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11906. theta_base *= theta_scale;
  11907. block_theta *= theta_scale;
  11908. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11909. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11910. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11911. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11912. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11913. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11914. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11915. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11916. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11917. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11918. }
  11919. } else if (!is_neox) {
  11920. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11921. const float cos_theta = cache[i0 + 0];
  11922. const float sin_theta = cache[i0 + 1];
  11923. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11924. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11925. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11926. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11927. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11928. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11929. }
  11930. } else {
  11931. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11932. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11933. if (ic < n_dims) {
  11934. const int64_t i0 = ic/2;
  11935. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11936. float cos_theta, sin_theta;
  11937. rope_yarn(
  11938. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11939. &cos_theta, &sin_theta
  11940. );
  11941. sin_theta *= sin_sign;
  11942. theta_base *= theta_scale;
  11943. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11944. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11945. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11946. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11947. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11948. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11949. } else {
  11950. const int64_t i0 = ic;
  11951. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11952. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11953. dst_data[0] = src[0];
  11954. dst_data[1] = src[1];
  11955. }
  11956. }
  11957. }
  11958. }
  11959. }
  11960. }
  11961. }
  11962. static void ggml_compute_forward_rope(
  11963. const struct ggml_compute_params * params,
  11964. struct ggml_tensor * dst) {
  11965. const struct ggml_tensor * src0 = dst->src[0];
  11966. switch (src0->type) {
  11967. case GGML_TYPE_F16:
  11968. {
  11969. ggml_compute_forward_rope_f16(params, dst, true);
  11970. } break;
  11971. case GGML_TYPE_F32:
  11972. {
  11973. ggml_compute_forward_rope_f32(params, dst, true);
  11974. } break;
  11975. default:
  11976. {
  11977. GGML_ASSERT(false);
  11978. } break;
  11979. }
  11980. }
  11981. // ggml_compute_forward_rope_back
  11982. static void ggml_compute_forward_rope_back(
  11983. const struct ggml_compute_params * params,
  11984. struct ggml_tensor * dst) {
  11985. const struct ggml_tensor * src0 = dst->src[0];
  11986. switch (src0->type) {
  11987. case GGML_TYPE_F16:
  11988. {
  11989. ggml_compute_forward_rope_f16(params, dst, false);
  11990. } break;
  11991. case GGML_TYPE_F32:
  11992. {
  11993. ggml_compute_forward_rope_f32(params, dst, false);
  11994. } break;
  11995. default:
  11996. {
  11997. GGML_ASSERT(false);
  11998. } break;
  11999. }
  12000. }
  12001. // ggml_compute_forward_conv_transpose_1d
  12002. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12003. const struct ggml_compute_params * params,
  12004. struct ggml_tensor * dst) {
  12005. const struct ggml_tensor * src0 = dst->src[0];
  12006. const struct ggml_tensor * src1 = dst->src[1];
  12007. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12008. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12009. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12010. int64_t t0 = ggml_perf_time_us();
  12011. UNUSED(t0);
  12012. GGML_TENSOR_BINARY_OP_LOCALS
  12013. const int ith = params->ith;
  12014. const int nth = params->nth;
  12015. const int nk = ne00*ne01*ne02;
  12016. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12017. GGML_ASSERT(nb10 == sizeof(float));
  12018. if (params->type == GGML_TASK_TYPE_INIT) {
  12019. if (ith != 0) {
  12020. return;
  12021. }
  12022. memset(params->wdata, 0, params->wsize);
  12023. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12024. {
  12025. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12026. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12027. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12028. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12029. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12030. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12031. dst_data[i00*ne02 + i02] = src[i00];
  12032. }
  12033. }
  12034. }
  12035. }
  12036. // permute source data (src1) from (L x Cin) to (Cin x L)
  12037. {
  12038. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12039. ggml_fp16_t * dst_data = wdata;
  12040. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12041. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12042. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12043. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12044. }
  12045. }
  12046. }
  12047. // need to zero dst since we are accumulating into it
  12048. memset(dst->data, 0, ggml_nbytes(dst));
  12049. return;
  12050. }
  12051. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12052. return;
  12053. }
  12054. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12055. // total rows in dst
  12056. const int nr = ne1;
  12057. // rows per thread
  12058. const int dr = (nr + nth - 1)/nth;
  12059. // row range for this thread
  12060. const int ir0 = dr*ith;
  12061. const int ir1 = MIN(ir0 + dr, nr);
  12062. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12063. ggml_fp16_t * const wdata_src = wdata + nk;
  12064. for (int i1 = ir0; i1 < ir1; i1++) {
  12065. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12066. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12067. for (int i10 = 0; i10 < ne10; i10++) {
  12068. const int i1n = i10*ne11;
  12069. for (int i00 = 0; i00 < ne00; i00++) {
  12070. float v = 0;
  12071. ggml_vec_dot_f16(ne02, &v, 0,
  12072. (ggml_fp16_t *) wdata_src + i1n, 0,
  12073. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12074. dst_data[i10*s0 + i00] += v;
  12075. }
  12076. }
  12077. }
  12078. }
  12079. static void ggml_compute_forward_conv_transpose_1d_f32(
  12080. const struct ggml_compute_params * params,
  12081. struct ggml_tensor * dst) {
  12082. const struct ggml_tensor * src0 = dst->src[0];
  12083. const struct ggml_tensor * src1 = dst->src[1];
  12084. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12085. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12086. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12087. int64_t t0 = ggml_perf_time_us();
  12088. UNUSED(t0);
  12089. GGML_TENSOR_BINARY_OP_LOCALS
  12090. const int ith = params->ith;
  12091. const int nth = params->nth;
  12092. const int nk = ne00*ne01*ne02;
  12093. GGML_ASSERT(nb00 == sizeof(float));
  12094. GGML_ASSERT(nb10 == sizeof(float));
  12095. if (params->type == GGML_TASK_TYPE_INIT) {
  12096. if (ith != 0) {
  12097. return;
  12098. }
  12099. memset(params->wdata, 0, params->wsize);
  12100. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12101. {
  12102. float * const wdata = (float *) params->wdata + 0;
  12103. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12104. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12105. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12106. float * dst_data = wdata + i01*ne00*ne02;
  12107. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12108. dst_data[i00*ne02 + i02] = src[i00];
  12109. }
  12110. }
  12111. }
  12112. }
  12113. // prepare source data (src1)
  12114. {
  12115. float * const wdata = (float *) params->wdata + nk;
  12116. float * dst_data = wdata;
  12117. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12118. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12119. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12120. dst_data[i10*ne11 + i11] = src[i10];
  12121. }
  12122. }
  12123. }
  12124. // need to zero dst since we are accumulating into it
  12125. memset(dst->data, 0, ggml_nbytes(dst));
  12126. return;
  12127. }
  12128. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12129. return;
  12130. }
  12131. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12132. // total rows in dst
  12133. const int nr = ne1;
  12134. // rows per thread
  12135. const int dr = (nr + nth - 1)/nth;
  12136. // row range for this thread
  12137. const int ir0 = dr*ith;
  12138. const int ir1 = MIN(ir0 + dr, nr);
  12139. float * const wdata = (float *) params->wdata + 0;
  12140. float * const wdata_src = wdata + nk;
  12141. for (int i1 = ir0; i1 < ir1; i1++) {
  12142. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12143. float * wdata_kernel = wdata + i1*ne02*ne00;
  12144. for (int i10 = 0; i10 < ne10; i10++) {
  12145. const int i1n = i10*ne11;
  12146. for (int i00 = 0; i00 < ne00; i00++) {
  12147. float v = 0;
  12148. ggml_vec_dot_f32(ne02, &v, 0,
  12149. wdata_src + i1n, 0,
  12150. wdata_kernel + i00*ne02, 0, 1);
  12151. dst_data[i10*s0 + i00] += v;
  12152. }
  12153. }
  12154. }
  12155. }
  12156. static void ggml_compute_forward_conv_transpose_1d(
  12157. const struct ggml_compute_params * params,
  12158. struct ggml_tensor * dst) {
  12159. const struct ggml_tensor * src0 = dst->src[0];
  12160. switch (src0->type) {
  12161. case GGML_TYPE_F16:
  12162. {
  12163. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12164. } break;
  12165. case GGML_TYPE_F32:
  12166. {
  12167. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12168. } break;
  12169. default:
  12170. {
  12171. GGML_ASSERT(false);
  12172. } break;
  12173. }
  12174. }
  12175. // src0: kernel [OC, IC, KH, KW]
  12176. // src1: image [N, IC, IH, IW]
  12177. // dst: result [N, OH, OW, IC*KH*KW]
  12178. static void ggml_compute_forward_im2col_f32(
  12179. const struct ggml_compute_params * params,
  12180. struct ggml_tensor * dst) {
  12181. const struct ggml_tensor * src0 = dst->src[0];
  12182. const struct ggml_tensor * src1 = dst->src[1];
  12183. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12184. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12185. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12186. int64_t t0 = ggml_perf_time_us();
  12187. UNUSED(t0);
  12188. GGML_TENSOR_BINARY_OP_LOCALS;
  12189. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12190. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12191. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12192. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12193. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12194. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12195. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12196. const int ith = params->ith;
  12197. const int nth = params->nth;
  12198. const int64_t N = is_2D ? ne13 : ne12;
  12199. const int64_t IC = is_2D ? ne12 : ne11;
  12200. const int64_t IH = is_2D ? ne11 : 1;
  12201. const int64_t IW = ne10;
  12202. const int64_t KH = is_2D ? ne01 : 1;
  12203. const int64_t KW = ne00;
  12204. const int64_t OH = is_2D ? ne2 : 1;
  12205. const int64_t OW = ne1;
  12206. int ofs0 = is_2D ? nb13 : nb12;
  12207. int ofs1 = is_2D ? nb12 : nb11;
  12208. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12209. GGML_ASSERT(nb10 == sizeof(float));
  12210. if (params->type == GGML_TASK_TYPE_INIT) {
  12211. return;
  12212. }
  12213. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12214. return;
  12215. }
  12216. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12217. {
  12218. float * const wdata = (float *) dst->data;
  12219. for (int64_t in = 0; in < N; in++) {
  12220. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12221. for (int64_t iow = 0; iow < OW; iow++) {
  12222. for (int64_t iic = ith; iic < IC; iic += nth) {
  12223. // micro kernel
  12224. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12225. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12226. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12227. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12228. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12229. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12230. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12231. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12232. } else {
  12233. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12234. }
  12235. }
  12236. }
  12237. }
  12238. }
  12239. }
  12240. }
  12241. }
  12242. }
  12243. // src0: kernel [OC, IC, KH, KW]
  12244. // src1: image [N, IC, IH, IW]
  12245. // dst: result [N, OH, OW, IC*KH*KW]
  12246. static void ggml_compute_forward_im2col_f16(
  12247. const struct ggml_compute_params * params,
  12248. struct ggml_tensor * dst) {
  12249. const struct ggml_tensor * src0 = dst->src[0];
  12250. const struct ggml_tensor * src1 = dst->src[1];
  12251. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12252. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12253. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12254. int64_t t0 = ggml_perf_time_us();
  12255. UNUSED(t0);
  12256. GGML_TENSOR_BINARY_OP_LOCALS;
  12257. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12258. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12259. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12260. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12261. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12262. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12263. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12264. const int ith = params->ith;
  12265. const int nth = params->nth;
  12266. const int64_t N = is_2D ? ne13 : ne12;
  12267. const int64_t IC = is_2D ? ne12 : ne11;
  12268. const int64_t IH = is_2D ? ne11 : 1;
  12269. const int64_t IW = ne10;
  12270. const int64_t KH = is_2D ? ne01 : 1;
  12271. const int64_t KW = ne00;
  12272. const int64_t OH = is_2D ? ne2 : 1;
  12273. const int64_t OW = ne1;
  12274. int ofs0 = is_2D ? nb13 : nb12;
  12275. int ofs1 = is_2D ? nb12 : nb11;
  12276. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12277. GGML_ASSERT(nb10 == sizeof(float));
  12278. if (params->type == GGML_TASK_TYPE_INIT) {
  12279. return;
  12280. }
  12281. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12282. return;
  12283. }
  12284. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12285. {
  12286. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12287. for (int64_t in = 0; in < N; in++) {
  12288. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12289. for (int64_t iow = 0; iow < OW; iow++) {
  12290. for (int64_t iic = ith; iic < IC; iic += nth) {
  12291. // micro kernel
  12292. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12293. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12294. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12295. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12296. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12297. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12298. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12299. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12300. } else {
  12301. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12302. }
  12303. }
  12304. }
  12305. }
  12306. }
  12307. }
  12308. }
  12309. }
  12310. }
  12311. static void ggml_compute_forward_im2col(
  12312. const struct ggml_compute_params * params,
  12313. struct ggml_tensor * dst) {
  12314. switch (dst->type) {
  12315. case GGML_TYPE_F16:
  12316. {
  12317. ggml_compute_forward_im2col_f16(params, dst);
  12318. } break;
  12319. case GGML_TYPE_F32:
  12320. {
  12321. ggml_compute_forward_im2col_f32(params, dst);
  12322. } break;
  12323. default:
  12324. {
  12325. GGML_ASSERT(false);
  12326. } break;
  12327. }
  12328. }
  12329. // ggml_compute_forward_conv_transpose_2d
  12330. static void ggml_compute_forward_conv_transpose_2d(
  12331. const struct ggml_compute_params * params,
  12332. struct ggml_tensor * dst) {
  12333. const struct ggml_tensor * src0 = dst->src[0];
  12334. const struct ggml_tensor * src1 = dst->src[1];
  12335. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12336. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12337. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12338. int64_t t0 = ggml_perf_time_us();
  12339. UNUSED(t0);
  12340. GGML_TENSOR_BINARY_OP_LOCALS
  12341. const int ith = params->ith;
  12342. const int nth = params->nth;
  12343. const int nk = ne00*ne01*ne02*ne03;
  12344. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12345. GGML_ASSERT(nb10 == sizeof(float));
  12346. if (params->type == GGML_TASK_TYPE_INIT) {
  12347. if (ith != 0) {
  12348. return;
  12349. }
  12350. memset(params->wdata, 0, params->wsize);
  12351. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12352. {
  12353. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12354. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12355. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12356. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12357. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12358. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12359. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12360. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12361. }
  12362. }
  12363. }
  12364. }
  12365. }
  12366. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12367. {
  12368. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12369. for (int i12 = 0; i12 < ne12; i12++) {
  12370. for (int i11 = 0; i11 < ne11; i11++) {
  12371. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12372. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12373. for (int i10 = 0; i10 < ne10; i10++) {
  12374. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12375. }
  12376. }
  12377. }
  12378. }
  12379. memset(dst->data, 0, ggml_nbytes(dst));
  12380. return;
  12381. }
  12382. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12383. return;
  12384. }
  12385. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12386. // total patches in dst
  12387. const int np = ne2;
  12388. // patches per thread
  12389. const int dp = (np + nth - 1)/nth;
  12390. // patch range for this thread
  12391. const int ip0 = dp*ith;
  12392. const int ip1 = MIN(ip0 + dp, np);
  12393. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12394. ggml_fp16_t * const wdata_src = wdata + nk;
  12395. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12396. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12397. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12398. for (int i11 = 0; i11 < ne11; i11++) {
  12399. for (int i10 = 0; i10 < ne10; i10++) {
  12400. const int i1n = i11*ne10*ne12 + i10*ne12;
  12401. for (int i01 = 0; i01 < ne01; i01++) {
  12402. for (int i00 = 0; i00 < ne00; i00++) {
  12403. float v = 0;
  12404. ggml_vec_dot_f16(ne03, &v, 0,
  12405. wdata_src + i1n, 0,
  12406. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12407. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12408. }
  12409. }
  12410. }
  12411. }
  12412. }
  12413. }
  12414. // ggml_compute_forward_pool_1d_sk_p0
  12415. static void ggml_compute_forward_pool_1d_sk_p0(
  12416. const struct ggml_compute_params * params,
  12417. const enum ggml_op_pool op,
  12418. const int k,
  12419. struct ggml_tensor * dst) {
  12420. const struct ggml_tensor * src = dst->src[0];
  12421. assert(src->type == GGML_TYPE_F32);
  12422. assert(params->ith == 0);
  12423. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12424. return;
  12425. }
  12426. const char * cdata = (const char *)src->data;
  12427. const char * const data_end = cdata + ggml_nbytes(src);
  12428. float * drow = (float *)dst->data;
  12429. const int64_t rs = dst->ne[0];
  12430. while (cdata < data_end) {
  12431. const float * const srow = (const float *)cdata;
  12432. int j = 0;
  12433. for (int64_t i = 0; i < rs; ++i) {
  12434. switch (op) {
  12435. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12436. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12437. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12438. }
  12439. for (int ki = 0; ki < k; ++ki) {
  12440. switch (op) {
  12441. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12442. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12443. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12444. }
  12445. ++j;
  12446. }
  12447. switch (op) {
  12448. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12449. case GGML_OP_POOL_MAX: break;
  12450. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12451. }
  12452. }
  12453. cdata += src->nb[1];
  12454. drow += rs;
  12455. }
  12456. }
  12457. // ggml_compute_forward_pool_1d
  12458. static void ggml_compute_forward_pool_1d(
  12459. const struct ggml_compute_params * params,
  12460. struct ggml_tensor * dst) {
  12461. const int32_t * opts = (const int32_t *)dst->op_params;
  12462. enum ggml_op_pool op = opts[0];
  12463. const int k0 = opts[1];
  12464. const int s0 = opts[2];
  12465. const int p0 = opts[3];
  12466. GGML_ASSERT(p0 == 0); // padding not supported
  12467. GGML_ASSERT(k0 == s0); // only s = k supported
  12468. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12469. }
  12470. // ggml_compute_forward_pool_2d
  12471. static void ggml_compute_forward_pool_2d(
  12472. const struct ggml_compute_params * params,
  12473. struct ggml_tensor * dst) {
  12474. const struct ggml_tensor * src = dst->src[0];
  12475. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12476. GGML_ASSERT(params->ith == 0);
  12477. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12478. return;
  12479. }
  12480. const int32_t * opts = (const int32_t *)dst->op_params;
  12481. enum ggml_op_pool op = opts[0];
  12482. const int k0 = opts[1];
  12483. const int k1 = opts[2];
  12484. const int s0 = opts[3];
  12485. const int s1 = opts[4];
  12486. const int p0 = opts[5];
  12487. const int p1 = opts[6];
  12488. const char * cdata = (const char*)src->data;
  12489. const char * const data_end = cdata + ggml_nbytes(src);
  12490. const int64_t px = dst->ne[0];
  12491. const int64_t py = dst->ne[1];
  12492. const int64_t pa = px * py;
  12493. float * dplane = (float *)dst->data;
  12494. const int ka = k0 * k1;
  12495. const int offset0 = -p0;
  12496. const int offset1 = -p1;
  12497. while (cdata < data_end) {
  12498. for (int oy = 0; oy < py; ++oy) {
  12499. float * const drow = dplane + oy * px;
  12500. for (int ox = 0; ox < px; ++ox) {
  12501. float * const out = drow + ox;
  12502. switch (op) {
  12503. case GGML_OP_POOL_AVG: *out = 0; break;
  12504. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12505. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12506. }
  12507. const int ix = offset0 + ox * s0;
  12508. const int iy = offset1 + oy * s1;
  12509. for (int ky = 0; ky < k1; ++ky) {
  12510. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12511. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12512. for (int kx = 0; kx < k0; ++kx) {
  12513. int j = ix + kx;
  12514. if (j < 0 || j >= src->ne[0]) continue;
  12515. switch (op) {
  12516. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12517. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12518. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12519. }
  12520. }
  12521. }
  12522. switch (op) {
  12523. case GGML_OP_POOL_AVG: *out /= ka; break;
  12524. case GGML_OP_POOL_MAX: break;
  12525. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12526. }
  12527. }
  12528. }
  12529. cdata += src->nb[2];
  12530. dplane += pa;
  12531. }
  12532. }
  12533. // ggml_compute_forward_upscale
  12534. static void ggml_compute_forward_upscale_f32(
  12535. const struct ggml_compute_params * params,
  12536. struct ggml_tensor * dst) {
  12537. const struct ggml_tensor * src0 = dst->src[0];
  12538. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12539. return;
  12540. }
  12541. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12542. const int ith = params->ith;
  12543. const int nth = params->nth;
  12544. GGML_TENSOR_UNARY_OP_LOCALS
  12545. const float sf0 = (float)ne0/src0->ne[0];
  12546. const float sf1 = (float)ne1/src0->ne[1];
  12547. const float sf2 = (float)ne2/src0->ne[2];
  12548. const float sf3 = (float)ne3/src0->ne[3];
  12549. // TODO: optimize
  12550. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12551. const int64_t i03 = i3 / sf3;
  12552. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12553. const int64_t i02 = i2 / sf2;
  12554. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12555. const int64_t i01 = i1 / sf1;
  12556. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12557. const int64_t i00 = i0 / sf0;
  12558. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12559. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12560. *y = *x;
  12561. }
  12562. }
  12563. }
  12564. }
  12565. }
  12566. static void ggml_compute_forward_upscale(
  12567. const struct ggml_compute_params * params,
  12568. struct ggml_tensor * dst) {
  12569. const struct ggml_tensor * src0 = dst->src[0];
  12570. switch (src0->type) {
  12571. case GGML_TYPE_F32:
  12572. {
  12573. ggml_compute_forward_upscale_f32(params, dst);
  12574. } break;
  12575. default:
  12576. {
  12577. GGML_ASSERT(false);
  12578. } break;
  12579. }
  12580. }
  12581. // ggml_compute_forward_pad
  12582. static void ggml_compute_forward_pad_f32(
  12583. const struct ggml_compute_params * params,
  12584. struct ggml_tensor * dst) {
  12585. const struct ggml_tensor * src0 = dst->src[0];
  12586. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12587. return;
  12588. }
  12589. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12590. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12591. const int ith = params->ith;
  12592. const int nth = params->nth;
  12593. GGML_TENSOR_UNARY_OP_LOCALS
  12594. float * dst_ptr = (float *) dst->data;
  12595. // TODO: optimize
  12596. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12597. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12598. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12599. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12600. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12601. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12602. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12603. dst_ptr[dst_idx] = *src_ptr;
  12604. } else {
  12605. dst_ptr[dst_idx] = 0;
  12606. }
  12607. }
  12608. }
  12609. }
  12610. }
  12611. }
  12612. static void ggml_compute_forward_pad(
  12613. const struct ggml_compute_params * params,
  12614. struct ggml_tensor * dst) {
  12615. const struct ggml_tensor * src0 = dst->src[0];
  12616. switch (src0->type) {
  12617. case GGML_TYPE_F32:
  12618. {
  12619. ggml_compute_forward_pad_f32(params, dst);
  12620. } break;
  12621. default:
  12622. {
  12623. GGML_ASSERT(false);
  12624. } break;
  12625. }
  12626. }
  12627. // ggml_compute_forward_arange
  12628. static void ggml_compute_forward_arange_f32(
  12629. const struct ggml_compute_params * params,
  12630. struct ggml_tensor * dst) {
  12631. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12632. return;
  12633. }
  12634. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12635. const int ith = params->ith;
  12636. const int nth = params->nth;
  12637. const float start = ggml_get_op_params_f32(dst, 0);
  12638. const float stop = ggml_get_op_params_f32(dst, 1);
  12639. const float step = ggml_get_op_params_f32(dst, 2);
  12640. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12641. GGML_ASSERT(ggml_nelements(dst) == steps);
  12642. for (int64_t i = ith; i < steps; i+= nth) {
  12643. float value = start + step * i;
  12644. ((float *)dst->data)[i] = value;
  12645. }
  12646. }
  12647. static void ggml_compute_forward_arange(
  12648. const struct ggml_compute_params * params,
  12649. struct ggml_tensor * dst) {
  12650. switch (dst->type) {
  12651. case GGML_TYPE_F32:
  12652. {
  12653. ggml_compute_forward_arange_f32(params, dst);
