| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309 |
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "common.h"
- #include "train.h"
- #include "llama.h"
- #include <unordered_map>
- #include <vector>
- #include <cassert>
- #include <climits>
- #include <cstring>
- #include <cstdarg>
- #include <ctime>
- #include <random>
- #include <stdexcept>
- #include <algorithm>
- #include <string>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static const size_t tensor_alignment = 32;
- struct my_llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512;
- uint32_t n_embd = 4096;
- uint32_t n_head = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- uint32_t n_ff = 11008;
- // float f_norm_eps = 1e-5f; // falcon
- float f_norm_rms_eps = 1e-5f; // llama
- float rope_freq_base = 10000.0f;
- float rope_freq_scale = 1.0f;
- };
- struct my_llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct my_llama_model {
- struct ggml_context * ctx = NULL;
- std::vector<uint8_t> data;
- my_llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<my_llama_layer> layers;
- };
- // gguf constants (sync with gguf.py)
- static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
- static const char * LLM_KV_TRAINING_TYPE = "training.type";
- static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
- static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
- static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
- static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
- static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
- static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
- static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
- static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
- static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
- static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
- static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
- static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model";
- static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens";
- static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type";
- static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores";
- static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges";
- static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id";
- static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id";
- static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id";
- static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id";
- static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id";
- static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
- static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
- static const char * LLM_TENSOR_OUTPUT = "output";
- static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
- static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
- static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
- static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
- static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
- static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
- static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
- static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
- static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
- static void print_params(struct my_llama_hparams * params) {
- printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
- printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
- printf("%s: n_embd: %d\n", __func__, params->n_embd);
- printf("%s: n_head: %d\n", __func__, params->n_head);
- printf("%s: n_ff: %d\n", __func__, params->n_ff);
- printf("%s: n_layer: %d\n", __func__, params->n_layer);
- printf("%s: n_rot: %d\n", __func__, params->n_rot);
- }
- static void set_param_model(struct my_llama_model * model) {
- const auto& hparams = model->hparams;
- const uint32_t n_layer = hparams.n_layer;
- struct ggml_context* ctx = model->ctx;
- ggml_set_param(ctx, model->tok_embeddings);
- ggml_set_param(ctx, model->norm);
- ggml_set_param(ctx, model->output);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- ggml_set_param(ctx, layer.attention_norm);
- ggml_set_param(ctx, layer.wq);
- ggml_set_param(ctx, layer.wk);
- ggml_set_param(ctx, layer.wv);
- ggml_set_param(ctx, layer.wo);
- ggml_set_param(ctx, layer.ffn_norm);
- ggml_set_param(ctx, layer.w1);
- ggml_set_param(ctx, layer.w2);
- ggml_set_param(ctx, layer.w3);
- }
- }
- static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) {
- ggml_allocr_alloc(alloc, model->tok_embeddings);
- ggml_allocr_alloc(alloc, model->norm);
- ggml_allocr_alloc(alloc, model->output);
- for (uint32_t i = 0; i < model->layers.size(); ++i) {
- auto & layer = model->layers[i];
- ggml_allocr_alloc(alloc, layer.attention_norm);
- ggml_allocr_alloc(alloc, layer.wq);
- ggml_allocr_alloc(alloc, layer.wk);
- ggml_allocr_alloc(alloc, layer.wv);
- ggml_allocr_alloc(alloc, layer.wo);
