llama-model.cpp 458 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-cparams.h"
  5. #include "llama-model-loader.h"
  6. #include "llama-kv-cache.h"
  7. #include "llama-kv-cache-iswa.h"
  8. #include "llama-memory-hybrid.h"
  9. #include "llama-memory-recurrent.h"
  10. #include "ggml-cpp.h"
  11. #include "models/models.h"
  12. #include <algorithm>
  13. #include <cassert>
  14. #include <cfloat>
  15. #include <cstring>
  16. #include <cmath>
  17. #include <functional>
  18. #include <map>
  19. #include <regex>
  20. #include <sstream>
  21. #include <stdexcept>
  22. const char * llm_type_name(llm_type type) {
  23. switch (type) {
  24. case LLM_TYPE_14M: return "14M";
  25. case LLM_TYPE_17M: return "17M";
  26. case LLM_TYPE_22M: return "22M";
  27. case LLM_TYPE_33M: return "33M";
  28. case LLM_TYPE_47M: return "47M";
  29. case LLM_TYPE_60M: return "60M";
  30. case LLM_TYPE_70M: return "70M";
  31. case LLM_TYPE_80M: return "80M";
  32. case LLM_TYPE_109M: return "109M";
  33. case LLM_TYPE_137M: return "137M";
  34. case LLM_TYPE_140M: return "140M";
  35. case LLM_TYPE_149M: return "149M";
  36. case LLM_TYPE_160M: return "160M";
  37. case LLM_TYPE_190M: return "190M";
  38. case LLM_TYPE_220M: return "220M";
  39. case LLM_TYPE_250M: return "250M";
  40. case LLM_TYPE_256M: return "256M";
  41. case LLM_TYPE_270M: return "270M";
  42. case LLM_TYPE_335M: return "335M";
  43. case LLM_TYPE_350M: return "350M";
  44. case LLM_TYPE_360M: return "360M";
  45. case LLM_TYPE_395M: return "395M";
  46. case LLM_TYPE_410M: return "410M";
  47. case LLM_TYPE_450M: return "450M";
  48. case LLM_TYPE_475M: return "475M";
  49. case LLM_TYPE_558M: return "558M";
  50. case LLM_TYPE_700M: return "700M";
  51. case LLM_TYPE_770M: return "770M";
  52. case LLM_TYPE_780M: return "780M";
  53. case LLM_TYPE_950M: return "950M";
  54. case LLM_TYPE_0_3B: return "0.3B";
  55. case LLM_TYPE_0_5B: return "0.5B";
  56. case LLM_TYPE_0_6B: return "0.6B";
  57. case LLM_TYPE_1B: return "1B";
  58. case LLM_TYPE_1_2B: return "1.2B";
  59. case LLM_TYPE_1_3B: return "1.3B";
  60. case LLM_TYPE_1_4B: return "1.4B";
  61. case LLM_TYPE_1_5B: return "1.5B";
  62. case LLM_TYPE_1_6B: return "1.6B";
  63. case LLM_TYPE_1_7B: return "1.7B";
  64. case LLM_TYPE_1_8B: return "1.8B";
  65. case LLM_TYPE_2B: return "2B";
  66. case LLM_TYPE_2_6B: return "2.6B";
  67. case LLM_TYPE_2_8B: return "2.8B";
  68. case LLM_TYPE_2_9B: return "2.9B";
  69. case LLM_TYPE_3B: return "3B";
  70. case LLM_TYPE_4B: return "4B";
  71. case LLM_TYPE_6B: return "6B";
  72. case LLM_TYPE_6_9B: return "6.9B";
  73. case LLM_TYPE_7B: return "7B";
  74. case LLM_TYPE_8B: return "8B";
  75. case LLM_TYPE_9B: return "9B";
  76. case LLM_TYPE_11B: return "11B";
  77. case LLM_TYPE_12B: return "12B";
  78. case LLM_TYPE_13B: return "13B";
  79. case LLM_TYPE_14B: return "14B";
  80. case LLM_TYPE_15B: return "15B";
  81. case LLM_TYPE_16B: return "16B";
  82. case LLM_TYPE_20B: return "20B";
  83. case LLM_TYPE_26B: return "26B";
  84. case LLM_TYPE_27B: return "27B";
  85. case LLM_TYPE_30B: return "30B";
  86. case LLM_TYPE_32B: return "32B";
  87. case LLM_TYPE_34B: return "34B";
  88. case LLM_TYPE_35B: return "35B";
  89. case LLM_TYPE_36B: return "36B";
  90. case LLM_TYPE_40B: return "40B";
  91. case LLM_TYPE_65B: return "65B";
  92. case LLM_TYPE_70B: return "70B";
  93. case LLM_TYPE_120B: return "120B";
  94. case LLM_TYPE_142B: return "142B";
  95. case LLM_TYPE_236B: return "236B";
  96. case LLM_TYPE_290B: return "290B";
  97. case LLM_TYPE_314B: return "314B";
  98. case LLM_TYPE_405B: return "405B";
  99. case LLM_TYPE_671B: return "671B";
  100. case LLM_TYPE_SMALL: return "0.1B";
  101. case LLM_TYPE_MEDIUM: return "0.4B";
  102. case LLM_TYPE_LARGE: return "0.8B";
  103. case LLM_TYPE_XL: return "1.5B";
  104. case LLM_TYPE_A1_7B: return "A1.7B";
  105. case LLM_TYPE_A2_7B: return "A2.7B";
  106. case LLM_TYPE_8x7B: return "8x7B";
  107. case LLM_TYPE_8x22B: return "8x22B";
  108. case LLM_TYPE_16x12B: return "16x12B";
  109. case LLM_TYPE_16x3_8B: return "16x3.8B";
  110. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  111. case LLM_TYPE_57B_A14B: return "57B.A14B";
  112. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  113. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  114. case LLM_TYPE_A13B: return "A13B";
  115. case LLM_TYPE_7B_A1B: return "7B.A1B";
  116. case LLM_TYPE_8B_A1B: return "8B.A1B";
  117. case LLM_TYPE_16B_A1B: return "16B.A1B";
  118. case LLM_TYPE_21B_A3B: return "21B.A3B";
  119. case LLM_TYPE_30B_A3B: return "30B.A3B";
  120. case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
  121. case LLM_TYPE_80B_A3B: return "80B.A3B";
  122. case LLM_TYPE_100B_A6B: return "100B.A6B";
  123. case LLM_TYPE_102B_A12B: return "102B.A12B";
  124. case LLM_TYPE_106B_A12B: return "106B.A12B";
  125. case LLM_TYPE_230B_A10B: return "230B.A10B";
  126. case LLM_TYPE_235B_A22B: return "235B.A22B";
  127. case LLM_TYPE_300B_A47B: return "300B.A47B";
  128. case LLM_TYPE_310B_A15B: return "310B.A15B";
  129. case LLM_TYPE_355B_A32B: return "355B.A32B";
  130. case LLM_TYPE_E2B: return "E2B";
  131. case LLM_TYPE_E4B: return "E4B";
  132. default: return "?B";
  133. }
  134. }
  135. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  136. switch (type) {
  137. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  138. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  139. default: return "unknown";
  140. }
  141. }
  142. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  143. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  144. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  145. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  146. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  147. };
  148. std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
  149. return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
  150. }
  151. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  152. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  153. if (kv.second == name) {
  154. return (llama_rope_scaling_type) kv.first;
  155. }
  156. }
  157. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  158. }
  159. // checks if the weight tensor can be used with the specified buffer type and device
  160. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  161. GGML_ASSERT(w != nullptr);
  162. if (op == GGML_OP_NONE) {
  163. return true;
  164. }
  165. ggml_init_params params = {
  166. /*.mem_size =*/ ggml_tensor_overhead()*8,
  167. /*.mem_buffer =*/ NULL,
  168. /*.no_alloc =*/ true,
  169. };
  170. ggml_context_ptr ctx_ptr { ggml_init(params) };
  171. if (!ctx_ptr) {
  172. throw std::runtime_error(format("failed to create ggml context"));
  173. }
  174. ggml_context * ctx = ctx_ptr.get();
  175. ggml_tensor * op_tensor = nullptr;
  176. switch (op) {
  177. case GGML_OP_GET_ROWS:
  178. {
  179. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  180. op_tensor = ggml_get_rows(ctx, w, b);
  181. } break;
  182. case GGML_OP_MUL_MAT:
  183. {
  184. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  185. op_tensor = ggml_mul_mat(ctx, w, b);
  186. } break;
  187. case GGML_OP_MUL_MAT_ID:
  188. {
  189. int n_expert_used = hparams.n_expert_used;
  190. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  191. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  192. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  193. } break;
  194. case GGML_OP_ADD:
  195. {
  196. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  197. op_tensor = ggml_add(ctx, a, w);
  198. } break;
  199. case GGML_OP_ADD_ID:
  200. {
  201. int n_expert_used = hparams.n_expert_used;
  202. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  203. ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  204. op_tensor = ggml_add_id(ctx, a, w, c);
  205. } break;
  206. case GGML_OP_MUL:
  207. {
  208. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  209. op_tensor = ggml_mul(ctx, a, w);
  210. } break;
  211. case GGML_OP_DIV:
  212. {
  213. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  214. op_tensor = ggml_div(ctx, a, w);
  215. } break;
  216. case GGML_OP_ROPE:
  217. {
  218. int n_embd_head = hparams.n_embd_head_v;
  219. int n_head = hparams.n_head();
  220. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  221. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  222. op_tensor = ggml_rope_ext(
  223. ctx, a, b, w,
  224. 0, 0, 0, 0, 0,
  225. 0, 0, 0, 0
  226. );
  227. } break;
  228. case GGML_OP_SSM_CONV:
  229. {
  230. const int64_t n_seq_tokens = 512;
  231. const int64_t n_seqs = 3;
  232. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
  233. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  234. } break;
  235. case GGML_OP_SSM_SCAN:
  236. {
  237. // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
  238. const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
  239. const int64_t n_head = w->ne[1];
  240. const int64_t head_dim = hparams.ssm_d_inner / n_head;
  241. const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
  242. const int64_t n_seq_tokens = 512;
  243. const int64_t n_seqs = 3;
  244. ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
  245. ggml_tensor * x = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
  246. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
  247. ggml_tensor * B = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
  248. ggml_tensor * C = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
  249. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  250. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
  251. } break;
  252. case GGML_OP_RWKV_WKV6:
  253. {
  254. // FIXME
  255. const int64_t S = 123;
  256. const int64_t H = 123;
  257. const int64_t n_tokens = 123;
  258. const int64_t n_seqs = 123;
  259. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  260. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  261. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  262. ggml_tensor * tf = w;
  263. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  264. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  265. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  266. } break;
  267. case GGML_OP_IM2COL:
  268. {
  269. const int n_embd_inp = hparams.n_embd_inp();
  270. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd_inp, w->ne[1], 1, 1);
  271. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  272. } break;
  273. case GGML_OP_SCALE:
  274. {
  275. op_tensor = ggml_scale(ctx, w, 1.0f);
  276. } break;
  277. default:
  278. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  279. }
  280. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  281. GGML_ASSERT(w->buffer == nullptr);
  282. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  283. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  284. ggml_backend_buffer_free(w->buffer);
  285. w->buffer = nullptr;
  286. return op_supported;
  287. }
  288. // lists of buffer types used for each layer
  289. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  290. // find the first buffer type in the list that can use the tensor
  291. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  292. GGML_ASSERT(!buft_list.empty());
  293. for (const auto & cur : buft_list) {
  294. ggml_backend_dev_t cur_dev = cur.first;
  295. ggml_backend_buffer_type_t cur_buft = cur.second;
  296. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  297. return cur_buft;
  298. }
  299. }
  300. return nullptr;
  301. }
  302. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  303. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts, bool no_host) {
  304. buft_list_t buft_list;
  305. // add ACCEL buffer types
  306. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  307. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  308. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  309. auto * buft = ggml_backend_dev_buffer_type(dev);
  310. // skip
  311. if (buft != ggml_backend_cpu_buffer_type()) {
  312. buft_list.emplace_back(dev, buft);
  313. }
  314. }
  315. }
  316. // add a host buffer type
  317. // storing the tensors in a host buffer is useful when the processing of large batches
  318. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  319. // generally, this will be done using the first device in the list
  320. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  321. // function of the device to determine if it would benefit from being stored in a host buffer
  322. if (!no_host) {
  323. for (auto * dev : devices) {
  324. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  325. if (buft) {
  326. buft_list.emplace_back(dev, buft);
  327. break;
  328. }
  329. }
  330. }
  331. // add extra buffer types
  332. if (use_extra_bufts) {
  333. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  334. if (cpu_dev == nullptr) {
  335. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  336. }
  337. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  338. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  339. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  340. if (ggml_backend_dev_get_extra_bufts_fn) {
  341. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  342. while (extra_bufts && *extra_bufts) {
  343. buft_list.emplace_back(cpu_dev, *extra_bufts);
  344. ++extra_bufts;
  345. }
  346. }
  347. }
  348. // add the CPU buffer type
  349. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  350. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  351. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  352. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  353. }
  354. }
  355. return buft_list;
  356. }
  357. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  358. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  359. buft_list_t buft_list;
  360. // add the device split buffer type if requested and available
  361. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  362. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  363. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  364. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  365. if (ggml_backend_split_buffer_type_fn) {
  366. size_t dev_index = [&]() {
  367. auto * reg = ggml_backend_dev_backend_reg(dev);
  368. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  369. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  370. return i;
  371. }
  372. }
  373. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  374. }();
  375. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  376. if (buft != nullptr) {
  377. buft_list.emplace_back(dev, buft);
  378. }
  379. }
  380. }
  381. // add the device default buffer type
  382. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  383. // add the device extra buffer type (if any)
  384. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  385. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  386. ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");
  387. if (ggml_backend_dev_get_extra_bufts_fn) {
  388. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
  389. while (extra_bufts && *extra_bufts) {
  390. buft_list.emplace_back(dev, *extra_bufts);
  391. ++extra_bufts;
  392. }
  393. }
  394. return buft_list;
  395. }
  396. struct llama_model::impl {
  397. impl() = default;
  398. ~impl() = default;
  399. uint64_t n_elements = 0;
  400. size_t n_bytes = 0;
  401. std::string desc_str;
  402. // model memory mapped files
  403. llama_mmaps mappings;
  404. // objects representing data potentially being locked in memory
  405. llama_mlocks mlock_bufs;
  406. llama_mlocks mlock_mmaps;
  407. // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
  408. std::vector<std::pair<ggml_context_ptr, std::vector<ggml_backend_buffer_ptr>>> ctxs_bufs;
  409. buft_list_t cpu_buft_list;
  410. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  411. struct layer_dev {
  412. ggml_backend_dev_t dev;
  413. buft_list_t * buft_list;
  414. };
  415. layer_dev dev_input = {};
  416. layer_dev dev_output = {};
  417. std::vector<layer_dev> dev_layer;
  418. bool has_tensor_overrides;
  419. };
  420. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  421. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  422. }
  423. llama_model::~llama_model() = default;
  424. void llama_model::load_stats(llama_model_loader & ml) {
  425. pimpl->n_elements = ml.n_elements;
  426. pimpl->n_bytes = ml.n_bytes;
  427. }
  428. void llama_model::load_arch(llama_model_loader & ml) {
  429. arch = ml.get_arch();
  430. if (arch == LLM_ARCH_UNKNOWN) {
  431. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  432. }
  433. }
  434. void llama_model::load_hparams(llama_model_loader & ml) {
  435. const gguf_context * ctx = ml.meta.get();
  436. // get metadata as string
  437. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  438. gguf_type type = gguf_get_kv_type(ctx, i);
  439. if (type == GGUF_TYPE_ARRAY) {
  440. continue;
  441. }
  442. const char * name = gguf_get_key(ctx, i);
  443. const std::string value = gguf_kv_to_str(ctx, i);
  444. gguf_kv.emplace(name, value);
  445. }
  446. // get general kv
  447. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  448. // everything past this point is not vocab-related
  449. // for CLIP models, we only need to load tensors, no hparams
  450. if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
  451. return;
  452. }
  453. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  454. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  455. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  456. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  457. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  458. ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
  459. ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
  460. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  461. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  462. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  463. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  464. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  465. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  466. }
  467. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  468. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  469. if (hparams.n_expert > 0) {
  470. GGML_ASSERT(hparams.n_expert_used > 0);
  471. GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
  472. if (hparams.n_expert_groups > 1) {
  473. GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
  474. GGML_ASSERT(hparams.n_group_used > 0);
  475. GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
  476. }
  477. } else {
  478. GGML_ASSERT(hparams.n_expert_used == 0);
  479. GGML_ASSERT(hparams.n_expert_groups == 0);
  480. }
  481. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  482. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  483. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  484. std::fill(
  485. hparams.recurrent_layer_arr.begin(),
  486. hparams.recurrent_layer_arr.end(),
  487. llm_arch_is_recurrent(ml.get_arch()));
  488. std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
  489. std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
  490. std::fill(hparams.xielu_alpha_n.begin(), hparams.xielu_alpha_n.end(), 0.0f);
  491. std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
  492. std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
  493. std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);
  494. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  495. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  496. // n_head_kv is optional, default to n_head
  497. hparams.n_head_kv_arr = hparams.n_head_arr;
  498. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  499. bool rope_finetuned = false;
  500. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  501. hparams.rope_finetuned = rope_finetuned;
  502. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  503. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  504. // rope_freq_base (optional)
  505. hparams.rope_freq_base_train = 10000.0f;
  506. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  507. std::string rope_scaling("linear");
  508. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  509. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  510. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  511. // rope_freq_scale (inverse of the kv) is optional
  512. float ropescale = 0.0f;
  513. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  514. // try the old key name
  515. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  516. }
  517. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  518. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  519. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  520. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  521. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  522. // non-transformer models do not have attention heads
  523. if (hparams.n_head() > 0) {
  524. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  525. // gpt-j n_rot = rotary_dim
  526. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  527. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  528. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  529. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  530. // sanity check for n_rot (optional)
  531. hparams.n_rot = hparams.n_embd_head_k;
  532. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  533. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON || arch == LLM_ARCH_LLAMA_EMBED) {
  534. if (hparams.n_rot != hparams.n_embd_head_k) {
  535. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  536. }
  537. }
  538. } else {
  539. hparams.n_rot = 0;
  540. hparams.n_embd_head_k = 0;
  541. hparams.n_embd_head_v = 0;
  542. }
  543. // for differentiating model types
  544. uint32_t n_vocab = 0;
  545. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  546. // for classifier models
  547. ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
  548. if (!classifier_labels.empty()) {
  549. hparams.n_cls_out = classifier_labels.size();
  550. }
  551. // arch-specific KVs
  552. switch (arch) {
  553. case LLM_ARCH_LLAMA:
  554. case LLM_ARCH_LLAMA_EMBED:
  555. {
  556. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  557. if (hparams.n_expert == 8) {
  558. switch (hparams.n_layer) {
  559. case 32: type = LLM_TYPE_8x7B; break;
  560. case 56: type = LLM_TYPE_8x22B; break;
  561. default: type = LLM_TYPE_UNKNOWN;
  562. }
  563. } else {
  564. switch (hparams.n_layer) {
  565. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  566. case 22: type = LLM_TYPE_1B; break;
  567. case 26: type = LLM_TYPE_3B; break;
  568. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  569. case 30: type = LLM_TYPE_256M; break; // smoldocling 256M
  570. // granite uses a vocab with len 49152
  571. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  572. case 36: type = LLM_TYPE_8B; break; // granite
  573. case 40: type = LLM_TYPE_13B; break;
  574. case 48: type = LLM_TYPE_34B; break;
  575. case 60: type = LLM_TYPE_30B; break;
  576. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  577. default: type = LLM_TYPE_UNKNOWN;
  578. }
  579. }
  580. } break;
  581. case LLM_ARCH_LLAMA4:
  582. {
  583. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  584. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  585. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  586. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  587. if (found_swa && hparams.n_swa == 0) {
  588. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  589. hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
  590. } else {
  591. hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
  592. hparams.n_swa = 8192;
  593. hparams.n_attn_temp_floor_scale = 8192;
  594. hparams.f_attn_temp_scale = 0.1f;
  595. hparams.f_attn_temp_offset = 1.0f;
  596. hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
  597. }
  598. switch (hparams.n_expert) {
  599. case 0: {
  600. // MobileLLM (no MoE)
  601. switch (hparams.n_embd) {
  602. case 2048: type = LLM_TYPE_140M; break;
  603. case 4096: type = LLM_TYPE_360M; break;
  604. case 6144: type = LLM_TYPE_950M; break;
  605. default: type = LLM_TYPE_UNKNOWN;
  606. }
  607. } break;
  608. case 16: type = LLM_TYPE_17B_16E; break;
  609. case 128: type = LLM_TYPE_17B_128E; break;
  610. default: type = LLM_TYPE_UNKNOWN;
  611. }
  612. hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
  613. } break;
  614. case LLM_ARCH_ARCEE:
  615. {
  616. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  617. // Arcee uses the same structure as Llama
  618. switch (hparams.n_layer) {
  619. case 36: type = LLM_TYPE_4B; break;
  620. default: type = LLM_TYPE_UNKNOWN;
  621. }
  622. } break;
  623. case LLM_ARCH_AFMOE:
  624. {
  625. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  626. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  627. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  628. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  629. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  630. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
  631. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  632. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  633. // Set up interleaved sliding window attention (ISWA)
  634. // Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
  635. if (hparams.n_swa > 0) {
  636. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  637. hparams.set_swa_pattern(4);
  638. } else {
  639. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  640. }
  641. // Default to sigmoid if not set
  642. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  643. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
  644. }
  645. switch (hparams.n_layer) {
  646. case 56: type = LLM_TYPE_6B; break;
  647. case 32: type = LLM_TYPE_26B; break;
  648. default: type = LLM_TYPE_UNKNOWN;
  649. }
  650. } break;
  651. case LLM_ARCH_DECI:
  652. {
  653. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  654. switch (hparams.n_layer) {
  655. case 32: type = LLM_TYPE_7B; break;
  656. case 80: type = LLM_TYPE_70B; break;
  657. case 162: type = LLM_TYPE_405B; break;
  658. default: type = LLM_TYPE_UNKNOWN;
  659. }
  660. } break;
  661. case LLM_ARCH_MINICPM:
  662. {
  663. // Backward-compatible defaults for older MiniCPM GGUFs
  664. hparams.f_embedding_scale = 12.0f;
  665. hparams.f_residual_scale = 1.4f / sqrtf(float(hparams.n_layer));
  666. hparams.f_logit_scale = hparams.n_embd ? (256.0f / float(hparams.n_embd)) : 1.0f;
  667. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  668. // Optional KV reads, override defaults if present in newer GGUF exports
  669. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /*required=*/false);
  670. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /*required=*/false);
  671. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /*required=*/false);
  672. // MiniCPM uses rope by default, unlike Granite which uses it as a switch
  673. hparams.rope_finetuned = true;
  674. switch (hparams.n_layer) {
  675. case 52: type = LLM_TYPE_1B; break;
  676. case 40: type = LLM_TYPE_2B; break;
  677. default: type = LLM_TYPE_UNKNOWN;
  678. }
  679. } break;
  680. case LLM_ARCH_MINICPM3:
  681. {
  682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  683. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  684. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  685. switch (hparams.n_layer) {
  686. case 62: type = LLM_TYPE_4B; break;
  687. default: type = LLM_TYPE_UNKNOWN;
  688. }
  689. } break;
  690. case LLM_ARCH_GROK:
  691. {
  692. // defaults for old GGUFs
  693. hparams.yarn_beta_fast = 8.0f;
  694. hparams.f_logit_scale = 0.5773502691896257f;
  695. hparams.f_embedding_scale = 78.38367176906169f;
  696. hparams.f_attn_out_scale = 0.08838834764831845f;
  697. hparams.f_attn_logit_softcapping = 30.0f;
  698. hparams.f_router_logit_softcapping = 30.0f;
  699. // no final_logit_softcapping in grok-1
  700. hparams.f_final_logit_softcapping = 0.0f;
  701. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  702. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  703. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, false);
  704. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, false);
  705. ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE, hparams.f_attn_out_scale, false);
  706. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  707. ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING, hparams.f_router_logit_softcapping, false);
  708. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  709. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.attn_temp_length, false);
  710. ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, hparams.yarn_ext_factor, false);
  711. ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
  712. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
  713. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
  714. switch (hparams.n_layer) {
  715. case 64: type = LLM_TYPE_314B; break;
  716. default: type = LLM_TYPE_UNKNOWN;
  717. }
  718. } break;
  719. case LLM_ARCH_FALCON:
  720. {
  721. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  722. switch (hparams.n_layer) {
  723. case 32: type = LLM_TYPE_7B; break;
  724. case 60: type = LLM_TYPE_40B; break;
  725. default: type = LLM_TYPE_UNKNOWN;
  726. }
  727. } break;
  728. case LLM_ARCH_BAICHUAN:
  729. {
  730. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  731. switch (hparams.n_layer) {
  732. case 32: type = LLM_TYPE_7B; break;
  733. case 40: type = LLM_TYPE_13B; break;
  734. default: type = LLM_TYPE_UNKNOWN;
  735. }
  736. if (type == LLM_TYPE_13B) {
  737. // TODO: become GGUF KV parameter
  738. hparams.f_max_alibi_bias = 8.0f;
  739. }
  740. } break;
  741. case LLM_ARCH_STARCODER:
  742. {
  743. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  744. switch (hparams.n_layer) {
  745. case 24: type = LLM_TYPE_1B; break;
  746. case 36: type = LLM_TYPE_3B; break;
  747. case 42: type = LLM_TYPE_7B; break;
  748. case 40: type = LLM_TYPE_15B; break;
  749. default: type = LLM_TYPE_UNKNOWN;
  750. }
  751. } break;
  752. case LLM_ARCH_REFACT:
  753. {
  754. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  755. switch (hparams.n_layer) {
  756. case 32: type = LLM_TYPE_1B; break;
  757. default: type = LLM_TYPE_UNKNOWN;
  758. }
  759. // TODO: become GGUF KV parameter
  760. hparams.f_max_alibi_bias = 8.0f;
  761. } break;
  762. case LLM_ARCH_BERT:
  763. {
  764. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  765. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  766. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  767. switch (hparams.n_layer) {
  768. case 3:
  769. type = LLM_TYPE_17M; break; // bge-micro
  770. case 6:
  771. type = LLM_TYPE_22M; break; // MiniLM-L6
  772. case 12:
  773. switch (hparams.n_embd) {
  774. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  775. case 768: type = LLM_TYPE_109M; break; // bge-base
  776. default: type = LLM_TYPE_UNKNOWN;
  777. } break;
  778. case 24:
  779. type = LLM_TYPE_335M; break; // bge-large
  780. default: type = LLM_TYPE_UNKNOWN;
  781. }
  782. } break;
  783. case LLM_ARCH_MODERN_BERT:
  784. {
  785. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  786. if (found_swa && hparams.n_swa > 0) {
  787. uint32_t swa_period = 3;
  788. hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
  789. ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
  790. ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, swa_period, false);
  791. hparams.set_swa_pattern(swa_period);
  792. } else {
  793. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  794. }
  795. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  796. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  797. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  798. switch (hparams.n_layer) {
  799. case 12:
  800. type = LLM_TYPE_47M; break; // granite-embedding-small
  801. case 22:
  802. type = LLM_TYPE_149M; break; // modern-bert-base
  803. case 28:
  804. type = LLM_TYPE_395M; break; // modern-bert-large
  805. default: type = LLM_TYPE_UNKNOWN;
  806. }
  807. } break;
  808. case LLM_ARCH_JINA_BERT_V2:
  809. {
  810. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  811. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  812. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  813. hparams.f_max_alibi_bias = 8.0f;
  814. switch (hparams.n_layer) {
  815. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  816. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  817. default: type = LLM_TYPE_UNKNOWN;
  818. }
  819. } break;
  820. case LLM_ARCH_JINA_BERT_V3:
  821. {
  822. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  823. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  824. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  825. switch (hparams.n_layer) {
  826. case 24:
  827. type = LLM_TYPE_558M; break;
  828. default: type = LLM_TYPE_UNKNOWN;
  829. }
  830. } break;
  831. case LLM_ARCH_NOMIC_BERT:
  832. case LLM_ARCH_NOMIC_BERT_MOE:
  833. {
  834. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  835. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  836. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  837. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  838. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  839. if (arch == LLM_ARCH_NOMIC_BERT) {
  840. type = LLM_TYPE_137M;
  841. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  842. type = LLM_TYPE_475M;
  843. }
  844. }
  845. } break;
  846. case LLM_ARCH_NEO_BERT:
  847. {
  848. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  849. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  850. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  851. if (hparams.n_layer == 28) {
  852. type = LLM_TYPE_250M;
  853. }
  854. } break;
  855. case LLM_ARCH_BLOOM:
  856. {
  857. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  858. switch (hparams.n_layer) {
  859. case 24: type = LLM_TYPE_1B; break;
  860. case 30:
  861. switch (hparams.n_embd) {
  862. case 2560: type = LLM_TYPE_3B; break;
  863. case 4096: type = LLM_TYPE_7B; break;
  864. default: type = LLM_TYPE_UNKNOWN;
  865. } break;
  866. default: type = LLM_TYPE_UNKNOWN;
  867. }
  868. // TODO: become GGUF KV parameter
  869. hparams.f_max_alibi_bias = 8.0f;
  870. } break;
  871. case LLM_ARCH_MPT:
  872. {
  873. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  874. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  875. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  876. switch (hparams.n_layer) {
  877. case 32: type = LLM_TYPE_7B; break;
  878. case 48: type = LLM_TYPE_30B; break;
  879. default: type = LLM_TYPE_UNKNOWN;
  880. }
  881. } break;
  882. case LLM_ARCH_STABLELM:
  883. {
  884. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  885. switch (hparams.n_layer) {
  886. case 24: type = LLM_TYPE_1B; break;
  887. case 32: type = LLM_TYPE_3B; break;
  888. case 40: type = LLM_TYPE_12B; break;
  889. default: type = LLM_TYPE_UNKNOWN;
  890. }
  891. } break;
  892. case LLM_ARCH_QWEN:
  893. {
  894. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  895. switch (hparams.n_layer) {
  896. case 32: type = LLM_TYPE_7B; break;
  897. case 40: type = LLM_TYPE_13B; break;
  898. default: type = LLM_TYPE_UNKNOWN;
  899. }
  900. } break;
  901. case LLM_ARCH_QWEN2VL:
  902. {
  903. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  904. }
  905. // fall through
  906. case LLM_ARCH_QWEN2:
  907. {
  908. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  909. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  910. switch (hparams.n_layer) {
  911. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  912. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  913. case 32: type = LLM_TYPE_7B; break;
  914. case 36: type = LLM_TYPE_3B; break;
  915. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  916. case 48: type = LLM_TYPE_14B; break;
  917. case 64: type = LLM_TYPE_32B; break;
  918. case 80: type = LLM_TYPE_70B; break;
  919. default: type = LLM_TYPE_UNKNOWN;
  920. }
  921. } break;
  922. case LLM_ARCH_DREAM:
  923. {
  924. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  925. // Dream models are primarily 7B with 28 layers
  926. switch (hparams.n_layer) {
  927. case 28:
  928. type = LLM_TYPE_7B;
  929. break;
  930. default:
  931. type = LLM_TYPE_UNKNOWN;
  932. }
  933. // Set non-causal attention for diffusion models
  934. hparams.causal_attn = false;
  935. }
  936. break;
  937. case LLM_ARCH_LLADA:
  938. {
  939. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  940. // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
  941. switch (hparams.n_layer) {
  942. case 32:
  943. type = LLM_TYPE_8B;
  944. break;
  945. default:
  946. type = LLM_TYPE_UNKNOWN;
  947. }
  948. // Set non-causal attention for diffusion models
  949. hparams.causal_attn = false;
  950. }
  951. break;
  952. case LLM_ARCH_LLADA_MOE:
  953. {
  954. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  955. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  956. // diffusion language model uses non-causal attention
  957. hparams.causal_attn = false;
  958. switch (hparams.n_layer) {
  959. case 16: type = LLM_TYPE_A1_7B; break;
  960. default: type = LLM_TYPE_UNKNOWN;
  961. }
  962. } break;
  963. case LLM_ARCH_RND1:
  964. {
  965. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  966. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  967. switch (hparams.n_layer) {
  968. case 48: type = LLM_TYPE_30B_A3B; break;
  969. default: type = LLM_TYPE_UNKNOWN;
  970. }
  971. // Set non-causal attention for diffusion models
  972. hparams.causal_attn = false;
  973. } break;
  974. case LLM_ARCH_QWEN2MOE:
  975. {
  976. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  977. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  978. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  979. switch (hparams.n_layer) {
  980. case 24: type = LLM_TYPE_A2_7B; break;
  981. case 28: type = LLM_TYPE_57B_A14B; break;
  982. default: type = LLM_TYPE_UNKNOWN;
  983. }
  984. } break;
  985. case LLM_ARCH_QWEN3:
  986. {
  987. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  988. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  989. switch (hparams.n_layer) {
  990. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  991. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  992. case 40: type = LLM_TYPE_14B; break;
  993. case 64: type = LLM_TYPE_32B; break;
  994. default: type = LLM_TYPE_UNKNOWN;
  995. }
  996. } break;
  997. case LLM_ARCH_QWEN3VL:
  998. {
  999. ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
  1000. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  1001. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1002. switch (hparams.n_layer) {
  1003. case 28: type = LLM_TYPE_1_7B; break;
  1004. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  1005. case 64: type = LLM_TYPE_32B; break;
  1006. default: type = LLM_TYPE_UNKNOWN;
  1007. }
  1008. } break;
  1009. case LLM_ARCH_QWEN3MOE:
  1010. {
  1011. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  1012. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1013. switch (hparams.n_layer) {
  1014. case 48: type = LLM_TYPE_30B_A3B; break;
  1015. case 94: type = LLM_TYPE_235B_A22B; break;
  1016. default: type = LLM_TYPE_UNKNOWN;
  1017. }
  1018. } break;
  1019. case LLM_ARCH_QWEN3VLMOE:
  1020. {
  1021. ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
  1022. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  1023. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  1024. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1025. switch (hparams.n_layer) {
  1026. case 48: type = LLM_TYPE_30B_A3B; break;
  1027. case 94: type = LLM_TYPE_235B_A22B; break;
  1028. default: type = LLM_TYPE_UNKNOWN;
  1029. }
  1030. } break;
  1031. case LLM_ARCH_PHI2:
  1032. {
  1033. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1034. switch (hparams.n_layer) {
  1035. case 24: type = LLM_TYPE_1B; break;
  1036. case 32: type = LLM_TYPE_3B; break;
  1037. default: type = LLM_TYPE_UNKNOWN;
  1038. }
  1039. } break;
  1040. case LLM_ARCH_PHI3:
  1041. {
  1042. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1043. switch (hparams.n_layer) {
  1044. case 24: type = LLM_TYPE_1B; break;
  1045. case 32: type = LLM_TYPE_3B; break;
  1046. case 40: type = LLM_TYPE_14B; break;
  1047. default: type = LLM_TYPE_UNKNOWN;
  1048. }
  1049. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1050. if (found_swa && hparams.n_swa > 0) {
  1051. LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
  1052. __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
  1053. // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
  1054. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1055. hparams.n_swa = 0;
  1056. hparams.set_swa_pattern(1);
  1057. }
  1058. } break;
  1059. case LLM_ARCH_PHIMOE:
  1060. {
  1061. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1062. switch (hparams.n_layer) {
  1063. case 32: type = LLM_TYPE_16x3_8B; break;
  1064. default: type = LLM_TYPE_UNKNOWN;
  1065. }
  1066. } break;
  1067. case LLM_ARCH_PLAMO:
  1068. {
  1069. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1070. switch (hparams.n_layer) {
  1071. case 40: type = LLM_TYPE_13B; break;
  1072. default: type = LLM_TYPE_UNKNOWN;
  1073. }
  1074. } break;
  1075. case LLM_ARCH_PLAMO2:
  1076. {
  1077. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1078. // Load Mamba SSM parameters
  1079. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1080. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1081. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1082. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1083. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1084. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1085. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1086. }
  1087. switch (hparams.n_layer) {
  1088. case 16: type = LLM_TYPE_1B; break;
  1089. case 32:
  1090. if (hparams.n_embd == 2048) {
  1091. type = LLM_TYPE_2B;
  1092. } else if (hparams.n_embd == 4096) {
  1093. type = LLM_TYPE_8B;
  1094. }
  1095. break;
  1096. default: type = LLM_TYPE_UNKNOWN;
  1097. }
  1098. // Load attention parameters
  1099. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  1100. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  1101. } break;
  1102. case LLM_ARCH_PLAMO3:
  1103. {
  1104. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1105. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1106. if (found_swa && hparams.n_swa > 0) {
  1107. uint32_t swa_period = 8;
  1108. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1109. hparams.rope_freq_scale_train_swa = 1.0f;
  1110. ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
  1111. ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, swa_period, false);
  1112. hparams.set_swa_pattern(swa_period);
  1113. } else {
  1114. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1115. }
  1116. switch (hparams.n_layer) {
  1117. case 24: type = LLM_TYPE_2B; break;
  1118. default: type = LLM_TYPE_UNKNOWN;
  1119. }
  1120. } break;
  1121. case LLM_ARCH_GPT2:
  1122. {
  1123. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1124. switch (hparams.n_layer) {
  1125. case 12: type = LLM_TYPE_SMALL; break;
  1126. case 24: type = LLM_TYPE_MEDIUM; break;
  1127. case 36: type = LLM_TYPE_LARGE; break;
  1128. case 48: type = LLM_TYPE_XL; break;
  1129. default: type = LLM_TYPE_UNKNOWN;
  1130. }
  1131. } break;
  1132. case LLM_ARCH_CODESHELL:
  1133. {
  1134. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1135. switch (hparams.n_layer) {
  1136. case 42: type = LLM_TYPE_7B; break;
  1137. default: type = LLM_TYPE_UNKNOWN;
  1138. }
  1139. } break;
  1140. case LLM_ARCH_ORION:
  1141. {
  1142. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1143. switch (hparams.n_layer) {
  1144. case 40: type = LLM_TYPE_14B; break;
  1145. default: type = LLM_TYPE_UNKNOWN;
  1146. }
  1147. } break;
  1148. case LLM_ARCH_INTERNLM2:
  1149. {
  1150. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1151. switch (hparams.n_layer) {
  1152. case 32: type = LLM_TYPE_7B; break;
  1153. case 48: type = LLM_TYPE_20B; break;
  1154. default: type = LLM_TYPE_UNKNOWN;
  1155. }
  1156. } break;
  1157. case LLM_ARCH_GEMMA:
  1158. {
  1159. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1160. switch (hparams.n_layer) {
  1161. case 18: type = LLM_TYPE_2B; break;
  1162. case 28: type = LLM_TYPE_7B; break;
  1163. default: type = LLM_TYPE_UNKNOWN;
  1164. }
  1165. } break;
  1166. case LLM_ARCH_GEMMA2:
  1167. {
  1168. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1169. hparams.n_swa = 4096; // default value of gemma 2
  1170. hparams.set_swa_pattern(2);
  1171. hparams.attn_soft_cap = true;
  1172. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1173. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1174. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  1175. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  1176. switch (hparams.n_layer) {
  1177. case 26: type = LLM_TYPE_2B; break;
  1178. case 42: type = LLM_TYPE_9B; break;
  1179. case 46: type = LLM_TYPE_27B; break;
  1180. default: type = LLM_TYPE_UNKNOWN;
  1181. }
  1182. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
  1183. hparams.f_attention_scale = type == LLM_TYPE_27B
  1184. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  1185. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1186. } break;
  1187. case LLM_ARCH_GEMMA3:
  1188. {
  1189. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1190. if (found_swa && hparams.n_swa > 0) {
  1191. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1192. hparams.set_swa_pattern(6);
  1193. hparams.rope_freq_base_train_swa = 10000.0f;
  1194. hparams.rope_freq_scale_train_swa = 1.0f;
  1195. } else {
  1196. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1197. }
  1198. hparams.f_final_logit_softcapping = 0.0f;
  1199. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  1200. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1201. switch (hparams.n_layer) {
  1202. case 18: type = LLM_TYPE_270M; break;
  1203. case 26: type = LLM_TYPE_1B; break;
  1204. case 32: type = LLM_TYPE_8B; break; // Rnj-1
  1205. case 34: type = LLM_TYPE_4B; break;
  1206. case 48: type = LLM_TYPE_12B; break;
  1207. case 62: type = LLM_TYPE_27B; break;
  1208. default: type = LLM_TYPE_UNKNOWN;
  1209. }
  1210. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
  1211. hparams.f_attention_scale = type == LLM_TYPE_27B
  1212. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  1213. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1214. } break;
  1215. case LLM_ARCH_GEMMA3N:
  1216. {
  1217. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1218. hparams.set_swa_pattern(5);
  1219. hparams.n_layer_kv_from_start = 20;
  1220. hparams.rope_freq_base_train_swa = 10000.0f;
  1221. hparams.rope_freq_scale_train_swa = 1.0f;
  1222. hparams.f_attention_scale = 1.0f;
  1223. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1224. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1225. switch (hparams.n_layer) {
  1226. case 30: type = LLM_TYPE_E2B; break;
  1227. case 35: type = LLM_TYPE_E4B; break;
  1228. default: type = LLM_TYPE_UNKNOWN;
  1229. }
  1230. } break;
  1231. case LLM_ARCH_GEMMA_EMBEDDING:
  1232. {
  1233. hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
  1234. hparams.set_swa_pattern(6);
  1235. hparams.causal_attn = false; // embeddings do not use causal attention
  1236. hparams.rope_freq_base_train_swa = 10000.0f;
  1237. hparams.rope_freq_scale_train_swa = 1.0f;
  1238. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1239. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1240. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  1241. //applied only if model converted with --sentence-transformers-dense-modules
  1242. ml.get_key(LLM_KV_DENSE_2_FEAT_IN, hparams.dense_2_feat_in, false);
  1243. ml.get_key(LLM_KV_DENSE_2_FEAT_OUT, hparams.dense_2_feat_out, false);
  1244. ml.get_key(LLM_KV_DENSE_3_FEAT_IN, hparams.dense_3_feat_in, false);
  1245. ml.get_key(LLM_KV_DENSE_3_FEAT_OUT, hparams.dense_3_feat_out, false);
  1246. GGML_ASSERT((hparams.dense_2_feat_in == 0 || hparams.dense_2_feat_in == hparams.n_embd) && "dense_2_feat_in must be equal to n_embd");
  1247. GGML_ASSERT((hparams.dense_3_feat_out == 0 || hparams.dense_3_feat_out == hparams.n_embd) && "dense_3_feat_out must be equal to n_embd");
  1248. switch (hparams.n_layer) {
  1249. case 24: type = LLM_TYPE_0_3B; break;
  1250. default: type = LLM_TYPE_UNKNOWN;
  1251. }
  1252. hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1253. } break;
  1254. case LLM_ARCH_STARCODER2:
  1255. {
  1256. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1257. switch (hparams.n_layer) {
  1258. case 30: type = LLM_TYPE_3B; break;
  1259. case 32: type = LLM_TYPE_7B; break;
  1260. case 40: type = LLM_TYPE_15B; break;
  1261. case 52: type = LLM_TYPE_20B; break; // granite
  1262. case 88: type = LLM_TYPE_34B; break; // granite
  1263. default: type = LLM_TYPE_UNKNOWN;
  1264. }
  1265. } break;
  1266. case LLM_ARCH_MAMBA:
  1267. {
  1268. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1269. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1270. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1271. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1272. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  1273. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1274. switch (hparams.n_layer) {
  1275. case 24:
  1276. switch (hparams.n_embd) {
  1277. case 768: type = LLM_TYPE_SMALL; break;
  1278. default: type = LLM_TYPE_UNKNOWN;
  1279. } break;
  1280. case 48:
  1281. switch (hparams.n_embd) {
  1282. case 1024: type = LLM_TYPE_MEDIUM; break;
  1283. case 1536: type = LLM_TYPE_LARGE; break;
  1284. case 2048: type = LLM_TYPE_XL; break;
  1285. default: type = LLM_TYPE_UNKNOWN;
  1286. } break;
  1287. case 64:
  1288. switch (hparams.n_embd) {
  1289. case 2560: type = LLM_TYPE_3B; break;
  1290. default: type = LLM_TYPE_UNKNOWN;
  1291. } break;
  1292. default: type = LLM_TYPE_UNKNOWN;
  1293. }
  1294. } break;
  1295. case LLM_ARCH_MAMBA2:
  1296. {
  1297. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1298. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1299. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1300. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1301. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1302. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1303. switch (hparams.n_layer) {
  1304. case 24:
  1305. switch (hparams.n_embd) {
  1306. case 768: type = LLM_TYPE_SMALL; break;
  1307. default: type = LLM_TYPE_UNKNOWN;
  1308. } break;
  1309. case 48:
  1310. switch (hparams.n_embd) {
  1311. case 1024: type = LLM_TYPE_MEDIUM; break;
  1312. case 1536: type = LLM_TYPE_LARGE; break;
  1313. case 2048: type = LLM_TYPE_XL; break;
  1314. default: type = LLM_TYPE_UNKNOWN;
  1315. } break;
  1316. case 64:
  1317. switch (hparams.n_embd) {
  1318. case 2560: type = LLM_TYPE_3B; break;
  1319. case 4096: type = LLM_TYPE_7B; break;
  1320. default: type = LLM_TYPE_UNKNOWN;
  1321. } break;
  1322. default: type = LLM_TYPE_UNKNOWN;
  1323. }
  1324. } break;
  1325. case LLM_ARCH_JAMBA:
  1326. {
  1327. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1328. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1329. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1330. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1331. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1332. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1333. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1334. }
  1335. switch (hparams.n_layer) {
  1336. // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
  1337. case 12: // 900M 8x???M
  1338. case 32: // 51B 16x?B
  1339. default: type = LLM_TYPE_UNKNOWN;
  1340. }
  1341. } break;
  1342. case LLM_ARCH_XVERSE:
  1343. {
  1344. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1345. switch (hparams.n_layer) {
  1346. case 32: type = LLM_TYPE_7B; break;
  1347. case 40: type = LLM_TYPE_13B; break;
  1348. case 80: type = LLM_TYPE_65B; break;
  1349. default: type = LLM_TYPE_UNKNOWN;
  1350. }
  1351. } break;
  1352. case LLM_ARCH_COMMAND_R:
  1353. {
  1354. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1355. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1356. switch (hparams.n_layer) {
  1357. case 40: type = LLM_TYPE_35B; break;
  1358. default: type = LLM_TYPE_UNKNOWN;
  1359. }
  1360. } break;
  1361. case LLM_ARCH_COHERE2:
  1362. {
  1363. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1364. hparams.set_swa_pattern(4);
  1365. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1366. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1367. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1368. switch (hparams.n_layer) {
  1369. case 32: type = LLM_TYPE_8B; break;
  1370. default: type = LLM_TYPE_UNKNOWN;
  1371. }
  1372. } break;
  1373. case LLM_ARCH_DBRX:
  1374. {
  1375. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1376. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  1377. switch (hparams.n_layer) {
  1378. case 40: type = LLM_TYPE_16x12B; break;
  1379. default: type = LLM_TYPE_UNKNOWN;
  1380. }
  1381. } break;
  1382. case LLM_ARCH_OLMO:
  1383. {
  1384. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1385. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  1386. switch (hparams.n_layer) {
  1387. case 22: type = LLM_TYPE_1B; break;
  1388. case 32: type = LLM_TYPE_7B; break;
  1389. case 80: type = LLM_TYPE_70B; break;
  1390. default: type = LLM_TYPE_UNKNOWN;
  1391. }
  1392. } break;
  1393. case LLM_ARCH_OLMO2:
  1394. {
  1395. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1396. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1397. if (found_swa && hparams.n_swa > 0) {
  1398. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1399. hparams.set_swa_pattern(4);
  1400. } else {
  1401. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1402. }
  1403. switch (hparams.n_layer) {
  1404. case 16: type = LLM_TYPE_1B; break;
  1405. case 32: type = LLM_TYPE_7B; break;
  1406. case 40: type = LLM_TYPE_13B; break;
  1407. case 64: type = LLM_TYPE_32B; break;
  1408. default: type = LLM_TYPE_UNKNOWN;
  1409. }
  1410. } break;
  1411. case LLM_ARCH_SEED_OSS:
  1412. {
  1413. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1414. switch (hparams.n_layer) {
  1415. case 64: type = LLM_TYPE_36B; break;
  1416. default: type = LLM_TYPE_UNKNOWN;
  1417. }
  1418. } break;
  1419. case LLM_ARCH_OLMOE:
  1420. {
  1421. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1422. switch (hparams.n_layer) {
  1423. case 16: type = LLM_TYPE_A1_7B; break;
  1424. default: type = LLM_TYPE_UNKNOWN;
  1425. }
  1426. } break;
  1427. case LLM_ARCH_OPENELM:
  1428. {
  1429. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1430. switch (hparams.n_layer) {
  1431. case 16: type = LLM_TYPE_270M; break;
  1432. case 20: type = LLM_TYPE_450M; break;
  1433. case 28: type = LLM_TYPE_1B; break;
