ggml.c 698 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #ifdef GGML_USE_K_QUANTS
  4. #include "k_quants.h"
  5. #endif
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // static_assert should be a #define, but if it's not,
  28. // fall back to the _Static_assert C11 keyword.
  29. // if C99 - static_assert is noop
  30. // ref: https://stackoverflow.com/a/53923785/4039976
  31. #ifndef static_assert
  32. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  33. #define static_assert(cond, msg) _Static_assert(cond, msg)
  34. #else
  35. #define static_assert(cond, msg) struct global_scope_noop_trick
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. // disable POSIX deprecation warnigns
  43. // these functions are never going away, anyway
  44. #pragma warning(disable: 4996)
  45. #endif
  46. #if defined(_WIN32)
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. return (int) WaitForSingleObject(thread, INFINITE);
  77. }
  78. static int sched_yield (void) {
  79. Sleep (0);
  80. return 0;
  81. }
  82. #else
  83. #include <pthread.h>
  84. #include <stdatomic.h>
  85. typedef void * thread_ret_t;
  86. #include <sys/types.h>
  87. #include <sys/stat.h>
  88. #include <unistd.h>
  89. #endif
  90. #ifdef GGML_USE_CPU_HBM
  91. #include <hbwmalloc.h>
  92. #endif
  93. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  94. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  95. #ifndef __FMA__
  96. #define __FMA__
  97. #endif
  98. #ifndef __F16C__
  99. #define __F16C__
  100. #endif
  101. #ifndef __SSE3__
  102. #define __SSE3__
  103. #endif
  104. #endif
  105. /*#define GGML_PERF*/
  106. #define GGML_DEBUG 0
  107. #define GGML_GELU_FP16
  108. #define GGML_GELU_QUICK_FP16
  109. #define GGML_SILU_FP16
  110. // #define GGML_CROSS_ENTROPY_EXP_FP16
  111. // #define GGML_FLASH_ATTN_EXP_FP16
  112. #define GGML_SOFT_MAX_UNROLL 4
  113. #define GGML_VEC_DOT_UNROLL 2
  114. #define GGML_VEC_MAD_UNROLL 32
  115. //
  116. // logging
  117. //
  118. #if (GGML_DEBUG >= 1)
  119. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  120. #else
  121. #define GGML_PRINT_DEBUG(...)
  122. #endif
  123. #if (GGML_DEBUG >= 5)
  124. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  125. #else
  126. #define GGML_PRINT_DEBUG_5(...)
  127. #endif
  128. #if (GGML_DEBUG >= 10)
  129. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  130. #else
  131. #define GGML_PRINT_DEBUG_10(...)
  132. #endif
  133. #define GGML_PRINT(...) printf(__VA_ARGS__)
  134. #ifdef GGML_USE_ACCELERATE
  135. // uncomment to use vDSP for soft max computation
  136. // note: not sure if it is actually faster
  137. //#define GGML_SOFT_MAX_ACCELERATE
  138. #endif
  139. //
  140. // logging
  141. //
  142. #if (GGML_DEBUG >= 1)
  143. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  144. #else
  145. #define GGML_PRINT_DEBUG(...)
  146. #endif
  147. #if (GGML_DEBUG >= 5)
  148. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  149. #else
  150. #define GGML_PRINT_DEBUG_5(...)
  151. #endif
  152. #if (GGML_DEBUG >= 10)
  153. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  154. #else
  155. #define GGML_PRINT_DEBUG_10(...)
  156. #endif
  157. #define GGML_PRINT(...) printf(__VA_ARGS__)
  158. //
  159. // end of logging block
  160. //
  161. #if defined(_MSC_VER) || defined(__MINGW32__)
  162. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  163. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  164. #else
  165. inline static void * ggml_aligned_malloc(size_t size) {
  166. if (size == 0) {
  167. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  168. return NULL;
  169. }
  170. void * aligned_memory = NULL;
  171. #ifdef GGML_USE_CPU_HBM
  172. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  173. #elif GGML_USE_METAL
  174. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  175. #else
  176. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  177. #endif
  178. if (result != 0) {
  179. // Handle allocation failure
  180. const char *error_desc = "unknown allocation error";
  181. switch (result) {
  182. case EINVAL:
  183. error_desc = "invalid alignment value";
  184. break;
  185. case ENOMEM:
  186. error_desc = "insufficient memory";
  187. break;
  188. }
  189. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  190. return NULL;
  191. }
  192. return aligned_memory;
  193. }
  194. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  195. #ifdef GGML_USE_CPU_HBM
  196. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  197. #else
  198. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  199. #endif
  200. #endif
  201. #define UNUSED GGML_UNUSED
  202. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  203. //
  204. // tensor access macros
  205. //
  206. #define GGML_TENSOR_UNARY_OP_LOCALS \
  207. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  208. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  209. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  210. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  211. #define GGML_TENSOR_BINARY_OP_LOCALS \
  212. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  213. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  214. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  215. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  216. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  217. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  218. #if defined(GGML_USE_ACCELERATE)
  219. #include <Accelerate/Accelerate.h>
  220. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  221. #include "ggml-opencl.h"
  222. #endif
  223. #elif defined(GGML_USE_OPENBLAS)
  224. #if defined(GGML_BLAS_USE_MKL)
  225. #include <mkl.h>
  226. #else
  227. #include <cblas.h>
  228. #endif
  229. #elif defined(GGML_USE_CUBLAS)
  230. #include "ggml-cuda.h"
  231. #elif defined(GGML_USE_CLBLAST)
  232. #include "ggml-opencl.h"
  233. #endif
  234. #undef MIN
  235. #undef MAX
  236. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  237. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  238. // floating point type used to accumulate sums
  239. typedef double ggml_float;
  240. // 16-bit float
  241. // on Arm, we use __fp16
  242. // on x86, we use uint16_t
  243. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  244. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  245. //
  246. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  247. //
  248. #include <arm_neon.h>
  249. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  250. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  251. #define GGML_FP16_TO_FP32(x) ((float) (x))
  252. #define GGML_FP32_TO_FP16(x) (x)
  253. #else
  254. #ifdef __wasm_simd128__
  255. #include <wasm_simd128.h>
  256. #else
  257. #ifdef __POWER9_VECTOR__
  258. #include <altivec.h>
  259. #undef bool
  260. #define bool _Bool
  261. #else
  262. #if defined(_MSC_VER) || defined(__MINGW32__)
  263. #include <intrin.h>
  264. #else
  265. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  266. #if !defined(__riscv)
  267. #include <immintrin.h>
  268. #endif
  269. #endif
  270. #endif
  271. #endif
  272. #endif
  273. #ifdef __riscv_v_intrinsic
  274. #include <riscv_vector.h>
  275. #endif
  276. #ifdef __F16C__
  277. #ifdef _MSC_VER
  278. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  279. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  280. #else
  281. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  282. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  283. #endif
  284. #elif defined(__POWER9_VECTOR__)
  285. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  286. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  287. /* the inline asm below is about 12% faster than the lookup method */
  288. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  289. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  290. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  291. register float f;
  292. register double d;
  293. __asm__(
  294. "mtfprd %0,%2\n"
  295. "xscvhpdp %0,%0\n"
  296. "frsp %1,%0\n" :
  297. /* temp */ "=d"(d),
  298. /* out */ "=f"(f):
  299. /* in */ "r"(h));
  300. return f;
  301. }
  302. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  303. register double d;
  304. register ggml_fp16_t r;
  305. __asm__( /* xscvdphp can work on double or single precision */
  306. "xscvdphp %0,%2\n"
  307. "mffprd %1,%0\n" :
  308. /* temp */ "=d"(d),
  309. /* out */ "=r"(r):
  310. /* in */ "f"(f));
  311. return r;
  312. }
  313. #else
  314. // FP16 <-> FP32
  315. // ref: https://github.com/Maratyszcza/FP16
  316. static inline float fp32_from_bits(uint32_t w) {
  317. union {
  318. uint32_t as_bits;
  319. float as_value;
  320. } fp32;
  321. fp32.as_bits = w;
  322. return fp32.as_value;
  323. }
  324. static inline uint32_t fp32_to_bits(float f) {
  325. union {
  326. float as_value;
  327. uint32_t as_bits;
  328. } fp32;
  329. fp32.as_value = f;
  330. return fp32.as_bits;
  331. }
  332. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  333. const uint32_t w = (uint32_t) h << 16;
  334. const uint32_t sign = w & UINT32_C(0x80000000);
  335. const uint32_t two_w = w + w;
  336. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  337. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  338. const float exp_scale = 0x1.0p-112f;
  339. #else
  340. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  341. #endif
  342. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  343. const uint32_t magic_mask = UINT32_C(126) << 23;
  344. const float magic_bias = 0.5f;
  345. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  346. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  347. const uint32_t result = sign |
  348. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  349. return fp32_from_bits(result);
  350. }
  351. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  352. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  353. const float scale_to_inf = 0x1.0p+112f;
  354. const float scale_to_zero = 0x1.0p-110f;
  355. #else
  356. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  357. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  358. #endif
  359. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  360. const uint32_t w = fp32_to_bits(f);
  361. const uint32_t shl1_w = w + w;
  362. const uint32_t sign = w & UINT32_C(0x80000000);
  363. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  364. if (bias < UINT32_C(0x71000000)) {
  365. bias = UINT32_C(0x71000000);
  366. }
  367. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  368. const uint32_t bits = fp32_to_bits(base);
  369. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  370. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  371. const uint32_t nonsign = exp_bits + mantissa_bits;
  372. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  373. }
  374. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  375. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  376. #endif // __F16C__
  377. #endif // __ARM_NEON
  378. //
  379. // global data
  380. //
  381. // precomputed gelu table for f16 (128 KB)
  382. static ggml_fp16_t table_gelu_f16[1 << 16];
  383. // precomputed quick gelu table for f16 (128 KB)
  384. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  385. // precomputed silu table for f16 (128 KB)
  386. static ggml_fp16_t table_silu_f16[1 << 16];
  387. // precomputed exp table for f16 (128 KB)
  388. static ggml_fp16_t table_exp_f16[1 << 16];
  389. // precomputed f32 table for f16 (256 KB)
  390. static float table_f32_f16[1 << 16];
  391. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  392. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  393. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  394. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  395. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  396. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  397. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  398. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  399. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  400. // precomputed tables for expanding 8bits to 8 bytes:
  401. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  402. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  403. #endif
  404. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  405. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  406. // This is also true for POWER9.
  407. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  408. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  409. uint16_t s;
  410. memcpy(&s, &f, sizeof(uint16_t));
  411. return table_f32_f16[s];
  412. }
  413. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  414. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  415. #endif
  416. // note: do not use these inside ggml.c
  417. // these are meant to be used via the ggml.h API
  418. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  419. return (float) GGML_FP16_TO_FP32(x);
  420. }
  421. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  422. return GGML_FP32_TO_FP16(x);
  423. }
  424. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  425. for (int i = 0; i < n; i++) {
  426. y[i] = GGML_FP16_TO_FP32(x[i]);
  427. }
  428. }
  429. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  430. int i = 0;
  431. #if defined(__F16C__)
  432. for (; i + 7 < n; i += 8) {
  433. __m256 x_vec = _mm256_loadu_ps(x + i);
  434. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  435. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  436. }
  437. for(; i + 3 < n; i += 4) {
  438. __m128 x_vec = _mm_loadu_ps(x + i);
  439. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  440. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  441. }
  442. #endif
  443. for (; i < n; i++) {
  444. y[i] = GGML_FP32_TO_FP16(x[i]);
  445. }
  446. }
  447. //
  448. // timing
  449. //
  450. #if defined(_MSC_VER) || defined(__MINGW32__)
  451. static int64_t timer_freq, timer_start;
  452. void ggml_time_init(void) {
  453. LARGE_INTEGER t;
  454. QueryPerformanceFrequency(&t);
  455. timer_freq = t.QuadPart;
  456. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  457. // and the uptime is high enough.
  458. // We subtract the program start time to reduce the likelihood of that happening.
  459. QueryPerformanceCounter(&t);
  460. timer_start = t.QuadPart;
  461. }
  462. int64_t ggml_time_ms(void) {
  463. LARGE_INTEGER t;
  464. QueryPerformanceCounter(&t);
  465. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  466. }
  467. int64_t ggml_time_us(void) {
  468. LARGE_INTEGER t;
  469. QueryPerformanceCounter(&t);
  470. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  471. }
  472. #else
  473. void ggml_time_init(void) {}
  474. int64_t ggml_time_ms(void) {
  475. struct timespec ts;
  476. clock_gettime(CLOCK_MONOTONIC, &ts);
  477. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  478. }
  479. int64_t ggml_time_us(void) {
  480. struct timespec ts;
  481. clock_gettime(CLOCK_MONOTONIC, &ts);
  482. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  483. }
  484. #endif
  485. int64_t ggml_cycles(void) {
  486. return clock();
  487. }
  488. int64_t ggml_cycles_per_ms(void) {
  489. return CLOCKS_PER_SEC/1000;
  490. }
  491. #ifdef GGML_PERF
  492. #define ggml_perf_time_ms() ggml_time_ms()
  493. #define ggml_perf_time_us() ggml_time_us()
  494. #define ggml_perf_cycles() ggml_cycles()
  495. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  496. #else
  497. #define ggml_perf_time_ms() 0
  498. #define ggml_perf_time_us() 0
  499. #define ggml_perf_cycles() 0
  500. #define ggml_perf_cycles_per_ms() 0
  501. #endif
  502. //
  503. // cache line
  504. //
  505. #if defined(__cpp_lib_hardware_interference_size)
  506. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  507. #else
  508. #if defined(__POWER9_VECTOR__)
  509. #define CACHE_LINE_SIZE 128
  510. #else
  511. #define CACHE_LINE_SIZE 64
  512. #endif
  513. #endif
  514. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  515. //
  516. // quantization
  517. //
  518. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  519. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  520. // multiply int8_t, add results pairwise twice
  521. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  522. // Get absolute values of x vectors
  523. const __m128i ax = _mm_sign_epi8(x, x);
  524. // Sign the values of the y vectors
  525. const __m128i sy = _mm_sign_epi8(y, x);
  526. // Perform multiplication and create 16-bit values
  527. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  528. const __m128i ones = _mm_set1_epi16(1);
  529. return _mm_madd_epi16(ones, dot);
  530. }
  531. #if __AVX__ || __AVX2__ || __AVX512F__
  532. // horizontally add 8 floats
  533. static inline float hsum_float_8(const __m256 x) {
  534. __m128 res = _mm256_extractf128_ps(x, 1);
  535. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  536. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  537. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  538. return _mm_cvtss_f32(res);
  539. }
  540. // horizontally add 8 int32_t
  541. static inline int hsum_i32_8(const __m256i a) {
  542. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  543. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  544. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  545. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  546. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  547. }
  548. // horizontally add 4 int32_t
  549. static inline int hsum_i32_4(const __m128i a) {
  550. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  551. const __m128i sum64 = _mm_add_epi32(hi64, a);
  552. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  553. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  554. }
  555. #if defined(__AVX2__) || defined(__AVX512F__)
  556. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  557. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  558. uint32_t x32;
  559. memcpy(&x32, x, sizeof(uint32_t));
  560. const __m256i shuf_mask = _mm256_set_epi64x(
  561. 0x0303030303030303, 0x0202020202020202,
  562. 0x0101010101010101, 0x0000000000000000);
  563. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  564. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  565. bytes = _mm256_or_si256(bytes, bit_mask);
  566. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  567. }
  568. // Unpack 32 4-bit fields into 32 bytes
  569. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  570. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  571. {
  572. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  573. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  574. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  575. return _mm256_and_si256(lowMask, bytes);
  576. }
  577. // add int16_t pairwise and return as float vector
  578. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  579. const __m256i ones = _mm256_set1_epi16(1);
  580. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  581. return _mm256_cvtepi32_ps(summed_pairs);
  582. }
  583. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  584. #if __AVXVNNI__
  585. const __m256i zero = _mm256_setzero_si256();
  586. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  587. return _mm256_cvtepi32_ps(summed_pairs);
  588. #else
  589. // Perform multiplication and create 16-bit values
  590. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  591. return sum_i16_pairs_float(dot);
  592. #endif
  593. }
  594. // multiply int8_t, add results pairwise twice and return as float vector
  595. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  596. #if __AVXVNNIINT8__
  597. const __m256i zero = _mm256_setzero_si256();
  598. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  599. return _mm256_cvtepi32_ps(summed_pairs);
  600. #else
  601. // Get absolute values of x vectors
  602. const __m256i ax = _mm256_sign_epi8(x, x);
  603. // Sign the values of the y vectors
  604. const __m256i sy = _mm256_sign_epi8(y, x);
  605. return mul_sum_us8_pairs_float(ax, sy);
  606. #endif
  607. }
  608. static inline __m128i packNibbles( __m256i bytes )
  609. {
  610. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  611. #if __AVX512F__
  612. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  613. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  614. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  615. #else
  616. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  617. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  618. __m256i low = _mm256_and_si256( lowByte, bytes );
  619. high = _mm256_srli_epi16( high, 4 );
  620. bytes = _mm256_or_si256( low, high );
  621. // Compress uint16_t lanes into bytes
  622. __m128i r0 = _mm256_castsi256_si128( bytes );
  623. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  624. return _mm_packus_epi16( r0, r1 );
  625. #endif
  626. }
  627. #elif defined(__AVX__)
  628. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  629. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  630. uint32_t x32;
  631. memcpy(&x32, x, sizeof(uint32_t));
  632. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  633. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  634. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  635. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  636. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  637. bytesl = _mm_or_si128(bytesl, bit_mask);
  638. bytesh = _mm_or_si128(bytesh, bit_mask);
  639. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  640. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  641. return MM256_SET_M128I(bytesh, bytesl);
  642. }
  643. // Unpack 32 4-bit fields into 32 bytes
  644. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  645. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  646. {
  647. // Load 16 bytes from memory
  648. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  649. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  650. const __m128i lowMask = _mm_set1_epi8(0xF);
  651. tmpl = _mm_and_si128(lowMask, tmpl);
  652. tmph = _mm_and_si128(lowMask, tmph);
  653. return MM256_SET_M128I(tmph, tmpl);
  654. }
  655. // add int16_t pairwise and return as float vector
  656. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  657. const __m128i ones = _mm_set1_epi16(1);
  658. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  659. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  660. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  661. return _mm256_cvtepi32_ps(summed_pairs);
  662. }
  663. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  664. const __m128i axl = _mm256_castsi256_si128(ax);
  665. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  666. const __m128i syl = _mm256_castsi256_si128(sy);
  667. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. // multiply int8_t, add results pairwise twice and return as float vector
  674. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  675. const __m128i xl = _mm256_castsi256_si128(x);
  676. const __m128i xh = _mm256_extractf128_si256(x, 1);
  677. const __m128i yl = _mm256_castsi256_si128(y);
  678. const __m128i yh = _mm256_extractf128_si256(y, 1);
  679. // Get absolute values of x vectors
  680. const __m128i axl = _mm_sign_epi8(xl, xl);
  681. const __m128i axh = _mm_sign_epi8(xh, xh);
  682. // Sign the values of the y vectors
  683. const __m128i syl = _mm_sign_epi8(yl, xl);
  684. const __m128i syh = _mm_sign_epi8(yh, xh);
  685. // Perform multiplication and create 16-bit values
  686. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  687. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  688. return sum_i16_pairs_float(doth, dotl);
  689. }
  690. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  691. {
  692. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  693. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  694. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  695. __m128i low = _mm_and_si128( lowByte, bytes1 );
  696. high = _mm_srli_epi16( high, 4 );
  697. bytes1 = _mm_or_si128( low, high );
  698. high = _mm_andnot_si128( lowByte, bytes2 );
  699. low = _mm_and_si128( lowByte, bytes2 );
  700. high = _mm_srli_epi16( high, 4 );
  701. bytes2 = _mm_or_si128( low, high );
  702. return _mm_packus_epi16( bytes1, bytes2);
  703. }
  704. #endif
  705. #elif defined(__SSSE3__)
  706. // horizontally add 4x4 floats
  707. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  708. __m128 res_0 =_mm_hadd_ps(a, b);
  709. __m128 res_1 =_mm_hadd_ps(c, d);
  710. __m128 res =_mm_hadd_ps(res_0, res_1);
  711. res =_mm_hadd_ps(res, res);
  712. res =_mm_hadd_ps(res, res);
  713. return _mm_cvtss_f32(res);
  714. }
  715. #endif // __AVX__ || __AVX2__ || __AVX512F__
  716. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  717. #if defined(__ARM_NEON)
  718. #if !defined(__aarch64__)
  719. inline static int32_t vaddvq_s32(int32x4_t v) {
  720. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  721. }
  722. inline static float vaddvq_f32(float32x4_t v) {
  723. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  724. }
  725. inline static float vmaxvq_f32(float32x4_t v) {
  726. return
  727. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  728. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  729. }
  730. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  731. int32x4_t res;
  732. res[0] = roundf(vgetq_lane_f32(v, 0));
  733. res[1] = roundf(vgetq_lane_f32(v, 1));
  734. res[2] = roundf(vgetq_lane_f32(v, 2));
  735. res[3] = roundf(vgetq_lane_f32(v, 3));
  736. return res;
  737. }
  738. #endif
  739. #endif
  740. #define QK4_0 32
  741. typedef struct {
  742. ggml_fp16_t d; // delta
  743. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  744. } block_q4_0;
  745. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  746. #define QK4_1 32
  747. typedef struct {
  748. ggml_fp16_t d; // delta
  749. ggml_fp16_t m; // min
  750. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  751. } block_q4_1;
  752. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  753. #define QK5_0 32
  754. typedef struct {
  755. ggml_fp16_t d; // delta
  756. uint8_t qh[4]; // 5-th bit of quants
  757. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  758. } block_q5_0;
  759. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  760. #define QK5_1 32
  761. typedef struct {
  762. ggml_fp16_t d; // delta
  763. ggml_fp16_t m; // min
  764. uint8_t qh[4]; // 5-th bit of quants
  765. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  766. } block_q5_1;
  767. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  768. #define QK8_0 32
  769. typedef struct {
  770. ggml_fp16_t d; // delta
  771. int8_t qs[QK8_0]; // quants
  772. } block_q8_0;
  773. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  774. #define QK8_1 32
  775. typedef struct {
  776. float d; // delta
  777. float s; // d * sum(qs[i])
  778. int8_t qs[QK8_1]; // quants
  779. } block_q8_1;
  780. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  781. // reference implementation for deterministic creation of model files
  782. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  783. static const int qk = QK4_0;
  784. assert(k % qk == 0);
  785. const int nb = k / qk;
  786. for (int i = 0; i < nb; i++) {
  787. float amax = 0.0f; // absolute max
  788. float max = 0.0f;
  789. for (int j = 0; j < qk; j++) {
  790. const float v = x[i*qk + j];
  791. if (amax < fabsf(v)) {
  792. amax = fabsf(v);
  793. max = v;
  794. }
  795. }
  796. const float d = max / -8;
  797. const float id = d ? 1.0f/d : 0.0f;
  798. y[i].d = GGML_FP32_TO_FP16(d);
  799. for (int j = 0; j < qk/2; ++j) {
  800. const float x0 = x[i*qk + 0 + j]*id;
  801. const float x1 = x[i*qk + qk/2 + j]*id;
  802. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  803. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  804. y[i].qs[j] = xi0;
  805. y[i].qs[j] |= xi1 << 4;
  806. }
  807. }
  808. }
  809. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  810. quantize_row_q4_0_reference(x, y, k);
  811. }
  812. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  813. const int qk = QK4_1;
  814. assert(k % qk == 0);
  815. const int nb = k / qk;
  816. for (int i = 0; i < nb; i++) {
  817. float min = FLT_MAX;
  818. float max = -FLT_MAX;
  819. for (int j = 0; j < qk; j++) {
  820. const float v = x[i*qk + j];
  821. if (v < min) min = v;
  822. if (v > max) max = v;
  823. }
  824. const float d = (max - min) / ((1 << 4) - 1);
  825. const float id = d ? 1.0f/d : 0.0f;
  826. y[i].d = GGML_FP32_TO_FP16(d);
  827. y[i].m = GGML_FP32_TO_FP16(min);
  828. for (int j = 0; j < qk/2; ++j) {
  829. const float x0 = (x[i*qk + 0 + j] - min)*id;
  830. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  831. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  832. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  833. y[i].qs[j] = xi0;
  834. y[i].qs[j] |= xi1 << 4;
  835. }
  836. }
  837. }
  838. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  839. quantize_row_q4_1_reference(x, y, k);
  840. }
  841. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  842. static const int qk = QK5_0;
  843. assert(k % qk == 0);
  844. const int nb = k / qk;
  845. for (int i = 0; i < nb; i++) {
  846. float amax = 0.0f; // absolute max
  847. float max = 0.0f;
  848. for (int j = 0; j < qk; j++) {
  849. const float v = x[i*qk + j];
  850. if (amax < fabsf(v)) {
  851. amax = fabsf(v);
  852. max = v;
  853. }
  854. }
  855. const float d = max / -16;
  856. const float id = d ? 1.0f/d : 0.0f;
  857. y[i].d = GGML_FP32_TO_FP16(d);
  858. uint32_t qh = 0;
  859. for (int j = 0; j < qk/2; ++j) {
  860. const float x0 = x[i*qk + 0 + j]*id;
  861. const float x1 = x[i*qk + qk/2 + j]*id;
  862. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  863. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  864. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  865. // get the 5-th bit and store it in qh at the right position
  866. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  867. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  868. }
  869. memcpy(&y[i].qh, &qh, sizeof(qh));
  870. }
  871. }
  872. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  873. quantize_row_q5_0_reference(x, y, k);
  874. }
  875. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  876. const int qk = QK5_1;
  877. assert(k % qk == 0);
  878. const int nb = k / qk;
  879. for (int i = 0; i < nb; i++) {
  880. float min = FLT_MAX;
  881. float max = -FLT_MAX;
  882. for (int j = 0; j < qk; j++) {
  883. const float v = x[i*qk + j];
  884. if (v < min) min = v;
  885. if (v > max) max = v;
  886. }
  887. const float d = (max - min) / ((1 << 5) - 1);
  888. const float id = d ? 1.0f/d : 0.0f;
  889. y[i].d = GGML_FP32_TO_FP16(d);
  890. y[i].m = GGML_FP32_TO_FP16(min);
  891. uint32_t qh = 0;
  892. for (int j = 0; j < qk/2; ++j) {
  893. const float x0 = (x[i*qk + 0 + j] - min)*id;
  894. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  895. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  896. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  897. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  898. // get the 5-th bit and store it in qh at the right position
  899. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  900. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  901. }
  902. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  903. }
  904. }
  905. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  906. quantize_row_q5_1_reference(x, y, k);
  907. }
  908. // reference implementation for deterministic creation of model files
  909. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  910. assert(k % QK8_0 == 0);
  911. const int nb = k / QK8_0;
  912. for (int i = 0; i < nb; i++) {
  913. float amax = 0.0f; // absolute max
  914. for (int j = 0; j < QK8_0; j++) {
  915. const float v = x[i*QK8_0 + j];
  916. amax = MAX(amax, fabsf(v));
  917. }
  918. const float d = amax / ((1 << 7) - 1);
  919. const float id = d ? 1.0f/d : 0.0f;
  920. y[i].d = GGML_FP32_TO_FP16(d);
  921. for (int j = 0; j < QK8_0; ++j) {
  922. const float x0 = x[i*QK8_0 + j]*id;
  923. y[i].qs[j] = roundf(x0);
  924. }
  925. }
  926. }
  927. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  928. assert(QK8_0 == 32);
  929. assert(k % QK8_0 == 0);
  930. const int nb = k / QK8_0;
  931. block_q8_0 * restrict y = vy;
  932. #if defined(__ARM_NEON)
  933. for (int i = 0; i < nb; i++) {
  934. float32x4_t srcv [8];
  935. float32x4_t asrcv[8];
  936. float32x4_t amaxv[8];
  937. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  938. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  939. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  940. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  941. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  942. const float amax = vmaxvq_f32(amaxv[0]);
  943. const float d = amax / ((1 << 7) - 1);
  944. const float id = d ? 1.0f/d : 0.0f;
  945. y[i].d = GGML_FP32_TO_FP16(d);
  946. for (int j = 0; j < 8; j++) {
  947. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  948. const int32x4_t vi = vcvtnq_s32_f32(v);
  949. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  950. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  951. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  952. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  953. }
  954. }
  955. #elif defined(__wasm_simd128__)
  956. for (int i = 0; i < nb; i++) {
  957. v128_t srcv [8];
  958. v128_t asrcv[8];
  959. v128_t amaxv[8];
  960. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  961. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  962. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  963. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  964. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  965. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  966. wasm_f32x4_extract_lane(amaxv[0], 1)),
  967. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  968. wasm_f32x4_extract_lane(amaxv[0], 3)));
  969. const float d = amax / ((1 << 7) - 1);
  970. const float id = d ? 1.0f/d : 0.0f;
  971. y[i].d = GGML_FP32_TO_FP16(d);
  972. for (int j = 0; j < 8; j++) {
  973. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  974. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  975. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  976. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  977. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  978. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  979. }
  980. }
  981. #elif defined(__AVX2__) || defined(__AVX__)
  982. for (int i = 0; i < nb; i++) {
  983. // Load elements into 4 AVX vectors
  984. __m256 v0 = _mm256_loadu_ps( x );
  985. __m256 v1 = _mm256_loadu_ps( x + 8 );
  986. __m256 v2 = _mm256_loadu_ps( x + 16 );
  987. __m256 v3 = _mm256_loadu_ps( x + 24 );
  988. x += 32;
  989. // Compute max(abs(e)) for the block
  990. const __m256 signBit = _mm256_set1_ps( -0.0f );
  991. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  992. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  993. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  994. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  995. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  996. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  997. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  998. const float maxScalar = _mm_cvtss_f32( max4 );
  999. // Quantize these floats
  1000. const float d = maxScalar / 127.f;
  1001. y[i].d = GGML_FP32_TO_FP16(d);
  1002. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1003. const __m256 mul = _mm256_set1_ps( id );
  1004. // Apply the multiplier
  1005. v0 = _mm256_mul_ps( v0, mul );