- ggml_allocr_alloc(alloc, layer.ffn_norm);
- ggml_allocr_alloc(alloc, layer.w1);
- ggml_allocr_alloc(alloc, layer.w2);
- ggml_allocr_alloc(alloc, layer.w3);
- }
- ggml_allocr_alloc(alloc, model->tok_embeddings->grad);
- ggml_allocr_alloc(alloc, model->norm->grad);
- ggml_allocr_alloc(alloc, model->output->grad);
- for (uint32_t i = 0; i < model->layers.size(); ++i) {
- auto & layer = model->layers[i];
- ggml_allocr_alloc(alloc, layer.attention_norm->grad);
- ggml_allocr_alloc(alloc, layer.wq->grad);
- ggml_allocr_alloc(alloc, layer.wk->grad);
- ggml_allocr_alloc(alloc, layer.wv->grad);
- ggml_allocr_alloc(alloc, layer.wo->grad);
- ggml_allocr_alloc(alloc, layer.ffn_norm->grad);
- ggml_allocr_alloc(alloc, layer.w1->grad);
- ggml_allocr_alloc(alloc, layer.w2->grad);
- ggml_allocr_alloc(alloc, layer.w3->grad);
- }
- }
- static void init_model(struct my_llama_model * model) {
- const auto & hparams = model->hparams;
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_vocab = hparams.n_vocab;
- const uint32_t n_ff = hparams.n_ff;
- std::vector<char> tn_buf;
- tn_buf.resize(GGML_MAX_NAME);
- auto tn = [&tn_buf](const char * key) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
- return tn_buf.data();
- };
- auto tni = [&tn_buf](const char * key, int bid) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), key, bid);
- std::string s = tn_buf.data();
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
- return tn_buf.data();
- };
- // context for model tensors without their data
- struct ggml_init_params ctx_model_params;
- ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
- ctx_model_params.mem_buffer = NULL;
- ctx_model_params.no_alloc = true;
- struct ggml_context * ctx = ggml_init(ctx_model_params);
- model->ctx = ctx;
- model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
- model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
- ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
- ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM));
- ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT));
- model->layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
- ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i));
- ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i));
- ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i));
- ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i));
- ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i));
- ggml_set_name(layer.w1, tni(LLM_TENSOR_FFN_GATE, i));
- ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i));
- ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i));
- }
- set_param_model(model);
- // measure data size
- struct ggml_allocr * alloc = NULL;
- alloc = ggml_allocr_new_measure(tensor_alignment);
- alloc_model(alloc, model);
- // allocate data
- model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
- ggml_allocr_free(alloc);
- alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
- alloc_model(alloc, model);
- ggml_allocr_free(alloc);
- }
- static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
- const auto & hparams = model->hparams;
- const uint32_t n_layer = hparams.n_layer;
- struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
- randomize_tensor_normal(model->tok_embeddings, rnd);
- randomize_tensor_normal(model->norm, rnd);
- randomize_tensor_normal(model->output, rnd);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- randomize_tensor_normal(layer.attention_norm, rnd);
- randomize_tensor_normal(layer.wq, rnd);
- randomize_tensor_normal(layer.wk, rnd);
- randomize_tensor_normal(layer.wv, rnd);
- randomize_tensor_normal(layer.wo, rnd);
- randomize_tensor_normal(layer.ffn_norm, rnd);
- randomize_tensor_normal(layer.w1, rnd);
- randomize_tensor_normal(layer.w2, rnd);
- randomize_tensor_normal(layer.w3, rnd);
- }
- free_random_normal_distribution(rnd);
- }
- static struct ggml_tensor * llama_build_train_graphs(
- struct my_llama_model * model,
- struct ggml_allocr * alloc,
- struct ggml_context * ctx,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_cgraph * gb_tmp,
- struct ggml_tensor * * logits,
- struct ggml_tensor * tokens_input,
- struct ggml_tensor * targets,
- const int n_tokens,
- const int n_batch,
- const bool enable_flash_attn,
- const bool enable_checkpointing) {
- ggml_set_scratch(ctx, { 0, 0, nullptr, });
- const int n_past = 0;
- const int N = n_tokens;
- const auto & hparams = model->hparams;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_rot = hparams.n_rot;
- const int n_ff = hparams.n_ff;
- const float f_norm_rms_eps = hparams.f_norm_rms_eps;
- const float rope_freq_base = hparams.rope_freq_base;
- const float rope_freq_scale = hparams.rope_freq_scale;
- auto set_name = [](struct ggml_tensor * t, const char * n) {
- ggml_set_name(t, n);
- if (t->grad) {
- ggml_format_name(t->grad, "%s->grad", n);
- }
- };
- // KQ_pos - contains the positions
- struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
- {
- int * data = (int *) KQ_pos->data;
- for (int i = 0; i < N; ++i) {