  1434. case 36: type = LLM_TYPE_3B; break;
  1435. default: type = LLM_TYPE_UNKNOWN;
  1436. }
  1437. } break;
  1438. case LLM_ARCH_GPTNEOX:
  1439. {
  1440. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1441. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  1442. switch (hparams.n_layer) {
  1443. case 6:
  1444. switch (hparams.n_ff()) {
  1445. case 512: type = LLM_TYPE_14M; break;
  1446. case 2048: type = LLM_TYPE_70M; break;
  1447. default: type = LLM_TYPE_UNKNOWN;
  1448. } break;
  1449. case 12:
  1450. switch (hparams.n_ff()) {
  1451. case 3072: type = LLM_TYPE_160M; break;
  1452. default: type = LLM_TYPE_UNKNOWN;
  1453. } break;
  1454. case 16:
  1455. switch (hparams.n_ff()) {
  1456. case 8192: type = LLM_TYPE_1B; break;
  1457. default: type = LLM_TYPE_UNKNOWN;
  1458. } break;
  1459. case 24:
  1460. switch (hparams.n_ff()) {
  1461. case 4096: type = LLM_TYPE_410M; break;
  1462. case 8192: type = LLM_TYPE_1_4B; break;
  1463. default: type = LLM_TYPE_UNKNOWN;
  1464. } break;
  1465. case 32:
  1466. switch (hparams.n_ff()) {
  1467. case 10240: type = LLM_TYPE_2_8B; break;
  1468. case 16384: type = LLM_TYPE_6_9B; break;
  1469. default: type = LLM_TYPE_UNKNOWN;
  1470. } break;
  1471. case 36:
  1472. switch (hparams.n_ff()) {
  1473. case 20480: type = LLM_TYPE_12B; break;
  1474. default: type = LLM_TYPE_UNKNOWN;
  1475. } break;
  1476. case 44:
  1477. switch (hparams.n_ff()) {
  1478. case 24576: type = LLM_TYPE_20B; break;
  1479. default: type = LLM_TYPE_UNKNOWN;
  1480. } break;
  1481. default: type = LLM_TYPE_UNKNOWN;
  1482. }
  1483. } break;
  1484. case LLM_ARCH_ARCTIC:
  1485. {
  1486. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1487. if (hparams.n_expert == 128) {
  1488. switch (hparams.n_layer) {
  1489. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1490. default: type = LLM_TYPE_UNKNOWN;
  1491. }
  1492. } else {
  1493. type = LLM_TYPE_UNKNOWN;
  1494. }
  1495. } break;
  1496. case LLM_ARCH_DEEPSEEK:
  1497. {
  1498. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1499. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1500. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1501. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1502. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1503. switch (hparams.n_ff_exp) {
  1504. case 1408: type = LLM_TYPE_16B; break;
  1505. case 1792: type = LLM_TYPE_20B; break;
  1506. default: type = LLM_TYPE_UNKNOWN;
  1507. }
  1508. } break;
  1509. case LLM_ARCH_DEEPSEEK2:
  1510. {
  1511. // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
  1512. bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
  1513. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1514. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1515. if (!is_lite) {
  1516. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1517. }
  1518. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1519. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1520. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1521. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1522. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1523. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
  1524. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1525. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1526. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1527. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1528. // that have no expert_gating_func model parameter set
  1529. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1530. }
  1531. if (ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, 0.0f)) {
  1532. // [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  1533. // cancel the factor from the convert script
  1534. hparams.rope_yarn_log_mul /= 0.1f;
  1535. }
  1536. // (optional) temperature tuning - used by mistral-large
  1537. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
  1538. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.n_attn_temp_floor_scale, false);
  1539. hparams.f_attn_temp_offset = 0.0f;
  1540. switch (hparams.n_layer) {
  1541. case 27: type = LLM_TYPE_16B; break;
  1542. case 60: type = LLM_TYPE_236B; break;
  1543. case 61: type = LLM_TYPE_671B; break;
  1544. default: type = LLM_TYPE_UNKNOWN;
  1545. }
  1546. } break;
  1547. case LLM_ARCH_PLM:
  1548. {
  1549. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1550. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1551. switch (hparams.n_layer) {
  1552. case 32: type = LLM_TYPE_1_8B; break;
  1553. default: type = LLM_TYPE_UNKNOWN;
  1554. }
  1555. } break;
  1556. case LLM_ARCH_CHATGLM:
  1557. {
  1558. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1559. switch (hparams.n_layer) {
  1560. case 28: {
  1561. if (hparams.n_head(0) == 16) {
  1562. type = LLM_TYPE_1_5B;
  1563. } else {
  1564. type = LLM_TYPE_6B;
  1565. }
  1566. } break;
  1567. case 40: {
  1568. if (hparams.n_head(0) == 24) {
  1569. type = LLM_TYPE_4B;
  1570. } else {
  1571. type = LLM_TYPE_9B;
  1572. }
  1573. } break;
  1574. default: type = LLM_TYPE_UNKNOWN;
  1575. }
  1576. } break;
  1577. case LLM_ARCH_GLM4:
  1578. {
  1579. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1580. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
  1581. switch (hparams.n_layer) {
  1582. case 40: type = LLM_TYPE_9B; break;
  1583. case 61: type = LLM_TYPE_32B; break;
  1584. default: type = LLM_TYPE_UNKNOWN;
  1585. }
  1586. } break;
  1587. case LLM_ARCH_GLM4_MOE:
  1588. {
  1589. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1590. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1591. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
  1592. // MoE parameters
  1593. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
  1594. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
  1595. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1596. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
  1597. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1598. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1599. // Expert gating function (GLM-4.5 uses sigmoid)
  1600. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1601. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1602. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
  1603. }
  1604. // NextN/MTP parameters
  1605. ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
  1606. // TODO: when MTP is implemented, this should probably be updated if needed
  1607. hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
  1608. switch (hparams.n_layer) {
  1609. case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
  1610. case 48: type = LLM_TYPE_102B_A12B; break; // Solar Open
  1611. case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
  1612. default: type = LLM_TYPE_UNKNOWN;
  1613. }
  1614. } break;
  1615. case LLM_ARCH_BITNET:
  1616. {
  1617. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1618. switch (hparams.n_layer) {
  1619. case 26: type = LLM_TYPE_3B; break;
  1620. default: type = LLM_TYPE_UNKNOWN;
  1621. }
  1622. } break;
  1623. case LLM_ARCH_T5:
  1624. {
  1625. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1626. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1627. uint32_t dec_start_token_id;
  1628. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1629. hparams.dec_start_token_id = dec_start_token_id;
  1630. }
  1631. hparams.dec_n_layer = hparams.n_layer;
  1632. ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false);
  1633. switch (hparams.n_layer) {
  1634. case 6: type = LLM_TYPE_60M; break; // t5-small
  1635. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1636. case 12:
  1637. switch (hparams.n_ff()) {
  1638. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1639. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1640. default: type = LLM_TYPE_UNKNOWN;
  1641. } break;
  1642. case 24:
  1643. switch (hparams.n_ff()) {
  1644. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1645. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1646. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1647. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1648. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1649. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1650. default: type = LLM_TYPE_UNKNOWN;
  1651. } break;
  1652. default: type = LLM_TYPE_UNKNOWN;
  1653. }
  1654. } break;
  1655. case LLM_ARCH_T5ENCODER:
  1656. {
  1657. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1658. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1659. type = LLM_TYPE_UNKNOWN;
  1660. } break;
  1661. case LLM_ARCH_JAIS:
  1662. {
  1663. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1664. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1665. switch (hparams.n_layer) {
  1666. case 24: type = LLM_TYPE_1_3B; break;
  1667. case 40: type = LLM_TYPE_13B; break;
  1668. /* TODO: add variants */
  1669. default: type = LLM_TYPE_UNKNOWN;
  1670. }
  1671. } break;
  1672. case LLM_ARCH_NEMOTRON:
  1673. {
  1674. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1675. switch (hparams.n_layer) {
  1676. case 32: type = LLM_TYPE_4B; break;
  1677. default: type = LLM_TYPE_UNKNOWN;
  1678. }
  1679. } break;
  1680. case LLM_ARCH_NEMOTRON_H:
  1681. case LLM_ARCH_NEMOTRON_H_MOE:
  1682. {
  1683. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1684. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1685. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1686. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1687. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1688. // A layer is recurrent IFF the n_head_kv value is set to 0 and
  1689. // the n_ff value is set to 0
  1690. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1691. hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
  1692. }
  1693. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1694. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  1695. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  1696. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
  1697. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1698. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
  1699. switch (hparams.n_layer) {
  1700. case 52: type = LLM_TYPE_31B_A3_5B; break; // Nemotron-H_MOE 31B
  1701. case 56: type = LLM_TYPE_9B; break;
  1702. default: type = LLM_TYPE_UNKNOWN;
  1703. }
  1704. } break;
  1705. case LLM_ARCH_EXAONE:
  1706. {
  1707. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1708. switch (hparams.n_layer) {
  1709. case 32: type = LLM_TYPE_8B; break;
  1710. default: type = LLM_TYPE_UNKNOWN;
  1711. }
  1712. } break;
  1713. case LLM_ARCH_EXAONE4:
  1714. {
  1715. if (hparams.n_layer == 64) { // 32B
  1716. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1717. hparams.n_swa = 4096;
  1718. hparams.set_swa_pattern(4);
  1719. }
  1720. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1721. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1722. switch (hparams.n_layer) {
  1723. case 30: type = LLM_TYPE_1_2B; break;
  1724. case 64: type = LLM_TYPE_32B; break;
  1725. default: type = LLM_TYPE_UNKNOWN;
  1726. }
  1727. } break;
  1728. case LLM_ARCH_RWKV6:
  1729. case LLM_ARCH_RWKV6QWEN2:
  1730. {
  1731. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1732. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1733. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1734. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1735. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1736. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1737. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1738. switch (hparams.n_layer) {
  1739. case 24: type = LLM_TYPE_1_6B; break;
  1740. case 32:
  1741. switch (hparams.n_embd) {
  1742. case 2560: type = LLM_TYPE_3B; break;
  1743. case 4096: type = LLM_TYPE_7B; break;
  1744. default: type = LLM_TYPE_UNKNOWN;
  1745. } break;
  1746. case 61: type = LLM_TYPE_14B; break;
  1747. case 64: type = LLM_TYPE_32B; break;
  1748. default: type = LLM_TYPE_UNKNOWN;
  1749. }
  1750. } break;
  1751. case LLM_ARCH_RWKV7:
  1752. case LLM_ARCH_ARWKV7:
  1753. {
  1754. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1755. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1756. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1757. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1758. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1759. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1760. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1761. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1762. switch (hparams.n_layer) {
  1763. case 12:
  1764. switch (hparams.n_embd) {
  1765. case 768: type = LLM_TYPE_190M; break;
  1766. default: type = LLM_TYPE_UNKNOWN;
  1767. } break;
  1768. case 24:
  1769. switch (hparams.n_embd) {
  1770. case 1024: type = LLM_TYPE_450M; break;
  1771. case 2048: type = LLM_TYPE_1_5B; break;
  1772. default: type = LLM_TYPE_UNKNOWN;
  1773. } break;
  1774. case 28:
  1775. switch (hparams.n_embd) {
  1776. case 1536: type = LLM_TYPE_1_5B; break;
  1777. case 3584: type = LLM_TYPE_7B; break;
  1778. default: type = LLM_TYPE_UNKNOWN;
  1779. } break;
  1780. case 32:
  1781. switch (hparams.n_embd) {
  1782. case 2560: type = LLM_TYPE_2_9B; break;
  1783. case 4096: type = LLM_TYPE_7B; break;
  1784. default: type = LLM_TYPE_UNKNOWN;
  1785. } break;
  1786. case 61:
  1787. switch (hparams.n_embd) {
  1788. case 4096: type = LLM_TYPE_14B; break;
  1789. default: type = LLM_TYPE_UNKNOWN;
  1790. } break;
  1791. default: type = LLM_TYPE_UNKNOWN;
  1792. }
  1793. } break;
  1794. case LLM_ARCH_GRANITE:
  1795. case LLM_ARCH_GRANITE_MOE:
  1796. {
  1797. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1798. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1799. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1800. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1801. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1802. // Granite uses rope_finetuned as a switch for rope, so default to true
  1803. bool rope_finetuned = true;
  1804. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  1805. hparams.rope_finetuned = rope_finetuned;
  1806. switch (hparams.n_layer) {
  1807. case 32: type = LLM_TYPE_3B; break;
  1808. case 40: type = LLM_TYPE_3B; break;
  1809. // Add additional layer/vocab/etc checks here for other model sizes
  1810. default: type = LLM_TYPE_UNKNOWN;
  1811. }
  1812. // For Granite MoE Shared
  1813. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1814. } break;
  1815. case LLM_ARCH_GRANITE_HYBRID:
  1816. {
  1817. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1818. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /* required */ false);
  1819. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /* required */ false);
  1820. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /* required */ false);
  1821. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale, /* required */ false);
  1822. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1823. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1824. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1825. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1826. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1827. // Granite uses rope_finetuned as a switch for rope, so default to true
  1828. bool rope_finetuned = true;
  1829. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  1830. hparams.rope_finetuned = rope_finetuned;
  1831. // A layer is recurrent IFF the n_head_kv value is set to 0
  1832. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1833. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1834. }
  1835. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1836. switch (hparams.n_embd) {
  1837. case 768: type = LLM_TYPE_350M; break;
  1838. case 1536: type = (hparams.n_embd == 2048 ? LLM_TYPE_7B_A1B : LLM_TYPE_1B); break;
  1839. case 2048: case 2560: type = LLM_TYPE_3B; break;
  1840. case 4096: type = LLM_TYPE_32B; break;
  1841. default: type = LLM_TYPE_UNKNOWN;
  1842. }
  1843. // For Granite MoE Shared
  1844. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1845. } break;
  1846. case LLM_ARCH_CHAMELEON:
  1847. {
  1848. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1849. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1850. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1851. switch (hparams.n_layer) {
  1852. case 32: type = LLM_TYPE_7B; break;
  1853. case 48: type = LLM_TYPE_34B; break;
  1854. default: type = LLM_TYPE_UNKNOWN;
  1855. }
  1856. } break;
  1857. case LLM_ARCH_WAVTOKENIZER_DEC:
  1858. {
  1859. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1860. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1861. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1862. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1863. } break;
  1864. case LLM_ARCH_BAILINGMOE:
  1865. {
  1866. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1867. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1868. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1869. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1870. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1871. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1872. switch (hparams.n_layer) {
  1873. case 28: type = LLM_TYPE_16B; break;
  1874. case 88: type = LLM_TYPE_290B; break;
  1875. default: type = LLM_TYPE_UNKNOWN;
  1876. }
  1877. } break;
  1878. case LLM_ARCH_BAILINGMOE2:
  1879. {
  1880. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1881. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1882. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1883. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
  1884. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1885. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1886. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1887. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
  1888. ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
  1889. // TODO: when MTP is implemented, this should probably be updated if needed
  1890. hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
  1891. switch (hparams.n_layer) {
  1892. case 20: type = LLM_TYPE_16B_A1B; break;
  1893. case 21: type = LLM_TYPE_16B_A1B; break;
  1894. case 32: type = LLM_TYPE_100B_A6B; break;
  1895. case 33: type = LLM_TYPE_100B_A6B; break;
  1896. default: type = LLM_TYPE_UNKNOWN;
  1897. }
  1898. } break;
  1899. case LLM_ARCH_DOTS1:
  1900. {
  1901. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1902. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1903. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1904. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1905. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1906. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1907. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1908. switch (hparams.n_layer) {
  1909. case 62: type = LLM_TYPE_142B; break;
  1910. default: type = LLM_TYPE_UNKNOWN;
  1911. }
  1912. } break;
  1913. case LLM_ARCH_ERNIE4_5:
  1914. case LLM_ARCH_ERNIE4_5_MOE:
  1915. {
  1916. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1917. if (arch == LLM_ARCH_ERNIE4_5_MOE) {
  1918. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1919. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  1920. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  1921. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1922. }
  1923. switch (hparams.n_layer) {
  1924. case 18: type = LLM_TYPE_0_3B; break;
  1925. case 28: type = LLM_TYPE_21B_A3B; break;
  1926. case 54: type = LLM_TYPE_300B_A47B; break;
  1927. default: type = LLM_TYPE_UNKNOWN;
  1928. }
  1929. } break;
  1930. case LLM_ARCH_FALCON_H1:
  1931. {
  1932. // Common parameters
  1933. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1934. // SSM parameters
  1935. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1936. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1937. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1938. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1939. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1940. std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
  1941. switch (hparams.n_layer) {
  1942. case 36:
  1943. type = LLM_TYPE_0_5B; break;
  1944. case 24:
  1945. type = LLM_TYPE_1_5B; break;
  1946. case 66:
  1947. type = LLM_TYPE_1B; break;
  1948. case 32:
  1949. type = LLM_TYPE_3B; break;
  1950. case 44:
  1951. type = LLM_TYPE_7B; break;
  1952. case 72:
  1953. type = LLM_TYPE_34B; break;
  1954. default:
  1955. type = LLM_TYPE_UNKNOWN;
  1956. }
  1957. } break;
  1958. case LLM_ARCH_HUNYUAN_MOE:
  1959. {
  1960. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1961. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1962. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
  1963. switch (hparams.n_layer) {
  1964. case 32: type = LLM_TYPE_A13B; break;
  1965. default: type = LLM_TYPE_UNKNOWN;
  1966. }
  1967. } break;
  1968. case LLM_ARCH_HUNYUAN_DENSE:
  1969. {
  1970. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1971. switch (hparams.n_embd) {
  1972. case 1024: type = LLM_TYPE_0_5B; break;
  1973. case 2048: type = LLM_TYPE_1_8B; break;
  1974. case 3072: type = LLM_TYPE_4B; break;
  1975. case 4096: type = LLM_TYPE_7B; break;
  1976. default: type = LLM_TYPE_UNKNOWN;
  1977. }
  1978. } break;
  1979. case LLM_ARCH_SMOLLM3:
  1980. {
  1981. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1982. hparams.n_no_rope_layer_step = 4;
  1983. switch (hparams.n_layer) {
  1984. case 36: type = LLM_TYPE_3B; break;
  1985. default: type = LLM_TYPE_UNKNOWN;
  1986. }
  1987. } break;
  1988. case LLM_ARCH_OPENAI_MOE:
  1989. {
  1990. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1991. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1992. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1993. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1994. hparams.set_swa_pattern(2);
  1995. switch (hparams.n_layer) {
  1996. case 24: type = LLM_TYPE_20B; break;
  1997. case 36: type = LLM_TYPE_120B; break;
  1998. default: type = LLM_TYPE_UNKNOWN;
  1999. }
  2000. } break;
  2001. case LLM_ARCH_LFM2:
  2002. {
  2003. ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
  2004. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2005. for (uint32_t il = 0; il < hparams.n_layer; ++il) {
  2006. hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
  2007. }
  2008. hparams.n_layer_dense_lead = hparams.n_layer;
  2009. switch (hparams.n_ff()) {
  2010. case 4608: type = LLM_TYPE_350M; break;
  2011. case 6912: type = LLM_TYPE_700M; break;
  2012. case 8192: type = LLM_TYPE_1_2B; break;
  2013. case 10752: type = LLM_TYPE_2_6B; break;
  2014. default: type = LLM_TYPE_UNKNOWN;
  2015. }
  2016. } break;
  2017. case LLM_ARCH_LFM2MOE:
  2018. {
  2019. ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
  2020. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2021. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  2022. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  2023. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
  2024. for (uint32_t il = 0; il < hparams.n_layer; ++il) {
  2025. hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
  2026. }
  2027. type = LLM_TYPE_8B_A1B;
  2028. } break;
  2029. case LLM_ARCH_SMALLTHINKER:
  2030. {
  2031. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  2032. if (found_swa && hparams.n_swa > 0) {
  2033. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  2034. hparams.n_swa = 4096;
  2035. hparams.set_swa_pattern(4, true);
  2036. } else {
  2037. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  2038. hparams.n_no_rope_layer_step = hparams.n_layer;
  2039. }
  2040. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  2041. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2042. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  2043. switch (hparams.n_layer) {
  2044. case 32: type = LLM_TYPE_4B; break;
  2045. case 52: type = LLM_TYPE_20B; break;
  2046. default: type = LLM_TYPE_UNKNOWN;
  2047. }
  2048. } break;
  2049. case LLM_ARCH_GROVEMOE:
  2050. {
  2051. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  2052. ml.get_key(LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, hparams.n_ff_chexp);
  2053. ml.get_key(LLM_KV_EXPERT_GROUP_SCALE, hparams.expert_group_scale);
  2054. ml.get_key(LLM_KV_EXPERTS_PER_GROUP, hparams.n_group_experts);
  2055. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2056. switch (hparams.n_layer) {
  2057. case 48: type = LLM_TYPE_30B_A3B; break;
  2058. default: type = LLM_TYPE_UNKNOWN;
  2059. }
  2060. } break;
  2061. case LLM_ARCH_APERTUS:
  2062. {
  2063. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2064. ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_N, hparams.xielu_alpha_n, hparams.n_layer);
  2065. ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_P, hparams.xielu_alpha_p, hparams.n_layer);
  2066. ml.get_key_or_arr(LLM_KV_XIELU_BETA, hparams.xielu_beta, hparams.n_layer);
  2067. ml.get_key_or_arr(LLM_KV_XIELU_EPS, hparams.xielu_eps, hparams.n_layer);
  2068. switch (hparams.n_layer) {
  2069. case 32: type = LLM_TYPE_8B; break;
  2070. default: type = LLM_TYPE_UNKNOWN;
  2071. }
  2072. } break;
  2073. case LLM_ARCH_MINIMAX_M2:
  2074. {
  2075. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2076. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  2077. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  2078. switch (hparams.n_layer) {
  2079. case 62: type = LLM_TYPE_230B_A10B; break;
  2080. default: type = LLM_TYPE_UNKNOWN;
  2081. }
  2082. } break;
  2083. case LLM_ARCH_COGVLM:
  2084. {
  2085. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2086. switch (hparams.n_layer) {
  2087. case 32: type = LLM_TYPE_13B; break;
  2088. default: type = LLM_TYPE_UNKNOWN;
  2089. }
  2090. } break;
  2091. case LLM_ARCH_PANGU_EMBED:
  2092. {
  2093. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2094. switch (hparams.n_layer) {
  2095. case 26: type = LLM_TYPE_1B; break; // openPangu-Embedded-1B-V1.1
  2096. case 34: type = LLM_TYPE_7B; break; // openPangu-Embedded-7B-V1.1
  2097. default: type = LLM_TYPE_UNKNOWN;
  2098. }
  2099. } break;
  2100. case LLM_ARCH_QWEN3NEXT:
  2101. {
  2102. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  2103. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  2104. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2105. // Load linear attention (gated delta net) parameters
  2106. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  2107. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  2108. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  2109. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  2110. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  2111. // Mark recurrent layers (linear attention layers)
  2112. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  2113. hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0); // TODO: extract the magic 4 from "full_attention_interval"
  2114. }
  2115. switch (hparams.n_layer) {
  2116. case 48: type = LLM_TYPE_80B_A3B; break;
  2117. default: type = LLM_TYPE_UNKNOWN;
  2118. }
  2119. } break;
  2120. case LLM_ARCH_MISTRAL3:
  2121. {
  2122. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2123. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
  2124. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
  2125. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
  2126. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, 0.0f);
  2127. hparams.f_attn_temp_offset = 0.0f;
  2128. // TODO: maybe add n_attn_temp_floor_scale as a separate KV?