  1006. v1 = _mm256_mul_ps( v1, mul );
  1007. v2 = _mm256_mul_ps( v2, mul );
  1008. v3 = _mm256_mul_ps( v3, mul );
  1009. // Round to nearest integer
  1010. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1011. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1012. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1013. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1014. // Convert floats to integers
  1015. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1016. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1017. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1018. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1019. #if defined(__AVX2__)
  1020. // Convert int32 to int16
  1021. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1022. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1023. // Convert int16 to int8
  1024. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1025. // We got our precious signed bytes, but the order is now wrong
  1026. // These AVX2 pack instructions process 16-byte pieces independently
  1027. // The following instruction is fixing the order
  1028. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1029. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1030. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1031. #else
  1032. // Since we don't have in AVX some necessary functions,
  1033. // we split the registers in half and call AVX2 analogs from SSE
  1034. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1035. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1036. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1037. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1038. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1039. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1040. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1041. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1042. // Convert int32 to int16
  1043. ni0 = _mm_packs_epi32( ni0, ni1 );
  1044. ni2 = _mm_packs_epi32( ni2, ni3 );
  1045. ni4 = _mm_packs_epi32( ni4, ni5 );
  1046. ni6 = _mm_packs_epi32( ni6, ni7 );
  1047. // Convert int16 to int8
  1048. ni0 = _mm_packs_epi16( ni0, ni2 );
  1049. ni4 = _mm_packs_epi16( ni4, ni6 );
  1050. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1051. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1052. #endif
  1053. }
  1054. #else
  1055. // scalar
  1056. quantize_row_q8_0_reference(x, y, k);
  1057. #endif
  1058. }
  1059. // reference implementation for deterministic creation of model files
  1060. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1061. assert(QK8_1 == 32);
  1062. assert(k % QK8_1 == 0);
  1063. const int nb = k / QK8_1;
  1064. for (int i = 0; i < nb; i++) {
  1065. float amax = 0.0f; // absolute max
  1066. for (int j = 0; j < QK8_1; j++) {
  1067. const float v = x[i*QK8_1 + j];
  1068. amax = MAX(amax, fabsf(v));
  1069. }
  1070. const float d = amax / ((1 << 7) - 1);
  1071. const float id = d ? 1.0f/d : 0.0f;
  1072. y[i].d = d;
  1073. int sum = 0;
  1074. for (int j = 0; j < QK8_1/2; ++j) {
  1075. const float v0 = x[i*QK8_1 + j]*id;
  1076. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1077. y[i].qs[ j] = roundf(v0);
  1078. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1079. sum += y[i].qs[ j];
  1080. sum += y[i].qs[QK8_1/2 + j];
  1081. }
  1082. y[i].s = sum*d;
  1083. }
  1084. }
  1085. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1086. assert(k % QK8_1 == 0);
  1087. const int nb = k / QK8_1;
  1088. block_q8_1 * restrict y = vy;
  1089. #if defined(__ARM_NEON)
  1090. for (int i = 0; i < nb; i++) {
  1091. float32x4_t srcv [8];
  1092. float32x4_t asrcv[8];
  1093. float32x4_t amaxv[8];
  1094. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1095. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1096. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1097. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1098. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1099. const float amax = vmaxvq_f32(amaxv[0]);
  1100. const float d = amax / ((1 << 7) - 1);
  1101. const float id = d ? 1.0f/d : 0.0f;
  1102. y[i].d = d;
  1103. int32x4_t accv = vdupq_n_s32(0);
  1104. for (int j = 0; j < 8; j++) {
  1105. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1106. const int32x4_t vi = vcvtnq_s32_f32(v);
  1107. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1108. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1109. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1110. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1111. accv = vaddq_s32(accv, vi);
  1112. }
  1113. y[i].s = d * vaddvq_s32(accv);
  1114. }
  1115. #elif defined(__wasm_simd128__)
  1116. for (int i = 0; i < nb; i++) {
  1117. v128_t srcv [8];
  1118. v128_t asrcv[8];
  1119. v128_t amaxv[8];
  1120. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1121. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1122. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1123. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1124. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1125. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1126. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1127. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1128. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1129. const float d = amax / ((1 << 7) - 1);
  1130. const float id = d ? 1.0f/d : 0.0f;
  1131. y[i].d = d;
  1132. v128_t accv = wasm_i32x4_splat(0);
  1133. for (int j = 0; j < 8; j++) {
  1134. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1135. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1136. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1137. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1138. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1139. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1140. accv = wasm_i32x4_add(accv, vi);
  1141. }
  1142. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1143. wasm_i32x4_extract_lane(accv, 1) +
  1144. wasm_i32x4_extract_lane(accv, 2) +
  1145. wasm_i32x4_extract_lane(accv, 3));
  1146. }
  1147. #elif defined(__AVX2__) || defined(__AVX__)
  1148. for (int i = 0; i < nb; i++) {
  1149. // Load elements into 4 AVX vectors
  1150. __m256 v0 = _mm256_loadu_ps( x );
  1151. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1152. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1153. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1154. x += 32;
  1155. // Compute max(abs(e)) for the block
  1156. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1157. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1158. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1159. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1160. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1161. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1162. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1163. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1164. const float maxScalar = _mm_cvtss_f32( max4 );
  1165. // Quantize these floats
  1166. const float d = maxScalar / 127.f;
  1167. y[i].d = d;
  1168. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1169. const __m256 mul = _mm256_set1_ps( id );
  1170. // Apply the multiplier
  1171. v0 = _mm256_mul_ps( v0, mul );
  1172. v1 = _mm256_mul_ps( v1, mul );
  1173. v2 = _mm256_mul_ps( v2, mul );
  1174. v3 = _mm256_mul_ps( v3, mul );
  1175. // Round to nearest integer
  1176. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1177. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1178. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1179. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1180. // Convert floats to integers
  1181. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1182. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1183. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1184. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1185. #if defined(__AVX2__)
  1186. // Compute the sum of the quants and set y[i].s
  1187. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1188. // Convert int32 to int16
  1189. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1190. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1191. // Convert int16 to int8
  1192. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1193. // We got our precious signed bytes, but the order is now wrong
  1194. // These AVX2 pack instructions process 16-byte pieces independently
  1195. // The following instruction is fixing the order
  1196. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1197. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1198. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1199. #else
  1200. // Since we don't have in AVX some necessary functions,
  1201. // we split the registers in half and call AVX2 analogs from SSE
  1202. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1203. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1204. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1205. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1206. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1207. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1208. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1209. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1210. // Compute the sum of the quants and set y[i].s
  1211. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1212. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1213. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1214. // Convert int32 to int16
  1215. ni0 = _mm_packs_epi32( ni0, ni1 );
  1216. ni2 = _mm_packs_epi32( ni2, ni3 );
  1217. ni4 = _mm_packs_epi32( ni4, ni5 );
  1218. ni6 = _mm_packs_epi32( ni6, ni7 );
  1219. // Convert int16 to int8
  1220. ni0 = _mm_packs_epi16( ni0, ni2 );
  1221. ni4 = _mm_packs_epi16( ni4, ni6 );
  1222. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1223. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1224. #endif
  1225. }
  1226. #else
  1227. // scalar
  1228. quantize_row_q8_1_reference(x, y, k);
  1229. #endif
  1230. }
  1231. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1232. static const int qk = QK4_0;
  1233. assert(k % qk == 0);
  1234. const int nb = k / qk;
  1235. for (int i = 0; i < nb; i++) {
  1236. const float d = GGML_FP16_TO_FP32(x[i].d);
  1237. for (int j = 0; j < qk/2; ++j) {
  1238. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1239. const int x1 = (x[i].qs[j] >> 4) - 8;
  1240. y[i*qk + j + 0 ] = x0*d;
  1241. y[i*qk + j + qk/2] = x1*d;
  1242. }
  1243. }
  1244. }
  1245. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1246. static const int qk = QK4_1;
  1247. assert(k % qk == 0);
  1248. const int nb = k / qk;
  1249. for (int i = 0; i < nb; i++) {
  1250. const float d = GGML_FP16_TO_FP32(x[i].d);
  1251. const float m = GGML_FP16_TO_FP32(x[i].m);
  1252. for (int j = 0; j < qk/2; ++j) {
  1253. const int x0 = (x[i].qs[j] & 0x0F);
  1254. const int x1 = (x[i].qs[j] >> 4);
  1255. y[i*qk + j + 0 ] = x0*d + m;
  1256. y[i*qk + j + qk/2] = x1*d + m;
  1257. }
  1258. }
  1259. }
  1260. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1261. static const int qk = QK5_0;
  1262. assert(k % qk == 0);
  1263. const int nb = k / qk;
  1264. for (int i = 0; i < nb; i++) {
  1265. const float d = GGML_FP16_TO_FP32(x[i].d);
  1266. uint32_t qh;
  1267. memcpy(&qh, x[i].qh, sizeof(qh));
  1268. for (int j = 0; j < qk/2; ++j) {
  1269. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1270. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1271. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1272. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1273. y[i*qk + j + 0 ] = x0*d;
  1274. y[i*qk + j + qk/2] = x1*d;
  1275. }
  1276. }
  1277. }
  1278. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1279. static const int qk = QK5_1;
  1280. assert(k % qk == 0);
  1281. const int nb = k / qk;
  1282. for (int i = 0; i < nb; i++) {
  1283. const float d = GGML_FP16_TO_FP32(x[i].d);
  1284. const float m = GGML_FP16_TO_FP32(x[i].m);
  1285. uint32_t qh;
  1286. memcpy(&qh, x[i].qh, sizeof(qh));
  1287. for (int j = 0; j < qk/2; ++j) {
  1288. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1289. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1290. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1291. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1292. y[i*qk + j + 0 ] = x0*d + m;
  1293. y[i*qk + j + qk/2] = x1*d + m;
  1294. }
  1295. }
  1296. }
  1297. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1298. static const int qk = QK8_0;
  1299. assert(k % qk == 0);
  1300. const int nb = k / qk;
  1301. const block_q8_0 * restrict x = vx;
  1302. for (int i = 0; i < nb; i++) {
  1303. const float d = GGML_FP16_TO_FP32(x[i].d);
  1304. for (int j = 0; j < qk; ++j) {
  1305. y[i*qk + j] = x[i].qs[j]*d;
  1306. }
  1307. }
  1308. }
  1309. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1310. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1311. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1312. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1313. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1314. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1315. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1316. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1317. [GGML_TYPE_I8] = {
  1318. .type_name = "i8",
  1319. .blck_size = 1,
  1320. .type_size = sizeof(int8_t),
  1321. .is_quantized = false,
  1322. },
  1323. [GGML_TYPE_I16] = {
  1324. .type_name = "i16",
  1325. .blck_size = 1,
  1326. .type_size = sizeof(int16_t),
  1327. .is_quantized = false,
  1328. },
  1329. [GGML_TYPE_I32] = {
  1330. .type_name = "i32",
  1331. .blck_size = 1,
  1332. .type_size = sizeof(int32_t),
  1333. .is_quantized = false,
  1334. },
  1335. [GGML_TYPE_F32] = {
  1336. .type_name = "f32",
  1337. .blck_size = 1,
  1338. .type_size = sizeof(float),
  1339. .is_quantized = false,
  1340. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1341. .vec_dot_type = GGML_TYPE_F32,
  1342. },
  1343. [GGML_TYPE_F16] = {
  1344. .type_name = "f16",
  1345. .blck_size = 1,
  1346. .type_size = sizeof(ggml_fp16_t),
  1347. .is_quantized = false,
  1348. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1349. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1350. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1351. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1352. .vec_dot_type = GGML_TYPE_F16,
  1353. },
  1354. [GGML_TYPE_Q4_0] = {
  1355. .type_name = "q4_0",
  1356. .blck_size = QK4_0,
  1357. .type_size = sizeof(block_q4_0),
  1358. .is_quantized = true,
  1359. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1360. .from_float = quantize_row_q4_0,
  1361. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1362. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1363. .vec_dot_type = GGML_TYPE_Q8_0,
  1364. },
  1365. [GGML_TYPE_Q4_1] = {
  1366. .type_name = "q4_1",
  1367. .blck_size = QK4_1,
  1368. .type_size = sizeof(block_q4_1),
  1369. .is_quantized = true,
  1370. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1371. .from_float = quantize_row_q4_1,
  1372. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1373. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1374. .vec_dot_type = GGML_TYPE_Q8_1,
  1375. },
  1376. [GGML_TYPE_Q5_0] = {
  1377. .type_name = "q5_0",
  1378. .blck_size = QK5_0,
  1379. .type_size = sizeof(block_q5_0),
  1380. .is_quantized = true,
  1381. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1382. .from_float = quantize_row_q5_0,
  1383. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1384. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1385. .vec_dot_type = GGML_TYPE_Q8_0,
  1386. },
  1387. [GGML_TYPE_Q5_1] = {
  1388. .type_name = "q5_1",
  1389. .blck_size = QK5_1,
  1390. .type_size = sizeof(block_q5_1),
  1391. .is_quantized = true,
  1392. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1393. .from_float = quantize_row_q5_1,
  1394. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1395. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1396. .vec_dot_type = GGML_TYPE_Q8_1,
  1397. },
  1398. [GGML_TYPE_Q8_0] = {
  1399. .type_name = "q8_0",
  1400. .blck_size = QK8_0,
  1401. .type_size = sizeof(block_q8_0),
  1402. .is_quantized = true,
  1403. .to_float = dequantize_row_q8_0,
  1404. .from_float = quantize_row_q8_0,
  1405. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1406. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1407. .vec_dot_type = GGML_TYPE_Q8_0,
  1408. },
  1409. [GGML_TYPE_Q8_1] = {
  1410. .type_name = "q8_1",
  1411. .blck_size = QK8_1,
  1412. .type_size = sizeof(block_q8_1),
  1413. .is_quantized = true,
  1414. .from_float = quantize_row_q8_1,
  1415. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1416. .vec_dot_type = GGML_TYPE_Q8_1,
  1417. },
  1418. #ifdef GGML_USE_K_QUANTS
  1419. [GGML_TYPE_Q2_K] = {
  1420. .type_name = "q2_K",
  1421. .blck_size = QK_K,
  1422. .type_size = sizeof(block_q2_K),
  1423. .is_quantized = true,
  1424. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1425. .from_float = quantize_row_q2_K,
  1426. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1427. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1428. .vec_dot_type = GGML_TYPE_Q8_K,
  1429. },
  1430. [GGML_TYPE_Q3_K] = {
  1431. .type_name = "q3_K",
  1432. .blck_size = QK_K,
  1433. .type_size = sizeof(block_q3_K),
  1434. .is_quantized = true,
  1435. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1436. .from_float = quantize_row_q3_K,
  1437. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1438. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1439. .vec_dot_type = GGML_TYPE_Q8_K,
  1440. },
  1441. [GGML_TYPE_Q4_K] = {
  1442. .type_name = "q4_K",
  1443. .blck_size = QK_K,
  1444. .type_size = sizeof(block_q4_K),
  1445. .is_quantized = true,
  1446. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1447. .from_float = quantize_row_q4_K,
  1448. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1449. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1450. .vec_dot_type = GGML_TYPE_Q8_K,
  1451. },
  1452. [GGML_TYPE_Q5_K] = {
  1453. .type_name = "q5_K",
  1454. .blck_size = QK_K,
  1455. .type_size = sizeof(block_q5_K),
  1456. .is_quantized = true,
  1457. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1458. .from_float = quantize_row_q5_K,
  1459. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1460. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1461. .vec_dot_type = GGML_TYPE_Q8_K,
  1462. },
  1463. [GGML_TYPE_Q6_K] = {
  1464. .type_name = "q6_K",
  1465. .blck_size = QK_K,
  1466. .type_size = sizeof(block_q6_K),
  1467. .is_quantized = true,
  1468. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1469. .from_float = quantize_row_q6_K,
  1470. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1471. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1472. .vec_dot_type = GGML_TYPE_Q8_K,
  1473. },
  1474. [GGML_TYPE_Q8_K] = {
  1475. .type_name = "q8_K",
  1476. .blck_size = QK_K,
  1477. .type_size = sizeof(block_q8_K),
  1478. .is_quantized = true,
  1479. .from_float = quantize_row_q8_K,
  1480. }
  1481. #endif
  1482. };
  1483. // For internal test use
  1484. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1485. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1486. return type_traits[type];
  1487. }
  1488. //
  1489. // simd mappings
  1490. //
  1491. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1492. // we then implement the fundamental computation operations below using only these macros
  1493. // adding support for new architectures requires to define the corresponding SIMD macros
  1494. //
  1495. // GGML_F32_STEP / GGML_F16_STEP
  1496. // number of elements to process in a single step
  1497. //
  1498. // GGML_F32_EPR / GGML_F16_EPR
  1499. // number of elements to fit in a single register
  1500. //
  1501. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1502. #define GGML_SIMD
  1503. // F32 NEON
  1504. #define GGML_F32_STEP 16
  1505. #define GGML_F32_EPR 4
  1506. #define GGML_F32x4 float32x4_t
  1507. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1508. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1509. #define GGML_F32x4_LOAD vld1q_f32
  1510. #define GGML_F32x4_STORE vst1q_f32
  1511. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1512. #define GGML_F32x4_ADD vaddq_f32
  1513. #define GGML_F32x4_MUL vmulq_f32
  1514. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1515. #define GGML_F32x4_REDUCE(res, x) \
  1516. { \
  1517. int offset = GGML_F32_ARR >> 1; \
  1518. for (int i = 0; i < offset; ++i) { \
  1519. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1520. } \
  1521. offset >>= 1; \
  1522. for (int i = 0; i < offset; ++i) { \
  1523. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1524. } \
  1525. offset >>= 1; \
  1526. for (int i = 0; i < offset; ++i) { \
  1527. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1528. } \
  1529. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1530. }
  1531. #define GGML_F32_VEC GGML_F32x4
  1532. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1533. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1534. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1535. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1536. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1537. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1538. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1539. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1540. // F16 NEON
  1541. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1542. #define GGML_F16_STEP 32
  1543. #define GGML_F16_EPR 8
  1544. #define GGML_F16x8 float16x8_t
  1545. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1546. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1547. #define GGML_F16x8_LOAD vld1q_f16
  1548. #define GGML_F16x8_STORE vst1q_f16
  1549. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1550. #define GGML_F16x8_ADD vaddq_f16
  1551. #define GGML_F16x8_MUL vmulq_f16
  1552. #define GGML_F16x8_REDUCE(res, x) \
  1553. { \
  1554. int offset = GGML_F16_ARR >> 1; \
  1555. for (int i = 0; i < offset; ++i) { \
  1556. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1557. } \
  1558. offset >>= 1; \
  1559. for (int i = 0; i < offset; ++i) { \
  1560. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1561. } \
  1562. offset >>= 1; \
  1563. for (int i = 0; i < offset; ++i) { \
  1564. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1565. } \
  1566. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1567. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1568. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1569. }
  1570. #define GGML_F16_VEC GGML_F16x8
  1571. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1572. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1573. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1574. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1575. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1576. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1577. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1578. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1579. #else
  1580. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1581. // and take advantage of the vcvt_ functions to convert to/from FP16
  1582. #define GGML_F16_STEP 16
  1583. #define GGML_F16_EPR 4
  1584. #define GGML_F32Cx4 float32x4_t
  1585. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1586. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1587. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1588. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1589. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1590. #define GGML_F32Cx4_ADD vaddq_f32
  1591. #define GGML_F32Cx4_MUL vmulq_f32
  1592. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1593. #define GGML_F16_VEC GGML_F32Cx4
  1594. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1595. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1596. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1597. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1598. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1599. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1600. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1601. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1602. #endif
  1603. #elif defined(__AVX__)
  1604. #define GGML_SIMD
  1605. // F32 AVX
  1606. #define GGML_F32_STEP 32
  1607. #define GGML_F32_EPR 8
  1608. #define GGML_F32x8 __m256
  1609. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1610. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1611. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1612. #define GGML_F32x8_STORE _mm256_storeu_ps
  1613. #if defined(__FMA__)
  1614. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1615. #else
  1616. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1617. #endif
  1618. #define GGML_F32x8_ADD _mm256_add_ps
  1619. #define GGML_F32x8_MUL _mm256_mul_ps
  1620. #define GGML_F32x8_REDUCE(res, x) \
  1621. { \
  1622. int offset = GGML_F32_ARR >> 1; \
  1623. for (int i = 0; i < offset; ++i) { \
  1624. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1625. } \
  1626. offset >>= 1; \
  1627. for (int i = 0; i < offset; ++i) { \
  1628. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1629. } \
  1630. offset >>= 1; \
  1631. for (int i = 0; i < offset; ++i) { \
  1632. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1633. } \
  1634. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1635. _mm256_extractf128_ps(x[0], 1)); \
  1636. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1637. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1638. }
  1639. // TODO: is this optimal ?
  1640. #define GGML_F32_VEC GGML_F32x8
  1641. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1642. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1643. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1644. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1645. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1646. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1647. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1648. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1649. // F16 AVX
  1650. #define GGML_F16_STEP 32
  1651. #define GGML_F16_EPR 8
  1652. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1653. #define GGML_F32Cx8 __m256
  1654. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1655. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1656. #if defined(__F16C__)
  1657. // the _mm256_cvt intrinsics require F16C
  1658. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1659. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1660. #else
  1661. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1662. float tmp[8];
  1663. for (int i = 0; i < 8; i++) {
  1664. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1665. }
  1666. return _mm256_loadu_ps(tmp);
  1667. }
  1668. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1669. float arr[8];
  1670. _mm256_storeu_ps(arr, y);
  1671. for (int i = 0; i < 8; i++)
  1672. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1673. }
  1674. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1675. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1676. #endif
  1677. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1678. #define GGML_F32Cx8_ADD _mm256_add_ps
  1679. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1680. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1681. #define GGML_F16_VEC GGML_F32Cx8
  1682. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1683. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1684. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1685. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1686. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1687. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1688. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1689. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1690. #elif defined(__POWER9_VECTOR__)
  1691. #define GGML_SIMD
  1692. // F32 POWER9
  1693. #define GGML_F32_STEP 32
  1694. #define GGML_F32_EPR 4
  1695. #define GGML_F32x4 vector float
  1696. #define GGML_F32x4_ZERO 0.0f
  1697. #define GGML_F32x4_SET1 vec_splats
  1698. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1699. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1700. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1701. #define GGML_F32x4_ADD vec_add
  1702. #define GGML_F32x4_MUL vec_mul
  1703. #define GGML_F32x4_REDUCE(res, x) \
  1704. { \
  1705. int offset = GGML_F32_ARR >> 1; \
  1706. for (int i = 0; i < offset; ++i) { \
  1707. x[i] = vec_add(x[i], x[offset+i]); \
  1708. } \
  1709. offset >>= 1; \
  1710. for (int i = 0; i < offset; ++i) { \
  1711. x[i] = vec_add(x[i], x[offset+i]); \
  1712. } \
  1713. offset >>= 1; \
  1714. for (int i = 0; i < offset; ++i) { \
  1715. x[i] = vec_add(x[i], x[offset+i]); \
  1716. } \
  1717. res = vec_extract(x[0], 0) + \
  1718. vec_extract(x[0], 1) + \
  1719. vec_extract(x[0], 2) + \
  1720. vec_extract(x[0], 3); \
  1721. }
  1722. #define GGML_F32_VEC GGML_F32x4
  1723. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1724. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1725. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1726. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1727. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1728. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1729. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1730. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1731. // F16 POWER9
  1732. #define GGML_F16_STEP GGML_F32_STEP
  1733. #define GGML_F16_EPR GGML_F32_EPR
  1734. #define GGML_F16_VEC GGML_F32x4
  1735. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1736. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1737. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1738. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1739. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1740. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1741. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1742. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1743. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1744. #define GGML_F16_VEC_STORE(p, r, i) \
  1745. if (i & 0x1) \
  1746. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1747. r[i - GGML_ENDIAN_BYTE(0)]), \
  1748. 0, p - GGML_F16_EPR)
  1749. #elif defined(__wasm_simd128__)
  1750. #define GGML_SIMD
  1751. // F32 WASM
  1752. #define GGML_F32_STEP 16
  1753. #define GGML_F32_EPR 4
  1754. #define GGML_F32x4 v128_t
  1755. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1756. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1757. #define GGML_F32x4_LOAD wasm_v128_load
  1758. #define GGML_F32x4_STORE wasm_v128_store
  1759. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1760. #define GGML_F32x4_ADD wasm_f32x4_add
  1761. #define GGML_F32x4_MUL wasm_f32x4_mul
  1762. #define GGML_F32x4_REDUCE(res, x) \
  1763. { \
  1764. int offset = GGML_F32_ARR >> 1; \
  1765. for (int i = 0; i < offset; ++i) { \
  1766. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1767. } \
  1768. offset >>= 1; \
  1769. for (int i = 0; i < offset; ++i) { \
  1770. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1771. } \
  1772. offset >>= 1; \
  1773. for (int i = 0; i < offset; ++i) { \
  1774. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1775. } \
  1776. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1777. wasm_f32x4_extract_lane(x[0], 1) + \
  1778. wasm_f32x4_extract_lane(x[0], 2) + \
  1779. wasm_f32x4_extract_lane(x[0], 3); \
  1780. }
  1781. #define GGML_F32_VEC GGML_F32x4
  1782. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1783. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1784. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1785. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1786. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1787. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1788. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1789. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1790. // F16 WASM
  1791. #define GGML_F16_STEP 16
  1792. #define GGML_F16_EPR 4
  1793. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1794. float tmp[4];
  1795. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1796. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1797. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1798. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1799. return wasm_v128_load(tmp);
  1800. }
  1801. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1802. float tmp[4];
  1803. wasm_v128_store(tmp, x);
  1804. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1805. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1806. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1807. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1808. }
  1809. #define GGML_F16x4 v128_t
  1810. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1811. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1812. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1813. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1814. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1815. #define GGML_F16x4_ADD wasm_f32x4_add
  1816. #define GGML_F16x4_MUL wasm_f32x4_mul
  1817. #define GGML_F16x4_REDUCE(res, x) \
  1818. { \
  1819. int offset = GGML_F16_ARR >> 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1822. } \
  1823. offset >>= 1; \
  1824. for (int i = 0; i < offset; ++i) { \
  1825. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1826. } \
  1827. offset >>= 1; \
  1828. for (int i = 0; i < offset; ++i) { \
  1829. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1830. } \
  1831. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1832. wasm_f32x4_extract_lane(x[0], 1) + \
  1833. wasm_f32x4_extract_lane(x[0], 2) + \
  1834. wasm_f32x4_extract_lane(x[0], 3); \
  1835. }
  1836. #define GGML_F16_VEC GGML_F16x4
  1837. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1838. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1839. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1840. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1841. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1842. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1843. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1844. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1845. #elif defined(__SSE3__)
  1846. #define GGML_SIMD
  1847. // F32 SSE
  1848. #define GGML_F32_STEP 32
  1849. #define GGML_F32_EPR 4
  1850. #define GGML_F32x4 __m128
  1851. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1852. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1853. #define GGML_F32x4_LOAD _mm_loadu_ps
  1854. #define GGML_F32x4_STORE _mm_storeu_ps
  1855. #if defined(__FMA__)
  1856. // TODO: Does this work?
  1857. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1858. #else
  1859. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1860. #endif
  1861. #define GGML_F32x4_ADD _mm_add_ps
  1862. #define GGML_F32x4_MUL _mm_mul_ps
  1863. #define GGML_F32x4_REDUCE(res, x) \
  1864. { \
  1865. int offset = GGML_F32_ARR >> 1; \
  1866. for (int i = 0; i < offset; ++i) { \
  1867. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1868. } \
  1869. offset >>= 1; \
  1870. for (int i = 0; i < offset; ++i) { \
  1871. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1872. } \
  1873. offset >>= 1; \
  1874. for (int i = 0; i < offset; ++i) { \
  1875. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1876. } \
  1877. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1878. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1879. }
  1880. // TODO: is this optimal ?