- data[i] = n_past + i;
- }
- }
- // rope has so much parameters that we make a custom function for it
- auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
- (struct ggml_tensor * t) -> struct ggml_tensor * {
- // not capturing these, to silcence warnings
- const int rope_mode = 0;
- return ggml_rope_custom(ctx,
- t, KQ_pos, n_rot, rope_mode, n_ctx,
- rope_freq_base, rope_freq_scale);
- };
- set_name(tokens_input, "tokens_input");
- set_name(targets, "targets");
- GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
- struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
- struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
- struct ggml_tensor * cur = t01;
- std::vector<struct ggml_tensor *> checkpoints;
- checkpoints.push_back(tokens_input);
- checkpoints.push_back(targets);
- checkpoints.push_back(t00);
- checkpoints.push_back(t01);
- struct ggml_tensor * kv_scale = NULL;
- if (!enable_flash_attn) {
- kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
- }
- for (int il = 0; il < n_layer; ++il) {
- struct my_llama_layer & layer = model->layers[il];
- struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
- struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
- struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
- struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
- struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch);
- struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd);
- struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
- struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
- struct ggml_tensor * t16;
- if (enable_flash_attn) {
- t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
- } else {
- struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
- struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
- struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
- struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
- t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
- }
- struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
- struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
- struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
- struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
- struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
- struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
- struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
- struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
- struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
- struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
- struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
- struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
- cur = t30;
- checkpoints.push_back(cur);
- }
- struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
- struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
- struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
- struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
- struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
- struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
- checkpoints.push_back(t31);
- checkpoints.push_back(t32);
- checkpoints.push_back(t33);
- checkpoints.push_back(t34);
- checkpoints.push_back(t35);
- checkpoints.push_back(t36);
- ggml_build_forward_expand(gf, t36);
- if (enable_checkpointing) {
- ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
- } else {
- *gb = *gf;
- ggml_build_backward_expand(ctx, gf, gb, true);
- }
- if (alloc) {
- // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
- int n_leafs_before = gb->n_leafs;
- int n_nodes_before = gb->n_nodes;
- struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
- // output tensors
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
- // input gradient
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
- // KQ_pos
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
- GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
- ggml_allocr_alloc(alloc, t36->grad);
- // allocating checkpoints in one block to reduce memory fragmentation
- // note: they will be freed in reverse order
- for (int i = 0; i < (int) checkpoints.size(); ++i) {
- if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
- ggml_allocr_alloc(alloc, checkpoints[i]);
- }
- }
- //int n_leafs_after = gb->n_leafs;
- //int n_nodes_after = gb->n_nodes;
- ggml_allocr_alloc_graph(alloc, gb);
- // remove the additional nodes and leafs
- for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
- gb->leafs[i] = NULL;
- }
- for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
- gb->nodes[i] = NULL;
- }
- gb->n_leafs = n_leafs_before;
- gb->n_nodes = n_nodes_before;
- }
- *logits = t35;
- return t36;
- }
- #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
- { \
- const std::string skey(key); \
- const int kid = gguf_find_key(ctx, skey.c_str()); \
- if (kid >= 0) { \
- enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
- if (ktype != (type)) { \