  2129. if (hparams.f_attn_temp_scale != 0.0f) {
  2130. hparams.n_attn_temp_floor_scale = hparams.n_ctx_orig_yarn;
  2131. if (hparams.n_attn_temp_floor_scale == 0) {
  2132. throw std::runtime_error("invalid n_ctx_orig_yarn for attention temperature scaling");
  2133. }
  2134. }
  2135. switch (hparams.n_layer) {
  2136. case 26: type = LLM_TYPE_3B; break;
  2137. case 34: type = LLM_TYPE_8B; break;
  2138. case 40: type = LLM_TYPE_14B; break;
  2139. default: type = LLM_TYPE_UNKNOWN;
  2140. }
  2141. } break;
  2142. case LLM_ARCH_MIMO2:
  2143. {
  2144. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2145. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  2146. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  2147. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  2148. ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
  2149. ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, hparams.swa_layers, hparams.n_layer);
  2150. switch (hparams.n_layer) {
  2151. case 48: type = LLM_TYPE_310B_A15B; break;
  2152. default: type = LLM_TYPE_UNKNOWN;
  2153. }
  2154. } break;
  2155. default: throw std::runtime_error("unsupported model architecture");
  2156. }
  2157. pimpl->n_bytes = ml.n_bytes;
  2158. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  2159. if (hparams.f_max_alibi_bias > 0.0f) {
  2160. hparams.use_alibi = true;
  2161. }
  2162. hparams.rope_type = llama_model_rope_type(this);
  2163. }
  2164. void llama_model::load_vocab(llama_model_loader & ml) {
  2165. const auto kv = LLM_KV(arch);
  2166. vocab.load(ml, kv);
  2167. }
  2168. bool llama_model::load_tensors(llama_model_loader & ml) {
  2169. const auto & split_mode = params.split_mode;
  2170. const auto & use_mlock = params.use_mlock;
  2171. const auto & tensor_split = params.tensor_split;
  2172. const int n_layer = hparams.n_layer;
  2173. const int n_gpu_layers = this->n_gpu_layers();
  2174. const bool use_mmap_buffer = true;
  2175. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  2176. // build a list of buffer types for the CPU and GPU devices
  2177. pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host);
  2178. for (auto * dev : devices) {
  2179. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  2180. // add CPU buffer types as a fallback
  2181. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  2182. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  2183. }
  2184. // calculate the split points
  2185. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  2186. std::vector<float> splits(n_devices());
  2187. if (all_zero) {
  2188. // default split, by free memory
  2189. for (size_t i = 0; i < n_devices(); ++i) {
  2190. ggml_backend_dev_t dev = devices[i];
  2191. size_t total;
  2192. size_t free;
  2193. ggml_backend_dev_memory(dev, &free, &total);
  2194. splits[i] = free;
  2195. }
  2196. } else {
  2197. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  2198. }
  2199. // sum and normalize the splits to get the split points
  2200. float split_sum = 0.0f;
  2201. for (size_t i = 0; i < n_devices(); ++i) {
  2202. split_sum += splits[i];
  2203. splits[i] = split_sum;
  2204. }
  2205. for (size_t i = 0; i < n_devices(); ++i) {
  2206. splits[i] /= split_sum;
  2207. }
  2208. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  2209. if (cpu_dev == nullptr) {
  2210. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  2211. }
  2212. const int i_gpu_start = std::max(int(hparams.n_layer) + 1 - n_gpu_layers, 0);
  2213. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, int(n_layer) + 1);
  2214. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  2215. const bool is_swa = il < int(hparams.n_layer) && hparams.is_swa(il);
  2216. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  2217. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  2218. return {cpu_dev, &pimpl->cpu_buft_list};
  2219. }
  2220. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  2221. auto * dev = devices.at(layer_gpu);
  2222. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  2223. return {dev, &pimpl->gpu_buft_list.at(dev)};
  2224. };
  2225. // assign the input layer
  2226. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  2227. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  2228. // assign the repeating layers to the devices according to the splits
  2229. pimpl->dev_layer.resize(n_layer);
  2230. for (int il = 0; il < n_layer; ++il) {
  2231. pimpl->dev_layer[il] = get_layer_buft_list(il);
  2232. }
  2233. // assign the output layer
  2234. pimpl->dev_output = get_layer_buft_list(n_layer);
  2235. // one ggml context per buffer type
  2236. int max_n_tensors = ml.n_tensors;
  2237. max_n_tensors += 1; // duplicated output tensor
  2238. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  2239. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  2240. // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
  2241. struct ggml_backend_buft_comparator {
  2242. bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
  2243. return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
  2244. }
  2245. };
  2246. std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
  2247. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  2248. auto it = ctx_map.find(buft);
  2249. if (it == ctx_map.end()) {
  2250. ggml_init_params params = {
  2251. /*.mem_size =*/ ctx_size,
  2252. /*.mem_buffer =*/ NULL,
  2253. /*.no_alloc =*/ true,
  2254. };
  2255. ggml_context * ctx = ggml_init(params);
  2256. if (!ctx) {
  2257. throw std::runtime_error(format("failed to create ggml context"));
  2258. }
  2259. ctx_map.emplace(buft, ctx);
  2260. return ctx;
  2261. }
  2262. return it->second.get();
  2263. };
  2264. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  2265. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  2266. const auto TENSOR_SKIP = llama_model_loader::TENSOR_SKIP;
  2267. // create tensors for the weights
  2268. {
  2269. // note: cast to int64_t since we will use these for the tensor dimensions
  2270. const int64_t n_head = hparams.n_head();
  2271. const int64_t n_head_kv = hparams.n_head_kv();
  2272. const int64_t n_embd = hparams.n_embd;
  2273. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  2274. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  2275. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  2276. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  2277. const int64_t n_ff = hparams.n_ff();
  2278. const int64_t n_embd_gqa = n_embd_v_gqa;
  2279. const int64_t n_vocab = vocab.n_tokens();
  2280. const int64_t n_token_types = vocab.n_token_types();
  2281. const int64_t n_rot = hparams.n_rot;
  2282. const int64_t n_expert = hparams.n_expert;
  2283. const int64_t n_expert_used = hparams.n_expert_used;
  2284. const int64_t n_ctx_train = hparams.n_ctx_train;
  2285. if (n_expert > 0 && hparams.n_expert_used == 0) {
  2286. throw std::runtime_error("model has expert layers but no expert layers are used");
  2287. }
  2288. int n_moved_tensors = 0;
  2289. ggml_tensor * first_moved_tensor = nullptr;
  2290. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  2291. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  2292. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  2293. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  2294. if (!t_meta) {
  2295. if (flags & TENSOR_NOT_REQUIRED) {
  2296. return nullptr;
  2297. }
  2298. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  2299. }
  2300. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  2301. // the tensor is duplicated
  2302. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  2303. llm_tensor tn_tensor = tn.tensor;
  2304. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  2305. tn_tensor = LLM_TENSOR_OUTPUT;
  2306. }
  2307. llm_tensor_info info;
  2308. try {
  2309. info = llm_tensor_info_for(tn_tensor);
  2310. } catch (const std::out_of_range & e) {
  2311. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  2312. }
  2313. // skip unused tensors
  2314. if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
  2315. const size_t nbytes = ggml_nbytes(t_meta);
  2316. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  2317. ml.size_data -= nbytes;
  2318. ml.n_created++;
  2319. return nullptr;
  2320. }
  2321. // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID
  2322. ggml_op op;
  2323. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  2324. if (bias) {
  2325. if (info.op == GGML_OP_MUL_MAT_ID) {
  2326. op = GGML_OP_ADD_ID;
  2327. } else {
  2328. op = GGML_OP_ADD;
  2329. }
  2330. } else {
  2331. op = info.op;
  2332. }
  2333. // sanity checks
  2334. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  2335. if (tn.bid != -1) {
  2336. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  2337. }
  2338. } else {
  2339. if (tn.bid == -1) {
  2340. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  2341. }
  2342. }
  2343. // select the buffer type for this tensor
  2344. buft_list_t * buft_list;
  2345. switch (info.layer) {
  2346. case LLM_TENSOR_LAYER_INPUT:
  2347. buft_list = pimpl->dev_input.buft_list;
  2348. break;
  2349. case LLM_TENSOR_LAYER_OUTPUT:
  2350. buft_list = pimpl->dev_output.buft_list;
  2351. break;
  2352. case LLM_TENSOR_LAYER_REPEATING:
  2353. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  2354. break;
  2355. default:
  2356. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  2357. }
  2358. ggml_backend_buffer_type_t buft = nullptr;
  2359. // check overrides
  2360. if (ml.tensor_buft_overrides) {
  2361. std::string tensor_name = tn.str();
  2362. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  2363. std::regex pattern(overrides->pattern);
  2364. if (std::regex_search(tensor_name, pattern)) {
  2365. if (overrides->buft == ggml_backend_cpu_buffer_type()) {
  2366. // when overriding to a CPU buffer, consider the extra buffer types
  2367. buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
  2368. } else {
  2369. buft = overrides->buft;
  2370. }
  2371. LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
  2372. tensor_name.c_str(),
  2373. ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
  2374. ggml_backend_buft_name(buft));
  2375. break;
  2376. }
  2377. }
  2378. }
  2379. if (!buft) {
  2380. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  2381. if (!buft) {
  2382. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  2383. }
  2384. }
  2385. // avoid using a host buffer when using mmap
  2386. auto * buft_dev = ggml_backend_buft_get_device(buft);
  2387. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  2388. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  2389. if (!cpu_dev) {
  2390. throw std::runtime_error("no CPU backend found");
  2391. }
  2392. buft = ggml_backend_dev_buffer_type(cpu_dev);
  2393. }
  2394. if (buft != buft_list->front().second) {
  2395. n_moved_tensors++;
  2396. if (!first_moved_tensor) {
  2397. first_moved_tensor = t_meta;
  2398. first_moved_from_buft = buft_list->front().second;
  2399. first_moved_to_buft = buft;
  2400. }
  2401. }
  2402. ggml_context * ctx = ctx_for_buft(buft);
  2403. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  2404. if (flags & TENSOR_DUPLICATED) {
  2405. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  2406. if (t) {
  2407. return t;
  2408. }
  2409. }
  2410. return ml.create_tensor(ctx, tn, ne, flags);
  2411. };
  2412. layers.resize(n_layer);
  2413. // TODO: move to a separate function
  2414. const auto tn = LLM_TN(arch);
  2415. switch (arch) {
  2416. case LLM_ARCH_LLAMA:
  2417. case LLM_ARCH_REFACT:
  2418. case LLM_ARCH_MINICPM:
  2419. case LLM_ARCH_GRANITE:
  2420. case LLM_ARCH_GRANITE_MOE:
  2421. case LLM_ARCH_MISTRAL3:
  2422. case LLM_ARCH_LLAMA_EMBED:
  2423. {
  2424. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2425. // output
  2426. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2427. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2428. // if output is NULL, init from the input tok embed
  2429. if (output == NULL) {
  2430. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2431. }
  2432. for (int i = 0; i < n_layer; ++i) {
  2433. auto & layer = layers[i];
  2434. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2435. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2436. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2437. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2438. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2439. // optional bias tensors
  2440. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2441. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2442. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2443. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2444. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2445. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  2446. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2447. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2448. }
  2449. else {
  2450. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2451. }
  2452. if (n_expert == 0) {
  2453. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2454. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2455. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2456. // optional MLP bias
  2457. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2458. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2459. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2460. } else {
  2461. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2462. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  2463. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2464. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2465. // For Granite MoE Shared
  2466. if (hparams.n_ff_shexp > 0) {
  2467. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  2468. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  2469. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  2470. }
  2471. }
  2472. }
  2473. } break;
  2474. case LLM_ARCH_LLADA:
  2475. {
  2476. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2477. // output
  2478. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2479. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  2480. // if output is NULL, init from the input tok embed
  2481. if (output == NULL) {
  2482. output =
  2483. create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  2484. }
  2485. for (int i = 0; i < n_layer; ++i) {
  2486. auto & layer = layers[i];
  2487. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2488. // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
  2489. layer.wq =
  2490. create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  2491. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
  2492. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
  2493. // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
  2494. layer.wo =
  2495. create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  2496. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  2497. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2498. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
  2499. TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2500. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2501. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2502. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2503. // optional MLP bias
  2504. layer.ffn_gate_b =
  2505. create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
  2506. layer.ffn_down_b =
  2507. create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  2508. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
  2509. }
  2510. }
  2511. break;
  2512. case LLM_ARCH_LLADA_MOE:
  2513. {
  2514. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2515. // output
  2516. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2517. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2518. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
  2519. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");
  2520. for (int i = 0; i < n_layer; ++i) {
  2521. auto & layer = layers[i];
  2522. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2523. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2524. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2525. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2526. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2527. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2528. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2529. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2530. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2531. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2532. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2533. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2534. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2535. }
  2536. } break;
  2537. case LLM_ARCH_LLAMA4:
  2538. {
  2539. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2540. // output
  2541. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2542. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2543. // if output is NULL, init from the input tok embed
  2544. if (output == NULL) {
  2545. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2546. }
  2547. for (int i = 0; i < n_layer; ++i) {
  2548. bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
  2549. auto & layer = layers[i];
  2550. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2551. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2552. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2553. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2554. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2555. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2556. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2557. if (is_moe_layer) {
  2558. int n_ff_exp = hparams.n_ff_exp;
  2559. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2560. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2561. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  2562. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2563. // Shared expert
  2564. const int64_t n_ff_shexp = n_ff_exp;
  2565. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2566. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  2567. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2568. } else {
  2569. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2570. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2571. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2572. }
  2573. }
  2574. } break;
  2575. case LLM_ARCH_DECI:
  2576. {
  2577. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2578. // output
  2579. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2580. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2581. // if output is NULL, init from the input tok embed
  2582. if (output == NULL) {
  2583. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2584. }
  2585. for (int i = 0; i < n_layer; ++i) {
  2586. auto & layer = layers[i];
  2587. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  2588. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  2589. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  2590. const int64_t n_ff = hparams.n_ff(i);
  2591. const int64_t n_head = hparams.n_head(i);
  2592. const int64_t n_head_kv = hparams.n_head_kv(i);
  2593. if (n_head_kv == 0 && n_head > 0) {
  2594. // linear attention for DeciLMCausalModel
  2595. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2596. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2597. }
  2598. else if (n_head_kv > 0) {
  2599. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2600. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2601. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2602. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2603. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2604. }
  2605. // optional bias tensors
  2606. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2607. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2608. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2609. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2610. if (n_ff > 0) {
  2611. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2612. }
  2613. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  2614. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2615. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2616. }
  2617. else {
  2618. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2619. }
  2620. if (n_ff > 0) {
  2621. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2622. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2623. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2624. }
  2625. // optional MLP bias
  2626. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2627. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2628. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2629. }
  2630. } break;
  2631. case LLM_ARCH_MINICPM3:
  2632. {
  2633. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2634. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2635. const int64_t q_lora_rank = hparams.n_lora_q;
  2636. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2637. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2638. // output
  2639. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2640. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2641. // if output is NULL, init from the input tok embed
  2642. if (output == NULL) {
  2643. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2644. }
  2645. for (int i = 0; i < n_layer; ++i) {
  2646. auto & layer = layers[i];
  2647. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2648. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2649. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2650. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2651. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  2652. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2653. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2654. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2655. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2656. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2657. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2658. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2659. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2660. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2661. }
  2662. } break;
  2663. case LLM_ARCH_GROK:
  2664. {
  2665. if (n_expert == 0) {
  2666. throw std::runtime_error("Grok model cannot have zero experts");
  2667. }
  2668. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2669. // output
  2670. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2671. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2672. // if output is NULL, init from the input tok embed
  2673. if (output == NULL) {
  2674. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2675. }
  2676. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
  2677. for (int i = 0; i < n_layer; ++i) {
  2678. auto & layer = layers[i];
  2679. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2680. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2681. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2682. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2683. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2684. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2685. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2686. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2687. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, TENSOR_NOT_REQUIRED);
  2688. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2689. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2690. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  2691. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2692. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2693. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2694. if (!layer.ffn_post_norm) {
  2695. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2696. }
  2697. }
  2698. } break;
  2699. case LLM_ARCH_DBRX:
  2700. {
  2701. if (n_expert == 0) {
  2702. throw std::runtime_error("DBRX model cannot have zero experts");
  2703. }
  2704. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2705. // output
  2706. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2707. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2708. for (int i = 0; i < n_layer; ++i) {
  2709. auto & layer = layers[i];
  2710. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2711. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2712. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2713. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2714. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2715. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2716. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2717. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2718. }
  2719. } break;
  2720. case LLM_ARCH_BAICHUAN:
  2721. {
  2722. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2723. {
  2724. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2725. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2726. }
  2727. for (int i = 0; i < n_layer; ++i) {
  2728. auto & layer = layers[i];
  2729. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2730. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2731. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2732. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2733. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2734. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2735. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2736. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2737. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2738. }
  2739. } break;
  2740. case LLM_ARCH_FALCON:
  2741. {
  2742. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2743. // output
  2744. {
  2745. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2746. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2747. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2748. if (!output) {
  2749. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  2750. }
  2751. }
  2752. for (int i = 0; i < n_layer; ++i) {
  2753. auto & layer = layers[i];
  2754. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2755. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2756. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2757. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2758. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2759. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2760. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2761. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2762. }
  2763. } break;
  2764. case LLM_ARCH_STARCODER:
  2765. {
  2766. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2767. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2768. // output
  2769. {
  2770. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2771. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2772. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2773. if (!output) {
  2774. // needs to be on GPU
  2775. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2776. }
  2777. }
  2778. for (int i = 0; i < n_layer; ++i) {
  2779. auto & layer = layers[i];
  2780. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2781. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2782. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2783. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2784. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2785. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2786. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2787. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2788. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2789. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2790. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2791. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2792. }
  2793. } break;
  2794. case LLM_ARCH_BERT:
  2795. case LLM_ARCH_NOMIC_BERT:
  2796. case LLM_ARCH_NOMIC_BERT_MOE:
  2797. case LLM_ARCH_JINA_BERT_V3:
  2798. {
  2799. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2800. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
  2801. if (arch == LLM_ARCH_BERT) {
  2802. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2803. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  2804. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2805. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2806. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2807. }
  2808. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2809. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2810. for (int i = 0; i < n_layer; ++i) {
  2811. auto & layer = layers[i];
  2812. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2813. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2814. if (!layer.wqkv) {
  2815. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2816. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2817. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2818. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2819. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2820. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2821. }
  2822. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2823. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2824. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2825. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  2826. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  2827. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  2828. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2829. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2830. } else {
  2831. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2832. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2833. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2834. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2835. if (arch == LLM_ARCH_NOMIC_BERT) {
  2836. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2837. }
  2838. }
  2839. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  2840. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  2841. }
  2842. } break;
  2843. case LLM_ARCH_MODERN_BERT:
  2844. {
  2845. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2846. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2847. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2848. for(int i = 0; i < n_layer; ++i) {
  2849. auto& layer = layers[i];
  2850. if ( i != 0 ) {
  2851. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2852. } else{
  2853. // layer 0 uses identity
  2854. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2855. }
  2856. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3 * n_embd }, 0);
  2857. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2858. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, 2 * n_ff}, 0);
  2859. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2860. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2861. }
  2862. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  2863. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2864. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2865. } break;
  2866. case LLM_ARCH_NEO_BERT:
  2867. {
  2868. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2869. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  2870. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2871. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2872. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2873. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2874. for (int i = 0; i < n_layer; ++i) {
  2875. auto & layer = layers[i];
  2876. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2877. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2878. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2879. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2880. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
  2881. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2882. }
  2883. } break;
  2884. case LLM_ARCH_JINA_BERT_V2:
  2885. {
  2886. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  2887. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  2888. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  2889. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  2890. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  2891. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  2892. for (int i = 0; i < n_layer; ++i) {
  2893. auto & layer = layers[i]; // JinaBertLayer
  2894. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2895. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2896. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2897. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2898. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2899. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2900. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2901. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2902. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2903. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2904. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  2905. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  2906. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  2907. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  2908. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2909. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2910. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2911. const auto tn_ffn_up_weight = tn(LLM_TENSOR_FFN_UP, "weight", i);
  2912. ggml_tensor * t_ffn_up = ml.get_tensor_meta(tn_ffn_up_weight.str().c_str());
  2913. const int64_t n_ffn_up = t_ffn_up ? t_ffn_up->ne[1] : n_ff;
  2914. GGML_ASSERT(n_ffn_up == n_ff || n_ffn_up == n_ff * 2);
  2915. layer.ffn_up = create_tensor(tn_ffn_up_weight, {n_embd, n_ffn_up}, 0);
  2916. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ffn_up}, TENSOR_NOT_REQUIRED);
  2917. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2918. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2919. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  2920. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  2921. }
  2922. } break;
  2923. case LLM_ARCH_BLOOM:
  2924. {
  2925. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2926. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2927. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2928. // output
  2929. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2930. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2931. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2932. // if output is NULL, init from the input tok embed
  2933. if (output == NULL) {
  2934. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2935. }
  2936. for (int i = 0; i < n_layer; ++i) {
  2937. auto & layer = layers[i];
  2938. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2939. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2940. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2941. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2942. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2943. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2944. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2945. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2946. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2947. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2948. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2949. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2950. }
  2951. } break;
  2952. case LLM_ARCH_MPT:
  2953. {
  2954. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2955. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  2956. // output
  2957. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2958. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2959. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2960. if (!output) {
  2961. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  2962. }
  2963. for (int i = 0; i < n_layer; ++i) {
  2964. auto & layer = layers[i];
  2965. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2966. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2967. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2968. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2969. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2970. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2971. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2972. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2973. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2974. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2975. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2976. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2977. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2978. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2979. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2980. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2981. // AWQ ScaleActivation layer
  2982. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2983. }
  2984. } break;
  2985. case LLM_ARCH_STABLELM:
  2986. {
  2987. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2988. // output
  2989. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2990. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2991. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2992. for (int i = 0; i < n_layer; ++i) {
  2993. auto & layer = layers[i];
  2994. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2995. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2996. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2997. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2998. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2999. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3000. // optional bias tensors, present in Stable LM 2 1.6B
  3001. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3002. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3003. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3004. // optional q and k layernorms, present in StableLM 2 12B
  3005. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3006. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3007. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  3008. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3009. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3010. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3011. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3012. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3013. }
  3014. } break;
  3015. case LLM_ARCH_QWEN:
  3016. {
  3017. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3018. // output
  3019. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3020. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3021. for (int i = 0; i < n_layer; ++i) {
  3022. auto & layer = layers[i];
  3023. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3024. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  3025. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  3026. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3027. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3028. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  3029. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  3030. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  3031. }
  3032. } break;
  3033. case LLM_ARCH_QWEN2:
  3034. case LLM_ARCH_QWEN2VL:
  3035. case LLM_ARCH_DREAM:
  3036. {
  3037. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3038. // output
  3039. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3040. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3041. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, TENSOR_NOT_REQUIRED);
  3042. // if output is NULL, init from the input tok embed
  3043. if (output == NULL) {
  3044. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3045. }
  3046. for (int i = 0; i < n_layer; ++i) {
  3047. auto & layer = layers[i];
  3048. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3049. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3050. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3051. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3052. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3053. // optional bias tensors
  3054. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3055. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3056. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3057. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3058. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3059. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3060. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3061. }
  3062. } break;
  3063. case LLM_ARCH_QWEN2MOE:
  3064. {
  3065. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3066. // output
  3067. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3068. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3069. for (int i = 0; i < n_layer; ++i) {
  3070. auto & layer = layers[i];
  3071. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3072. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3073. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3074. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3075. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3076. // optional bias tensors
  3077. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3078. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3079. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3080. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3081. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3082. if (n_expert == 0) {
  3083. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  3084. }
  3085. if (n_expert_used == 0) {
  3086. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  3087. }
  3088. // MoE branch