  1881. #define GGML_F32_VEC GGML_F32x4
  1882. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1883. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1884. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1885. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1886. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1887. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1888. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1889. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1890. // F16 SSE
  1891. #define GGML_F16_STEP 32
  1892. #define GGML_F16_EPR 4
  1893. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1894. float tmp[4];
  1895. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1896. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1897. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1898. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1899. return _mm_loadu_ps(tmp);
  1900. }
  1901. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1902. float arr[4];
  1903. _mm_storeu_ps(arr, y);
  1904. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1905. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1906. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1907. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1908. }
  1909. #define GGML_F32Cx4 __m128
  1910. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1911. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1912. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1913. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1914. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1915. #define GGML_F32Cx4_ADD _mm_add_ps
  1916. #define GGML_F32Cx4_MUL _mm_mul_ps
  1917. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1918. #define GGML_F16_VEC GGML_F32Cx4
  1919. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1920. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1921. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1922. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1923. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1924. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1925. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1926. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1927. #endif
  1928. // GGML_F32_ARR / GGML_F16_ARR
  1929. // number of registers to use per step
  1930. #ifdef GGML_SIMD
  1931. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1932. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1933. #endif
  1934. //
  1935. // fundamental operations
  1936. //
  1937. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1938. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1939. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1940. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1941. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1942. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1943. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1944. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1945. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1946. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1947. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1948. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1949. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1950. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1951. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1952. #ifdef GGML_SIMD
  1953. float sumf = 0.0f;
  1954. const int np = (n & ~(GGML_F32_STEP - 1));
  1955. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1956. GGML_F32_VEC ax[GGML_F32_ARR];
  1957. GGML_F32_VEC ay[GGML_F32_ARR];
  1958. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1959. for (int j = 0; j < GGML_F32_ARR; j++) {
  1960. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1961. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1962. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1963. }
  1964. }
  1965. // reduce sum0..sum3 to sum0
  1966. GGML_F32_VEC_REDUCE(sumf, sum);
  1967. // leftovers
  1968. for (int i = np; i < n; ++i) {
  1969. sumf += x[i]*y[i];
  1970. }
  1971. #else
  1972. // scalar
  1973. ggml_float sumf = 0.0;
  1974. for (int i = 0; i < n; ++i) {
  1975. sumf += (ggml_float)(x[i]*y[i]);
  1976. }
  1977. #endif
  1978. *s = sumf;
  1979. }
  1980. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1981. ggml_float sumf = 0.0;
  1982. #if defined(GGML_SIMD)
  1983. const int np = (n & ~(GGML_F16_STEP - 1));
  1984. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1985. GGML_F16_VEC ax[GGML_F16_ARR];
  1986. GGML_F16_VEC ay[GGML_F16_ARR];
  1987. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1988. for (int j = 0; j < GGML_F16_ARR; j++) {
  1989. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1990. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1991. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1992. }
  1993. }
  1994. // reduce sum0..sum3 to sum0
  1995. GGML_F16_VEC_REDUCE(sumf, sum);
  1996. // leftovers
  1997. for (int i = np; i < n; ++i) {
  1998. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1999. }
  2000. #else
  2001. for (int i = 0; i < n; ++i) {
  2002. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2003. }
  2004. #endif
  2005. *s = sumf;
  2006. }
  2007. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2008. const int qk = QK8_0;
  2009. const int nb = n / qk;
  2010. assert(n % qk == 0);
  2011. const block_q4_0 * restrict x = vx;
  2012. const block_q8_0 * restrict y = vy;
  2013. #if defined(__ARM_NEON)
  2014. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2015. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2016. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2017. for (int i = 0; i < nb; i += 2) {
  2018. const block_q4_0 * restrict x0 = &x[i + 0];
  2019. const block_q4_0 * restrict x1 = &x[i + 1];
  2020. const block_q8_0 * restrict y0 = &y[i + 0];
  2021. const block_q8_0 * restrict y1 = &y[i + 1];
  2022. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2023. const int8x16_t s8b = vdupq_n_s8(0x8);
  2024. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2025. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2026. // 4-bit -> 8-bit
  2027. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2028. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2029. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2030. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2031. // sub 8
  2032. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2033. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2034. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2035. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2036. // load y
  2037. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2038. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2039. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2040. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2041. #if defined(__ARM_FEATURE_DOTPROD)
  2042. // dot product into int32x4_t
  2043. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2044. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2045. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2046. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2047. #else
  2048. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2049. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2050. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2051. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2052. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2053. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2054. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2055. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2056. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2057. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2058. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2059. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2060. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2061. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2062. #endif
  2063. }
  2064. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2065. #elif defined(__AVX2__)
  2066. // Initialize accumulator with zeros
  2067. __m256 acc = _mm256_setzero_ps();
  2068. // Main loop
  2069. for (int i = 0; i < nb; ++i) {
  2070. /* Compute combined scale for the block */
  2071. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2072. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2073. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2074. const __m256i off = _mm256_set1_epi8( 8 );
  2075. bx = _mm256_sub_epi8( bx, off );
  2076. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2077. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2078. /* Multiply q with scale and accumulate */
  2079. acc = _mm256_fmadd_ps( d, q, acc );
  2080. }
  2081. *s = hsum_float_8(acc);
  2082. #elif defined(__AVX__)
  2083. // Initialize accumulator with zeros
  2084. __m256 acc = _mm256_setzero_ps();
  2085. // Main loop
  2086. for (int i = 0; i < nb; ++i) {
  2087. // Compute combined scale for the block
  2088. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2089. const __m128i lowMask = _mm_set1_epi8(0xF);
  2090. const __m128i off = _mm_set1_epi8(8);
  2091. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2092. __m128i bx = _mm_and_si128(lowMask, tmp);
  2093. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2094. bx = _mm_sub_epi8(bx, off);
  2095. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2096. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2097. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2098. bx = _mm_sub_epi8(bx, off);
  2099. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2100. // Convert int32_t to float
  2101. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2102. // Apply the scale, and accumulate
  2103. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2104. }
  2105. *s = hsum_float_8(acc);
  2106. #elif defined(__SSSE3__)
  2107. // set constants
  2108. const __m128i lowMask = _mm_set1_epi8(0xF);
  2109. const __m128i off = _mm_set1_epi8(8);
  2110. // Initialize accumulator with zeros
  2111. __m128 acc_0 = _mm_setzero_ps();
  2112. __m128 acc_1 = _mm_setzero_ps();
  2113. __m128 acc_2 = _mm_setzero_ps();
  2114. __m128 acc_3 = _mm_setzero_ps();
  2115. // First round without accumulation
  2116. {
  2117. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2118. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2119. // Compute combined scale for the block 0 and 1
  2120. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2121. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2122. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2123. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2124. bx_0 = _mm_sub_epi8(bx_0, off);
  2125. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2126. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2127. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2128. bx_1 = _mm_sub_epi8(bx_1, off);
  2129. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2130. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2131. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2132. // Compute combined scale for the block 2 and 3
  2133. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2134. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2135. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2136. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2137. bx_2 = _mm_sub_epi8(bx_2, off);
  2138. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2139. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2140. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2141. bx_3 = _mm_sub_epi8(bx_3, off);
  2142. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2143. // Convert int32_t to float
  2144. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2145. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2146. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2147. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2148. // Apply the scale
  2149. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2150. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2151. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2152. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2153. }
  2154. // Main loop
  2155. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2156. for (int i = 2; i < nb; i+=2) {
  2157. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2158. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2159. // Compute combined scale for the block 0 and 1
  2160. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2161. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2162. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2163. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2164. bx_0 = _mm_sub_epi8(bx_0, off);
  2165. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2166. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2167. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2168. bx_1 = _mm_sub_epi8(bx_1, off);
  2169. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2170. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2171. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2172. // Compute combined scale for the block 2 and 3
  2173. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2174. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2175. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2176. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2177. bx_2 = _mm_sub_epi8(bx_2, off);
  2178. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2179. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2180. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2181. bx_3 = _mm_sub_epi8(bx_3, off);
  2182. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2183. // Convert int32_t to float
  2184. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2185. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2186. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2187. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2188. // Apply the scale
  2189. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2190. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2191. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2192. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2193. // Acummulate
  2194. acc_0 = _mm_add_ps(p0_d, acc_0);
  2195. acc_1 = _mm_add_ps(p1_d, acc_1);
  2196. acc_2 = _mm_add_ps(p2_d, acc_2);
  2197. acc_3 = _mm_add_ps(p3_d, acc_3);
  2198. }
  2199. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2200. #elif defined(__riscv_v_intrinsic)
  2201. float sumf = 0.0;
  2202. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2203. for (int i = 0; i < nb; i++) {
  2204. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2205. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2206. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2207. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2208. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2209. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2210. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2211. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2212. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2213. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2214. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2215. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2216. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2217. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2218. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2219. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2220. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2221. }
  2222. *s = sumf;
  2223. #else
  2224. // scalar
  2225. float sumf = 0.0;
  2226. for (int i = 0; i < nb; i++) {
  2227. int sumi = 0;
  2228. for (int j = 0; j < qk/2; ++j) {
  2229. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2230. const int v1 = (x[i].qs[j] >> 4) - 8;
  2231. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2232. }
  2233. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2234. }
  2235. *s = sumf;
  2236. #endif
  2237. }
  2238. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2239. const int qk = QK8_1;
  2240. const int nb = n / qk;
  2241. assert(n % qk == 0);
  2242. const block_q4_1 * restrict x = vx;
  2243. const block_q8_1 * restrict y = vy;
  2244. // TODO: add WASM SIMD
  2245. #if defined(__ARM_NEON)
  2246. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2247. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2248. float summs = 0;
  2249. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2250. for (int i = 0; i < nb; i += 2) {
  2251. const block_q4_1 * restrict x0 = &x[i + 0];
  2252. const block_q4_1 * restrict x1 = &x[i + 1];
  2253. const block_q8_1 * restrict y0 = &y[i + 0];
  2254. const block_q8_1 * restrict y1 = &y[i + 1];
  2255. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2256. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2257. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2258. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2259. // 4-bit -> 8-bit
  2260. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2261. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2262. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2263. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2264. // load y
  2265. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2266. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2267. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2268. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2269. #if defined(__ARM_FEATURE_DOTPROD)
  2270. // dot product into int32x4_t
  2271. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2272. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2273. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2274. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2275. #else
  2276. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2277. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2278. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2279. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2280. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2281. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2282. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2283. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2284. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2285. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2286. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2287. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2288. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2289. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2290. #endif
  2291. }
  2292. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2293. #elif defined(__AVX2__) || defined(__AVX__)
  2294. // Initialize accumulator with zeros
  2295. __m256 acc = _mm256_setzero_ps();
  2296. float summs = 0;
  2297. // Main loop
  2298. for (int i = 0; i < nb; ++i) {
  2299. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2300. const float d1 = y[i].d;
  2301. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2302. const __m256 d0v = _mm256_set1_ps( d0 );
  2303. const __m256 d1v = _mm256_set1_ps( d1 );
  2304. // Compute combined scales
  2305. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2306. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2307. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2308. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2309. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2310. // Accumulate d0*d1*x*y
  2311. #if defined(__AVX2__)
  2312. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2313. #else
  2314. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2315. #endif
  2316. }
  2317. *s = hsum_float_8(acc) + summs;
  2318. #elif defined(__riscv_v_intrinsic)
  2319. float sumf = 0.0;
  2320. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2321. for (int i = 0; i < nb; i++) {
  2322. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2323. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2324. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2325. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2326. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2327. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2328. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2329. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2330. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2331. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2332. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2333. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2334. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2335. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2336. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2337. }
  2338. *s = sumf;
  2339. #else
  2340. // scalar
  2341. float sumf = 0.0;
  2342. for (int i = 0; i < nb; i++) {
  2343. int sumi = 0;
  2344. for (int j = 0; j < qk/2; ++j) {
  2345. const int v0 = (x[i].qs[j] & 0x0F);
  2346. const int v1 = (x[i].qs[j] >> 4);
  2347. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2348. }
  2349. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2350. }
  2351. *s = sumf;
  2352. #endif
  2353. }
  2354. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2355. const int qk = QK8_0;
  2356. const int nb = n / qk;
  2357. assert(n % qk == 0);
  2358. assert(qk == QK5_0);
  2359. const block_q5_0 * restrict x = vx;
  2360. const block_q8_0 * restrict y = vy;
  2361. #if defined(__ARM_NEON)
  2362. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2363. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2364. uint32_t qh0;
  2365. uint32_t qh1;
  2366. uint64_t tmp0[4];
  2367. uint64_t tmp1[4];
  2368. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2369. for (int i = 0; i < nb; i += 2) {
  2370. const block_q5_0 * restrict x0 = &x[i];
  2371. const block_q5_0 * restrict x1 = &x[i + 1];
  2372. const block_q8_0 * restrict y0 = &y[i];
  2373. const block_q8_0 * restrict y1 = &y[i + 1];
  2374. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2375. // extract the 5th bit via lookup table ((!b) << 4)
  2376. memcpy(&qh0, x0->qh, sizeof(qh0));
  2377. memcpy(&qh1, x1->qh, sizeof(qh1));
  2378. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2379. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2380. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2381. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2382. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2383. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2384. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2385. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2386. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2387. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2388. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2389. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2390. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2391. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2392. // 4-bit -> 8-bit
  2393. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2394. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2395. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2396. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2397. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2398. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2399. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2400. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2401. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2402. // load y
  2403. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2404. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2405. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2406. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2407. #if defined(__ARM_FEATURE_DOTPROD)
  2408. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2409. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2410. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2411. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2412. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2413. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2414. #else
  2415. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2416. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2417. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2418. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2419. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2420. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2421. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2422. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2423. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2424. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2425. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2426. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2427. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2428. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2429. #endif
  2430. }
  2431. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2432. #elif defined(__wasm_simd128__)
  2433. v128_t sumv = wasm_f32x4_splat(0.0f);
  2434. uint32_t qh;
  2435. uint64_t tmp[4];
  2436. // TODO: check if unrolling this is better
  2437. for (int i = 0; i < nb; ++i) {
  2438. const block_q5_0 * restrict x0 = &x[i];
  2439. const block_q8_0 * restrict y0 = &y[i];
  2440. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2441. // extract the 5th bit
  2442. memcpy(&qh, x0->qh, sizeof(qh));
  2443. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2444. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2445. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2446. tmp[3] = table_b2b_1[(qh >> 24) ];
  2447. const v128_t qhl = wasm_v128_load(tmp + 0);
  2448. const v128_t qhh = wasm_v128_load(tmp + 2);
  2449. const v128_t v0 = wasm_v128_load(x0->qs);
  2450. // 4-bit -> 8-bit
  2451. const v128_t v0l = wasm_v128_and (v0, m4b);
  2452. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2453. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2454. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2455. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2456. // load y
  2457. const v128_t v1l = wasm_v128_load(y0->qs);
  2458. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2459. // int8x16 -> int16x8
  2460. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2461. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2462. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2463. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2464. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2465. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2466. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2467. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2468. // dot product
  2469. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2470. wasm_i32x4_add(
  2471. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2472. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2473. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2474. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2475. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2476. }
  2477. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2478. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2479. #elif defined(__AVX2__)
  2480. // Initialize accumulator with zeros
  2481. __m256 acc = _mm256_setzero_ps();
  2482. // Main loop
  2483. for (int i = 0; i < nb; i++) {
  2484. /* Compute combined scale for the block */
  2485. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2486. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2487. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2488. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2489. bx = _mm256_or_si256(bx, bxhi);
  2490. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2491. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2492. /* Multiply q with scale and accumulate */
  2493. acc = _mm256_fmadd_ps(d, q, acc);
  2494. }
  2495. *s = hsum_float_8(acc);
  2496. #elif defined(__AVX__)
  2497. // Initialize accumulator with zeros
  2498. __m256 acc = _mm256_setzero_ps();
  2499. __m128i mask = _mm_set1_epi8((char)0xF0);
  2500. // Main loop
  2501. for (int i = 0; i < nb; i++) {
  2502. /* Compute combined scale for the block */
  2503. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2504. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2505. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2506. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2507. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2508. bxhil = _mm_andnot_si128(bxhil, mask);
  2509. bxhih = _mm_andnot_si128(bxhih, mask);
  2510. __m128i bxl = _mm256_castsi256_si128(bx);
  2511. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2512. bxl = _mm_or_si128(bxl, bxhil);
  2513. bxh = _mm_or_si128(bxh, bxhih);
  2514. bx = MM256_SET_M128I(bxh, bxl);
  2515. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2516. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2517. /* Multiply q with scale and accumulate */
  2518. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2519. }
  2520. *s = hsum_float_8(acc);
  2521. #elif defined(__riscv_v_intrinsic)
  2522. float sumf = 0.0;
  2523. uint32_t qh;
  2524. // These temp values are for masking and shift operations
  2525. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2526. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2527. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2528. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2529. for (int i = 0; i < nb; i++) {
  2530. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2531. // temporary registers
  2532. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2533. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2534. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2535. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2536. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2537. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2538. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2539. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2540. // ((qh & (1u << (j + 16))) >> (j + 12));
  2541. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2542. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2543. // narrowing
  2544. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2545. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2546. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2547. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2548. // load
  2549. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2550. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2551. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2552. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2553. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2554. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2555. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2556. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2557. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2558. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2559. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2560. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2561. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2562. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2563. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2564. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2565. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2566. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2567. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2568. }
  2569. *s = sumf;
  2570. #else
  2571. // scalar
  2572. float sumf = 0.0;
  2573. for (int i = 0; i < nb; i++) {
  2574. uint32_t qh;
  2575. memcpy(&qh, x[i].qh, sizeof(qh));
  2576. int sumi = 0;
  2577. for (int j = 0; j < qk/2; ++j) {
  2578. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2579. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2580. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2581. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2582. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2583. }
  2584. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2585. }
  2586. *s = sumf;
  2587. #endif
  2588. }
  2589. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2590. const int qk = QK8_1;
  2591. const int nb = n / qk;
  2592. assert(n % qk == 0);
  2593. assert(qk == QK5_1);
  2594. const block_q5_1 * restrict x = vx;
  2595. const block_q8_1 * restrict y = vy;
  2596. #if defined(__ARM_NEON)
  2597. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2598. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2599. float summs0 = 0.0f;
  2600. float summs1 = 0.0f;
  2601. uint32_t qh0;
  2602. uint32_t qh1;
  2603. uint64_t tmp0[4];
  2604. uint64_t tmp1[4];
  2605. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2606. for (int i = 0; i < nb; i += 2) {
  2607. const block_q5_1 * restrict x0 = &x[i];
  2608. const block_q5_1 * restrict x1 = &x[i + 1];
  2609. const block_q8_1 * restrict y0 = &y[i];
  2610. const block_q8_1 * restrict y1 = &y[i + 1];
  2611. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2612. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2613. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2614. // extract the 5th bit via lookup table ((b) << 4)
  2615. memcpy(&qh0, x0->qh, sizeof(qh0));
  2616. memcpy(&qh1, x1->qh, sizeof(qh1));
  2617. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2618. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2619. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2620. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2621. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2622. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2623. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2624. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2625. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2626. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2627. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2628. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2629. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2630. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2631. // 4-bit -> 8-bit
  2632. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2633. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2634. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2635. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2636. // add high bit
  2637. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2638. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2639. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2640. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2641. // load y
  2642. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2643. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2644. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2645. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2646. #if defined(__ARM_FEATURE_DOTPROD)
  2647. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2648. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2649. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2650. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2651. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2652. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2653. #else
  2654. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2655. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2656. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2657. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2658. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2659. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2660. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2661. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2662. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2663. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2664. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2665. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2666. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2667. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2668. #endif
  2669. }
  2670. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2671. #elif defined(__wasm_simd128__)
  2672. v128_t sumv = wasm_f32x4_splat(0.0f);
  2673. float summs = 0.0f;
  2674. uint32_t qh;
  2675. uint64_t tmp[4];
  2676. // TODO: check if unrolling this is better
  2677. for (int i = 0; i < nb; ++i) {
  2678. const block_q5_1 * restrict x0 = &x[i];
  2679. const block_q8_1 * restrict y0 = &y[i];
  2680. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2681. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2682. // extract the 5th bit
  2683. memcpy(&qh, x0->qh, sizeof(qh));
  2684. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2685. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2686. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2687. tmp[3] = table_b2b_0[(qh >> 24) ];
  2688. const v128_t qhl = wasm_v128_load(tmp + 0);
  2689. const v128_t qhh = wasm_v128_load(tmp + 2);
  2690. const v128_t v0 = wasm_v128_load(x0->qs);
  2691. // 4-bit -> 8-bit
  2692. const v128_t v0l = wasm_v128_and (v0, m4b);
  2693. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2694. // add high bit
  2695. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2696. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2697. // load y
  2698. const v128_t v1l = wasm_v128_load(y0->qs);
  2699. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2700. // int8x16 -> int16x8
  2701. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2702. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2703. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2704. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2705. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2706. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2707. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2708. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2709. // dot product
  2710. sumv = wasm_f32x4_add(sumv,
  2711. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2712. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2713. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2714. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2715. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2716. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2717. }
  2718. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2719. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2720. #elif defined(__AVX2__)
  2721. // Initialize accumulator with zeros
  2722. __m256 acc = _mm256_setzero_ps();
  2723. float summs = 0.0f;
  2724. // Main loop
  2725. for (int i = 0; i < nb; i++) {
  2726. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2727. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2728. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2729. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2730. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2731. bx = _mm256_or_si256(bx, bxhi);
  2732. const __m256 dy = _mm256_set1_ps(y[i].d);
  2733. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2734. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2735. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2736. }
  2737. *s = hsum_float_8(acc) + summs;
  2738. #elif defined(__AVX__)
  2739. // Initialize accumulator with zeros
  2740. __m256 acc = _mm256_setzero_ps();
  2741. __m128i mask = _mm_set1_epi8(0x10);
  2742. float summs = 0.0f;
  2743. // Main loop
  2744. for (int i = 0; i < nb; i++) {
  2745. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2746. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2747. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2748. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2749. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2750. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2751. bxhil = _mm_and_si128(bxhil, mask);
  2752. bxhih = _mm_and_si128(bxhih, mask);
  2753. __m128i bxl = _mm256_castsi256_si128(bx);
  2754. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2755. bxl = _mm_or_si128(bxl, bxhil);
  2756. bxh = _mm_or_si128(bxh, bxhih);
  2757. bx = MM256_SET_M128I(bxh, bxl);
  2758. const __m256 dy = _mm256_set1_ps(y[i].d);
  2759. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2760. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2761. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2762. }
  2763. *s = hsum_float_8(acc) + summs;
  2764. #elif defined(__riscv_v_intrinsic)
  2765. float sumf = 0.0;
  2766. uint32_t qh;
  2767. // These temp values are for shift operations
  2768. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2769. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2770. for (int i = 0; i < nb; i++) {
  2771. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2772. // temporary registers
  2773. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2774. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2775. // load qh
  2776. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2777. // ((qh >> (j + 0)) << 4) & 0x10;
  2778. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2779. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2780. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2781. // ((qh >> (j + 12)) ) & 0x10;
  2782. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2783. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2784. // narrowing
  2785. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2786. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2787. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2788. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2789. // load
  2790. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2791. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2792. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2793. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2794. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2795. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2796. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2797. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2798. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2799. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2800. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2801. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2802. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2803. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2804. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2805. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2806. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2807. }
  2808. *s = sumf;
  2809. #else
  2810. // scalar
  2811. float sumf = 0.0;
  2812. for (int i = 0; i < nb; i++) {
  2813. uint32_t qh;
  2814. memcpy(&qh, x[i].qh, sizeof(qh));
  2815. int sumi = 0;
  2816. for (int j = 0; j < qk/2; ++j) {
  2817. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2818. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2819. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2820. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2821. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2822. }
  2823. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2824. }
  2825. *s = sumf;
  2826. #endif
  2827. }
  2828. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2829. const int qk = QK8_0;
  2830. const int nb = n / qk;
  2831. assert(n % qk == 0);
  2832. const block_q8_0 * restrict x = vx;
  2833. const block_q8_0 * restrict y = vy;
  2834. #if defined(__ARM_NEON)
  2835. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2836. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2837. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2838. for (int i = 0; i < nb; i += 2) {
  2839. const block_q8_0 * restrict x0 = &x[i + 0];
  2840. const block_q8_0 * restrict x1 = &x[i + 1];
  2841. const block_q8_0 * restrict y0 = &y[i + 0];
  2842. const block_q8_0 * restrict y1 = &y[i + 1];
  2843. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2844. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2845. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2846. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2847. // load y
  2848. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2849. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2850. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2851. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2852. #if defined(__ARM_FEATURE_DOTPROD)
  2853. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2854. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2855. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2856. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2857. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2858. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2859. #else
  2860. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2861. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2862. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2863. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2864. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2865. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2866. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2867. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2868. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2869. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2870. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2871. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2872. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2873. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2874. #endif
  2875. }
  2876. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2877. #elif defined(__AVX2__) || defined(__AVX__)
  2878. // Initialize accumulator with zeros
  2879. __m256 acc = _mm256_setzero_ps();
  2880. // Main loop
  2881. for (int i = 0; i < nb; ++i) {
  2882. // Compute combined scale for the block
  2883. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2884. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2885. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2886. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2887. // Multiply q with scale and accumulate
  2888. #if defined(__AVX2__)
  2889. acc = _mm256_fmadd_ps( d, q, acc );
  2890. #else
  2891. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2892. #endif
  2893. }
  2894. *s = hsum_float_8(acc);
  2895. #elif defined(__riscv_v_intrinsic)
  2896. float sumf = 0.0;
  2897. size_t vl = __riscv_vsetvl_e8m1(qk);
  2898. for (int i = 0; i < nb; i++) {
  2899. // load elements
  2900. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2901. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2902. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2903. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2904. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2905. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2906. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2907. }
  2908. *s = sumf;
  2909. #else
  2910. // scalar
  2911. float sumf = 0.0;
  2912. for (int i = 0; i < nb; i++) {
  2913. int sumi = 0;
  2914. for (int j = 0; j < qk; j++) {
  2915. sumi += x[i].qs[j]*y[i].qs[j];
  2916. }
  2917. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2918. }
  2919. *s = sumf;
  2920. #endif
  2921. }
  2922. // compute GGML_VEC_DOT_UNROLL dot products at once
  2923. // xs - x row stride in bytes
  2924. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2925. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2926. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2927. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2928. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2929. }
  2930. #if defined(GGML_SIMD)
  2931. const int np = (n & ~(GGML_F16_STEP - 1));
  2932. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2933. GGML_F16_VEC ax[GGML_F16_ARR];
  2934. GGML_F16_VEC ay[GGML_F16_ARR];
  2935. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2936. for (int j = 0; j < GGML_F16_ARR; j++) {
  2937. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2938. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2939. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2940. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2941. }
  2942. }
  2943. }
  2944. // reduce sum0..sum3 to sum0
  2945. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2946. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2947. }
  2948. // leftovers
  2949. for (int i = np; i < n; ++i) {
  2950. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2951. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2952. }
  2953. }
  2954. #else
  2955. for (int i = 0; i < n; ++i) {
  2956. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2957. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2958. }
  2959. }
  2960. #endif
  2961. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2962. s[i] = sumf[i];
  2963. }
  2964. }
  2965. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2966. #if defined(GGML_SIMD)
  2967. const int np = (n & ~(GGML_F32_STEP - 1));
  2968. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2969. GGML_F32_VEC ax[GGML_F32_ARR];
  2970. GGML_F32_VEC ay[GGML_F32_ARR];
  2971. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2972. for (int j = 0; j < GGML_F32_ARR; j++) {
  2973. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2974. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2975. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2976. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2977. }
  2978. }
  2979. // leftovers
  2980. for (int i = np; i < n; ++i) {
  2981. y[i] += x[i]*v;
  2982. }
  2983. #else
  2984. // scalar
  2985. for (int i = 0; i < n; ++i) {
  2986. y[i] += x[i]*v;
  2987. }
  2988. #endif
  2989. }
  2990. // xs and vs are byte strides of x and v
  2991. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  2992. const float * restrict x[GGML_VEC_MAD_UNROLL];
  2993. const float * restrict v[GGML_VEC_MAD_UNROLL];
  2994. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  2995. x[i] = (const float *) ((const char *) xv + i*xs);
  2996. v[i] = (const float *) ((const char *) vv + i*vs);
  2997. }
  2998. #if defined(GGML_SIMD)
  2999. const int np = (n & ~(GGML_F32_STEP - 1));
  3000. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  3001. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3002. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  3003. }
  3004. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  3005. GGML_F32_VEC ay[GGML_F32_ARR];
  3006. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3007. for (int j = 0; j < GGML_F32_ARR; j++) {
  3008. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3009. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3010. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  3011. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  3012. }
  3013. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3014. }
  3015. }
  3016. // leftovers
  3017. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3018. for (int i = np; i < n; ++i) {
  3019. y[i] += x[k][i]*v[k][0];
  3020. }
  3021. }
  3022. #else
  3023. // scalar
  3024. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3025. for (int i = 0; i < n; ++i) {
  3026. y[i] += x[k][i]*v[k][0];
  3027. }
  3028. }
  3029. #endif
  3030. }
  3031. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3032. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3033. #if defined(GGML_USE_ACCELERATE)
  3034. vDSP_vsmul(y, 1, &v, y, 1, n);
  3035. #elif defined(GGML_SIMD)
  3036. const int np = (n & ~(GGML_F32_STEP - 1));
  3037. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3038. GGML_F32_VEC ay[GGML_F32_ARR];
  3039. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3040. for (int j = 0; j < GGML_F32_ARR; j++) {
  3041. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3042. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3043. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3044. }
  3045. }
  3046. // leftovers
  3047. for (int i = np; i < n; ++i) {
  3048. y[i] *= v;
  3049. }
  3050. #else
  3051. // scalar
  3052. for (int i = 0; i < n; ++i) {
  3053. y[i] *= v;
  3054. }
  3055. #endif
  3056. }
  3057. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3058. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3059. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3060. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3061. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3062. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3063. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3064. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3065. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3066. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3067. static const float GELU_COEF_A = 0.044715f;
  3068. static const float GELU_QUICK_COEF = -1.702f;
  3069. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3070. inline static float ggml_gelu_f32(float x) {
  3071. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3072. }
  3073. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3074. const uint16_t * i16 = (const uint16_t *) x;
  3075. for (int i = 0; i < n; ++i) {
  3076. y[i] = table_gelu_f16[i16[i]];
  3077. }
  3078. }
  3079. #ifdef GGML_GELU_FP16
  3080. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3081. uint16_t t;
  3082. for (int i = 0; i < n; ++i) {
  3083. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3084. memcpy(&t, &fp16, sizeof(uint16_t));
  3085. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3086. }
  3087. }
  3088. #else
  3089. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3090. for (int i = 0; i < n; ++i) {
  3091. y[i] = ggml_gelu_f32(x[i]);
  3092. }
  3093. }
  3094. #endif
  3095. inline static float ggml_gelu_quick_f32(float x) {
  3096. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3097. }
  3098. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3099. // const uint16_t * i16 = (const uint16_t *) x;
  3100. // for (int i = 0; i < n; ++i) {
  3101. // y[i] = table_gelu_quick_f16[i16[i]];
  3102. // }
  3103. //}
  3104. #ifdef GGML_GELU_QUICK_FP16
  3105. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3106. uint16_t t;
  3107. for (int i = 0; i < n; ++i) {
  3108. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3109. memcpy(&t, &fp16, sizeof(uint16_t));
  3110. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3111. }
  3112. }
  3113. #else
  3114. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3115. for (int i = 0; i < n; ++i) {
  3116. y[i] = ggml_gelu_quick_f32(x[i]);
  3117. }
  3118. }
  3119. #endif
  3120. // Sigmoid Linear Unit (SiLU) function
  3121. inline static float ggml_silu_f32(float x) {
  3122. return x/(1.0f + expf(-x));
  3123. }
  3124. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3125. // const uint16_t * i16 = (const uint16_t *) x;
  3126. // for (int i = 0; i < n; ++i) {
  3127. // y[i] = table_silu_f16[i16[i]];
  3128. // }
  3129. //}
  3130. #ifdef GGML_SILU_FP16
  3131. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3132. uint16_t t;
  3133. for (int i = 0; i < n; ++i) {
  3134. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3135. memcpy(&t, &fp16, sizeof(uint16_t));
  3136. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3137. }
  3138. }
  3139. #else
  3140. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3141. for (int i = 0; i < n; ++i) {
  3142. y[i] = ggml_silu_f32(x[i]);
  3143. }
  3144. }
  3145. #endif
  3146. inline static float ggml_silu_backward_f32(float x, float dy) {
  3147. const float s = 1.0f/(1.0f + expf(-x));
  3148. return dy*s*(1.0f + x*(1.0f - s));
  3149. }
  3150. #ifdef GGML_SILU_FP16
  3151. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3152. for (int i = 0; i < n; ++i) {
  3153. // we did not use x[i] to compute forward silu but its f16 equivalent
  3154. // take derivative at f16 of x[i]:
  3155. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3156. float usedx = GGML_FP16_TO_FP32(fp16);
  3157. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3158. }
  3159. }
  3160. #else
  3161. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3162. for (int i = 0; i < n; ++i) {
  3163. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3164. }
  3165. }
  3166. #endif
  3167. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3168. #ifndef GGML_USE_ACCELERATE
  3169. ggml_float sum = 0.0;
  3170. for (int i = 0; i < n; ++i) {
  3171. sum += (ggml_float)x[i];
  3172. }
  3173. *s = sum;
  3174. #else
  3175. vDSP_sve(x, 1, s, n);
  3176. #endif
  3177. }
  3178. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3179. ggml_float sum = 0.0;
  3180. for (int i = 0; i < n; ++i) {
  3181. sum += (ggml_float)x[i];
  3182. }
  3183. *s = sum;
  3184. }
  3185. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3186. float sum = 0.0f;
  3187. for (int i = 0; i < n; ++i) {
  3188. sum += GGML_FP16_TO_FP32(x[i]);
  3189. }
  3190. *s = sum;
  3191. }
  3192. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3193. #ifndef GGML_USE_ACCELERATE
  3194. float max = -INFINITY;
  3195. for (int i = 0; i < n; ++i) {
  3196. max = MAX(max, x[i]);
  3197. }
  3198. *s = max;
  3199. #else
  3200. vDSP_maxv(x, 1, s, n);
  3201. #endif
  3202. }
  3203. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3204. ggml_vec_norm_f32(n, s, x);
  3205. *s = 1.f/(*s);
  3206. }
  3207. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3208. float max = -INFINITY;
  3209. int idx = 0;
  3210. for (int i = 0; i < n; ++i) {
  3211. max = MAX(max, x[i]);
  3212. if (max == x[i]) { idx = i; }
  3213. }
  3214. *s = idx;
  3215. }
  3216. //
  3217. // data types
  3218. //
  3219. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3220. "NONE",
  3221. "DUP",
  3222. "ADD",
  3223. "ADD1",
  3224. "ACC",
  3225. "SUB",
  3226. "MUL",
  3227. "DIV",
  3228. "SQR",
  3229. "SQRT",
  3230. "LOG",
  3231. "SUM",
  3232. "SUM_ROWS",
  3233. "MEAN",
  3234. "ARGMAX",
  3235. "REPEAT",
  3236. "REPEAT_BACK",
  3237. "CONCAT",
  3238. "SILU_BACK",
  3239. "NORM",
  3240. "RMS_NORM",
  3241. "RMS_NORM_BACK",
  3242. "GROUP_NORM",
  3243. "MUL_MAT",
  3244. "OUT_PROD",
  3245. "SCALE",
  3246. "SET",
  3247. "CPY",
  3248. "CONT",
  3249. "RESHAPE",
  3250. "VIEW",
  3251. "PERMUTE",
  3252. "TRANSPOSE",
  3253. "GET_ROWS",
  3254. "GET_ROWS_BACK",
  3255. "DIAG",
  3256. "DIAG_MASK_INF",
  3257. "DIAG_MASK_ZERO",
  3258. "SOFT_MAX",
  3259. "SOFT_MAX_BACK",
  3260. "ROPE",
  3261. "ROPE_BACK",
  3262. "ALIBI",
  3263. "CLAMP",
  3264. "CONV_1D",
  3265. "CONV_2D",
  3266. "CONV_TRANSPOSE_2D",
  3267. "POOL_1D",
  3268. "POOL_2D",
  3269. "UPSCALE",
  3270. "FLASH_ATTN",
  3271. "FLASH_FF",
  3272. "FLASH_ATTN_BACK",
  3273. "WIN_PART",
  3274. "WIN_UNPART",
  3275. "GET_REL_POS",
  3276. "ADD_REL_POS",
  3277. "UNARY",
  3278. "MAP_UNARY",
  3279. "MAP_BINARY",
  3280. "MAP_CUSTOM1_F32",
  3281. "MAP_CUSTOM2_F32",
  3282. "MAP_CUSTOM3_F32",
  3283. "MAP_CUSTOM1",
  3284. "MAP_CUSTOM2",
  3285. "MAP_CUSTOM3",
  3286. "CROSS_ENTROPY_LOSS",
  3287. "CROSS_ENTROPY_LOSS_BACK",
  3288. };
  3289. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3290. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3291. "none",
  3292. "x",
  3293. "x+y",
  3294. "x+y",
  3295. "view(x,nb,offset)+=y->x",
  3296. "x-y",
  3297. "x*y",
  3298. "x/y",
  3299. "x^2",
  3300. "√x",
  3301. "log(x)",
  3302. "Σx",
  3303. "Σx_k",
  3304. "Σx/n",
  3305. "argmax(x)",
  3306. "repeat(x)",
  3307. "repeat_back(x)",
  3308. "concat(x, y)",
  3309. "silu_back(x)",
  3310. "norm(x)",
  3311. "rms_norm(x)",
  3312. "rms_norm_back(x)",
  3313. "group_norm(x)",
  3314. "X*Y",
  3315. "X*Y",
  3316. "x*v",
  3317. "y-\\>view(x)",
  3318. "x-\\>y",
  3319. "cont(x)",
  3320. "reshape(x)",
  3321. "view(x)",
  3322. "permute(x)",
  3323. "transpose(x)",
  3324. "get_rows(x)",
  3325. "get_rows_back(x)",
  3326. "diag(x)",
  3327. "diag_mask_inf(x)",
  3328. "diag_mask_zero(x)",
  3329. "soft_max(x)",
  3330. "soft_max_back(x)",
  3331. "rope(x)",
  3332. "rope_back(x)",
  3333. "alibi(x)",
  3334. "clamp(x)",
  3335. "conv_1d(x)",
  3336. "conv_2d(x)",
  3337. "conv_transpose_2d(x)",
  3338. "pool_1d(x)",
  3339. "pool_2d(x)",
  3340. "upscale(x)",
  3341. "flash_attn(x)",
  3342. "flash_ff(x)",
  3343. "flash_attn_back(x)",
  3344. "win_part(x)",
  3345. "win_unpart(x)",
  3346. "get_rel_pos(x)",
  3347. "add_rel_pos(x)",
  3348. "unary(x)",
  3349. "f(x)",
  3350. "f(x,y)",
  3351. "custom_f32(x)",
  3352. "custom_f32(x,y)",
  3353. "custom_f32(x,y,z)",
  3354. "custom(x)",
  3355. "custom(x,y)",
  3356. "custom(x,y,z)",
  3357. "cross_entropy_loss(x,y)",
  3358. "cross_entropy_loss_back(x,y)",
  3359. };
  3360. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3361. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3362. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3363. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3364. // WARN:
  3365. // Mis-confguration can lead to problem that's hard to reason about:
  3366. // * At best it crash or talks nosense.
  3367. // * At worst it talks slightly difference but hard to perceive.
  3368. //
  3369. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3370. // Take care about compile options (e.g., GGML_USE_xxx).