- die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
- } \
- (dst) = func(ctx, kid); \
- } else if (req) { \
- die_fmt("key not found in model: %s", skey.c_str()); \
- } \
- }
- static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
- // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
- std::string arch;
- std::vector<char> keybuf;
- keybuf.resize(512);
- auto kv = [&arch, &keybuf](const char * key) -> const char * {
- snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
- return keybuf.data();
- };
- std::vector<char> tn_buf;
- tn_buf.resize(GGML_MAX_NAME);
- auto tn = [&tn_buf](const char * key) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
- return tn_buf.data();
- };
- auto tni = [&tn_buf](const char * key, int bid) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), key, bid);
- std::string s = tn_buf.data();
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
- return tn_buf.data();
- };
- GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
- GGML_ASSERT(arch == "llama");
- uint32_t ftype_u;
- GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
- GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
- // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
- GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
- GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
- GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
- GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
- GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
- model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
- GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
- float rope_freq_scale = 1.0f;
- GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
- GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
- GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
- if (rope_freq_scale != 1.0f) {
- model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
- }
- init_model(model);
- copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
- copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
- copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
- copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
- copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
- copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
- copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
- copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
- copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
- copy_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
- copy_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
- copy_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
- }
- }
- static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
- const char * arch = "llama";
- enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
- std::vector<char> keybuf;
- keybuf.resize(512);
- auto kv = [arch, &keybuf](const char * key) -> const char * {
- snprintf(keybuf.data(), keybuf.size(), key, arch);
- return keybuf.data();
- };
- // set arch
- gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
- gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
- // set hparams
- gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx );
- gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd );
- gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff );
- gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head );
- gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer );
- gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot );
- gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps );
- gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp
- gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale );
- // set vocab by copying from vocab_model gguf file
- {
- struct gguf_init_params params = {
- /*.no_alloc = */ false,
- /*.ctx = */ NULL,
- };
- struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
- const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
- if (token_idx == -1) {
- die("cannot find tokenizer vocab in model file");
- }
- const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
- const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
- if (score_idx == -1) {
- die("cannot find tokenizer scores in model file");
- }
- const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
- const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
- if (toktype_idx == -1) {
- die("cannot find token type list in GGUF file");
- }
- const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
- std::string tokenizer_name;
- GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
- gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
- gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
- gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
- int32_t special_bos_id = 1;
- int32_t special_eos_id = 2;
- int32_t special_unk_id = 0;
- int32_t special_sep_id = -1;
- int32_t special_pad_id = -1;
- if (tokenizer_name == "llama") {
- // default special tokens