  3089. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  3090. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3091. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3092. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3093. // Shared expert branch
  3094. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  3095. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  3096. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  3097. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  3098. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  3099. }
  3100. } break;
  3101. case LLM_ARCH_QWEN3:
  3102. case LLM_ARCH_QWEN3VL:
  3103. {
  3104. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3105. // output
  3106. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3107. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3108. // if output is NULL, init from the input tok embed
  3109. if (output == NULL) {
  3110. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3111. }
  3112. // output rerank head
  3113. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  3114. for (int i = 0; i < n_layer; ++i) {
  3115. auto & layer = layers[i];
  3116. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3117. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3118. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3119. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3120. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3121. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3122. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3123. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3124. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3125. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3126. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3127. }
  3128. } break;
  3129. case LLM_ARCH_QWEN3MOE:
  3130. case LLM_ARCH_QWEN3VLMOE:
  3131. case LLM_ARCH_RND1:
  3132. {
  3133. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3134. // output
  3135. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3136. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3137. // if output is NULL, init from the input tok embed
  3138. if (output == NULL) {
  3139. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3140. }
  3141. for (int i = 0; i < n_layer; ++i) {
  3142. auto & layer = layers[i];
  3143. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3144. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3145. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3146. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3147. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3148. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3149. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3150. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3151. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3152. if (n_expert == 0) {
  3153. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  3154. }
  3155. if (n_expert_used == 0) {
  3156. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  3157. }
  3158. // MoE branch
  3159. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  3160. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3161. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3162. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3163. }
  3164. } break;
  3165. case LLM_ARCH_PHI2:
  3166. {
  3167. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3168. // output
  3169. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3170. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3171. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3172. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  3173. for (int i = 0; i < n_layer; ++i) {
  3174. auto & layer = layers[i];
  3175. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3176. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3177. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3178. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3179. if (layer.wqkv == nullptr) {
  3180. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3181. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  3182. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3183. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  3184. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3185. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  3186. }
  3187. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3188. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3189. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3190. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3191. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3192. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3193. }
  3194. } break;
  3195. case LLM_ARCH_PHI3:
  3196. {
  3197. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  3198. // output
  3199. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  3200. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3201. // if output is NULL, init from the input tok embed
  3202. if (output == NULL) {
  3203. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3204. }
  3205. for (int i = 0; i < n_layer; ++i) {
  3206. auto & layer = layers[i];
  3207. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  3208. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  3209. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  3210. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  3211. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  3212. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  3213. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3214. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3215. }
  3216. } break;
  3217. case LLM_ARCH_PHIMOE:
  3218. {
  3219. const int64_t n_embd_head = n_embd / n_head;
  3220. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  3221. // output
  3222. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  3223. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3224. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  3225. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  3226. for (int i = 0; i < n_layer; ++i) {
  3227. auto & layer = layers[i];
  3228. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  3229. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  3230. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  3231. if (layer.wqkv == nullptr) {
  3232. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3233. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  3234. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3235. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  3236. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3237. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  3238. }
  3239. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  3240. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  3241. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  3242. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  3243. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3244. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3245. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3246. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3247. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3248. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3249. }
  3250. } break;
  3251. case LLM_ARCH_PLAMO:
  3252. {
  3253. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3254. // output
  3255. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3256. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3257. for (int i = 0; i < n_layer; ++i) {
  3258. auto & layer = layers[i];
  3259. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3260. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3261. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3262. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3263. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3264. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3265. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3266. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3267. }
  3268. } break;
  3269. case LLM_ARCH_PLAMO2:
  3270. {
  3271. // mamba parameters
  3272. const uint32_t d_conv = hparams.ssm_d_conv;
  3273. const uint32_t d_state = hparams.ssm_d_state;
  3274. const uint32_t num_heads = hparams.ssm_dt_rank;
  3275. const uint32_t intermediate_size = hparams.ssm_d_inner;
  3276. const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
  3277. // attention parameters
  3278. const uint32_t qk_dim = hparams.n_embd_head_k;
  3279. const uint32_t v_dim = hparams.n_embd_head_v;
  3280. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3281. // output
  3282. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3283. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3284. // if output is NULL, init from the input tok embed
  3285. if (output == NULL) {
  3286. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3287. }
  3288. for (int i = 0; i < n_layer; ++i) {
  3289. auto & layer = layers[i];
  3290. bool is_mamba_layer = hparams.is_recurrent(i);
  3291. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3292. if (is_mamba_layer) {
  3293. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2 * intermediate_size}, 0);
  3294. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);
  3295. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0);
  3296. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0);
  3297. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0);
  3298. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0);
  3299. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0);
  3300. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0);
  3301. layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0);
  3302. layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
  3303. layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
  3304. } else {
  3305. const int64_t num_attention_heads = hparams.n_head(i);
  3306. const int64_t q_num_heads = num_attention_heads;
  3307. const int64_t num_key_value_heads = hparams.n_head_kv(i);
  3308. const int64_t k_num_heads = num_key_value_heads;
  3309. const int64_t v_num_heads = num_key_value_heads;
  3310. const int64_t q_proj_dim = q_num_heads * qk_dim;
  3311. const int64_t k_proj_dim = k_num_heads * qk_dim;
  3312. const int64_t v_proj_dim = v_num_heads * v_dim;
  3313. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
  3314. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
  3315. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
  3316. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
  3317. }
  3318. // All layers have post-attention norm, FFN norm, and FFN tensors
  3319. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
  3320. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3321. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3322. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  3323. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
  3324. }
  3325. } break;
  3326. case LLM_ARCH_PLAMO3:
  3327. {
  3328. const int64_t head_dim_q = hparams.n_embd_head_k;
  3329. const int64_t head_dim_v = hparams.n_embd_head_v;
  3330. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3331. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3332. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3333. if (output == NULL) {
  3334. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3335. }
  3336. for (int i = 0; i < n_layer; ++i) {
  3337. auto & layer = layers[i];
  3338. const int64_t num_attention_heads = hparams.n_head(i);
  3339. const int64_t num_key_value_heads = hparams.n_head_kv(i);
  3340. const int64_t q_proj_dim = num_attention_heads * head_dim_q;
  3341. const int64_t k_proj_dim = num_key_value_heads * head_dim_q;
  3342. const int64_t v_proj_dim = num_key_value_heads * head_dim_v;
  3343. const int64_t n_ff_cur = hparams.n_ff(i);
  3344. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3345. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i),
  3346. {n_embd,q_proj_dim + k_proj_dim + v_proj_dim}, 0);
  3347. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim_q}, 0);
  3348. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim_q}, 0);
  3349. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {num_attention_heads * head_dim_v, n_embd}, 0);
  3350. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
  3351. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3352. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
  3353. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff_cur * 2}, 0);
  3354. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff_cur, n_embd}, 0);
  3355. }
  3356. } break;
  3357. case LLM_ARCH_GPT2:
  3358. {
  3359. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3360. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  3361. // output
  3362. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3363. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3364. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3365. // if output is NULL, init from the input tok embed
  3366. if (output == NULL) {
  3367. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3368. }
  3369. for (int i = 0; i < n_layer; ++i) {
  3370. auto & layer = layers[i];
  3371. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3372. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3373. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3374. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3375. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3376. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3377. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3378. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3379. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3380. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3381. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3382. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3383. }
  3384. } break;
  3385. case LLM_ARCH_CODESHELL:
  3386. {
  3387. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3388. // if tok embd is NULL, init from output
  3389. if (tok_embd == NULL) {
  3390. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3391. }
  3392. // output
  3393. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3394. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3395. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3396. for (int i = 0; i < n_layer; ++i) {
  3397. auto & layer = layers[i];
  3398. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3399. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3400. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3401. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3402. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3403. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3404. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3405. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3406. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3407. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3408. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3409. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3410. }
  3411. } break;
  3412. case LLM_ARCH_ORION:
  3413. {
  3414. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3415. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3416. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3417. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3418. for (int i = 0; i < n_layer; ++i) {
  3419. auto & layer = layers[i];
  3420. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3421. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3422. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3423. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3424. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3425. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3426. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3427. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3428. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3429. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3430. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3431. }
  3432. } break;
  3433. case LLM_ARCH_INTERNLM2:
  3434. {
  3435. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3436. // output
  3437. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3438. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3439. for (int i = 0; i < n_layer; ++i) {
  3440. auto & layer = layers[i];
  3441. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3442. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3443. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3444. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3445. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3446. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3447. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3448. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3449. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3450. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3451. }
  3452. } break;
  3453. case LLM_ARCH_GEMMA:
  3454. {
  3455. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3456. // output
  3457. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3458. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  3459. for (int i = 0; i < n_layer; ++i) {
  3460. auto & layer = layers[i];
  3461. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3462. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3463. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3464. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3465. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3466. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3467. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3468. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3469. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3470. }
  3471. } break;
  3472. case LLM_ARCH_GEMMA2:
  3473. {
  3474. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3475. // output
  3476. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3477. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  3478. for (int i = 0; i < n_layer; ++i) {
  3479. auto & layer = layers[i];
  3480. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3481. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3482. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3483. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3484. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3485. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3486. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3487. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3488. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3489. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3490. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3491. }
  3492. } break;
  3493. case LLM_ARCH_GEMMA3:
  3494. case LLM_ARCH_GEMMA_EMBEDDING:
  3495. {
  3496. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3497. // output
  3498. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3499. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3500. // if output is NULL, init from the input tok embed
  3501. if (output == NULL) {
  3502. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3503. }
  3504. // Dense linear weights
  3505. dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.dense_2_feat_out}, TENSOR_NOT_REQUIRED);
  3506. dense_3_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_3_OUT, "weight"), {hparams.dense_3_feat_in, n_embd}, TENSOR_NOT_REQUIRED);
  3507. for (int i = 0; i < n_layer; ++i) {
  3508. auto & layer = layers[i];
  3509. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3510. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3511. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3512. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3513. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3514. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3515. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3516. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3517. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3518. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3519. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3520. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3521. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3522. }
  3523. } break;
  3524. case LLM_ARCH_GEMMA3N:
  3525. {
  3526. const int64_t n_altup = hparams.n_altup;
  3527. const int64_t laurel_rank = hparams.laurel_rank;
  3528. const int64_t n_embd_altup = hparams.n_embd_altup;
  3529. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3530. // if output is NULL, init from the input tok embed
  3531. if (output == NULL) {
  3532. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3533. }
  3534. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3535. tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0);
  3536. altup_proj = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
  3537. altup_unembd_proj = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
  3538. per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0);
  3539. per_layer_proj_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM, "weight"), {n_embd_altup}, 0);
  3540. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3541. for (int i = 0; i < n_layer; ++i) {
  3542. auto & layer = layers[i];
  3543. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3544. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3545. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3546. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3547. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3548. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3549. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3550. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3551. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3552. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3553. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3554. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3555. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3556. // altup & laurel
  3557. layer.per_layer_inp_gate = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE, "weight", i), {n_embd, n_embd_altup}, 0);
  3558. layer.per_layer_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ, "weight", i), {n_embd_altup, n_embd}, 0);
  3559. layer.per_layer_post_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0);
  3560. layer.altup_correct_coef = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF, "weight", i), {n_altup, n_altup}, 0);
  3561. layer.altup_correct_scale = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0);
  3562. layer.altup_predict_coef = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF, "weight", i), {n_altup, n_altup * n_altup}, 0);
  3563. layer.altup_router = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER, "weight", i), {n_embd, n_altup}, 0);
  3564. layer.altup_router_norm = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM, "weight", i), {n_embd}, 0);
  3565. layer.laurel_l = create_tensor(tn(LLM_TENSOR_LAUREL_L, "weight", i), {n_embd, laurel_rank}, 0);
  3566. layer.laurel_r = create_tensor(tn(LLM_TENSOR_LAUREL_R, "weight", i), {laurel_rank, n_embd}, 0);
  3567. layer.laurel_post_norm = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM, "weight", i), {n_embd}, 0);
  3568. }
  3569. } break;
  3570. case LLM_ARCH_STARCODER2:
  3571. {
  3572. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3573. // output
  3574. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3575. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3576. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3577. // if output is NULL, init from the input tok embed
  3578. if (output == NULL) {
  3579. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3580. }
  3581. for (int i = 0; i < n_layer; ++i) {
  3582. auto & layer = layers[i];
  3583. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3584. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3585. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3586. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3587. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3588. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3589. // optional bias tensors
  3590. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  3591. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  3592. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  3593. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3594. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3595. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3596. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3597. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3598. // optional bias tensors
  3599. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3600. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  3601. }
  3602. } break;
  3603. case LLM_ARCH_MAMBA:
  3604. {
  3605. const int64_t d_conv = hparams.ssm_d_conv;
  3606. const int64_t d_inner = hparams.ssm_d_inner;
  3607. const int64_t d_state = hparams.ssm_d_state;
  3608. const int64_t dt_rank = hparams.ssm_dt_rank;
  3609. // only an expansion factor of 2 is supported for now
  3610. if (2 * n_embd != d_inner) {
  3611. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  3612. }
  3613. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3614. // output
  3615. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3616. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3617. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3618. if (output == NULL) {
  3619. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3620. }
  3621. for (int i = 0; i < n_layer; ++i) {
  3622. auto & layer = layers[i];
  3623. // norm
  3624. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3625. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  3626. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  3627. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  3628. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  3629. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  3630. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  3631. // no "weight" suffix for these
  3632. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  3633. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  3634. // out_proj
  3635. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3636. }
  3637. } break;
  3638. case LLM_ARCH_MAMBA2:
  3639. {
  3640. const int64_t d_conv = hparams.ssm_d_conv;
  3641. const int64_t d_inner = hparams.ssm_d_inner;
  3642. const int64_t d_state = hparams.ssm_d_state;
  3643. const int64_t n_head = hparams.ssm_dt_rank;
  3644. const int64_t n_group = hparams.ssm_n_group;
  3645. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;
  3646. // only an expansion factor of 2 is supported for now
  3647. GGML_ASSERT(2 * n_embd == d_inner);
  3648. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3649. // output
  3650. {
  3651. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3652. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3653. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3654. if (output == NULL) {
  3655. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3656. }
  3657. }
  3658. for (int i = 0; i < n_layer; ++i) {
  3659. auto & layer = layers[i];
  3660. // norm
  3661. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3662. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  3663. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  3664. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);
  3665. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);
  3666. // no "weight" suffix for these
  3667. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
  3668. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);
  3669. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  3670. // out_proj
  3671. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3672. }
  3673. } break;
  3674. case LLM_ARCH_JAMBA:
  3675. {
  3676. const int64_t d_conv = hparams.ssm_d_conv;
  3677. const int64_t d_inner = hparams.ssm_d_inner;
  3678. const int64_t d_state = hparams.ssm_d_state;
  3679. const int64_t dt_rank = hparams.ssm_dt_rank;
  3680. // only an expansion factor of 2 is supported for now
  3681. GGML_ASSERT(2 * n_embd == d_inner);
  3682. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3683. // output
  3684. {
  3685. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3686. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3687. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3688. if (output == NULL) {
  3689. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3690. }
  3691. }
  3692. for (int i = 0; i < n_layer; ++i) {
  3693. const int64_t n_head_kv = hparams.n_head_kv(i);
  3694. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  3695. auto & layer = layers[i];
  3696. // norm
  3697. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3698. if (n_head_kv == 0) {
  3699. // Mamba layer
  3700. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  3701. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  3702. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  3703. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  3704. layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
  3705. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  3706. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  3707. layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
  3708. layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
  3709. // no "weight" suffix for these
  3710. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  3711. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  3712. // out_proj
  3713. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3714. } else {
  3715. // Attention layers
  3716. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3717. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3718. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3719. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3720. }
  3721. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3722. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
  3723. if (layer.ffn_gate_inp) {
  3724. // MoE
  3725. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3726. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3727. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3728. } else {
  3729. // FFN (no MoE)
  3730. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3731. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3732. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3733. }
  3734. }
  3735. } break;
  3736. case LLM_ARCH_GRANITE_HYBRID:
  3737. {
  3738. // mamba2 Mixer SSM params
  3739. // NOTE: int64_t for tensor dimensions
  3740. const int64_t d_conv = hparams.ssm_d_conv;
  3741. const int64_t d_inner = hparams.ssm_d_inner;
  3742. const int64_t d_state = hparams.ssm_d_state;
  3743. const int64_t n_ssm_head = hparams.ssm_dt_rank;
  3744. const int64_t n_group = hparams.ssm_n_group;
  3745. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
  3746. // only an expansion factor of 2 is supported for now
  3747. GGML_ASSERT(2 * n_embd == d_inner);
  3748. // embeddings
  3749. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3750. // output
  3751. {
  3752. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3753. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3754. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3755. if (output == NULL) {
  3756. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3757. }
  3758. }
  3759. for (int i = 0; i < n_layer; ++i) {
  3760. auto & layer = layers[i];
  3761. // norm
  3762. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3763. if (hparams.is_recurrent(i)) {
  3764. // ssm layers
  3765. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  3766. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  3767. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
  3768. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
  3769. // no "weight" suffix for these
  3770. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
  3771. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
  3772. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  3773. // out_proj
  3774. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3775. } else {
  3776. // attention layers (with optional bias)
  3777. const int64_t n_head_i = hparams.n_head(i);
  3778. const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
  3779. const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
  3780. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
  3781. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
  3782. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
  3783. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
  3784. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3785. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
  3786. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
  3787. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3788. }
  3789. // feed forward (w/ optional biases)
  3790. if (n_expert > 0) {
  3791. // MoE FFN
  3792. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3793. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3794. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3795. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  3796. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  3797. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3798. // For Granite MoE Shared
  3799. if (hparams.n_ff_shexp > 0) {
  3800. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  3801. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  3802. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  3803. }
  3804. } else {
  3805. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3806. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3807. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3808. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3809. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3810. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3811. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3812. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3813. }
  3814. }
  3815. } break;
  3816. case LLM_ARCH_XVERSE:
  3817. {
  3818. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3819. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3820. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3821. for (int i = 0; i < n_layer; ++i) {
  3822. auto & layer = layers[i];
  3823. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3824. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3825. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3826. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3827. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3828. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3829. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3830. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3831. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3832. }
  3833. } break;
  3834. case LLM_ARCH_COMMAND_R:
  3835. {
  3836. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3837. // output
  3838. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3839. // init output from the input tok embed
  3840. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3841. for (int i = 0; i < n_layer; ++i) {
  3842. auto & layer = layers[i];
  3843. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3844. if (n_layer >= 64){
  3845. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3846. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3847. }
  3848. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3849. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3850. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3851. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3852. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3853. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3854. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3855. }
  3856. } break;
  3857. case LLM_ARCH_COHERE2:
  3858. {
  3859. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  3860. // output
  3861. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  3862. // init output from the input tok embed
  3863. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  3864. TENSOR_DUPLICATED);
  3865. for (int i = 0; i < n_layer; ++i) {
  3866. auto & layer = layers[i];
  3867. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  3868. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  3869. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  3870. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  3871. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  3872. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  3873. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  3874. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  3875. }
  3876. }
  3877. break;
  3878. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  3879. {
  3880. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3881. // output
  3882. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3883. // if output is NULL, init from the input tok embed
  3884. if (output == NULL) {
  3885. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3886. }
  3887. for (int i = 0; i < n_layer; ++i) {
  3888. auto & layer = layers[i];
  3889. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3890. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3891. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3892. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3893. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3894. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3895. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3896. }
  3897. } break;
  3898. case LLM_ARCH_OLMO2:
  3899. {
  3900. const int64_t n_embd_head = n_embd / n_head;
  3901. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3902. // output
  3903. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3904. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3905. for (int i = 0; i < n_layer; ++i) {
  3906. auto & layer = layers[i];
  3907. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3908. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3909. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3910. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3911. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  3912. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  3913. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3914. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3915. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3916. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3917. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3918. }
  3919. } break;
  3920. case LLM_ARCH_SEED_OSS:
  3921. {
  3922. const uint32_t head_dim = hparams.n_embd_head_k;
  3923. const int64_t n_qo_dim = n_head * head_dim;
  3924. const int64_t n_kv_dim = n_head_kv * head_dim;
  3925. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3926. // output
  3927. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3928. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3929. // if output is NULL, init from the input tok embed
  3930. if (output == NULL) {
  3931. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3932. }
  3933. for (int i = 0; i < n_layer; ++i) {
  3934. auto & layer = layers[i];
  3935. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
  3936. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
  3937. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
  3938. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
  3939. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_qo_dim}, TENSOR_NOT_REQUIRED);
  3940. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
  3941. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
  3942. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3943. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3944. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3945. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3946. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3947. }
  3948. } break;
  3949. case LLM_ARCH_OLMOE:
  3950. {
  3951. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3952. // output
  3953. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3954. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3955. for (int i = 0; i < n_layer; ++i) {
  3956. auto & layer = layers[i];
  3957. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3958. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3959. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3960. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3961. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3962. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  3963. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  3964. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3965. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3966. if (n_expert == 0) {
  3967. throw std::runtime_error("n_expert must be > 0");
  3968. }
  3969. if (n_expert_used == 0) {
  3970. throw std::runtime_error("n_expert_used must be > 0");
  3971. }
  3972. // MoE branch
  3973. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3974. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3975. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3976. }
  3977. } break;
  3978. case LLM_ARCH_OPENELM:
  3979. {
  3980. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3981. // output
  3982. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3983. // init output from the input tok embed
  3984. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3985. for (int i = 0; i < n_layer; ++i) {
  3986. const int64_t n_head = hparams.n_head(i);
  3987. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  3988. const int64_t n_ff = hparams.n_ff(i);
  3989. auto & layer = layers[i];