  12654. } break;
  12655. default:
  12656. {
  12657. GGML_ASSERT(false);
  12658. } break;
  12659. }
  12660. }
  12661. static void ggml_compute_forward_timestep_embedding_f32(
  12662. const struct ggml_compute_params * params,
  12663. struct ggml_tensor * dst) {
  12664. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12665. return;
  12666. }
  12667. const struct ggml_tensor * src0 = dst->src[0];
  12668. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12669. const int ith = params->ith;
  12670. const int nth = params->nth;
  12671. GGML_TENSOR_UNARY_OP_LOCALS
  12672. const int dim = ggml_get_op_params_i32(dst, 0);
  12673. const int max_period = ggml_get_op_params_i32(dst, 1);
  12674. int half = dim / 2;
  12675. for (int64_t i = 0; i < ne00; i++) {
  12676. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12677. for (int64_t j = ith; j < half; j += nth) {
  12678. float timestep = ((float *)src0->data)[i];
  12679. float freq = (float)expf(-logf(max_period) * j / half);
  12680. float arg = timestep * freq;
  12681. embed_data[j] = cosf(arg);
  12682. embed_data[j + half] = sinf(arg);
  12683. }
  12684. if (dim % 2 != 0 && ith == 0) {
  12685. embed_data[dim] = 0.f;
  12686. }
  12687. }
  12688. }
  12689. static void ggml_compute_forward_timestep_embedding(
  12690. const struct ggml_compute_params * params,
  12691. struct ggml_tensor * dst) {
  12692. const struct ggml_tensor * src0 = dst->src[0];
  12693. switch (src0->type) {
  12694. case GGML_TYPE_F32:
  12695. {
  12696. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12697. } break;
  12698. default:
  12699. {
  12700. GGML_ASSERT(false);
  12701. } break;
  12702. }
  12703. }
  12704. // ggml_compute_forward_argsort
  12705. static void ggml_compute_forward_argsort_f32(
  12706. const struct ggml_compute_params * params,
  12707. struct ggml_tensor * dst) {
  12708. const struct ggml_tensor * src0 = dst->src[0];
  12709. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12710. return;
  12711. }
  12712. GGML_TENSOR_UNARY_OP_LOCALS
  12713. GGML_ASSERT(nb0 == sizeof(float));
  12714. const int ith = params->ith;
  12715. const int nth = params->nth;
  12716. const int64_t nr = ggml_nrows(src0);
  12717. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12718. for (int64_t i = ith; i < nr; i += nth) {
  12719. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12720. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12721. for (int64_t j = 0; j < ne0; j++) {
  12722. dst_data[j] = j;
  12723. }
  12724. // C doesn't have a functional sort, so we do a bubble sort instead
  12725. for (int64_t j = 0; j < ne0; j++) {
  12726. for (int64_t k = j + 1; k < ne0; k++) {
  12727. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12728. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12729. int32_t tmp = dst_data[j];
  12730. dst_data[j] = dst_data[k];
  12731. dst_data[k] = tmp;
  12732. }
  12733. }
  12734. }
  12735. }
  12736. }
  12737. static void ggml_compute_forward_argsort(
  12738. const struct ggml_compute_params * params,
  12739. struct ggml_tensor * dst) {
  12740. const struct ggml_tensor * src0 = dst->src[0];
  12741. switch (src0->type) {
  12742. case GGML_TYPE_F32:
  12743. {
  12744. ggml_compute_forward_argsort_f32(params, dst);
  12745. } break;
  12746. default:
  12747. {
  12748. GGML_ASSERT(false);
  12749. } break;
  12750. }
  12751. }
  12752. // ggml_compute_forward_flash_attn_ext
  12753. static void ggml_compute_forward_flash_attn_ext_f16(
  12754. const struct ggml_compute_params * params,
  12755. const struct ggml_tensor * q,
  12756. const struct ggml_tensor * k,
  12757. const struct ggml_tensor * v,
  12758. const struct ggml_tensor * mask,
  12759. struct ggml_tensor * dst) {
  12760. int64_t t0 = ggml_perf_time_us();
  12761. UNUSED(t0);
  12762. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12763. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12764. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12765. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12766. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12767. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12768. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12769. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12770. const int ith = params->ith;
  12771. const int nth = params->nth;
  12772. const int64_t D = neq0;
  12773. const int64_t N = neq1;
  12774. GGML_ASSERT(ne0 == D);
  12775. GGML_ASSERT(ne2 == N);
  12776. // input tensor rows must be contiguous
  12777. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12778. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12779. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12780. GGML_ASSERT(neq0 == D);
  12781. GGML_ASSERT(nek0 == D);
  12782. GGML_ASSERT(nev0 == D);
  12783. GGML_ASSERT(neq1 == N);
  12784. GGML_ASSERT(nev0 == D);
  12785. // dst cannot be transposed or permuted
  12786. GGML_ASSERT(nb0 == sizeof(float));
  12787. GGML_ASSERT(nb0 <= nb1);
  12788. GGML_ASSERT(nb1 <= nb2);
  12789. GGML_ASSERT(nb2 <= nb3);
  12790. // broadcast factors
  12791. const int64_t rk2 = neq2/nek2;
  12792. const int64_t rk3 = neq3/nek3;
  12793. const int64_t rv2 = neq2/nev2;
  12794. const int64_t rv3 = neq3/nev3;
  12795. if (params->type == GGML_TASK_TYPE_INIT) {
  12796. return;
  12797. }
  12798. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12799. return;
  12800. }
  12801. // parallelize by q rows using ggml_vec_dot_f32
  12802. // total rows in q
  12803. const int nr = neq1*neq2*neq3;
  12804. // rows per thread
  12805. const int dr = (nr + nth - 1)/nth;
  12806. // row range for this thread
  12807. const int ir0 = dr*ith;
  12808. const int ir1 = MIN(ir0 + dr, nr);
  12809. float scale = 1.0f;
  12810. float max_bias = 0.0f;
  12811. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12812. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12813. const uint32_t n_head = neq2;
  12814. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12815. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12816. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12817. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12818. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12819. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12820. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12821. // loop over n_batch and n_head
  12822. for (int ir = ir0; ir < ir1; ++ir) {
  12823. // q indices
  12824. const int iq3 = ir/(neq2*neq1);
  12825. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12826. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12827. const uint32_t h = iq2; // head index
  12828. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12829. float S = 0.0f; // sum
  12830. float M = -INFINITY; // maximum KQ value
  12831. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12832. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12833. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12834. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12835. if (v->type == GGML_TYPE_F16) {
  12836. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12837. } else {
  12838. memset(VKQ32, 0, D*sizeof(float));
  12839. }
  12840. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12841. // k indices
  12842. const int ik3 = iq3 / rk3;
  12843. const int ik2 = iq2 / rk2;
  12844. // v indices
  12845. const int iv3 = iq3 / rv3;
  12846. const int iv2 = iq2 / rv2;
  12847. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12848. q_to_vec_dot(pq, Q_q, D);
  12849. // online softmax / attention
  12850. // loop over n_kv and n_head_kv
  12851. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12852. for (int64_t ic = 0; ic < nek1; ++ic) {
  12853. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12854. if (mv == -INFINITY) {
  12855. continue;
  12856. }
  12857. float s; // KQ value
  12858. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12859. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12860. s = s*scale + mv; // scale KQ value and apply mask
  12861. const float Mold = M;
  12862. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12863. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12864. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12865. if (v->type== GGML_TYPE_F16) {
  12866. if (s > M) {
  12867. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12868. M = s;
  12869. ms = expf(Mold - M);
  12870. // V = V*expf(Mold - M)
  12871. ggml_vec_scale_f16(D, VKQ16, ms);
  12872. } else {
  12873. // no new maximum, ms == 1.0f, vs != 1.0f
  12874. vs = expf(s - M);
  12875. }
  12876. // V += v*expf(s - M)
  12877. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12878. } else {
  12879. if (s > M) {
  12880. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12881. M = s;
  12882. ms = expf(Mold - M);
  12883. // V = V*expf(Mold - M)
  12884. ggml_vec_scale_f32(D, VKQ32, ms);
  12885. } else {
  12886. // no new maximum, ms == 1.0f, vs != 1.0f
  12887. vs = expf(s - M);
  12888. }
  12889. v_to_float(v_data, V32, D);
  12890. // V += v*expf(s - M)
  12891. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12892. }
  12893. S = S*ms + vs; // scale and increment sum with partial sum
  12894. }
  12895. if (v->type == GGML_TYPE_F16) {
  12896. for (int64_t d = 0; d < D; ++d) {
  12897. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12898. }
  12899. }
  12900. // V /= S
  12901. const float S_inv = 1.0f/S;
  12902. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12903. // dst indices
  12904. const int i1 = iq1;
  12905. const int i2 = iq2;
  12906. const int i3 = iq3;
  12907. // original
  12908. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12909. // permute(0, 2, 1, 3)
  12910. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12911. }
  12912. }
  12913. static void ggml_compute_forward_flash_attn_ext(
  12914. const struct ggml_compute_params * params,
  12915. const struct ggml_tensor * q,
  12916. const struct ggml_tensor * k,
  12917. const struct ggml_tensor * v,
  12918. const struct ggml_tensor * mask,
  12919. struct ggml_tensor * dst) {
  12920. switch (dst->op_params[2]) {
  12921. case GGML_PREC_DEFAULT:
  12922. case GGML_PREC_F32:
  12923. {
  12924. // uses F32 accumulators
  12925. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12926. } break;
  12927. default:
  12928. {
  12929. GGML_ASSERT(false);
  12930. } break;
  12931. }
  12932. }
  12933. // ggml_compute_forward_flash_attn_back
  12934. static void ggml_compute_forward_flash_attn_back_f32(
  12935. const struct ggml_compute_params * params,
  12936. const bool masked,
  12937. struct ggml_tensor * dst) {
  12938. const struct ggml_tensor * q = dst->src[0];
  12939. const struct ggml_tensor * k = dst->src[1];
  12940. const struct ggml_tensor * v = dst->src[2];
  12941. const struct ggml_tensor * d = dst->src[3];
  12942. int64_t t0 = ggml_perf_time_us();
  12943. UNUSED(t0);
  12944. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12945. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12946. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12947. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12948. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12949. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12950. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12951. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12952. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12953. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12954. const int ith = params->ith;
  12955. const int nth = params->nth;
  12956. const int64_t D = neq0;
  12957. const int64_t N = neq1;
  12958. const int64_t P = nek1 - N;
  12959. const int64_t M = P + N;
  12960. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12961. const int mxDM = MAX(D, Mup);
  12962. // GGML_ASSERT(ne0 == D);
  12963. // GGML_ASSERT(ne1 == N);
  12964. GGML_ASSERT(P >= 0);
  12965. GGML_ASSERT(nbq0 == sizeof(float));
  12966. GGML_ASSERT(nbk0 == sizeof(float));
  12967. GGML_ASSERT(nbv0 == sizeof(float));
  12968. GGML_ASSERT(neq0 == D);
  12969. GGML_ASSERT(nek0 == D);
  12970. GGML_ASSERT(nev1 == D);
  12971. GGML_ASSERT(ned0 == D);
  12972. GGML_ASSERT(neq1 == N);
  12973. GGML_ASSERT(nek1 == N + P);
  12974. GGML_ASSERT(nev1 == D);
  12975. GGML_ASSERT(ned1 == N);
  12976. // dst cannot be transposed or permuted
  12977. GGML_ASSERT(nb0 == sizeof(float));
  12978. GGML_ASSERT(nb0 <= nb1);
  12979. GGML_ASSERT(nb1 <= nb2);
  12980. GGML_ASSERT(nb2 <= nb3);
  12981. if (params->type == GGML_TASK_TYPE_INIT) {
  12982. if (ith == 0) {
  12983. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12984. }
  12985. return;
  12986. }
  12987. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12988. return;
  12989. }
  12990. const int64_t elem_q = ggml_nelements(q);
  12991. const int64_t elem_k = ggml_nelements(k);
  12992. enum ggml_type result_type = dst->type;
  12993. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12994. const size_t tsize = ggml_type_size(result_type);
  12995. const size_t offs_q = 0;
  12996. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12997. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12998. void * grad_q = (char *) dst->data;
  12999. void * grad_k = (char *) dst->data + offs_k;
  13000. void * grad_v = (char *) dst->data + offs_v;
  13001. const size_t nbgq1 = nb0*neq0;
  13002. const size_t nbgq2 = nb0*neq0*neq1;
  13003. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13004. const size_t nbgk1 = nb0*nek0;
  13005. const size_t nbgk2 = nb0*nek0*nek1;
  13006. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13007. const size_t nbgv1 = nb0*nev0;
  13008. const size_t nbgv2 = nb0*nev0*nev1;
  13009. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13010. // parallelize by k rows using ggml_vec_dot_f32
  13011. // total rows in k
  13012. const int nr = nek2*nek3;
  13013. // rows per thread
  13014. const int dr = (nr + nth - 1)/nth;
  13015. // row range for this thread
  13016. const int ir0 = dr*ith;
  13017. const int ir1 = MIN(ir0 + dr, nr);
  13018. const float scale = 1.0f/sqrtf(D);
  13019. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13020. // how often k2 (and v2) is repeated in q2
  13021. int nrep = neq2/nek2;
  13022. for (int ir = ir0; ir < ir1; ++ir) {
  13023. // q indices
  13024. const int ik3 = ir/(nek2);
  13025. const int ik2 = ir - ik3*nek2;
  13026. const int iq3 = ik3;
  13027. const int id3 = ik3;
  13028. const int iv3 = ik3;
  13029. const int iv2 = ik2;
  13030. for (int irep = 0; irep < nrep; ++irep) {
  13031. const int iq2 = ik2 + irep*nek2;
  13032. const int id2 = iq2;
  13033. // (ik2 + irep*nek2) % nek2 == ik2
  13034. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13035. const int id1 = iq1;
  13036. // not sure about CACHE_LINE_SIZE_F32..
  13037. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13038. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13039. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13040. for (int i = M; i < Mup; ++i) {
  13041. S[i] = -INFINITY;
  13042. }
  13043. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13044. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13045. // k indices
  13046. const int ik1 = ic;
  13047. // S indices
  13048. const int i1 = ik1;
  13049. ggml_vec_dot_f32(neq0,
  13050. S + i1, 0,
  13051. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13052. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13053. }
  13054. // scale
  13055. ggml_vec_scale_f32(masked_begin, S, scale);
  13056. for (int64_t i = masked_begin; i < M; i++) {
  13057. S[i] = -INFINITY;
  13058. }
  13059. // softmax
  13060. // exclude known -INF S[..] values from max and loop
  13061. // dont forget to set their SM values to zero
  13062. {
  13063. float max = -INFINITY;
  13064. ggml_vec_max_f32(masked_begin, &max, S);
  13065. ggml_float sum = 0.0;
  13066. {
  13067. #ifdef GGML_SOFT_MAX_ACCELERATE
  13068. max = -max;
  13069. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13070. vvexpf(SM, SM, &Mup);
  13071. ggml_vec_sum_f32(Mup, &sum, SM);
  13072. #else
  13073. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13074. #endif
  13075. }
  13076. assert(sum > 0.0);
  13077. sum = 1.0/sum;
  13078. ggml_vec_scale_f32(masked_begin, SM, sum);
  13079. }
  13080. // step-by-step explanation
  13081. {
  13082. // forward-process shape grads from backward process
  13083. // parallel_for ik2,ik3:
  13084. // for irep:
  13085. // iq2 = ik2 + irep*nek2
  13086. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13087. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13088. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13089. // for iq1:
  13090. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13091. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13092. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13093. // S0 = -Inf [D,1,1,1]
  13094. // ~S1[i] = dot(kcur[:D,i], qcur)
  13095. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13096. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13097. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13098. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13099. // ~S5[i] = dot(vcur[:,i], S4)
  13100. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13101. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13102. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13103. // dst backward-/ grad[dst] = d
  13104. //
  13105. // output gradients with their dependencies:
  13106. //
  13107. // grad[kcur] = grad[S1].T @ qcur
  13108. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13109. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13110. // grad[S4] = grad[S5] @ vcur
  13111. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13112. // grad[qcur] = grad[S1] @ kcur
  13113. // grad[vcur] = grad[S5].T @ S4
  13114. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13115. //
  13116. // in post-order:
  13117. //
  13118. // S1 = qcur @ kcur.T
  13119. // S2 = S1 * scale
  13120. // S3 = diag_mask_inf(S2, P)
  13121. // S4 = softmax(S3)
  13122. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13123. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13124. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13125. // grad[qcur] = grad[S1] @ kcur
  13126. // grad[kcur] = grad[S1].T @ qcur
  13127. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13128. //
  13129. // using less variables (SM=S4):
  13130. //
  13131. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13132. // SM = softmax(S)
  13133. // S = d[:D,iq1,iq2,iq3] @ vcur
  13134. // dot_SM_gradSM = dot(SM, S)
  13135. // S = SM * (S - dot(SM, S))
  13136. // S = diag_mask_zero(S, P) * scale
  13137. //
  13138. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13139. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13140. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13141. }
  13142. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13143. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13144. // for ic:
  13145. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13146. // exclude known future zero S[..] values from operation
  13147. ggml_vec_set_f32(masked_begin, S, 0);
  13148. for (int64_t ic = 0; ic < D; ++ic) {
  13149. ggml_vec_mad_f32(masked_begin,
  13150. S,
  13151. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13152. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13153. }
  13154. // S = SM * (S - dot(SM, S))
  13155. float dot_SM_gradSM = 0;
  13156. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13157. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13158. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13159. // S = diag_mask_zero(S, P) * scale
  13160. // already done by above ggml_vec_set_f32
  13161. // exclude known zero S[..] values from operation
  13162. ggml_vec_scale_f32(masked_begin, S, scale);
  13163. // S shape [M,1]
  13164. // SM shape [M,1]
  13165. // kcur shape [D,M]
  13166. // qcur shape [D,1]
  13167. // vcur shape [M,D]
  13168. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13169. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13170. // for ic:
  13171. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13172. // exclude known zero S[..] values from loop
  13173. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13174. ggml_vec_mad_f32(D,
  13175. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13176. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13177. S[ic]);
  13178. }
  13179. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13180. // for ic:
  13181. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13182. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13183. // exclude known zero S[..] values from loop
  13184. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13185. ggml_vec_mad_f32(D,
  13186. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13187. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13188. S[ic]);
  13189. }
  13190. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13191. // for ic:
  13192. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13193. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13194. // exclude known zero SM[..] values from mad
  13195. for (int64_t ic = 0; ic < D; ++ic) {
  13196. ggml_vec_mad_f32(masked_begin,
  13197. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13198. SM,
  13199. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13200. }
  13201. }
  13202. }
  13203. }
  13204. }
  13205. static void ggml_compute_forward_flash_attn_back(
  13206. const struct ggml_compute_params * params,
  13207. const bool masked,
  13208. struct ggml_tensor * dst) {
  13209. const struct ggml_tensor * q = dst->src[0];
  13210. switch (q->type) {
  13211. case GGML_TYPE_F32:
  13212. {
  13213. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13214. } break;
  13215. default:
  13216. {
  13217. GGML_ASSERT(false);
  13218. } break;
  13219. }
  13220. }
  13221. // ggml_compute_forward_ssm_conv
  13222. static void ggml_compute_forward_ssm_conv_f32(
  13223. const struct ggml_compute_params * params,
  13224. struct ggml_tensor * dst) {
  13225. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13226. return;
  13227. }
  13228. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13229. const struct ggml_tensor * src1 = dst->src[1]; // x
  13230. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13231. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13232. const int ith = params->ith;
  13233. const int nth = params->nth;
  13234. const int nc = src2->ne[0]; // d_conv
  13235. const int nr = src0->ne[1]; // d_inner
  13236. const int n_t = src1->ne[1]; // n_tokens
  13237. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13238. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13239. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13240. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13241. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13242. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13243. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13244. // for use with the destination state offset between sequences
  13245. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13246. // rows per thread
  13247. const int dr = (nr + nth - 1)/nth;
  13248. // row range for this thread
  13249. const int ir0 = dr*ith;
  13250. const int ir1 = MIN(ir0 + dr, nr);
  13251. const int ir = ir1 - ir0;
  13252. if (n_kv > 1) {
  13253. // multiple sequences means it's hard to know when it's the first time a state is read,
  13254. // so copy them all over to the destination, just to be sure.
  13255. for (int i3 = 0; i3 < n_kv; ++i3) {
  13256. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13257. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13258. // can't use memcpy because of d_conv vs d_conv - 1
  13259. for (int i1 = 0; i1 < ir; ++i1) {
  13260. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13261. // copy s0 to last (d_conv - 1) columns of s
  13262. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13263. }
  13264. }
  13265. }
  13266. }
  13267. for (int i2 = 0; i2 < n_t; ++i2) {
  13268. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13269. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13270. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13271. float * s0; // {d_conv - 1, d_inner, n_kv}
  13272. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13273. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13274. int ne0s0;
  13275. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13276. // avoid needing to copy the state for the first token
  13277. if (i2 == 0) {
  13278. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13279. ne0s0 = src0->ne[0];
  13280. } else {
  13281. // the source is the last (d_conv - 1) columns of the destination
  13282. s0 = s + 1;
  13283. ne0s0 = nc;
  13284. }
  13285. // d_inner
  13286. for (int i1 = 0; i1 < ir; ++i1) {
  13287. // shift state left
  13288. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13289. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13290. }
  13291. // insert x on the last column
  13292. s[(nc - 1) + i1*nc] = x0[i1];
  13293. }
  13294. // handle copies when there are multiple output states
  13295. for (int i3 = 1; i3 < n_kv; ++i3) {
  13296. int32_t seq = sq[i3];
  13297. if (0 <= seq && seq < n_kv) {
  13298. float * s1 = s + (seq - sq[0])*nc*nr;
  13299. memcpy(s1, s, nc*ir*sizeof(float));
  13300. } else {
  13301. // stop at negative or too big seq_ids
  13302. break;
  13303. }
  13304. }
  13305. // it seems a little faster when this is separate from the state shift
  13306. for (int i1 = 0; i1 < ir; ++i1) {
  13307. // rowwise dot product
  13308. float sumf = 0.0f;
  13309. for (int i0 = 0; i0 < nc; ++i0) {
  13310. int i = i0 + i1*nc;
  13311. sumf += s[i] * c[i];
  13312. }
  13313. x[i1] = sumf;
  13314. }
  13315. }
  13316. }
  13317. static void ggml_compute_forward_ssm_conv(
  13318. const struct ggml_compute_params * params,
  13319. struct ggml_tensor * dst) {
  13320. switch (dst->src[0]->type) {
  13321. case GGML_TYPE_F32:
  13322. {
  13323. ggml_compute_forward_ssm_conv_f32(params, dst);
  13324. } break;
  13325. default:
  13326. {
  13327. GGML_ASSERT(false);
  13328. } break;
  13329. }
  13330. }
  13331. // ggml_compute_forward_ssm_scan
  13332. static void ggml_compute_forward_ssm_scan_f32(
  13333. const struct ggml_compute_params * params,
  13334. struct ggml_tensor * dst) {
  13335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13336. return;
  13337. }
  13338. const struct ggml_tensor * src0 = dst->src[0]; // s
  13339. const struct ggml_tensor * src1 = dst->src[1]; // x
  13340. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13341. const struct ggml_tensor * src3 = dst->src[3]; // A
  13342. const struct ggml_tensor * src4 = dst->src[4]; // B
  13343. const struct ggml_tensor * src5 = dst->src[5]; // C
  13344. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13345. const int ith = params->ith;
  13346. const int nth = params->nth;
  13347. const int64_t nc = src0->ne[0]; // d_state
  13348. const int64_t nr = src0->ne[1]; // d_inner
  13349. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13350. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13351. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13352. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13353. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13354. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13355. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13356. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13357. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13358. // required for the dot product between s and C, and when copying the states
  13359. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13360. // required for per-sequence offsets for states
  13361. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13362. // required to get correct offset for state destination (i.e. src1->nb[2])
  13363. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13364. // rows per thread
  13365. const int dr = (nr + nth - 1)/nth;
  13366. // row range for this thread
  13367. const int ir0 = dr*ith;
  13368. const int ir1 = MIN(ir0 + dr, nr);
  13369. const int ir = ir1 - ir0;
  13370. if (n_kv > 1) {
  13371. // it's hard to know if the source states have already been copied
  13372. // when there are multiple, so copy them already.