- special_bos_id = 1;
- special_eos_id = 2;
- special_unk_id = 0;
- special_sep_id = -1;
- special_pad_id = -1;
- } else if (tokenizer_name == "gpt2") {
- // read and copy bpe merges
- const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
- if (merges_keyidx == -1) {
- die("cannot find tokenizer merges in model file");
- }
- const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
- std::vector<const char*> merges;
- merges.resize(n_merges);
- for (int i = 0; i < n_merges; i++) {
- merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
- }
- gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
- // default special tokens
- special_bos_id = 11;
- special_eos_id = 11;
- special_unk_id = -1;
- special_sep_id = -1;
- special_pad_id = -1;
- } else {
- fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
- fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
- }
- std::vector<const char*> tokens;
- tokens.resize(n_vocab);
- for (uint32_t i = 0; i < n_vocab; i++) {
- tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
- }
- gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
- GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
- GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
- GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
- GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
- GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
- gguf_free(vctx);
- }
- // add tensors
- gguf_add_tensor(fctx, model->tok_embeddings);
- gguf_add_tensor(fctx, model->norm);
- gguf_add_tensor(fctx, model->output);
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
- gguf_add_tensor(fctx, layer.attention_norm);
- gguf_add_tensor(fctx, layer.wq);
- gguf_add_tensor(fctx, layer.wk);
- gguf_add_tensor(fctx, layer.wv);
- gguf_add_tensor(fctx, layer.wo);
- gguf_add_tensor(fctx, layer.ffn_norm);
- gguf_add_tensor(fctx, layer.w1);
- gguf_add_tensor(fctx, layer.w2);
- gguf_add_tensor(fctx, layer.w3);
- }
- }
- static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
- printf("%s: saving to %s\n", __func__, filename);
- struct gguf_context * fctx = gguf_init_empty();
- save_llama_model_gguf(fctx, fn_vocab_model, model);
- // write file
- const bool only_meta = false;
- gguf_write_to_file(fctx, filename, only_meta);
- gguf_free(fctx);
- }
- static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
- load_llama_model_gguf(fctx, f_ggml_ctx, model);
- if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
- std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
- GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
- GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
- } else {
- printf("%s: loaded llama model as checkpoint\n", __func__);
- }
- }
- static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
- gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
- save_llama_model_gguf(fctx, fn_vocab_model, model);
- save_train_state_gguf(fctx, train);
- }
- static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
- struct ggml_context * f_ggml_ctx;
- struct gguf_init_params params;
- params.no_alloc = false;
- params.ctx = &f_ggml_ctx;
- struct gguf_context * fctx = gguf_init_from_file(filename, params);
- if (fctx == NULL) {
- return false;
- }
- load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
- return true;
- }
- static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
- printf("%s: saving to %s\n", __func__, filename);
- struct gguf_context * fctx = gguf_init_empty();
- save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
- // write file
- const bool only_meta = false;
- gguf_write_to_file(fctx, filename, only_meta);
- gguf_free(fctx);
- }
- struct train_params {
- struct train_params_common common;
- const char * fn_vocab_model;
- const char * fn_model_out;
- bool only_write_model;
- int n_ctx;
- int n_embd;
- int n_head;
- int n_layer;
- int n_ff;
- float f_norm_rms_eps;
- float rope_freq_base;
- float rope_freq_scale;
- };
- struct train_params get_default_train_params() {
- struct train_params params;
- params.common = get_default_train_params_common();
- params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
- params.fn_model_out = "ggml-checkpoint-f32.bin";
- params.only_write_model = false;
- params.n_ctx = 128;
- params.n_embd = 256;
- params.n_head = 8;
- params.n_layer = 16;
- params.n_ff = 768;
- params.f_norm_rms_eps = 1e-5f;
- params.rope_freq_base = 10000.0f;
- params.rope_freq_scale = 1.0f;
- return params;
- }
- static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
- fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
- fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
- fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
- fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff);
- fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head);
- fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer);
- fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
- fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
- fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
- print_common_train_usage(argc, argv, ¶ms->common);
- }
- static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
- bool invalid_param = false;
- std::string arg;
- struct train_params default_params = get_default_train_params();
- const std::string arg_prefix = "--";
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) {
- if (invalid_param) {
- break;
- } else if (params->common.print_usage) {
- train_print_usage(argc, argv, &default_params);
- exit(0);
- }
- } else if (arg == "--vocab-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_vocab_model = argv[i];
- } else if (arg == "--model-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_model_out = argv[i];
- } else if (arg == "--only-write-model") {
- params->only_write_model = true;
- } else if (arg == "--embd") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_embd = std::stoi(argv[i]);
- } else if (arg == "--ff") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_ff = std::stoi(argv[i]);
- } else if (arg == "--head") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_head = std::stoi(argv[i]);
- } else if (arg == "--layer") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_layer = std::stoi(argv[i]);
- } else if (arg == "--norm-rms-eps") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->f_norm_rms_eps = std::stof(argv[i]);
- } else if (arg == "--rope-freq-base") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->rope_freq_base = std::stof(argv[i]);
- } else if (arg == "--rope-freq-scale") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->rope_freq_scale = std::stof(argv[i]);
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- finish_processing_train_args(¶ms->common);
- return true;
- }
- struct save_train_files_data {
- const char * fn_checkpoint_out;
- const char * fn_model_out;
- const char * fn_vocab_model;
- const char * pattern_fn_it;
- const char * fn_latest;
- struct my_llama_model * model;
- };
- static void save_train_files(void * vdata, struct train_state * train) {
- struct save_train_files_data * data = (struct save_train_files_data *) vdata;
- int64_t iter = train->opt->iter;
- if (strlen(data->fn_checkpoint_out) > 0) {
- save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
- save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train);
- }
- if (strlen(data->fn_model_out) > 0) {
- save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
- save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model);
- }
- }
- static int64_t get_parameter_count(struct my_llama_model* model) {
- int64_t nx = 0;
- nx += ggml_nelements(model->tok_embeddings);
- nx += ggml_nelements(model->norm);
- nx += ggml_nelements(model->output);
- for (uint32_t i = 0; i < model->layers.size(); ++i) {
- auto & layer = model->layers[i];
- nx += ggml_nelements(layer.attention_norm);
- nx += ggml_nelements(layer.wq);
- nx += ggml_nelements(layer.wk);
- nx += ggml_nelements(layer.wv);
- nx += ggml_nelements(layer.wo);
- nx += ggml_nelements(layer.ffn_norm);
- nx += ggml_nelements(layer.w1);
- nx += ggml_nelements(layer.w2);
- nx += ggml_nelements(layer.w3);
- }
- return nx;
- }
- int main(int argc, char ** argv) {
- struct train_params params = get_default_train_params();
- if (!train_params_parse(argc, argv, ¶ms)) {
- return 1;
- }
- if (params.common.seed == LLAMA_DEFAULT_SEED) {
- params.common.seed = time(NULL);
- }
- printf("%s: seed: %u\n", __func__, params.common.seed);
- srand(params.common.seed);
- struct llama_model_params mparams = llama_model_default_params();
- mparams.vocab_only = true;
- struct llama_context_params cparams = llama_context_default_params();
- struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams);
- struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams);
- struct my_llama_model model;
- model.hparams.n_vocab = llama_n_vocab(lmodel);
- model.hparams.n_ctx = params.common.n_ctx;
- model.hparams.n_embd = params.n_embd;
- model.hparams.n_head = params.n_head;
- model.hparams.n_layer = params.n_layer;
- model.hparams.n_ff = params.n_ff;
- // llama.cpp requires n_rot to be exactly n_embd / n_head
- model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
- model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
- model.hparams.rope_freq_base = params.rope_freq_base;
- model.hparams.rope_freq_scale = params.rope_freq_scale;
- struct train_state * train = init_train_state();
- struct ggml_opt_context * opt = train->opt;
- // set opt params from command line
- opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
- opt->params.print_forward_graph = false;
- opt->params.print_backward_graph = false;
- opt->params.n_threads = params.common.n_threads;
- opt->params.past = params.common.opt_past;
- opt->params.delta = params.common.opt_delta;
- opt->params.max_no_improvement = params.common.opt_max_no_improvement;
- opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
- opt->params.adam.n_iter = params.common.adam_n_iter;
- opt->params.adam.sched = 1.0f;