  3990. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3991. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  3992. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3993. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3994. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  3995. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3996. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3997. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3998. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3999. }
  4000. } break;
  4001. case LLM_ARCH_GPTNEOX:
  4002. {
  4003. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4004. // output
  4005. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4006. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4007. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4008. for (int i = 0; i < n_layer; ++i) {
  4009. auto & layer = layers[i];
  4010. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4011. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4012. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  4013. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  4014. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4015. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  4016. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4017. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  4018. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4019. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  4020. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4021. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  4022. }
  4023. } break;
  4024. case LLM_ARCH_ARCTIC:
  4025. {
  4026. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4027. // output
  4028. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4029. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4030. // if output is NULL, init from the input tok embed
  4031. if (output == NULL) {
  4032. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4033. }
  4034. for (int i = 0; i < n_layer; ++i) {
  4035. auto & layer = layers[i];
  4036. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4037. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4038. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4039. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4040. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4041. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4042. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  4043. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  4044. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  4045. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4046. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  4047. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4048. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  4049. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  4050. }
  4051. } break;
  4052. case LLM_ARCH_DEEPSEEK:
  4053. {
  4054. const int64_t n_ff_exp = hparams.n_ff_exp;
  4055. const int64_t n_expert_shared = hparams.n_expert_shared;
  4056. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4057. // output
  4058. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4059. // try to load output.weight, if not found, use token_embd (tied embeddings)
  4060. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4061. if (!output) {
  4062. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4063. }
  4064. for (int i = 0; i < n_layer; ++i) {
  4065. auto & layer = layers[i];
  4066. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4067. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4068. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4069. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4070. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4071. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4072. if (i < (int) hparams.n_layer_dense_lead) {
  4073. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4074. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4075. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4076. } else {
  4077. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4078. if (n_expert == 0) {
  4079. throw std::runtime_error("n_expert must be > 0");
  4080. }
  4081. if (n_expert_used == 0) {
  4082. throw std::runtime_error("n_expert_used must be > 0");
  4083. }
  4084. // MoE branch
  4085. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4086. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4087. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4088. // Shared expert branch
  4089. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4090. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4091. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4092. }
  4093. }
  4094. } break;
  4095. case LLM_ARCH_DEEPSEEK2:
  4096. {
  4097. // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
  4098. const bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
  4099. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  4100. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  4101. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  4102. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  4103. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  4104. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  4105. const int64_t q_lora_rank = hparams.n_lora_q;
  4106. const int64_t kv_lora_rank = hparams.n_lora_kv;
  4107. const int64_t n_ff_exp = hparams.n_ff_exp;
  4108. const int64_t n_expert_shared = hparams.n_expert_shared;
  4109. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4110. // output
  4111. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4112. // try to load output.weight, if not found, use token_embd (tied embeddings)
  4113. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4114. if (!output) {
  4115. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4116. }
  4117. for (int i = 0; i < n_layer; ++i) {
  4118. auto & layer = layers[i];
  4119. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4120. if (!is_lite) {
  4121. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  4122. }
  4123. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  4124. if (!is_lite) {
  4125. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  4126. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  4127. } else {
  4128. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  4129. }
  4130. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  4131. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  4132. if (is_mla) {
  4133. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  4134. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  4135. } else {
  4136. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  4137. }
  4138. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  4139. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4140. if (i < (int) hparams.n_layer_dense_lead) {
  4141. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4142. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4143. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4144. } else {
  4145. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4146. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  4147. if (n_expert == 0) {
  4148. throw std::runtime_error("n_expert must be > 0");
  4149. }
  4150. if (n_expert_used == 0) {
  4151. throw std::runtime_error("n_expert_used must be > 0");
  4152. }
  4153. // MoE branch
  4154. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4155. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4156. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4157. // Shared expert branch
  4158. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4159. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4160. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4161. }
  4162. }
  4163. } break;
  4164. case LLM_ARCH_PLM:
  4165. {
  4166. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  4167. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  4168. const int64_t kv_lora_rank = hparams.n_lora_kv;
  4169. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4170. // output
  4171. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4172. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4173. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4174. for (int i = 0; i < n_layer; ++i) {
  4175. auto & layer = layers[i];
  4176. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4177. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4178. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  4179. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  4180. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  4181. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  4182. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4183. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4184. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4185. }
  4186. } break;
  4187. case LLM_ARCH_BITNET:
  4188. {
  4189. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4190. // output
  4191. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4192. for (int i = 0; i < n_layer; ++i) {
  4193. auto & layer = layers[i];
  4194. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4195. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  4196. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4197. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4198. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4199. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4200. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4201. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4202. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4203. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4204. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4205. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  4206. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4207. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4208. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4209. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4210. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4211. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4212. }
  4213. } break;
  4214. case LLM_ARCH_T5:
  4215. {
  4216. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  4217. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4218. // output
  4219. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4220. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4221. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4222. // if output is NULL, init from the input tok embed
  4223. if (output == NULL) {
  4224. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4225. }
  4226. // n_layer: number of encoder_layers
  4227. // dec_n_layer: number of decoder_layers
  4228. const int dec_n_layer = hparams.dec_n_layer;
  4229. if (dec_n_layer > n_layer) {
  4230. layers.resize(dec_n_layer);
  4231. }
  4232. // load encoder layers
  4233. for (int i = 0; i < n_layer; ++i) {
  4234. auto & layer = layers[i];
  4235. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  4236. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4237. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4238. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4239. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4240. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4241. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  4242. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  4243. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4244. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4245. }
  4246. // load decoder layers
  4247. for (int i = 0; i < dec_n_layer; ++i) {
  4248. auto & layer = layers[i];
  4249. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  4250. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4251. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4252. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4253. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4254. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4255. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  4256. // this tensor seems to be unused in HF transformers implementation
  4257. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4258. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4259. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4260. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4261. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4262. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  4263. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  4264. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4265. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4266. }
  4267. } break;
  4268. case LLM_ARCH_T5ENCODER:
  4269. {
  4270. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  4271. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4272. // output
  4273. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4274. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4275. // if output is NULL, init from the input tok embed
  4276. if (output == NULL) {
  4277. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4278. }
  4279. for (int i = 0; i < n_layer; ++i) {
  4280. auto & layer = layers[i];
  4281. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  4282. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4283. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4284. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4285. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4286. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4287. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  4288. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  4289. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4290. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4291. }
  4292. } break;
  4293. case LLM_ARCH_JAIS:
  4294. {
  4295. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4296. // output
  4297. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4298. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4299. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4300. for (int i = 0; i < n_layer; ++i) {
  4301. auto & layer = layers[i];
  4302. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4303. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4304. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  4305. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  4306. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4307. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  4308. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4309. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  4310. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4311. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  4312. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4313. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  4314. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4315. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  4316. }
  4317. } break;
  4318. case LLM_ARCH_CHATGLM:
  4319. {
  4320. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4321. // output
  4322. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4323. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4324. // if output is NULL, init from the input tok embed
  4325. if (output == NULL) {
  4326. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4327. }
  4328. for (int i = 0; i < n_layer; ++i) {
  4329. auto & layer = layers[i];
  4330. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4331. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4332. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4333. if (layer.wqkv == nullptr) {
  4334. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4335. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4336. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4337. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4338. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4339. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4340. }
  4341. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4342. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4343. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  4344. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4345. }
  4346. } break;
  4347. case LLM_ARCH_GLM4:
  4348. {
  4349. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4350. // output
  4351. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4352. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4353. // if output is NULL, init from the input tok embed
  4354. if (output == NULL) {
  4355. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4356. }
  4357. for (int i = 0; i < n_layer; ++i) {
  4358. auto & layer = layers[i];
  4359. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4360. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4361. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4362. if (layer.wqkv == nullptr) {
  4363. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4364. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4365. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4366. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4367. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4368. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4369. }
  4370. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4371. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4372. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4373. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4374. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  4375. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  4376. }
  4377. } break;
  4378. case LLM_ARCH_GLM4_MOE:
  4379. {
  4380. const int64_t n_expert = hparams.n_expert;
  4381. const int64_t n_expert_used = hparams.n_expert_used;
  4382. const int64_t n_expert_shared = hparams.n_expert_shared;
  4383. GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
  4384. GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");
  4385. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  4386. // output
  4387. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  4388. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  4389. // if output is NULL, init from the input tok embed
  4390. if (output == NULL) {
  4391. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  4392. }
  4393. // Load ALL tensors including NextN layer to satisfy total tensor count
  4394. // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
  4395. for (int i = 0; i < n_layer; ++i) {
  4396. int flags = 0;
  4397. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4398. // skip all tensors in the NextN layers
  4399. flags |= TENSOR_SKIP;
  4400. }
  4401. auto & layer = layers[i];
  4402. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);
  4403. // GLM-style attention with bias terms
  4404. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
  4405. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
  4406. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
  4407. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, TENSOR_NOT_REQUIRED | flags);
  4408. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, TENSOR_NOT_REQUIRED | flags);
  4409. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, TENSOR_NOT_REQUIRED | flags);
  4410. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
  4411. // K/Q norm tensors (optional for GLM-4.5 355B variant)
  4412. layer.attn_q_norm = create_tensor(
  4413. tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
  4414. layer.attn_k_norm = create_tensor(
  4415. tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
  4416. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);
  4417. // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
  4418. // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
  4419. const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);
  4420. if (use_moe) {
  4421. // MoE layers
  4422. layer.ffn_gate_inp =
  4423. create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
  4424. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);
  4425. // MoE branch
  4426. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  4427. layer.ffn_gate_exps = create_tensor(
  4428. tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
  4429. layer.ffn_down_exps = create_tensor(
  4430. tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
  4431. layer.ffn_up_exps = create_tensor(
  4432. tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
  4433. // Shared expert
  4434. if (n_expert_shared > 0) {
  4435. const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
  4436. layer.ffn_gate_shexp = create_tensor(
  4437. tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
  4438. layer.ffn_down_shexp = create_tensor(
  4439. tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
  4440. layer.ffn_up_shexp = create_tensor(
  4441. tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
  4442. }
  4443. } else {
  4444. // Dense layers (first k layers) - GLM uses separate gate/up projections
  4445. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
  4446. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
  4447. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, flags);
  4448. }
  4449. // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
  4450. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4451. layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
  4452. layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
  4453. layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
  4454. // Optional tensors
  4455. layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
  4456. layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
  4457. layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
  4458. }
  4459. }
  4460. }
  4461. break;
  4462. case LLM_ARCH_NEMOTRON:
  4463. {
  4464. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4465. // output
  4466. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4467. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4468. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4469. for (int i = 0; i < n_layer; ++i) {
  4470. auto & layer = layers[i];
  4471. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4472. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4473. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4474. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4475. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4476. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4477. // optional bias tensors
  4478. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4479. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4480. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4481. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4482. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4483. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  4484. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4485. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4486. // optional MLP bias
  4487. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4488. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  4489. }
  4490. } break;
  4491. case LLM_ARCH_NEMOTRON_H:
  4492. case LLM_ARCH_NEMOTRON_H_MOE:
  4493. {
  4494. // mamba2 Mixer SSM params
  4495. // NOTE: int64_t for tensor dimensions
  4496. const int64_t d_conv = hparams.ssm_d_conv;
  4497. const int64_t d_inner = hparams.ssm_d_inner;
  4498. const int64_t d_state = hparams.ssm_d_state;
  4499. const int64_t n_ssm_head = hparams.ssm_dt_rank;
  4500. const int64_t n_group = hparams.ssm_n_group;
  4501. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
  4502. // embeddings
  4503. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4504. // output
  4505. {
  4506. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4507. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4508. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4509. if (output == NULL) {
  4510. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4511. }
  4512. }
  4513. for (int i = 0; i < n_layer; ++i) {
  4514. auto & layer = layers[i];
  4515. // all blocks use the attn norm
  4516. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4517. if (hparams.is_recurrent(i)) {
  4518. // ssm layers
  4519. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  4520. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  4521. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
  4522. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
  4523. // no "weight" suffix for these
  4524. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
  4525. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
  4526. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  4527. // out_proj
  4528. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  4529. } else if (hparams.n_ff(i) == 0) {
  4530. // attention layers (with optional bias)
  4531. const int64_t n_head_i = hparams.n_head(i);
  4532. const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
  4533. const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
  4534. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
  4535. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
  4536. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
  4537. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
  4538. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4539. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
  4540. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
  4541. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4542. } else {
  4543. if (n_expert != 0) {
  4544. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  4545. const int64_t n_ff_shexp = hparams.n_ff_shexp;
  4546. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
  4547. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert }, 0);
  4548. // MoE branch
  4549. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4550. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4551. // Shared expert branch
  4552. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  4553. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
  4554. } else {
  4555. // mlp layers
  4556. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
  4557. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
  4558. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4559. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
  4560. }
  4561. }
  4562. }
  4563. } break;
  4564. case LLM_ARCH_EXAONE:
  4565. {
  4566. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4567. // output
  4568. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4569. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4570. // if output is NULL, init from the input tok embed
  4571. if (output == NULL) {
  4572. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4573. }
  4574. for (int i = 0; i < n_layer; ++i) {
  4575. auto & layer = layers[i];
  4576. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4577. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4578. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4579. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4580. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4581. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4582. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4583. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4584. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4585. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4586. }
  4587. } break;
  4588. case LLM_ARCH_EXAONE4:
  4589. {
  4590. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4591. // output
  4592. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4593. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4594. // if output is NULL, init from the input tok embed
  4595. if (output == NULL) {
  4596. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4597. }
  4598. for (int i = 0; i < n_layer; ++i) {
  4599. auto & layer = layers[i];
  4600. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4601. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4602. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4603. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4604. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4605. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4606. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4607. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4608. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4609. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4610. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4611. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  4612. }
  4613. } break;
  4614. case LLM_ARCH_RWKV6:
  4615. {
  4616. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4617. // Block 0, LN0
  4618. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  4619. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  4620. // output
  4621. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4622. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4623. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4624. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  4625. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  4626. const int head_size = hparams.wkv_head_size;
  4627. const int attn_hidden_size = n_embd;
  4628. const int ffn_size = hparams.n_ff_arr[0];
  4629. for (int i = 0; i < n_layer; ++i) {
  4630. auto & layer = layers[i];
  4631. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4632. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4633. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  4634. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  4635. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  4636. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  4637. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  4638. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4639. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4640. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4641. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4642. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4643. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  4644. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  4645. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  4646. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  4647. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  4648. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  4649. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4650. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4651. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4652. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4653. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  4654. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  4655. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4656. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  4657. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  4658. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  4659. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  4660. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  4661. }
  4662. } break;
  4663. case LLM_ARCH_RWKV6QWEN2:
  4664. {
  4665. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4666. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4667. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  4668. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4669. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  4670. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  4671. const int head_size = hparams.wkv_head_size;
  4672. const int attn_hidden_size = n_embd;
  4673. const int n_head_kv = hparams.n_head_kv();
  4674. int attn_key_value_size;
  4675. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  4676. attn_key_value_size = attn_hidden_size;
  4677. } else {
  4678. attn_key_value_size = n_head_kv * head_size;
  4679. }
  4680. for (int i = 0; i < n_layer; ++i) {
  4681. auto & layer = layers[i];
  4682. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4683. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  4684. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  4685. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  4686. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  4687. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  4688. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  4689. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  4690. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  4691. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  4692. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  4693. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4694. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4695. // optional bias tensors
  4696. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  4697. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  4698. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  4699. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4700. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4701. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4702. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4703. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4704. }
  4705. } break;
  4706. case LLM_ARCH_RWKV7:
  4707. {
  4708. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4709. // Block 0, LN0
  4710. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  4711. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  4712. // output
  4713. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4714. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4715. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4716. const int n_lora_decay = hparams.n_lora_decay;
  4717. const int n_lora_iclr = hparams.n_lora_iclr;
  4718. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  4719. const int n_lora_gate = hparams.n_lora_gate;
  4720. const int attn_hidden_size = n_embd;
  4721. const int ffn_size = hparams.n_ff_arr[0];
  4722. for (int i = 0; i < n_layer; ++i) {
  4723. auto & layer = layers[i];
  4724. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4725. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4726. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  4727. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  4728. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  4729. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  4730. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  4731. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  4732. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4733. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4734. if (i == 0) {
  4735. // actually not used
  4736. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4737. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4738. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4739. } else {
  4740. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4741. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  4742. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  4743. }
  4744. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  4745. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  4746. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  4747. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  4748. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  4749. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  4750. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4751. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4752. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4753. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  4754. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  4755. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4756. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  4757. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  4758. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  4759. }
  4760. } break;
  4761. case LLM_ARCH_ARWKV7:
  4762. {
  4763. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4764. // output
  4765. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4766. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4767. const int n_lora_decay = hparams.n_lora_decay;
  4768. const int n_lora_iclr = hparams.n_lora_iclr;
  4769. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  4770. const int n_lora_gate = hparams.n_lora_gate;
  4771. const int attn_hidden_size = n_embd;
  4772. for (int i = 0; i < n_layer; ++i) {
  4773. auto & layer = layers[i];
  4774. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4775. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  4776. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  4777. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  4778. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  4779. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4780. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4781. if (i == 0) {
  4782. // actually not used
  4783. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4784. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4785. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4786. } else {
  4787. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4788. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  4789. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  4790. }
  4791. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  4792. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  4793. try {
  4794. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  4795. } catch(std::runtime_error & e) {
  4796. // ARWKV models may not have gate tensors
  4797. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  4798. }
  4799. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  4800. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  4801. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  4802. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4803. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4804. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4805. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4806. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4807. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4808. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4809. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4810. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4811. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4812. }
  4813. } break;
  4814. case LLM_ARCH_CHAMELEON:
  4815. {
  4816. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4817. // output
  4818. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4819. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4820. // if output is NULL, init from the input tok embed
  4821. if (output == NULL) {
  4822. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4823. }
  4824. for (int i = 0; i < n_layer; ++i) {
  4825. auto & layer = layers[i];
  4826. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4827. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  4828. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  4829. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  4830. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  4831. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4832. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4833. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4834. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4835. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4836. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4837. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4838. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4839. }
  4840. } break;
  4841. case LLM_ARCH_WAVTOKENIZER_DEC:
  4842. {
  4843. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  4844. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  4845. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  4846. // posnet
  4847. {
  4848. const int64_t n_embd = hparams.posnet.n_embd;
  4849. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  4850. auto & layer = layers[i].posnet;
  4851. // posnet:
  4852. //
  4853. // - resnet
  4854. // - resnet
  4855. // - attn
  4856. // - resnet
  4857. // - resnet
  4858. // - norm
  4859. //
  4860. switch (i) {
  4861. case 0:
  4862. case 1:
  4863. case 3:
  4864. case 4:
  4865. {
  4866. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  4867. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  4868. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  4869. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  4870. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  4871. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  4872. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  4873. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  4874. } break;
  4875. case 2:
  4876. {
  4877. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  4878. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  4879. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  4880. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  4881. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  4882. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  4883. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  4884. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  4885. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  4886. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  4887. } break;
  4888. case 5:
  4889. {
  4890. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  4891. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  4892. } break;
  4893. default: GGML_ABORT("unknown posnet layer");
  4894. };
  4895. }
  4896. }