  13373. for (int i3 = 0; i3 < n_kv; ++i3) {
  13374. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13375. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13376. memcpy(s, s0, nc*ir*sizeof(float));
  13377. }
  13378. }
  13379. for (int i2 = 0; i2 < n_t; ++i2) {
  13380. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13381. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13382. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13383. float * s0;
  13384. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13385. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13386. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13387. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13388. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13389. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13390. // avoid needing to copy the state for the first token
  13391. if (i2 == 0) {
  13392. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13393. } else {
  13394. // otherwise the source is the same as the destination
  13395. s0 = s;
  13396. }
  13397. // d_inner
  13398. for (int i1 = 0; i1 < ir; ++i1) {
  13399. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13400. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13401. float x_dt = x[i1] * dt_soft_plus;
  13402. float sumf = 0.0f;
  13403. // d_state
  13404. for (int i0 = 0; i0 < nc; ++i0) {
  13405. int i = i0 + i1*nc;
  13406. // state = prev_state * dA + dB * x
  13407. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13408. // y = rowwise_dotprod(state, C)
  13409. sumf += state * C[i0];
  13410. s[i] = state;
  13411. }
  13412. y[i1] = sumf;
  13413. }
  13414. // handle copies when there are multiple output states
  13415. for (int i3 = 1; i3 < n_kv; ++i3) {
  13416. int32_t seq = sq[i3];
  13417. if (0 <= seq && seq < n_kv) {
  13418. float * s1 = s + (seq - sq[0])*nc*nr;
  13419. memcpy(s1, s, nc*ir*sizeof(float));
  13420. } else {
  13421. // stop at negative or too big seq_ids
  13422. break;
  13423. }
  13424. }
  13425. }
  13426. }
  13427. static void ggml_compute_forward_ssm_scan(
  13428. const struct ggml_compute_params * params,
  13429. struct ggml_tensor * dst) {
  13430. switch (dst->src[0]->type) {
  13431. case GGML_TYPE_F32:
  13432. {
  13433. ggml_compute_forward_ssm_scan_f32(params, dst);
  13434. } break;
  13435. default:
  13436. {
  13437. GGML_ASSERT(false);
  13438. } break;
  13439. }
  13440. }
  13441. // ggml_compute_forward_win_part
  13442. static void ggml_compute_forward_win_part_f32(
  13443. const struct ggml_compute_params * params,
  13444. struct ggml_tensor * dst) {
  13445. const struct ggml_tensor * src0 = dst->src[0];
  13446. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13447. return;
  13448. }
  13449. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13450. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13451. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13452. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13453. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13454. assert(ne00 == ne0);
  13455. assert(ne3 == nep0*nep1);
  13456. // TODO: optimize / multi-thread
  13457. for (int py = 0; py < nep1; ++py) {
  13458. for (int px = 0; px < nep0; ++px) {
  13459. const int64_t i3 = py*nep0 + px;
  13460. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13461. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13462. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13463. const int64_t i02 = py*w + i2;
  13464. const int64_t i01 = px*w + i1;
  13465. const int64_t i00 = i0;
  13466. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13467. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13468. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13469. ((float *) dst->data)[i] = 0.0f;
  13470. } else {
  13471. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13472. }
  13473. }
  13474. }
  13475. }
  13476. }
  13477. }
  13478. }
  13479. static void ggml_compute_forward_win_part(
  13480. const struct ggml_compute_params * params,
  13481. struct ggml_tensor * dst) {
  13482. const struct ggml_tensor * src0 = dst->src[0];
  13483. switch (src0->type) {
  13484. case GGML_TYPE_F32:
  13485. {
  13486. ggml_compute_forward_win_part_f32(params, dst);
  13487. } break;
  13488. default:
  13489. {
  13490. GGML_ASSERT(false);
  13491. } break;
  13492. }
  13493. }
  13494. // ggml_compute_forward_win_unpart
  13495. static void ggml_compute_forward_win_unpart_f32(
  13496. const struct ggml_compute_params * params,
  13497. struct ggml_tensor * dst) {
  13498. const struct ggml_tensor * src0 = dst->src[0];
  13499. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13500. return;
  13501. }
  13502. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13503. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13504. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13505. // padding
  13506. const int px = (w - ne1%w)%w;
  13507. //const int py = (w - ne2%w)%w;
  13508. const int npx = (px + ne1)/w;
  13509. //const int npy = (py + ne2)/w;
  13510. assert(ne0 == ne00);
  13511. // TODO: optimize / multi-thread
  13512. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13513. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13514. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13515. const int ip2 = i2/w;
  13516. const int ip1 = i1/w;
  13517. const int64_t i02 = i2%w;
  13518. const int64_t i01 = i1%w;
  13519. const int64_t i00 = i0;
  13520. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13521. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13522. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13523. }
  13524. }
  13525. }
  13526. }
  13527. static void ggml_compute_forward_win_unpart(
  13528. const struct ggml_compute_params * params,
  13529. struct ggml_tensor * dst) {
  13530. const struct ggml_tensor * src0 = dst->src[0];
  13531. switch (src0->type) {
  13532. case GGML_TYPE_F32:
  13533. {
  13534. ggml_compute_forward_win_unpart_f32(params, dst);
  13535. } break;
  13536. default:
  13537. {
  13538. GGML_ASSERT(false);
  13539. } break;
  13540. }
  13541. }
  13542. //gmml_compute_forward_unary
  13543. static void ggml_compute_forward_unary(
  13544. const struct ggml_compute_params * params,
  13545. struct ggml_tensor * dst) {
  13546. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13547. switch (op) {
  13548. case GGML_UNARY_OP_ABS:
  13549. {
  13550. ggml_compute_forward_abs(params, dst);
  13551. } break;
  13552. case GGML_UNARY_OP_SGN:
  13553. {
  13554. ggml_compute_forward_sgn(params, dst);
  13555. } break;
  13556. case GGML_UNARY_OP_NEG:
  13557. {
  13558. ggml_compute_forward_neg(params, dst);
  13559. } break;
  13560. case GGML_UNARY_OP_STEP:
  13561. {
  13562. ggml_compute_forward_step(params, dst);
  13563. } break;
  13564. case GGML_UNARY_OP_TANH:
  13565. {
  13566. ggml_compute_forward_tanh(params, dst);
  13567. } break;
  13568. case GGML_UNARY_OP_ELU:
  13569. {
  13570. ggml_compute_forward_elu(params, dst);
  13571. } break;
  13572. case GGML_UNARY_OP_RELU:
  13573. {
  13574. ggml_compute_forward_relu(params, dst);
  13575. } break;
  13576. case GGML_UNARY_OP_SIGMOID:
  13577. {
  13578. ggml_compute_forward_sigmoid(params, dst);
  13579. } break;
  13580. case GGML_UNARY_OP_GELU:
  13581. {
  13582. ggml_compute_forward_gelu(params, dst);
  13583. } break;
  13584. case GGML_UNARY_OP_GELU_QUICK:
  13585. {
  13586. ggml_compute_forward_gelu_quick(params, dst);
  13587. } break;
  13588. case GGML_UNARY_OP_SILU:
  13589. {
  13590. ggml_compute_forward_silu(params, dst);
  13591. } break;
  13592. case GGML_UNARY_OP_HARDSWISH:
  13593. {
  13594. ggml_compute_forward_hardswish(params, dst);
  13595. } break;
  13596. case GGML_UNARY_OP_HARDSIGMOID:
  13597. {
  13598. ggml_compute_forward_hardsigmoid(params, dst);
  13599. } break;
  13600. default:
  13601. {
  13602. GGML_ASSERT(false);
  13603. } break;
  13604. }
  13605. }
  13606. // ggml_compute_forward_get_rel_pos
  13607. static void ggml_compute_forward_get_rel_pos_f16(
  13608. const struct ggml_compute_params * params,
  13609. struct ggml_tensor * dst) {
  13610. const struct ggml_tensor * src0 = dst->src[0];
  13611. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13612. return;
  13613. }
  13614. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13615. GGML_TENSOR_UNARY_OP_LOCALS
  13616. const int64_t w = ne1;
  13617. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13618. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13619. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13620. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13621. const int64_t pos = (w - i1 - 1) + i2;
  13622. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13623. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13624. }
  13625. }
  13626. }
  13627. }
  13628. static void ggml_compute_forward_get_rel_pos(
  13629. const struct ggml_compute_params * params,
  13630. struct ggml_tensor * dst) {
  13631. const struct ggml_tensor * src0 = dst->src[0];
  13632. switch (src0->type) {
  13633. case GGML_TYPE_F16:
  13634. case GGML_TYPE_BF16:
  13635. {
  13636. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13637. } break;
  13638. default:
  13639. {
  13640. GGML_ASSERT(false);
  13641. } break;
  13642. }
  13643. }
  13644. // ggml_compute_forward_add_rel_pos
  13645. static void ggml_compute_forward_add_rel_pos_f32(
  13646. const struct ggml_compute_params * params,
  13647. struct ggml_tensor * dst) {
  13648. const struct ggml_tensor * src0 = dst->src[0];
  13649. const struct ggml_tensor * src1 = dst->src[1];
  13650. const struct ggml_tensor * src2 = dst->src[2];
  13651. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13652. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13653. if (params->ith != 0) {
  13654. return;
  13655. }
  13656. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13657. return;
  13658. }
  13659. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13660. return;
  13661. }
  13662. int64_t t0 = ggml_perf_time_us();
  13663. UNUSED(t0);
  13664. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13665. float * src1_data = (float *) src1->data;
  13666. float * src2_data = (float *) src2->data;
  13667. float * dst_data = (float *) dst->data;
  13668. const int64_t ne10 = src1->ne[0];
  13669. const int64_t ne11 = src1->ne[1];
  13670. const int64_t ne12 = src1->ne[2];
  13671. const int64_t ne13 = src1->ne[3];
  13672. const int ith = params->ith;
  13673. const int nth = params->nth;
  13674. // total patches in dst
  13675. const int np = ne13;
  13676. // patches per thread
  13677. const int dp = (np + nth - 1)/nth;
  13678. // patch range for this thread
  13679. const int ip0 = dp*ith;
  13680. const int ip1 = MIN(ip0 + dp, np);
  13681. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13682. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13683. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13684. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13685. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13686. const int64_t jp0 = jp1 + i10;
  13687. const float src1_e = src1_data[jp0];
  13688. const float src2_e = src2_data[jp0];
  13689. const int64_t jdh = jp0 * ne10;
  13690. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13691. for (int64_t j = 0; j < ne10; ++j) {
  13692. dst_data[jdh + j ] += src2_e;
  13693. dst_data[jdw + j*ne10] += src1_e;
  13694. }
  13695. }
  13696. }
  13697. }
  13698. }
  13699. }
  13700. static void ggml_compute_forward_add_rel_pos(
  13701. const struct ggml_compute_params * params,
  13702. struct ggml_tensor * dst) {
  13703. const struct ggml_tensor * src0 = dst->src[0];
  13704. switch (src0->type) {
  13705. case GGML_TYPE_F32:
  13706. {
  13707. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13708. } break;
  13709. default:
  13710. {
  13711. GGML_ASSERT(false);
  13712. } break;
  13713. }
  13714. }
  13715. // ggml_compute_forward_map_unary
  13716. static void ggml_compute_forward_map_unary_f32(
  13717. const struct ggml_compute_params * params,
  13718. struct ggml_tensor * dst,
  13719. const ggml_unary_op_f32_t fun) {
  13720. const struct ggml_tensor * src0 = dst->src[0];
  13721. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13722. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13723. return;
  13724. }
  13725. const int n = ggml_nrows(src0);
  13726. const int nc = src0->ne[0];
  13727. assert( dst->nb[0] == sizeof(float));
  13728. assert(src0->nb[0] == sizeof(float));
  13729. for (int i = 0; i < n; i++) {
  13730. fun(nc,
  13731. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13732. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13733. }
  13734. }
  13735. static void ggml_compute_forward_map_unary(
  13736. const struct ggml_compute_params * params,
  13737. struct ggml_tensor * dst,
  13738. const ggml_unary_op_f32_t fun) {
  13739. const struct ggml_tensor * src0 = dst->src[0];
  13740. switch (src0->type) {
  13741. case GGML_TYPE_F32:
  13742. {
  13743. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13744. } break;
  13745. default:
  13746. {
  13747. GGML_ASSERT(false);
  13748. } break;
  13749. }
  13750. }
  13751. // ggml_compute_forward_map_binary
  13752. static void ggml_compute_forward_map_binary_f32(
  13753. const struct ggml_compute_params * params,
  13754. struct ggml_tensor * dst,
  13755. const ggml_binary_op_f32_t fun) {
  13756. const struct ggml_tensor * src0 = dst->src[0];
  13757. const struct ggml_tensor * src1 = dst->src[1];
  13758. assert(params->ith == 0);
  13759. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13760. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13761. return;
  13762. }
  13763. const int n = ggml_nrows(src0);
  13764. const int nc = src0->ne[0];
  13765. assert( dst->nb[0] == sizeof(float));
  13766. assert(src0->nb[0] == sizeof(float));
  13767. assert(src1->nb[0] == sizeof(float));
  13768. for (int i = 0; i < n; i++) {
  13769. fun(nc,
  13770. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13771. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13772. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13773. }
  13774. }
  13775. static void ggml_compute_forward_map_binary(
  13776. const struct ggml_compute_params * params,
  13777. struct ggml_tensor * dst,
  13778. const ggml_binary_op_f32_t fun) {
  13779. const struct ggml_tensor * src0 = dst->src[0];
  13780. switch (src0->type) {
  13781. case GGML_TYPE_F32:
  13782. {
  13783. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13784. } break;
  13785. default:
  13786. {
  13787. GGML_ASSERT(false);
  13788. } break;
  13789. }
  13790. }
  13791. // ggml_compute_forward_map_custom1
  13792. static void ggml_compute_forward_map_custom1_f32(
  13793. const struct ggml_compute_params * params,
  13794. struct ggml_tensor * dst,
  13795. const ggml_custom1_op_f32_t fun) {
  13796. const struct ggml_tensor * a = dst->src[0];
  13797. assert(params->ith == 0);
  13798. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13799. return;
  13800. }
  13801. fun(dst, a);
  13802. }
  13803. // ggml_compute_forward_map_custom2
  13804. static void ggml_compute_forward_map_custom2_f32(
  13805. const struct ggml_compute_params * params,
  13806. struct ggml_tensor * dst,
  13807. const ggml_custom2_op_f32_t fun) {
  13808. const struct ggml_tensor * a = dst->src[0];
  13809. const struct ggml_tensor * b = dst->src[1];
  13810. assert(params->ith == 0);
  13811. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13812. return;
  13813. }
  13814. fun(dst, a, b);
  13815. }
  13816. // ggml_compute_forward_map_custom3
  13817. static void ggml_compute_forward_map_custom3_f32(
  13818. const struct ggml_compute_params * params,
  13819. struct ggml_tensor * dst,
  13820. const ggml_custom3_op_f32_t fun) {
  13821. const struct ggml_tensor * a = dst->src[0];
  13822. const struct ggml_tensor * b = dst->src[1];
  13823. const struct ggml_tensor * c = dst->src[1];
  13824. assert(params->ith == 0);
  13825. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13826. return;
  13827. }
  13828. fun(dst, a, b, c);
  13829. }
  13830. // ggml_compute_forward_map_custom1
  13831. static void ggml_compute_forward_map_custom1(
  13832. const struct ggml_compute_params * params,
  13833. struct ggml_tensor * dst) {
  13834. const struct ggml_tensor * a = dst->src[0];
  13835. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13836. return;
  13837. }
  13838. struct ggml_map_custom1_op_params p;
  13839. memcpy(&p, dst->op_params, sizeof(p));
  13840. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13841. }
  13842. // ggml_compute_forward_map_custom2
  13843. static void ggml_compute_forward_map_custom2(
  13844. const struct ggml_compute_params * params,
  13845. struct ggml_tensor * dst) {
  13846. const struct ggml_tensor * a = dst->src[0];
  13847. const struct ggml_tensor * b = dst->src[1];
  13848. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13849. return;
  13850. }
  13851. struct ggml_map_custom2_op_params p;
  13852. memcpy(&p, dst->op_params, sizeof(p));
  13853. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13854. }
  13855. // ggml_compute_forward_map_custom3
  13856. static void ggml_compute_forward_map_custom3(
  13857. const struct ggml_compute_params * params,
  13858. struct ggml_tensor * dst) {
  13859. const struct ggml_tensor * a = dst->src[0];
  13860. const struct ggml_tensor * b = dst->src[1];
  13861. const struct ggml_tensor * c = dst->src[2];
  13862. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13863. return;
  13864. }
  13865. struct ggml_map_custom3_op_params p;
  13866. memcpy(&p, dst->op_params, sizeof(p));
  13867. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13868. }
  13869. // ggml_compute_forward_cross_entropy_loss
  13870. static void ggml_compute_forward_cross_entropy_loss_f32(
  13871. const struct ggml_compute_params * params,
  13872. struct ggml_tensor * dst) {
  13873. const struct ggml_tensor * src0 = dst->src[0];
  13874. const struct ggml_tensor * src1 = dst->src[1];
  13875. GGML_ASSERT(ggml_is_contiguous(src0));
  13876. GGML_ASSERT(ggml_is_contiguous(src1));
  13877. GGML_ASSERT(ggml_is_scalar(dst));
  13878. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13879. const int ith = params->ith;
  13880. const int nth = params->nth;
  13881. float * sums = (float *) params->wdata;
  13882. // TODO: handle transposed/permuted matrices
  13883. const int nc = src0->ne[0];
  13884. const int nr = ggml_nrows(src0);
  13885. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13886. if (params->type == GGML_TASK_TYPE_INIT) {
  13887. if (ith == 0) {
  13888. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13889. }
  13890. return;
  13891. }
  13892. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13893. if (ith == 0) {
  13894. float * dp = (float *) dst->data;
  13895. ggml_vec_sum_f32(nth, dp, sums);
  13896. dp[0] *= -1.0f / (float) nr;
  13897. }
  13898. return;
  13899. }
  13900. const double eps = 1e-9;
  13901. // rows per thread
  13902. const int dr = (nr + nth - 1)/nth;
  13903. // row range for this thread
  13904. const int ir0 = dr*ith;
  13905. const int ir1 = MIN(ir0 + dr, nr);
  13906. for (int i1 = ir0; i1 < ir1; i1++) {
  13907. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13908. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13909. float * st = ((float *) params->wdata) + nth + ith*nc;
  13910. #ifndef NDEBUG
  13911. for (int i = 0; i < nc; ++i) {
  13912. //printf("p[%d] = %f\n", i, p[i]);
  13913. assert(!isnan(s0[i]));
  13914. assert(!isnan(s1[i]));
  13915. }
  13916. #endif
  13917. // soft_max
  13918. float max = -INFINITY;
  13919. ggml_vec_max_f32(nc, &max, s0);
  13920. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13921. assert(sum > 0.0);
  13922. sum = (1.0 - eps) / sum;
  13923. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13924. ggml_vec_scale_f32(nc, st, sum);
  13925. ggml_vec_add1_f32(nc, st, st, eps);
  13926. ggml_vec_log_f32(nc, st, st);
  13927. ggml_vec_mul_f32(nc, st, st, s1);
  13928. float st_sum = 0;
  13929. ggml_vec_sum_f32(nc, &st_sum, st);
  13930. sums[ith] += st_sum;
  13931. #ifndef NDEBUG
  13932. for (int i = 0; i < nc; ++i) {
  13933. assert(!isnan(st[i]));
  13934. assert(!isinf(st[i]));
  13935. }
  13936. #endif
  13937. }
  13938. }
  13939. static void ggml_compute_forward_cross_entropy_loss(
  13940. const struct ggml_compute_params * params,
  13941. struct ggml_tensor * dst) {
  13942. const struct ggml_tensor * src0 = dst->src[0];
  13943. switch (src0->type) {
  13944. case GGML_TYPE_F32:
  13945. {
  13946. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13947. } break;
  13948. default:
  13949. {
  13950. GGML_ASSERT(false);
  13951. } break;
  13952. }
  13953. }
  13954. // ggml_compute_forward_cross_entropy_loss_back
  13955. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13956. const struct ggml_compute_params * params,
  13957. struct ggml_tensor * dst) {
  13958. const struct ggml_tensor * src0 = dst->src[0];
  13959. const struct ggml_tensor * src1 = dst->src[1];
  13960. const struct ggml_tensor * opt0 = dst->src[2];
  13961. GGML_ASSERT(ggml_is_contiguous(dst));
  13962. GGML_ASSERT(ggml_is_contiguous(src0));
  13963. GGML_ASSERT(ggml_is_contiguous(src1));
  13964. GGML_ASSERT(ggml_is_contiguous(opt0));
  13965. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13966. const int64_t ith = params->ith;
  13967. const int64_t nth = params->nth;
  13968. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13969. return;
  13970. }
  13971. const double eps = 1e-9;
  13972. // TODO: handle transposed/permuted matrices
  13973. const int64_t nc = src0->ne[0];
  13974. const int64_t nr = ggml_nrows(src0);
  13975. // rows per thread
  13976. const int64_t dr = (nr + nth - 1)/nth;
  13977. // row range for this thread
  13978. const int64_t ir0 = dr*ith;
  13979. const int64_t ir1 = MIN(ir0 + dr, nr);
  13980. float * d = (float *) opt0->data;
  13981. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13982. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13983. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13984. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13985. #ifndef NDEBUG
  13986. for (int i = 0; i < nc; ++i) {
  13987. //printf("p[%d] = %f\n", i, p[i]);
  13988. assert(!isnan(s0[i]));
  13989. assert(!isnan(s1[i]));
  13990. }
  13991. #endif
  13992. // soft_max
  13993. float max = -INFINITY;
  13994. ggml_vec_max_f32(nc, &max, s0);
  13995. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13996. assert(sum > 0.0);
  13997. sum = (1.0 - eps) / sum;
  13998. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13999. ggml_vec_scale_f32(nc, ds0, sum);
  14000. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14001. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14002. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14003. #ifndef NDEBUG
  14004. for (int i = 0; i < nc; ++i) {
  14005. assert(!isnan(ds0[i]));
  14006. assert(!isinf(ds0[i]));
  14007. }
  14008. #endif
  14009. }
  14010. }
  14011. static void ggml_compute_forward_cross_entropy_loss_back(
  14012. const struct ggml_compute_params * params,
  14013. struct ggml_tensor * dst) {
  14014. const struct ggml_tensor * src0 = dst->src[0];
  14015. switch (src0->type) {
  14016. case GGML_TYPE_F32:
  14017. {
  14018. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14019. } break;
  14020. default:
  14021. {
  14022. GGML_ASSERT(false);
  14023. } break;
  14024. }
  14025. }
  14026. /////////////////////////////////
  14027. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14028. GGML_ASSERT(params);
  14029. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14030. return;
  14031. }
  14032. switch (tensor->op) {
  14033. case GGML_OP_DUP:
  14034. {
  14035. ggml_compute_forward_dup(params, tensor);
  14036. } break;
  14037. case GGML_OP_ADD:
  14038. {
  14039. ggml_compute_forward_add(params, tensor);
  14040. } break;
  14041. case GGML_OP_ADD1:
  14042. {
  14043. ggml_compute_forward_add1(params, tensor);
  14044. } break;
  14045. case GGML_OP_ACC:
  14046. {
  14047. ggml_compute_forward_acc(params, tensor);
  14048. } break;
  14049. case GGML_OP_SUB:
  14050. {
  14051. ggml_compute_forward_sub(params, tensor);
  14052. } break;
  14053. case GGML_OP_MUL:
  14054. {
  14055. ggml_compute_forward_mul(params, tensor);
  14056. } break;
  14057. case GGML_OP_DIV:
  14058. {
  14059. ggml_compute_forward_div(params, tensor);
  14060. } break;
  14061. case GGML_OP_SQR:
  14062. {
  14063. ggml_compute_forward_sqr(params, tensor);
  14064. } break;
  14065. case GGML_OP_SQRT:
  14066. {
  14067. ggml_compute_forward_sqrt(params, tensor);
  14068. } break;
  14069. case GGML_OP_LOG:
  14070. {
  14071. ggml_compute_forward_log(params, tensor);
  14072. } break;
  14073. case GGML_OP_SUM:
  14074. {
  14075. ggml_compute_forward_sum(params, tensor);
  14076. } break;
  14077. case GGML_OP_SUM_ROWS:
  14078. {
  14079. ggml_compute_forward_sum_rows(params, tensor);
  14080. } break;
  14081. case GGML_OP_MEAN:
  14082. {
  14083. ggml_compute_forward_mean(params, tensor);
  14084. } break;
  14085. case GGML_OP_ARGMAX:
  14086. {
  14087. ggml_compute_forward_argmax(params, tensor);
  14088. } break;
  14089. case GGML_OP_REPEAT:
  14090. {
  14091. ggml_compute_forward_repeat(params, tensor);
  14092. } break;
  14093. case GGML_OP_REPEAT_BACK:
  14094. {
  14095. ggml_compute_forward_repeat_back(params, tensor);
  14096. } break;
  14097. case GGML_OP_CONCAT:
  14098. {
  14099. ggml_compute_forward_concat(params, tensor);
  14100. } break;
  14101. case GGML_OP_SILU_BACK:
  14102. {
  14103. ggml_compute_forward_silu_back(params, tensor);
  14104. } break;
  14105. case GGML_OP_NORM:
  14106. {
  14107. ggml_compute_forward_norm(params, tensor);
  14108. } break;
  14109. case GGML_OP_RMS_NORM:
  14110. {
  14111. ggml_compute_forward_rms_norm(params, tensor);
  14112. } break;
  14113. case GGML_OP_RMS_NORM_BACK:
  14114. {
  14115. ggml_compute_forward_rms_norm_back(params, tensor);
  14116. } break;
  14117. case GGML_OP_GROUP_NORM:
  14118. {
  14119. ggml_compute_forward_group_norm(params, tensor);
  14120. } break;
  14121. case GGML_OP_MUL_MAT:
  14122. {
  14123. ggml_compute_forward_mul_mat(params, tensor, state);
  14124. } break;
  14125. case GGML_OP_MUL_MAT_ID:
  14126. {
  14127. ggml_compute_forward_mul_mat_id(params, tensor);
  14128. } break;
  14129. case GGML_OP_OUT_PROD:
  14130. {
  14131. ggml_compute_forward_out_prod(params, tensor);
  14132. } break;
  14133. case GGML_OP_SCALE:
  14134. {
  14135. ggml_compute_forward_scale(params, tensor);
  14136. } break;
  14137. case GGML_OP_SET:
  14138. {
  14139. ggml_compute_forward_set(params, tensor);
  14140. } break;
  14141. case GGML_OP_CPY:
  14142. {
  14143. ggml_compute_forward_cpy(params, tensor);
  14144. } break;
  14145. case GGML_OP_CONT:
  14146. {
  14147. ggml_compute_forward_cont(params, tensor);
  14148. } break;
  14149. case GGML_OP_RESHAPE:
  14150. {
  14151. ggml_compute_forward_reshape(params, tensor);
  14152. } break;
  14153. case GGML_OP_VIEW:
  14154. {
  14155. ggml_compute_forward_view(params, tensor);
  14156. } break;
  14157. case GGML_OP_PERMUTE:
  14158. {
  14159. ggml_compute_forward_permute(params, tensor);
  14160. } break;
  14161. case GGML_OP_TRANSPOSE:
  14162. {
  14163. ggml_compute_forward_transpose(params, tensor);
  14164. } break;
  14165. case GGML_OP_GET_ROWS:
  14166. {
  14167. ggml_compute_forward_get_rows(params, tensor);
  14168. } break;
  14169. case GGML_OP_GET_ROWS_BACK:
  14170. {
  14171. ggml_compute_forward_get_rows_back(params, tensor);
  14172. } break;
  14173. case GGML_OP_DIAG:
  14174. {
  14175. ggml_compute_forward_diag(params, tensor);
  14176. } break;
  14177. case GGML_OP_DIAG_MASK_INF:
  14178. {
  14179. ggml_compute_forward_diag_mask_inf(params, tensor);
  14180. } break;
  14181. case GGML_OP_DIAG_MASK_ZERO:
  14182. {
  14183. ggml_compute_forward_diag_mask_zero(params, tensor);
  14184. } break;
  14185. case GGML_OP_SOFT_MAX:
  14186. {
  14187. ggml_compute_forward_soft_max(params, tensor);
  14188. } break;
  14189. case GGML_OP_SOFT_MAX_BACK:
  14190. {
  14191. ggml_compute_forward_soft_max_back(params, tensor);
  14192. } break;
  14193. case GGML_OP_ROPE:
  14194. {
  14195. ggml_compute_forward_rope(params, tensor);
  14196. } break;
  14197. case GGML_OP_ROPE_BACK:
  14198. {
  14199. ggml_compute_forward_rope_back(params, tensor);
  14200. } break;
  14201. case GGML_OP_CLAMP:
  14202. {
  14203. ggml_compute_forward_clamp(params, tensor);
  14204. } break;
  14205. case GGML_OP_CONV_TRANSPOSE_1D:
  14206. {
  14207. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14208. } break;
  14209. case GGML_OP_IM2COL:
  14210. {
  14211. ggml_compute_forward_im2col(params, tensor);
  14212. } break;
  14213. case GGML_OP_CONV_TRANSPOSE_2D:
  14214. {
  14215. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14216. } break;
  14217. case GGML_OP_POOL_1D:
  14218. {
  14219. ggml_compute_forward_pool_1d(params, tensor);
  14220. } break;
  14221. case GGML_OP_POOL_2D:
  14222. {
  14223. ggml_compute_forward_pool_2d(params, tensor);
  14224. } break;
  14225. case GGML_OP_UPSCALE:
  14226. {
  14227. ggml_compute_forward_upscale(params, tensor);
  14228. } break;
  14229. case GGML_OP_PAD:
  14230. {
  14231. ggml_compute_forward_pad(params, tensor);
  14232. } break;
  14233. case GGML_OP_ARANGE:
  14234. {
  14235. ggml_compute_forward_arange(params, tensor);
  14236. } break;
  14237. case GGML_OP_TIMESTEP_EMBEDDING:
  14238. {
  14239. ggml_compute_forward_timestep_embedding(params, tensor);
  14240. } break;
  14241. case GGML_OP_ARGSORT:
  14242. {
  14243. ggml_compute_forward_argsort(params, tensor);
  14244. } break;
  14245. case GGML_OP_LEAKY_RELU:
  14246. {
  14247. ggml_compute_forward_leaky_relu(params, tensor);
  14248. } break;
  14249. case GGML_OP_FLASH_ATTN_EXT:
  14250. {
  14251. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14252. } break;
  14253. case GGML_OP_FLASH_ATTN_BACK:
  14254. {
  14255. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14256. GGML_ASSERT(t == 0 || t == 1);
  14257. bool masked = t != 0;
  14258. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14259. } break;
  14260. case GGML_OP_SSM_CONV:
  14261. {
  14262. ggml_compute_forward_ssm_conv(params, tensor);
  14263. } break;
  14264. case GGML_OP_SSM_SCAN:
  14265. {
  14266. ggml_compute_forward_ssm_scan(params, tensor);
  14267. } break;
  14268. case GGML_OP_WIN_PART:
  14269. {
  14270. ggml_compute_forward_win_part(params, tensor);
  14271. } break;
  14272. case GGML_OP_WIN_UNPART:
  14273. {
  14274. ggml_compute_forward_win_unpart(params, tensor);
  14275. } break;
  14276. case GGML_OP_UNARY:
  14277. {
  14278. ggml_compute_forward_unary(params, tensor);
  14279. } break;
  14280. case GGML_OP_GET_REL_POS:
  14281. {
  14282. ggml_compute_forward_get_rel_pos(params, tensor);
  14283. } break;
  14284. case GGML_OP_ADD_REL_POS:
  14285. {
  14286. ggml_compute_forward_add_rel_pos(params, tensor);
  14287. } break;
  14288. case GGML_OP_MAP_UNARY:
  14289. {
  14290. ggml_unary_op_f32_t fun;
  14291. memcpy(&fun, tensor->op_params, sizeof(fun));
  14292. ggml_compute_forward_map_unary(params, tensor, fun);
  14293. }
  14294. break;
  14295. case GGML_OP_MAP_BINARY:
  14296. {
  14297. ggml_binary_op_f32_t fun;
  14298. memcpy(&fun, tensor->op_params, sizeof(fun));
  14299. ggml_compute_forward_map_binary(params, tensor, fun);
  14300. }
  14301. break;
  14302. case GGML_OP_MAP_CUSTOM1_F32:
  14303. {
  14304. ggml_custom1_op_f32_t fun;
  14305. memcpy(&fun, tensor->op_params, sizeof(fun));
  14306. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14307. }
  14308. break;
  14309. case GGML_OP_MAP_CUSTOM2_F32:
  14310. {
  14311. ggml_custom2_op_f32_t fun;
  14312. memcpy(&fun, tensor->op_params, sizeof(fun));
  14313. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14314. }
  14315. break;
  14316. case GGML_OP_MAP_CUSTOM3_F32:
  14317. {
  14318. ggml_custom3_op_f32_t fun;
  14319. memcpy(&fun, tensor->op_params, sizeof(fun));
  14320. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14321. }
  14322. break;
  14323. case GGML_OP_MAP_CUSTOM1:
  14324. {
  14325. ggml_compute_forward_map_custom1(params, tensor);
  14326. }
  14327. break;
  14328. case GGML_OP_MAP_CUSTOM2:
  14329. {
  14330. ggml_compute_forward_map_custom2(params, tensor);
  14331. }
  14332. break;
  14333. case GGML_OP_MAP_CUSTOM3:
  14334. {
  14335. ggml_compute_forward_map_custom3(params, tensor);
  14336. }
  14337. break;
  14338. case GGML_OP_CROSS_ENTROPY_LOSS:
  14339. {
  14340. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14341. }
  14342. break;
  14343. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14344. {
  14345. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14346. }
  14347. break;
  14348. case GGML_OP_NONE:
  14349. {
  14350. // nop
  14351. } break;
  14352. case GGML_OP_COUNT:
  14353. {
  14354. GGML_ASSERT(false);
  14355. } break;
  14356. }
  14357. }
  14358. ////////////////////////////////////////////////////////////////////////////////
  14359. static size_t ggml_hash_size(size_t min_sz) {
  14360. // next primes after powers of two
  14361. static const size_t primes[] = {
  14362. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14363. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14364. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14365. 16777259, 33554467, 67108879, 134217757, 268435459,
  14366. 536870923, 1073741827, 2147483659
  14367. };
  14368. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14369. // find the smallest prime that is larger or equal to min_sz
  14370. size_t l = 0;
  14371. size_t r = n_primes;
  14372. while (l < r) {
  14373. size_t m = (l + r)/2;
  14374. if (primes[m] < min_sz) {
  14375. l = m + 1;
  14376. } else {
  14377. r = m;
  14378. }
  14379. }
  14380. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14381. return sz;
  14382. }
  14383. static size_t ggml_hash(const void * p) {
  14384. return (size_t)p;
  14385. }
  14386. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14387. size_t h = ggml_hash(key) % hash_set.size;
  14388. // linear probing
  14389. size_t i = h;
  14390. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14391. i = (i + 1) % hash_set.size;
  14392. if (i == h) {
  14393. // visited all hash table entries -> not found
  14394. return GGML_HASHTABLE_FULL;
  14395. }
  14396. }
  14397. return i;
  14398. }
  14399. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14400. size_t i = ggml_hash_find(hash_set, key);
  14401. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14402. }
  14403. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14404. size_t i = ggml_hash_find(hash_set, key);
  14405. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14406. if (hash_set.keys[i] == key) {
  14407. return GGML_HASHTABLE_ALREADY_EXISTS;
  14408. }
  14409. // insert
  14410. GGML_ASSERT(hash_set.keys[i] == NULL);
  14411. hash_set.keys[i] = key;
  14412. return i;
  14413. }
  14414. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14415. size_t i = ggml_hash_find(hash_set, key);
  14416. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14417. hash_set.keys[i] = key;
  14418. return i;
  14419. }
  14420. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14421. size = ggml_hash_size(size);
  14422. struct ggml_hash_set result;
  14423. result.size = size;
  14424. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14425. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14426. return result;
  14427. }
  14428. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14429. GGML_FREE(hash_set.keys);
  14430. }
  14431. struct hash_map {
  14432. struct ggml_hash_set set;
  14433. struct ggml_tensor ** vals;
  14434. };
  14435. static struct hash_map * ggml_new_hash_map(size_t size) {
  14436. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14437. result->set = ggml_hash_set_new(size);
  14438. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14439. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14440. return result;
  14441. }
  14442. static void ggml_hash_map_free(struct hash_map * map) {
  14443. ggml_hash_set_free(map->set);
  14444. GGML_FREE(map->vals);
  14445. GGML_FREE(map);
  14446. }
  14447. // gradient checkpointing
  14448. static struct ggml_tensor * ggml_recompute_graph_node(
  14449. struct ggml_context * ctx,
  14450. struct ggml_cgraph * graph,
  14451. struct hash_map * replacements,
  14452. struct ggml_tensor * node) {
  14453. if (node == NULL) {
  14454. return NULL;
  14455. }
  14456. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14457. return node;
  14458. }
  14459. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14460. return node;
  14461. }
  14462. int count_children = 0;
  14463. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14464. if (node->src[k]) {
  14465. ++count_children;
  14466. }
  14467. }
  14468. if (count_children == 0) {
  14469. return node;
  14470. }
  14471. size_t i = ggml_hash_find(replacements->set, node);
  14472. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14473. if (replacements->set.keys[i] == node) {
  14474. return replacements->vals[i];
  14475. }
  14476. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14477. // insert clone into replacements
  14478. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14479. replacements->set.keys[i] = node;
  14480. replacements->vals[i] = clone;
  14481. clone->op = node->op;
  14482. clone->grad = node->grad;
  14483. clone->flags = node->flags;
  14484. clone->extra = node->extra;
  14485. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14486. clone->nb[k] = node->nb[k];
  14487. }
  14488. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14489. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14490. }
  14491. if (node->view_src != NULL) {
  14492. clone->data = (node->view_src->data == NULL)
  14493. ? NULL // view_src not yet allocated
  14494. : (char *) node->view_src->data // view_src already allocated
  14495. + node->view_offs;
  14496. clone->view_src = node->view_src;
  14497. clone->view_offs = node->view_offs;
  14498. }
  14499. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14500. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14501. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14502. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14503. return clone;
  14504. }
  14505. void ggml_build_backward_gradient_checkpointing(
  14506. struct ggml_context * ctx,
  14507. struct ggml_cgraph * gf,
  14508. struct ggml_cgraph * gb,
  14509. struct ggml_cgraph * gb_tmp,
  14510. struct ggml_tensor * * checkpoints,
  14511. int n_checkpoints) {
  14512. ggml_graph_cpy(gf, gb_tmp);
  14513. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14514. if (n_checkpoints <= 0) {
  14515. ggml_graph_cpy(gb_tmp, gb);
  14516. return;
  14517. }
  14518. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14519. // insert checkpoints in replacements
  14520. for (int i = 0; i < n_checkpoints; ++i) {
  14521. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14522. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14523. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14524. replacements->set.keys[k] = checkpoints[i];
  14525. replacements->vals[k] = checkpoints[i];
  14526. }
  14527. ggml_graph_cpy(gf, gb);
  14528. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14529. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14530. // by recomputing them from checkpoints
  14531. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14532. struct ggml_tensor * node = gb_tmp->nodes[i];
  14533. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14534. // insert new tensors recomputing src, reusing already made replacements,
  14535. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14536. // recurse for input tensors,
  14537. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14538. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14539. }
  14540. // insert rewritten backward node with replacements made into resulting backward graph gb
  14541. ggml_build_forward_expand(gb, node);
  14542. }
  14543. ggml_hash_map_free(replacements);
  14544. }
  14545. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14546. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14547. if (ggml_hash_contains(zero_table, a)) {
  14548. return b;
  14549. } else {
  14550. return ggml_add_impl(ctx, a, b, false);
  14551. }
  14552. }
  14553. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14554. if (ggml_hash_contains(zero_table, a)) {
  14555. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14556. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14557. } else {
  14558. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14559. }
  14560. }
  14561. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14562. if (ggml_hash_contains(zero_table, a)) {
  14563. return ggml_repeat(ctx, b, a);
  14564. } else {
  14565. return ggml_add1_impl(ctx, a, b, false);
  14566. }
  14567. }
  14568. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14569. if (ggml_hash_contains(zero_table, a)) {
  14570. return ggml_neg(ctx, b);
  14571. } else {
  14572. return ggml_sub_impl(ctx, a, b, false);
  14573. }
  14574. }
  14575. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14576. struct ggml_tensor * src0 = tensor->src[0];
  14577. struct ggml_tensor * src1 = tensor->src[1];
  14578. struct ggml_tensor * src2 = tensor->src[2];
  14579. switch (tensor->op) {
  14580. case GGML_OP_DUP:
  14581. {
  14582. if (src0->grad) {
  14583. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14584. }
  14585. } break;
  14586. case GGML_OP_ADD:
  14587. {
  14588. if (src0->grad) {
  14589. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14590. }
  14591. if (src1->grad) {
  14592. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14593. }
  14594. } break;
  14595. case GGML_OP_ADD1:
  14596. {
  14597. if (src0->grad) {
  14598. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14599. }
  14600. if (src1->grad) {
  14601. src1->grad = ggml_add_or_set(ctx,
  14602. src1->grad,
  14603. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14604. zero_table);
  14605. }
  14606. } break;
  14607. case GGML_OP_ACC:
  14608. {
  14609. if (src0->grad) {
  14610. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14611. }
  14612. if (src1->grad) {
  14613. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14614. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14615. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14616. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14617. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14618. tensor->grad,
  14619. src1->grad->ne[0],
  14620. src1->grad->ne[1],
  14621. src1->grad->ne[2],
  14622. src1->grad->ne[3],
  14623. nb1, nb2, nb3, offset);
  14624. src1->grad =
  14625. ggml_add_or_set(ctx,
  14626. src1->grad,
  14627. ggml_reshape(ctx,
  14628. ggml_cont(ctx, tensor_grad_view),
  14629. src1->grad),
  14630. zero_table);
  14631. }
  14632. } break;
  14633. case GGML_OP_SUB:
  14634. {
  14635. if (src0->grad) {
  14636. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14637. }
  14638. if (src1->grad) {
  14639. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14640. }
  14641. } break;
  14642. case GGML_OP_MUL:
  14643. {
  14644. if (src0->grad) {
  14645. src0->grad =
  14646. ggml_add_or_set(ctx,
  14647. src0->grad,
  14648. ggml_mul(ctx, src1, tensor->grad),
  14649. zero_table);
  14650. }
  14651. if (src1->grad) {
  14652. src1->grad =
  14653. ggml_add_or_set(ctx,
  14654. src1->grad,
  14655. ggml_mul(ctx, src0, tensor->grad),
  14656. zero_table);
  14657. }
  14658. } break;
  14659. case GGML_OP_DIV:
  14660. {
  14661. if (src0->grad) {
  14662. src0->grad =
  14663. ggml_add_or_set(ctx,
  14664. src0->grad,
  14665. ggml_div(ctx, tensor->grad, src1),
  14666. zero_table);
  14667. }
  14668. if (src1->grad) {
  14669. src1->grad =
  14670. ggml_sub_or_set(ctx,
  14671. src1->grad,
  14672. ggml_mul(ctx,
  14673. tensor->grad,
  14674. ggml_div(ctx, tensor, src1)),
  14675. zero_table);
  14676. }
  14677. } break;
  14678. case GGML_OP_SQR:
  14679. {
  14680. if (src0->grad) {
  14681. src0->grad =
  14682. ggml_add_or_set(ctx,
  14683. src0->grad,
  14684. ggml_scale(ctx,
  14685. ggml_mul(ctx, src0, tensor->grad),
  14686. 2.0f),
  14687. zero_table);
  14688. }
  14689. } break;
  14690. case GGML_OP_SQRT:
  14691. {
  14692. if (src0->grad) {
  14693. src0->grad =
  14694. ggml_add_or_set(ctx,
  14695. src0->grad,
  14696. ggml_scale(ctx,
  14697. ggml_div(ctx,
  14698. tensor->grad,
  14699. tensor),
  14700. 0.5f),
  14701. zero_table);
  14702. }
  14703. } break;
  14704. case GGML_OP_LOG:
  14705. {
  14706. if (src0->grad) {
  14707. src0->grad =
  14708. ggml_add_or_set(ctx,
  14709. src0->grad,
  14710. ggml_div(ctx,
  14711. tensor->grad,
  14712. src0),
  14713. zero_table);
  14714. }
  14715. } break;
  14716. case GGML_OP_SUM:
  14717. {
  14718. if (src0->grad) {
  14719. src0->grad =
  14720. ggml_add1_or_set(ctx,
  14721. src0->grad,
  14722. tensor->grad,
  14723. zero_table);
  14724. }
  14725. } break;
  14726. case GGML_OP_SUM_ROWS:
  14727. {
  14728. if (src0->grad) {
  14729. src0->grad =
  14730. ggml_add_or_set(ctx,
  14731. src0->grad,
  14732. ggml_repeat(ctx,
  14733. tensor->grad,
  14734. src0->grad),
  14735. zero_table);
  14736. }
  14737. } break;
  14738. case GGML_OP_MEAN:
  14739. case GGML_OP_ARGMAX:
  14740. {
  14741. GGML_ASSERT(false); // TODO: implement
  14742. } break;
  14743. case GGML_OP_REPEAT:
  14744. {
  14745. // necessary for llama
  14746. if (src0->grad) {
  14747. src0->grad = ggml_add_or_set(ctx,
  14748. src0->grad,
  14749. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14750. zero_table);
  14751. }
  14752. } break;
  14753. case GGML_OP_REPEAT_BACK:
  14754. {
  14755. if (src0->grad) {
  14756. // TODO: test this
  14757. src0->grad = ggml_add_or_set(ctx,
  14758. src0->grad,
  14759. ggml_repeat(ctx, tensor->grad, src0->grad),
  14760. zero_table);
  14761. }
  14762. } break;
  14763. case GGML_OP_CONCAT:
  14764. {
  14765. GGML_ASSERT(false); // TODO: implement
  14766. } break;
  14767. case GGML_OP_SILU_BACK:
  14768. {
  14769. GGML_ASSERT(false); // TODO: not implemented
  14770. } break;
  14771. case GGML_OP_NORM:
  14772. {
  14773. GGML_ASSERT(false); // TODO: not implemented
  14774. } break;
  14775. case GGML_OP_RMS_NORM:
  14776. {
  14777. // necessary for llama
  14778. if (src0->grad) {
  14779. float eps;
  14780. memcpy(&eps, tensor->op_params, sizeof(float));
  14781. src0->grad = ggml_add_or_set(ctx,
  14782. src0->grad,
  14783. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14784. zero_table);
  14785. }
  14786. } break;
  14787. case GGML_OP_RMS_NORM_BACK:
  14788. {
  14789. GGML_ASSERT(false); // TODO: not implemented
  14790. } break;
  14791. case GGML_OP_GROUP_NORM:
  14792. {
  14793. GGML_ASSERT(false); // TODO: not implemented
  14794. } break;
  14795. case GGML_OP_MUL_MAT:
  14796. {
  14797. // https://cs231n.github.io/optimization-2/#staged
  14798. // # forward pass
  14799. // s0 = np.random.randn(5, 10)
  14800. // s1 = np.random.randn(10, 3)
  14801. // t = s0.dot(s1)
  14802. // # now suppose we had the gradient on t from above in the circuit
  14803. // dt = np.random.randn(*t.shape) # same shape as t
  14804. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14805. // ds1 = t.T.dot(dt)
  14806. // tensor.shape [m,p,qq,rr]
  14807. // src0.shape [n,m,q1,r1]
  14808. // src1.shape [n,p,qq,rr]
  14809. // necessary for llama
  14810. if (src0->grad) {
  14811. struct ggml_tensor * s1_tg =
  14812. ggml_out_prod(ctx, // [n,m,qq,rr]
  14813. src1, // [n,p,qq,rr]
  14814. tensor->grad); // [m,p,qq,rr]
  14815. const int64_t qq = s1_tg->ne[2];
  14816. const int64_t rr = s1_tg->ne[3];
  14817. const int64_t q1 = src0->ne[2];
  14818. const int64_t r1 = src0->ne[3];
  14819. const bool ne2_broadcasted = qq > q1;
  14820. const bool ne3_broadcasted = rr > r1;
  14821. if (ne2_broadcasted || ne3_broadcasted) {
  14822. // sum broadcast repetitions of s1_tg into shape of src0
  14823. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14824. }
  14825. src0->grad =
  14826. ggml_add_or_set(ctx,
  14827. src0->grad, // [n,m,q1,r1]
  14828. s1_tg, // [n,m,q1,r1]
  14829. zero_table);
  14830. }
  14831. if (src1->grad) {
  14832. src1->grad =
  14833. ggml_add_or_set(ctx,
  14834. src1->grad, // [n,p,qq,rr]
  14835. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14836. // ggml_cont(ctx, // [m,n,q1,r1]
  14837. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14838. // tensor->grad), // [m,p,qq,rr]
  14839. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14840. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14841. // // and then use ggml_out_prod
  14842. ggml_out_prod(ctx, // [n,p,qq,rr]
  14843. src0, // [n,m,q1,r1]
  14844. ggml_transpose(ctx, // [p,m,qq,rr]
  14845. tensor->grad)), // [m,p,qq,rr]
  14846. zero_table);
  14847. }
  14848. } break;
  14849. case GGML_OP_MUL_MAT_ID:
  14850. {
  14851. GGML_ASSERT(false); // TODO: not implemented
  14852. } break;
  14853. case GGML_OP_OUT_PROD:
  14854. {
  14855. GGML_ASSERT(false); // TODO: not implemented
  14856. } break;
  14857. case GGML_OP_SCALE:
  14858. {
  14859. // necessary for llama
  14860. if (src0->grad) {
  14861. float s;
  14862. memcpy(&s, tensor->op_params, sizeof(float));
  14863. src0->grad =
  14864. ggml_add_or_set(ctx,
  14865. src0->grad,
  14866. ggml_scale_impl(ctx, tensor->grad, s, false),
  14867. zero_table);
  14868. }
  14869. } break;
  14870. case GGML_OP_SET:
  14871. {
  14872. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14873. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14874. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14875. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14876. struct ggml_tensor * tensor_grad_view = NULL;
  14877. if (src0->grad || src1->grad) {
  14878. GGML_ASSERT(src0->type == tensor->type);
  14879. GGML_ASSERT(tensor->grad->type == tensor->type);
  14880. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14881. tensor_grad_view = ggml_view_4d(ctx,
  14882. tensor->grad,
  14883. src1->grad->ne[0],
  14884. src1->grad->ne[1],
  14885. src1->grad->ne[2],
  14886. src1->grad->ne[3],
  14887. nb1, nb2, nb3, offset);
  14888. }
  14889. if (src0->grad) {
  14890. src0->grad = ggml_add_or_set(ctx,
  14891. src0->grad,
  14892. ggml_acc_impl(ctx,
  14893. tensor->grad,
  14894. ggml_neg(ctx, tensor_grad_view),
  14895. nb1, nb2, nb3, offset, false),
  14896. zero_table);
  14897. }
  14898. if (src1->grad) {
  14899. src1->grad =
  14900. ggml_add_or_set(ctx,
  14901. src1->grad,
  14902. ggml_reshape(ctx,
  14903. ggml_cont(ctx, tensor_grad_view),
  14904. src1->grad),
  14905. zero_table);
  14906. }
  14907. } break;
  14908. case GGML_OP_CPY:
  14909. {
  14910. // necessary for llama
  14911. // cpy overwrites value of src1 by src0 and returns view(src1)
  14912. // the overwriting is mathematically equivalent to:
  14913. // tensor = src0 * 1 + src1 * 0
  14914. if (src0->grad) {
  14915. // dsrc0 = dtensor * 1
  14916. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14917. }
  14918. if (src1->grad) {
  14919. // dsrc1 = dtensor * 0 -> noop
  14920. }
  14921. } break;
  14922. case GGML_OP_CONT:
  14923. {
  14924. // same as cpy
  14925. if (src0->grad) {
  14926. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14927. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14928. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14929. }
  14930. } break;
  14931. case GGML_OP_RESHAPE:
  14932. {
  14933. // necessary for llama
  14934. if (src0->grad) {
  14935. src0->grad =
  14936. ggml_add_or_set(ctx, src0->grad,
  14937. ggml_reshape(ctx,
  14938. ggml_is_contiguous(tensor->grad)
  14939. ? tensor->grad
  14940. : ggml_cont(ctx, tensor->grad),
  14941. src0->grad),
  14942. zero_table);
  14943. }
  14944. } break;
  14945. case GGML_OP_VIEW:
  14946. {
  14947. // necessary for llama
  14948. if (src0->grad) {
  14949. size_t offset;
  14950. memcpy(&offset, tensor->op_params, sizeof(offset));
  14951. size_t nb1 = tensor->nb[1];
  14952. size_t nb2 = tensor->nb[2];
  14953. size_t nb3 = tensor->nb[3];
  14954. if (src0->type != src0->grad->type) {
  14955. // gradient is typically F32, but src0 could be other type
  14956. size_t ng = ggml_element_size(src0->grad);
  14957. size_t n0 = ggml_element_size(src0);
  14958. GGML_ASSERT(offset % n0 == 0);
  14959. GGML_ASSERT(nb1 % n0 == 0);
  14960. GGML_ASSERT(nb2 % n0 == 0);
  14961. GGML_ASSERT(nb3 % n0 == 0);
  14962. offset = (offset / n0) * ng;
  14963. nb1 = (nb1 / n0) * ng;
  14964. nb2 = (nb2 / n0) * ng;
  14965. nb3 = (nb3 / n0) * ng;
  14966. }
  14967. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14968. }
  14969. } break;
  14970. case GGML_OP_PERMUTE:
  14971. {
  14972. // necessary for llama
  14973. if (src0->grad) {
  14974. int32_t * axes = (int32_t *) tensor->op_params;
  14975. int axis0 = axes[0] & 0x3;
  14976. int axis1 = axes[1] & 0x3;
  14977. int axis2 = axes[2] & 0x3;
  14978. int axis3 = axes[3] & 0x3;
  14979. int axes_backward[4] = {0,0,0,0};
  14980. axes_backward[axis0] = 0;
  14981. axes_backward[axis1] = 1;
  14982. axes_backward[axis2] = 2;
  14983. axes_backward[axis3] = 3;
  14984. src0->grad =
  14985. ggml_add_or_set(ctx, src0->grad,
  14986. ggml_permute(ctx,
  14987. tensor->grad,
  14988. axes_backward[0],
  14989. axes_backward[1],
  14990. axes_backward[2],
  14991. axes_backward[3]),
  14992. zero_table);
  14993. }
  14994. } break;
  14995. case GGML_OP_TRANSPOSE:
  14996. {
  14997. // necessary for llama
  14998. if (src0->grad) {
  14999. src0->grad =
  15000. ggml_add_or_set(ctx, src0->grad,
  15001. ggml_transpose(ctx, tensor->grad),
  15002. zero_table);
  15003. }
  15004. } break;
  15005. case GGML_OP_GET_ROWS:
  15006. {
  15007. // necessary for llama (only for tokenizer)
  15008. if (src0->grad) {
  15009. src0->grad =
  15010. ggml_add_or_set(ctx, src0->grad,
  15011. // last ggml_get_rows_back argument src0->grad is only
  15012. // necessary to setup correct output shape
  15013. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15014. zero_table);
  15015. }
  15016. if (src1->grad) {
  15017. // noop
  15018. }
  15019. } break;
  15020. case GGML_OP_GET_ROWS_BACK:
  15021. {
  15022. GGML_ASSERT(false); // TODO: not implemented
  15023. } break;
  15024. case GGML_OP_DIAG:
  15025. {
  15026. GGML_ASSERT(false); // TODO: not implemented
  15027. } break;
  15028. case GGML_OP_DIAG_MASK_INF:
  15029. {
  15030. // necessary for llama
  15031. if (src0->grad) {
  15032. const int n_past = ((int32_t *) tensor->op_params)[0];
  15033. src0->grad =
  15034. ggml_add_or_set(ctx, src0->grad,
  15035. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15036. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15037. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15038. zero_table);
  15039. }
  15040. } break;
  15041. case GGML_OP_DIAG_MASK_ZERO:
  15042. {
  15043. // necessary for llama
  15044. if (src0->grad) {
  15045. const int n_past = ((int32_t *) tensor->op_params)[0];
  15046. src0->grad =
  15047. ggml_add_or_set(ctx, src0->grad,
  15048. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15049. zero_table);
  15050. }
  15051. } break;
  15052. case GGML_OP_SOFT_MAX:
  15053. {
  15054. // necessary for llama
  15055. if (src0->grad) {
  15056. src0->grad =
  15057. ggml_add_or_set(ctx, src0->grad,
  15058. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15059. zero_table);
  15060. }
  15061. } break;
  15062. case GGML_OP_SOFT_MAX_BACK:
  15063. {
  15064. GGML_ASSERT(false); // TODO: not implemented
  15065. } break;
  15066. case GGML_OP_ROPE:
  15067. {
  15068. // necessary for llama
  15069. if (src0->grad) {
  15070. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15071. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15072. const int mode = ((int32_t *) tensor->op_params)[2];
  15073. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15074. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15075. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15076. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15077. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15078. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15079. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15080. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15081. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15082. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15083. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15084. src0->grad = ggml_add_or_set(ctx,
  15085. src0->grad,
  15086. ggml_rope_back(ctx,
  15087. tensor->grad,
  15088. src1,
  15089. src2,
  15090. n_dims,
  15091. mode,
  15092. n_ctx,
  15093. n_orig_ctx,
  15094. freq_base,
  15095. freq_scale,
  15096. ext_factor,
  15097. attn_factor,
  15098. beta_fast,
  15099. beta_slow,
  15100. xpos_base,
  15101. xpos_down),
  15102. zero_table);
  15103. }
  15104. } break;
  15105. case GGML_OP_ROPE_BACK:
  15106. {
  15107. if (src0->grad) {
  15108. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15109. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15110. const int mode = ((int32_t *) tensor->op_params)[2];
  15111. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15112. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15113. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15114. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15115. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15116. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15117. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15118. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15119. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15120. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15121. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15122. src0->grad = ggml_add_or_set(ctx,
  15123. src0->grad,
  15124. ggml_rope_impl(ctx,
  15125. tensor->grad,
  15126. src1,
  15127. src2,
  15128. n_dims,
  15129. mode,
  15130. n_ctx,
  15131. n_orig_ctx,
  15132. freq_base,
  15133. freq_scale,
  15134. ext_factor,
  15135. attn_factor,
  15136. beta_fast,
  15137. beta_slow,
  15138. xpos_base,
  15139. xpos_down,
  15140. false),
  15141. zero_table);
  15142. }
  15143. } break;
  15144. case GGML_OP_CLAMP:
  15145. {
  15146. GGML_ASSERT(false); // TODO: not implemented
  15147. } break;
  15148. case GGML_OP_CONV_TRANSPOSE_1D:
  15149. {
  15150. GGML_ASSERT(false); // TODO: not implemented
  15151. } break;
  15152. case GGML_OP_IM2COL:
  15153. {
  15154. GGML_ASSERT(false); // TODO: not implemented
  15155. } break;
  15156. case GGML_OP_CONV_TRANSPOSE_2D:
  15157. {
  15158. GGML_ASSERT(false); // TODO: not implemented
  15159. } break;
  15160. case GGML_OP_POOL_1D:
  15161. {
  15162. GGML_ASSERT(false); // TODO: not implemented
  15163. } break;
  15164. case GGML_OP_POOL_2D:
  15165. {