- opt->params.adam.alpha = params.common.adam_alpha;
- opt->params.adam.decay = params.common.adam_decay;
- opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
- opt->params.adam.beta1 = params.common.adam_beta1;
- opt->params.adam.beta2 = params.common.adam_beta2;
- opt->params.adam.gclip = params.common.adam_gclip;
- opt->params.adam.eps_f = params.common.adam_eps_f;
- printf("%s: init model\n", __func__);
- bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
- if (existed) {
- // overwrite last n_ctx with user provided n_ctx
- if (params.common.custom_n_ctx) {
- model.hparams.n_ctx = params.common.n_ctx;
- }
- const bool opt_past_changed = opt->params.past != params.common.opt_past;
- if (opt_past_changed) {
- die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
- // need to discard previous optimizer past function value statistics and opt_init with new shapes
- // TODO
- }
- } else {
- init_model(&model);
- randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
- if (!params.only_write_model) {
- ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
- }
- }
- opt->iter = train->train_its;
- print_params(&model.hparams);
- printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
- printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
- printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
- printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
- printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f));
- if (params.only_write_model) {
- save_train_files_data save_data;
- save_data.fn_checkpoint_out = "";
- save_data.fn_model_out = params.fn_model_out;
- save_data.fn_vocab_model = params.fn_vocab_model;
- save_data.pattern_fn_it = params.common.pattern_fn_it;
- save_data.fn_latest = params.common.fn_latest;
- save_data.model = &model;
- save_train_files(&save_data, train);
- free_train_state(train);
- ggml_free(model.ctx);
- llama_free(lctx);
- llama_free_model(lmodel);
- return 0;
- }
- printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
- printf("%s: opt iter %d\n", __func__, opt->iter);
- int n_tokens = model.hparams.n_ctx;
- int n_vocab = model.hparams.n_vocab;
- int n_batch = params.common.n_batch;
- std::vector<uint8_t> mem_input_data;
- std::vector<uint8_t> mem_compute_data;
- ggml_allocr * alloc = NULL;
- // context for input tensors without their data
- struct ggml_init_params ctx_input_params = {
- ggml_tensor_overhead() * 2, // mem_size
- NULL, // mem_buffer
- true, // no_alloc
- };
- struct ggml_context * ctx_input = ggml_init(ctx_input_params);
- // the input tensors
- struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
- struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
- // measure required memory for input tensors
- alloc = ggml_allocr_new_measure(tensor_alignment);
- ggml_allocr_alloc(alloc, tokens_input);
- ggml_allocr_alloc(alloc, target_probs);
- size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
- ggml_allocr_free(alloc);
- printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
- // allocate input tensors
- mem_input_data.resize(max_input_size);
- alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
- ggml_allocr_alloc(alloc, tokens_input);
- ggml_allocr_alloc(alloc, target_probs);
- ggml_allocr_free(alloc);
- // context for compute tensors without their data
- size_t estimated_compute_size_wo_data = (
- ggml_tensor_overhead()*GGML_MAX_NODES*2
- + (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
- params.common.use_checkpointing ? 3 : 2
- )
- );
- struct ggml_init_params ctx_compute_params = {
- estimated_compute_size_wo_data, // mem_size
- NULL, // mem_buffer
- true, // no_alloc
- };
- struct ggml_context * ctx_compute = NULL;
- struct ggml_tensor * loss = NULL;
- struct ggml_tensor * logits = NULL;
- struct ggml_cgraph * gf = NULL;
- struct ggml_cgraph * gb = NULL;
- struct ggml_cgraph * gb_tmp = NULL;
- // measure required memory for compute tensors
- size_t best_compute_size = SIZE_MAX;
- enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
- // find best evaluation order
- for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
- ctx_compute = ggml_init(ctx_compute_params);
- alloc = ggml_allocr_new_measure(tensor_alignment);
- gf = ggml_new_graph(ctx_compute);
- gf->order = (enum ggml_cgraph_eval_order) order;
- gb = ggml_new_graph(ctx_compute);
- gb_tmp = params.common.use_checkpointing
- ? ggml_new_graph(ctx_compute)
- : NULL;
- loss = llama_build_train_graphs(
- &model, alloc, ctx_compute,
- gf, gb, gb_tmp,
- &logits, tokens_input, target_probs,
- n_tokens, n_batch,
- params.common.use_flash,
- params.common.use_checkpointing
- );
- size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
- if (max_compute_size < best_compute_size) {
- best_compute_size = max_compute_size;
- best_order = gf->order;
- }
- ggml_allocr_free(alloc);
- ggml_free(ctx_compute);
- }
- size_t max_compute_size = best_compute_size;
- printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