  4897. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  4898. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  4899. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  4900. // convnext
  4901. {
  4902. const int64_t n_embd = hparams.convnext.n_embd;
  4903. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  4904. auto & layer = layers[i].convnext;
  4905. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  4906. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  4907. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  4908. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  4909. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  4910. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  4911. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  4912. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  4913. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  4914. }
  4915. // output
  4916. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4917. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4918. }
  4919. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  4920. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  4921. } break;
  4922. case LLM_ARCH_BAILINGMOE:
  4923. {
  4924. const int64_t n_ff_exp = hparams.n_ff_exp;
  4925. const int64_t n_expert_shared = hparams.n_expert_shared;
  4926. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4927. // output
  4928. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4929. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4930. for (int i = 0; i < n_layer; ++i) {
  4931. auto & layer = layers[i];
  4932. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4933. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  4934. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4935. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4936. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  4937. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4938. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4939. if (n_expert == 0) {
  4940. throw std::runtime_error("n_expert must be > 0");
  4941. }
  4942. if (n_expert_used == 0) {
  4943. throw std::runtime_error("n_expert_used must be > 0");
  4944. }
  4945. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4946. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4947. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4948. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4949. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4950. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4951. }
  4952. } break;
  4953. case LLM_ARCH_BAILINGMOE2:
  4954. {
  4955. const int64_t n_ff_exp = hparams.n_ff_exp;
  4956. const int64_t n_expert_shared = hparams.n_expert_shared;
  4957. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4958. // output
  4959. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4960. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4961. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
  4962. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");
  4963. for (int i = 0; i < n_layer; ++i) {
  4964. int flags = 0;
  4965. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4966. // skip all tensors in the NextN layers
  4967. flags |= TENSOR_SKIP;
  4968. }
  4969. auto & layer = layers[i];
  4970. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
  4971. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
  4972. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);
  4973. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
  4974. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
  4975. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
  4976. if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
  4977. const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;
  4978. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
  4979. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
  4980. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
  4981. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
  4982. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
  4983. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
  4984. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
  4985. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
  4986. } else { // Dense layers
  4987. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
  4988. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
  4989. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
  4990. }
  4991. // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
  4992. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4993. layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
  4994. layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
  4995. layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
  4996. layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
  4997. layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
  4998. layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
  4999. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
  5000. }
  5001. }
  5002. } break;
  5003. case LLM_ARCH_DOTS1:
  5004. {
  5005. const int64_t n_ff_exp = hparams.n_ff_exp;
  5006. const int64_t n_expert_shared = hparams.n_expert_shared;
  5007. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5008. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5009. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  5010. for (int i = 0; i < n_layer; ++i) {
  5011. auto & layer = layers[i];
  5012. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5013. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5014. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5015. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5016. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5017. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5018. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5019. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5020. if (i < (int) hparams.n_layer_dense_lead) {
  5021. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5022. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5023. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5024. } else {
  5025. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5026. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  5027. if (n_expert == 0) {
  5028. throw std::runtime_error("n_expert must be > 0");
  5029. }
  5030. if (n_expert_used == 0) {
  5031. throw std::runtime_error("n_expert_used must be > 0");
  5032. }
  5033. // MoE branch
  5034. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5035. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  5036. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5037. // Shared expert branch
  5038. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  5039. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  5040. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  5041. }
  5042. }
  5043. } break;
  5044. case LLM_ARCH_ARCEE:
  5045. {
  5046. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5047. // output
  5048. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5049. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5050. // if output is NULL, init from the input tok embed
  5051. if (output == NULL) {
  5052. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5053. }
  5054. for (int i = 0; i < n_layer; ++i) {
  5055. auto & layer = layers[i];
  5056. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5057. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5058. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5059. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5060. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5061. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5062. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5063. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5064. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5065. }
  5066. } break;
  5067. case LLM_ARCH_AFMOE:
  5068. {
  5069. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5070. // output
  5071. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5072. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5073. // if output is NULL, init from the input tok embed
  5074. if (output == NULL) {
  5075. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5076. }
  5077. const int64_t n_ff_exp = hparams.n_ff_exp;
  5078. const int64_t n_expert_shared = hparams.n_expert_shared;
  5079. for (int i = 0; i < n_layer; ++i) {
  5080. auto & layer = layers[i];
  5081. // dual attention normalization
  5082. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5083. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  5084. // attention projections
  5085. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5086. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5087. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5088. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5089. // Q/K normalization
  5090. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5091. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5092. // attention gating
  5093. layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5094. // dual ffn normalization
  5095. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5096. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  5097. if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
  5098. // MoE layers
  5099. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5100. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
  5101. // grouped expert weights
  5102. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  5103. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  5104. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  5105. // shared expert
  5106. if (n_expert_shared > 0) {
  5107. const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
  5108. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
  5109. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  5110. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
  5111. }
  5112. } else {
  5113. // Dense layers
  5114. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5115. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  5116. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5117. }
  5118. }
  5119. } break;
  5120. case LLM_ARCH_ERNIE4_5:
  5121. case LLM_ARCH_ERNIE4_5_MOE:
  5122. {
  5123. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5124. // output
  5125. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5126. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5127. // if output is NULL, init from the input tok embed
  5128. if (output == NULL) {
  5129. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5130. }
  5131. for (int i = 0; i < n_layer; ++i) {
  5132. auto & layer = layers[i];
  5133. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5134. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5135. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  5136. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  5137. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5138. // optional bias tensors
  5139. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  5140. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  5141. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  5142. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  5143. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5144. if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
  5145. int n_ff_exp = hparams.n_ff_exp;
  5146. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5147. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  5148. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  5149. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  5150. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  5151. // Shared expert (if present)
  5152. if (hparams.n_ff_shexp > 0) {
  5153. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
  5154. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd }, 0);
  5155. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
  5156. }
  5157. } else { // Dense layers
  5158. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5159. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5160. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5161. }
  5162. }
  5163. } break;
  5164. case LLM_ARCH_FALCON_H1:
  5165. {
  5166. // Common
  5167. const int64_t hidden_size = hparams.n_embd; // hidden_size
  5168. // mamba2 Mixer SSM params
  5169. const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
  5170. const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
  5171. const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
  5172. const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
  5173. const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
  5174. const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
  5175. const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
  5176. // attn params
  5177. const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
  5178. const int64_t attn_num_key_value_head = hparams.n_head_kv(0);
  5179. // ffn params
  5180. const int64_t ffn_intermediate_size = hparams.n_ff(0);
  5181. // embeddings
  5182. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);
  5183. // output
  5184. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
  5185. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);
  5186. // if output is NULL, init from the input tok embed
  5187. if (output == NULL) {
  5188. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
  5189. }
  5190. for (int i = 0; i < n_layer; ++i) {
  5191. auto & layer = layers[i];
  5192. /*SSM LAYERS*/
  5193. // ssm in
  5194. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
  5195. // ssm 1d conv
  5196. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
  5197. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
  5198. // ssm_dt
  5199. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
  5200. // no "weight" suffix for these
  5201. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
  5202. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
  5203. // ssm_norm
  5204. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
  5205. // out_proj
  5206. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);
  5207. /*ATTENTION LAYERS*/
  5208. // attention layers (with optional bias)
  5209. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
  5210. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
  5211. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
  5212. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
  5213. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  5214. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
  5215. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
  5216. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  5217. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);
  5218. // feed forward (w/ optional biases)
  5219. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
  5220. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5221. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
  5222. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { ffn_intermediate_size, hidden_size}, 0);
  5223. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
  5224. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
  5225. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  5226. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
  5227. }
  5228. } break;
  5229. case LLM_ARCH_HUNYUAN_MOE:
  5230. {
  5231. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5232. // output
  5233. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5234. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5235. // if output is NULL, init from the input tok embed
  5236. if (output == NULL) {
  5237. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5238. }
  5239. for (int i = 0; i < n_layer; ++i) {
  5240. auto & layer = layers[i];
  5241. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5242. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5243. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5244. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5245. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5246. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5247. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5248. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5249. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5250. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5251. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  5252. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5253. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  5254. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  5255. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  5256. }
  5257. } break;
  5258. case LLM_ARCH_HUNYUAN_DENSE:
  5259. {
  5260. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5261. // output
  5262. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5263. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5264. // if output is NULL, init from the input tok embed
  5265. if (output == NULL) {
  5266. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5267. }
  5268. for (int i = 0; i < n_layer; ++i) {
  5269. auto & layer = layers[i];
  5270. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5271. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5272. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5273. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5274. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5275. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5276. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5277. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5278. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5279. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5280. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5281. }
  5282. } break;
  5283. case LLM_ARCH_SMOLLM3:
  5284. {
  5285. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5286. // output
  5287. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5288. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5289. // if output is NULL, init from the input tok embed
  5290. if (output == NULL) {
  5291. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5292. }
  5293. for (int i = 0; i < n_layer; ++i) {
  5294. auto & layer = layers[i];
  5295. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5296. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5297. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5298. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5299. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5300. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5301. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5302. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5303. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5304. }
  5305. } break;
  5306. case LLM_ARCH_OPENAI_MOE:
  5307. {
  5308. const int64_t n_ff_exp = hparams.n_ff_exp;
  5309. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5310. // output
  5311. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5312. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  5313. for (int i = 0; i < n_layer; ++i) {
  5314. auto & layer = layers[i];
  5315. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5316. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  5317. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  5318. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  5319. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  5320. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  5321. layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);
  5322. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
  5323. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5324. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  5325. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5326. // bias
  5327. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_head * n_rot}, 0);
  5328. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_head_kv * n_rot}, 0);
  5329. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_head_kv * n_rot}, 0);
  5330. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  5331. layer.ffn_gate_inp_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "bias", i), {n_expert}, 0);
  5332. layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
  5333. layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), { n_embd, n_expert}, 0);
  5334. layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
  5335. }
  5336. } break;
  5337. case LLM_ARCH_LFM2:
  5338. case LLM_ARCH_LFM2MOE:
  5339. {
  5340. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5341. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM_LFM2, "weight"), {n_embd}, 0);
  5342. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5343. if (output == NULL) {
  5344. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5345. }
  5346. for (int i = 0; i < n_layer; ++i) {
  5347. auto & layer = layers[i];
  5348. const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
  5349. // ffn/moe is same for transformer and conv layers
  5350. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5351. if (is_moe_layer) {
  5352. GGML_ASSERT(n_expert && n_expert_used);
  5353. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5354. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
  5355. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp, n_embd, n_expert}, 0);
  5356. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
  5357. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
  5358. } else { // dense
  5359. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5360. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5361. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5362. }
  5363. // for operator_norm
  5364. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5365. if (!hparams.is_recurrent(i)) {
  5366. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5367. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5368. GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa);
  5369. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  5370. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0);
  5371. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0);
  5372. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  5373. } else {
  5374. layer.shortconv.conv = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV, "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0);
  5375. layer.shortconv.in_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ, "weight", i), {n_embd, 3 * n_embd}, 0);
  5376. layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
  5377. }
  5378. }
  5379. } break;
  5380. case LLM_ARCH_SMALLTHINKER:
  5381. {
  5382. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5383. // output
  5384. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5385. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5386. // if output is NULL, init from the input tok embed
  5387. if (output == NULL) {
  5388. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5389. }
  5390. for (int i = 0; i < n_layer; ++i) {
  5391. auto & layer = layers[i];
  5392. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5393. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5394. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5395. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5396. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5397. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  5398. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
  5399. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");
  5400. // MoE branch
  5401. const int64_t n_ff_exp = hparams.n_ff_exp;
  5402. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
  5403. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5404. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
  5405. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5406. }
  5407. } break;
  5408. case LLM_ARCH_GROVEMOE:
  5409. {
  5410. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5411. // output
  5412. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5413. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5414. // if output is NULL, init from the input tok embed
  5415. if (output == NULL) {
  5416. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5417. }
  5418. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for GROVEMOE");
  5419. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for GROVEMOE");
  5420. GGML_ASSERT(hparams.n_group_experts > 0 && "n_group_experts must be > 0 for GROVEMOE");
  5421. for (int i = 0; i < n_layer; ++i) {
  5422. auto & layer = layers[i];
  5423. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5424. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5425. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  5426. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  5427. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5428. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5429. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5430. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5431. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5432. // MoE branch
  5433. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  5434. const int64_t n_ff_chexp = hparams.n_ff_chexp ? hparams.n_ff_chexp : n_embd_head_k;
  5435. const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
  5436. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5437. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  5438. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5439. layer.ffn_gate_chexps = create_tensor(tn(LLM_TENSOR_FFN_GATE_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
  5440. layer.ffn_down_chexps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_CHEXPS, "weight", i), {n_ff_chexp, n_embd, n_chunk_expert}, 0);
  5441. layer.ffn_up_chexps = create_tensor(tn(LLM_TENSOR_FFN_UP_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
  5442. }
  5443. } break;
  5444. case LLM_ARCH_APERTUS:
  5445. {
  5446. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5447. // output
  5448. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5449. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  5450. for (int i = 0; i < n_layer; ++i) {
  5451. auto & layer = layers[i];
  5452. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5453. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  5454. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5455. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5456. } else {
  5457. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5458. }
  5459. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5460. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5461. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5462. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5463. // optional bias tensors
  5464. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  5465. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
  5466. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
  5467. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  5468. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  5469. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  5470. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  5471. // Q and K layernorms for Apertus
  5472. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
  5473. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
  5474. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
  5475. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
  5476. }
  5477. } break;
  5478. case LLM_ARCH_MINIMAX_M2:
  5479. {
  5480. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5481. // output
  5482. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5483. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  5484. for (int i = 0; i < n_layer; ++i) {
  5485. auto & layer = layers[i];
  5486. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5487. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5488. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5489. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5490. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5491. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0);
  5492. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_k_gqa}, 0);
  5493. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5494. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5495. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5496. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  5497. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5498. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
  5499. }
  5500. } break;
  5501. case LLM_ARCH_COGVLM:
  5502. {
  5503. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5504. // output
  5505. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5506. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5507. // if output is NULL, init from the input tok embed
  5508. if (output == NULL) {
  5509. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5510. }
  5511. for (int i = 0; i < n_layer; ++i) {
  5512. auto & layer = layers[i];
  5513. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5514. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
  5515. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5516. layer.visexp_attn_wqkv = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
  5517. layer.visexp_attn_wo = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5518. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5519. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5520. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5521. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5522. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5523. layer.visexp_ffn_gate = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5524. layer.visexp_ffn_down = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5525. layer.visexp_ffn_up = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5526. }
  5527. } break;
  5528. case LLM_ARCH_PANGU_EMBED:
  5529. {
  5530. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5531. // output
  5532. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5533. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5534. // if output is NULL, init from the input tok embed
  5535. if (output == NULL) {
  5536. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5537. }
  5538. for (int i = 0; i < n_layer; ++i) {
  5539. auto & layer = layers[i];
  5540. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5541. // weight tensors
  5542. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5543. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5544. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5545. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5546. // bias tensors
  5547. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd_head_k * n_head}, 0);
  5548. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  5549. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  5550. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  5551. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5552. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  5553. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5554. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5555. } else {
  5556. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5557. }
  5558. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5559. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5560. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5561. }
  5562. } break;
  5563. case LLM_ARCH_QWEN3NEXT:
  5564. {
  5565. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5566. // output
  5567. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5568. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  5569. // if output is NULL, init from the input tok embed
  5570. if (output == NULL) {
  5571. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  5572. }
  5573. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  5574. // Calculate dimensions from hyperparameters
  5575. const int64_t head_k_dim = hparams.ssm_d_state;
  5576. const int64_t head_v_dim = hparams.ssm_d_state;
  5577. const int64_t n_k_heads = hparams.ssm_n_group;
  5578. const int64_t n_v_heads = hparams.ssm_dt_rank;
  5579. const int64_t key_dim = head_k_dim * n_k_heads;
  5580. const int64_t value_dim = head_v_dim * n_v_heads;
  5581. const int64_t conv_dim = key_dim * 2 + value_dim;
  5582. // Calculate projection sizes
  5583. const int64_t qkvz_dim = key_dim * 2 + value_dim * 2;
  5584. const int64_t ba_dim = n_v_heads * 2;
  5585. for (int i = 0; i < n_layer; ++i) {
  5586. auto & layer = layers[i];
  5587. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5588. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
  5589. if (!hparams.is_recurrent(i)) {
  5590. // Attention layers
  5591. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
  5592. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
  5593. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
  5594. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5595. // Q/K normalization for attention layers
  5596. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
  5597. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
  5598. } else {
  5599. // Linear attention (gated delta net) specific tensors
  5600. // Create tensors with calculated dimensions
  5601. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, qkvz_dim }, 0);
  5602. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
  5603. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
  5604. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
  5605. layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
  5606. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
  5607. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
  5608. }
  5609. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
  5610. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5611. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
  5612. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5613. // Shared experts
  5614. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
  5615. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
  5616. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
  5617. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
  5618. }
  5619. } break;
  5620. case LLM_ARCH_MIMO2:
  5621. {
  5622. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5623. // output
  5624. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5625. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  5626. for (int i = 0; i < n_layer; ++i) {
  5627. auto & layer = layers[i];
  5628. uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  5629. uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  5630. uint32_t n_head = hparams.n_head(i);
  5631. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5632. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
  5633. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
  5634. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_v * n_head, n_embd }, 0);
  5635. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5636. layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, TENSOR_NOT_REQUIRED);
  5637. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5638. // non-MoE branch
  5639. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  5640. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, TENSOR_NOT_REQUIRED);
  5641. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  5642. // MoE branch
  5643. int64_t n_ff_exp = hparams.n_ff_exp;
  5644. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
  5645. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  5646. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, TENSOR_NOT_REQUIRED);
  5647. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  5648. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  5649. }
  5650. } break;
  5651. default:
  5652. throw std::runtime_error("unknown architecture");
  5653. }
  5654. if (n_moved_tensors > 0) {
  5655. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  5656. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  5657. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  5658. }
  5659. }
  5660. ml.done_getting_tensors();
  5661. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  5662. pimpl->mappings.reserve(ml.mappings.size());
  5663. // create the backend buffers
  5664. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
  5665. ctx_buf_maps.reserve(ctx_map.size());
  5666. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5667. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5668. pimpl->ctxs_bufs.reserve(n_max_backend_buffer);
  5669. for (auto & [buft, ctx_ptr] : ctx_map) {
  5670. ggml_context * ctx = ctx_ptr.get();
  5671. // skip contexts without tensors
  5672. if (ggml_get_first_tensor(ctx) == nullptr) {
  5673. continue;
  5674. }
  5675. llama_buf_map buf_map;
  5676. buf_map.reserve(n_max_backend_buffer);
  5677. // check if it is possible to use buffer_from_host_ptr with this buffer type
  5678. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  5679. if (!dev) {
  5680. // FIXME: workaround for CPU backend buft having a NULL device
  5681. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  5682. if (!dev) {
  5683. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  5684. }
  5685. }
  5686. ggml_backend_dev_props props;
  5687. ggml_backend_dev_get_props(dev, &props);
  5688. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  5689. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  5690. std::vector<ggml_backend_buffer_ptr> bufs;
  5691. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  5692. GGML_ASSERT(!ml.no_alloc);
  5693. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5694. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5695. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer,
  5696. // then we could just use metal for all layers
  5697. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5698. void * addr = nullptr;
  5699. size_t first, last; // NOLINT
  5700. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5701. if (first >= last) {
  5702. continue;
  5703. }
  5704. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5705. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  5706. if (buf == nullptr) {
  5707. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  5708. }
  5709. bufs.emplace_back(buf);
  5710. buf_map.emplace(idx, buf);
  5711. }
  5712. } else {
  5713. ggml_backend_buffer_t buf;
  5714. if (ml.no_alloc) {
  5715. buf = ggml_backend_buft_alloc_buffer(buft, /*size =*/ 0); // dummy buffer
  5716. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  5717. t->buffer = buf; // set dummy buffer for weights so that the backend scheduler won't try to allocate them
  5718. }
  5719. } else {
  5720. buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); // real buffer
  5721. }
  5722. if (buf == nullptr) {
  5723. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  5724. }
  5725. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5726. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  5727. auto & mlock_buf = pimpl->mlock_bufs.back();
  5728. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5729. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5730. }
  5731. bufs.emplace_back(buf);
  5732. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5733. buf_map.emplace(idx, buf);
  5734. }
  5735. }
  5736. pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), std::move(bufs));
  5737. for (auto & buf : buf_map) {
  5738. // indicate that this buffer contains weights
  5739. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  5740. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5741. }
  5742. ctx_buf_maps.emplace_back(ctx, buf_map);
  5743. }
  5744. if (llama_supports_gpu_offload()) {
  5745. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5746. int n_repeating = n_gpu;
  5747. if (n_repeating > 0) {
  5748. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  5749. n_repeating--;
  5750. }
  5751. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_repeating);
  5752. const int max_backend_supported_layers = hparams.n_layer + 1;
  5753. const int max_offloadable_layers = hparams.n_layer + 1;
  5754. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5755. }
  5756. // print memory requirements per buffer type
  5757. for (auto & [_, bufs] : pimpl->ctxs_bufs) {
  5758. for (auto & buf: bufs) {
  5759. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n",
  5760. __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  5761. }
  5762. }
  5763. // populate tensors_by_name
  5764. for (auto & [ctx, _] : pimpl->ctxs_bufs) {
  5765. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  5766. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5767. }
  5768. }
  5769. if (ml.no_alloc) {
  5770. return true;
  5771. }
  5772. // load tensor data
  5773. for (auto & [ctx, buf_map] : ctx_buf_maps) {
  5774. if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  5775. return false;
  5776. }
  5777. }
  5778. if (use_mmap_buffer) {
  5779. for (auto & mapping : ml.mappings) {
  5780. pimpl->mappings.emplace_back(std::move(mapping));
  5781. }
  5782. }
  5783. return true;
  5784. }
  5785. std::string llama_model::arch_name() const {
  5786. return llm_arch_name(arch);
  5787. }
  5788. std::string llama_model::type_name() const {
  5789. return llm_type_name(type);
  5790. }
  5791. std::string llama_model::desc() const {
  5792. return pimpl->desc_str;
  5793. }
  5794. size_t llama_model::size() const {
  5795. return pimpl->n_bytes;
  5796. }
  5797. size_t llama_model::n_tensors() const {
  5798. return tensors_by_name.size();
  5799. }
  5800. size_t llama_model::n_devices() const {
  5801. return devices.size();
  5802. }
  5803. uint32_t llama_model::n_gpu_layers() const {