  3371. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3372. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3373. static void ggml_setup_op_has_task_pass(void) {
  3374. { // INIT
  3375. bool * p = GGML_OP_HAS_INIT;
  3376. p[GGML_OP_ACC ] = true;
  3377. p[GGML_OP_MUL_MAT ] = true;
  3378. p[GGML_OP_OUT_PROD ] = true;
  3379. p[GGML_OP_SET ] = true;
  3380. p[GGML_OP_GET_ROWS_BACK ] = true;
  3381. p[GGML_OP_DIAG_MASK_INF ] = true;
  3382. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3383. p[GGML_OP_CONV_1D ] = true;
  3384. p[GGML_OP_CONV_2D ] = true;
  3385. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3386. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3387. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3388. p[GGML_OP_ADD_REL_POS ] = true;
  3389. }
  3390. { // FINALIZE
  3391. bool * p = GGML_OP_HAS_FINALIZE;
  3392. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3393. }
  3394. }
  3395. //
  3396. // ggml context
  3397. //
  3398. struct ggml_context {
  3399. size_t mem_size;
  3400. void * mem_buffer;
  3401. bool mem_buffer_owned;
  3402. bool no_alloc;
  3403. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3404. int n_objects;
  3405. struct ggml_object * objects_begin;
  3406. struct ggml_object * objects_end;
  3407. struct ggml_scratch scratch;
  3408. struct ggml_scratch scratch_save;
  3409. };
  3410. struct ggml_context_container {
  3411. bool used;
  3412. struct ggml_context context;
  3413. };
  3414. //
  3415. // NUMA support
  3416. //
  3417. #define GGML_NUMA_MAX_NODES 8
  3418. #define GGML_NUMA_MAX_CPUS 512
  3419. struct ggml_numa_node {
  3420. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3421. uint32_t n_cpus;
  3422. };
  3423. struct ggml_numa_nodes {
  3424. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3425. uint32_t n_nodes;
  3426. uint32_t total_cpus; // hardware threads on system
  3427. };
  3428. //
  3429. // ggml state
  3430. //
  3431. struct ggml_state {
  3432. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3433. struct ggml_numa_nodes numa;
  3434. };
  3435. // global state
  3436. static struct ggml_state g_state;
  3437. static atomic_int g_state_barrier = 0;
  3438. // barrier via spin lock
  3439. inline static void ggml_critical_section_start(void) {
  3440. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3441. while (processing > 0) {
  3442. // wait for other threads to finish
  3443. atomic_fetch_sub(&g_state_barrier, 1);
  3444. sched_yield(); // TODO: reconsider this
  3445. processing = atomic_fetch_add(&g_state_barrier, 1);
  3446. }
  3447. }
  3448. // TODO: make this somehow automatically executed
  3449. // some sort of "sentry" mechanism
  3450. inline static void ggml_critical_section_end(void) {
  3451. atomic_fetch_sub(&g_state_barrier, 1);
  3452. }
  3453. void ggml_numa_init(void) {
  3454. if (g_state.numa.n_nodes > 0) {
  3455. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3456. return;
  3457. }
  3458. #ifdef __linux__
  3459. struct stat st;
  3460. char path[256];
  3461. int rv;
  3462. // enumerate nodes
  3463. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3464. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3465. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3466. if (stat(path, &st) != 0) { break; }
  3467. ++g_state.numa.n_nodes;
  3468. }
  3469. // enumerate CPUs
  3470. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3471. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3472. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3473. if (stat(path, &st) != 0) { break; }
  3474. ++g_state.numa.total_cpus;
  3475. }
  3476. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3477. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3478. g_state.numa.n_nodes = 0;
  3479. return;
  3480. }
  3481. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3482. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3483. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3484. node->n_cpus = 0;
  3485. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3486. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3487. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3488. if (stat(path, &st) == 0) {
  3489. node->cpus[node->n_cpus++] = c;
  3490. GGML_PRINT_DEBUG(" %u", c);
  3491. }
  3492. }
  3493. GGML_PRINT_DEBUG("\n");
  3494. }
  3495. if (ggml_is_numa()) {
  3496. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3497. if (fptr != NULL) {
  3498. char buf[42];
  3499. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3500. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3501. }
  3502. fclose(fptr);
  3503. }
  3504. }
  3505. #else
  3506. // TODO
  3507. #endif
  3508. }
  3509. bool ggml_is_numa(void) {
  3510. return g_state.numa.n_nodes > 1;
  3511. }
  3512. ////////////////////////////////////////////////////////////////////////////////
  3513. void ggml_print_object(const struct ggml_object * obj) {
  3514. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3515. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3516. }
  3517. void ggml_print_objects(const struct ggml_context * ctx) {
  3518. struct ggml_object * obj = ctx->objects_begin;
  3519. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3520. while (obj != NULL) {
  3521. ggml_print_object(obj);
  3522. obj = obj->next;
  3523. }
  3524. GGML_PRINT("%s: --- end ---\n", __func__);
  3525. }
  3526. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3527. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3528. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3529. }
  3530. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3531. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3532. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3533. }
  3534. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3535. size_t nbytes;
  3536. size_t blck_size = ggml_blck_size(tensor->type);
  3537. if (blck_size == 1) {
  3538. nbytes = ggml_type_size(tensor->type);
  3539. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3540. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3541. }
  3542. }
  3543. else {
  3544. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3545. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3546. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3547. }
  3548. }
  3549. return nbytes;
  3550. }
  3551. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3552. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3553. }
  3554. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3555. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3556. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3557. }
  3558. int ggml_blck_size(enum ggml_type type) {
  3559. return type_traits[type].blck_size;
  3560. }
  3561. size_t ggml_type_size(enum ggml_type type) {
  3562. return type_traits[type].type_size;
  3563. }
  3564. float ggml_type_sizef(enum ggml_type type) {
  3565. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3566. }
  3567. const char * ggml_type_name(enum ggml_type type) {
  3568. return type_traits[type].type_name;
  3569. }
  3570. bool ggml_is_quantized(enum ggml_type type) {
  3571. return type_traits[type].is_quantized;
  3572. }
  3573. const char * ggml_op_name(enum ggml_op op) {
  3574. return GGML_OP_NAME[op];
  3575. }
  3576. const char * ggml_op_symbol(enum ggml_op op) {
  3577. return GGML_OP_SYMBOL[op];
  3578. }
  3579. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3580. return ggml_type_size(tensor->type);
  3581. }
  3582. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3583. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3584. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3585. }
  3586. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3587. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3588. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3589. }
  3590. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3591. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3592. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3593. }
  3594. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3595. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3596. return (t0->ne[0] == t1->ne[0]) &&
  3597. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3598. (t1->ne[3]%t0->ne[3] == 0);
  3599. }
  3600. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3601. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3602. return (t0->ne[1] == t1->ne[1]) &&
  3603. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3604. (t1->ne[3]%t0->ne[3] == 0);
  3605. }
  3606. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3607. enum ggml_type wtype = GGML_TYPE_COUNT;
  3608. switch (ftype) {
  3609. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3610. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3611. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3612. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3613. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3614. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3615. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3616. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3617. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3618. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3619. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3620. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3621. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3622. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3623. }
  3624. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3625. return wtype;
  3626. }
  3627. size_t ggml_tensor_overhead(void) {
  3628. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3629. }
  3630. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3631. return tensor->nb[0] > tensor->nb[1];
  3632. }
  3633. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3634. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3635. return
  3636. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3637. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3638. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3639. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3640. }
  3641. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3642. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3643. return
  3644. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3645. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3646. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3647. }
  3648. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3649. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3650. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3651. }
  3652. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3653. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3654. return
  3655. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3656. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3657. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3658. }
  3659. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3660. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3661. return
  3662. (t0->ne[0] == t1->ne[0] ) &&
  3663. (t0->ne[1] == t1->ne[1] ) &&
  3664. (t0->ne[2] == t1->ne[2] ) &&
  3665. (t0->ne[3] == t1->ne[3] );
  3666. }
  3667. // check if t1 can be represented as a repeatition of t0
  3668. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3669. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3670. return
  3671. (t1->ne[0]%t0->ne[0] == 0) &&
  3672. (t1->ne[1]%t0->ne[1] == 0) &&
  3673. (t1->ne[2]%t0->ne[2] == 0) &&
  3674. (t1->ne[3]%t0->ne[3] == 0);
  3675. }
  3676. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3677. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3678. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3679. }
  3680. static inline int ggml_up32(int n) {
  3681. return (n + 31) & ~31;
  3682. }
  3683. //static inline int ggml_up64(int n) {
  3684. // return (n + 63) & ~63;
  3685. //}
  3686. static inline int ggml_up(int n, int m) {
  3687. // assert m is a power of 2
  3688. GGML_ASSERT((m & (m - 1)) == 0);
  3689. return (n + m - 1) & ~(m - 1);
  3690. }
  3691. // assert that pointer is aligned to GGML_MEM_ALIGN
  3692. #define ggml_assert_aligned(ptr) \
  3693. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3694. ////////////////////////////////////////////////////////////////////////////////
  3695. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3696. // make this function thread safe
  3697. ggml_critical_section_start();
  3698. static bool is_first_call = true;
  3699. if (is_first_call) {
  3700. // initialize time system (required on Windows)
  3701. ggml_time_init();
  3702. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3703. {
  3704. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3705. ggml_fp16_t ii;
  3706. for (int i = 0; i < (1 << 16); ++i) {
  3707. uint16_t ui = i;
  3708. memcpy(&ii, &ui, sizeof(ii));
  3709. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3710. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3711. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3712. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3713. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3714. }
  3715. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3716. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3717. }
  3718. // initialize g_state
  3719. {
  3720. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3721. g_state = (struct ggml_state) {
  3722. /*.contexts =*/ { { 0 } },
  3723. /*.numa =*/ {
  3724. .n_nodes = 0,
  3725. .total_cpus = 0,
  3726. },
  3727. };
  3728. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3729. g_state.contexts[i].used = false;
  3730. }
  3731. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3732. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3733. }
  3734. #if defined(GGML_USE_CUBLAS)
  3735. ggml_init_cublas();
  3736. #elif defined(GGML_USE_CLBLAST)
  3737. ggml_cl_init();
  3738. #endif
  3739. ggml_setup_op_has_task_pass();
  3740. is_first_call = false;
  3741. }
  3742. // find non-used context in g_state
  3743. struct ggml_context * ctx = NULL;
  3744. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3745. if (!g_state.contexts[i].used) {
  3746. g_state.contexts[i].used = true;
  3747. ctx = &g_state.contexts[i].context;
  3748. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3749. break;
  3750. }
  3751. }
  3752. if (ctx == NULL) {
  3753. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3754. ggml_critical_section_end();
  3755. return NULL;
  3756. }
  3757. // allow to call ggml_init with 0 size
  3758. if (params.mem_size == 0) {
  3759. params.mem_size = GGML_MEM_ALIGN;
  3760. }
  3761. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3762. *ctx = (struct ggml_context) {
  3763. /*.mem_size =*/ mem_size,
  3764. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3765. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3766. /*.no_alloc =*/ params.no_alloc,
  3767. /*.no_alloc_save =*/ params.no_alloc,
  3768. /*.n_objects =*/ 0,
  3769. /*.objects_begin =*/ NULL,
  3770. /*.objects_end =*/ NULL,
  3771. /*.scratch =*/ { 0, 0, NULL, },
  3772. /*.scratch_save =*/ { 0, 0, NULL, },
  3773. };
  3774. GGML_ASSERT(ctx->mem_buffer != NULL);
  3775. ggml_assert_aligned(ctx->mem_buffer);
  3776. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3777. ggml_critical_section_end();
  3778. return ctx;
  3779. }
  3780. void ggml_free(struct ggml_context * ctx) {
  3781. // make this function thread safe
  3782. ggml_critical_section_start();
  3783. bool found = false;
  3784. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3785. if (&g_state.contexts[i].context == ctx) {
  3786. g_state.contexts[i].used = false;
  3787. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3788. __func__, i, ggml_used_mem(ctx));
  3789. if (ctx->mem_buffer_owned) {
  3790. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3791. }
  3792. found = true;
  3793. break;
  3794. }
  3795. }
  3796. if (!found) {
  3797. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3798. }
  3799. ggml_critical_section_end();
  3800. }
  3801. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3802. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3803. }
  3804. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3805. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3806. ctx->scratch = scratch;
  3807. return result;
  3808. }
  3809. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3810. return ctx->no_alloc;
  3811. }
  3812. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3813. ctx->no_alloc = no_alloc;
  3814. }
  3815. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3816. return ctx->mem_buffer;
  3817. }
  3818. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3819. return ctx->mem_size;
  3820. }
  3821. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3822. size_t max_size = 0;
  3823. struct ggml_object * obj = ctx->objects_begin;
  3824. while (obj != NULL) {
  3825. if (obj->type == GGML_OBJECT_TENSOR) {
  3826. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3827. const size_t size = ggml_nbytes(tensor);
  3828. if (max_size < size) {
  3829. max_size = size;
  3830. }
  3831. }
  3832. obj = obj->next;
  3833. }
  3834. return max_size;
  3835. }
  3836. // IMPORTANT:
  3837. // when creating "opt" tensors, always save and load the scratch buffer
  3838. // this is an error prone process, but it is necessary to support inplace
  3839. // operators when using scratch buffers
  3840. // TODO: implement a better way
  3841. static void ggml_scratch_save(struct ggml_context * ctx) {
  3842. // this is needed to allow opt tensors to store their data
  3843. // TODO: again, need to find a better way
  3844. ctx->no_alloc_save = ctx->no_alloc;
  3845. ctx->no_alloc = false;
  3846. ctx->scratch_save = ctx->scratch;
  3847. ctx->scratch.data = NULL;
  3848. }
  3849. static void ggml_scratch_load(struct ggml_context * ctx) {
  3850. ctx->no_alloc = ctx->no_alloc_save;
  3851. ctx->scratch = ctx->scratch_save;
  3852. }
  3853. ////////////////////////////////////////////////////////////////////////////////
  3854. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3855. // always insert objects at the end of the context's memory pool
  3856. struct ggml_object * obj_cur = ctx->objects_end;
  3857. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3858. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3859. const size_t cur_end = cur_offs + cur_size;
  3860. // align to GGML_MEM_ALIGN
  3861. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3862. char * const mem_buffer = ctx->mem_buffer;
  3863. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3864. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3865. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3866. __func__, cur_end + size_needed, ctx->mem_size);
  3867. assert(false);
  3868. return NULL;
  3869. }
  3870. *obj_new = (struct ggml_object) {
  3871. .offs = cur_end + GGML_OBJECT_SIZE,
  3872. .size = size_needed,
  3873. .next = NULL,
  3874. .type = type,
  3875. };
  3876. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3877. if (obj_cur != NULL) {
  3878. obj_cur->next = obj_new;
  3879. } else {
  3880. // this is the first object in this context
  3881. ctx->objects_begin = obj_new;
  3882. }
  3883. ctx->objects_end = obj_new;
  3884. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3885. return obj_new;
  3886. }
  3887. static struct ggml_tensor * ggml_new_tensor_impl(
  3888. struct ggml_context * ctx,
  3889. enum ggml_type type,
  3890. int n_dims,
  3891. const int64_t * ne,
  3892. struct ggml_tensor * view_src,
  3893. size_t view_offs) {
  3894. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3895. // find the base tensor and absolute offset
  3896. if (view_src != NULL && view_src->view_src != NULL) {
  3897. view_offs += view_src->view_offs;
  3898. view_src = view_src->view_src;
  3899. }
  3900. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3901. for (int i = 1; i < n_dims; i++) {
  3902. data_size *= ne[i];
  3903. }
  3904. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3905. void * data = view_src != NULL ? view_src->data : NULL;
  3906. if (data != NULL) {
  3907. data = (char *) data + view_offs;
  3908. }
  3909. size_t obj_alloc_size = 0;
  3910. if (view_src == NULL && !ctx->no_alloc) {
  3911. if (ctx->scratch.data != NULL) {
  3912. // allocate tensor data in the scratch buffer
  3913. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3914. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3915. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3916. assert(false);
  3917. return NULL;
  3918. }
  3919. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3920. ctx->scratch.offs += data_size;
  3921. } else {
  3922. // allocate tensor data in the context's memory pool
  3923. obj_alloc_size = data_size;
  3924. }
  3925. }
  3926. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3927. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3928. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3929. *result = (struct ggml_tensor) {
  3930. /*.type =*/ type,
  3931. /*.backend =*/ GGML_BACKEND_CPU,
  3932. /*.n_dims =*/ n_dims,
  3933. /*.ne =*/ { 1, 1, 1, 1 },
  3934. /*.nb =*/ { 0, 0, 0, 0 },
  3935. /*.op =*/ GGML_OP_NONE,
  3936. /*.op_params =*/ { 0 },
  3937. /*.is_param =*/ false,
  3938. /*.grad =*/ NULL,
  3939. /*.src =*/ { NULL },
  3940. /*.perf_runs =*/ 0,
  3941. /*.perf_cycles =*/ 0,
  3942. /*.perf_time_us =*/ 0,
  3943. /*.view_src =*/ view_src,
  3944. /*.view_offs =*/ view_offs,
  3945. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3946. /*.name =*/ { 0 },
  3947. /*.extra =*/ NULL,
  3948. /*.padding =*/ { 0 },
  3949. };
  3950. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3951. //ggml_assert_aligned(result->data);
  3952. for (int i = 0; i < n_dims; i++) {
  3953. result->ne[i] = ne[i];
  3954. }
  3955. result->nb[0] = ggml_type_size(type);
  3956. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3957. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3958. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3959. }
  3960. ctx->n_objects++;
  3961. return result;
  3962. }
  3963. struct ggml_tensor * ggml_new_tensor(
  3964. struct ggml_context * ctx,
  3965. enum ggml_type type,
  3966. int n_dims,
  3967. const int64_t * ne) {
  3968. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3969. }
  3970. struct ggml_tensor * ggml_new_tensor_1d(
  3971. struct ggml_context * ctx,
  3972. enum ggml_type type,
  3973. int64_t ne0) {
  3974. return ggml_new_tensor(ctx, type, 1, &ne0);
  3975. }
  3976. struct ggml_tensor * ggml_new_tensor_2d(
  3977. struct ggml_context * ctx,
  3978. enum ggml_type type,
  3979. int64_t ne0,
  3980. int64_t ne1) {
  3981. const int64_t ne[2] = { ne0, ne1 };
  3982. return ggml_new_tensor(ctx, type, 2, ne);
  3983. }
  3984. struct ggml_tensor * ggml_new_tensor_3d(
  3985. struct ggml_context * ctx,
  3986. enum ggml_type type,
  3987. int64_t ne0,
  3988. int64_t ne1,
  3989. int64_t ne2) {
  3990. const int64_t ne[3] = { ne0, ne1, ne2 };
  3991. return ggml_new_tensor(ctx, type, 3, ne);
  3992. }
  3993. struct ggml_tensor * ggml_new_tensor_4d(
  3994. struct ggml_context * ctx,
  3995. enum ggml_type type,
  3996. int64_t ne0,
  3997. int64_t ne1,
  3998. int64_t ne2,
  3999. int64_t ne3) {
  4000. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4001. return ggml_new_tensor(ctx, type, 4, ne);
  4002. }
  4003. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  4004. ggml_scratch_save(ctx);
  4005. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  4006. ggml_scratch_load(ctx);
  4007. ggml_set_i32(result, value);
  4008. return result;
  4009. }
  4010. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  4011. ggml_scratch_save(ctx);
  4012. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4013. ggml_scratch_load(ctx);
  4014. ggml_set_f32(result, value);
  4015. return result;
  4016. }
  4017. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  4018. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  4019. }
  4020. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  4021. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  4022. assert(params_size <= GGML_MAX_OP_PARAMS);
  4023. memcpy(tensor->op_params, params, params_size);
  4024. }
  4025. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  4026. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4027. return ((const int32_t *)(tensor->op_params))[i];
  4028. }
  4029. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  4030. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4031. ((int32_t *)(tensor->op_params))[i] = value;
  4032. }
  4033. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  4034. memset(tensor->data, 0, ggml_nbytes(tensor));
  4035. return tensor;
  4036. }
  4037. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  4038. const int n = ggml_nrows(tensor);
  4039. const int nc = tensor->ne[0];
  4040. const size_t n1 = tensor->nb[1];
  4041. char * const data = tensor->data;
  4042. switch (tensor->type) {
  4043. case GGML_TYPE_I8:
  4044. {
  4045. assert(tensor->nb[0] == sizeof(int8_t));
  4046. for (int i = 0; i < n; i++) {
  4047. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4048. }
  4049. } break;
  4050. case GGML_TYPE_I16:
  4051. {
  4052. assert(tensor->nb[0] == sizeof(int16_t));
  4053. for (int i = 0; i < n; i++) {
  4054. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4055. }
  4056. } break;
  4057. case GGML_TYPE_I32:
  4058. {
  4059. assert(tensor->nb[0] == sizeof(int32_t));
  4060. for (int i = 0; i < n; i++) {
  4061. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4062. }
  4063. } break;
  4064. case GGML_TYPE_F16:
  4065. {
  4066. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4067. for (int i = 0; i < n; i++) {
  4068. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4069. }
  4070. } break;
  4071. case GGML_TYPE_F32:
  4072. {
  4073. assert(tensor->nb[0] == sizeof(float));
  4074. for (int i = 0; i < n; i++) {
  4075. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4076. }
  4077. } break;
  4078. default:
  4079. {
  4080. GGML_ASSERT(false);
  4081. } break;
  4082. }
  4083. return tensor;
  4084. }
  4085. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4086. const int n = ggml_nrows(tensor);
  4087. const int nc = tensor->ne[0];
  4088. const size_t n1 = tensor->nb[1];
  4089. char * const data = tensor->data;
  4090. switch (tensor->type) {
  4091. case GGML_TYPE_I8:
  4092. {
  4093. assert(tensor->nb[0] == sizeof(int8_t));
  4094. for (int i = 0; i < n; i++) {
  4095. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4096. }
  4097. } break;
  4098. case GGML_TYPE_I16:
  4099. {
  4100. assert(tensor->nb[0] == sizeof(int16_t));
  4101. for (int i = 0; i < n; i++) {
  4102. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4103. }
  4104. } break;
  4105. case GGML_TYPE_I32:
  4106. {
  4107. assert(tensor->nb[0] == sizeof(int32_t));
  4108. for (int i = 0; i < n; i++) {
  4109. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4110. }
  4111. } break;
  4112. case GGML_TYPE_F16:
  4113. {
  4114. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4115. for (int i = 0; i < n; i++) {
  4116. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4117. }
  4118. } break;
  4119. case GGML_TYPE_F32:
  4120. {
  4121. assert(tensor->nb[0] == sizeof(float));
  4122. for (int i = 0; i < n; i++) {
  4123. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4124. }
  4125. } break;
  4126. default:
  4127. {
  4128. GGML_ASSERT(false);
  4129. } break;
  4130. }
  4131. return tensor;
  4132. }
  4133. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  4134. const int64_t ne2 = tensor->ne[2];
  4135. const int64_t ne1 = tensor->ne[1];
  4136. const int64_t ne0 = tensor->ne[0];
  4137. const int64_t i3_ = (i/(ne2*ne1*ne0));
  4138. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  4139. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  4140. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  4141. if (i0) {
  4142. * i0 = i0_;
  4143. }
  4144. if (i1) {
  4145. * i1 = i1_;
  4146. }
  4147. if (i2) {
  4148. * i2 = i2_;
  4149. }
  4150. if (i3) {
  4151. * i3 = i3_;
  4152. }
  4153. }
  4154. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4155. if (!ggml_is_contiguous(tensor)) {
  4156. int64_t id[4] = { 0, 0, 0, 0 };
  4157. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4158. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  4159. }
  4160. switch (tensor->type) {
  4161. case GGML_TYPE_I8:
  4162. {
  4163. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4164. return ((int8_t *)(tensor->data))[i];
  4165. } break;
  4166. case GGML_TYPE_I16:
  4167. {
  4168. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4169. return ((int16_t *)(tensor->data))[i];
  4170. } break;
  4171. case GGML_TYPE_I32:
  4172. {
  4173. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4174. return ((int32_t *)(tensor->data))[i];
  4175. } break;
  4176. case GGML_TYPE_F16:
  4177. {
  4178. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4179. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4180. } break;
  4181. case GGML_TYPE_F32:
  4182. {
  4183. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4184. return ((float *)(tensor->data))[i];
  4185. } break;
  4186. default:
  4187. {
  4188. GGML_ASSERT(false);
  4189. } break;
  4190. }
  4191. return 0.0f;
  4192. }
  4193. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4194. if (!ggml_is_contiguous(tensor)) {
  4195. int64_t id[4] = { 0, 0, 0, 0 };
  4196. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4197. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4198. return;
  4199. }
  4200. switch (tensor->type) {
  4201. case GGML_TYPE_I8:
  4202. {
  4203. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4204. ((int8_t *)(tensor->data))[i] = value;
  4205. } break;
  4206. case GGML_TYPE_I16:
  4207. {
  4208. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4209. ((int16_t *)(tensor->data))[i] = value;
  4210. } break;
  4211. case GGML_TYPE_I32:
  4212. {
  4213. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4214. ((int32_t *)(tensor->data))[i] = value;
  4215. } break;
  4216. case GGML_TYPE_F16:
  4217. {
  4218. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4219. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4220. } break;
  4221. case GGML_TYPE_F32:
  4222. {
  4223. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4224. ((float *)(tensor->data))[i] = value;
  4225. } break;
  4226. default:
  4227. {
  4228. GGML_ASSERT(false);
  4229. } break;
  4230. }
  4231. }
  4232. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4233. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4234. switch (tensor->type) {
  4235. case GGML_TYPE_I8:
  4236. {
  4237. return ((int8_t *) data)[0];
  4238. } break;
  4239. case GGML_TYPE_I16:
  4240. {
  4241. return ((int16_t *) data)[0];
  4242. } break;
  4243. case GGML_TYPE_I32:
  4244. {
  4245. return ((int32_t *) data)[0];
  4246. } break;
  4247. case GGML_TYPE_F16:
  4248. {
  4249. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4250. } break;
  4251. case GGML_TYPE_F32:
  4252. {
  4253. return ((float *) data)[0];
  4254. } break;
  4255. default:
  4256. {
  4257. GGML_ASSERT(false);
  4258. } break;
  4259. }
  4260. return 0.0f;
  4261. }
  4262. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  4263. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4264. switch (tensor->type) {
  4265. case GGML_TYPE_I8:
  4266. {
  4267. ((int8_t *)(data))[0] = value;
  4268. } break;
  4269. case GGML_TYPE_I16:
  4270. {
  4271. ((int16_t *)(data))[0] = value;
  4272. } break;
  4273. case GGML_TYPE_I32:
  4274. {
  4275. ((int32_t *)(data))[0] = value;
  4276. } break;
  4277. case GGML_TYPE_F16:
  4278. {
  4279. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4280. } break;
  4281. case GGML_TYPE_F32:
  4282. {
  4283. ((float *)(data))[0] = value;
  4284. } break;
  4285. default:
  4286. {
  4287. GGML_ASSERT(false);
  4288. } break;
  4289. }
  4290. }
  4291. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4292. if (!ggml_is_contiguous(tensor)) {
  4293. int64_t id[4] = { 0, 0, 0, 0 };
  4294. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4295. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  4296. }
  4297. switch (tensor->type) {
  4298. case GGML_TYPE_I8:
  4299. {
  4300. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4301. return ((int8_t *)(tensor->data))[i];
  4302. } break;
  4303. case GGML_TYPE_I16:
  4304. {
  4305. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4306. return ((int16_t *)(tensor->data))[i];
  4307. } break;
  4308. case GGML_TYPE_I32:
  4309. {
  4310. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4311. return ((int32_t *)(tensor->data))[i];
  4312. } break;
  4313. case GGML_TYPE_F16:
  4314. {
  4315. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4316. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4317. } break;
  4318. case GGML_TYPE_F32:
  4319. {
  4320. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4321. return ((float *)(tensor->data))[i];
  4322. } break;
  4323. default:
  4324. {
  4325. GGML_ASSERT(false);
  4326. } break;
  4327. }
  4328. return 0.0f;
  4329. }
  4330. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4331. if (!ggml_is_contiguous(tensor)) {
  4332. int64_t id[4] = { 0, 0, 0, 0 };
  4333. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4334. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4335. return;
  4336. }
  4337. switch (tensor->type) {
  4338. case GGML_TYPE_I8:
  4339. {
  4340. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4341. ((int8_t *)(tensor->data))[i] = value;
  4342. } break;
  4343. case GGML_TYPE_I16:
  4344. {
  4345. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4346. ((int16_t *)(tensor->data))[i] = value;
  4347. } break;
  4348. case GGML_TYPE_I32:
  4349. {
  4350. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4351. ((int32_t *)(tensor->data))[i] = value;
  4352. } break;
  4353. case GGML_TYPE_F16:
  4354. {
  4355. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4356. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4357. } break;
  4358. case GGML_TYPE_F32:
  4359. {
  4360. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4361. ((float *)(tensor->data))[i] = value;
  4362. } break;
  4363. default:
  4364. {
  4365. GGML_ASSERT(false);
  4366. } break;
  4367. }
  4368. }
  4369. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4370. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4371. switch (tensor->type) {
  4372. case GGML_TYPE_I8:
  4373. {
  4374. return ((int8_t *) data)[0];
  4375. } break;
  4376. case GGML_TYPE_I16:
  4377. {
  4378. return ((int16_t *) data)[0];
  4379. } break;
  4380. case GGML_TYPE_I32:
  4381. {
  4382. return ((int32_t *) data)[0];
  4383. } break;
  4384. case GGML_TYPE_F16:
  4385. {
  4386. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4387. } break;
  4388. case GGML_TYPE_F32:
  4389. {
  4390. return ((float *) data)[0];
  4391. } break;
  4392. default:
  4393. {
  4394. GGML_ASSERT(false);
  4395. } break;
  4396. }
  4397. return 0.0f;
  4398. }
  4399. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  4400. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4401. switch (tensor->type) {
  4402. case GGML_TYPE_I8:
  4403. {
  4404. ((int8_t *)(data))[0] = value;
  4405. } break;
  4406. case GGML_TYPE_I16:
  4407. {
  4408. ((int16_t *)(data))[0] = value;
  4409. } break;
  4410. case GGML_TYPE_I32:
  4411. {
  4412. ((int32_t *)(data))[0] = value;
  4413. } break;
  4414. case GGML_TYPE_F16:
  4415. {
  4416. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4417. } break;
  4418. case GGML_TYPE_F32:
  4419. {
  4420. ((float *)(data))[0] = value;
  4421. } break;
  4422. default:
  4423. {
  4424. GGML_ASSERT(false);
  4425. } break;
  4426. }
  4427. }
  4428. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4429. return tensor->data;
  4430. }
  4431. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4432. assert(tensor->type == GGML_TYPE_F32);
  4433. return (float *)(tensor->data);
  4434. }
  4435. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4436. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4437. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4438. }
  4439. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4440. return tensor->name;
  4441. }
  4442. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4443. strncpy(tensor->name, name, sizeof(tensor->name));
  4444. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4445. return tensor;
  4446. }
  4447. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4448. va_list args;
  4449. va_start(args, fmt);
  4450. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4451. va_end(args);