  15166. GGML_ASSERT(false); // TODO: not implemented
  15167. } break;
  15168. case GGML_OP_UPSCALE:
  15169. {
  15170. GGML_ASSERT(false); // TODO: not implemented
  15171. } break;
  15172. case GGML_OP_PAD:
  15173. {
  15174. GGML_ASSERT(false); // TODO: not implemented
  15175. } break;
  15176. case GGML_OP_ARANGE:
  15177. {
  15178. GGML_ASSERT(false); // TODO: not implemented
  15179. } break;
  15180. case GGML_OP_TIMESTEP_EMBEDDING:
  15181. {
  15182. GGML_ASSERT(false); // TODO: not implemented
  15183. } break;
  15184. case GGML_OP_ARGSORT:
  15185. {
  15186. GGML_ASSERT(false); // TODO: not implemented
  15187. } break;
  15188. case GGML_OP_LEAKY_RELU:
  15189. {
  15190. GGML_ASSERT(false); // TODO: not implemented
  15191. } break;
  15192. case GGML_OP_FLASH_ATTN_EXT:
  15193. {
  15194. struct ggml_tensor * flash_grad = NULL;
  15195. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15196. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15197. GGML_ASSERT(t == 0 || t == 1);
  15198. bool masked = t != 0;
  15199. flash_grad =
  15200. ggml_flash_attn_back(ctx,
  15201. src0,
  15202. src1,
  15203. tensor->src[2],
  15204. tensor->grad,
  15205. masked);
  15206. }
  15207. const int64_t elem_q = ggml_nelements(src0);
  15208. const int64_t elem_k = ggml_nelements(src1);
  15209. const int64_t elem_v = ggml_nelements(src2);
  15210. enum ggml_type result_type = flash_grad->type;
  15211. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15212. const size_t tsize = ggml_type_size(result_type);
  15213. const size_t offs_q = 0;
  15214. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15215. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15216. if (src0->grad) {
  15217. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15218. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15219. src0->grad = ggml_add_or_set(ctx,
  15220. src0->grad,
  15221. grad_q,
  15222. zero_table);
  15223. }
  15224. if (src1->grad) {
  15225. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15226. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15227. src1->grad = ggml_add_or_set(ctx,
  15228. src1->grad,
  15229. grad_k,
  15230. zero_table);
  15231. }
  15232. if (src2->grad) {
  15233. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15234. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15235. src2->grad = ggml_add_or_set(ctx,
  15236. src2->grad,
  15237. grad_v,
  15238. zero_table);
  15239. }
  15240. } break;
  15241. case GGML_OP_FLASH_ATTN_BACK:
  15242. {
  15243. GGML_ASSERT(false); // not supported
  15244. } break;
  15245. case GGML_OP_SSM_CONV:
  15246. case GGML_OP_SSM_SCAN:
  15247. {
  15248. GGML_ASSERT(false); // TODO: not implemented
  15249. } break;
  15250. case GGML_OP_WIN_PART:
  15251. case GGML_OP_WIN_UNPART:
  15252. case GGML_OP_UNARY:
  15253. {
  15254. switch (ggml_get_unary_op(tensor)) {
  15255. case GGML_UNARY_OP_ABS:
  15256. {
  15257. if (src0->grad) {
  15258. src0->grad =
  15259. ggml_add_or_set(ctx,
  15260. src0->grad,
  15261. ggml_mul(ctx,
  15262. ggml_sgn(ctx, src0),
  15263. tensor->grad),
  15264. zero_table);
  15265. }
  15266. } break;
  15267. case GGML_UNARY_OP_SGN:
  15268. {
  15269. if (src0->grad) {
  15270. // noop
  15271. }
  15272. } break;
  15273. case GGML_UNARY_OP_NEG:
  15274. {
  15275. if (src0->grad) {
  15276. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15277. }
  15278. } break;
  15279. case GGML_UNARY_OP_STEP:
  15280. {
  15281. if (src0->grad) {
  15282. // noop
  15283. }
  15284. } break;
  15285. case GGML_UNARY_OP_TANH:
  15286. {
  15287. GGML_ASSERT(false); // TODO: not implemented
  15288. } break;
  15289. case GGML_UNARY_OP_ELU:
  15290. {
  15291. GGML_ASSERT(false); // TODO: not implemented
  15292. } break;
  15293. case GGML_UNARY_OP_RELU:
  15294. {
  15295. if (src0->grad) {
  15296. src0->grad = ggml_add_or_set(ctx,
  15297. src0->grad,
  15298. ggml_mul(ctx,
  15299. ggml_step(ctx, src0),
  15300. tensor->grad),
  15301. zero_table);
  15302. }
  15303. } break;
  15304. case GGML_UNARY_OP_SIGMOID:
  15305. {
  15306. GGML_ASSERT(false); // TODO: not implemented
  15307. } break;
  15308. case GGML_UNARY_OP_GELU:
  15309. {
  15310. GGML_ASSERT(false); // TODO: not implemented
  15311. } break;
  15312. case GGML_UNARY_OP_GELU_QUICK:
  15313. {
  15314. GGML_ASSERT(false); // TODO: not implemented
  15315. } break;
  15316. case GGML_UNARY_OP_SILU:
  15317. {
  15318. // necessary for llama
  15319. if (src0->grad) {
  15320. src0->grad = ggml_add_or_set(ctx,
  15321. src0->grad,
  15322. ggml_silu_back(ctx, src0, tensor->grad),
  15323. zero_table);
  15324. }
  15325. } break;
  15326. default:
  15327. GGML_ASSERT(false);
  15328. }
  15329. } break;
  15330. case GGML_OP_GET_REL_POS:
  15331. case GGML_OP_ADD_REL_POS:
  15332. case GGML_OP_MAP_UNARY:
  15333. case GGML_OP_MAP_BINARY:
  15334. case GGML_OP_MAP_CUSTOM1_F32:
  15335. case GGML_OP_MAP_CUSTOM2_F32:
  15336. case GGML_OP_MAP_CUSTOM3_F32:
  15337. case GGML_OP_MAP_CUSTOM1:
  15338. case GGML_OP_MAP_CUSTOM2:
  15339. case GGML_OP_MAP_CUSTOM3:
  15340. {
  15341. GGML_ASSERT(false); // not supported
  15342. } break;
  15343. case GGML_OP_CROSS_ENTROPY_LOSS:
  15344. {
  15345. if (src0->grad) {
  15346. src0->grad = ggml_add_or_set(ctx,
  15347. src0->grad,
  15348. ggml_cross_entropy_loss_back(ctx,
  15349. src0,
  15350. src1,
  15351. tensor->grad),
  15352. zero_table);
  15353. }
  15354. } break;
  15355. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15356. {
  15357. GGML_ASSERT(false); // not supported
  15358. } break;
  15359. case GGML_OP_NONE:
  15360. {
  15361. // nop
  15362. } break;
  15363. case GGML_OP_COUNT:
  15364. {
  15365. GGML_ASSERT(false);
  15366. } break;
  15367. }
  15368. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15369. if (tensor->src[i] && tensor->src[i]->grad) {
  15370. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15371. }
  15372. }
  15373. }
  15374. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15375. if (node->grad == NULL) {
  15376. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15377. // it can also happen during forward pass, if the user performs computations with constants
  15378. if (node->op != GGML_OP_NONE) {
  15379. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15380. }
  15381. }
  15382. // check if already visited
  15383. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15384. return;
  15385. }
  15386. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15387. const int k =
  15388. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15389. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15390. /* unknown order, just fall back to using i*/ i;
  15391. if (node->src[k]) {
  15392. ggml_visit_parents(cgraph, node->src[k]);
  15393. }
  15394. }
  15395. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15396. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15397. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15398. if (strlen(node->name) == 0) {
  15399. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15400. }
  15401. cgraph->leafs[cgraph->n_leafs] = node;
  15402. cgraph->n_leafs++;
  15403. } else {
  15404. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15405. if (strlen(node->name) == 0) {
  15406. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15407. }
  15408. cgraph->nodes[cgraph->n_nodes] = node;
  15409. if (cgraph->grads) {
  15410. cgraph->grads[cgraph->n_nodes] = node->grad;
  15411. }
  15412. cgraph->n_nodes++;
  15413. }
  15414. }
  15415. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15416. if (!expand) {
  15417. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15418. ggml_graph_clear(cgraph);
  15419. }
  15420. const int n0 = cgraph->n_nodes;
  15421. UNUSED(n0);
  15422. ggml_visit_parents(cgraph, tensor);
  15423. const int n_new = cgraph->n_nodes - n0;
  15424. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15425. if (n_new > 0) {
  15426. // the last added node should always be starting point
  15427. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15428. }
  15429. }
  15430. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15431. ggml_build_forward_impl(cgraph, tensor, true);
  15432. }
  15433. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15434. GGML_ASSERT(gf->n_nodes > 0);
  15435. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15436. if (keep) {
  15437. for (int i = 0; i < gf->n_nodes; i++) {
  15438. struct ggml_tensor * node = gf->nodes[i];
  15439. if (node->grad) {
  15440. node->grad = ggml_dup_tensor(ctx, node);
  15441. gf->grads[i] = node->grad;
  15442. }
  15443. }
  15444. }
  15445. // remember original gradients which start with zero values
  15446. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15447. for (int i = 0; i < gf->n_nodes; i++) {
  15448. if (gf->grads[i]) {
  15449. ggml_hash_insert(zero_table, gf->grads[i]);
  15450. }
  15451. }
  15452. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15453. struct ggml_tensor * node = gf->nodes[i];
  15454. // inplace operations to add gradients are not created by ggml_compute_backward
  15455. // use allocator to automatically make inplace operations
  15456. if (node->grad) {
  15457. ggml_compute_backward(ctx, node, zero_table);
  15458. }
  15459. }
  15460. for (int i = 0; i < gf->n_nodes; i++) {
  15461. struct ggml_tensor * node = gf->nodes[i];
  15462. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15463. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15464. ggml_build_forward_expand(gb, node->grad);
  15465. }
  15466. }
  15467. ggml_hash_set_free(zero_table);
  15468. }
  15469. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15470. size_t nbytes = sizeof(struct ggml_cgraph);
  15471. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15472. if (grads) {
  15473. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15474. }
  15475. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15476. return nbytes;
  15477. }
  15478. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15479. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15480. }
  15481. size_t ggml_graph_overhead(void) {
  15482. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15483. }
  15484. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15485. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15486. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15487. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15488. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15489. size_t hash_size = ggml_hash_size(size * 2);
  15490. struct ggml_tensor ** nodes_ptr = data_start;
  15491. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15492. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15493. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15494. // check that we allocated the correct amount of memory
  15495. assert(obj_size == (size_t) (
  15496. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15497. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15498. *cgraph = (struct ggml_cgraph) {
  15499. /*.size =*/ size,
  15500. /*.n_nodes =*/ 0,
  15501. /*.n_leafs =*/ 0,
  15502. /*.nodes =*/ nodes_ptr,
  15503. /*.grads =*/ grads_ptr,
  15504. /*.leafs =*/ leafs_ptr,
  15505. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15506. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15507. /*.perf_runs =*/ 0,
  15508. /*.perf_cycles =*/ 0,
  15509. /*.perf_time_us =*/ 0,
  15510. };
  15511. return cgraph;
  15512. }
  15513. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15514. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15515. }
  15516. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15517. struct ggml_cgraph cgraph = {
  15518. /*.size =*/ 0,
  15519. /*.n_nodes =*/ i1 - i0,
  15520. /*.n_leafs =*/ 0,
  15521. /*.nodes =*/ cgraph0->nodes + i0,
  15522. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15523. /*.leafs =*/ NULL,
  15524. /*.hash_table =*/ { 0, NULL },
  15525. /*.order =*/ cgraph0->order,
  15526. /*.perf_runs =*/ 0,
  15527. /*.perf_cycles =*/ 0,
  15528. /*.perf_time_us =*/ 0,
  15529. };
  15530. return cgraph;
  15531. }
  15532. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15533. GGML_ASSERT(dst->size >= src->n_leafs);
  15534. GGML_ASSERT(dst->size >= src->n_nodes);
  15535. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15536. dst->n_leafs = src->n_leafs;
  15537. dst->n_nodes = src->n_nodes;
  15538. dst->order = src->order;
  15539. for (int i = 0; i < src->n_leafs; ++i) {
  15540. dst->leafs[i] = src->leafs[i];
  15541. }
  15542. for (int i = 0; i < src->n_nodes; ++i) {
  15543. dst->nodes[i] = src->nodes[i];
  15544. }
  15545. if (src->grads) {
  15546. GGML_ASSERT(dst->grads != NULL);
  15547. for (int i = 0; i < src->n_nodes; ++i) {
  15548. dst->grads[i] = src->grads[i];
  15549. }
  15550. }
  15551. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15552. if (src->visited_hash_table.keys[i]) {
  15553. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15554. }
  15555. }
  15556. }
  15557. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15558. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15559. ggml_graph_cpy(cgraph, result);
  15560. return result;
  15561. }
  15562. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15563. GGML_ASSERT(cgraph->grads != NULL);
  15564. for (int i = 0; i < cgraph->n_nodes; i++) {
  15565. struct ggml_tensor * grad = cgraph->grads[i];
  15566. if (grad) {
  15567. ggml_set_zero(grad);
  15568. }
  15569. }
  15570. }
  15571. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15572. cgraph->n_leafs = 0;
  15573. cgraph->n_nodes = 0;
  15574. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15575. }
  15576. //
  15577. // thread data
  15578. //
  15579. // synchronization is done via busy loops
  15580. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15581. //
  15582. #ifdef __APPLE__
  15583. //#include <os/lock.h>
  15584. //
  15585. //typedef os_unfair_lock ggml_lock_t;
  15586. //
  15587. //#define ggml_lock_init(x) UNUSED(x)
  15588. //#define ggml_lock_destroy(x) UNUSED(x)
  15589. //#define ggml_lock_lock os_unfair_lock_lock
  15590. //#define ggml_lock_unlock os_unfair_lock_unlock
  15591. //
  15592. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15593. typedef int ggml_lock_t;
  15594. #define ggml_lock_init(x) UNUSED(x)
  15595. #define ggml_lock_destroy(x) UNUSED(x)
  15596. #define ggml_lock_lock(x) UNUSED(x)
  15597. #define ggml_lock_unlock(x) UNUSED(x)
  15598. #define GGML_LOCK_INITIALIZER 0
  15599. #define ggml_thread_create pthread_create
  15600. #define ggml_thread_join pthread_join
  15601. #else
  15602. //typedef pthread_spinlock_t ggml_lock_t;
  15603. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15604. //#define ggml_lock_destroy pthread_spin_destroy
  15605. //#define ggml_lock_lock pthread_spin_lock
  15606. //#define ggml_lock_unlock pthread_spin_unlock
  15607. typedef int ggml_lock_t;
  15608. #define ggml_lock_init(x) UNUSED(x)
  15609. #define ggml_lock_destroy(x) UNUSED(x)
  15610. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15611. #define ggml_lock_lock(x) _mm_pause()
  15612. #else
  15613. #define ggml_lock_lock(x) UNUSED(x)
  15614. #endif
  15615. #define ggml_lock_unlock(x) UNUSED(x)
  15616. #define GGML_LOCK_INITIALIZER 0
  15617. #define ggml_thread_create pthread_create
  15618. #define ggml_thread_join pthread_join
  15619. #endif
  15620. // Android's libc implementation "bionic" does not support setting affinity
  15621. #if defined(__gnu_linux__)
  15622. static void set_numa_thread_affinity(int thread_n) {
  15623. if (!ggml_is_numa()) {
  15624. return;
  15625. }
  15626. int node_num;
  15627. int rv;
  15628. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15629. switch(g_state.numa.numa_strategy) {
  15630. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15631. // run thread on node_num thread_n / (threads per node)
  15632. node_num = thread_n % g_state.numa.n_nodes;
  15633. break;
  15634. case GGML_NUMA_STRATEGY_ISOLATE:
  15635. // run thread on current_node
  15636. node_num = g_state.numa.current_node;
  15637. break;
  15638. case GGML_NUMA_STRATEGY_NUMACTL:
  15639. // use the cpuset that numactl gave us
  15640. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15641. if (rv) {
  15642. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15643. }
  15644. return;
  15645. default:
  15646. return;
  15647. }
  15648. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15649. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15650. CPU_ZERO_S(setsize, cpus);
  15651. for (size_t i = 0; i < node->n_cpus; ++i) {
  15652. CPU_SET_S(node->cpus[i], setsize, cpus);
  15653. }
  15654. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15655. if (rv) {
  15656. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15657. }
  15658. CPU_FREE(cpus);
  15659. }
  15660. static void clear_numa_thread_affinity(void) {
  15661. if (!ggml_is_numa()) {
  15662. return;
  15663. }
  15664. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15665. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15666. CPU_ZERO_S(setsize, cpus);
  15667. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15668. CPU_SET_S(i, setsize, cpus);
  15669. }
  15670. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15671. if (rv) {
  15672. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15673. }
  15674. CPU_FREE(cpus);
  15675. }
  15676. #else
  15677. // TODO: Windows etc.
  15678. // (the linux implementation may also work on BSD, someone should test)
  15679. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15680. static void clear_numa_thread_affinity(void) {}
  15681. #endif
  15682. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15683. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15684. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15685. node->perf_runs++;
  15686. node->perf_cycles += cycles_cur;
  15687. node->perf_time_us += time_us_cur;
  15688. }
  15689. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15690. int n_tasks = 0;
  15691. if (ggml_is_empty(node)) {
  15692. // no need to multi-thread a no-op
  15693. n_tasks = 1;
  15694. return n_tasks;
  15695. }
  15696. switch (node->op) {
  15697. case GGML_OP_CPY:
  15698. case GGML_OP_DUP:
  15699. case GGML_OP_ADD:
  15700. case GGML_OP_ADD1:
  15701. case GGML_OP_ACC:
  15702. {
  15703. n_tasks = n_threads;
  15704. } break;
  15705. case GGML_OP_SUB:
  15706. case GGML_OP_SQR:
  15707. case GGML_OP_SQRT:
  15708. case GGML_OP_LOG:
  15709. case GGML_OP_SUM:
  15710. case GGML_OP_SUM_ROWS:
  15711. case GGML_OP_MEAN:
  15712. case GGML_OP_ARGMAX:
  15713. case GGML_OP_REPEAT:
  15714. case GGML_OP_REPEAT_BACK:
  15715. case GGML_OP_LEAKY_RELU:
  15716. {
  15717. n_tasks = 1;
  15718. } break;
  15719. case GGML_OP_UNARY:
  15720. switch (ggml_get_unary_op(node)) {
  15721. case GGML_UNARY_OP_ABS:
  15722. case GGML_UNARY_OP_SGN:
  15723. case GGML_UNARY_OP_NEG:
  15724. case GGML_UNARY_OP_STEP:
  15725. case GGML_UNARY_OP_TANH:
  15726. case GGML_UNARY_OP_ELU:
  15727. case GGML_UNARY_OP_RELU:
  15728. case GGML_UNARY_OP_SIGMOID:
  15729. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15730. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15731. {
  15732. n_tasks = 1;
  15733. } break;
  15734. case GGML_UNARY_OP_GELU:
  15735. case GGML_UNARY_OP_GELU_QUICK:
  15736. case GGML_UNARY_OP_SILU:
  15737. {
  15738. n_tasks = n_threads;
  15739. } break;
  15740. default:
  15741. GGML_ASSERT(false);
  15742. }
  15743. break;
  15744. case GGML_OP_SILU_BACK:
  15745. case GGML_OP_MUL:
  15746. case GGML_OP_DIV:
  15747. case GGML_OP_NORM:
  15748. case GGML_OP_RMS_NORM:
  15749. case GGML_OP_RMS_NORM_BACK:
  15750. case GGML_OP_GROUP_NORM:
  15751. case GGML_OP_CONCAT:
  15752. {
  15753. n_tasks = n_threads;
  15754. } break;
  15755. case GGML_OP_MUL_MAT:
  15756. {
  15757. n_tasks = n_threads;
  15758. // TODO: use different scheduling for different matrix sizes
  15759. //const int nr0 = ggml_nrows(node->src[0]);
  15760. //const int nr1 = ggml_nrows(node->src[1]);
  15761. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15762. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15763. } break;
  15764. case GGML_OP_MUL_MAT_ID:
  15765. {
  15766. n_tasks = n_threads;
  15767. } break;
  15768. case GGML_OP_OUT_PROD:
  15769. {
  15770. n_tasks = n_threads;
  15771. } break;
  15772. case GGML_OP_GET_ROWS:
  15773. {
  15774. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15775. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15776. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15777. } break;
  15778. case GGML_OP_SCALE:
  15779. case GGML_OP_SET:
  15780. case GGML_OP_CONT:
  15781. case GGML_OP_RESHAPE:
  15782. case GGML_OP_VIEW:
  15783. case GGML_OP_PERMUTE:
  15784. case GGML_OP_TRANSPOSE:
  15785. case GGML_OP_GET_ROWS_BACK:
  15786. case GGML_OP_DIAG:
  15787. {
  15788. n_tasks = 1;
  15789. } break;
  15790. case GGML_OP_DIAG_MASK_ZERO:
  15791. case GGML_OP_DIAG_MASK_INF:
  15792. case GGML_OP_SOFT_MAX_BACK:
  15793. case GGML_OP_ROPE:
  15794. case GGML_OP_ROPE_BACK:
  15795. case GGML_OP_ADD_REL_POS:
  15796. {
  15797. n_tasks = n_threads;
  15798. } break;
  15799. case GGML_OP_CLAMP:
  15800. {
  15801. n_tasks = 1; //TODO
  15802. } break;
  15803. case GGML_OP_SOFT_MAX:
  15804. {
  15805. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15806. } break;
  15807. case GGML_OP_CONV_TRANSPOSE_1D:
  15808. {
  15809. n_tasks = n_threads;
  15810. } break;
  15811. case GGML_OP_IM2COL:
  15812. {
  15813. n_tasks = n_threads;
  15814. } break;
  15815. case GGML_OP_CONV_TRANSPOSE_2D:
  15816. {
  15817. n_tasks = n_threads;
  15818. } break;
  15819. case GGML_OP_POOL_1D:
  15820. case GGML_OP_POOL_2D:
  15821. {
  15822. n_tasks = 1;
  15823. } break;
  15824. case GGML_OP_UPSCALE:
  15825. {
  15826. n_tasks = n_threads;
  15827. } break;
  15828. case GGML_OP_PAD:
  15829. {
  15830. n_tasks = n_threads;
  15831. } break;
  15832. case GGML_OP_ARANGE:
  15833. {
  15834. n_tasks = n_threads;
  15835. } break;
  15836. case GGML_OP_TIMESTEP_EMBEDDING:
  15837. {
  15838. n_tasks = n_threads;
  15839. } break;
  15840. case GGML_OP_ARGSORT:
  15841. {
  15842. n_tasks = n_threads;
  15843. } break;
  15844. case GGML_OP_FLASH_ATTN_EXT:
  15845. {
  15846. n_tasks = n_threads;
  15847. } break;
  15848. case GGML_OP_FLASH_ATTN_BACK:
  15849. {
  15850. n_tasks = n_threads;
  15851. } break;
  15852. case GGML_OP_SSM_CONV:
  15853. case GGML_OP_SSM_SCAN:
  15854. {
  15855. n_tasks = n_threads;
  15856. } break;
  15857. case GGML_OP_WIN_PART:
  15858. case GGML_OP_WIN_UNPART:
  15859. case GGML_OP_GET_REL_POS:
  15860. case GGML_OP_MAP_UNARY:
  15861. case GGML_OP_MAP_BINARY:
  15862. case GGML_OP_MAP_CUSTOM1_F32:
  15863. case GGML_OP_MAP_CUSTOM2_F32:
  15864. case GGML_OP_MAP_CUSTOM3_F32:
  15865. {
  15866. n_tasks = 1;
  15867. } break;
  15868. case GGML_OP_MAP_CUSTOM1:
  15869. {
  15870. struct ggml_map_custom1_op_params p;
  15871. memcpy(&p, node->op_params, sizeof(p));
  15872. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15873. n_tasks = n_threads;
  15874. } else {
  15875. n_tasks = MIN(p.n_tasks, n_threads);
  15876. }
  15877. } break;
  15878. case GGML_OP_MAP_CUSTOM2:
  15879. {
  15880. struct ggml_map_custom2_op_params p;
  15881. memcpy(&p, node->op_params, sizeof(p));
  15882. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15883. n_tasks = n_threads;
  15884. } else {
  15885. n_tasks = MIN(p.n_tasks, n_threads);
  15886. }
  15887. } break;
  15888. case GGML_OP_MAP_CUSTOM3:
  15889. {
  15890. struct ggml_map_custom3_op_params p;
  15891. memcpy(&p, node->op_params, sizeof(p));
  15892. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15893. n_tasks = n_threads;
  15894. } else {
  15895. n_tasks = MIN(p.n_tasks, n_threads);
  15896. }
  15897. } break;
  15898. case GGML_OP_CROSS_ENTROPY_LOSS:
  15899. {
  15900. n_tasks = n_threads;
  15901. } break;
  15902. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15903. {
  15904. n_tasks = n_threads;
  15905. } break;
  15906. case GGML_OP_NONE:
  15907. {
  15908. n_tasks = 1;
  15909. } break;
  15910. case GGML_OP_COUNT:
  15911. {
  15912. GGML_ASSERT(false);
  15913. } break;
  15914. default:
  15915. {
  15916. fprintf(stderr, "%s: op not implemented: ", __func__);
  15917. if (node->op < GGML_OP_COUNT) {
  15918. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15919. } else {
  15920. fprintf(stderr, "%d\n", node->op);
  15921. }
  15922. GGML_ASSERT(false);
  15923. } break;
  15924. }
  15925. assert(n_tasks > 0);
  15926. return n_tasks;
  15927. }
  15928. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15929. // wait for other threads to finish
  15930. const int last_node_n = * node_n;
  15931. while (true) {
  15932. if (do_yield) {
  15933. sched_yield();
  15934. }
  15935. * node_n = atomic_load(&state->shared->node_n);
  15936. if (* node_n != last_node_n) break;
  15937. #if defined(__SSE3__)
  15938. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15939. _mm_pause();
  15940. #endif
  15941. }
  15942. }
  15943. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15944. // wait for other threads to finish
  15945. const int last_task_phase = * task_phase;
  15946. while (true) {
  15947. if (do_yield) {
  15948. sched_yield();
  15949. }
  15950. * task_phase = atomic_load(&state->shared->node_task);
  15951. if (* task_phase != last_task_phase) break;
  15952. #if defined(__SSE3__)
  15953. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15954. _mm_pause();
  15955. #endif
  15956. }
  15957. }
  15958. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15959. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15960. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15961. const struct ggml_cplan * cplan = state->shared->cplan;
  15962. const int n_threads = state->shared->n_threads;
  15963. set_numa_thread_affinity(state->ith);
  15964. int node_n = -1;
  15965. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15966. while (true) {
  15967. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15968. state->shared->node_n += 1;
  15969. state->ec = GGML_STATUS_ABORTED;
  15970. return 0;
  15971. }
  15972. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15973. // all other threads are finished and spinning
  15974. // do finalize and init here so we don't have synchronize again
  15975. struct ggml_compute_params params = {
  15976. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15977. /*.ith =*/ 0,
  15978. /*.nth =*/ 0,
  15979. /*.wsize =*/ cplan->work_size,
  15980. /*.wdata =*/ cplan->work_data,
  15981. };
  15982. if (node_n != -1) {
  15983. /* FINALIZE */
  15984. struct ggml_tensor * node = cgraph->nodes[node_n];
  15985. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15986. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15987. ggml_compute_forward(&params, node, state);
  15988. }
  15989. ggml_graph_compute_perf_stats_node(node, state->shared);
  15990. }
  15991. // distribute new work or execute it direct if 1T
  15992. while (++node_n < cgraph->n_nodes) {
  15993. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15994. struct ggml_tensor * node = cgraph->nodes[node_n];
  15995. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15996. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15997. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15998. params.nth = n_tasks;
  15999. if (n_tasks == 1) {
  16000. /* INIT */
  16001. if (GGML_OP_HAS_INIT[node->op]) {
  16002. params.type = GGML_TASK_TYPE_INIT;
  16003. ggml_compute_forward(&params, node, state);
  16004. }
  16005. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16006. // they do something more efficient than spinning (?)
  16007. params.type = GGML_TASK_TYPE_COMPUTE;
  16008. ggml_compute_forward(&params, node, state);
  16009. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16010. params.type = GGML_TASK_TYPE_FINALIZE;
  16011. ggml_compute_forward(&params, node, state);
  16012. }
  16013. ggml_graph_compute_perf_stats_node(node, state->shared);
  16014. } else {
  16015. break;
  16016. }
  16017. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16018. break;
  16019. }
  16020. }
  16021. task_phase = GGML_TASK_TYPE_INIT;
  16022. atomic_store(&state->shared->n_active, n_threads);
  16023. atomic_store(&state->shared->node_n, node_n);
  16024. atomic_store(&state->shared->node_task, task_phase);
  16025. } else {
  16026. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16027. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16028. }
  16029. // check if we should stop
  16030. if (node_n >= cgraph->n_nodes) break;
  16031. /* INIT & COMPUTE */
  16032. struct ggml_tensor * node = cgraph->nodes[node_n];
  16033. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16034. struct ggml_compute_params params = {
  16035. /*.type =*/ GGML_TASK_TYPE_INIT,
  16036. /*.ith =*/ state->ith,
  16037. /*.nth =*/ n_tasks,
  16038. /*.wsize =*/ cplan->work_size,
  16039. /*.wdata =*/ cplan->work_data,
  16040. };
  16041. if (state->ith < n_tasks) {
  16042. if (GGML_OP_HAS_INIT[node->op]) {
  16043. ggml_compute_forward(&params, node, state);
  16044. }
  16045. }
  16046. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16047. task_phase = GGML_TASK_TYPE_COMPUTE;
  16048. atomic_store(&state->shared->n_active, n_threads);
  16049. atomic_store(&state->shared->node_task, task_phase);
  16050. }
  16051. else {
  16052. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16053. // depending on the workload and the operating system.