  5804. return params.n_gpu_layers >= 0 ? params.n_gpu_layers : hparams.n_layer + 1;
  5805. }
  5806. llama_split_mode llama_model::split_mode() const {
  5807. return params.split_mode;
  5808. }
  5809. std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
  5810. std::map<ggml_backend_buffer_type_t, size_t> ret;
  5811. for (const auto & [ctx, bufs] : pimpl->ctxs_bufs) {
  5812. if (hparams.no_alloc) {
  5813. GGML_ASSERT(bufs.size() == 1);
  5814. ggml_backend_buffer_t buf = bufs[0].get();
  5815. GGML_ASSERT(ggml_backend_buffer_get_base(buf) == nullptr);
  5816. ggml_backend_buffer_type_t buft = ggml_backend_buffer_get_type(buf);
  5817. ret[buft] += ggml_backend_alloc_ctx_tensors_from_buft_size(ctx.get(), buft);
  5818. } else {
  5819. for (const auto & buf : bufs) {
  5820. // GGML_ASSERT(ggml_backend_buffer_get_base(buf.get()) != nullptr); // multi_buffer does not have a defined base
  5821. ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
  5822. }
  5823. }
  5824. }
  5825. return ret;
  5826. }
  5827. uint64_t llama_model::n_elements() const {
  5828. return pimpl->n_elements;
  5829. }
  5830. void llama_model::print_info() const {
  5831. const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
  5832. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  5833. bool is_var = false;
  5834. std::vector<uint32_t> v;
  5835. for (uint32_t i = 0; i < n; ++i) {
  5836. v.push_back(f(i));
  5837. if (v[i] != v[0]) {
  5838. is_var = true;
  5839. }
  5840. }
  5841. std::stringstream ss;
  5842. if (is_var) {
  5843. ss << "[";
  5844. for (uint32_t i = 0; i < n; ++i) {
  5845. ss << v[i];
  5846. if (i < n - 1) {
  5847. ss << ", ";
  5848. }
  5849. }
  5850. ss << "]";
  5851. } else {
  5852. ss << v[0];
  5853. }
  5854. return ss.str();
  5855. };
  5856. // hparams
  5857. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  5858. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  5859. LLAMA_LOG_INFO("%s: no_alloc = %d\n", __func__, hparams.no_alloc);
  5860. if (!hparams.vocab_only) {
  5861. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  5862. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  5863. LLAMA_LOG_INFO("%s: n_embd_inp = %u\n", __func__, hparams.n_embd_inp());
  5864. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  5865. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  5866. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  5867. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  5868. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  5869. LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any());
  5870. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  5871. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  5872. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  5873. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  5874. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  5875. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  5876. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  5877. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  5878. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  5879. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  5880. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  5881. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  5882. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  5883. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  5884. LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
  5885. LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
  5886. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  5887. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  5888. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  5889. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  5890. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  5891. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  5892. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  5893. LLAMA_LOG_INFO("%s: rope_yarn_log_mul= %.4f\n", __func__, hparams.rope_yarn_log_mul);
  5894. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  5895. // MRoPE (Multi-axis Rotary Position Embedding) sections
  5896. if (const auto & s = hparams.rope_sections; s[0] || s[1] || s[2] || s[3]) {
  5897. LLAMA_LOG_INFO("%s: mrope sections = [%d, %d, %d, %d]\n", __func__, s[0], s[1], s[2], s[3]);
  5898. }
  5899. if (!classifier_labels.empty()) {
  5900. LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
  5901. size_t i = 0;
  5902. for (auto label : classifier_labels) {
  5903. LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str());
  5904. }
  5905. }
  5906. }
  5907. if (arch == LLM_ARCH_MAMBA ||
  5908. arch == LLM_ARCH_MAMBA2 ||
  5909. arch == LLM_ARCH_JAMBA ||
  5910. arch == LLM_ARCH_FALCON_H1 ||
  5911. arch == LLM_ARCH_PLAMO2 ||
  5912. arch == LLM_ARCH_GRANITE_HYBRID ||
  5913. arch == LLM_ARCH_QWEN3NEXT ||
  5914. arch == LLM_ARCH_NEMOTRON_H ||
  5915. arch == LLM_ARCH_NEMOTRON_H_MOE) {
  5916. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  5917. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  5918. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  5919. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  5920. LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
  5921. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  5922. }
  5923. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  5924. if (pimpl->n_elements >= 1e12) {
  5925. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  5926. } else if (pimpl->n_elements >= 1e9) {
  5927. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  5928. } else if (pimpl->n_elements >= 1e6) {
  5929. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  5930. } else {
  5931. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  5932. }
  5933. // general kv
  5934. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  5935. if (arch == LLM_ARCH_DEEPSEEK) {
  5936. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5937. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5938. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5939. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5940. }
  5941. if (arch == LLM_ARCH_DEEPSEEK2) {
  5942. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5943. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  5944. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  5945. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  5946. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  5947. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5948. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5949. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5950. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5951. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5952. }
  5953. if (arch == LLM_ARCH_QWEN2MOE) {
  5954. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5955. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5956. }
  5957. if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
  5958. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5959. }
  5960. if (arch == LLM_ARCH_MINICPM ||
  5961. arch == LLM_ARCH_GRANITE ||
  5962. arch == LLM_ARCH_GRANITE_MOE ||
  5963. arch == LLM_ARCH_GRANITE_HYBRID ||
  5964. arch == LLM_ARCH_NEMOTRON_H_MOE) {
  5965. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  5966. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  5967. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  5968. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5969. }
  5970. if (arch == LLM_ARCH_BAILINGMOE) {
  5971. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5972. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5973. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5974. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5975. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5976. }
  5977. if (arch == LLM_ARCH_BAILINGMOE2) {
  5978. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5979. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5980. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5981. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5982. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5983. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5984. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5985. LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers);
  5986. }
  5987. if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
  5988. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5989. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5990. }
  5991. if (arch == LLM_ARCH_GROVEMOE) {
  5992. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5993. LLAMA_LOG_INFO("%s: n_ff_chexp = %d\n", __func__, hparams.n_ff_chexp);
  5994. LLAMA_LOG_INFO("%s: n_group_experts = %d\n", __func__, hparams.n_group_experts);
  5995. LLAMA_LOG_INFO("%s: expert_group_scale = %.2f\n", __func__, hparams.expert_group_scale);
  5996. }
  5997. vocab.print_info();
  5998. }
  5999. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  6000. return pimpl->dev_layer.at(il).dev;
  6001. }
  6002. ggml_backend_dev_t llama_model::dev_output() const {
  6003. return pimpl->dev_output.dev;
  6004. }
  6005. template<typename F>
  6006. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  6007. ggml_init_params params = {
  6008. /*.mem_size =*/ ggml_tensor_overhead()*8,
  6009. /*.mem_buffer =*/ NULL,
  6010. /*.no_alloc =*/ true,
  6011. };
  6012. ggml_context_ptr ctx { ggml_init(params) };
  6013. if (!ctx) {
  6014. throw std::runtime_error(format("failed to create ggml context"));
  6015. }
  6016. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  6017. ggml_tensor * op_tensor = fn(ctx.get());
  6018. for (int i = 0; i < GGML_MAX_SRC; i++) {
  6019. if (op_tensor->src[i] != nullptr) {
  6020. assert(op_tensor->src[i]->buffer == nullptr);
  6021. op_tensor->src[i]->buffer = buf.get();
  6022. }
  6023. }
  6024. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  6025. return op_supported;
  6026. }
  6027. template<typename F>
  6028. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  6029. for (const auto & cur : buft_list) {
  6030. ggml_backend_dev_t cur_dev = cur.first;
  6031. ggml_backend_buffer_type_t cur_buft = cur.second;
  6032. if (buft_supported(cur_buft, cur_dev, fn)) {
  6033. return cur_buft;
  6034. }
  6035. }
  6036. throw std::runtime_error(format("no suitable buffer type found"));
  6037. }
  6038. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  6039. return ::select_buft(
  6040. *pimpl->dev_layer.at(il).buft_list,
  6041. [&](ggml_context * ctx) {
  6042. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  6043. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  6044. return ggml_add(ctx, cur, layer_dir);
  6045. });
  6046. }
  6047. bool llama_model::has_tensor_overrides() const {
  6048. return pimpl->has_tensor_overrides;
  6049. }
  6050. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  6051. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  6052. [name](const std::pair<std::string, ggml_tensor *> & it) {
  6053. return it.first == name;
  6054. });
  6055. if (it == tensors_by_name.end()) {
  6056. return nullptr;
  6057. }
  6058. return it->second;
  6059. }
  6060. float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
  6061. return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6062. }
  6063. float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
  6064. return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6065. }
  6066. ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
  6067. const uint32_t n_ctx_seq = cparams.n_ctx_seq;
  6068. // choose long/short freq factors based on the context size
  6069. if (layers[il].rope_freqs != nullptr) {
  6070. return layers[il].rope_freqs;
  6071. }
  6072. if (n_ctx_seq > hparams.n_ctx_orig_yarn) {
  6073. return layers[il].rope_long;
  6074. }
  6075. return layers[il].rope_short;
  6076. }
  6077. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const {
  6078. llama_memory_i * res;
  6079. switch (arch) {
  6080. // Models that need specific instantiation should be handled in the
  6081. // switch statement
  6082. case LLM_ARCH_BERT:
  6083. case LLM_ARCH_JINA_BERT_V2:
  6084. case LLM_ARCH_JINA_BERT_V3:
  6085. case LLM_ARCH_NOMIC_BERT:
  6086. case LLM_ARCH_NOMIC_BERT_MOE:
  6087. case LLM_ARCH_NEO_BERT:
  6088. case LLM_ARCH_WAVTOKENIZER_DEC:
  6089. case LLM_ARCH_MODERN_BERT:
  6090. case LLM_ARCH_GEMMA_EMBEDDING:
  6091. case LLM_ARCH_DREAM:
  6092. case LLM_ARCH_LLADA:
  6093. case LLM_ARCH_LLADA_MOE:
  6094. case LLM_ARCH_RND1:
  6095. {
  6096. res = nullptr;
  6097. } break;
  6098. // Models that need standard caching should rely on recurrent/hybrid
  6099. // checks
  6100. default:
  6101. {
  6102. if (llm_arch_is_recurrent(arch)) {
  6103. res = new llama_memory_recurrent(
  6104. *this,
  6105. GGML_TYPE_F32,
  6106. GGML_TYPE_F32,
  6107. cparams.offload_kqv,
  6108. std::max((uint32_t) 1, cparams.n_seq_max),
  6109. cparams.n_seq_max,
  6110. nullptr);
  6111. } else if (llm_arch_is_hybrid(arch)) {
  6112. // The main difference between hybrid architectures is the
  6113. // layer filters, so pick the right one here
  6114. llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
  6115. llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
  6116. if (arch == LLM_ARCH_FALCON_H1) {
  6117. filter_attn = [&](int32_t) { return true; };
  6118. filter_recr = [&](int32_t) { return true; };
  6119. } else if (arch == LLM_ARCH_NEMOTRON_H || arch == LLM_ARCH_NEMOTRON_H_MOE) {
  6120. filter_attn = [&](int32_t il) {
  6121. return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
  6122. };
  6123. filter_recr = [&](int32_t il) {
  6124. return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
  6125. };
  6126. }
  6127. res = new llama_memory_hybrid(
  6128. /* model */ *this,
  6129. /* attn_type_k */ params.type_k,
  6130. /* attn_type_v */ params.type_v,
  6131. /* attn_v_trans */ !cparams.flash_attn,
  6132. /* attn_kv_size */ cparams.n_ctx,
  6133. /* attn_n_pad */ 1,
  6134. /* attn_n_swa */ hparams.n_swa,
  6135. /* attn_swa_type */ hparams.swa_type,
  6136. /* recurrent_type_k */ GGML_TYPE_F32,
  6137. /* recurrent_type_v */ GGML_TYPE_F32,
  6138. /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
  6139. /* n_seq_max */ cparams.n_seq_max,
  6140. /* offload */ cparams.offload_kqv,
  6141. /* unified */ cparams.kv_unified,
  6142. /* filter_attn */ std::move(filter_attn),
  6143. /* filter_recr */ std::move(filter_recr));
  6144. } else {
  6145. llama_memory_i::layer_reuse_cb reuse = nullptr;
  6146. if (arch == LLM_ARCH_GEMMA3N) {
  6147. reuse = [&](int32_t il) {
  6148. if (il >= (int32_t) hparams.n_layer_kv_from_start) {
  6149. return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1);
  6150. }
  6151. return -1;
  6152. };
  6153. }
  6154. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  6155. GGML_ASSERT(hparams.is_swa_any());
  6156. res = new llama_kv_cache_iswa(
  6157. *this,
  6158. params.type_k,
  6159. params.type_v,
  6160. !cparams.flash_attn,
  6161. cparams.offload_kqv,
  6162. params.swa_full,
  6163. cparams.kv_unified,
  6164. cparams.n_ctx_seq,
  6165. cparams.n_seq_max,
  6166. cparams.n_ubatch,
  6167. 1,
  6168. nullptr,
  6169. reuse);
  6170. } else {
  6171. GGML_ASSERT(!hparams.is_swa_any());
  6172. res = new llama_kv_cache(
  6173. *this,
  6174. params.type_k,
  6175. params.type_v,
  6176. !cparams.flash_attn,
  6177. cparams.offload_kqv,
  6178. cparams.kv_unified,
  6179. cparams.n_ctx_seq,
  6180. cparams.n_seq_max,
  6181. 1,
  6182. hparams.n_swa,
  6183. hparams.swa_type,
  6184. nullptr,
  6185. nullptr);
  6186. }
  6187. }
  6188. }
  6189. }
  6190. return res;
  6191. }
  6192. ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
  6193. std::unique_ptr<llm_graph_context> llm;
  6194. switch (arch) {
  6195. case LLM_ARCH_LLAMA:
  6196. {
  6197. llm = std::make_unique<llm_build_llama<false>>(*this, params);
  6198. } break;
  6199. case LLM_ARCH_LLAMA4:
  6200. {
  6201. if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
  6202. llm = std::make_unique<llm_build_llama<false>>(*this, params);
  6203. } else {
  6204. llm = std::make_unique<llm_build_llama_iswa>(*this, params);
  6205. }
  6206. } break;
  6207. case LLM_ARCH_LLAMA_EMBED:
  6208. {
  6209. llm = std::make_unique<llm_build_llama<true>>(*this, params);
  6210. } break;
  6211. case LLM_ARCH_DECI:
  6212. {
  6213. llm = std::make_unique<llm_build_deci>(*this, params);
  6214. } break;
  6215. case LLM_ARCH_BAICHUAN:
  6216. {
  6217. llm = std::make_unique<llm_build_baichuan>(*this, params);
  6218. } break;
  6219. case LLM_ARCH_FALCON:
  6220. {
  6221. llm = std::make_unique<llm_build_falcon>(*this, params);
  6222. } break;
  6223. case LLM_ARCH_GROK:
  6224. {
  6225. llm = std::make_unique<llm_build_grok>(*this, params);
  6226. } break;
  6227. case LLM_ARCH_STARCODER:
  6228. {
  6229. llm = std::make_unique<llm_build_starcoder>(*this, params);
  6230. } break;
  6231. case LLM_ARCH_REFACT:
  6232. {
  6233. llm = std::make_unique<llm_build_refact>(*this, params);
  6234. } break;
  6235. case LLM_ARCH_BERT:
  6236. case LLM_ARCH_JINA_BERT_V2:
  6237. case LLM_ARCH_JINA_BERT_V3:
  6238. case LLM_ARCH_NOMIC_BERT:
  6239. case LLM_ARCH_NOMIC_BERT_MOE:
  6240. {
  6241. llm = std::make_unique<llm_build_bert>(*this, params);
  6242. } break;
  6243. case LLM_ARCH_MODERN_BERT:
  6244. {
  6245. llm = std::make_unique<llm_build_modern_bert>(*this, params);
  6246. } break;
  6247. case LLM_ARCH_NEO_BERT:
  6248. {
  6249. llm = std::make_unique<llm_build_neo_bert>(*this, params);
  6250. } break;
  6251. case LLM_ARCH_BLOOM:
  6252. {
  6253. llm = std::make_unique<llm_build_bloom>(*this, params);
  6254. } break;
  6255. case LLM_ARCH_MPT:
  6256. {
  6257. llm = std::make_unique<llm_build_mpt>(*this, params);
  6258. } break;
  6259. case LLM_ARCH_STABLELM:
  6260. {
  6261. llm = std::make_unique<llm_build_stablelm>(*this, params);
  6262. } break;
  6263. case LLM_ARCH_QWEN:
  6264. {
  6265. llm = std::make_unique<llm_build_qwen>(*this, params);
  6266. } break;
  6267. case LLM_ARCH_QWEN2:
  6268. {
  6269. llm = std::make_unique<llm_build_qwen2>(*this, params);
  6270. } break;
  6271. case LLM_ARCH_DREAM:
  6272. {
  6273. llm = std::make_unique<llm_build_dream>(*this, params);
  6274. }
  6275. break;
  6276. case LLM_ARCH_LLADA:
  6277. {
  6278. llm = std::make_unique<llm_build_llada>(*this, params);
  6279. }
  6280. break;
  6281. case LLM_ARCH_LLADA_MOE:
  6282. {
  6283. llm = std::make_unique<llm_build_llada_moe>(*this, params);
  6284. }
  6285. break;
  6286. case LLM_ARCH_RND1:
  6287. {
  6288. llm = std::make_unique<llm_build_rnd1>(*this, params);
  6289. }
  6290. break;
  6291. case LLM_ARCH_QWEN2VL:
  6292. {
  6293. llm = std::make_unique<llm_build_qwen2vl>(*this, params);
  6294. } break;
  6295. case LLM_ARCH_QWEN2MOE:
  6296. {
  6297. llm = std::make_unique<llm_build_qwen2moe>(*this, params);
  6298. } break;
  6299. case LLM_ARCH_QWEN3:
  6300. {
  6301. llm = std::make_unique<llm_build_qwen3>(*this, params);
  6302. } break;
  6303. case LLM_ARCH_QWEN3MOE:
  6304. {
  6305. llm = std::make_unique<llm_build_qwen3moe>(*this, params);
  6306. } break;
  6307. case LLM_ARCH_QWEN3VL:
  6308. {
  6309. llm = std::make_unique<llm_build_qwen3vl>(*this, params);
  6310. } break;
  6311. case LLM_ARCH_QWEN3VLMOE:
  6312. {
  6313. llm = std::make_unique<llm_build_qwen3vlmoe>(*this, params);
  6314. } break;
  6315. case LLM_ARCH_PHI2:
  6316. {
  6317. llm = std::make_unique<llm_build_phi2>(*this, params);
  6318. } break;
  6319. case LLM_ARCH_PHI3:
  6320. case LLM_ARCH_PHIMOE:
  6321. {
  6322. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  6323. llm = std::make_unique<llm_build_phi3<true>> (*this, params);
  6324. } else {
  6325. llm = std::make_unique<llm_build_phi3<false>>(*this, params);
  6326. }
  6327. } break;
  6328. case LLM_ARCH_PLAMO:
  6329. {
  6330. llm = std::make_unique<llm_build_plamo>(*this, params);
  6331. } break;
  6332. case LLM_ARCH_PLAMO2:
  6333. {
  6334. llm = std::make_unique<llm_build_plamo2>(*this, params);
  6335. } break;
  6336. case LLM_ARCH_PLAMO3:
  6337. {
  6338. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  6339. llm = std::make_unique<llm_build_plamo3<true>> (*this, params);
  6340. } else {
  6341. llm = std::make_unique<llm_build_plamo3<false>>(*this, params);
  6342. }
  6343. } break;
  6344. case LLM_ARCH_GPT2:
  6345. {
  6346. llm = std::make_unique<llm_build_gpt2>(*this, params);
  6347. } break;
  6348. case LLM_ARCH_CODESHELL:
  6349. {
  6350. llm = std::make_unique<llm_build_codeshell>(*this, params);
  6351. } break;
  6352. case LLM_ARCH_ORION:
  6353. {
  6354. llm = std::make_unique<llm_build_orion>(*this, params);
  6355. } break;
  6356. case LLM_ARCH_INTERNLM2:
  6357. {
  6358. llm = std::make_unique<llm_build_internlm2>(*this, params);
  6359. } break;
  6360. case LLM_ARCH_MINICPM3:
  6361. {
  6362. llm = std::make_unique<llm_build_minicpm3>(*this, params);
  6363. } break;
  6364. case LLM_ARCH_GEMMA:
  6365. {
  6366. llm = std::make_unique<llm_build_gemma>(*this, params);
  6367. } break;
  6368. case LLM_ARCH_GEMMA2:
  6369. {
  6370. llm = std::make_unique<llm_build_gemma2_iswa>(*this, params);
  6371. } break;
  6372. case LLM_ARCH_GEMMA3:
  6373. {
  6374. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  6375. llm = std::make_unique<llm_build_gemma3<true>>(*this, params);
  6376. } else {
  6377. llm = std::make_unique<llm_build_gemma3<false>>(*this, params);
  6378. }
  6379. } break;
  6380. case LLM_ARCH_GEMMA3N:
  6381. {
  6382. llm = std::make_unique<llm_build_gemma3n_iswa>(*this, params);
  6383. } break;
  6384. case LLM_ARCH_GEMMA_EMBEDDING:
  6385. {
  6386. llm = std::make_unique<llm_build_gemma_embedding>(*this, params);
  6387. } break;
  6388. case LLM_ARCH_STARCODER2:
  6389. {
  6390. llm = std::make_unique<llm_build_starcoder2>(*this, params);
  6391. } break;
  6392. case LLM_ARCH_MAMBA:
  6393. case LLM_ARCH_MAMBA2:
  6394. {
  6395. llm = std::make_unique<llm_build_mamba>(*this, params);
  6396. } break;
  6397. case LLM_ARCH_JAMBA:
  6398. {
  6399. llm = std::make_unique<llm_build_jamba>(*this, params);
  6400. } break;
  6401. case LLM_ARCH_XVERSE:
  6402. {
  6403. llm = std::make_unique<llm_build_xverse>(*this, params);
  6404. } break;
  6405. case LLM_ARCH_COMMAND_R:
  6406. {
  6407. llm = std::make_unique<llm_build_command_r>(*this, params);
  6408. } break;
  6409. case LLM_ARCH_COHERE2:
  6410. {
  6411. llm = std::make_unique<llm_build_cohere2_iswa>(*this, params);
  6412. } break;
  6413. case LLM_ARCH_DBRX:
  6414. {
  6415. llm = std::make_unique<llm_build_dbrx>(*this, params);
  6416. } break;
  6417. case LLM_ARCH_OLMO:
  6418. {
  6419. llm = std::make_unique<llm_build_olmo>(*this, params);
  6420. } break;
  6421. case LLM_ARCH_OLMO2:
  6422. {
  6423. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  6424. llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
  6425. } else {
  6426. llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
  6427. }
  6428. } break;
  6429. case LLM_ARCH_OLMOE:
  6430. {
  6431. llm = std::make_unique<llm_build_olmoe>(*this, params);
  6432. } break;
  6433. case LLM_ARCH_OPENELM:
  6434. {
  6435. llm = std::make_unique<llm_build_openelm>(*this, params);
  6436. } break;
  6437. case LLM_ARCH_GPTNEOX:
  6438. {
  6439. llm = std::make_unique<llm_build_gptneox>(*this, params);
  6440. } break;
  6441. case LLM_ARCH_ARCTIC:
  6442. {
  6443. llm = std::make_unique<llm_build_arctic>(*this, params);
  6444. } break;
  6445. case LLM_ARCH_DEEPSEEK:
  6446. {
  6447. llm = std::make_unique<llm_build_deepseek>(*this, params);
  6448. } break;
  6449. case LLM_ARCH_DEEPSEEK2:
  6450. {
  6451. llm = std::make_unique<llm_build_deepseek2>(*this, params);
  6452. } break;
  6453. case LLM_ARCH_CHATGLM:
  6454. {
  6455. llm = std::make_unique<llm_build_chatglm>(*this, params);
  6456. } break;
  6457. case LLM_ARCH_GLM4:
  6458. {
  6459. llm = std::make_unique<llm_build_glm4>(*this, params);
  6460. } break;
  6461. case LLM_ARCH_GLM4_MOE:
  6462. {
  6463. llm = std::make_unique<llm_build_glm4_moe>(*this, params);
  6464. } break;
  6465. case LLM_ARCH_BITNET:
  6466. {
  6467. llm = std::make_unique<llm_build_bitnet>(*this, params);
  6468. } break;
  6469. case LLM_ARCH_T5:
  6470. {
  6471. switch (params.gtype) {
  6472. case LLM_GRAPH_TYPE_ENCODER:
  6473. llm = std::make_unique<llm_build_t5_enc>(*this, params);
  6474. break;
  6475. case LLM_GRAPH_TYPE_DEFAULT:
  6476. case LLM_GRAPH_TYPE_DECODER:
  6477. llm = std::make_unique<llm_build_t5_dec>(*this, params);
  6478. break;
  6479. default:
  6480. GGML_ABORT("invalid graph type");
  6481. };
  6482. } break;
  6483. case LLM_ARCH_T5ENCODER:
  6484. {
  6485. llm = std::make_unique<llm_build_t5_enc>(*this, params);
  6486. }
  6487. break;
  6488. case LLM_ARCH_JAIS:
  6489. {
  6490. llm = std::make_unique<llm_build_jais>(*this, params);
  6491. } break;
  6492. case LLM_ARCH_NEMOTRON:
  6493. {
  6494. llm = std::make_unique<llm_build_nemotron>(*this, params);
  6495. } break;
  6496. case LLM_ARCH_NEMOTRON_H:
  6497. case LLM_ARCH_NEMOTRON_H_MOE:
  6498. {
  6499. llm = std::make_unique<llm_build_nemotron_h>(*this, params);
  6500. } break;
  6501. case LLM_ARCH_EXAONE:
  6502. {
  6503. llm = std::make_unique<llm_build_exaone>(*this, params);
  6504. } break;
  6505. case LLM_ARCH_EXAONE4:
  6506. {
  6507. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  6508. llm = std::make_unique<llm_build_exaone4<true>>(*this, params);
  6509. } else {
  6510. llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
  6511. }
  6512. } break;
  6513. case LLM_ARCH_RWKV6:
  6514. {
  6515. llm = std::make_unique<llm_build_rwkv6>(*this, params);
  6516. } break;
  6517. case LLM_ARCH_RWKV6QWEN2:
  6518. {
  6519. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params);
  6520. } break;
  6521. case LLM_ARCH_RWKV7:
  6522. {
  6523. llm = std::make_unique<llm_build_rwkv7>(*this, params);
  6524. } break;
  6525. case LLM_ARCH_ARWKV7:
  6526. {
  6527. llm = std::make_unique<llm_build_arwkv7>(*this, params);
  6528. } break;
  6529. case LLM_ARCH_GRANITE:
  6530. case LLM_ARCH_GRANITE_MOE:
  6531. case LLM_ARCH_MINICPM:
  6532. {
  6533. llm = std::make_unique<llm_build_granite>(*this, params);
  6534. } break;
  6535. case LLM_ARCH_GRANITE_HYBRID:
  6536. {
  6537. llm = std::make_unique<llm_build_granite_hybrid>(*this, params);
  6538. } break;
  6539. case LLM_ARCH_CHAMELEON:
  6540. {
  6541. llm = std::make_unique<llm_build_chameleon>(*this, params);
  6542. } break;
  6543. case LLM_ARCH_WAVTOKENIZER_DEC:
  6544. {
  6545. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
  6546. } break;
  6547. case LLM_ARCH_PLM:
  6548. {
  6549. llm = std::make_unique<llm_build_plm>(*this, params);
  6550. } break;
  6551. case LLM_ARCH_BAILINGMOE:
  6552. {
  6553. llm = std::make_unique<llm_build_bailingmoe>(*this, params);
  6554. } break;
  6555. case LLM_ARCH_BAILINGMOE2:
  6556. {
  6557. llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
  6558. } break;
  6559. case LLM_ARCH_SEED_OSS:
  6560. {
  6561. llm = std::make_unique<llm_build_seed_oss>(*this, params);
  6562. } break;
  6563. case LLM_ARCH_DOTS1:
  6564. {
  6565. llm = std::make_unique<llm_build_dots1>(*this, params);
  6566. } break;
  6567. case LLM_ARCH_ARCEE:
  6568. {
  6569. llm = std::make_unique<llm_build_arcee>(*this, params);
  6570. } break;
  6571. case LLM_ARCH_AFMOE:
  6572. {
  6573. llm = std::make_unique<llm_build_afmoe>(*this, params);
  6574. } break;
  6575. case LLM_ARCH_ERNIE4_5:
  6576. {
  6577. llm = std::make_unique<llm_build_ernie4_5>(*this, params);
  6578. } break;
  6579. case LLM_ARCH_ERNIE4_5_MOE:
  6580. {
  6581. llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
  6582. } break;
  6583. case LLM_ARCH_HUNYUAN_MOE:
  6584. {
  6585. llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
  6586. } break;
  6587. case LLM_ARCH_HUNYUAN_DENSE:
  6588. {
  6589. llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
  6590. } break;
  6591. case LLM_ARCH_SMOLLM3:
  6592. {
  6593. llm = std::make_unique<llm_build_smollm3>(*this, params);
  6594. } break;
  6595. case LLM_ARCH_OPENAI_MOE:
  6596. {
  6597. llm = std::make_unique<llm_build_openai_moe_iswa>(*this, params);
  6598. } break;
  6599. case LLM_ARCH_FALCON_H1:
  6600. {
  6601. llm = std::make_unique<llm_build_falcon_h1>(*this, params);
  6602. } break;
  6603. case LLM_ARCH_LFM2:
  6604. case LLM_ARCH_LFM2MOE:
  6605. {
  6606. llm = std::make_unique<llm_build_lfm2>(*this, params);
  6607. } break;
  6608. case LLM_ARCH_SMALLTHINKER:
  6609. {
  6610. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  6611. llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
  6612. } else {
  6613. llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
  6614. }
  6615. } break;
  6616. case LLM_ARCH_GROVEMOE:
  6617. {
  6618. llm = std::make_unique<llm_build_grovemoe>(*this, params);
  6619. } break;
  6620. case LLM_ARCH_APERTUS:
  6621. {
  6622. llm = std::make_unique<llm_build_apertus>(*this, params);
  6623. } break;
  6624. case LLM_ARCH_MINIMAX_M2:
  6625. {
  6626. llm = std::make_unique<llm_build_minimax_m2>(*this, params);
  6627. } break;
  6628. case LLM_ARCH_COGVLM:
  6629. {
  6630. llm = std::make_unique<llm_build_cogvlm>(*this, params);
  6631. } break;
  6632. case LLM_ARCH_PANGU_EMBED:
  6633. {
  6634. llm = std::make_unique<llm_build_pangu_embedded>(*this, params);
  6635. } break;
  6636. case LLM_ARCH_QWEN3NEXT:
  6637. {
  6638. llm = std::make_unique<llm_build_qwen3next>(*this, params);
  6639. } break;
  6640. case LLM_ARCH_MISTRAL3:
  6641. {
  6642. llm = std::make_unique<llm_build_mistral3>(*this, params);
  6643. } break;
  6644. case LLM_ARCH_MIMO2:
  6645. {
  6646. llm = std::make_unique<llm_build_mimo2_iswa>(*this, params);
  6647. } break;
  6648. default:
  6649. GGML_ABORT("fatal error");
  6650. }
  6651. // add on pooling layer
  6652. llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
  6653. // if the gguf model was converted with --sentence-transformers-dense-modules
  6654. // there will be two additional dense projection layers
  6655. // dense linear projections are applied after pooling
  6656. // TODO: move reranking logic here and generalize
  6657. llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);
  6658. return llm->res->get_gf();
  6659. }
  6660. //
  6661. // interface implementation
  6662. //
  6663. llama_model_params llama_model_default_params() {
  6664. llama_model_params result = {
  6665. /*.devices =*/ nullptr,
  6666. /*.tensor_buft_overrides =*/ nullptr,
  6667. /*.n_gpu_layers =*/ -1,
  6668. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  6669. /*.main_gpu =*/ 0,
  6670. /*.tensor_split =*/ nullptr,
  6671. /*.progress_callback =*/ nullptr,
  6672. /*.progress_callback_user_data =*/ nullptr,
  6673. /*.kv_overrides =*/ nullptr,
  6674. /*.vocab_only =*/ false,
  6675. /*.use_mmap =*/ true,
  6676. /*.use_mlock =*/ false,
  6677. /*.check_tensors =*/ false,
  6678. /*.use_extra_bufts =*/ true,
  6679. /*.no_host =*/ false,
  6680. /*.no_alloc =*/ false,
  6681. };
  6682. return result;
  6683. }
  6684. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  6685. return &model->vocab;
  6686. }
  6687. void llama_free_model(llama_model * model) {
  6688. llama_model_free(model);
  6689. }
  6690. void llama_model_free(llama_model * model) {
  6691. delete model;
  6692. }
  6693. int32_t llama_model_n_ctx_train(const llama_model * model) {
  6694. return model->hparams.n_ctx_train;
  6695. }
  6696. int32_t llama_model_n_embd(const llama_model * model) {
  6697. return model->hparams.n_embd;
  6698. }
  6699. int32_t llama_model_n_embd_inp(const llama_model * model) {
  6700. return model->hparams.n_embd_inp();
  6701. }
  6702. int32_t llama_model_n_layer(const llama_model * model) {
  6703. return model->hparams.n_layer;
  6704. }
  6705. int32_t llama_model_n_head(const llama_model * model) {
  6706. return model->hparams.n_head();
  6707. }
  6708. int32_t llama_model_n_head_kv(const llama_model * model) {
  6709. return model->hparams.n_head_kv();
  6710. }
  6711. int32_t llama_model_n_swa(const llama_model * model) {
  6712. return model->hparams.n_swa;
  6713. }
  6714. uint32_t llama_model_n_cls_out(const struct llama_model * model) {
  6715. return model->hparams.n_cls_out;
  6716. }
  6717. const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
  6718. if (i < model->classifier_labels.size()) {
  6719. return model->classifier_labels[i].c_str();
  6720. }
  6721. return nullptr;
  6722. }
  6723. // deprecated
  6724. int32_t llama_n_ctx_train(const llama_model * model) {
  6725. return llama_model_n_ctx_train(model);
  6726. }
  6727. // deprecated
  6728. int32_t llama_n_embd(const llama_model * model) {
  6729. return llama_model_n_embd(model);
  6730. }
  6731. // deprecated
  6732. int32_t llama_n_layer(const llama_model * model) {
  6733. return llama_model_n_layer(model);
  6734. }
  6735. // deprecated
  6736. int32_t llama_n_head(const llama_model * model) {
  6737. return llama_model_n_head(model);
  6738. }
  6739. llama_rope_type llama_model_rope_type(const llama_model * model) {
  6740. switch (model->arch) {
  6741. // these models do not use RoPE
  6742. case LLM_ARCH_CLIP:
  6743. case LLM_ARCH_GPT2:
  6744. case LLM_ARCH_GPTJ:
  6745. case LLM_ARCH_MPT:
  6746. case LLM_ARCH_REFACT:
  6747. case LLM_ARCH_BLOOM:
  6748. case LLM_ARCH_MAMBA:
  6749. case LLM_ARCH_MAMBA2:
  6750. case LLM_ARCH_JAMBA:
  6751. case LLM_ARCH_JINA_BERT_V2:
  6752. case LLM_ARCH_T5:
  6753. case LLM_ARCH_T5ENCODER:
  6754. case LLM_ARCH_JAIS:
  6755. case LLM_ARCH_RWKV6:
  6756. case LLM_ARCH_RWKV6QWEN2:
  6757. case LLM_ARCH_RWKV7:
  6758. case LLM_ARCH_ARWKV7:
  6759. case LLM_ARCH_WAVTOKENIZER_DEC:
  6760. case LLM_ARCH_NEMOTRON_H:
  6761. case LLM_ARCH_NEMOTRON_H_MOE:
  6762. return LLAMA_ROPE_TYPE_NONE;
  6763. // use what we call a normal RoPE, operating on pairs of consecutive head values
  6764. case LLM_ARCH_LLAMA:
  6765. case LLM_ARCH_LLADA:
  6766. case LLM_ARCH_LLAMA4:
  6767. case LLM_ARCH_DECI:
  6768. case LLM_ARCH_BAICHUAN:
  6769. case LLM_ARCH_STARCODER:
  6770. case LLM_ARCH_INTERNLM2:
  6771. case LLM_ARCH_MINICPM:
  6772. case LLM_ARCH_XVERSE:
  6773. case LLM_ARCH_COMMAND_R:
  6774. case LLM_ARCH_COHERE2:
  6775. case LLM_ARCH_OLMO:
  6776. case LLM_ARCH_ARCTIC:
  6777. case LLM_ARCH_DEEPSEEK:
  6778. case LLM_ARCH_DEEPSEEK2:
  6779. case LLM_ARCH_PLM:
  6780. case LLM_ARCH_CHATGLM:
  6781. case LLM_ARCH_GRANITE:
  6782. case LLM_ARCH_GRANITE_MOE:
  6783. case LLM_ARCH_GRANITE_HYBRID:
  6784. case LLM_ARCH_CHAMELEON:
  6785. case LLM_ARCH_BAILINGMOE:
  6786. case LLM_ARCH_NEO_BERT:
  6787. case LLM_ARCH_SMOLLM3:
  6788. case LLM_ARCH_ARCEE:
  6789. case LLM_ARCH_ERNIE4_5:
  6790. case LLM_ARCH_ERNIE4_5_MOE:
  6791. case LLM_ARCH_MISTRAL3:
  6792. case LLM_ARCH_LLAMA_EMBED:
  6793. return LLAMA_ROPE_TYPE_NORM;
  6794. // the pairs of head values are offset by n_rot/2
  6795. case LLM_ARCH_FALCON:
  6796. case LLM_ARCH_FALCON_H1:
  6797. case LLM_ARCH_GROK:
  6798. case LLM_ARCH_DBRX:
  6799. case LLM_ARCH_BERT:
  6800. case LLM_ARCH_JINA_BERT_V3:
  6801. case LLM_ARCH_MODERN_BERT:
  6802. case LLM_ARCH_NOMIC_BERT:
  6803. case LLM_ARCH_NOMIC_BERT_MOE:
  6804. case LLM_ARCH_STABLELM:
  6805. case LLM_ARCH_BITNET:
  6806. case LLM_ARCH_QWEN:
  6807. case LLM_ARCH_QWEN2:
  6808. case LLM_ARCH_DREAM:
  6809. case LLM_ARCH_QWEN2MOE:
  6810. case LLM_ARCH_QWEN3:
  6811. case LLM_ARCH_QWEN3MOE:
  6812. case LLM_ARCH_LLADA_MOE:
  6813. case LLM_ARCH_RND1:
  6814. case LLM_ARCH_OLMO2:
  6815. case LLM_ARCH_OLMOE:
  6816. case LLM_ARCH_PHI2:
  6817. case LLM_ARCH_PHI3:
  6818. case LLM_ARCH_PHIMOE:
  6819. case LLM_ARCH_PLAMO:
  6820. case LLM_ARCH_PLAMO2:
  6821. case LLM_ARCH_PLAMO3:
  6822. case LLM_ARCH_GEMMA:
  6823. case LLM_ARCH_GEMMA2:
  6824. case LLM_ARCH_GEMMA3:
  6825. case LLM_ARCH_GEMMA3N:
  6826. case LLM_ARCH_GEMMA_EMBEDDING:
  6827. case LLM_ARCH_STARCODER2:
  6828. case LLM_ARCH_OPENELM:
  6829. case LLM_ARCH_GPTNEOX:
  6830. case LLM_ARCH_CODESHELL:
  6831. case LLM_ARCH_ORION:
  6832. case LLM_ARCH_NEMOTRON:
  6833. case LLM_ARCH_EXAONE:
  6834. case LLM_ARCH_EXAONE4:
  6835. case LLM_ARCH_MINICPM3:
  6836. case LLM_ARCH_BAILINGMOE2:
  6837. case LLM_ARCH_DOTS1:
  6838. case LLM_ARCH_HUNYUAN_MOE:
  6839. case LLM_ARCH_OPENAI_MOE:
  6840. case LLM_ARCH_HUNYUAN_DENSE:
  6841. case LLM_ARCH_LFM2:
  6842. case LLM_ARCH_LFM2MOE:
  6843. case LLM_ARCH_SMALLTHINKER:
  6844. case LLM_ARCH_SEED_OSS:
  6845. case LLM_ARCH_GROVEMOE:
  6846. case LLM_ARCH_APERTUS:
  6847. case LLM_ARCH_MINIMAX_M2:
  6848. case LLM_ARCH_COGVLM:
  6849. case LLM_ARCH_PANGU_EMBED:
  6850. case LLM_ARCH_AFMOE:
  6851. case LLM_ARCH_QWEN3NEXT:
  6852. case LLM_ARCH_MIMO2:
  6853. return LLAMA_ROPE_TYPE_NEOX;
  6854. case LLM_ARCH_QWEN2VL:
  6855. return LLAMA_ROPE_TYPE_MROPE;
  6856. case LLM_ARCH_QWEN3VL:
  6857. case LLM_ARCH_QWEN3VLMOE:
  6858. return LLAMA_ROPE_TYPE_IMROPE;
  6859. case LLM_ARCH_GLM4:
  6860. return model->hparams.use_mrope() ? LLAMA_ROPE_TYPE_MROPE : LLAMA_ROPE_TYPE_NORM;
  6861. case LLM_ARCH_GLM4_MOE:
  6862. return model->hparams.use_mrope() ? LLAMA_ROPE_TYPE_MROPE : LLAMA_ROPE_TYPE_NEOX;
  6863. // all model arches should be listed explicitly here
  6864. case LLM_ARCH_UNKNOWN:
  6865. GGML_ABORT("unknown architecture");
  6866. }
  6867. return LLAMA_ROPE_TYPE_NONE;
  6868. }
  6869. float llama_model_rope_freq_scale_train(const llama_model * model) {
  6870. return model->hparams.rope_freq_scale_train;
  6871. }
  6872. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  6873. const auto & it = model->gguf_kv.find(key);
  6874. if (it == model->gguf_kv.end()) {
  6875. if (buf_size > 0) {
  6876. buf[0] = '\0';
  6877. }
  6878. return -1;
  6879. }
  6880. return snprintf(buf, buf_size, "%s", it->second.c_str());
  6881. }
  6882. int32_t llama_model_meta_count(const llama_model * model) {
  6883. return (int)model->gguf_kv.size();
  6884. }
  6885. const char * llama_model_meta_key_str(llama_model_meta_key key) {
  6886. switch (key) {
  6887. case LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE: return "general.sampling.sequence";
  6888. case LLAMA_MODEL_META_KEY_SAMPLING_TOP_K: return "general.sampling.top_k";
  6889. case LLAMA_MODEL_META_KEY_SAMPLING_TOP_P: return "general.sampling.top_p";
  6890. case LLAMA_MODEL_META_KEY_SAMPLING_MIN_P: return "general.sampling.min_p";
  6891. case LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY: return "general.sampling.xtc_probability";
  6892. case LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD: return "general.sampling.xtc_threshold";
  6893. case LLAMA_MODEL_META_KEY_SAMPLING_TEMP: return "general.sampling.temp";
  6894. case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N: return "general.sampling.penalty_last_n";
  6895. case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT: return "general.sampling.penalty_repeat";
  6896. case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT: return "general.sampling.mirostat";
  6897. case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU: return "general.sampling.mirostat_tau";
  6898. case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA: return "general.sampling.mirostat_eta";
  6899. default: return nullptr;
  6900. }
  6901. }
  6902. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  6903. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  6904. if (buf_size > 0) {
  6905. buf[0] = '\0';
  6906. }
  6907. return -1;
  6908. }
  6909. auto it = model->gguf_kv.begin();
  6910. std::advance(it, i);
  6911. return snprintf(buf, buf_size, "%s", it->first.c_str());
  6912. }
  6913. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  6914. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  6915. if (buf_size > 0) {
  6916. buf[0] = '\0';
  6917. }
  6918. return -1;
  6919. }
  6920. auto it = model->gguf_kv.begin();
  6921. std::advance(it, i);
  6922. return snprintf(buf, buf_size, "%s", it->second.c_str());
  6923. }
  6924. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  6925. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  6926. }
  6927. uint64_t llama_model_size(const llama_model * model) {
  6928. return model->size();
  6929. }
  6930. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  6931. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
  6932. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  6933. const auto & it = model->gguf_kv.find(key);
  6934. if (it == model->gguf_kv.end()) {
  6935. // one-off fix for very popular models (so we are not flooded with issues)
  6936. // do not extend this list unless absolutely necessary
  6937. // Mistral-Small-2503 does not have built-in chat template
  6938. llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
  6939. if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
  6940. return "mistral-v7-tekken";
  6941. }
  6942. return nullptr;
  6943. }
  6944. return it->second.c_str();
  6945. }
  6946. uint64_t llama_model_n_params(const llama_model * model) {
  6947. return model->n_elements();
  6948. }
  6949. bool llama_model_has_encoder(const llama_model * model) {
  6950. switch (model->arch) {
  6951. case LLM_ARCH_T5: return true;
  6952. case LLM_ARCH_T5ENCODER: return true;
  6953. default: return false;
  6954. }
  6955. }
  6956. bool llama_model_has_decoder(const llama_model * model) {
  6957. switch (model->arch) {
  6958. case LLM_ARCH_T5ENCODER: return false;
  6959. default: return true;
  6960. }
  6961. }
  6962. llama_token llama_model_decoder_start_token(const llama_model * model) {
  6963. return model->hparams.dec_start_token_id;
  6964. }
  6965. bool llama_model_is_recurrent(const llama_model * model) {
  6966. return llm_arch_is_recurrent(model->arch);
  6967. }
  6968. bool llama_model_is_hybrid(const llama_model * model) {
  6969. return llm_arch_is_hybrid(model->arch);
  6970. }
  6971. bool llama_model_is_diffusion(const llama_model * model) {
  6972. return llm_arch_is_diffusion(model->arch);
  6973. }
  6974. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  6975. return model->tensors_by_name;
  6976. }