  4452. return tensor;
  4453. }
  4454. struct ggml_tensor * ggml_view_tensor(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * src) {
  4457. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4458. ggml_format_name(result, "%s (view)", src->name);
  4459. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4460. result->nb[i] = src->nb[i];
  4461. }
  4462. return result;
  4463. }
  4464. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4465. struct ggml_object * obj = ctx->objects_begin;
  4466. char * const mem_buffer = ctx->mem_buffer;
  4467. while (obj != NULL) {
  4468. if (obj->type == GGML_OBJECT_TENSOR) {
  4469. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4470. if (strcmp(cur->name, name) == 0) {
  4471. return cur;
  4472. }
  4473. }
  4474. obj = obj->next;
  4475. }
  4476. return NULL;
  4477. }
  4478. ////////////////////////////////////////////////////////////////////////////////
  4479. // ggml_dup
  4480. static struct ggml_tensor * ggml_dup_impl(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a,
  4483. bool inplace) {
  4484. bool is_node = false;
  4485. if (!inplace && (a->grad)) {
  4486. is_node = true;
  4487. }
  4488. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4489. result->op = GGML_OP_DUP;
  4490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4491. result->src[0] = a;
  4492. return result;
  4493. }
  4494. struct ggml_tensor * ggml_dup(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a) {
  4497. return ggml_dup_impl(ctx, a, false);
  4498. }
  4499. struct ggml_tensor * ggml_dup_inplace(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a) {
  4502. return ggml_dup_impl(ctx, a, true);
  4503. }
  4504. // ggml_add
  4505. static struct ggml_tensor * ggml_add_impl(
  4506. struct ggml_context * ctx,
  4507. struct ggml_tensor * a,
  4508. struct ggml_tensor * b,
  4509. bool inplace) {
  4510. // TODO: support less-strict constraint
  4511. // GGML_ASSERT(ggml_can_repeat(b, a));
  4512. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4513. bool is_node = false;
  4514. if (!inplace && (a->grad || b->grad)) {
  4515. // TODO: support backward pass for broadcasting
  4516. GGML_ASSERT(ggml_are_same_shape(a, b));
  4517. is_node = true;
  4518. }
  4519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4520. result->op = GGML_OP_ADD;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. result->src[1] = b;
  4524. return result;
  4525. }
  4526. struct ggml_tensor * ggml_add(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a,
  4529. struct ggml_tensor * b) {
  4530. return ggml_add_impl(ctx, a, b, false);
  4531. }
  4532. struct ggml_tensor * ggml_add_inplace(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. struct ggml_tensor * b) {
  4536. return ggml_add_impl(ctx, a, b, true);
  4537. }
  4538. // ggml_add_cast
  4539. static struct ggml_tensor * ggml_add_cast_impl(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a,
  4542. struct ggml_tensor * b,
  4543. enum ggml_type type) {
  4544. // TODO: support less-strict constraint
  4545. // GGML_ASSERT(ggml_can_repeat(b, a));
  4546. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4547. GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input
  4548. bool is_node = false;
  4549. if (a->grad || b->grad) {
  4550. // TODO: support backward pass for broadcasting
  4551. GGML_ASSERT(ggml_are_same_shape(a, b));
  4552. is_node = true;
  4553. }
  4554. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  4555. result->op = GGML_OP_ADD;
  4556. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  4557. result->src[0] = a;
  4558. result->src[1] = b;
  4559. return result;
  4560. }
  4561. struct ggml_tensor * ggml_add_cast(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. enum ggml_type type) {
  4566. return ggml_add_cast_impl(ctx, a, b, type);
  4567. }
  4568. // ggml_add1
  4569. static struct ggml_tensor * ggml_add1_impl(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. struct ggml_tensor * b,
  4573. bool inplace) {
  4574. GGML_ASSERT(ggml_is_scalar(b));
  4575. GGML_ASSERT(ggml_is_padded_1d(a));
  4576. bool is_node = false;
  4577. if (a->grad || b->grad) {
  4578. is_node = true;
  4579. }
  4580. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4581. result->op = GGML_OP_ADD1;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src[0] = a;
  4584. result->src[1] = b;
  4585. return result;
  4586. }
  4587. struct ggml_tensor * ggml_add1(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. struct ggml_tensor * b) {
  4591. return ggml_add1_impl(ctx, a, b, false);
  4592. }
  4593. struct ggml_tensor * ggml_add1_inplace(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a,
  4596. struct ggml_tensor * b) {
  4597. return ggml_add1_impl(ctx, a, b, true);
  4598. }
  4599. // ggml_acc
  4600. static struct ggml_tensor * ggml_acc_impl(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. struct ggml_tensor * b,
  4604. size_t nb1,
  4605. size_t nb2,
  4606. size_t nb3,
  4607. size_t offset,
  4608. bool inplace) {
  4609. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4610. GGML_ASSERT(ggml_is_contiguous(a));
  4611. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4612. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4613. bool is_node = false;
  4614. if (!inplace && (a->grad || b->grad)) {
  4615. is_node = true;
  4616. }
  4617. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4618. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4619. ggml_set_op_params(result, params, sizeof(params));
  4620. result->op = GGML_OP_ACC;
  4621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4622. result->src[0] = a;
  4623. result->src[1] = b;
  4624. return result;
  4625. }
  4626. struct ggml_tensor * ggml_acc(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a,
  4629. struct ggml_tensor * b,
  4630. size_t nb1,
  4631. size_t nb2,
  4632. size_t nb3,
  4633. size_t offset) {
  4634. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4635. }
  4636. struct ggml_tensor * ggml_acc_inplace(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. struct ggml_tensor * b,
  4640. size_t nb1,
  4641. size_t nb2,
  4642. size_t nb3,
  4643. size_t offset) {
  4644. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4645. }
  4646. // ggml_sub
  4647. static struct ggml_tensor * ggml_sub_impl(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a,
  4650. struct ggml_tensor * b,
  4651. bool inplace) {
  4652. GGML_ASSERT(ggml_are_same_shape(a, b));
  4653. bool is_node = false;
  4654. if (!inplace && (a->grad || b->grad)) {
  4655. is_node = true;
  4656. }
  4657. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4658. result->op = GGML_OP_SUB;
  4659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4660. result->src[0] = a;
  4661. result->src[1] = b;
  4662. return result;
  4663. }
  4664. struct ggml_tensor * ggml_sub(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a,
  4667. struct ggml_tensor * b) {
  4668. return ggml_sub_impl(ctx, a, b, false);
  4669. }
  4670. struct ggml_tensor * ggml_sub_inplace(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a,
  4673. struct ggml_tensor * b) {
  4674. return ggml_sub_impl(ctx, a, b, true);
  4675. }
  4676. // ggml_mul
  4677. static struct ggml_tensor * ggml_mul_impl(
  4678. struct ggml_context * ctx,
  4679. struct ggml_tensor * a,
  4680. struct ggml_tensor * b,
  4681. bool inplace) {
  4682. // TODO: support less-strict constraint
  4683. // GGML_ASSERT(ggml_can_repeat(b, a));
  4684. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4685. bool is_node = false;
  4686. if (!inplace && (a->grad || b->grad)) {
  4687. // TODO: support backward pass for broadcasting
  4688. GGML_ASSERT(ggml_are_same_shape(a, b));
  4689. is_node = true;
  4690. }
  4691. if (inplace) {
  4692. GGML_ASSERT(!is_node);
  4693. }
  4694. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4695. result->op = GGML_OP_MUL;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src[0] = a;
  4698. result->src[1] = b;
  4699. return result;
  4700. }
  4701. struct ggml_tensor * ggml_mul(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. struct ggml_tensor * b) {
  4705. return ggml_mul_impl(ctx, a, b, false);
  4706. }
  4707. struct ggml_tensor * ggml_mul_inplace(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a,
  4710. struct ggml_tensor * b) {
  4711. return ggml_mul_impl(ctx, a, b, true);
  4712. }
  4713. // ggml_div
  4714. static struct ggml_tensor * ggml_div_impl(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. struct ggml_tensor * b,
  4718. bool inplace) {
  4719. GGML_ASSERT(ggml_are_same_shape(a, b));
  4720. bool is_node = false;
  4721. if (!inplace && (a->grad || b->grad)) {
  4722. is_node = true;
  4723. }
  4724. if (inplace) {
  4725. GGML_ASSERT(!is_node);
  4726. }
  4727. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4728. result->op = GGML_OP_DIV;
  4729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4730. result->src[0] = a;
  4731. result->src[1] = b;
  4732. return result;
  4733. }
  4734. struct ggml_tensor * ggml_div(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. struct ggml_tensor * b) {
  4738. return ggml_div_impl(ctx, a, b, false);
  4739. }
  4740. struct ggml_tensor * ggml_div_inplace(
  4741. struct ggml_context * ctx,
  4742. struct ggml_tensor * a,
  4743. struct ggml_tensor * b) {
  4744. return ggml_div_impl(ctx, a, b, true);
  4745. }
  4746. // ggml_sqr
  4747. static struct ggml_tensor * ggml_sqr_impl(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. bool inplace) {
  4751. bool is_node = false;
  4752. if (!inplace && (a->grad)) {
  4753. is_node = true;
  4754. }
  4755. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4756. result->op = GGML_OP_SQR;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. struct ggml_tensor * ggml_sqr(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a) {
  4764. return ggml_sqr_impl(ctx, a, false);
  4765. }
  4766. struct ggml_tensor * ggml_sqr_inplace(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a) {
  4769. return ggml_sqr_impl(ctx, a, true);
  4770. }
  4771. // ggml_sqrt
  4772. static struct ggml_tensor * ggml_sqrt_impl(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. bool inplace) {
  4776. bool is_node = false;
  4777. if (!inplace && (a->grad)) {
  4778. is_node = true;
  4779. }
  4780. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4781. result->op = GGML_OP_SQRT;
  4782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4783. result->src[0] = a;
  4784. return result;
  4785. }
  4786. struct ggml_tensor * ggml_sqrt(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a) {
  4789. return ggml_sqrt_impl(ctx, a, false);
  4790. }
  4791. struct ggml_tensor * ggml_sqrt_inplace(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a) {
  4794. return ggml_sqrt_impl(ctx, a, true);
  4795. }
  4796. // ggml_log
  4797. static struct ggml_tensor * ggml_log_impl(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. bool inplace) {
  4801. bool is_node = false;
  4802. if (!inplace && (a->grad)) {
  4803. is_node = true;
  4804. }
  4805. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4806. result->op = GGML_OP_LOG;
  4807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4808. result->src[0] = a;
  4809. return result;
  4810. }
  4811. struct ggml_tensor * ggml_log(
  4812. struct ggml_context * ctx,
  4813. struct ggml_tensor * a) {
  4814. return ggml_log_impl(ctx, a, false);
  4815. }
  4816. struct ggml_tensor * ggml_log_inplace(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a) {
  4819. return ggml_log_impl(ctx, a, true);
  4820. }
  4821. // ggml_sum
  4822. struct ggml_tensor * ggml_sum(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a) {
  4825. bool is_node = false;
  4826. if (a->grad) {
  4827. is_node = true;
  4828. }
  4829. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4830. result->op = GGML_OP_SUM;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src[0] = a;
  4833. return result;
  4834. }
  4835. // ggml_sum_rows
  4836. struct ggml_tensor * ggml_sum_rows(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a) {
  4839. bool is_node = false;
  4840. if (a->grad) {
  4841. is_node = true;
  4842. }
  4843. int64_t ne[4] = {1,1,1,1};
  4844. for (int i=1; i<a->n_dims; ++i) {
  4845. ne[i] = a->ne[i];
  4846. }
  4847. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4848. result->op = GGML_OP_SUM_ROWS;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src[0] = a;
  4851. return result;
  4852. }
  4853. // ggml_mean
  4854. struct ggml_tensor * ggml_mean(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a) {
  4857. bool is_node = false;
  4858. if (a->grad) {
  4859. GGML_ASSERT(false); // TODO: implement
  4860. is_node = true;
  4861. }
  4862. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4863. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4864. result->op = GGML_OP_MEAN;
  4865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4866. result->src[0] = a;
  4867. return result;
  4868. }
  4869. // ggml_argmax
  4870. struct ggml_tensor * ggml_argmax(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a) {
  4873. GGML_ASSERT(ggml_is_matrix(a));
  4874. bool is_node = false;
  4875. if (a->grad) {
  4876. GGML_ASSERT(false);
  4877. is_node = true;
  4878. }
  4879. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4880. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4881. result->op = GGML_OP_ARGMAX;
  4882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4883. result->src[0] = a;
  4884. return result;
  4885. }
  4886. // ggml_repeat
  4887. struct ggml_tensor * ggml_repeat(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b) {
  4891. GGML_ASSERT(ggml_can_repeat(a, b));
  4892. bool is_node = false;
  4893. if (a->grad) {
  4894. is_node = true;
  4895. }
  4896. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4897. result->op = GGML_OP_REPEAT;
  4898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4899. result->src[0] = a;
  4900. return result;
  4901. }
  4902. // ggml_repeat_back
  4903. struct ggml_tensor * ggml_repeat_back(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. struct ggml_tensor * b) {
  4907. GGML_ASSERT(ggml_can_repeat(b, a));
  4908. bool is_node = false;
  4909. if (a->grad) {
  4910. is_node = true;
  4911. }
  4912. if (ggml_are_same_shape(a, b) && !is_node) {
  4913. return a;
  4914. }
  4915. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4916. result->op = GGML_OP_REPEAT_BACK;
  4917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4918. result->src[0] = a;
  4919. return result;
  4920. }
  4921. // ggml_concat
  4922. struct ggml_tensor * ggml_concat(
  4923. struct ggml_context* ctx,
  4924. struct ggml_tensor* a,
  4925. struct ggml_tensor* b) {
  4926. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4927. bool is_node = false;
  4928. if (a->grad || b->grad) {
  4929. is_node = true;
  4930. }
  4931. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4932. result->op = GGML_OP_CONCAT;
  4933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4934. result->src[0] = a;
  4935. result->src[1] = b;
  4936. return result;
  4937. }
  4938. // ggml_abs
  4939. struct ggml_tensor * ggml_abs(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a) {
  4942. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4943. }
  4944. struct ggml_tensor * ggml_abs_inplace(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a) {
  4947. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4948. }
  4949. // ggml_sgn
  4950. struct ggml_tensor * ggml_sgn(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a) {
  4953. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4954. }
  4955. struct ggml_tensor * ggml_sgn_inplace(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a) {
  4958. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4959. }
  4960. // ggml_neg
  4961. struct ggml_tensor * ggml_neg(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a) {
  4964. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4965. }
  4966. struct ggml_tensor * ggml_neg_inplace(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a) {
  4969. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4970. }
  4971. // ggml_step
  4972. struct ggml_tensor * ggml_step(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a) {
  4975. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4976. }
  4977. struct ggml_tensor * ggml_step_inplace(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a) {
  4980. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4981. }
  4982. // ggml_tanh
  4983. struct ggml_tensor * ggml_tanh(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a) {
  4986. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4987. }
  4988. struct ggml_tensor * ggml_tanh_inplace(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a) {
  4991. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4992. }
  4993. // ggml_elu
  4994. struct ggml_tensor * ggml_elu(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a) {
  4997. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4998. }
  4999. struct ggml_tensor * ggml_elu_inplace(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a) {
  5002. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  5003. }
  5004. // ggml_relu
  5005. struct ggml_tensor * ggml_relu(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a) {
  5008. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  5009. }
  5010. struct ggml_tensor * ggml_relu_inplace(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a) {
  5013. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  5014. }
  5015. // ggml_gelu
  5016. struct ggml_tensor * ggml_gelu(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a) {
  5019. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  5020. }
  5021. struct ggml_tensor * ggml_gelu_inplace(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a) {
  5024. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  5025. }
  5026. // ggml_gelu_quick
  5027. struct ggml_tensor * ggml_gelu_quick(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a) {
  5030. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5031. }
  5032. struct ggml_tensor * ggml_gelu_quick_inplace(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a) {
  5035. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5036. }
  5037. // ggml_silu
  5038. struct ggml_tensor * ggml_silu(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a) {
  5041. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  5042. }
  5043. struct ggml_tensor * ggml_silu_inplace(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a) {
  5046. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  5047. }
  5048. // ggml_silu_back
  5049. struct ggml_tensor * ggml_silu_back(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. struct ggml_tensor * b) {
  5053. bool is_node = false;
  5054. if (a->grad || b->grad) {
  5055. // TODO: implement backward
  5056. is_node = true;
  5057. }
  5058. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5059. result->op = GGML_OP_SILU_BACK;
  5060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5061. result->src[0] = a;
  5062. result->src[1] = b;
  5063. return result;
  5064. }
  5065. // ggml_norm
  5066. static struct ggml_tensor * ggml_norm_impl(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. float eps,
  5070. bool inplace) {
  5071. bool is_node = false;
  5072. if (!inplace && (a->grad)) {
  5073. GGML_ASSERT(false); // TODO: implement backward
  5074. is_node = true;
  5075. }
  5076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. ggml_set_op_params(result, &eps, sizeof(eps));
  5078. result->op = GGML_OP_NORM;
  5079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5080. result->src[0] = a;
  5081. return result;
  5082. }
  5083. struct ggml_tensor * ggml_norm(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. float eps) {
  5087. return ggml_norm_impl(ctx, a, eps, false);
  5088. }
  5089. struct ggml_tensor * ggml_norm_inplace(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. float eps) {
  5093. return ggml_norm_impl(ctx, a, eps, true);
  5094. }
  5095. // ggml_rms_norm
  5096. static struct ggml_tensor * ggml_rms_norm_impl(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. float eps,
  5100. bool inplace) {
  5101. bool is_node = false;
  5102. if (!inplace && (a->grad)) {
  5103. is_node = true;
  5104. }
  5105. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5106. ggml_set_op_params(result, &eps, sizeof(eps));
  5107. result->op = GGML_OP_RMS_NORM;
  5108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5109. result->src[0] = a;
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_rms_norm(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. float eps) {
  5116. return ggml_rms_norm_impl(ctx, a, eps, false);
  5117. }
  5118. struct ggml_tensor * ggml_rms_norm_inplace(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. float eps) {
  5122. return ggml_rms_norm_impl(ctx, a, eps, true);
  5123. }
  5124. // ggml_rms_norm_back
  5125. struct ggml_tensor * ggml_rms_norm_back(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. struct ggml_tensor * b,
  5129. float eps) {
  5130. bool is_node = false;
  5131. if (a->grad) {
  5132. // TODO: implement backward
  5133. is_node = true;
  5134. }
  5135. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5136. ggml_set_op_params(result, &eps, sizeof(eps));
  5137. result->op = GGML_OP_RMS_NORM_BACK;
  5138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5139. result->src[0] = a;
  5140. result->src[1] = b;
  5141. return result;
  5142. }
  5143. // ggml_group_norm
  5144. static struct ggml_tensor * ggml_group_norm_impl(
  5145. struct ggml_context * ctx,
  5146. struct ggml_tensor * a,
  5147. int n_groups,
  5148. bool inplace) {
  5149. bool is_node = false;
  5150. if (!inplace && (a->grad)) {
  5151. GGML_ASSERT(false); // TODO: implement backward
  5152. is_node = true;
  5153. }
  5154. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5155. result->op = GGML_OP_GROUP_NORM;
  5156. result->op_params[0] = n_groups;
  5157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5158. result->src[0] = a;
  5159. result->src[1] = NULL; // TODO: maybe store epsilon here?
  5160. return result;
  5161. }
  5162. struct ggml_tensor * ggml_group_norm(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. int n_groups) {
  5166. return ggml_group_norm_impl(ctx, a, n_groups, false);
  5167. }
  5168. struct ggml_tensor * ggml_group_norm_inplace(
  5169. struct ggml_context * ctx,
  5170. struct ggml_tensor * a,
  5171. int n_groups) {
  5172. return ggml_group_norm_impl(ctx, a, n_groups, true);
  5173. }
  5174. // ggml_mul_mat
  5175. struct ggml_tensor * ggml_mul_mat(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. struct ggml_tensor * b) {
  5179. GGML_ASSERT(ggml_can_mul_mat(a, b));
  5180. GGML_ASSERT(!ggml_is_transposed(a));
  5181. bool is_node = false;
  5182. if (a->grad || b->grad) {
  5183. is_node = true;
  5184. }
  5185. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  5186. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5187. result->op = GGML_OP_MUL_MAT;
  5188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5189. result->src[0] = a;
  5190. result->src[1] = b;
  5191. return result;
  5192. }
  5193. // ggml_out_prod
  5194. struct ggml_tensor * ggml_out_prod(
  5195. struct ggml_context * ctx,
  5196. struct ggml_tensor * a,
  5197. struct ggml_tensor * b) {
  5198. GGML_ASSERT(ggml_can_out_prod(a, b));
  5199. GGML_ASSERT(!ggml_is_transposed(a));
  5200. bool is_node = false;
  5201. if (a->grad || b->grad) {
  5202. is_node = true;
  5203. }
  5204. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  5205. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  5206. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5207. result->op = GGML_OP_OUT_PROD;
  5208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5209. result->src[0] = a;
  5210. result->src[1] = b;
  5211. return result;
  5212. }
  5213. // ggml_scale
  5214. static struct ggml_tensor * ggml_scale_impl(
  5215. struct ggml_context * ctx,
  5216. struct ggml_tensor * a,
  5217. struct ggml_tensor * b,
  5218. bool inplace) {
  5219. GGML_ASSERT(ggml_is_scalar(b));
  5220. GGML_ASSERT(ggml_is_padded_1d(a));
  5221. bool is_node = false;
  5222. if (a->grad || b->grad) {
  5223. is_node = true;
  5224. }
  5225. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5226. result->op = GGML_OP_SCALE;
  5227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5228. result->src[0] = a;
  5229. result->src[1] = b;
  5230. return result;
  5231. }
  5232. struct ggml_tensor * ggml_scale(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a,
  5235. struct ggml_tensor * b) {
  5236. return ggml_scale_impl(ctx, a, b, false);
  5237. }
  5238. struct ggml_tensor * ggml_scale_inplace(
  5239. struct ggml_context * ctx,
  5240. struct ggml_tensor * a,
  5241. struct ggml_tensor * b) {
  5242. return ggml_scale_impl(ctx, a, b, true);
  5243. }
  5244. // ggml_set
  5245. static struct ggml_tensor * ggml_set_impl(
  5246. struct ggml_context * ctx,
  5247. struct ggml_tensor * a,
  5248. struct ggml_tensor * b,
  5249. size_t nb1,
  5250. size_t nb2,
  5251. size_t nb3,
  5252. size_t offset,
  5253. bool inplace) {
  5254. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5255. bool is_node = false;
  5256. if (a->grad || b->grad) {
  5257. is_node = true;
  5258. }
  5259. // make a view of the destination
  5260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5261. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5262. ggml_set_op_params(result, params, sizeof(params));
  5263. result->op = GGML_OP_SET;
  5264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5265. result->src[0] = a;
  5266. result->src[1] = b;
  5267. return result;
  5268. }
  5269. struct ggml_tensor * ggml_set(
  5270. struct ggml_context * ctx,
  5271. struct ggml_tensor * a,
  5272. struct ggml_tensor * b,
  5273. size_t nb1,
  5274. size_t nb2,
  5275. size_t nb3,
  5276. size_t offset) {
  5277. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5278. }
  5279. struct ggml_tensor * ggml_set_inplace(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. struct ggml_tensor * b,
  5283. size_t nb1,
  5284. size_t nb2,
  5285. size_t nb3,
  5286. size_t offset) {
  5287. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5288. }
  5289. struct ggml_tensor * ggml_set_1d(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. struct ggml_tensor * b,
  5293. size_t offset) {
  5294. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5295. }
  5296. struct ggml_tensor * ggml_set_1d_inplace(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. struct ggml_tensor * b,
  5300. size_t offset) {
  5301. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5302. }
  5303. struct ggml_tensor * ggml_set_2d(
  5304. struct ggml_context * ctx,
  5305. struct ggml_tensor * a,
  5306. struct ggml_tensor * b,
  5307. size_t nb1,
  5308. size_t offset) {
  5309. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5310. }
  5311. struct ggml_tensor * ggml_set_2d_inplace(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. struct ggml_tensor * b,
  5315. size_t nb1,
  5316. size_t offset) {
  5317. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5318. }
  5319. // ggml_cpy
  5320. static struct ggml_tensor * ggml_cpy_impl(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * a,
  5323. struct ggml_tensor * b,
  5324. bool inplace) {
  5325. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5326. bool is_node = false;
  5327. if (!inplace && (a->grad || b->grad)) {
  5328. is_node = true;
  5329. }
  5330. // make a view of the destination
  5331. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5332. if (strlen(b->name) > 0) {
  5333. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5334. } else {
  5335. ggml_format_name(result, "%s (copy)", a->name);
  5336. }
  5337. result->op = GGML_OP_CPY;
  5338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5339. result->src[0] = a;
  5340. result->src[1] = b;
  5341. return result;
  5342. }
  5343. struct ggml_tensor * ggml_cpy(
  5344. struct ggml_context * ctx,
  5345. struct ggml_tensor * a,
  5346. struct ggml_tensor * b) {
  5347. return ggml_cpy_impl(ctx, a, b, false);
  5348. }
  5349. struct ggml_tensor * ggml_cpy_inplace(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a,
  5352. struct ggml_tensor * b) {
  5353. return ggml_cpy_impl(ctx, a, b, true);
  5354. }
  5355. // ggml_cont
  5356. static struct ggml_tensor * ggml_cont_impl(
  5357. struct ggml_context * ctx,
  5358. struct ggml_tensor * a,
  5359. bool inplace) {
  5360. bool is_node = false;
  5361. if (!inplace && a->grad) {
  5362. is_node = true;
  5363. }
  5364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5365. ggml_format_name(result, "%s (cont)", a->name);
  5366. result->op = GGML_OP_CONT;
  5367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5368. result->src[0] = a;
  5369. return result;
  5370. }
  5371. struct ggml_tensor * ggml_cont(
  5372. struct ggml_context * ctx,
  5373. struct ggml_tensor * a) {
  5374. return ggml_cont_impl(ctx, a, false);
  5375. }
  5376. struct ggml_tensor * ggml_cont_inplace(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a) {
  5379. return ggml_cont_impl(ctx, a, true);
  5380. }
  5381. // make contiguous, with new shape
  5382. GGML_API struct ggml_tensor * ggml_cont_1d(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. int64_t ne0) {
  5386. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5387. }
  5388. GGML_API struct ggml_tensor * ggml_cont_2d(
  5389. struct ggml_context * ctx,
  5390. struct ggml_tensor * a,
  5391. int64_t ne0,
  5392. int64_t ne1) {
  5393. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5394. }
  5395. GGML_API struct ggml_tensor * ggml_cont_3d(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. int64_t ne0,
  5399. int64_t ne1,
  5400. int64_t ne2) {
  5401. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5402. }
  5403. struct ggml_tensor * ggml_cont_4d(
  5404. struct ggml_context * ctx,
  5405. struct ggml_tensor * a,
  5406. int64_t ne0,
  5407. int64_t ne1,
  5408. int64_t ne2,
  5409. int64_t ne3) {
  5410. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5411. bool is_node = false;
  5412. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5413. ggml_format_name(result, "%s (cont)", a->name);
  5414. result->op = GGML_OP_CONT;
  5415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5416. result->src[0] = a;
  5417. return result;
  5418. }
  5419. // ggml_reshape
  5420. struct ggml_tensor * ggml_reshape(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. struct ggml_tensor * b) {
  5424. GGML_ASSERT(ggml_is_contiguous(a));
  5425. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5426. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5427. bool is_node = false;
  5428. if (a->grad) {
  5429. is_node = true;
  5430. }
  5431. if (b->grad) {
  5432. // gradient propagation is not supported
  5433. //GGML_ASSERT(false);
  5434. }
  5435. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5436. ggml_format_name(result, "%s (reshaped)", a->name);
  5437. result->op = GGML_OP_RESHAPE;
  5438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5439. result->src[0] = a;
  5440. return result;
  5441. }
  5442. struct ggml_tensor * ggml_reshape_1d(
  5443. struct ggml_context * ctx,
  5444. struct ggml_tensor * a,
  5445. int64_t ne0) {
  5446. GGML_ASSERT(ggml_is_contiguous(a));
  5447. GGML_ASSERT(ggml_nelements(a) == ne0);
  5448. bool is_node = false;
  5449. if (a->grad) {
  5450. is_node = true;
  5451. }
  5452. const int64_t ne[1] = { ne0 };
  5453. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5454. ggml_format_name(result, "%s (reshaped)", a->name);
  5455. result->op = GGML_OP_RESHAPE;
  5456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5457. result->src[0] = a;
  5458. return result;
  5459. }
  5460. struct ggml_tensor * ggml_reshape_2d(
  5461. struct ggml_context * ctx,
  5462. struct ggml_tensor * a,
  5463. int64_t ne0,
  5464. int64_t ne1) {
  5465. GGML_ASSERT(ggml_is_contiguous(a));
  5466. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5467. bool is_node = false;
  5468. if (a->grad) {
  5469. is_node = true;
  5470. }
  5471. const int64_t ne[2] = { ne0, ne1 };
  5472. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5473. ggml_format_name(result, "%s (reshaped)", a->name);
  5474. result->op = GGML_OP_RESHAPE;
  5475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5476. result->src[0] = a;
  5477. return result;
  5478. }
  5479. struct ggml_tensor * ggml_reshape_3d(
  5480. struct ggml_context * ctx,
  5481. struct ggml_tensor * a,
  5482. int64_t ne0,
  5483. int64_t ne1,
  5484. int64_t ne2) {
  5485. GGML_ASSERT(ggml_is_contiguous(a));
  5486. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5487. bool is_node = false;
  5488. if (a->grad) {
  5489. is_node = true;
  5490. }
  5491. const int64_t ne[3] = { ne0, ne1, ne2 };
  5492. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5493. ggml_format_name(result, "%s (reshaped)", a->name);
  5494. result->op = GGML_OP_RESHAPE;
  5495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5496. result->src[0] = a;
  5497. return result;
  5498. }
  5499. struct ggml_tensor * ggml_reshape_4d(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. int64_t ne0,
  5503. int64_t ne1,
  5504. int64_t ne2,
  5505. int64_t ne3) {
  5506. GGML_ASSERT(ggml_is_contiguous(a));
  5507. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5508. bool is_node = false;
  5509. if (a->grad) {
  5510. is_node = true;
  5511. }
  5512. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5513. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5514. ggml_format_name(result, "%s (reshaped)", a->name);
  5515. result->op = GGML_OP_RESHAPE;
  5516. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5517. result->src[0] = a;
  5518. return result;
  5519. }
  5520. static struct ggml_tensor * ggml_view_impl(
  5521. struct ggml_context * ctx,
  5522. struct ggml_tensor * a,
  5523. int n_dims,
  5524. const int64_t * ne,
  5525. size_t offset) {
  5526. bool is_node = false;
  5527. if (a->grad) {
  5528. is_node = true;
  5529. }
  5530. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5531. ggml_format_name(result, "%s (view)", a->name);
  5532. ggml_set_op_params(result, &offset, sizeof(offset));
  5533. result->op = GGML_OP_VIEW;
  5534. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5535. result->src[0] = a;
  5536. return result;
  5537. }
  5538. // ggml_view_1d
  5539. struct ggml_tensor * ggml_view_1d(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. int64_t ne0,
  5543. size_t offset) {
  5544. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5545. return result;
  5546. }
  5547. // ggml_view_2d
  5548. struct ggml_tensor * ggml_view_2d(
  5549. struct ggml_context * ctx,
  5550. struct ggml_tensor * a,
  5551. int64_t ne0,
  5552. int64_t ne1,
  5553. size_t nb1,
  5554. size_t offset) {
  5555. const int64_t ne[2] = { ne0, ne1 };
  5556. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5557. result->nb[1] = nb1;
  5558. result->nb[2] = result->nb[1]*ne1;
  5559. result->nb[3] = result->nb[2];
  5560. return result;
  5561. }
  5562. // ggml_view_3d
  5563. struct ggml_tensor * ggml_view_3d(
  5564. struct ggml_context * ctx,
  5565. struct ggml_tensor * a,
  5566. int64_t ne0,
  5567. int64_t ne1,
  5568. int64_t ne2,
  5569. size_t nb1,
  5570. size_t nb2,
  5571. size_t offset) {
  5572. const int64_t ne[3] = { ne0, ne1, ne2 };
  5573. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5574. result->nb[1] = nb1;
  5575. result->nb[2] = nb2;
  5576. result->nb[3] = result->nb[2]*ne2;
  5577. return result;
  5578. }
  5579. // ggml_view_4d
  5580. struct ggml_tensor * ggml_view_4d(
  5581. struct ggml_context * ctx,
  5582. struct ggml_tensor * a,
  5583. int64_t ne0,
  5584. int64_t ne1,
  5585. int64_t ne2,
  5586. int64_t ne3,
  5587. size_t nb1,
  5588. size_t nb2,
  5589. size_t nb3,
  5590. size_t offset) {
  5591. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5592. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5593. result->nb[1] = nb1;
  5594. result->nb[2] = nb2;
  5595. result->nb[3] = nb3;
  5596. return result;
  5597. }
  5598. // ggml_permute
  5599. struct ggml_tensor * ggml_permute(
  5600. struct ggml_context * ctx,
  5601. struct ggml_tensor * a,
  5602. int axis0,
  5603. int axis1,
  5604. int axis2,
  5605. int axis3) {
  5606. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5607. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5608. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5609. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5610. GGML_ASSERT(axis0 != axis1);
  5611. GGML_ASSERT(axis0 != axis2);
  5612. GGML_ASSERT(axis0 != axis3);
  5613. GGML_ASSERT(axis1 != axis2);