  16054. // since it is not clear what is the best approach, it should potentially become user-configurable
  16055. // ref: https://github.com/ggerganov/ggml/issues/291
  16056. // UPD: adding the do_yield flag seems to resolve the issue universally
  16057. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16058. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16059. }
  16060. if (state->ith < n_tasks) {
  16061. params.type = GGML_TASK_TYPE_COMPUTE;
  16062. ggml_compute_forward(&params, node, state);
  16063. }
  16064. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16065. task_phase = GGML_TASK_TYPE_FINALIZE;
  16066. atomic_store(&state->shared->n_active, n_threads);
  16067. atomic_store(&state->shared->node_task, task_phase);
  16068. }
  16069. else {
  16070. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16071. }
  16072. }
  16073. return 0;
  16074. }
  16075. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16076. if (n_threads <= 0) {
  16077. n_threads = GGML_DEFAULT_N_THREADS;
  16078. }
  16079. size_t work_size = 0;
  16080. struct ggml_cplan cplan;
  16081. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16082. int max_tasks = 1;
  16083. // thread scheduling for the different operations + work buffer size estimation
  16084. for (int i = 0; i < cgraph->n_nodes; i++) {
  16085. struct ggml_tensor * node = cgraph->nodes[i];
  16086. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16087. max_tasks = MAX(max_tasks, n_tasks);
  16088. size_t cur = 0;
  16089. switch (node->op) {
  16090. case GGML_OP_CPY:
  16091. case GGML_OP_DUP:
  16092. {
  16093. if (ggml_is_quantized(node->type) ||
  16094. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16095. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16096. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16097. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16098. }
  16099. } break;
  16100. case GGML_OP_ADD:
  16101. case GGML_OP_ADD1:
  16102. {
  16103. if (ggml_is_quantized(node->src[0]->type)) {
  16104. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16105. }
  16106. } break;
  16107. case GGML_OP_ACC:
  16108. {
  16109. if (ggml_is_quantized(node->src[0]->type)) {
  16110. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16111. }
  16112. } break;
  16113. case GGML_OP_MUL_MAT:
  16114. {
  16115. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16116. #if defined(GGML_USE_CLBLAST)
  16117. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16118. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16119. } else
  16120. #endif
  16121. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16122. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16123. if (node->src[0]->type != GGML_TYPE_F32) {
  16124. // here we need memory for fully dequantized matrix from src0
  16125. // take into account that src0 can be broadcasted into src1[2,3]
  16126. cur = ggml_type_size(GGML_TYPE_F32)
  16127. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16128. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16129. }
  16130. } else
  16131. #endif
  16132. if (node->src[1]->type != vec_dot_type) {
  16133. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16134. }
  16135. } break;
  16136. case GGML_OP_MUL_MAT_ID:
  16137. {
  16138. cur = 0;
  16139. const struct ggml_tensor * src0 = node->src[0];
  16140. const struct ggml_tensor * src1 = node->src[1];
  16141. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16142. if (src1->type != vec_dot_type) {
  16143. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16144. }
  16145. const int n_as = src0->ne[2];
  16146. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16147. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16148. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16149. } break;
  16150. case GGML_OP_OUT_PROD:
  16151. {
  16152. if (ggml_is_quantized(node->src[0]->type)) {
  16153. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16154. }
  16155. } break;
  16156. case GGML_OP_SOFT_MAX:
  16157. case GGML_OP_ROPE:
  16158. {
  16159. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16160. } break;
  16161. case GGML_OP_CONV_TRANSPOSE_1D:
  16162. {
  16163. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16164. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16165. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16166. const int64_t ne00 = node->src[0]->ne[0]; // K
  16167. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16168. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16169. const int64_t ne10 = node->src[1]->ne[0]; // L
  16170. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16171. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16172. node->src[0]->type == GGML_TYPE_BF16) &&
  16173. node->src[1]->type == GGML_TYPE_F32) {
  16174. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16175. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16176. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16177. node->src[1]->type == GGML_TYPE_F32) {
  16178. cur += sizeof(float)*ne00*ne01*ne02;
  16179. cur += sizeof(float)*ne10*ne11;
  16180. } else {
  16181. GGML_ASSERT(false);
  16182. }
  16183. } break;
  16184. case GGML_OP_CONV_TRANSPOSE_2D:
  16185. {
  16186. const int64_t ne00 = node->src[0]->ne[0]; // W
  16187. const int64_t ne01 = node->src[0]->ne[1]; // H
  16188. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16189. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16190. const int64_t ne10 = node->src[1]->ne[0]; // W
  16191. const int64_t ne11 = node->src[1]->ne[1]; // H
  16192. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16193. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16194. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16195. } break;
  16196. case GGML_OP_FLASH_ATTN_EXT:
  16197. {
  16198. const int64_t ne00 = node->src[0]->ne[0]; // D
  16199. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16200. } break;
  16201. case GGML_OP_FLASH_ATTN_BACK:
  16202. {
  16203. const int64_t D = node->src[0]->ne[0];
  16204. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16205. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16206. if (node->src[1]->type == GGML_TYPE_F32) {
  16207. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16208. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16209. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16210. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16211. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16212. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16213. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16214. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16215. }
  16216. } break;
  16217. case GGML_OP_CROSS_ENTROPY_LOSS:
  16218. {
  16219. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16220. } break;
  16221. case GGML_OP_COUNT:
  16222. {
  16223. GGML_ASSERT(false);
  16224. } break;
  16225. default:
  16226. break;
  16227. }
  16228. work_size = MAX(work_size, cur);
  16229. }
  16230. if (work_size > 0) {
  16231. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16232. }
  16233. cplan.n_threads = MIN(max_tasks, n_threads);
  16234. cplan.work_size = work_size;
  16235. cplan.work_data = NULL;
  16236. return cplan;
  16237. }
  16238. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16239. {
  16240. GGML_ASSERT(cplan);
  16241. GGML_ASSERT(cplan->n_threads > 0);
  16242. if (cplan->work_size > 0) {
  16243. GGML_ASSERT(cplan->work_data);
  16244. }
  16245. }
  16246. const int n_threads = cplan->n_threads;
  16247. struct ggml_compute_state_shared state_shared = {
  16248. /*.cgraph =*/ cgraph,
  16249. /*.cgraph_plan =*/ cplan,
  16250. /*.perf_node_start_cycles =*/ 0,
  16251. /*.perf_node_start_time_us =*/ 0,
  16252. /*.n_threads =*/ n_threads,
  16253. /*.n_active =*/ n_threads,
  16254. /*.node_n =*/ -1,
  16255. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16256. /*.abort_callback =*/ NULL,
  16257. /*.abort_callback_data =*/ NULL,
  16258. /*.current_chunk; =*/ 0,
  16259. };
  16260. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16261. // create thread pool
  16262. if (n_threads > 1) {
  16263. for (int j = 1; j < n_threads; ++j) {
  16264. workers[j] = (struct ggml_compute_state) {
  16265. .thrd = 0,
  16266. .ith = j,
  16267. .shared = &state_shared,
  16268. .ec = GGML_STATUS_SUCCESS,
  16269. };
  16270. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16271. GGML_ASSERT(rc == 0);
  16272. UNUSED(rc);
  16273. }
  16274. }
  16275. workers[0].ith = 0;
  16276. workers[0].shared = &state_shared;
  16277. workers[0].ec = GGML_STATUS_SUCCESS;
  16278. const int64_t perf_start_cycles = ggml_perf_cycles();
  16279. const int64_t perf_start_time_us = ggml_perf_time_us();
  16280. // this is a work thread too
  16281. ggml_graph_compute_thread(&workers[0]);
  16282. enum ggml_status compute_status = workers[0].ec;
  16283. // don't leave affinity set on the main thread
  16284. clear_numa_thread_affinity();
  16285. // join or kill thread pool
  16286. if (n_threads > 1) {
  16287. for (int j = 1; j < n_threads; j++) {
  16288. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16289. GGML_ASSERT(rc == 0);
  16290. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16291. compute_status = workers[j].ec;
  16292. }
  16293. }
  16294. // performance stats (graph)
  16295. {
  16296. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16297. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16298. cgraph->perf_runs++;
  16299. cgraph->perf_cycles += perf_cycles_cur;
  16300. cgraph->perf_time_us += perf_time_us_cur;
  16301. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16302. __func__, cgraph->perf_runs,
  16303. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16304. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16305. (double) perf_time_us_cur / 1000.0,
  16306. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16307. }
  16308. return compute_status;
  16309. }
  16310. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16311. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16312. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16313. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16314. return ggml_graph_compute(cgraph, &cplan);
  16315. }
  16316. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16317. for (int i = 0; i < cgraph->n_leafs; i++) {
  16318. struct ggml_tensor * leaf = cgraph->leafs[i];
  16319. if (strcmp(leaf->name, name) == 0) {
  16320. return leaf;
  16321. }
  16322. }
  16323. for (int i = 0; i < cgraph->n_nodes; i++) {
  16324. struct ggml_tensor * node = cgraph->nodes[i];
  16325. if (strcmp(node->name, name) == 0) {
  16326. return node;
  16327. }
  16328. }
  16329. return NULL;
  16330. }
  16331. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16332. const int64_t * ne = tensor->ne;
  16333. const size_t * nb = tensor->nb;
  16334. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16335. ggml_type_name(tensor->type),
  16336. ggml_op_name (tensor->op),
  16337. ggml_n_dims(tensor),
  16338. ne[0], ne[1], ne[2], ne[3],
  16339. nb[0], nb[1], nb[2], nb[3],
  16340. tensor->data,
  16341. tensor->name);
  16342. }
  16343. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16344. const int64_t * ne = tensor->ne;
  16345. const size_t * nb = tensor->nb;
  16346. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16347. arg,
  16348. ggml_type_name(tensor->type),
  16349. ggml_op_name (tensor->op),
  16350. ggml_n_dims(tensor),
  16351. ne[0], ne[1], ne[2], ne[3],
  16352. nb[0], nb[1], nb[2], nb[3],
  16353. tensor->data,
  16354. tensor->name);
  16355. }
  16356. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16357. uint64_t size_eval = 0;
  16358. // compute size of intermediate results
  16359. // TODO: does not take into account scratch buffers !!!!
  16360. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16361. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16362. }
  16363. // print
  16364. {
  16365. FILE * fout = stdout;
  16366. fprintf(fout, "\n");
  16367. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16368. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16369. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16370. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16371. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16372. // header
  16373. fprintf(fout, "\n");
  16374. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16375. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16376. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16377. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16378. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16379. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16380. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16381. }
  16382. // header
  16383. fprintf(fout, "\n");
  16384. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16385. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16386. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16387. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16388. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16389. if (cgraph->nodes[i]->src[j]) {
  16390. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16391. }
  16392. }
  16393. fprintf(fout, "\n");
  16394. }
  16395. fprintf(fout, "\n");
  16396. }
  16397. // write binary data
  16398. {
  16399. FILE * fout = ggml_fopen(fname, "wb");
  16400. if (!fout) {
  16401. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16402. return;
  16403. }
  16404. // header
  16405. {
  16406. const uint32_t magic = GGML_FILE_MAGIC;
  16407. const uint32_t version = GGML_FILE_VERSION;
  16408. const uint32_t n_leafs = cgraph->n_leafs;
  16409. const uint32_t n_nodes = cgraph->n_nodes;
  16410. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16411. fwrite(&version, sizeof(uint32_t), 1, fout);
  16412. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16413. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16414. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16415. }
  16416. // leafs
  16417. {
  16418. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16419. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16420. const uint32_t type = tensor->type;
  16421. const uint32_t op = tensor->op;
  16422. fwrite(&type, sizeof(uint32_t), 1, fout);
  16423. fwrite(&op, sizeof(uint32_t), 1, fout);
  16424. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16425. const uint64_t ne = tensor->ne[j];
  16426. const uint64_t nb = tensor->nb[j];
  16427. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16428. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16429. }
  16430. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16431. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16432. // dump the data
  16433. // TODO: pad this to 32 byte boundary
  16434. {
  16435. const size_t size = ggml_nbytes(tensor);
  16436. fwrite(tensor->data, sizeof(char), size, fout);
  16437. }
  16438. }
  16439. }
  16440. // nodes
  16441. {
  16442. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16443. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16444. const uint32_t type = tensor->type;
  16445. const uint32_t op = tensor->op;
  16446. fwrite(&type, sizeof(uint32_t), 1, fout);
  16447. fwrite(&op, sizeof(uint32_t), 1, fout);
  16448. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16449. const uint64_t ne = tensor->ne[j];
  16450. const uint64_t nb = tensor->nb[j];
  16451. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16452. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16453. }
  16454. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16455. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16456. // output the op arguments
  16457. {
  16458. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16459. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16460. args[j] = tensor->src[j];
  16461. }
  16462. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16463. if (args[j]) {
  16464. int32_t idx = -1;
  16465. // check if leaf
  16466. {
  16467. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16468. if (args[j] == cgraph->leafs[k]) {
  16469. idx = k;
  16470. break;
  16471. }
  16472. }
  16473. }
  16474. // check if node
  16475. if (idx == -1) {
  16476. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16477. if (args[j] == cgraph->nodes[k]) {
  16478. idx = cgraph->n_leafs + k;
  16479. break;
  16480. }
  16481. }
  16482. }
  16483. if (idx == -1) {
  16484. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16485. fclose(fout);
  16486. return;
  16487. }
  16488. fwrite(&idx, sizeof(int32_t), 1, fout);
  16489. } else {
  16490. const int32_t nul = -1;
  16491. fwrite(&nul, sizeof(int32_t), 1, fout);
  16492. }
  16493. }
  16494. }
  16495. }
  16496. }
  16497. fclose(fout);
  16498. }
  16499. }
  16500. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16501. assert(*ctx_data == NULL);
  16502. assert(*ctx_eval == NULL);
  16503. struct ggml_cgraph * result = NULL;
  16504. struct ggml_tensor * data = NULL;
  16505. // read file into data
  16506. {
  16507. FILE * fin = ggml_fopen(fname, "rb");
  16508. if (!fin) {
  16509. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16510. return result;
  16511. }
  16512. size_t fsize = 0;
  16513. fseek(fin, 0, SEEK_END);
  16514. fsize = ftell(fin);
  16515. fseek(fin, 0, SEEK_SET);
  16516. // create the data context
  16517. {
  16518. const size_t overhead = 1*ggml_tensor_overhead();
  16519. struct ggml_init_params params = {
  16520. .mem_size = fsize + overhead,
  16521. .mem_buffer = NULL,
  16522. .no_alloc = false,
  16523. };
  16524. *ctx_data = ggml_init(params);
  16525. if (!*ctx_data) {
  16526. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16527. fclose(fin);
  16528. return result;
  16529. }
  16530. }
  16531. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16532. {
  16533. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16534. if (ret != fsize) {
  16535. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16536. fclose(fin);
  16537. return result;
  16538. }
  16539. }
  16540. fclose(fin);
  16541. }
  16542. // populate result
  16543. {
  16544. char * ptr = (char *) data->data;
  16545. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16546. if (magic != GGML_FILE_MAGIC) {
  16547. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16548. return result;
  16549. }
  16550. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16551. if (version != GGML_FILE_VERSION) {
  16552. fprintf(stderr, "%s: invalid version number\n", __func__);
  16553. return result;
  16554. }
  16555. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16556. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16557. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16558. const int graph_size = MAX(n_leafs, n_nodes);
  16559. // create the data context
  16560. {
  16561. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16562. struct ggml_init_params params = {
  16563. .mem_size = size_eval + overhead,
  16564. .mem_buffer = NULL,
  16565. .no_alloc = true,
  16566. };
  16567. *ctx_eval = ggml_init(params);
  16568. if (!*ctx_eval) {
  16569. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16570. return result;
  16571. }
  16572. }
  16573. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16574. result->n_leafs = n_leafs;
  16575. result->n_nodes = n_nodes;
  16576. // leafs
  16577. {
  16578. uint32_t type;
  16579. uint32_t op;
  16580. for (uint32_t i = 0; i < n_leafs; ++i) {
  16581. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16582. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16583. int64_t ne[GGML_MAX_DIMS];
  16584. size_t nb[GGML_MAX_DIMS];
  16585. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16586. uint64_t ne_cur;
  16587. uint64_t nb_cur;
  16588. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16589. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16590. ne[j] = ne_cur;
  16591. nb[j] = nb_cur;
  16592. }
  16593. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16594. tensor->op = (enum ggml_op) op;
  16595. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16596. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16597. tensor->data = (void *) ptr;
  16598. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16599. tensor->nb[j] = nb[j];
  16600. }
  16601. result->leafs[i] = tensor;
  16602. ptr += ggml_nbytes(tensor);
  16603. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16604. }
  16605. }
  16606. ggml_set_no_alloc(*ctx_eval, false);
  16607. // nodes
  16608. {
  16609. uint32_t type;
  16610. uint32_t op;
  16611. for (uint32_t i = 0; i < n_nodes; ++i) {
  16612. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16613. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16614. enum ggml_op eop = (enum ggml_op) op;
  16615. int64_t ne[GGML_MAX_DIMS];
  16616. size_t nb[GGML_MAX_DIMS];
  16617. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16618. uint64_t ne_cur;
  16619. uint64_t nb_cur;
  16620. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16621. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16622. ne[j] = ne_cur;
  16623. nb[j] = nb_cur;
  16624. }
  16625. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16626. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16627. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16628. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16629. // parse args
  16630. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16631. const int32_t arg_idx = ptr_arg_idx[j];
  16632. if (arg_idx == -1) {
  16633. continue;
  16634. }
  16635. if (arg_idx < result->n_leafs) {
  16636. args[j] = result->leafs[arg_idx];
  16637. } else {
  16638. args[j] = result->nodes[arg_idx - result->n_leafs];
  16639. }
  16640. }
  16641. // create the tensor
  16642. // "view" operations are handled differently
  16643. // TODO: handle inplace ops - currently a copy is always made
  16644. struct ggml_tensor * tensor = NULL;
  16645. switch (eop) {
  16646. // TODO: implement other view ops
  16647. case GGML_OP_RESHAPE:
  16648. {
  16649. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16650. } break;
  16651. case GGML_OP_VIEW:
  16652. {
  16653. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16654. size_t offs;
  16655. memcpy(&offs, ptr_op_params, sizeof(offs));
  16656. tensor->data = ((char *) tensor->data) + offs;
  16657. } break;
  16658. case GGML_OP_TRANSPOSE:
  16659. {
  16660. tensor = ggml_transpose(*ctx_eval, args[0]);
  16661. } break;
  16662. case GGML_OP_PERMUTE:
  16663. {
  16664. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16665. } break;
  16666. default:
  16667. {
  16668. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16669. tensor->op = eop;
  16670. } break;
  16671. }
  16672. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16673. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16674. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16675. tensor->nb[j] = nb[j];
  16676. }
  16677. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16678. tensor->src[j] = args[j];
  16679. }
  16680. result->nodes[i] = tensor;
  16681. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16682. }
  16683. }
  16684. }
  16685. return result;
  16686. }
  16687. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16688. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16689. GGML_PRINT("=== GRAPH ===\n");
  16690. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16691. for (int i = 0; i < cgraph->n_nodes; i++) {
  16692. struct ggml_tensor * node = cgraph->nodes[i];
  16693. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16694. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16695. i,
  16696. node->ne[0], node->ne[1], node->ne[2],
  16697. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16698. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16699. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16700. (double) node->perf_time_us / 1000.0,
  16701. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16702. }
  16703. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16704. for (int i = 0; i < cgraph->n_leafs; i++) {
  16705. struct ggml_tensor * node = cgraph->leafs[i];
  16706. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16707. i,
  16708. node->ne[0], node->ne[1],
  16709. ggml_op_name(node->op),
  16710. ggml_get_name(node));
  16711. }
  16712. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16713. if (perf_total_per_op_us[i] == 0) {
  16714. continue;
  16715. }
  16716. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16717. }
  16718. GGML_PRINT("========================================\n");
  16719. }
  16720. // check if node is part of the graph
  16721. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16722. if (cgraph == NULL) {
  16723. return true;
  16724. }
  16725. for (int i = 0; i < cgraph->n_nodes; i++) {
  16726. if (cgraph->nodes[i] == node) {
  16727. return true;
  16728. }
  16729. }
  16730. return false;
  16731. }
  16732. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16733. for (int i = 0; i < cgraph->n_nodes; i++) {
  16734. struct ggml_tensor * parent = cgraph->nodes[i];
  16735. if (parent->grad == node) {
  16736. return parent;
  16737. }
  16738. }
  16739. return NULL;
  16740. }
  16741. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16742. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16743. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16744. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16745. gparent0 ? (void *) gparent0 : (void *) parent,
  16746. gparent0 ? "g" : "x",
  16747. gparent ? (void *) gparent : (void *) node,
  16748. gparent ? "g" : "x",
  16749. gparent ? "empty" : "vee",
  16750. gparent ? "dashed" : "solid",
  16751. label);
  16752. }
  16753. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16754. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16755. (void *) parent, "x",
  16756. (void *) node, "x",
  16757. label);
  16758. }
  16759. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16760. char color[16];
  16761. FILE * fp = ggml_fopen(filename, "w");
  16762. GGML_ASSERT(fp);
  16763. fprintf(fp, "digraph G {\n");
  16764. fprintf(fp, " newrank = true;\n");
  16765. fprintf(fp, " rankdir = LR;\n");
  16766. for (int i = 0; i < gb->n_nodes; i++) {
  16767. struct ggml_tensor * node = gb->nodes[i];
  16768. if (ggml_graph_get_parent(gb, node) != NULL) {
  16769. continue;
  16770. }
  16771. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16772. snprintf(color, sizeof(color), "yellow");
  16773. } else if (node->grad) {
  16774. if (ggml_graph_find(gf, node)) {
  16775. snprintf(color, sizeof(color), "green");
  16776. } else {
  16777. snprintf(color, sizeof(color), "lightblue");
  16778. }
  16779. } else {
  16780. snprintf(color, sizeof(color), "white");
  16781. }
  16782. fprintf(fp, " \"%p\" [ "
  16783. "style = filled; fillcolor = %s; shape = record; "
  16784. "label=\"",
  16785. (void *) node, color);
  16786. if (strlen(node->name) > 0) {
  16787. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16788. } else {
  16789. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16790. }
  16791. if (ggml_is_matrix(node)) {
  16792. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16793. } else {
  16794. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16795. }
  16796. if (node->grad) {
  16797. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16798. } else {
  16799. fprintf(fp, "\"; ]\n");
  16800. }
  16801. }
  16802. for (int i = 0; i < gb->n_leafs; i++) {
  16803. struct ggml_tensor * node = gb->leafs[i];
  16804. snprintf(color, sizeof(color), "pink");
  16805. fprintf(fp, " \"%p\" [ "
  16806. "style = filled; fillcolor = %s; shape = record; "
  16807. "label=\"<x>",
  16808. (void *) node, color);
  16809. if (strlen(node->name) > 0) {
  16810. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16811. } else {
  16812. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16813. }
  16814. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16815. if (ggml_nelements(node) < 5) {
  16816. fprintf(fp, " | (");
  16817. for (int j = 0; j < ggml_nelements(node); j++) {
  16818. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16819. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16820. }
  16821. else if (node->type == GGML_TYPE_F32 ||
  16822. node->type == GGML_TYPE_F16 ||
  16823. node->type == GGML_TYPE_BF16) {
  16824. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16825. }
  16826. else {
  16827. fprintf(fp, "#");
  16828. }
  16829. if (j < ggml_nelements(node) - 1) {
  16830. fprintf(fp, ", ");
  16831. }
  16832. }
  16833. fprintf(fp, ")");
  16834. }
  16835. fprintf(fp, "\"; ]\n");
  16836. }
  16837. for (int i = 0; i < gb->n_nodes; i++) {
  16838. struct ggml_tensor * node = gb->nodes[i];
  16839. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16840. if (node->src[j]) {
  16841. char label[16];
  16842. snprintf(label, sizeof(label), "src %d", j);
  16843. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16844. }
  16845. }
  16846. }
  16847. for (int i = 0; i < gb->n_leafs; i++) {
  16848. struct ggml_tensor * node = gb->leafs[i];
  16849. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16850. if (node->src[j]) {
  16851. char label[16];
  16852. snprintf(label, sizeof(label), "src %d", j);
  16853. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16854. }
  16855. }
  16856. }
  16857. fprintf(fp, "}\n");
  16858. fclose(fp);
  16859. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16860. }
  16861. ////////////////////////////////////////////////////////////////////////////////
  16862. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16863. int i = 0;
  16864. for (int p = 0; p < np; ++p) {
  16865. const int64_t ne = ggml_nelements(ps[p]) ;
  16866. // TODO: add function to set tensor from array
  16867. for (int64_t j = 0; j < ne; ++j) {
  16868. ggml_set_f32_1d(ps[p], j, x[i++]);
  16869. }
  16870. }
  16871. }
  16872. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16873. int i = 0;
  16874. for (int p = 0; p < np; ++p) {
  16875. const int64_t ne = ggml_nelements(ps[p]) ;
  16876. // TODO: add function to get all elements at once
  16877. for (int64_t j = 0; j < ne; ++j) {
  16878. x[i++] = ggml_get_f32_1d(ps[p], j);
  16879. }
  16880. }
  16881. }
  16882. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16883. int64_t i = 0;
  16884. for (int p = 0; p < np; ++p) {
  16885. const int64_t ne = ggml_nelements(ps[p]) ;
  16886. // TODO: add function to get all elements at once
  16887. for (int64_t j = 0; j < ne; ++j) {
  16888. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16889. }
  16890. }
  16891. }
  16892. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16893. int64_t i = 0;
  16894. for (int p = 0; p < np; ++p) {
  16895. const int64_t ne = ggml_nelements(ps[p]) ;
  16896. // TODO: add function to get all elements at once
  16897. for (int64_t j = 0; j < ne; ++j) {
  16898. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16899. }
  16900. }
  16901. }
  16902. //
  16903. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16904. //
  16905. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16906. //
  16907. static enum ggml_opt_result ggml_opt_adam(
  16908. struct ggml_context * ctx,
  16909. struct ggml_opt_context * opt,
  16910. struct ggml_opt_params params,
  16911. struct ggml_tensor * f,
  16912. struct ggml_cgraph * gf,
  16913. struct ggml_cgraph * gb,
  16914. ggml_opt_callback callback,
  16915. void * callback_data) {
  16916. GGML_ASSERT(ggml_is_scalar(f));
  16917. // these will store the parameters we want to optimize
  16918. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16919. int np = 0;
  16920. int64_t nx = 0;
  16921. for (int i = 0; i < gf->n_nodes; ++i) {
  16922. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16923. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16924. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16925. ps[np++] = gf->nodes[i];
  16926. nx += ggml_nelements(gf->nodes[i]);
  16927. }
  16928. }
  16929. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16930. int iter = opt->iter;
  16931. ggml_opt_init(opt->ctx, opt, params, nx);
  16932. opt->iter = iter;
  16933. }
  16934. // constants
  16935. float sched = params.adam.sched;
  16936. const float alpha = params.adam.alpha;
  16937. const float decay = params.adam.decay * alpha;
  16938. const float beta1 = params.adam.beta1;
  16939. const float beta2 = params.adam.beta2;
  16940. const float eps = params.adam.eps;
  16941. const float gclip = params.adam.gclip;
  16942. const int decay_min_ndim = params.adam.decay_min_ndim;
  16943. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16944. const float accum_norm = 1.0f / (float) n_accum;
  16945. float * g = opt->adam.g->data; // gradients
  16946. float * m = opt->adam.m->data; // first moment
  16947. float * v = opt->adam.v->data; // second moment
  16948. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16949. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16950. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16951. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16952. bool cancel = false;
  16953. // compute the function value
  16954. float fx = 0;
  16955. ggml_set_zero(opt->adam.g);
  16956. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16957. if (callback) {
  16958. callback(callback_data, accum_step, &sched, &cancel);
  16959. if (cancel) {
  16960. return GGML_OPT_RESULT_CANCEL;
  16961. }
  16962. }
  16963. // ggml_graph_reset (gf);
  16964. ggml_set_f32 (f->grad, 1.0f);
  16965. ggml_graph_compute(gb, &cplan);
  16966. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16967. fx += ggml_get_f32_1d(f, 0);
  16968. }
  16969. fx *= accum_norm;
  16970. opt->adam.fx_prev = fx;
  16971. opt->adam.fx_best = opt->adam.fx_prev;
  16972. if (pf) {
  16973. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16974. }
  16975. opt->loss_before = opt->adam.fx_prev;
  16976. opt->loss_after = opt->adam.fx_prev;
  16977. // initialize
  16978. if (opt->just_initialized) {
  16979. opt->adam.n_no_improvement = 0;
  16980. opt->just_initialized = false;
  16981. }
  16982. float * fx_best = &opt->adam.fx_best;
  16983. float * fx_prev = &opt->adam.fx_prev;
  16984. int * n_no_improvement = &opt->adam.n_no_improvement;
  16985. int iter0 = opt->iter;
  16986. // run the optimizer
  16987. for (int t = 0; t < params.adam.n_iter; ++t) {
  16988. opt->iter = iter0 + t + 1;
  16989. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16990. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16991. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16992. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16993. for (int i = 0; i < np; ++i) {
  16994. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16995. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16996. }
  16997. const int64_t t_start_wall = ggml_time_us();
  16998. const int64_t t_start_cpu = ggml_cycles();
  16999. UNUSED(t_start_wall);
  17000. UNUSED(t_start_cpu);
  17001. {
  17002. float gnorm = 1.0f;
  17003. if (gclip > 0.0f) {
  17004. // gradient clipping
  17005. ggml_float sum = 0.0;
  17006. for (int64_t i = 0; i < nx; ++i) {
  17007. sum += (ggml_float)(g[i]*g[i]);
  17008. }
  17009. ggml_float norm = sqrt(sum);
  17010. if (norm > (ggml_float) gclip) {
  17011. gnorm = (float) ((ggml_float) gclip / norm);
  17012. }
  17013. }
  17014. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17015. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17016. int64_t i = 0;
  17017. for (int p = 0; p < np; ++p) {
  17018. const int64_t ne = ggml_nelements(ps[p]);
  17019. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17020. for (int64_t j = 0; j < ne; ++j) {
  17021. float x = ggml_get_f32_1d(ps[p], j);
  17022. float g_ = g[i]*gnorm;
  17023. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17024. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17025. float mh = m[i]*beta1h;
  17026. float vh = v[i]*beta2h;
  17027. vh = sqrtf(vh) + eps;
  17028. x = x*(1.0f - p_decay) - mh/vh;
  17029. ggml_set_f32_1d(ps[p], j, x);
  17030. ++i;
  17031. }
  17032. }
  17033. }
  17034. fx = 0;
  17035. ggml_set_zero(opt->adam.g);
  17036. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17037. if (callback) {
  17038. callback(callback_data, accum_step, &sched, &cancel);
  17039. if (cancel) {
  17040. return GGML_OPT_RESULT_CANCEL;;
  17041. }
  17042. }
  17043. // ggml_graph_reset (gf);
  17044. ggml_set_f32 (f->grad, 1.0f);
  17045. ggml_graph_compute(gb, &cplan);
  17046. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17047. fx += ggml_get_f32_1d(f, 0);
  17048. }
  17049. fx *= accum_norm;
  17050. opt->loss_after = fx;
  17051. // check convergence
  17052. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17053. GGML_PRINT_DEBUG("converged\n");
  17054. return GGML_OPT_RESULT_OK;
  17055. }
  17056. // delta-based convergence test
  17057. if (pf != NULL) {
  17058. // need at least params.past iterations to start checking for convergence