- printf("%s: evaluation order = %s\n", __func__,
- (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
- (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
- "invalid");
- // allocate compute tensors
- mem_compute_data.resize(max_compute_size);
- ctx_compute = ggml_init(ctx_compute_params);
- alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
- gf = ggml_new_graph(ctx_compute);
- gf->order = best_order;
- gb = ggml_new_graph(ctx_compute);
- gb_tmp = params.common.use_checkpointing
- ? ggml_new_graph(ctx_compute)
- : NULL;
- loss = llama_build_train_graphs(
- &model, alloc, ctx_compute,
- gf, gb, gb_tmp,
- &logits, tokens_input, target_probs,
- n_tokens, n_batch,
- params.common.use_flash,
- params.common.use_checkpointing
- );
- ggml_allocr_free(alloc);
- std::vector<llama_token> train_tokens;
- std::vector<size_t> train_samples_begin;
- std::vector<size_t> train_samples_size;
- printf("%s: tokenize training data\n", __func__);
- tokenize_file(lctx,
- params.common.fn_train_data,
- params.common.sample_start,
- params.common.include_sample_start,
- params.common.overlapping_samples,
- n_tokens,
- train_tokens,
- train_samples_begin,
- train_samples_size);
- GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
- printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
- size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
- const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
- if (changed_train_data) {
- printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
- }
- if (params.common.force_reshuffle) {
- printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
- }
- if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
- train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
- train->shuffle_sample_count = train_samples_size.size();
- train->shuffle_next_sample = 0;
- train->shuffle_samples_hash = shuffle_samples_hash;
- }
- std::vector<size_t> train_shuffled_samples_offs;
- std::vector<size_t> train_shuffled_samples_begin;
- std::vector<size_t> train_shuffled_samples_size;
- train_shuffled_samples_offs.resize(train_samples_begin.size());
- train_shuffled_samples_begin.resize(train_samples_begin.size());
- train_shuffled_samples_size.resize(train_samples_size.size());
- train->shuffle_rng_state_next = shuffle_samples(
- train->shuffle_rng_state_current,
- train_shuffled_samples_offs.data(),
- train_shuffled_samples_begin.data(),
- train_shuffled_samples_size.data(),
- train_samples_begin.data(),
- train_samples_size.data(),
- train_samples_size.size());
- printf("%s: begin training\n", __func__);
- save_train_files_data save_data;
- save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
- save_data.fn_model_out = params.fn_model_out;
- save_data.fn_vocab_model = params.fn_vocab_model;
- save_data.pattern_fn_it = params.common.pattern_fn_it;
- save_data.fn_latest = params.common.fn_latest;
- save_data.model = &model;
- struct train_opt_callback_data opt_cb_data;
- opt_cb_data.params = ¶ms.common;
- opt_cb_data.train = train;
- opt_cb_data.save_cb = &save_train_files;
- opt_cb_data.save_data = &save_data;
- opt_cb_data.lctx = lctx;
- opt_cb_data.last_save_iter = opt->iter;
- opt_cb_data.tokens_data = train_tokens.data();
- opt_cb_data.tokens_size = train_tokens.size();
- opt_cb_data.samples_begin = train_samples_begin.data();
- opt_cb_data.samples_size = train_samples_size.data();
- opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
- opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
- opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
- opt_cb_data.samples_count = train_samples_size.size();
- opt_cb_data.tokens_input = tokens_input;
- opt_cb_data.target_probs = target_probs;
- opt_cb_data.first_iter = opt->iter;
- opt_cb_data.first_epoch = train->train_epochs;
- opt_cb_data.iter_at_last_epoch = -1;
- opt_cb_data.last_time = ggml_time_ms();
- opt_cb_data.millis_per_iter = 0.0;
- // measure required memory for work buffer
- size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
- printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
- // context for work buffer
- struct ggml_init_params ctx_work_params = {
- max_work_size, // mem_size
- NULL, // mem_buffer
- false, // no_alloc
- };
- struct ggml_context * ctx_work = ggml_init(ctx_work_params);
- int64_t t0 = ggml_time_ms();
- ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
- ggml_free(ctx_work);
- ggml_free(ctx_compute);
- ggml_free(ctx_input);
- int64_t t1 = ggml_time_ms();
- printf("%s: total training time: ", __func__);
- print_duration((double) (t1 - t0));
- printf("\n");
- int new_iters = opt->iter - opt_cb_data.last_save_iter;
- if (new_iters > 0) {
- train->train_its += new_iters;
- train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
- save_train_files(&save_data, train);
- opt_cb_data.last_save_iter = opt->iter;
- }
- if (alloc) {
- ggml_allocr_free(alloc);
- }
- ggml_free(opt->ctx);
- free_train_state(train);
- ggml_free(model.ctx);
- llama_free(lctx);
- llama_free_model(lmodel);
- return 0;
- }
|