  5614. GGML_ASSERT(axis1 != axis3);
  5615. GGML_ASSERT(axis2 != axis3);
  5616. bool is_node = false;
  5617. if (a->grad) {
  5618. is_node = true;
  5619. }
  5620. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5621. ggml_format_name(result, "%s (permuted)", a->name);
  5622. int ne[GGML_MAX_DIMS];
  5623. int nb[GGML_MAX_DIMS];
  5624. ne[axis0] = a->ne[0];
  5625. ne[axis1] = a->ne[1];
  5626. ne[axis2] = a->ne[2];
  5627. ne[axis3] = a->ne[3];
  5628. nb[axis0] = a->nb[0];
  5629. nb[axis1] = a->nb[1];
  5630. nb[axis2] = a->nb[2];
  5631. nb[axis3] = a->nb[3];
  5632. result->ne[0] = ne[0];
  5633. result->ne[1] = ne[1];
  5634. result->ne[2] = ne[2];
  5635. result->ne[3] = ne[3];
  5636. result->nb[0] = nb[0];
  5637. result->nb[1] = nb[1];
  5638. result->nb[2] = nb[2];
  5639. result->nb[3] = nb[3];
  5640. result->op = GGML_OP_PERMUTE;
  5641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5642. result->src[0] = a;
  5643. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5644. ggml_set_op_params(result, params, sizeof(params));
  5645. return result;
  5646. }
  5647. // ggml_transpose
  5648. struct ggml_tensor * ggml_transpose(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a) {
  5651. bool is_node = false;
  5652. if (a->grad) {
  5653. is_node = true;
  5654. }
  5655. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5656. ggml_format_name(result, "%s (transposed)", a->name);
  5657. result->ne[0] = a->ne[1];
  5658. result->ne[1] = a->ne[0];
  5659. result->nb[0] = a->nb[1];
  5660. result->nb[1] = a->nb[0];
  5661. result->op = GGML_OP_TRANSPOSE;
  5662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5663. result->src[0] = a;
  5664. return result;
  5665. }
  5666. // ggml_get_rows
  5667. struct ggml_tensor * ggml_get_rows(
  5668. struct ggml_context * ctx,
  5669. struct ggml_tensor * a,
  5670. struct ggml_tensor * b) {
  5671. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5672. bool is_node = false;
  5673. if (a->grad || b->grad) {
  5674. is_node = true;
  5675. }
  5676. // TODO: implement non F32 return
  5677. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5678. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5679. result->op = GGML_OP_GET_ROWS;
  5680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5681. result->src[0] = a;
  5682. result->src[1] = b;
  5683. return result;
  5684. }
  5685. // ggml_get_rows_back
  5686. struct ggml_tensor * ggml_get_rows_back(
  5687. struct ggml_context * ctx,
  5688. struct ggml_tensor * a,
  5689. struct ggml_tensor * b,
  5690. struct ggml_tensor * c) {
  5691. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5692. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5693. bool is_node = false;
  5694. if (a->grad || b->grad) {
  5695. is_node = true;
  5696. }
  5697. // TODO: implement non F32 return
  5698. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5699. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5700. result->op = GGML_OP_GET_ROWS_BACK;
  5701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5702. result->src[0] = a;
  5703. result->src[1] = b;
  5704. return result;
  5705. }
  5706. // ggml_diag
  5707. struct ggml_tensor * ggml_diag(
  5708. struct ggml_context * ctx,
  5709. struct ggml_tensor * a) {
  5710. GGML_ASSERT(a->ne[1] == 1);
  5711. bool is_node = false;
  5712. if (a->grad) {
  5713. is_node = true;
  5714. }
  5715. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5716. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5717. result->op = GGML_OP_DIAG;
  5718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5719. result->src[0] = a;
  5720. return result;
  5721. }
  5722. // ggml_diag_mask_inf
  5723. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5724. struct ggml_context * ctx,
  5725. struct ggml_tensor * a,
  5726. int n_past,
  5727. bool inplace) {
  5728. bool is_node = false;
  5729. if (a->grad) {
  5730. is_node = true;
  5731. }
  5732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5733. int32_t params[] = { n_past };
  5734. ggml_set_op_params(result, params, sizeof(params));
  5735. result->op = GGML_OP_DIAG_MASK_INF;
  5736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5737. result->src[0] = a;
  5738. return result;
  5739. }
  5740. struct ggml_tensor * ggml_diag_mask_inf(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * a,
  5743. int n_past) {
  5744. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5745. }
  5746. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5747. struct ggml_context * ctx,
  5748. struct ggml_tensor * a,
  5749. int n_past) {
  5750. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5751. }
  5752. // ggml_diag_mask_zero
  5753. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5754. struct ggml_context * ctx,
  5755. struct ggml_tensor * a,
  5756. int n_past,
  5757. bool inplace) {
  5758. bool is_node = false;
  5759. if (a->grad) {
  5760. is_node = true;
  5761. }
  5762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5763. int32_t params[] = { n_past };
  5764. ggml_set_op_params(result, params, sizeof(params));
  5765. result->op = GGML_OP_DIAG_MASK_ZERO;
  5766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5767. result->src[0] = a;
  5768. return result;
  5769. }
  5770. struct ggml_tensor * ggml_diag_mask_zero(
  5771. struct ggml_context * ctx,
  5772. struct ggml_tensor * a,
  5773. int n_past) {
  5774. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5775. }
  5776. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5777. struct ggml_context * ctx,
  5778. struct ggml_tensor * a,
  5779. int n_past) {
  5780. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5781. }
  5782. // ggml_soft_max
  5783. static struct ggml_tensor * ggml_soft_max_impl(
  5784. struct ggml_context * ctx,
  5785. struct ggml_tensor * a,
  5786. bool inplace) {
  5787. bool is_node = false;
  5788. if (a->grad) {
  5789. is_node = true;
  5790. }
  5791. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5792. result->op = GGML_OP_SOFT_MAX;
  5793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5794. result->src[0] = a;
  5795. return result;
  5796. }
  5797. struct ggml_tensor * ggml_soft_max(
  5798. struct ggml_context * ctx,
  5799. struct ggml_tensor * a) {
  5800. return ggml_soft_max_impl(ctx, a, false);
  5801. }
  5802. struct ggml_tensor * ggml_soft_max_inplace(
  5803. struct ggml_context * ctx,
  5804. struct ggml_tensor * a) {
  5805. return ggml_soft_max_impl(ctx, a, true);
  5806. }
  5807. // ggml_soft_max_back
  5808. static struct ggml_tensor * ggml_soft_max_back_impl(
  5809. struct ggml_context * ctx,
  5810. struct ggml_tensor * a,
  5811. struct ggml_tensor * b,
  5812. bool inplace) {
  5813. bool is_node = false;
  5814. if (a->grad || b->grad) {
  5815. is_node = true; // TODO : implement backward pass
  5816. }
  5817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5818. result->op = GGML_OP_SOFT_MAX_BACK;
  5819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5820. result->src[0] = a;
  5821. result->src[1] = b;
  5822. return result;
  5823. }
  5824. struct ggml_tensor * ggml_soft_max_back(
  5825. struct ggml_context * ctx,
  5826. struct ggml_tensor * a,
  5827. struct ggml_tensor * b) {
  5828. return ggml_soft_max_back_impl(ctx, a, b, false);
  5829. }
  5830. struct ggml_tensor * ggml_soft_max_back_inplace(
  5831. struct ggml_context * ctx,
  5832. struct ggml_tensor * a,
  5833. struct ggml_tensor * b) {
  5834. return ggml_soft_max_back_impl(ctx, a, b, true);
  5835. }
  5836. // ggml_rope
  5837. static struct ggml_tensor * ggml_rope_impl(
  5838. struct ggml_context * ctx,
  5839. struct ggml_tensor * a,
  5840. struct ggml_tensor * b,
  5841. int n_dims,
  5842. int mode,
  5843. int n_ctx,
  5844. float freq_base,
  5845. float freq_scale,
  5846. float xpos_base,
  5847. bool xpos_down,
  5848. bool inplace) {
  5849. GGML_ASSERT(ggml_is_vector(b));
  5850. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5851. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5852. bool is_node = false;
  5853. if (a->grad) {
  5854. is_node = true;
  5855. }
  5856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5857. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5858. memcpy(params + 4, &freq_base, sizeof(float));
  5859. memcpy(params + 5, &freq_scale, sizeof(float));
  5860. memcpy(params + 6, &xpos_base, sizeof(float));
  5861. memcpy(params + 7, &xpos_down, sizeof(bool));
  5862. ggml_set_op_params(result, params, sizeof(params));
  5863. result->op = GGML_OP_ROPE;
  5864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5865. result->src[0] = a;
  5866. result->src[1] = b;
  5867. return result;
  5868. }
  5869. struct ggml_tensor * ggml_rope(
  5870. struct ggml_context * ctx,
  5871. struct ggml_tensor * a,
  5872. struct ggml_tensor * b,
  5873. int n_dims,
  5874. int mode,
  5875. int n_ctx) {
  5876. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5877. }
  5878. struct ggml_tensor * ggml_rope_inplace(
  5879. struct ggml_context * ctx,
  5880. struct ggml_tensor * a,
  5881. struct ggml_tensor * b,
  5882. int n_dims,
  5883. int mode,
  5884. int n_ctx) {
  5885. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5886. }
  5887. struct ggml_tensor * ggml_rope_custom(
  5888. struct ggml_context * ctx,
  5889. struct ggml_tensor * a,
  5890. struct ggml_tensor * b,
  5891. int n_dims,
  5892. int mode,
  5893. int n_ctx,
  5894. float freq_base,
  5895. float freq_scale) {
  5896. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5897. }
  5898. struct ggml_tensor * ggml_rope_custom_inplace(
  5899. struct ggml_context * ctx,
  5900. struct ggml_tensor * a,
  5901. struct ggml_tensor * b,
  5902. int n_dims,
  5903. int mode,
  5904. int n_ctx,
  5905. float freq_base,
  5906. float freq_scale) {
  5907. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5908. }
  5909. struct ggml_tensor * ggml_rope_xpos_inplace(
  5910. struct ggml_context * ctx,
  5911. struct ggml_tensor * a,
  5912. struct ggml_tensor * b,
  5913. int n_dims,
  5914. float base,
  5915. bool down) {
  5916. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5917. }
  5918. // ggml_rope_back
  5919. struct ggml_tensor * ggml_rope_back(
  5920. struct ggml_context * ctx,
  5921. struct ggml_tensor * a,
  5922. struct ggml_tensor * b,
  5923. int n_dims,
  5924. int mode,
  5925. int n_ctx,
  5926. float freq_base,
  5927. float freq_scale,
  5928. float xpos_base,
  5929. bool xpos_down) {
  5930. GGML_ASSERT(ggml_is_vector(b));
  5931. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5932. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5933. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5934. bool is_node = false;
  5935. if (a->grad) {
  5936. is_node = false; // TODO: implement backward
  5937. }
  5938. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5939. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5940. memcpy(params + 4, &freq_base, sizeof(float));
  5941. memcpy(params + 5, &freq_scale, sizeof(float));
  5942. memcpy(params + 6, &xpos_base, sizeof(float));
  5943. memcpy(params + 7, &xpos_down, sizeof(bool));
  5944. ggml_set_op_params(result, params, sizeof(params));
  5945. result->op = GGML_OP_ROPE_BACK;
  5946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5947. result->src[0] = a;
  5948. result->src[1] = b;
  5949. return result;
  5950. }
  5951. // ggml_alibi
  5952. struct ggml_tensor * ggml_alibi(
  5953. struct ggml_context * ctx,
  5954. struct ggml_tensor * a,
  5955. int n_past,
  5956. int n_head,
  5957. float bias_max) {
  5958. GGML_ASSERT(n_past >= 0);
  5959. bool is_node = false;
  5960. if (a->grad) {
  5961. GGML_ASSERT(false); // TODO: implement backward
  5962. is_node = true;
  5963. }
  5964. // TODO: when implement backward, fix this:
  5965. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5966. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5967. int32_t op_params[3] = { n_past, n_head };
  5968. memcpy(op_params + 2, &bias_max, sizeof(float));
  5969. ggml_set_op_params(result, op_params, sizeof(op_params));
  5970. result->op = GGML_OP_ALIBI;
  5971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5972. result->src[0] = a;
  5973. return result;
  5974. }
  5975. // ggml_clamp
  5976. struct ggml_tensor * ggml_clamp(
  5977. struct ggml_context * ctx,
  5978. struct ggml_tensor * a,
  5979. float min,
  5980. float max) {
  5981. bool is_node = false;
  5982. if (a->grad) {
  5983. GGML_ASSERT(false); // TODO: implement backward
  5984. is_node = true;
  5985. }
  5986. // TODO: when implement backward, fix this:
  5987. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5988. float params[] = { min, max };
  5989. ggml_set_op_params(result, params, sizeof(params));
  5990. result->op = GGML_OP_CLAMP;
  5991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5992. result->src[0] = a;
  5993. return result;
  5994. }
  5995. // ggml_conv_1d
  5996. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5997. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5998. }
  5999. GGML_API struct ggml_tensor * ggml_conv_1d(
  6000. struct ggml_context * ctx,
  6001. struct ggml_tensor * a,
  6002. struct ggml_tensor * b,
  6003. int s0,
  6004. int p0,
  6005. int d0) {
  6006. GGML_ASSERT(ggml_is_matrix(b));
  6007. GGML_ASSERT(a->ne[1] == b->ne[1]);
  6008. bool is_node = false;
  6009. if (a->grad || b->grad) {
  6010. GGML_ASSERT(false); // TODO: implement backward
  6011. is_node = true;
  6012. }
  6013. const int64_t ne[4] = {
  6014. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  6015. a->ne[2], 1, 1,
  6016. };
  6017. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  6018. int32_t params[] = { s0, p0, d0 };
  6019. ggml_set_op_params(result, params, sizeof(params));
  6020. result->op = GGML_OP_CONV_1D;
  6021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6022. result->src[0] = a;
  6023. result->src[1] = b;
  6024. return result;
  6025. }
  6026. // ggml_conv_1d_ph
  6027. struct ggml_tensor* ggml_conv_1d_ph(
  6028. struct ggml_context * ctx,
  6029. struct ggml_tensor * a,
  6030. struct ggml_tensor * b,
  6031. int s,
  6032. int d) {
  6033. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  6034. }
  6035. // ggml_conv_2d
  6036. struct ggml_tensor * ggml_conv_2d(
  6037. struct ggml_context * ctx,
  6038. struct ggml_tensor * a,
  6039. struct ggml_tensor * b,
  6040. int s0,
  6041. int s1,
  6042. int p0,
  6043. int p1,
  6044. int d0,
  6045. int d1) {
  6046. GGML_ASSERT(a->ne[2] == b->ne[2]);
  6047. bool is_node = false;
  6048. if (a->grad || b->grad) {
  6049. GGML_ASSERT(false); // TODO: implement backward
  6050. is_node = true;
  6051. }
  6052. const int64_t ne[4] = {
  6053. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  6054. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  6055. a->ne[3], b->ne[3],
  6056. };
  6057. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6058. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  6059. ggml_set_op_params(result, params, sizeof(params));
  6060. result->op = GGML_OP_CONV_2D;
  6061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6062. result->src[0] = a;
  6063. result->src[1] = b;
  6064. return result;
  6065. }
  6066. // ggml_conv_2d_sk_p0
  6067. struct ggml_tensor * ggml_conv_2d_sk_p0(
  6068. struct ggml_context * ctx,
  6069. struct ggml_tensor * a,
  6070. struct ggml_tensor * b) {
  6071. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  6072. }
  6073. // ggml_conv_2d_s1_ph
  6074. struct ggml_tensor * ggml_conv_2d_s1_ph(
  6075. struct ggml_context * ctx,
  6076. struct ggml_tensor * a,
  6077. struct ggml_tensor * b) {
  6078. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  6079. }
  6080. // ggml_conv_transpose_2d_p0
  6081. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  6082. return (ins - 1) * s - 2 * p + ks;
  6083. }
  6084. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  6085. struct ggml_context * ctx,
  6086. struct ggml_tensor * a,
  6087. struct ggml_tensor * b,
  6088. int stride) {
  6089. GGML_ASSERT(a->ne[3] == b->ne[2]);
  6090. bool is_node = false;
  6091. if (a->grad || b->grad) {
  6092. GGML_ASSERT(false); // TODO: implement backward
  6093. is_node = true;
  6094. }
  6095. const int64_t ne[4] = {
  6096. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  6097. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  6098. a->ne[2], b->ne[3],
  6099. };
  6100. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6101. ggml_set_op_params_i32(result, 0, stride);
  6102. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  6103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6104. result->src[0] = a;
  6105. result->src[1] = b;
  6106. return result;
  6107. }
  6108. // ggml_pool_*
  6109. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  6110. return (ins + 2 * p - ks) / s + 1;
  6111. }
  6112. // ggml_pool_1d
  6113. struct ggml_tensor * ggml_pool_1d(
  6114. struct ggml_context * ctx,
  6115. struct ggml_tensor * a,
  6116. enum ggml_op_pool op,
  6117. int k0,
  6118. int s0,
  6119. int p0) {
  6120. bool is_node = false;
  6121. if (a->grad) {
  6122. GGML_ASSERT(false); // TODO: implement backward
  6123. is_node = true;
  6124. }
  6125. const int64_t ne[3] = {
  6126. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6127. a->ne[1],
  6128. };
  6129. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  6130. int32_t params[] = { op, k0, s0, p0 };
  6131. ggml_set_op_params(result, params, sizeof(params));
  6132. result->op = GGML_OP_POOL_1D;
  6133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6134. result->src[0] = a;
  6135. return result;
  6136. }
  6137. // ggml_pool_2d
  6138. struct ggml_tensor * ggml_pool_2d(
  6139. struct ggml_context * ctx,
  6140. struct ggml_tensor * a,
  6141. enum ggml_op_pool op,
  6142. int k0,
  6143. int k1,
  6144. int s0,
  6145. int s1,
  6146. int p0,
  6147. int p1) {
  6148. bool is_node = false;
  6149. if (a->grad) {
  6150. GGML_ASSERT(false); // TODO: implement backward
  6151. is_node = true;
  6152. }
  6153. const int64_t ne[3] = {
  6154. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6155. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  6156. a->ne[2],
  6157. };
  6158. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6159. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  6160. ggml_set_op_params(result, params, sizeof(params));
  6161. result->op = GGML_OP_POOL_2D;
  6162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6163. result->src[0] = a;
  6164. return result;
  6165. }
  6166. // ggml_upscale
  6167. static struct ggml_tensor * ggml_upscale_impl(
  6168. struct ggml_context * ctx,
  6169. struct ggml_tensor * a,
  6170. int scale_factor) {
  6171. bool is_node = false;
  6172. if (a->grad) {
  6173. GGML_ASSERT(false); // TODO: implement backward
  6174. is_node = true;
  6175. }
  6176. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6177. a->ne[0] * scale_factor,
  6178. a->ne[1] * scale_factor,
  6179. a->ne[2], a->ne[3]);
  6180. result->op = GGML_OP_UPSCALE;
  6181. result->op_params[0] = scale_factor;
  6182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6183. result->src[0] = a;
  6184. result->src[1] = NULL;
  6185. return result;
  6186. }
  6187. struct ggml_tensor * ggml_upscale(
  6188. struct ggml_context * ctx,
  6189. struct ggml_tensor * a,
  6190. int scale_factor) {
  6191. return ggml_upscale_impl(ctx, a, scale_factor);
  6192. }
  6193. // ggml_flash_attn
  6194. struct ggml_tensor * ggml_flash_attn(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * q,
  6197. struct ggml_tensor * k,
  6198. struct ggml_tensor * v,
  6199. bool masked) {
  6200. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6201. // TODO: check if vT can be multiplied by (k*qT)
  6202. bool is_node = false;
  6203. if (q->grad || k->grad || v->grad) {
  6204. is_node = true;
  6205. }
  6206. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  6207. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  6208. int32_t t = masked ? 1 : 0;
  6209. ggml_set_op_params(result, &t, sizeof(t));
  6210. result->op = GGML_OP_FLASH_ATTN;
  6211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6212. result->src[0] = q;
  6213. result->src[1] = k;
  6214. result->src[2] = v;
  6215. return result;
  6216. }
  6217. // ggml_flash_ff
  6218. struct ggml_tensor * ggml_flash_ff(
  6219. struct ggml_context * ctx,
  6220. struct ggml_tensor * a,
  6221. struct ggml_tensor * b0,
  6222. struct ggml_tensor * b1,
  6223. struct ggml_tensor * c0,
  6224. struct ggml_tensor * c1) {
  6225. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  6226. // TODO: more checks
  6227. bool is_node = false;
  6228. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  6229. is_node = true;
  6230. }
  6231. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6232. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  6233. result->op = GGML_OP_FLASH_FF;
  6234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6235. result->src[0] = a;
  6236. result->src[1] = b0;
  6237. result->src[2] = b1;
  6238. result->src[3] = c0;
  6239. result->src[4] = c1;
  6240. return result;
  6241. }
  6242. // ggml_flash_attn_back
  6243. struct ggml_tensor * ggml_flash_attn_back(
  6244. struct ggml_context * ctx,
  6245. struct ggml_tensor * q,
  6246. struct ggml_tensor * k,
  6247. struct ggml_tensor * v,
  6248. struct ggml_tensor * d,
  6249. bool masked) {
  6250. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6251. // TODO: check if vT can be multiplied by (k*qT)
  6252. // d shape [D,N,ne2,ne3]
  6253. // q shape [D,N,ne2,ne3]
  6254. // k shape [D,M,kvne2,ne3]
  6255. // v shape [M,D,kvne2,ne3]
  6256. const int64_t D = q->ne[0];
  6257. const int64_t N = q->ne[1];
  6258. const int64_t M = k->ne[1];
  6259. const int64_t ne2 = q->ne[2];
  6260. const int64_t ne3 = q->ne[3];
  6261. const int64_t kvne2 = k->ne[2];
  6262. GGML_ASSERT(k->ne[0] == D);
  6263. GGML_ASSERT(v->ne[0] == M);
  6264. GGML_ASSERT(v->ne[1] == D);
  6265. GGML_ASSERT(d->ne[0] == D);
  6266. GGML_ASSERT(d->ne[1] == N);
  6267. GGML_ASSERT(k->ne[2] == kvne2);
  6268. GGML_ASSERT(k->ne[3] == ne3);
  6269. GGML_ASSERT(v->ne[2] == kvne2);
  6270. GGML_ASSERT(v->ne[3] == ne3);
  6271. GGML_ASSERT(d->ne[2] == ne2);
  6272. GGML_ASSERT(d->ne[3] == ne3);
  6273. GGML_ASSERT(ne2 % kvne2 == 0);
  6274. bool is_node = false;
  6275. if (q->grad || k->grad || v->grad) {
  6276. // when using this operation (in backwards pass) these grads are set.
  6277. // we don't want to create (big) grad of our result, so is_node is false.
  6278. is_node = false;
  6279. }
  6280. // store gradients of q, k and v as continuous tensors concatenated in result.
  6281. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6282. const int64_t elem_q = ggml_nelements(q);
  6283. const int64_t elem_k = ggml_nelements(k);
  6284. const int64_t elem_v = ggml_nelements(v);
  6285. enum ggml_type result_type = GGML_TYPE_F32;
  6286. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6287. const size_t tsize = ggml_type_size(result_type);
  6288. const size_t offs_q = 0;
  6289. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6290. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6291. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6292. const size_t nelements = (end + tsize - 1)/tsize;
  6293. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6294. int32_t masked_i = masked ? 1 : 0;
  6295. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6296. result->op = GGML_OP_FLASH_ATTN_BACK;
  6297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6298. result->src[0] = q;
  6299. result->src[1] = k;
  6300. result->src[2] = v;
  6301. result->src[3] = d;
  6302. return result;
  6303. }
  6304. // ggml_win_part
  6305. struct ggml_tensor * ggml_win_part(
  6306. struct ggml_context * ctx,
  6307. struct ggml_tensor * a,
  6308. int w) {
  6309. GGML_ASSERT(a->ne[3] == 1);
  6310. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6311. bool is_node = false;
  6312. if (a->grad) {
  6313. GGML_ASSERT(false); // TODO: implement backward
  6314. is_node = true;
  6315. }
  6316. // padding
  6317. const int px = (w - a->ne[1]%w)%w;
  6318. const int py = (w - a->ne[2]%w)%w;
  6319. const int npx = (px + a->ne[1])/w;
  6320. const int npy = (py + a->ne[2])/w;
  6321. const int np = npx*npy;
  6322. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6323. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6324. int32_t params[] = { npx, npy, w };
  6325. ggml_set_op_params(result, params, sizeof(params));
  6326. result->op = GGML_OP_WIN_PART;
  6327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6328. result->src[0] = a;
  6329. return result;
  6330. }
  6331. // ggml_win_unpart
  6332. struct ggml_tensor * ggml_win_unpart(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. int w0,
  6336. int h0,
  6337. int w) {
  6338. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6339. bool is_node = false;
  6340. if (a->grad) {
  6341. GGML_ASSERT(false); // TODO: implement backward
  6342. is_node = true;
  6343. }
  6344. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6345. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6346. int32_t params[] = { w };
  6347. ggml_set_op_params(result, params, sizeof(params));
  6348. result->op = GGML_OP_WIN_UNPART;
  6349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6350. result->src[0] = a;
  6351. return result;
  6352. }
  6353. // ggml_get_rel_pos
  6354. struct ggml_tensor * ggml_get_rel_pos(
  6355. struct ggml_context * ctx,
  6356. struct ggml_tensor * a,
  6357. int qh,
  6358. int kh) {
  6359. GGML_ASSERT(qh == kh);
  6360. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6361. bool is_node = false;
  6362. if (a->grad) {
  6363. GGML_ASSERT(false); // TODO: implement backward
  6364. is_node = true;
  6365. }
  6366. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6367. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6368. result->op = GGML_OP_GET_REL_POS;
  6369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6370. result->src[0] = a;
  6371. result->src[1] = NULL;
  6372. return result;
  6373. }
  6374. // ggml_add_rel_pos
  6375. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6376. struct ggml_context * ctx,
  6377. struct ggml_tensor * a,
  6378. struct ggml_tensor * pw,
  6379. struct ggml_tensor * ph,
  6380. bool inplace) {
  6381. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6382. GGML_ASSERT(ggml_is_contiguous(a));
  6383. GGML_ASSERT(ggml_is_contiguous(pw));
  6384. GGML_ASSERT(ggml_is_contiguous(ph));
  6385. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6386. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6387. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6388. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6389. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6390. bool is_node = false;
  6391. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6392. is_node = true;
  6393. }
  6394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6395. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6396. result->op = GGML_OP_ADD_REL_POS;
  6397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6398. result->src[0] = a;
  6399. result->src[1] = pw;
  6400. result->src[2] = ph;
  6401. return result;
  6402. }
  6403. struct ggml_tensor * ggml_add_rel_pos(
  6404. struct ggml_context * ctx,
  6405. struct ggml_tensor * a,
  6406. struct ggml_tensor * pw,
  6407. struct ggml_tensor * ph) {
  6408. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6409. }
  6410. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6411. struct ggml_context * ctx,
  6412. struct ggml_tensor * a,
  6413. struct ggml_tensor * pw,
  6414. struct ggml_tensor * ph) {
  6415. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6416. }
  6417. // gmml_unary
  6418. static struct ggml_tensor * ggml_unary_impl(
  6419. struct ggml_context * ctx,
  6420. struct ggml_tensor * a,
  6421. enum ggml_unary_op op,
  6422. bool inplace) {
  6423. bool is_node = false;
  6424. if (!inplace && (a->grad)) {
  6425. is_node = true;
  6426. }
  6427. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6428. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6429. result->op = GGML_OP_UNARY;
  6430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6431. result->src[0] = a;
  6432. return result;
  6433. }
  6434. struct ggml_tensor * ggml_unary(
  6435. struct ggml_context * ctx,
  6436. struct ggml_tensor * a,
  6437. enum ggml_unary_op op) {
  6438. return ggml_unary_impl(ctx, a, op, false);
  6439. }
  6440. struct ggml_tensor * ggml_unary_inplace(
  6441. struct ggml_context * ctx,
  6442. struct ggml_tensor * a,
  6443. enum ggml_unary_op op) {
  6444. return ggml_unary_impl(ctx, a, op, true);
  6445. }
  6446. // ggml_map_unary
  6447. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6448. struct ggml_context * ctx,
  6449. struct ggml_tensor * a,
  6450. const ggml_unary_op_f32_t fun,
  6451. bool inplace) {
  6452. bool is_node = false;
  6453. if (!inplace && a->grad) {
  6454. is_node = true;
  6455. }
  6456. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6457. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6458. result->op = GGML_OP_MAP_UNARY;
  6459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6460. result->src[0] = a;
  6461. return result;
  6462. }
  6463. struct ggml_tensor * ggml_map_unary_f32(
  6464. struct ggml_context * ctx,
  6465. struct ggml_tensor * a,
  6466. const ggml_unary_op_f32_t fun) {
  6467. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6468. }
  6469. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6470. struct ggml_context * ctx,
  6471. struct ggml_tensor * a,
  6472. const ggml_unary_op_f32_t fun) {
  6473. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6474. }
  6475. // ggml_map_binary
  6476. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6477. struct ggml_context * ctx,
  6478. struct ggml_tensor * a,
  6479. struct ggml_tensor * b,
  6480. const ggml_binary_op_f32_t fun,
  6481. bool inplace) {
  6482. GGML_ASSERT(ggml_are_same_shape(a, b));
  6483. bool is_node = false;
  6484. if (!inplace && (a->grad || b->grad)) {
  6485. is_node = true;
  6486. }
  6487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6488. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6489. result->op = GGML_OP_MAP_BINARY;
  6490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6491. result->src[0] = a;
  6492. result->src[1] = b;
  6493. return result;
  6494. }
  6495. struct ggml_tensor * ggml_map_binary_f32(
  6496. struct ggml_context * ctx,
  6497. struct ggml_tensor * a,
  6498. struct ggml_tensor * b,
  6499. const ggml_binary_op_f32_t fun) {
  6500. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6501. }
  6502. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6503. struct ggml_context * ctx,
  6504. struct ggml_tensor * a,
  6505. struct ggml_tensor * b,
  6506. const ggml_binary_op_f32_t fun) {
  6507. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6508. }
  6509. // ggml_map_custom1_f32
  6510. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6511. struct ggml_context * ctx,
  6512. struct ggml_tensor * a,
  6513. const ggml_custom1_op_f32_t fun,
  6514. bool inplace) {
  6515. bool is_node = false;
  6516. if (!inplace && a->grad) {
  6517. is_node = true;
  6518. }
  6519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6520. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6521. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6523. result->src[0] = a;
  6524. return result;
  6525. }
  6526. struct ggml_tensor * ggml_map_custom1_f32(
  6527. struct ggml_context * ctx,
  6528. struct ggml_tensor * a,
  6529. const ggml_custom1_op_f32_t fun) {
  6530. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6531. }
  6532. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6533. struct ggml_context * ctx,
  6534. struct ggml_tensor * a,
  6535. const ggml_custom1_op_f32_t fun) {
  6536. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6537. }
  6538. // ggml_map_custom2_f32
  6539. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6540. struct ggml_context * ctx,
  6541. struct ggml_tensor * a,
  6542. struct ggml_tensor * b,
  6543. const ggml_custom2_op_f32_t fun,
  6544. bool inplace) {
  6545. bool is_node = false;
  6546. if (!inplace && (a->grad || b->grad)) {
  6547. is_node = true;
  6548. }
  6549. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6550. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6551. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6553. result->src[0] = a;
  6554. result->src[1] = b;
  6555. return result;
  6556. }
  6557. struct ggml_tensor * ggml_map_custom2_f32(
  6558. struct ggml_context * ctx,
  6559. struct ggml_tensor * a,
  6560. struct ggml_tensor * b,
  6561. const ggml_custom2_op_f32_t fun) {
  6562. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6563. }
  6564. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6565. struct ggml_context * ctx,
  6566. struct ggml_tensor * a,
  6567. struct ggml_tensor * b,
  6568. const ggml_custom2_op_f32_t fun) {
  6569. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6570. }
  6571. // ggml_map_custom3_f32
  6572. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6573. struct ggml_context * ctx,
  6574. struct ggml_tensor * a,
  6575. struct ggml_tensor * b,
  6576. struct ggml_tensor * c,
  6577. const ggml_custom3_op_f32_t fun,
  6578. bool inplace) {
  6579. bool is_node = false;
  6580. if (!inplace && (a->grad || b->grad || c->grad)) {
  6581. is_node = true;
  6582. }
  6583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6584. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6585. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6586. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6587. result->src[0] = a;
  6588. result->src[1] = b;
  6589. result->src[2] = c;
  6590. return result;
  6591. }
  6592. struct ggml_tensor * ggml_map_custom3_f32(
  6593. struct ggml_context * ctx,
  6594. struct ggml_tensor * a,
  6595. struct ggml_tensor * b,
  6596. struct ggml_tensor * c,
  6597. const ggml_custom3_op_f32_t fun) {
  6598. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6599. }
  6600. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6601. struct ggml_context * ctx,
  6602. struct ggml_tensor * a,
  6603. struct ggml_tensor * b,
  6604. struct ggml_tensor * c,
  6605. const ggml_custom3_op_f32_t fun) {
  6606. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6607. }
  6608. // ggml_map_custom1
  6609. struct ggml_map_custom1_op_params {
  6610. ggml_custom1_op_t fun;
  6611. int n_tasks;
  6612. void * userdata;
  6613. };
  6614. static struct ggml_tensor * ggml_map_custom1_impl(
  6615. struct ggml_context * ctx,
  6616. struct ggml_tensor * a,
  6617. const ggml_custom1_op_t fun,
  6618. int n_tasks,
  6619. void * userdata,
  6620. bool inplace) {
  6621. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6622. bool is_node = false;
  6623. if (!inplace && a->grad) {
  6624. is_node = true;
  6625. }
  6626. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6627. struct ggml_map_custom1_op_params params = {
  6628. /*.fun =*/ fun,
  6629. /*.n_tasks =*/ n_tasks,
  6630. /*.userdata =*/ userdata
  6631. };
  6632. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6633. result->op = GGML_OP_MAP_CUSTOM1;
  6634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6635. result->src[0] = a;
  6636. return result;
  6637. }
  6638. struct ggml_tensor * ggml_map_custom1(
  6639. struct ggml_context * ctx,
  6640. struct ggml_tensor * a,
  6641. const ggml_custom1_op_t fun,
  6642. int n_tasks,
  6643. void * userdata) {
  6644. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6645. }
  6646. struct ggml_tensor * ggml_map_custom1_inplace(
  6647. struct ggml_context * ctx,
  6648. struct ggml_tensor * a,
  6649. const ggml_custom1_op_t fun,
  6650. int n_tasks,
  6651. void * userdata) {
  6652. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6653. }
  6654. // ggml_map_custom2
  6655. struct ggml_map_custom2_op_params {
  6656. ggml_custom2_op_t fun;
  6657. int n_tasks;
  6658. void * userdata;
  6659. };
  6660. static struct ggml_tensor * ggml_map_custom2_impl(
  6661. struct ggml_context * ctx,
  6662. struct ggml_tensor * a,
  6663. struct ggml_tensor * b,
  6664. const ggml_custom2_op_t fun,
  6665. int n_tasks,
  6666. void * userdata,
  6667. bool inplace) {
  6668. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6669. bool is_node = false;
  6670. if (!inplace && (a->grad || b->grad)) {
  6671. is_node = true;
  6672. }
  6673. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6674. struct ggml_map_custom2_op_params params = {
  6675. /*.fun =*/ fun,
  6676. /*.n_tasks =*/ n_tasks,
  6677. /*.userdata =*/ userdata
  6678. };
  6679. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6680. result->op = GGML_OP_MAP_CUSTOM2;