  17059. if (params.past <= iter0 + t) {
  17060. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17061. if (fabsf(rate) < params.delta) {
  17062. return GGML_OPT_RESULT_OK;
  17063. }
  17064. }
  17065. pf[(iter0 + t)%params.past] = fx;
  17066. }
  17067. // check for improvement
  17068. if (params.max_no_improvement > 0) {
  17069. if (fx_best[0] > fx) {
  17070. fx_best[0] = fx;
  17071. n_no_improvement[0] = 0;
  17072. } else {
  17073. ++n_no_improvement[0];
  17074. if (n_no_improvement[0] >= params.max_no_improvement) {
  17075. return GGML_OPT_RESULT_OK;
  17076. }
  17077. }
  17078. }
  17079. fx_prev[0] = fx;
  17080. {
  17081. const int64_t t_end_cpu = ggml_cycles();
  17082. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17083. UNUSED(t_end_cpu);
  17084. const int64_t t_end_wall = ggml_time_us();
  17085. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17086. UNUSED(t_end_wall);
  17087. }
  17088. }
  17089. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17090. }
  17091. //
  17092. // L-BFGS
  17093. //
  17094. // the L-BFGS implementation below is based on the following implementation:
  17095. //
  17096. // https://github.com/chokkan/liblbfgs
  17097. //
  17098. struct ggml_lbfgs_iteration_data {
  17099. float alpha;
  17100. float ys;
  17101. float * s;
  17102. float * y;
  17103. };
  17104. static enum ggml_opt_result linesearch_backtracking(
  17105. const struct ggml_opt_params * params,
  17106. int nx,
  17107. float * x,
  17108. float * fx,
  17109. float * g,
  17110. float * d,
  17111. float * step,
  17112. const float * xp,
  17113. struct ggml_tensor * f,
  17114. struct ggml_cgraph * gb,
  17115. struct ggml_cplan * cplan,
  17116. const int np,
  17117. struct ggml_tensor * ps[],
  17118. bool * cancel,
  17119. ggml_opt_callback callback,
  17120. void * callback_data) {
  17121. int count = 0;
  17122. float width = 0.0f;
  17123. float dg = 0.0f;
  17124. float finit = 0.0f;
  17125. float dginit = 0.0f;
  17126. float dgtest = 0.0f;
  17127. const float dec = 0.5f;
  17128. const float inc = 2.1f;
  17129. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17130. const float accum_norm = 1.0f / (float) n_accum;
  17131. if (*step <= 0.f) {
  17132. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17133. }
  17134. // compute the initial gradient in the search direction
  17135. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17136. // make sure that d points to a descent direction
  17137. if (0 < dginit) {
  17138. return GGML_LINESEARCH_FAIL;
  17139. }
  17140. // initialize local variables
  17141. finit = *fx;
  17142. dgtest = params->lbfgs.ftol*dginit;
  17143. while (true) {
  17144. ggml_vec_cpy_f32(nx, x, xp);
  17145. ggml_vec_mad_f32(nx, x, d, *step);
  17146. // evaluate the function and gradient values
  17147. {
  17148. ggml_opt_set_params(np, ps, x);
  17149. *fx = 0;
  17150. memset(g, 0, sizeof(float)*nx);
  17151. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17152. if (callback) {
  17153. // LBFG-S does not support learning rate -> ignore learning schedule
  17154. float sched = 0;
  17155. callback(callback_data, accum_step, &sched, cancel);
  17156. if (*cancel) {
  17157. return GGML_OPT_RESULT_CANCEL;
  17158. }
  17159. }
  17160. // ggml_graph_reset (gf);
  17161. ggml_set_f32 (f->grad, 1.0f);
  17162. ggml_graph_compute(gb, cplan);
  17163. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17164. *fx += ggml_get_f32_1d(f, 0);
  17165. }
  17166. *fx *= accum_norm;
  17167. }
  17168. ++count;
  17169. if (*fx > finit + (*step)*dgtest) {
  17170. width = dec;
  17171. } else {
  17172. // Armijo condition is satisfied
  17173. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17174. return count;
  17175. }
  17176. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17177. // check the Wolfe condition
  17178. if (dg < params->lbfgs.wolfe * dginit) {
  17179. width = inc;
  17180. } else {
  17181. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17182. // regular Wolfe conditions
  17183. return count;
  17184. }
  17185. if(dg > -params->lbfgs.wolfe*dginit) {
  17186. width = dec;
  17187. } else {
  17188. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17189. return count;
  17190. }
  17191. }
  17192. }
  17193. if (*step < params->lbfgs.min_step) {
  17194. return GGML_LINESEARCH_MINIMUM_STEP;
  17195. }
  17196. if (*step > params->lbfgs.max_step) {
  17197. return GGML_LINESEARCH_MAXIMUM_STEP;
  17198. }
  17199. if (params->lbfgs.max_linesearch <= count) {
  17200. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17201. }
  17202. (*step) *= width;
  17203. }
  17204. GGML_ASSERT(false && "line search failed");
  17205. return GGML_LINESEARCH_FAIL;
  17206. }
  17207. static enum ggml_opt_result ggml_opt_lbfgs(
  17208. struct ggml_context * ctx,
  17209. struct ggml_opt_context * opt,
  17210. struct ggml_opt_params params,
  17211. struct ggml_tensor * f,
  17212. struct ggml_cgraph * gf,
  17213. struct ggml_cgraph * gb,
  17214. ggml_opt_callback callback,
  17215. void * callback_data) {
  17216. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17217. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17218. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17219. return GGML_OPT_RESULT_INVALID_WOLFE;
  17220. }
  17221. }
  17222. const int m = params.lbfgs.m;
  17223. // these will store the parameters we want to optimize
  17224. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17225. int np = 0;
  17226. int nx = 0;
  17227. for (int i = 0; i < gf->n_nodes; ++i) {
  17228. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17229. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17230. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17231. ps[np++] = gf->nodes[i];
  17232. nx += ggml_nelements(gf->nodes[i]);
  17233. }
  17234. }
  17235. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17236. int iter = opt->iter;
  17237. ggml_opt_init(ctx, opt, params, nx);
  17238. opt->iter = iter;
  17239. }
  17240. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17241. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17242. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17243. float * x = opt->lbfgs.x->data; // current parameters
  17244. float * xp = opt->lbfgs.xp->data; // previous parameters
  17245. float * g = opt->lbfgs.g->data; // current gradient
  17246. float * gp = opt->lbfgs.gp->data; // previous gradient
  17247. float * d = opt->lbfgs.d->data; // search direction
  17248. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17249. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17250. const float accum_norm = 1.0f / (float) n_accum;
  17251. float fx = 0.0f; // cost function value
  17252. float xnorm = 0.0f; // ||x||
  17253. float gnorm = 0.0f; // ||g||
  17254. // initialize x from the graph nodes
  17255. ggml_opt_get_params(np, ps, x);
  17256. // the L-BFGS memory
  17257. float * lm_alpha = opt->lbfgs.lmal->data;
  17258. float * lm_ys = opt->lbfgs.lmys->data;
  17259. float * lm_s = opt->lbfgs.lms->data;
  17260. float * lm_y = opt->lbfgs.lmy->data;
  17261. bool cancel = false;
  17262. // evaluate the function value and its gradient
  17263. {
  17264. ggml_opt_set_params(np, ps, x);
  17265. fx = 0;
  17266. memset(g, 0, sizeof(float)*nx);
  17267. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17268. if (callback) {
  17269. // LBFG-S does not support learning rate -> ignore learning schedule
  17270. float sched = 0;
  17271. callback(callback_data, accum_step, &sched, &cancel);
  17272. if (cancel) {
  17273. return GGML_OPT_RESULT_CANCEL;
  17274. }
  17275. }
  17276. // ggml_graph_reset (gf);
  17277. ggml_set_f32 (f->grad, 1.0f);
  17278. ggml_graph_compute(gb, &cplan);
  17279. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17280. fx += ggml_get_f32_1d(f, 0);
  17281. }
  17282. fx *= accum_norm;
  17283. opt->loss_before = fx;
  17284. opt->loss_after = fx;
  17285. }
  17286. // search direction = -gradient
  17287. ggml_vec_neg_f32(nx, d, g);
  17288. // ||x||, ||g||
  17289. ggml_vec_norm_f32(nx, &xnorm, x);
  17290. ggml_vec_norm_f32(nx, &gnorm, g);
  17291. if (xnorm < 1.0f) {
  17292. xnorm = 1.0f;
  17293. }
  17294. // already optimized
  17295. if (gnorm/xnorm <= params.lbfgs.eps) {
  17296. return GGML_OPT_RESULT_OK;
  17297. }
  17298. if (opt->just_initialized) {
  17299. if (pf) {
  17300. pf[0] = fx;
  17301. }
  17302. opt->lbfgs.fx_best = fx;
  17303. // initial step
  17304. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17305. opt->lbfgs.j = 0;
  17306. opt->lbfgs.k = 1;
  17307. opt->lbfgs.end = 0;
  17308. opt->lbfgs.n_no_improvement = 0;
  17309. opt->just_initialized = false;
  17310. }
  17311. float * fx_best = &opt->lbfgs.fx_best;
  17312. float * step = &opt->lbfgs.step;
  17313. int * j = &opt->lbfgs.j;
  17314. int * k = &opt->lbfgs.k;
  17315. int * end = &opt->lbfgs.end;
  17316. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17317. int ls = 0;
  17318. int bound = 0;
  17319. float ys = 0.0f;
  17320. float yy = 0.0f;
  17321. float beta = 0.0f;
  17322. int it = 0;
  17323. while (true) {
  17324. // store the current position and gradient vectors
  17325. ggml_vec_cpy_f32(nx, xp, x);
  17326. ggml_vec_cpy_f32(nx, gp, g);
  17327. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17328. // to determine if the optimization should be cancelled
  17329. // this is a simple change, but not doing this atm, since I don't have a nice
  17330. // way to test and don't want to break something with so many changes lined up
  17331. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17332. if (cancel) {
  17333. return GGML_OPT_RESULT_CANCEL;
  17334. }
  17335. if (ls < 0) {
  17336. // linesearch failed - go back to the previous point and return
  17337. ggml_vec_cpy_f32(nx, x, xp);
  17338. ggml_vec_cpy_f32(nx, g, gp);
  17339. return ls;
  17340. }
  17341. opt->loss_after = fx;
  17342. ggml_vec_norm_f32(nx, &xnorm, x);
  17343. ggml_vec_norm_f32(nx, &gnorm, g);
  17344. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17345. if (xnorm < 1.0f) {
  17346. xnorm = 1.0f;
  17347. }
  17348. if (gnorm/xnorm <= params.lbfgs.eps) {
  17349. // converged
  17350. return GGML_OPT_RESULT_OK;
  17351. }
  17352. // delta-based convergence test
  17353. if (pf != NULL) {
  17354. // need at least params.past iterations to start checking for convergence
  17355. if (params.past <= k[0]) {
  17356. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17357. if (fabsf(rate) < params.delta) {
  17358. return GGML_OPT_RESULT_OK;
  17359. }
  17360. }
  17361. pf[k[0]%params.past] = fx;
  17362. }
  17363. // check for improvement
  17364. if (params.max_no_improvement > 0) {
  17365. if (fx < fx_best[0]) {
  17366. fx_best[0] = fx;
  17367. n_no_improvement[0] = 0;
  17368. } else {
  17369. n_no_improvement[0]++;
  17370. if (n_no_improvement[0] >= params.max_no_improvement) {
  17371. return GGML_OPT_RESULT_OK;
  17372. }
  17373. }
  17374. }
  17375. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17376. // reached the maximum number of iterations
  17377. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17378. }
  17379. // update vectors s and y:
  17380. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17381. // y_{k+1} = g_{k+1} - g_{k}.
  17382. //
  17383. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17384. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17385. // compute scalars ys and yy:
  17386. // ys = y^t \cdot s -> 1 / \rho.
  17387. // yy = y^t \cdot y.
  17388. //
  17389. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17390. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17391. lm_ys[end[0]] = ys;
  17392. // find new search direction
  17393. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17394. bound = (m <= k[0]) ? m : k[0];
  17395. k[0]++;
  17396. it++;
  17397. end[0] = (end[0] + 1)%m;
  17398. // initialize search direction with -g
  17399. ggml_vec_neg_f32(nx, d, g);
  17400. j[0] = end[0];
  17401. for (int i = 0; i < bound; ++i) {
  17402. j[0] = (j[0] + m - 1) % m;
  17403. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17404. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17405. lm_alpha[j[0]] /= lm_ys[j[0]];
  17406. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17407. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17408. }
  17409. ggml_vec_scale_f32(nx, d, ys/yy);
  17410. for (int i = 0; i < bound; ++i) {
  17411. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17412. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17413. beta /= lm_ys[j[0]];
  17414. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17415. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17416. j[0] = (j[0] + 1)%m;
  17417. }
  17418. step[0] = 1.0;
  17419. }
  17420. GGML_ASSERT(false && "lbfgs failed");
  17421. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17422. }
  17423. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17424. struct ggml_opt_params result;
  17425. switch (type) {
  17426. case GGML_OPT_TYPE_ADAM:
  17427. {
  17428. result = (struct ggml_opt_params) {
  17429. .type = GGML_OPT_TYPE_ADAM,
  17430. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17431. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17432. .past = 0,
  17433. .delta = 1e-5f,
  17434. .max_no_improvement = 100,
  17435. .print_forward_graph = true,
  17436. .print_backward_graph = true,
  17437. .n_gradient_accumulation = 1,
  17438. .adam = {
  17439. .n_iter = 10000,
  17440. .sched = 1.000f,
  17441. .decay = 0.0f,
  17442. .decay_min_ndim = 2,
  17443. .alpha = 0.001f,
  17444. .beta1 = 0.9f,
  17445. .beta2 = 0.999f,
  17446. .eps = 1e-8f,
  17447. .eps_f = 1e-5f,
  17448. .eps_g = 1e-3f,
  17449. .gclip = 0.0f,
  17450. },
  17451. };
  17452. } break;
  17453. case GGML_OPT_TYPE_LBFGS:
  17454. {
  17455. result = (struct ggml_opt_params) {
  17456. .type = GGML_OPT_TYPE_LBFGS,
  17457. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17458. .n_threads = 1,
  17459. .past = 0,
  17460. .delta = 1e-5f,
  17461. .max_no_improvement = 0,
  17462. .print_forward_graph = true,
  17463. .print_backward_graph = true,
  17464. .n_gradient_accumulation = 1,
  17465. .lbfgs = {
  17466. .m = 6,
  17467. .n_iter = 100,
  17468. .max_linesearch = 20,
  17469. .eps = 1e-5f,
  17470. .ftol = 1e-4f,
  17471. .wolfe = 0.9f,
  17472. .min_step = 1e-20f,
  17473. .max_step = 1e+20f,
  17474. .linesearch = GGML_LINESEARCH_DEFAULT,
  17475. },
  17476. };
  17477. } break;
  17478. }
  17479. return result;
  17480. }
  17481. GGML_API void ggml_opt_init(
  17482. struct ggml_context * ctx,
  17483. struct ggml_opt_context * opt,
  17484. struct ggml_opt_params params,
  17485. int64_t nx) {
  17486. opt->ctx = ctx;
  17487. opt->params = params;
  17488. opt->iter = 0;
  17489. opt->nx = nx;
  17490. opt->just_initialized = true;
  17491. if (opt->ctx == NULL) {
  17492. struct ggml_init_params ctx_opt_params;
  17493. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17494. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17495. if (opt->params.past > 0) {
  17496. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17497. }
  17498. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17499. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17500. if (opt->params.past > 0) {
  17501. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17502. }
  17503. }
  17504. ctx_opt_params.mem_buffer = NULL;
  17505. ctx_opt_params.no_alloc = false;
  17506. opt->ctx = ggml_init(ctx_opt_params);
  17507. }
  17508. switch (opt->params.type) {
  17509. case GGML_OPT_TYPE_ADAM:
  17510. {
  17511. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17512. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17513. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17514. opt->adam.pf = params.past > 0
  17515. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17516. : NULL;
  17517. ggml_set_zero(opt->adam.m);
  17518. ggml_set_zero(opt->adam.v);
  17519. if (opt->adam.pf) {
  17520. ggml_set_zero(opt->adam.pf);
  17521. }
  17522. } break;
  17523. case GGML_OPT_TYPE_LBFGS:
  17524. {
  17525. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17526. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17527. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17528. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17529. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17530. opt->lbfgs.pf = params.past > 0
  17531. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17532. : NULL;
  17533. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17534. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17535. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17536. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17537. ggml_set_zero(opt->lbfgs.x);
  17538. ggml_set_zero(opt->lbfgs.xp);
  17539. ggml_set_zero(opt->lbfgs.g);
  17540. ggml_set_zero(opt->lbfgs.gp);
  17541. ggml_set_zero(opt->lbfgs.d);
  17542. if (opt->lbfgs.pf) {
  17543. ggml_set_zero(opt->lbfgs.pf);
  17544. }
  17545. ggml_set_zero(opt->lbfgs.lmal);
  17546. ggml_set_zero(opt->lbfgs.lmys);
  17547. ggml_set_zero(opt->lbfgs.lms);
  17548. ggml_set_zero(opt->lbfgs.lmy);
  17549. } break;
  17550. }
  17551. }
  17552. enum ggml_opt_result ggml_opt(
  17553. struct ggml_context * ctx,
  17554. struct ggml_opt_params params,
  17555. struct ggml_tensor * f) {
  17556. bool free_ctx = false;
  17557. if (ctx == NULL) {
  17558. struct ggml_init_params params_ctx = {
  17559. .mem_size = 16*1024*1024,
  17560. .mem_buffer = NULL,
  17561. .no_alloc = false,
  17562. };
  17563. ctx = ggml_init(params_ctx);
  17564. if (ctx == NULL) {
  17565. return GGML_OPT_RESULT_NO_CONTEXT;
  17566. }
  17567. free_ctx = true;
  17568. }
  17569. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17570. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17571. ggml_opt_init(ctx, opt, params, 0);
  17572. result = ggml_opt_resume(ctx, opt, f);
  17573. if (free_ctx) {
  17574. ggml_free(ctx);
  17575. }
  17576. return result;
  17577. }
  17578. enum ggml_opt_result ggml_opt_resume(
  17579. struct ggml_context * ctx,
  17580. struct ggml_opt_context * opt,
  17581. struct ggml_tensor * f) {
  17582. // build forward + backward compute graphs
  17583. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17584. ggml_build_forward_expand(gf, f);
  17585. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17586. ggml_build_backward_expand(ctx, gf, gb, true);
  17587. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17588. }
  17589. enum ggml_opt_result ggml_opt_resume_g(
  17590. struct ggml_context * ctx,
  17591. struct ggml_opt_context * opt,
  17592. struct ggml_tensor * f,
  17593. struct ggml_cgraph * gf,
  17594. struct ggml_cgraph * gb,
  17595. ggml_opt_callback callback,
  17596. void * callback_data) {
  17597. // build forward + backward compute graphs
  17598. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17599. switch (opt->params.type) {
  17600. case GGML_OPT_TYPE_ADAM:
  17601. {
  17602. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17603. } break;
  17604. case GGML_OPT_TYPE_LBFGS:
  17605. {
  17606. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17607. } break;
  17608. }
  17609. if (opt->params.print_forward_graph) {
  17610. ggml_graph_print (gf);
  17611. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17612. }
  17613. if (opt->params.print_backward_graph) {
  17614. ggml_graph_print (gb);
  17615. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17616. }
  17617. return result;
  17618. }
  17619. ////////////////////////////////////////////////////////////////////////////////
  17620. void ggml_set_input(struct ggml_tensor * tensor) {
  17621. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17622. }
  17623. void ggml_set_output(struct ggml_tensor * tensor) {
  17624. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17625. }
  17626. ////////////////////////////////////////////////////////////////////////////////
  17627. void ggml_quantize_init(enum ggml_type type) {
  17628. ggml_critical_section_start();
  17629. switch (type) {
  17630. case GGML_TYPE_IQ2_XXS:
  17631. case GGML_TYPE_IQ2_XS:
  17632. case GGML_TYPE_IQ2_S:
  17633. case GGML_TYPE_IQ1_S:
  17634. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17635. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17636. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17637. default: // nothing
  17638. break;
  17639. }
  17640. ggml_critical_section_end();
  17641. }
  17642. void ggml_quantize_free(void) {
  17643. ggml_critical_section_start();
  17644. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17645. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17646. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17647. iq3xs_free_impl(256);
  17648. ggml_critical_section_end();
  17649. }
  17650. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17651. return
  17652. type == GGML_TYPE_IQ2_XXS ||
  17653. type == GGML_TYPE_IQ2_XS ||
  17654. type == GGML_TYPE_IQ1_S;// ||
  17655. //type == GGML_TYPE_IQ1_M;
  17656. }
  17657. size_t ggml_quantize_chunk(
  17658. enum ggml_type type,
  17659. const float * src,
  17660. void * dst,
  17661. int64_t start,
  17662. int64_t nrows,
  17663. int64_t n_per_row,
  17664. const float * imatrix) {
  17665. const int64_t n = (int64_t) nrows * n_per_row;
  17666. if (ggml_quantize_requires_imatrix(type)) {
  17667. GGML_ASSERT(imatrix != NULL);
  17668. }
  17669. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17670. GGML_ASSERT(start % n_per_row == 0);
  17671. ggml_quantize_init(type); // this is noop if already initialized
  17672. const size_t start_row = start / n_per_row;
  17673. const size_t row_size = ggml_row_size(type, n_per_row);
  17674. size_t result = 0;
  17675. switch (type) {
  17676. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17677. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17678. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17679. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17680. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17681. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17682. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17683. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17684. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17685. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17686. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17687. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17688. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17689. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17690. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17691. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17692. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17693. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17694. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17695. case GGML_TYPE_F16:
  17696. {
  17697. size_t elemsize = sizeof(ggml_fp16_t);
  17698. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17699. result = n * elemsize;
  17700. } break;
  17701. case GGML_TYPE_BF16:
  17702. {
  17703. size_t elemsize = sizeof(ggml_bf16_t);
  17704. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17705. result = n * elemsize;
  17706. } break;
  17707. case GGML_TYPE_F32:
  17708. {
  17709. size_t elemsize = sizeof(float);
  17710. result = n * elemsize;
  17711. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17712. } break;
  17713. default:
  17714. assert(false);
  17715. }
  17716. GGML_ASSERT(result == nrows * row_size);
  17717. return result;
  17718. }
  17719. ////////////////////////////////////////////////////////////////////////////////
  17720. struct gguf_str {
  17721. uint64_t n; // GGUFv2
  17722. char * data;
  17723. };
  17724. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17725. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17726. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17727. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17728. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17729. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17730. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17731. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17732. [GGUF_TYPE_BOOL] = sizeof(bool),
  17733. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17734. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17735. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17736. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17737. [GGUF_TYPE_ARRAY] = 0, // undefined
  17738. };
  17739. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17740. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17741. [GGUF_TYPE_UINT8] = "u8",
  17742. [GGUF_TYPE_INT8] = "i8",
  17743. [GGUF_TYPE_UINT16] = "u16",
  17744. [GGUF_TYPE_INT16] = "i16",
  17745. [GGUF_TYPE_UINT32] = "u32",
  17746. [GGUF_TYPE_INT32] = "i32",
  17747. [GGUF_TYPE_FLOAT32] = "f32",
  17748. [GGUF_TYPE_BOOL] = "bool",
  17749. [GGUF_TYPE_STRING] = "str",
  17750. [GGUF_TYPE_ARRAY] = "arr",
  17751. [GGUF_TYPE_UINT64] = "u64",
  17752. [GGUF_TYPE_INT64] = "i64",
  17753. [GGUF_TYPE_FLOAT64] = "f64",
  17754. };
  17755. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17756. union gguf_value {
  17757. uint8_t uint8;
  17758. int8_t int8;
  17759. uint16_t uint16;
  17760. int16_t int16;
  17761. uint32_t uint32;
  17762. int32_t int32;
  17763. float float32;
  17764. uint64_t uint64;
  17765. int64_t int64;
  17766. double float64;
  17767. bool bool_;
  17768. struct gguf_str str;
  17769. struct {
  17770. enum gguf_type type;
  17771. uint64_t n; // GGUFv2
  17772. void * data;
  17773. } arr;
  17774. };
  17775. struct gguf_kv {
  17776. struct gguf_str key;
  17777. enum gguf_type type;
  17778. union gguf_value value;
  17779. };
  17780. struct gguf_header {
  17781. char magic[4];
  17782. uint32_t version;
  17783. uint64_t n_tensors; // GGUFv2
  17784. uint64_t n_kv; // GGUFv2
  17785. };
  17786. struct gguf_tensor_info {
  17787. struct gguf_str name;
  17788. uint32_t n_dims;
  17789. uint64_t ne[GGML_MAX_DIMS];
  17790. enum ggml_type type;
  17791. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17792. // for writing API
  17793. const void * data;
  17794. size_t size;
  17795. };
  17796. struct gguf_context {
  17797. struct gguf_header header;
  17798. struct gguf_kv * kv;
  17799. struct gguf_tensor_info * infos;
  17800. size_t alignment;
  17801. size_t offset; // offset of `data` from beginning of file
  17802. size_t size; // size of `data` in bytes
  17803. //uint8_t * padding;
  17804. void * data;
  17805. };
  17806. static size_t gguf_type_size(enum gguf_type type) {
  17807. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17808. return GGUF_TYPE_SIZE[type];
  17809. }
  17810. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17811. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17812. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17813. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17814. GGML_ASSERT(info->ne[i] > 0);
  17815. }
  17816. // prevent overflow for total number of elements
  17817. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17818. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17819. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17820. }
  17821. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17822. const size_t n = fread(dst, 1, size, file);
  17823. *offset += n;
  17824. return n == size;
  17825. }
  17826. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17827. p->n = 0;
  17828. p->data = NULL;
  17829. bool ok = true;
  17830. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17831. // early exit if string length is invalid, prevents from integer overflow
  17832. if (p->n == SIZE_MAX) {
  17833. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17834. return false;
  17835. }
  17836. p->data = GGML_CALLOC(p->n + 1, 1);
  17837. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17838. return ok;
  17839. }
  17840. static void gguf_free_kv(struct gguf_kv * kv) {
  17841. if (kv->key.data) {
  17842. GGML_FREE(kv->key.data);
  17843. }
  17844. if (kv->type == GGUF_TYPE_STRING) {
  17845. if (kv->value.str.data) {
  17846. GGML_FREE(kv->value.str.data);
  17847. }
  17848. }
  17849. if (kv->type == GGUF_TYPE_ARRAY) {
  17850. if (kv->value.arr.data) {
  17851. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17852. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17853. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17854. if (str->data) {
  17855. GGML_FREE(str->data);
  17856. }
  17857. }
  17858. }
  17859. GGML_FREE(kv->value.arr.data);
  17860. }
  17861. }
  17862. }
  17863. struct gguf_context * gguf_init_empty(void) {
  17864. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17865. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17866. ctx->header.version = GGUF_VERSION;
  17867. ctx->header.n_tensors = 0;
  17868. ctx->header.n_kv = 0;
  17869. ctx->kv = NULL;
  17870. ctx->infos = NULL;
  17871. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17872. ctx->offset = 0;
  17873. ctx->size = 0;
  17874. ctx->data = NULL;
  17875. return ctx;
  17876. }
  17877. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17878. FILE * file = ggml_fopen(fname, "rb");
  17879. if (!file) {
  17880. return NULL;
  17881. }
  17882. // offset from start of file
  17883. size_t offset = 0;
  17884. char magic[4];
  17885. // check the magic before making allocations
  17886. {
  17887. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17888. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17889. if (magic[i] != GGUF_MAGIC[i]) {
  17890. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17891. fclose(file);
  17892. return NULL;
  17893. }
  17894. }
  17895. }
  17896. bool ok = true;
  17897. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17898. // read the header
  17899. {
  17900. strncpy(ctx->header.magic, magic, 4);
  17901. ctx->kv = NULL;
  17902. ctx->infos = NULL;
  17903. ctx->data = NULL;
  17904. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17905. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17906. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17907. if (ctx->header.version == 1) {
  17908. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17909. fclose(file);
  17910. gguf_free(ctx);
  17911. return NULL;
  17912. }
  17913. // sanity-checks to prevent from integer/buffer overflows
  17914. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17915. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17916. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17917. if (!ok) {
  17918. fprintf(stderr, "%s: failed to read header\n", __func__);
  17919. fclose(file);
  17920. gguf_free(ctx);
  17921. return NULL;
  17922. }
  17923. }
  17924. // read the kv pairs
  17925. {
  17926. const uint64_t n_kv = ctx->header.n_kv;
  17927. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17928. ctx->header.n_kv = 0;
  17929. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17930. for (uint64_t i = 0; i < n_kv; ++i) {
  17931. struct gguf_kv * kv = &ctx->kv[i];
  17932. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17933. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17934. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17935. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17936. switch (kv->type) {
  17937. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17938. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17939. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17940. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17941. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17942. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17943. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17944. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17945. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17946. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17947. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17948. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17949. case GGUF_TYPE_ARRAY:
  17950. {
  17951. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17952. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17953. switch (kv->value.arr.type) {
  17954. case GGUF_TYPE_UINT8:
  17955. case GGUF_TYPE_INT8:
  17956. case GGUF_TYPE_UINT16:
  17957. case GGUF_TYPE_INT16:
  17958. case GGUF_TYPE_UINT32:
  17959. case GGUF_TYPE_INT32:
  17960. case GGUF_TYPE_FLOAT32:
  17961. case GGUF_TYPE_UINT64:
  17962. case GGUF_TYPE_INT64:
  17963. case GGUF_TYPE_FLOAT64:
  17964. case GGUF_TYPE_BOOL:
  17965. {
  17966. // prevent from integer overflow in the malloc below
  17967. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17968. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17969. fclose(file);
  17970. gguf_free(ctx);
  17971. return NULL;
  17972. }
  17973. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17974. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17975. } break;
  17976. case GGUF_TYPE_STRING:
  17977. {
  17978. // prevent from integer overflow in the malloc below
  17979. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17980. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17981. fclose(file);
  17982. gguf_free(ctx);
  17983. return NULL;
  17984. }
  17985. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17986. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17987. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17988. }
  17989. } break;
  17990. case GGUF_TYPE_ARRAY:
  17991. default: GGML_ASSERT(false && "invalid type"); break;
  17992. }
  17993. } break;
  17994. default: GGML_ASSERT(false && "invalid type");
  17995. }
  17996. if (!ok) {
  17997. break;
  17998. }
  17999. ctx->header.n_kv++;
  18000. }
  18001. if (!ok) {
  18002. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18003. fclose(file);
  18004. gguf_free(ctx);
  18005. return NULL;
  18006. }
  18007. }
  18008. // read the tensor infos
  18009. if (ctx->header.n_tensors > 0) {
  18010. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18011. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18012. struct gguf_tensor_info * info = &ctx->infos[i];
  18013. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18014. info->ne[j] = 1;
  18015. }
  18016. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18017. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18018. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18019. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18020. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18021. }
  18022. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18023. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18024. // TODO: return an error instead of crashing with GGML_ASSERT
  18025. gguf_tensor_info_sanitize(info);
  18026. // make sure there is no duplicated tensor names
  18027. for (uint64_t j = 0; j < i; ++j) {
  18028. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18029. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18030. ok = false;
  18031. }
  18032. }
  18033. if (!ok) {
  18034. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18035. fclose(file);
  18036. gguf_free(ctx);
  18037. return NULL;
  18038. }
  18039. }
  18040. }
  18041. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18042. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18043. if (alignment_idx != -1) {
  18044. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18045. }
  18046. // we require the data section to be aligned, so take into account any padding
  18047. {
  18048. const size_t offset_pad = offset % ctx->alignment;
  18049. if (offset_pad != 0) {
  18050. offset += ctx->alignment - offset_pad;
  18051. fseek(file, offset, SEEK_SET);
  18052. }
  18053. }
  18054. // store the current file offset - this is where the data section starts
  18055. ctx->offset = offset;
  18056. // compute the total size of the data section, taking into account the alignment
  18057. {
  18058. ctx->size = 0;
  18059. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18060. struct gguf_tensor_info * info = &ctx->infos[i];
  18061. const int64_t ne =
  18062. (int64_t) info->ne[0] *
  18063. (int64_t) info->ne[1] *
  18064. (int64_t) info->ne[2] *
  18065. (int64_t) info->ne[3];
  18066. if (ne % ggml_blck_size(info->type) != 0) {
  18067. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18068. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18069. fclose(file);
  18070. gguf_free(ctx);
  18071. return NULL;
  18072. }
  18073. const size_t size_cur = ggml_row_size(info->type, ne);
  18074. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18075. }
  18076. }
  18077. // load the tensor data only if requested
  18078. if (params.ctx != NULL) {
  18079. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18080. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18081. // the ggml_tensor structs to the appropriate locations in the binary blob
  18082. // compute the exact size needed for the new ggml_context
  18083. const size_t mem_size =
  18084. params.no_alloc ?