  6681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6682. result->src[0] = a;
  6683. result->src[1] = b;
  6684. return result;
  6685. }
  6686. struct ggml_tensor * ggml_map_custom2(
  6687. struct ggml_context * ctx,
  6688. struct ggml_tensor * a,
  6689. struct ggml_tensor * b,
  6690. const ggml_custom2_op_t fun,
  6691. int n_tasks,
  6692. void * userdata) {
  6693. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6694. }
  6695. struct ggml_tensor * ggml_map_custom2_inplace(
  6696. struct ggml_context * ctx,
  6697. struct ggml_tensor * a,
  6698. struct ggml_tensor * b,
  6699. const ggml_custom2_op_t fun,
  6700. int n_tasks,
  6701. void * userdata) {
  6702. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6703. }
  6704. // ggml_map_custom3
  6705. struct ggml_map_custom3_op_params {
  6706. ggml_custom3_op_t fun;
  6707. int n_tasks;
  6708. void * userdata;
  6709. };
  6710. static struct ggml_tensor * ggml_map_custom3_impl(
  6711. struct ggml_context * ctx,
  6712. struct ggml_tensor * a,
  6713. struct ggml_tensor * b,
  6714. struct ggml_tensor * c,
  6715. const ggml_custom3_op_t fun,
  6716. int n_tasks,
  6717. void * userdata,
  6718. bool inplace) {
  6719. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6720. bool is_node = false;
  6721. if (!inplace && (a->grad || b->grad || c->grad)) {
  6722. is_node = true;
  6723. }
  6724. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6725. struct ggml_map_custom3_op_params params = {
  6726. /*.fun =*/ fun,
  6727. /*.n_tasks =*/ n_tasks,
  6728. /*.userdata =*/ userdata
  6729. };
  6730. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6731. result->op = GGML_OP_MAP_CUSTOM3;
  6732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6733. result->src[0] = a;
  6734. result->src[1] = b;
  6735. result->src[2] = c;
  6736. return result;
  6737. }
  6738. struct ggml_tensor * ggml_map_custom3(
  6739. struct ggml_context * ctx,
  6740. struct ggml_tensor * a,
  6741. struct ggml_tensor * b,
  6742. struct ggml_tensor * c,
  6743. const ggml_custom3_op_t fun,
  6744. int n_tasks,
  6745. void * userdata) {
  6746. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6747. }
  6748. struct ggml_tensor * ggml_map_custom3_inplace(
  6749. struct ggml_context * ctx,
  6750. struct ggml_tensor * a,
  6751. struct ggml_tensor * b,
  6752. struct ggml_tensor * c,
  6753. const ggml_custom3_op_t fun,
  6754. int n_tasks,
  6755. void * userdata) {
  6756. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6757. }
  6758. // ggml_cross_entropy_loss
  6759. struct ggml_tensor * ggml_cross_entropy_loss(
  6760. struct ggml_context * ctx,
  6761. struct ggml_tensor * a,
  6762. struct ggml_tensor * b) {
  6763. GGML_ASSERT(ggml_are_same_shape(a, b));
  6764. bool is_node = false;
  6765. if (a->grad || b->grad) {
  6766. is_node = true;
  6767. }
  6768. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6769. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6771. result->src[0] = a;
  6772. result->src[1] = b;
  6773. return result;
  6774. }
  6775. // ggml_cross_entropy_loss_back
  6776. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6777. struct ggml_context * ctx,
  6778. struct ggml_tensor * a,
  6779. struct ggml_tensor * b,
  6780. struct ggml_tensor * c) {
  6781. GGML_ASSERT(ggml_are_same_shape(a, b));
  6782. GGML_ASSERT(ggml_is_scalar(c));
  6783. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6784. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6785. result->grad = NULL;
  6786. result->src[0] = a;
  6787. result->src[1] = b;
  6788. result->src[2] = c;
  6789. return result;
  6790. }
  6791. ////////////////////////////////////////////////////////////////////////////////
  6792. void ggml_set_param(
  6793. struct ggml_context * ctx,
  6794. struct ggml_tensor * tensor) {
  6795. tensor->is_param = true;
  6796. GGML_ASSERT(tensor->grad == NULL);
  6797. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6798. }
  6799. // ggml_compute_forward_dup
  6800. static void ggml_compute_forward_dup_same_cont(
  6801. const struct ggml_compute_params * params,
  6802. const struct ggml_tensor * src0,
  6803. struct ggml_tensor * dst) {
  6804. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6805. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6806. GGML_ASSERT(src0->type == dst->type);
  6807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6808. return;
  6809. }
  6810. const size_t nb00 = src0->nb[0];
  6811. const size_t nb0 = dst->nb[0];
  6812. const int ith = params->ith; // thread index
  6813. const int nth = params->nth; // number of threads
  6814. // parallelize by elements
  6815. const int ne = ggml_nelements(dst);
  6816. const int dr = (ne + nth - 1) / nth;
  6817. const int ie0 = dr * ith;
  6818. const int ie1 = MIN(ie0 + dr, ne);
  6819. if (ie0 < ie1) {
  6820. memcpy(
  6821. ((char *) dst->data + ie0*nb0),
  6822. ((char *) src0->data + ie0*nb00),
  6823. (ie1 - ie0) * ggml_type_size(src0->type));
  6824. }
  6825. }
  6826. static void ggml_compute_forward_dup_f16(
  6827. const struct ggml_compute_params * params,
  6828. const struct ggml_tensor * src0,
  6829. struct ggml_tensor * dst) {
  6830. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6832. return;
  6833. }
  6834. GGML_TENSOR_UNARY_OP_LOCALS;
  6835. const int ith = params->ith; // thread index
  6836. const int nth = params->nth; // number of threads
  6837. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6838. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6839. return;
  6840. }
  6841. // parallelize by rows
  6842. const int nr = ne01;
  6843. // number of rows per thread
  6844. const int dr = (nr + nth - 1) / nth;
  6845. // row range for this thread
  6846. const int ir0 = dr * ith;
  6847. const int ir1 = MIN(ir0 + dr, nr);
  6848. if (src0->type == dst->type &&
  6849. ne00 == ne0 &&
  6850. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6851. // copy by rows
  6852. const size_t rs = ne00*nb00;
  6853. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6854. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6855. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6856. memcpy(
  6857. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6858. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6859. rs);
  6860. }
  6861. }
  6862. }
  6863. return;
  6864. }
  6865. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6866. if (ggml_is_contiguous(dst)) {
  6867. if (nb00 == sizeof(ggml_fp16_t)) {
  6868. if (dst->type == GGML_TYPE_F16) {
  6869. size_t id = 0;
  6870. const size_t rs = ne00 * nb00;
  6871. char * dst_ptr = (char *) dst->data;
  6872. for (int i03 = 0; i03 < ne03; i03++) {
  6873. for (int i02 = 0; i02 < ne02; i02++) {
  6874. id += rs * ir0;
  6875. for (int i01 = ir0; i01 < ir1; i01++) {
  6876. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6877. memcpy(dst_ptr + id, src0_ptr, rs);
  6878. id += rs;
  6879. }
  6880. id += rs * (ne01 - ir1);
  6881. }
  6882. }
  6883. } else if (dst->type == GGML_TYPE_F32) {
  6884. size_t id = 0;
  6885. float * dst_ptr = (float *) dst->data;
  6886. for (int i03 = 0; i03 < ne03; i03++) {
  6887. for (int i02 = 0; i02 < ne02; i02++) {
  6888. id += ne00 * ir0;
  6889. for (int i01 = ir0; i01 < ir1; i01++) {
  6890. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6891. for (int i00 = 0; i00 < ne00; i00++) {
  6892. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6893. id++;
  6894. }
  6895. }
  6896. id += ne00 * (ne01 - ir1);
  6897. }
  6898. }
  6899. } else if (type_traits[dst->type].from_float) {
  6900. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6901. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6902. size_t id = 0;
  6903. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6904. char * dst_ptr = (char *) dst->data;
  6905. for (int i03 = 0; i03 < ne03; i03++) {
  6906. for (int i02 = 0; i02 < ne02; i02++) {
  6907. id += rs * ir0;
  6908. for (int i01 = ir0; i01 < ir1; i01++) {
  6909. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6910. for (int i00 = 0; i00 < ne00; i00++) {
  6911. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6912. }
  6913. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6914. id += rs;
  6915. }
  6916. id += rs * (ne01 - ir1);
  6917. }
  6918. }
  6919. } else {
  6920. GGML_ASSERT(false); // TODO: implement
  6921. }
  6922. } else {
  6923. //printf("%s: this is not optimal - fix me\n", __func__);
  6924. if (dst->type == GGML_TYPE_F32) {
  6925. size_t id = 0;
  6926. float * dst_ptr = (float *) dst->data;
  6927. for (int i03 = 0; i03 < ne03; i03++) {
  6928. for (int i02 = 0; i02 < ne02; i02++) {
  6929. id += ne00 * ir0;
  6930. for (int i01 = ir0; i01 < ir1; i01++) {
  6931. for (int i00 = 0; i00 < ne00; i00++) {
  6932. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6933. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6934. id++;
  6935. }
  6936. }
  6937. id += ne00 * (ne01 - ir1);
  6938. }
  6939. }
  6940. } else if (dst->type == GGML_TYPE_F16) {
  6941. size_t id = 0;
  6942. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6943. for (int i03 = 0; i03 < ne03; i03++) {
  6944. for (int i02 = 0; i02 < ne02; i02++) {
  6945. id += ne00 * ir0;
  6946. for (int i01 = ir0; i01 < ir1; i01++) {
  6947. for (int i00 = 0; i00 < ne00; i00++) {
  6948. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6949. dst_ptr[id] = *src0_ptr;
  6950. id++;
  6951. }
  6952. }
  6953. id += ne00 * (ne01 - ir1);
  6954. }
  6955. }
  6956. } else {
  6957. GGML_ASSERT(false); // TODO: implement
  6958. }
  6959. }
  6960. return;
  6961. }
  6962. // dst counters
  6963. int64_t i10 = 0;
  6964. int64_t i11 = 0;
  6965. int64_t i12 = 0;
  6966. int64_t i13 = 0;
  6967. if (dst->type == GGML_TYPE_F16) {
  6968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6969. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6970. i10 += ne00 * ir0;
  6971. while (i10 >= ne0) {
  6972. i10 -= ne0;
  6973. if (++i11 == ne1) {
  6974. i11 = 0;
  6975. if (++i12 == ne2) {
  6976. i12 = 0;
  6977. if (++i13 == ne3) {
  6978. i13 = 0;
  6979. }
  6980. }
  6981. }
  6982. }
  6983. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6984. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6985. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6986. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6987. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6988. if (++i10 == ne00) {
  6989. i10 = 0;
  6990. if (++i11 == ne01) {
  6991. i11 = 0;
  6992. if (++i12 == ne02) {
  6993. i12 = 0;
  6994. if (++i13 == ne03) {
  6995. i13 = 0;
  6996. }
  6997. }
  6998. }
  6999. }
  7000. }
  7001. }
  7002. i10 += ne00 * (ne01 - ir1);
  7003. while (i10 >= ne0) {
  7004. i10 -= ne0;
  7005. if (++i11 == ne1) {
  7006. i11 = 0;
  7007. if (++i12 == ne2) {
  7008. i12 = 0;
  7009. if (++i13 == ne3) {
  7010. i13 = 0;
  7011. }
  7012. }
  7013. }
  7014. }
  7015. }
  7016. }
  7017. } else if (dst->type == GGML_TYPE_F32) {
  7018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7020. i10 += ne00 * ir0;
  7021. while (i10 >= ne0) {
  7022. i10 -= ne0;
  7023. if (++i11 == ne1) {
  7024. i11 = 0;
  7025. if (++i12 == ne2) {
  7026. i12 = 0;
  7027. if (++i13 == ne3) {
  7028. i13 = 0;
  7029. }
  7030. }
  7031. }
  7032. }
  7033. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7035. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7036. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7037. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  7038. if (++i10 == ne0) {
  7039. i10 = 0;
  7040. if (++i11 == ne1) {
  7041. i11 = 0;
  7042. if (++i12 == ne2) {
  7043. i12 = 0;
  7044. if (++i13 == ne3) {
  7045. i13 = 0;
  7046. }
  7047. }
  7048. }
  7049. }
  7050. }
  7051. }
  7052. i10 += ne00 * (ne01 - ir1);
  7053. while (i10 >= ne0) {
  7054. i10 -= ne0;
  7055. if (++i11 == ne1) {
  7056. i11 = 0;
  7057. if (++i12 == ne2) {
  7058. i12 = 0;
  7059. if (++i13 == ne3) {
  7060. i13 = 0;
  7061. }
  7062. }
  7063. }
  7064. }
  7065. }
  7066. }
  7067. } else {
  7068. GGML_ASSERT(false); // TODO: implement
  7069. }
  7070. }
  7071. static void ggml_compute_forward_dup_f32(
  7072. const struct ggml_compute_params * params,
  7073. const struct ggml_tensor * src0,
  7074. struct ggml_tensor * dst) {
  7075. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7077. return;
  7078. }
  7079. GGML_TENSOR_UNARY_OP_LOCALS;
  7080. const int ith = params->ith; // thread index
  7081. const int nth = params->nth; // number of threads
  7082. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7083. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7084. return;
  7085. }
  7086. // parallelize by rows
  7087. const int nr = ne01;
  7088. // number of rows per thread
  7089. const int dr = (nr + nth - 1) / nth;
  7090. // row range for this thread
  7091. const int ir0 = dr * ith;
  7092. const int ir1 = MIN(ir0 + dr, nr);
  7093. if (src0->type == dst->type &&
  7094. ne00 == ne0 &&
  7095. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7096. // copy by rows
  7097. const size_t rs = ne00*nb00;
  7098. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7099. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7100. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7101. memcpy(
  7102. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7103. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7104. rs);
  7105. }
  7106. }
  7107. }
  7108. return;
  7109. }
  7110. if (ggml_is_contiguous(dst)) {
  7111. // TODO: simplify
  7112. if (nb00 == sizeof(float)) {
  7113. if (dst->type == GGML_TYPE_F32) {
  7114. size_t id = 0;
  7115. const size_t rs = ne00 * nb00;
  7116. char * dst_ptr = (char *) dst->data;
  7117. for (int i03 = 0; i03 < ne03; i03++) {
  7118. for (int i02 = 0; i02 < ne02; i02++) {
  7119. id += rs * ir0;
  7120. for (int i01 = ir0; i01 < ir1; i01++) {
  7121. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7122. memcpy(dst_ptr + id, src0_ptr, rs);
  7123. id += rs;
  7124. }
  7125. id += rs * (ne01 - ir1);
  7126. }
  7127. }
  7128. } else if (type_traits[dst->type].from_float) {
  7129. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7130. size_t id = 0;
  7131. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7132. char * dst_ptr = (char *) dst->data;
  7133. for (int i03 = 0; i03 < ne03; i03++) {
  7134. for (int i02 = 0; i02 < ne02; i02++) {
  7135. id += rs * ir0;
  7136. for (int i01 = ir0; i01 < ir1; i01++) {
  7137. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7138. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7139. id += rs;
  7140. }
  7141. id += rs * (ne01 - ir1);
  7142. }
  7143. }
  7144. } else {
  7145. GGML_ASSERT(false); // TODO: implement
  7146. }
  7147. } else {
  7148. //printf("%s: this is not optimal - fix me\n", __func__);
  7149. if (dst->type == GGML_TYPE_F32) {
  7150. size_t id = 0;
  7151. float * dst_ptr = (float *) dst->data;
  7152. for (int i03 = 0; i03 < ne03; i03++) {
  7153. for (int i02 = 0; i02 < ne02; i02++) {
  7154. id += ne00 * ir0;
  7155. for (int i01 = ir0; i01 < ir1; i01++) {
  7156. for (int i00 = 0; i00 < ne00; i00++) {
  7157. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7158. dst_ptr[id] = *src0_ptr;
  7159. id++;
  7160. }
  7161. }
  7162. id += ne00 * (ne01 - ir1);
  7163. }
  7164. }
  7165. } else if (dst->type == GGML_TYPE_F16) {
  7166. size_t id = 0;
  7167. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7168. for (int i03 = 0; i03 < ne03; i03++) {
  7169. for (int i02 = 0; i02 < ne02; i02++) {
  7170. id += ne00 * ir0;
  7171. for (int i01 = ir0; i01 < ir1; i01++) {
  7172. for (int i00 = 0; i00 < ne00; i00++) {
  7173. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7174. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7175. id++;
  7176. }
  7177. }
  7178. id += ne00 * (ne01 - ir1);
  7179. }
  7180. }
  7181. } else {
  7182. GGML_ASSERT(false); // TODO: implement
  7183. }
  7184. }
  7185. return;
  7186. }
  7187. // dst counters
  7188. int64_t i10 = 0;
  7189. int64_t i11 = 0;
  7190. int64_t i12 = 0;
  7191. int64_t i13 = 0;
  7192. if (dst->type == GGML_TYPE_F32) {
  7193. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7194. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7195. i10 += ne00 * ir0;
  7196. while (i10 >= ne0) {
  7197. i10 -= ne0;
  7198. if (++i11 == ne1) {
  7199. i11 = 0;
  7200. if (++i12 == ne2) {
  7201. i12 = 0;
  7202. if (++i13 == ne3) {
  7203. i13 = 0;
  7204. }
  7205. }
  7206. }
  7207. }
  7208. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7209. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7210. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7211. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7212. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7213. if (++i10 == ne0) {
  7214. i10 = 0;
  7215. if (++i11 == ne1) {
  7216. i11 = 0;
  7217. if (++i12 == ne2) {
  7218. i12 = 0;
  7219. if (++i13 == ne3) {
  7220. i13 = 0;
  7221. }
  7222. }
  7223. }
  7224. }
  7225. }
  7226. }
  7227. i10 += ne00 * (ne01 - ir1);
  7228. while (i10 >= ne0) {
  7229. i10 -= ne0;
  7230. if (++i11 == ne1) {
  7231. i11 = 0;
  7232. if (++i12 == ne2) {
  7233. i12 = 0;
  7234. if (++i13 == ne3) {
  7235. i13 = 0;
  7236. }
  7237. }
  7238. }
  7239. }
  7240. }
  7241. }
  7242. } else if (dst->type == GGML_TYPE_F16) {
  7243. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7244. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7245. i10 += ne00 * ir0;
  7246. while (i10 >= ne0) {
  7247. i10 -= ne0;
  7248. if (++i11 == ne1) {
  7249. i11 = 0;
  7250. if (++i12 == ne2) {
  7251. i12 = 0;
  7252. if (++i13 == ne3) {
  7253. i13 = 0;
  7254. }
  7255. }
  7256. }
  7257. }
  7258. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7259. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7260. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7261. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7262. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7263. if (++i10 == ne0) {
  7264. i10 = 0;
  7265. if (++i11 == ne1) {
  7266. i11 = 0;
  7267. if (++i12 == ne2) {
  7268. i12 = 0;
  7269. if (++i13 == ne3) {
  7270. i13 = 0;
  7271. }
  7272. }
  7273. }
  7274. }
  7275. }
  7276. }
  7277. i10 += ne00 * (ne01 - ir1);
  7278. while (i10 >= ne0) {
  7279. i10 -= ne0;
  7280. if (++i11 == ne1) {
  7281. i11 = 0;
  7282. if (++i12 == ne2) {
  7283. i12 = 0;
  7284. if (++i13 == ne3) {
  7285. i13 = 0;
  7286. }
  7287. }
  7288. }
  7289. }
  7290. }
  7291. }
  7292. } else {
  7293. GGML_ASSERT(false); // TODO: implement
  7294. }
  7295. }
  7296. static void ggml_compute_forward_dup(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7301. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7302. return;
  7303. }
  7304. switch (src0->type) {
  7305. case GGML_TYPE_F16:
  7306. {
  7307. ggml_compute_forward_dup_f16(params, src0, dst);
  7308. } break;
  7309. case GGML_TYPE_F32:
  7310. {
  7311. ggml_compute_forward_dup_f32(params, src0, dst);
  7312. } break;
  7313. default:
  7314. {
  7315. GGML_ASSERT(false);
  7316. } break;
  7317. }
  7318. }
  7319. // ggml_compute_forward_add
  7320. static void ggml_compute_forward_add_f32(
  7321. const struct ggml_compute_params * params,
  7322. const struct ggml_tensor * src0,
  7323. const struct ggml_tensor * src1,
  7324. struct ggml_tensor * dst) {
  7325. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7327. return;
  7328. }
  7329. const int ith = params->ith;
  7330. const int nth = params->nth;
  7331. const int nr = ggml_nrows(src0);
  7332. GGML_TENSOR_BINARY_OP_LOCALS;
  7333. GGML_ASSERT( nb0 == sizeof(float));
  7334. GGML_ASSERT(nb00 == sizeof(float));
  7335. // rows per thread
  7336. const int dr = (nr + nth - 1)/nth;
  7337. // row range for this thread
  7338. const int ir0 = dr*ith;
  7339. const int ir1 = MIN(ir0 + dr, nr);
  7340. if (nb10 == sizeof(float)) {
  7341. for (int ir = ir0; ir < ir1; ++ir) {
  7342. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7343. const int64_t i03 = ir/(ne02*ne01);
  7344. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7345. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7346. const int64_t i13 = i03 % ne13;
  7347. const int64_t i12 = i02 % ne12;
  7348. const int64_t i11 = i01 % ne11;
  7349. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7350. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7351. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7352. #ifdef GGML_USE_ACCELERATE
  7353. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7354. #else
  7355. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7356. #endif
  7357. }
  7358. } else {
  7359. // src1 is not contiguous
  7360. for (int ir = ir0; ir < ir1; ++ir) {
  7361. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7362. const int64_t i03 = ir/(ne02*ne01);
  7363. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7364. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7365. const int64_t i13 = i03 % ne13;
  7366. const int64_t i12 = i02 % ne12;
  7367. const int64_t i11 = i01 % ne11;
  7368. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7369. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7370. for (int i0 = 0; i0 < ne0; i0++) {
  7371. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7372. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7373. }
  7374. }
  7375. }
  7376. }
  7377. static void ggml_compute_forward_add_f16_f32(
  7378. const struct ggml_compute_params * params,
  7379. const struct ggml_tensor * src0,
  7380. const struct ggml_tensor * src1,
  7381. struct ggml_tensor * dst) {
  7382. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7383. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7384. return;
  7385. }
  7386. const int ith = params->ith;
  7387. const int nth = params->nth;
  7388. const int nr = ggml_nrows(src0);
  7389. GGML_TENSOR_BINARY_OP_LOCALS;
  7390. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7391. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7392. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7393. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7394. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7395. // rows per thread
  7396. const int dr = (nr + nth - 1)/nth;
  7397. // row range for this thread
  7398. const int ir0 = dr*ith;
  7399. const int ir1 = MIN(ir0 + dr, nr);
  7400. if (nb10 == sizeof(float)) {
  7401. for (int ir = ir0; ir < ir1; ++ir) {
  7402. // src0, src1 and dst are same shape => same indices
  7403. const int i3 = ir/(ne2*ne1);
  7404. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7405. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7406. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7407. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7408. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7409. for (int i = 0; i < ne0; i++) {
  7410. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7411. }
  7412. }
  7413. }
  7414. else {
  7415. // src1 is not contiguous
  7416. GGML_ASSERT(false);
  7417. }
  7418. }
  7419. static void ggml_compute_forward_add_f16_f16(
  7420. const struct ggml_compute_params * params,
  7421. const struct ggml_tensor * src0,
  7422. const struct ggml_tensor * src1,
  7423. struct ggml_tensor * dst) {
  7424. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7426. return;
  7427. }
  7428. const int ith = params->ith;
  7429. const int nth = params->nth;
  7430. const int nr = ggml_nrows(src0);
  7431. GGML_TENSOR_BINARY_OP_LOCALS;
  7432. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7433. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7434. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7435. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7436. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7437. // rows per thread
  7438. const int dr = (nr + nth - 1)/nth;
  7439. // row range for this thread
  7440. const int ir0 = dr*ith;
  7441. const int ir1 = MIN(ir0 + dr, nr);
  7442. if (nb10 == sizeof(ggml_fp16_t)) {
  7443. for (int ir = ir0; ir < ir1; ++ir) {
  7444. // src0, src1 and dst are same shape => same indices
  7445. const int i3 = ir/(ne2*ne1);
  7446. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7447. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7448. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7449. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7450. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7451. for (int i = 0; i < ne0; i++) {
  7452. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7453. }
  7454. }
  7455. }
  7456. else {
  7457. // src1 is not contiguous
  7458. GGML_ASSERT(false);
  7459. }
  7460. }
  7461. static void ggml_compute_forward_add_q_f32(
  7462. const struct ggml_compute_params * params,
  7463. const struct ggml_tensor * src0,
  7464. const struct ggml_tensor * src1,
  7465. struct ggml_tensor * dst) {
  7466. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7468. return;
  7469. }
  7470. const int nr = ggml_nrows(src0);
  7471. GGML_TENSOR_BINARY_OP_LOCALS;
  7472. const int ith = params->ith;
  7473. const int nth = params->nth;
  7474. const enum ggml_type type = src0->type;
  7475. const enum ggml_type dtype = dst->type;
  7476. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7477. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7478. // we don't support permuted src0 or src1
  7479. GGML_ASSERT(nb00 == ggml_type_size(type));
  7480. GGML_ASSERT(nb10 == sizeof(float));
  7481. // dst cannot be transposed or permuted
  7482. GGML_ASSERT(nb0 <= nb1);
  7483. GGML_ASSERT(nb1 <= nb2);
  7484. GGML_ASSERT(nb2 <= nb3);
  7485. GGML_ASSERT(ggml_is_quantized(src0->type));
  7486. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7487. // rows per thread
  7488. const int dr = (nr + nth - 1)/nth;
  7489. // row range for this thread
  7490. const int ir0 = dr*ith;
  7491. const int ir1 = MIN(ir0 + dr, nr);
  7492. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7493. for (int ir = ir0; ir < ir1; ++ir) {
  7494. // src0 indices
  7495. const int i03 = ir/(ne02*ne01);
  7496. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7497. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7498. // src1 and dst are same shape as src0 => same indices
  7499. const int i13 = i03;
  7500. const int i12 = i02;
  7501. const int i11 = i01;
  7502. const int i3 = i03;
  7503. const int i2 = i02;
  7504. const int i1 = i01;
  7505. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7506. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7507. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7508. assert(ne00 % 32 == 0);
  7509. // unquantize row from src0 to temp buffer
  7510. dequantize_row_q(src0_row, wdata, ne00);
  7511. // add src1
  7512. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7513. // quantize row to dst
  7514. if (quantize_row_q != NULL) {
  7515. quantize_row_q(wdata, dst_row, ne00);
  7516. } else {
  7517. memcpy(dst_row, wdata, ne0*nb0);
  7518. }
  7519. }
  7520. }
  7521. static void ggml_compute_forward_add(
  7522. const struct ggml_compute_params * params,
  7523. const struct ggml_tensor * src0,
  7524. const struct ggml_tensor * src1,
  7525. struct ggml_tensor * dst) {
  7526. switch (src0->type) {
  7527. case GGML_TYPE_F32:
  7528. {
  7529. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7530. } break;
  7531. case GGML_TYPE_F16:
  7532. {
  7533. if (src1->type == GGML_TYPE_F16) {
  7534. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7535. }
  7536. else if (src1->type == GGML_TYPE_F32) {
  7537. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7538. }
  7539. else {
  7540. GGML_ASSERT(false);
  7541. }
  7542. } break;
  7543. case GGML_TYPE_Q4_0:
  7544. case GGML_TYPE_Q4_1:
  7545. case GGML_TYPE_Q5_0:
  7546. case GGML_TYPE_Q5_1:
  7547. case GGML_TYPE_Q8_0:
  7548. case GGML_TYPE_Q2_K:
  7549. case GGML_TYPE_Q3_K:
  7550. case GGML_TYPE_Q4_K:
  7551. case GGML_TYPE_Q5_K:
  7552. case GGML_TYPE_Q6_K:
  7553. {
  7554. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7555. } break;
  7556. default:
  7557. {
  7558. GGML_ASSERT(false);
  7559. } break;
  7560. }
  7561. }
  7562. // ggml_compute_forward_add1
  7563. static void ggml_compute_forward_add1_f32(
  7564. const struct ggml_compute_params * params,
  7565. const struct ggml_tensor * src0,
  7566. const struct ggml_tensor * src1,
  7567. struct ggml_tensor * dst) {
  7568. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7569. GGML_ASSERT(ggml_is_scalar(src1));
  7570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7571. return;
  7572. }
  7573. const int ith = params->ith;
  7574. const int nth = params->nth;
  7575. const int nr = ggml_nrows(src0);
  7576. GGML_TENSOR_UNARY_OP_LOCALS;
  7577. GGML_ASSERT( nb0 == sizeof(float));
  7578. GGML_ASSERT(nb00 == sizeof(float));
  7579. // rows per thread
  7580. const int dr = (nr + nth - 1)/nth;
  7581. // row range for this thread
  7582. const int ir0 = dr*ith;
  7583. const int ir1 = MIN(ir0 + dr, nr);
  7584. for (int ir = ir0; ir < ir1; ++ir) {
  7585. // src0 and dst are same shape => same indices
  7586. const int i3 = ir/(ne2*ne1);
  7587. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7588. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7589. #ifdef GGML_USE_ACCELERATE
  7590. UNUSED(ggml_vec_add1_f32);
  7591. vDSP_vadd(
  7592. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7593. (float *) ((char *) src1->data), 0,
  7594. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7595. ne0);
  7596. #else
  7597. ggml_vec_add1_f32(ne0,
  7598. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7599. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7600. *(float *) src1->data);
  7601. #endif
  7602. }
  7603. }
  7604. static void ggml_compute_forward_add1_f16_f32(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. const struct ggml_tensor * src1,
  7608. struct ggml_tensor * dst) {
  7609. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7610. GGML_ASSERT(ggml_is_scalar(src1));
  7611. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7612. return;
  7613. }
  7614. // scalar to add
  7615. const float v = *(float *) src1->data;
  7616. const int ith = params->ith;
  7617. const int nth = params->nth;
  7618. const int nr = ggml_nrows(src0);
  7619. GGML_TENSOR_UNARY_OP_LOCALS;
  7620. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7621. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7622. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7623. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7624. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7625. // rows per thread
  7626. const int dr = (nr + nth - 1)/nth;
  7627. // row range for this thread
  7628. const int ir0 = dr*ith;
  7629. const int ir1 = MIN(ir0 + dr, nr);
  7630. for (int ir = ir0; ir < ir1; ++ir) {
  7631. // src0 and dst are same shape => same indices
  7632. const int i3 = ir/(ne2*ne1);
  7633. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7634. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7635. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7636. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7637. for (int i = 0; i < ne0; i++) {
  7638. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7639. }
  7640. }
  7641. }
  7642. static void ggml_compute_forward_add1_f16_f16(
  7643. const struct ggml_compute_params * params,
  7644. const struct ggml_tensor * src0,
  7645. const struct ggml_tensor * src1,
  7646. struct ggml_tensor * dst) {
  7647. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7648. GGML_ASSERT(ggml_is_scalar(src1));
  7649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7650. return;
  7651. }
  7652. // scalar to add
  7653. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7654. const int ith = params->ith;
  7655. const int nth = params->nth;
  7656. const int nr = ggml_nrows(src0);
  7657. GGML_TENSOR_UNARY_OP_LOCALS;
  7658. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7659. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7660. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7661. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7662. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7663. // rows per thread
  7664. const int dr = (nr + nth - 1)/nth;
  7665. // row range for this thread
  7666. const int ir0 = dr*ith;
  7667. const int ir1 = MIN(ir0 + dr, nr);
  7668. for (int ir = ir0; ir < ir1; ++ir) {
  7669. // src0 and dst are same shape => same indices
  7670. const int i3 = ir/(ne2*ne1);
  7671. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7672. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7673. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7674. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7675. for (int i = 0; i < ne0; i++) {
  7676. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7677. }
  7678. }
  7679. }
  7680. static void ggml_compute_forward_add1_q_f32(
  7681. const struct ggml_compute_params * params,
  7682. const struct ggml_tensor * src0,
  7683. const struct ggml_tensor * src1,
  7684. struct ggml_tensor * dst) {
  7685. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7686. GGML_ASSERT(ggml_is_scalar(src1));
  7687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7688. return;
  7689. }
  7690. // scalar to add
  7691. const float v = *(float *) src1->data;
  7692. const int ith = params->ith;
  7693. const int nth = params->nth;
  7694. const int nr = ggml_nrows(src0);
  7695. GGML_TENSOR_UNARY_OP_LOCALS;
  7696. const enum ggml_type type = src0->type;
  7697. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7698. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7699. // we don't support permuted src0
  7700. GGML_ASSERT(nb00 == ggml_type_size(type));
  7701. // dst cannot be transposed or permuted
  7702. GGML_ASSERT(nb0 <= nb1);
  7703. GGML_ASSERT(nb1 <= nb2);
  7704. GGML_ASSERT(nb2 <= nb3);
  7705. GGML_ASSERT(ggml_is_quantized(src0->type));
  7706. GGML_ASSERT(dst->type == src0->type);
  7707. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7708. // rows per thread
  7709. const int dr = (nr + nth - 1)/nth;
  7710. // row range for this thread
  7711. const int ir0 = dr*ith;
  7712. const int ir1 = MIN(ir0 + dr, nr);
  7713. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7714. for (int ir = ir0; ir < ir1; ++ir) {
  7715. // src0 and dst are same shape => same indices
  7716. const int i3 = ir/(ne2*ne1);
  7717. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7718. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7719. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7720. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7721. assert(ne0 % 32 == 0);
  7722. // unquantize row from src0 to temp buffer
  7723. dequantize_row_q(src0_row, wdata, ne0);
  7724. // add src1
  7725. ggml_vec_acc1_f32(ne0, wdata, v);
  7726. // quantize row to dst
  7727. quantize_row_q(wdata, dst_row, ne0);
  7728. }
  7729. }
  7730. static void ggml_compute_forward_add1(
  7731. const struct ggml_compute_params * params,
  7732. const struct ggml_tensor * src0,
  7733. const struct ggml_tensor * src1,
  7734. struct ggml_tensor * dst) {
  7735. switch (src0->type) {
  7736. case GGML_TYPE_F32:
  7737. {
  7738. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7739. } break;
  7740. case GGML_TYPE_F16:
  7741. {
  7742. if (src1->type == GGML_TYPE_F16) {
  7743. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7744. }
  7745. else if (src1->type == GGML_TYPE_F32) {
  7746. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7747. }
  7748. else {
  7749. GGML_ASSERT(false);
  7750. }
  7751. } break;
  7752. case GGML_TYPE_Q4_0:
  7753. case GGML_TYPE_Q4_1:
  7754. case GGML_TYPE_Q5_0:
  7755. case GGML_TYPE_Q5_1:
  7756. case GGML_TYPE_Q8_0:
  7757. case GGML_TYPE_Q8_1:
  7758. case GGML_TYPE_Q2_K:
  7759. case GGML_TYPE_Q3_K:
  7760. case GGML_TYPE_Q4_K:
  7761. case GGML_TYPE_Q5_K:
  7762. case GGML_TYPE_Q6_K:
  7763. {
  7764. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7765. } break;
  7766. default:
  7767. {
  7768. GGML_ASSERT(false);
  7769. } break;
  7770. }
  7771. }
  7772. // ggml_compute_forward_acc
  7773. static void ggml_compute_forward_acc_f32(
  7774. const struct ggml_compute_params * params,
  7775. const struct ggml_tensor * src0,
  7776. const struct ggml_tensor * src1,
  7777. struct ggml_tensor * dst) {
  7778. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7779. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7780. // view src0 and dst with these strides and data offset inbytes during acc
  7781. // nb0 is implicitely element_size because src0 and dst are contiguous
  7782. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7783. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7784. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7785. size_t offset = ((int32_t *) dst->op_params)[3];
  7786. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7787. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7788. // memcpy needs to be synchronized across threads to avoid race conditions.