  18085. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18086. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18087. struct ggml_init_params pdata = {
  18088. .mem_size = mem_size,
  18089. .mem_buffer = NULL,
  18090. .no_alloc = params.no_alloc,
  18091. };
  18092. *params.ctx = ggml_init(pdata);
  18093. struct ggml_context * ctx_data = *params.ctx;
  18094. struct ggml_tensor * data = NULL;
  18095. if (!params.no_alloc) {
  18096. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18097. ok = ok && data != NULL;
  18098. // read the binary blob with the tensor data
  18099. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18100. if (!ok) {
  18101. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18102. fclose(file);
  18103. ggml_free(ctx_data);
  18104. gguf_free(ctx);
  18105. return NULL;
  18106. }
  18107. ctx->data = data->data;
  18108. }
  18109. ggml_set_no_alloc(ctx_data, true);
  18110. // create the tensors
  18111. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18112. const int64_t ne[GGML_MAX_DIMS] = {
  18113. ctx->infos[i].ne[0],
  18114. ctx->infos[i].ne[1],
  18115. ctx->infos[i].ne[2],
  18116. ctx->infos[i].ne[3],
  18117. };
  18118. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18119. ok = ok && cur != NULL;
  18120. if (!ok) {
  18121. break;
  18122. }
  18123. ggml_set_name(cur, ctx->infos[i].name.data);
  18124. // point the data member to the appropriate location in the binary blob using the tensor infos
  18125. if (!params.no_alloc) {
  18126. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18127. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18128. }
  18129. }
  18130. if (!ok) {
  18131. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18132. fclose(file);
  18133. ggml_free(ctx_data);
  18134. gguf_free(ctx);
  18135. return NULL;
  18136. }
  18137. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18138. }
  18139. fclose(file);
  18140. return ctx;
  18141. }
  18142. void gguf_free(struct gguf_context * ctx) {
  18143. if (ctx == NULL) {
  18144. return;
  18145. }
  18146. if (ctx->kv) {
  18147. // free string memory - not great..
  18148. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18149. gguf_free_kv(&ctx->kv[i]);
  18150. }
  18151. GGML_FREE(ctx->kv);
  18152. }
  18153. if (ctx->infos) {
  18154. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18155. struct gguf_tensor_info * info = &ctx->infos[i];
  18156. if (info->name.data) {
  18157. GGML_FREE(info->name.data);
  18158. }
  18159. }
  18160. GGML_FREE(ctx->infos);
  18161. }
  18162. GGML_FREE(ctx);
  18163. }
  18164. const char * gguf_type_name(enum gguf_type type) {
  18165. return GGUF_TYPE_NAME[type];
  18166. }
  18167. int gguf_get_version(const struct gguf_context * ctx) {
  18168. return ctx->header.version;
  18169. }
  18170. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18171. return ctx->alignment;
  18172. }
  18173. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18174. return ctx->offset;
  18175. }
  18176. void * gguf_get_data(const struct gguf_context * ctx) {
  18177. return ctx->data;
  18178. }
  18179. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18180. return ctx->header.n_kv;
  18181. }
  18182. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18183. // return -1 if key not found
  18184. int keyfound = -1;
  18185. const int n_kv = gguf_get_n_kv(ctx);
  18186. for (int i = 0; i < n_kv; ++i) {
  18187. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18188. keyfound = i;
  18189. break;
  18190. }
  18191. }
  18192. return keyfound;
  18193. }
  18194. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18195. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18196. return ctx->kv[key_id].key.data;
  18197. }
  18198. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18199. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18200. return ctx->kv[key_id].type;
  18201. }
  18202. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18203. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18204. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18205. return ctx->kv[key_id].value.arr.type;
  18206. }
  18207. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18208. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18209. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18210. return ctx->kv[key_id].value.arr.data;
  18211. }
  18212. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18213. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18214. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18215. struct gguf_kv * kv = &ctx->kv[key_id];
  18216. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18217. return str->data;
  18218. }
  18219. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18220. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18221. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18222. return ctx->kv[key_id].value.arr.n;
  18223. }
  18224. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18225. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18226. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18227. return ctx->kv[key_id].value.uint8;
  18228. }
  18229. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18230. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18231. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18232. return ctx->kv[key_id].value.int8;
  18233. }
  18234. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18235. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18236. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18237. return ctx->kv[key_id].value.uint16;
  18238. }
  18239. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18240. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18241. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18242. return ctx->kv[key_id].value.int16;
  18243. }
  18244. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18245. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18246. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18247. return ctx->kv[key_id].value.uint32;
  18248. }
  18249. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18250. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18251. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18252. return ctx->kv[key_id].value.int32;
  18253. }
  18254. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18255. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18256. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18257. return ctx->kv[key_id].value.float32;
  18258. }
  18259. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18260. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18261. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18262. return ctx->kv[key_id].value.uint64;
  18263. }
  18264. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18265. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18266. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18267. return ctx->kv[key_id].value.int64;
  18268. }
  18269. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18270. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18271. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18272. return ctx->kv[key_id].value.float64;
  18273. }
  18274. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18275. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18276. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18277. return ctx->kv[key_id].value.bool_;
  18278. }
  18279. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18280. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18281. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18282. return ctx->kv[key_id].value.str.data;
  18283. }
  18284. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18285. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18286. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18287. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18288. return &ctx->kv[key_id].value;
  18289. }
  18290. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18291. return ctx->header.n_tensors;
  18292. }
  18293. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18294. // return -1 if tensor not found
  18295. int tensorfound = -1;
  18296. const int n_tensors = gguf_get_n_tensors(ctx);
  18297. for (int i = 0; i < n_tensors; ++i) {
  18298. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18299. tensorfound = i;
  18300. break;
  18301. }
  18302. }
  18303. return tensorfound;
  18304. }
  18305. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18306. return ctx->infos[i].offset;
  18307. }
  18308. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18309. return ctx->infos[i].name.data;
  18310. }
  18311. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18312. return ctx->infos[i].type;
  18313. }
  18314. // returns the index
  18315. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18316. const int idx = gguf_find_key(ctx, key);
  18317. if (idx >= 0) {
  18318. return idx;
  18319. }
  18320. const int n_kv = gguf_get_n_kv(ctx);
  18321. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18322. ctx->kv[n_kv].key.n = strlen(key);
  18323. ctx->kv[n_kv].key.data = strdup(key);
  18324. ctx->header.n_kv++;
  18325. return n_kv;
  18326. }
  18327. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18328. const int idx = gguf_find_key(ctx, key);
  18329. if (idx >= 0) {
  18330. const int n_kv = gguf_get_n_kv(ctx);
  18331. gguf_free_kv(&ctx->kv[idx]);
  18332. for (int i = idx; i < n_kv-1; ++i) {
  18333. ctx->kv[i] = ctx->kv[i+1];
  18334. }
  18335. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18336. ctx->header.n_kv--;
  18337. }
  18338. }
  18339. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18340. const int idx = gguf_get_or_add_key(ctx, key);
  18341. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18342. ctx->kv[idx].value.uint8 = val;
  18343. }
  18344. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18345. const int idx = gguf_get_or_add_key(ctx, key);
  18346. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18347. ctx->kv[idx].value.int8 = val;
  18348. }
  18349. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18350. const int idx = gguf_get_or_add_key(ctx, key);
  18351. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18352. ctx->kv[idx].value.uint16 = val;
  18353. }
  18354. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18355. const int idx = gguf_get_or_add_key(ctx, key);
  18356. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18357. ctx->kv[idx].value.int16 = val;
  18358. }
  18359. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18360. const int idx = gguf_get_or_add_key(ctx, key);
  18361. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18362. ctx->kv[idx].value.uint32 = val;
  18363. }
  18364. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18365. const int idx = gguf_get_or_add_key(ctx, key);
  18366. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18367. ctx->kv[idx].value.int32 = val;
  18368. }
  18369. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18370. const int idx = gguf_get_or_add_key(ctx, key);
  18371. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18372. ctx->kv[idx].value.float32 = val;
  18373. }
  18374. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18375. const int idx = gguf_get_or_add_key(ctx, key);
  18376. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18377. ctx->kv[idx].value.uint64 = val;
  18378. }
  18379. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18380. const int idx = gguf_get_or_add_key(ctx, key);
  18381. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18382. ctx->kv[idx].value.int64 = val;
  18383. }
  18384. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18385. const int idx = gguf_get_or_add_key(ctx, key);
  18386. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18387. ctx->kv[idx].value.float64 = val;
  18388. }
  18389. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18390. const int idx = gguf_get_or_add_key(ctx, key);
  18391. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18392. ctx->kv[idx].value.bool_ = val;
  18393. }
  18394. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18395. const int idx = gguf_get_or_add_key(ctx, key);
  18396. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18397. ctx->kv[idx].value.str.n = strlen(val);
  18398. ctx->kv[idx].value.str.data = strdup(val);
  18399. }
  18400. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18401. const int idx = gguf_get_or_add_key(ctx, key);
  18402. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18403. ctx->kv[idx].value.arr.type = type;
  18404. ctx->kv[idx].value.arr.n = n;
  18405. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18406. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18407. }
  18408. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18409. const int idx = gguf_get_or_add_key(ctx, key);
  18410. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18411. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18412. ctx->kv[idx].value.arr.n = n;
  18413. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18414. for (int i = 0; i < n; i++) {
  18415. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18416. str->n = strlen(data[i]);
  18417. str->data = strdup(data[i]);
  18418. }
  18419. }
  18420. // set or add KV pairs from another context
  18421. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18422. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18423. switch (src->kv[i].type) {
  18424. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18425. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18426. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18427. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18428. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18429. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18430. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18431. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18432. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18433. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18434. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18435. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18436. case GGUF_TYPE_ARRAY:
  18437. {
  18438. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18439. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18440. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18441. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18442. }
  18443. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18444. GGML_FREE((void *)data);
  18445. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18446. GGML_ASSERT(false && "nested arrays not supported");
  18447. } else {
  18448. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18449. }
  18450. } break;
  18451. default: GGML_ASSERT(false && "invalid type"); break;
  18452. }
  18453. }
  18454. }
  18455. void gguf_add_tensor(
  18456. struct gguf_context * ctx,
  18457. const struct ggml_tensor * tensor) {
  18458. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18459. GGML_ASSERT(false && "duplicated tensor name");
  18460. }
  18461. const int idx = ctx->header.n_tensors;
  18462. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18463. ctx->infos[idx].name.n = strlen(tensor->name);
  18464. ctx->infos[idx].name.data = strdup(tensor->name);
  18465. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18466. ctx->infos[idx].ne[i] = 1;
  18467. }
  18468. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18469. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18470. ctx->infos[idx].ne[i] = tensor->ne[i];
  18471. }
  18472. ctx->infos[idx].type = tensor->type;
  18473. ctx->infos[idx].offset = 0;
  18474. ctx->infos[idx].data = tensor->data;
  18475. ctx->infos[idx].size = ggml_nbytes(tensor);
  18476. if (ctx->header.n_tensors > 0) {
  18477. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18478. }
  18479. ctx->header.n_tensors++;
  18480. }
  18481. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18482. const int idx = gguf_find_tensor(ctx, name);
  18483. if (idx < 0) {
  18484. GGML_ASSERT(false && "tensor not found");
  18485. }
  18486. ctx->infos[idx].type = type;
  18487. }
  18488. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18489. const int idx = gguf_find_tensor(ctx, name);
  18490. if (idx < 0) {
  18491. GGML_ASSERT(false && "tensor not found");
  18492. }
  18493. ctx->infos[idx].data = data;
  18494. ctx->infos[idx].size = size;
  18495. // update offsets
  18496. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18497. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18498. }
  18499. }
  18500. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18501. // fwrite(&val->n, sizeof(val->n), 1, file);
  18502. // fwrite(val->data, sizeof(char), val->n, file);
  18503. //}
  18504. //
  18505. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18506. // fwrite(val, sizeof(char), size, file);
  18507. //}
  18508. struct gguf_buf {
  18509. void * data;
  18510. size_t size;
  18511. size_t offset;
  18512. };
  18513. static struct gguf_buf gguf_buf_init(size_t size) {
  18514. struct gguf_buf buf = {
  18515. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18516. /*buf.size =*/ size,
  18517. /*buf.offset =*/ 0,
  18518. };
  18519. return buf;
  18520. }
  18521. static void gguf_buf_free(struct gguf_buf buf) {
  18522. if (buf.data) {
  18523. GGML_FREE(buf.data);
  18524. }
  18525. }
  18526. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18527. if (buf->offset + size > buf->size) {
  18528. buf->size = 1.5*(buf->offset + size);
  18529. if (buf->data) {
  18530. buf->data = realloc(buf->data, buf->size);
  18531. }
  18532. }
  18533. }
  18534. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18535. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18536. if (buf->data) {
  18537. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18538. }
  18539. buf->offset += sizeof(val->n);
  18540. if (buf->data) {
  18541. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18542. }
  18543. buf->offset += val->n;
  18544. }
  18545. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18546. gguf_buf_grow(buf, el_size);
  18547. if (buf->data) {
  18548. memcpy((char *) buf->data + buf->offset, val, el_size);
  18549. }
  18550. buf->offset += el_size;
  18551. }
  18552. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18553. // write header
  18554. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18555. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18556. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18557. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18558. // write key-value pairs
  18559. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18560. struct gguf_kv * kv = &ctx->kv[i];
  18561. gguf_bwrite_str(buf, &kv->key);
  18562. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18563. switch (kv->type) {
  18564. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18565. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18566. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18567. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18568. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18569. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18570. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18571. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18572. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18573. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18574. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18575. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18576. case GGUF_TYPE_ARRAY:
  18577. {
  18578. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18579. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18580. switch (kv->value.arr.type) {
  18581. case GGUF_TYPE_UINT8:
  18582. case GGUF_TYPE_INT8:
  18583. case GGUF_TYPE_UINT16:
  18584. case GGUF_TYPE_INT16:
  18585. case GGUF_TYPE_UINT32:
  18586. case GGUF_TYPE_INT32:
  18587. case GGUF_TYPE_FLOAT32:
  18588. case GGUF_TYPE_UINT64:
  18589. case GGUF_TYPE_INT64:
  18590. case GGUF_TYPE_FLOAT64:
  18591. case GGUF_TYPE_BOOL:
  18592. {
  18593. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18594. } break;
  18595. case GGUF_TYPE_STRING:
  18596. {
  18597. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18598. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18599. }
  18600. } break;
  18601. case GGUF_TYPE_ARRAY:
  18602. default: GGML_ASSERT(false && "invalid type"); break;
  18603. }
  18604. } break;
  18605. default: GGML_ASSERT(false && "invalid type");
  18606. }
  18607. }
  18608. // write tensor infos
  18609. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18610. struct gguf_tensor_info * info = &ctx->infos[i];
  18611. gguf_bwrite_str(buf, &info->name);
  18612. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18613. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18614. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18615. }
  18616. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18617. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18618. }
  18619. // we require the data section to be aligned, so take into account any padding
  18620. {
  18621. const size_t offset = buf->offset;
  18622. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18623. if (offset_pad != offset) {
  18624. uint8_t pad = 0;
  18625. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18626. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18627. }
  18628. }
  18629. }
  18630. if (only_meta) {
  18631. return;
  18632. }
  18633. size_t offset = 0;
  18634. // write tensor data
  18635. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18636. struct gguf_tensor_info * info = &ctx->infos[i];
  18637. const size_t size = info->size;
  18638. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18639. gguf_bwrite_el(buf, info->data, size);
  18640. if (size_pad != size) {
  18641. uint8_t pad = 0;
  18642. for (size_t j = 0; j < size_pad - size; ++j) {
  18643. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18644. }
  18645. }
  18646. GGML_ASSERT(offset == info->offset);
  18647. offset += size_pad;
  18648. }
  18649. }
  18650. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18651. FILE * file = ggml_fopen(fname, "wb");
  18652. if (!file) {
  18653. GGML_ASSERT(false && "failed to open file for writing");
  18654. }
  18655. struct gguf_buf buf = gguf_buf_init(16*1024);
  18656. gguf_write_to_buf(ctx, &buf, only_meta);
  18657. fwrite(buf.data, 1, buf.offset, file);
  18658. gguf_buf_free(buf);
  18659. fclose(file);
  18660. }
  18661. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18662. // no allocs - only compute size
  18663. struct gguf_buf buf = gguf_buf_init(0);
  18664. gguf_write_to_buf(ctx, &buf, true);
  18665. return buf.offset;
  18666. }
  18667. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18668. struct gguf_buf buf = gguf_buf_init(16*1024);
  18669. gguf_write_to_buf(ctx, &buf, true);
  18670. memcpy(data, buf.data, buf.offset);
  18671. gguf_buf_free(buf);
  18672. }
  18673. ////////////////////////////////////////////////////////////////////////////////
  18674. int ggml_cpu_has_avx(void) {
  18675. #if defined(__AVX__)
  18676. return 1;
  18677. #else
  18678. return 0;
  18679. #endif
  18680. }
  18681. int ggml_cpu_has_avx_vnni(void) {
  18682. #if defined(__AVXVNNI__)
  18683. return 1;
  18684. #else
  18685. return 0;
  18686. #endif
  18687. }
  18688. int ggml_cpu_has_avx2(void) {
  18689. #if defined(__AVX2__)
  18690. return 1;
  18691. #else
  18692. return 0;
  18693. #endif
  18694. }
  18695. int ggml_cpu_has_avx512(void) {
  18696. #if defined(__AVX512F__)
  18697. return 1;
  18698. #else
  18699. return 0;
  18700. #endif
  18701. }
  18702. int ggml_cpu_has_avx512_vbmi(void) {
  18703. #if defined(__AVX512VBMI__)
  18704. return 1;
  18705. #else
  18706. return 0;
  18707. #endif
  18708. }
  18709. int ggml_cpu_has_avx512_vnni(void) {
  18710. #if defined(__AVX512VNNI__)
  18711. return 1;
  18712. #else
  18713. return 0;
  18714. #endif
  18715. }
  18716. int ggml_cpu_has_avx512_bf16(void) {
  18717. #if defined(__AVX512BF16__)
  18718. return 1;
  18719. #else
  18720. return 0;
  18721. #endif
  18722. }
  18723. int ggml_cpu_has_fma(void) {
  18724. #if defined(__FMA__)
  18725. return 1;
  18726. #else
  18727. return 0;
  18728. #endif
  18729. }
  18730. int ggml_cpu_has_neon(void) {
  18731. #if defined(__ARM_NEON)
  18732. return 1;
  18733. #else
  18734. return 0;
  18735. #endif
  18736. }
  18737. int ggml_cpu_has_sve(void) {
  18738. #if defined(__ARM_FEATURE_SVE)
  18739. // TODO: Currently, SVE 256 bit is only supported.
  18740. GGML_ASSERT(svcntb() == QK8_0);
  18741. return 1;
  18742. #else
  18743. return 0;
  18744. #endif
  18745. }
  18746. int ggml_cpu_has_arm_fma(void) {
  18747. #if defined(__ARM_FEATURE_FMA)
  18748. return 1;
  18749. #else
  18750. return 0;
  18751. #endif
  18752. }
  18753. int ggml_cpu_has_metal(void) {
  18754. #if defined(GGML_USE_METAL)
  18755. return 1;
  18756. #else
  18757. return 0;
  18758. #endif
  18759. }
  18760. int ggml_cpu_has_f16c(void) {
  18761. #if defined(__F16C__)
  18762. return 1;
  18763. #else
  18764. return 0;
  18765. #endif
  18766. }
  18767. int ggml_cpu_has_fp16_va(void) {
  18768. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18769. return 1;
  18770. #else
  18771. return 0;
  18772. #endif
  18773. }
  18774. int ggml_cpu_has_wasm_simd(void) {
  18775. #if defined(__wasm_simd128__)
  18776. return 1;
  18777. #else
  18778. return 0;
  18779. #endif
  18780. }
  18781. int ggml_cpu_has_blas(void) {
  18782. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18783. return 1;
  18784. #else
  18785. return 0;
  18786. #endif
  18787. }
  18788. int ggml_cpu_has_cuda(void) {
  18789. #if defined(GGML_USE_CUDA)
  18790. return 1;
  18791. #else
  18792. return 0;
  18793. #endif
  18794. }
  18795. int ggml_cpu_has_clblast(void) {
  18796. #if defined(GGML_USE_CLBLAST)
  18797. return 1;
  18798. #else
  18799. return 0;
  18800. #endif
  18801. }
  18802. int ggml_cpu_has_vulkan(void) {
  18803. #if defined(GGML_USE_VULKAN)
  18804. return 1;
  18805. #else
  18806. return 0;
  18807. #endif
  18808. }
  18809. int ggml_cpu_has_kompute(void) {
  18810. #if defined(GGML_USE_KOMPUTE)
  18811. return 1;
  18812. #else
  18813. return 0;
  18814. #endif
  18815. }
  18816. int ggml_cpu_has_sycl(void) {
  18817. #if defined(GGML_USE_SYCL)
  18818. return 1;
  18819. #else
  18820. return 0;
  18821. #endif
  18822. }
  18823. int ggml_cpu_has_rpc(void) {
  18824. #if defined(GGML_USE_RPC)
  18825. return 1;
  18826. #else
  18827. return 0;
  18828. #endif
  18829. }
  18830. int ggml_cpu_has_gpublas(void) {
  18831. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18832. ggml_cpu_has_sycl();
  18833. }
  18834. int ggml_cpu_has_sse3(void) {
  18835. #if defined(__SSE3__)
  18836. return 1;
  18837. #else
  18838. return 0;
  18839. #endif
  18840. }
  18841. int ggml_cpu_has_ssse3(void) {
  18842. #if defined(__SSSE3__)
  18843. return 1;
  18844. #else
  18845. return 0;
  18846. #endif
  18847. }
  18848. int ggml_cpu_has_vsx(void) {
  18849. #if defined(__POWER9_VECTOR__)
  18850. return 1;
  18851. #else
  18852. return 0;
  18853. #endif
  18854. }
  18855. int ggml_cpu_has_matmul_int8(void) {
  18856. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18857. return 1;
  18858. #else
  18859. return 0;
  18860. #endif
  18861. }
  18862. ////////////////////////////////////////////////////////////////////////////////