  7789. // => do it in INIT phase
  7790. memcpy(
  7791. ((char *) dst->data),
  7792. ((char *) src0->data),
  7793. ggml_nbytes(dst));
  7794. }
  7795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7796. return;
  7797. }
  7798. const int ith = params->ith;
  7799. const int nth = params->nth;
  7800. const int nr = ggml_nrows(src1);
  7801. const int nc = src1->ne[0];
  7802. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7803. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7804. // src0 and dst as viewed during acc
  7805. const size_t nb0 = ggml_element_size(src0);
  7806. const size_t nb00 = nb0;
  7807. const size_t nb01 = nb1;
  7808. const size_t nb02 = nb2;
  7809. const size_t nb03 = nb3;
  7810. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7811. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7812. GGML_ASSERT(nb10 == sizeof(float));
  7813. // rows per thread
  7814. const int dr = (nr + nth - 1)/nth;
  7815. // row range for this thread
  7816. const int ir0 = dr*ith;
  7817. const int ir1 = MIN(ir0 + dr, nr);
  7818. for (int ir = ir0; ir < ir1; ++ir) {
  7819. // src0 and dst are viewed with shape of src1 and offset
  7820. // => same indices
  7821. const int i3 = ir/(ne12*ne11);
  7822. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7823. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7824. #ifdef GGML_USE_ACCELERATE
  7825. vDSP_vadd(
  7826. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7827. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7828. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7829. #else
  7830. ggml_vec_add_f32(nc,
  7831. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7832. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7833. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7834. #endif
  7835. }
  7836. }
  7837. static void ggml_compute_forward_acc(
  7838. const struct ggml_compute_params * params,
  7839. const struct ggml_tensor * src0,
  7840. const struct ggml_tensor * src1,
  7841. struct ggml_tensor * dst) {
  7842. switch (src0->type) {
  7843. case GGML_TYPE_F32:
  7844. {
  7845. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7846. } break;
  7847. case GGML_TYPE_F16:
  7848. case GGML_TYPE_Q4_0:
  7849. case GGML_TYPE_Q4_1:
  7850. case GGML_TYPE_Q5_0:
  7851. case GGML_TYPE_Q5_1:
  7852. case GGML_TYPE_Q8_0:
  7853. case GGML_TYPE_Q8_1:
  7854. case GGML_TYPE_Q2_K:
  7855. case GGML_TYPE_Q3_K:
  7856. case GGML_TYPE_Q4_K:
  7857. case GGML_TYPE_Q5_K:
  7858. case GGML_TYPE_Q6_K:
  7859. default:
  7860. {
  7861. GGML_ASSERT(false);
  7862. } break;
  7863. }
  7864. }
  7865. // ggml_compute_forward_sub
  7866. static void ggml_compute_forward_sub_f32(
  7867. const struct ggml_compute_params * params,
  7868. const struct ggml_tensor * src0,
  7869. const struct ggml_tensor * src1,
  7870. struct ggml_tensor * dst) {
  7871. assert(params->ith == 0);
  7872. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7874. return;
  7875. }
  7876. const int nr = ggml_nrows(src0);
  7877. GGML_TENSOR_BINARY_OP_LOCALS;
  7878. GGML_ASSERT( nb0 == sizeof(float));
  7879. GGML_ASSERT(nb00 == sizeof(float));
  7880. if (nb10 == sizeof(float)) {
  7881. for (int ir = 0; ir < nr; ++ir) {
  7882. // src0, src1 and dst are same shape => same indices
  7883. const int i3 = ir/(ne2*ne1);
  7884. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7885. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7886. #ifdef GGML_USE_ACCELERATE
  7887. vDSP_vsub(
  7888. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7889. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7890. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7891. ne0);
  7892. #else
  7893. ggml_vec_sub_f32(ne0,
  7894. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7895. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7896. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7897. #endif
  7898. // }
  7899. // }
  7900. }
  7901. } else {
  7902. // src1 is not contiguous
  7903. for (int ir = 0; ir < nr; ++ir) {
  7904. // src0, src1 and dst are same shape => same indices
  7905. const int i3 = ir/(ne2*ne1);
  7906. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7907. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7908. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7909. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7910. for (int i0 = 0; i0 < ne0; i0++) {
  7911. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7912. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7913. }
  7914. }
  7915. }
  7916. }
  7917. static void ggml_compute_forward_sub(
  7918. const struct ggml_compute_params * params,
  7919. const struct ggml_tensor * src0,
  7920. const struct ggml_tensor * src1,
  7921. struct ggml_tensor * dst) {
  7922. switch (src0->type) {
  7923. case GGML_TYPE_F32:
  7924. {
  7925. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7926. } break;
  7927. default:
  7928. {
  7929. GGML_ASSERT(false);
  7930. } break;
  7931. }
  7932. }
  7933. // ggml_compute_forward_mul
  7934. static void ggml_compute_forward_mul_f32(
  7935. const struct ggml_compute_params * params,
  7936. const struct ggml_tensor * src0,
  7937. const struct ggml_tensor * src1,
  7938. struct ggml_tensor * dst) {
  7939. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7941. return;
  7942. }
  7943. const int ith = params->ith;
  7944. const int nth = params->nth;
  7945. #ifdef GGML_USE_CLBLAST
  7946. if (src1->backend == GGML_BACKEND_GPU) {
  7947. if (ith == 0) {
  7948. ggml_cl_mul(src0, src1, dst);
  7949. }
  7950. return;
  7951. }
  7952. #endif
  7953. const int64_t nr = ggml_nrows(src0);
  7954. GGML_TENSOR_BINARY_OP_LOCALS;
  7955. GGML_ASSERT( nb0 == sizeof(float));
  7956. GGML_ASSERT(nb00 == sizeof(float));
  7957. GGML_ASSERT(ne00 == ne10);
  7958. if (nb10 == sizeof(float)) {
  7959. for (int64_t ir = ith; ir < nr; ir += nth) {
  7960. // src0 and dst are same shape => same indices
  7961. const int64_t i03 = ir/(ne02*ne01);
  7962. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7963. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7964. const int64_t i13 = i03 % ne13;
  7965. const int64_t i12 = i02 % ne12;
  7966. const int64_t i11 = i01 % ne11;
  7967. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7968. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7969. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7970. #ifdef GGML_USE_ACCELERATE
  7971. UNUSED(ggml_vec_mul_f32);
  7972. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7973. #else
  7974. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7975. #endif
  7976. // }
  7977. // }
  7978. }
  7979. } else {
  7980. // src1 is not contiguous
  7981. for (int64_t ir = ith; ir < nr; ir += nth) {
  7982. // src0 and dst are same shape => same indices
  7983. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7984. const int64_t i03 = ir/(ne02*ne01);
  7985. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7986. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7987. const int64_t i13 = i03 % ne13;
  7988. const int64_t i12 = i02 % ne12;
  7989. const int64_t i11 = i01 % ne11;
  7990. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7991. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7992. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7993. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7994. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7995. }
  7996. }
  7997. }
  7998. }
  7999. static void ggml_compute_forward_mul(
  8000. const struct ggml_compute_params * params,
  8001. const struct ggml_tensor * src0,
  8002. const struct ggml_tensor * src1,
  8003. struct ggml_tensor * dst) {
  8004. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8005. switch (src0->type) {
  8006. case GGML_TYPE_F32:
  8007. {
  8008. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  8009. } break;
  8010. default:
  8011. {
  8012. GGML_ASSERT(false);
  8013. } break;
  8014. }
  8015. }
  8016. // ggml_compute_forward_div
  8017. static void ggml_compute_forward_div_f32(
  8018. const struct ggml_compute_params * params,
  8019. const struct ggml_tensor * src0,
  8020. const struct ggml_tensor * src1,
  8021. struct ggml_tensor * dst) {
  8022. assert(params->ith == 0);
  8023. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8025. return;
  8026. }
  8027. const int nr = ggml_nrows(src0);
  8028. GGML_TENSOR_BINARY_OP_LOCALS;
  8029. GGML_ASSERT( nb0 == sizeof(float));
  8030. GGML_ASSERT(nb00 == sizeof(float));
  8031. if (nb10 == sizeof(float)) {
  8032. for (int ir = 0; ir < nr; ++ir) {
  8033. // src0, src1 and dst are same shape => same indices
  8034. const int i3 = ir/(ne2*ne1);
  8035. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8036. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8037. #ifdef GGML_USE_ACCELERATE
  8038. UNUSED(ggml_vec_div_f32);
  8039. vDSP_vdiv(
  8040. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8041. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8042. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8043. ne0);
  8044. #else
  8045. ggml_vec_div_f32(ne0,
  8046. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8047. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8048. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8049. #endif
  8050. // }
  8051. // }
  8052. }
  8053. } else {
  8054. // src1 is not contiguous
  8055. for (int ir = 0; ir < nr; ++ir) {
  8056. // src0, src1 and dst are same shape => same indices
  8057. const int i3 = ir/(ne2*ne1);
  8058. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8059. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8060. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8061. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8062. for (int i0 = 0; i0 < ne0; i0++) {
  8063. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8064. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8065. }
  8066. }
  8067. }
  8068. }
  8069. static void ggml_compute_forward_div(
  8070. const struct ggml_compute_params * params,
  8071. const struct ggml_tensor * src0,
  8072. const struct ggml_tensor * src1,
  8073. struct ggml_tensor * dst) {
  8074. switch (src0->type) {
  8075. case GGML_TYPE_F32:
  8076. {
  8077. ggml_compute_forward_div_f32(params, src0, src1, dst);
  8078. } break;
  8079. default:
  8080. {
  8081. GGML_ASSERT(false);
  8082. } break;
  8083. }
  8084. }
  8085. // ggml_compute_forward_sqr
  8086. static void ggml_compute_forward_sqr_f32(
  8087. const struct ggml_compute_params * params,
  8088. const struct ggml_tensor * src0,
  8089. struct ggml_tensor * dst) {
  8090. assert(params->ith == 0);
  8091. assert(ggml_are_same_shape(src0, dst));
  8092. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8093. return;
  8094. }
  8095. const int n = ggml_nrows(src0);
  8096. const int nc = src0->ne[0];
  8097. assert( dst->nb[0] == sizeof(float));
  8098. assert(src0->nb[0] == sizeof(float));
  8099. for (int i = 0; i < n; i++) {
  8100. ggml_vec_sqr_f32(nc,
  8101. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8102. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8103. }
  8104. }
  8105. static void ggml_compute_forward_sqr(
  8106. const struct ggml_compute_params * params,
  8107. const struct ggml_tensor * src0,
  8108. struct ggml_tensor * dst) {
  8109. switch (src0->type) {
  8110. case GGML_TYPE_F32:
  8111. {
  8112. ggml_compute_forward_sqr_f32(params, src0, dst);
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_sqrt
  8121. static void ggml_compute_forward_sqrt_f32(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * src0,
  8124. struct ggml_tensor * dst) {
  8125. assert(params->ith == 0);
  8126. assert(ggml_are_same_shape(src0, dst));
  8127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8128. return;
  8129. }
  8130. const int n = ggml_nrows(src0);
  8131. const int nc = src0->ne[0];
  8132. assert( dst->nb[0] == sizeof(float));
  8133. assert(src0->nb[0] == sizeof(float));
  8134. for (int i = 0; i < n; i++) {
  8135. ggml_vec_sqrt_f32(nc,
  8136. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8137. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8138. }
  8139. }
  8140. static void ggml_compute_forward_sqrt(
  8141. const struct ggml_compute_params * params,
  8142. const struct ggml_tensor * src0,
  8143. struct ggml_tensor * dst) {
  8144. switch (src0->type) {
  8145. case GGML_TYPE_F32:
  8146. {
  8147. ggml_compute_forward_sqrt_f32(params, src0, dst);
  8148. } break;
  8149. default:
  8150. {
  8151. GGML_ASSERT(false);
  8152. } break;
  8153. }
  8154. }
  8155. // ggml_compute_forward_log
  8156. static void ggml_compute_forward_log_f32(
  8157. const struct ggml_compute_params * params,
  8158. const struct ggml_tensor * src0,
  8159. struct ggml_tensor * dst) {
  8160. GGML_ASSERT(params->ith == 0);
  8161. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8163. return;
  8164. }
  8165. const int n = ggml_nrows(src0);
  8166. const int nc = src0->ne[0];
  8167. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8168. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8169. for (int i = 0; i < n; i++) {
  8170. ggml_vec_log_f32(nc,
  8171. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8172. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8173. }
  8174. }
  8175. static void ggml_compute_forward_log(
  8176. const struct ggml_compute_params * params,
  8177. const struct ggml_tensor * src0,
  8178. struct ggml_tensor * dst) {
  8179. switch (src0->type) {
  8180. case GGML_TYPE_F32:
  8181. {
  8182. ggml_compute_forward_log_f32(params, src0, dst);
  8183. } break;
  8184. default:
  8185. {
  8186. GGML_ASSERT(false);
  8187. } break;
  8188. }
  8189. }
  8190. // ggml_compute_forward_sum
  8191. static void ggml_compute_forward_sum_f32(
  8192. const struct ggml_compute_params * params,
  8193. const struct ggml_tensor * src0,
  8194. struct ggml_tensor * dst) {
  8195. assert(params->ith == 0);
  8196. assert(ggml_is_scalar(dst));
  8197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8198. return;
  8199. }
  8200. assert(ggml_is_scalar(dst));
  8201. assert(src0->nb[0] == sizeof(float));
  8202. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  8203. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  8204. ggml_float sum = 0;
  8205. ggml_float row_sum = 0;
  8206. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8207. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8208. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8209. ggml_vec_sum_f32_ggf(ne00,
  8210. &row_sum,
  8211. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8212. sum += row_sum;
  8213. }
  8214. }
  8215. }
  8216. ((float *) dst->data)[0] = sum;
  8217. }
  8218. static void ggml_compute_forward_sum_f16(
  8219. const struct ggml_compute_params * params,
  8220. const struct ggml_tensor * src0,
  8221. struct ggml_tensor * dst) {
  8222. assert(params->ith == 0);
  8223. assert(ggml_is_scalar(dst));
  8224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8225. return;
  8226. }
  8227. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8228. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  8229. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  8230. float sum = 0;
  8231. float row_sum = 0;
  8232. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8233. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8234. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8235. ggml_vec_sum_f16_ggf(ne00,
  8236. &row_sum,
  8237. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8238. sum += row_sum;
  8239. }
  8240. }
  8241. }
  8242. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8243. }
  8244. static void ggml_compute_forward_sum(
  8245. const struct ggml_compute_params * params,
  8246. const struct ggml_tensor * src0,
  8247. struct ggml_tensor * dst) {
  8248. switch (src0->type) {
  8249. case GGML_TYPE_F32:
  8250. {
  8251. ggml_compute_forward_sum_f32(params, src0, dst);
  8252. } break;
  8253. case GGML_TYPE_F16:
  8254. {
  8255. ggml_compute_forward_sum_f16(params, src0, dst);
  8256. } break;
  8257. default:
  8258. {
  8259. GGML_ASSERT(false);
  8260. } break;
  8261. }
  8262. }
  8263. // ggml_compute_forward_sum_rows
  8264. static void ggml_compute_forward_sum_rows_f32(
  8265. const struct ggml_compute_params * params,
  8266. const struct ggml_tensor * src0,
  8267. struct ggml_tensor * dst) {
  8268. GGML_ASSERT(params->ith == 0);
  8269. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8270. return;
  8271. }
  8272. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8273. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8274. GGML_TENSOR_UNARY_OP_LOCALS;
  8275. GGML_ASSERT(ne0 == 1);
  8276. GGML_ASSERT(ne1 == ne01);
  8277. GGML_ASSERT(ne2 == ne02);
  8278. GGML_ASSERT(ne3 == ne03);
  8279. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8280. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8281. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8282. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8283. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8284. float row_sum = 0;
  8285. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8286. dst_row[0] = row_sum;
  8287. }
  8288. }
  8289. }
  8290. }
  8291. static void ggml_compute_forward_sum_rows(
  8292. const struct ggml_compute_params * params,
  8293. const struct ggml_tensor * src0,
  8294. struct ggml_tensor * dst) {
  8295. switch (src0->type) {
  8296. case GGML_TYPE_F32:
  8297. {
  8298. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8299. } break;
  8300. default:
  8301. {
  8302. GGML_ASSERT(false);
  8303. } break;
  8304. }
  8305. }
  8306. // ggml_compute_forward_mean
  8307. static void ggml_compute_forward_mean_f32(
  8308. const struct ggml_compute_params * params,
  8309. const struct ggml_tensor * src0,
  8310. struct ggml_tensor * dst) {
  8311. assert(params->ith == 0);
  8312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8313. return;
  8314. }
  8315. assert(src0->nb[0] == sizeof(float));
  8316. GGML_TENSOR_UNARY_OP_LOCALS;
  8317. assert(ne0 == 1);
  8318. assert(ne1 == ne01);
  8319. assert(ne2 == ne02);
  8320. assert(ne3 == ne03);
  8321. UNUSED(ne0);
  8322. UNUSED(ne1);
  8323. UNUSED(ne2);
  8324. UNUSED(ne3);
  8325. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8326. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8327. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8328. ggml_vec_sum_f32(ne00,
  8329. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8330. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8331. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8332. }
  8333. }
  8334. }
  8335. }
  8336. static void ggml_compute_forward_mean(
  8337. const struct ggml_compute_params * params,
  8338. const struct ggml_tensor * src0,
  8339. struct ggml_tensor * dst) {
  8340. switch (src0->type) {
  8341. case GGML_TYPE_F32:
  8342. {
  8343. ggml_compute_forward_mean_f32(params, src0, dst);
  8344. } break;
  8345. default:
  8346. {
  8347. GGML_ASSERT(false);
  8348. } break;
  8349. }
  8350. }
  8351. // ggml_compute_forward_argmax
  8352. static void ggml_compute_forward_argmax_f32(
  8353. const struct ggml_compute_params * params,
  8354. const struct ggml_tensor * src0,
  8355. struct ggml_tensor * dst) {
  8356. assert(params->ith == 0);
  8357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8358. return;
  8359. }
  8360. assert(src0->nb[0] == sizeof(float));
  8361. assert(dst->nb[0] == sizeof(float));
  8362. const int64_t ne00 = src0->ne[0];
  8363. const int64_t ne01 = src0->ne[1];
  8364. const size_t nb01 = src0->nb[1];
  8365. const size_t nb0 = dst->nb[0];
  8366. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8367. float * src = (float *) ((char *) src0->data + i1*nb01);
  8368. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8369. int v = 0;
  8370. ggml_vec_argmax_f32(ne00, &v, src);
  8371. dst_[0] = v;
  8372. }
  8373. }
  8374. static void ggml_compute_forward_argmax(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * src0,
  8377. struct ggml_tensor * dst) {
  8378. switch (src0->type) {
  8379. case GGML_TYPE_F32:
  8380. {
  8381. ggml_compute_forward_argmax_f32(params, src0, dst);
  8382. } break;
  8383. default:
  8384. {
  8385. GGML_ASSERT(false);
  8386. } break;
  8387. }
  8388. }
  8389. // ggml_compute_forward_repeat
  8390. static void ggml_compute_forward_repeat_f32(
  8391. const struct ggml_compute_params * params,
  8392. const struct ggml_tensor * src0,
  8393. struct ggml_tensor * dst) {
  8394. GGML_ASSERT(params->ith == 0);
  8395. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8397. return;
  8398. }
  8399. GGML_TENSOR_UNARY_OP_LOCALS;
  8400. // guaranteed to be an integer due to the check in ggml_can_repeat
  8401. const int nr0 = (int)(ne0/ne00);
  8402. const int nr1 = (int)(ne1/ne01);
  8403. const int nr2 = (int)(ne2/ne02);
  8404. const int nr3 = (int)(ne3/ne03);
  8405. // TODO: support for transposed / permuted tensors
  8406. GGML_ASSERT(nb0 == sizeof(float));
  8407. GGML_ASSERT(nb00 == sizeof(float));
  8408. // TODO: maybe this is not optimal?
  8409. for (int i3 = 0; i3 < nr3; i3++) {
  8410. for (int k3 = 0; k3 < ne03; k3++) {
  8411. for (int i2 = 0; i2 < nr2; i2++) {
  8412. for (int k2 = 0; k2 < ne02; k2++) {
  8413. for (int i1 = 0; i1 < nr1; i1++) {
  8414. for (int k1 = 0; k1 < ne01; k1++) {
  8415. for (int i0 = 0; i0 < nr0; i0++) {
  8416. ggml_vec_cpy_f32(ne00,
  8417. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8418. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8419. }
  8420. }
  8421. }
  8422. }
  8423. }
  8424. }
  8425. }
  8426. }
  8427. static void ggml_compute_forward_repeat_f16(
  8428. const struct ggml_compute_params * params,
  8429. const struct ggml_tensor * src0,
  8430. struct ggml_tensor * dst) {
  8431. GGML_ASSERT(params->ith == 0);
  8432. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8434. return;
  8435. }
  8436. GGML_TENSOR_UNARY_OP_LOCALS;
  8437. // guaranteed to be an integer due to the check in ggml_can_repeat
  8438. const int nr0 = (int)(ne0/ne00);
  8439. const int nr1 = (int)(ne1/ne01);
  8440. const int nr2 = (int)(ne2/ne02);
  8441. const int nr3 = (int)(ne3/ne03);
  8442. // TODO: support for transposed / permuted tensors
  8443. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8444. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8445. // TODO: maybe this is not optimal?
  8446. for (int i3 = 0; i3 < nr3; i3++) {
  8447. for (int k3 = 0; k3 < ne03; k3++) {
  8448. for (int i2 = 0; i2 < nr2; i2++) {
  8449. for (int k2 = 0; k2 < ne02; k2++) {
  8450. for (int i1 = 0; i1 < nr1; i1++) {
  8451. for (int k1 = 0; k1 < ne01; k1++) {
  8452. for (int i0 = 0; i0 < nr0; i0++) {
  8453. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8454. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8455. // ggml_vec_cpy_f16(ne00, y, x)
  8456. for (int i = 0; i < ne00; ++i) {
  8457. y[i] = x[i];
  8458. }
  8459. }
  8460. }
  8461. }
  8462. }
  8463. }
  8464. }
  8465. }
  8466. }
  8467. static void ggml_compute_forward_repeat(
  8468. const struct ggml_compute_params * params,
  8469. const struct ggml_tensor * src0,
  8470. struct ggml_tensor * dst) {
  8471. switch (src0->type) {
  8472. case GGML_TYPE_F16:
  8473. {
  8474. ggml_compute_forward_repeat_f16(params, src0, dst);
  8475. } break;
  8476. case GGML_TYPE_F32:
  8477. {
  8478. ggml_compute_forward_repeat_f32(params, src0, dst);
  8479. } break;
  8480. default:
  8481. {
  8482. GGML_ASSERT(false);
  8483. } break;
  8484. }
  8485. }
  8486. // ggml_compute_forward_repeat_back
  8487. static void ggml_compute_forward_repeat_back_f32(
  8488. const struct ggml_compute_params * params,
  8489. const struct ggml_tensor * src0,
  8490. struct ggml_tensor * dst) {
  8491. GGML_ASSERT(params->ith == 0);
  8492. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8494. return;
  8495. }
  8496. GGML_TENSOR_UNARY_OP_LOCALS;
  8497. // guaranteed to be an integer due to the check in ggml_can_repeat
  8498. const int nr0 = (int)(ne00/ne0);
  8499. const int nr1 = (int)(ne01/ne1);
  8500. const int nr2 = (int)(ne02/ne2);
  8501. const int nr3 = (int)(ne03/ne3);
  8502. // TODO: support for transposed / permuted tensors
  8503. GGML_ASSERT(nb0 == sizeof(float));
  8504. GGML_ASSERT(nb00 == sizeof(float));
  8505. if (ggml_is_contiguous(dst)) {
  8506. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8507. } else {
  8508. for (int k3 = 0; k3 < ne3; k3++) {
  8509. for (int k2 = 0; k2 < ne2; k2++) {
  8510. for (int k1 = 0; k1 < ne1; k1++) {
  8511. ggml_vec_set_f32(ne0,
  8512. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8513. 0);
  8514. }
  8515. }
  8516. }
  8517. }
  8518. // TODO: maybe this is not optimal?
  8519. for (int i3 = 0; i3 < nr3; i3++) {
  8520. for (int k3 = 0; k3 < ne3; k3++) {
  8521. for (int i2 = 0; i2 < nr2; i2++) {
  8522. for (int k2 = 0; k2 < ne2; k2++) {
  8523. for (int i1 = 0; i1 < nr1; i1++) {
  8524. for (int k1 = 0; k1 < ne1; k1++) {
  8525. for (int i0 = 0; i0 < nr0; i0++) {
  8526. ggml_vec_acc_f32(ne0,
  8527. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8528. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8529. }
  8530. }
  8531. }
  8532. }
  8533. }
  8534. }
  8535. }
  8536. }
  8537. static void ggml_compute_forward_repeat_back(
  8538. const struct ggml_compute_params * params,
  8539. const struct ggml_tensor * src0,
  8540. struct ggml_tensor * dst) {
  8541. switch (src0->type) {
  8542. case GGML_TYPE_F32:
  8543. {
  8544. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8545. } break;
  8546. default:
  8547. {
  8548. GGML_ASSERT(false);
  8549. } break;
  8550. }
  8551. }
  8552. // ggml_compute_forward_concat
  8553. static void ggml_compute_forward_concat_f32(
  8554. const struct ggml_compute_params * params,
  8555. const struct ggml_tensor * src0,
  8556. const struct ggml_tensor * src1,
  8557. struct ggml_tensor * dst) {
  8558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8559. return;
  8560. }
  8561. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8562. const int ith = params->ith;
  8563. GGML_TENSOR_BINARY_OP_LOCALS;
  8564. // TODO: support for transposed / permuted tensors
  8565. GGML_ASSERT(nb0 == sizeof(float));
  8566. GGML_ASSERT(nb00 == sizeof(float));
  8567. GGML_ASSERT(nb10 == sizeof(float));
  8568. for (int i3 = 0; i3 < ne3; i3++) {
  8569. for (int i2 = ith; i2 < ne2; i2++) {
  8570. if (i2 < ne02) { // src0
  8571. for (int i1 = 0; i1 < ne1; i1++) {
  8572. for (int i0 = 0; i0 < ne0; i0++) {
  8573. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8574. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8575. *y = *x;
  8576. }
  8577. }
  8578. } // src1
  8579. else {
  8580. for (int i1 = 0; i1 < ne1; i1++) {
  8581. for (int i0 = 0; i0 < ne0; i0++) {
  8582. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8583. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8584. *y = *x;
  8585. }
  8586. }
  8587. }
  8588. }
  8589. }
  8590. }
  8591. static void ggml_compute_forward_concat(
  8592. const struct ggml_compute_params* params,
  8593. const struct ggml_tensor* src0,
  8594. const struct ggml_tensor* src1,
  8595. struct ggml_tensor* dst) {
  8596. switch (src0->type) {
  8597. case GGML_TYPE_F32:
  8598. {
  8599. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8600. } break;
  8601. default:
  8602. {
  8603. GGML_ASSERT(false);
  8604. } break;
  8605. }
  8606. }
  8607. // ggml_compute_forward_abs
  8608. static void ggml_compute_forward_abs_f32(
  8609. const struct ggml_compute_params * params,
  8610. const struct ggml_tensor * src0,
  8611. struct ggml_tensor * dst) {
  8612. assert(params->ith == 0);
  8613. assert(ggml_are_same_shape(src0, dst));
  8614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8615. return;
  8616. }
  8617. const int n = ggml_nrows(src0);
  8618. const int nc = src0->ne[0];
  8619. assert(dst->nb[0] == sizeof(float));
  8620. assert(src0->nb[0] == sizeof(float));
  8621. for (int i = 0; i < n; i++) {
  8622. ggml_vec_abs_f32(nc,
  8623. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8624. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8625. }
  8626. }
  8627. static void ggml_compute_forward_abs(
  8628. const struct ggml_compute_params * params,
  8629. const struct ggml_tensor * src0,
  8630. struct ggml_tensor * dst) {
  8631. switch (src0->type) {
  8632. case GGML_TYPE_F32:
  8633. {
  8634. ggml_compute_forward_abs_f32(params, src0, dst);
  8635. } break;
  8636. default:
  8637. {
  8638. GGML_ASSERT(false);
  8639. } break;
  8640. }
  8641. }
  8642. // ggml_compute_forward_sgn
  8643. static void ggml_compute_forward_sgn_f32(
  8644. const struct ggml_compute_params * params,
  8645. const struct ggml_tensor * src0,
  8646. struct ggml_tensor * dst) {
  8647. assert(params->ith == 0);
  8648. assert(ggml_are_same_shape(src0, dst));
  8649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8650. return;
  8651. }
  8652. const int n = ggml_nrows(src0);
  8653. const int nc = src0->ne[0];
  8654. assert(dst->nb[0] == sizeof(float));
  8655. assert(src0->nb[0] == sizeof(float));
  8656. for (int i = 0; i < n; i++) {
  8657. ggml_vec_sgn_f32(nc,
  8658. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8659. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8660. }
  8661. }
  8662. static void ggml_compute_forward_sgn(
  8663. const struct ggml_compute_params * params,
  8664. const struct ggml_tensor * src0,
  8665. struct ggml_tensor * dst) {
  8666. switch (src0->type) {
  8667. case GGML_TYPE_F32:
  8668. {
  8669. ggml_compute_forward_sgn_f32(params, src0, dst);
  8670. } break;
  8671. default:
  8672. {
  8673. GGML_ASSERT(false);
  8674. } break;
  8675. }
  8676. }
  8677. // ggml_compute_forward_neg
  8678. static void ggml_compute_forward_neg_f32(
  8679. const struct ggml_compute_params * params,
  8680. const struct ggml_tensor * src0,
  8681. struct ggml_tensor * dst) {
  8682. assert(params->ith == 0);
  8683. assert(ggml_are_same_shape(src0, dst));
  8684. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8685. return;
  8686. }
  8687. const int n = ggml_nrows(src0);
  8688. const int nc = src0->ne[0];
  8689. assert(dst->nb[0] == sizeof(float));
  8690. assert(src0->nb[0] == sizeof(float));
  8691. for (int i = 0; i < n; i++) {
  8692. ggml_vec_neg_f32(nc,
  8693. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8694. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8695. }
  8696. }
  8697. static void ggml_compute_forward_neg(
  8698. const struct ggml_compute_params * params,
  8699. const struct ggml_tensor * src0,
  8700. struct ggml_tensor * dst) {
  8701. switch (src0->type) {
  8702. case GGML_TYPE_F32:
  8703. {
  8704. ggml_compute_forward_neg_f32(params, src0, dst);
  8705. } break;
  8706. default:
  8707. {
  8708. GGML_ASSERT(false);
  8709. } break;
  8710. }
  8711. }
  8712. // ggml_compute_forward_step
  8713. static void ggml_compute_forward_step_f32(
  8714. const struct ggml_compute_params * params,
  8715. const struct ggml_tensor * src0,
  8716. struct ggml_tensor * dst) {
  8717. assert(params->ith == 0);
  8718. assert(ggml_are_same_shape(src0, dst));
  8719. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8720. return;
  8721. }
  8722. const int n = ggml_nrows(src0);
  8723. const int nc = src0->ne[0];
  8724. assert(dst->nb[0] == sizeof(float));
  8725. assert(src0->nb[0] == sizeof(float));
  8726. for (int i = 0; i < n; i++) {
  8727. ggml_vec_step_f32(nc,
  8728. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8729. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8730. }
  8731. }
  8732. static void ggml_compute_forward_step(
  8733. const struct ggml_compute_params * params,
  8734. const struct ggml_tensor * src0,
  8735. struct ggml_tensor * dst) {
  8736. switch (src0->type) {
  8737. case GGML_TYPE_F32:
  8738. {
  8739. ggml_compute_forward_step_f32(params, src0, dst);
  8740. } break;
  8741. default:
  8742. {
  8743. GGML_ASSERT(false);
  8744. } break;
  8745. }
  8746. }
  8747. // ggml_compute_forward_tanh
  8748. static void ggml_compute_forward_tanh_f32(
  8749. const struct ggml_compute_params * params,
  8750. const struct ggml_tensor * src0,
  8751. struct ggml_tensor * dst) {
  8752. assert(params->ith == 0);
  8753. assert(ggml_are_same_shape(src0, dst));
  8754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8755. return;
  8756. }
  8757. const int n = ggml_nrows(src0);
  8758. const int nc = src0->ne[0];
  8759. assert(dst->nb[0] == sizeof(float));
  8760. assert(src0->nb[0] == sizeof(float));
  8761. for (int i = 0; i < n; i++) {
  8762. ggml_vec_tanh_f32(nc,
  8763. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8764. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8765. }
  8766. }
  8767. static void ggml_compute_forward_tanh(
  8768. const struct ggml_compute_params * params,
  8769. const struct ggml_tensor * src0,
  8770. struct ggml_tensor * dst) {
  8771. switch (src0->type) {
  8772. case GGML_TYPE_F32:
  8773. {
  8774. ggml_compute_forward_tanh_f32(params, src0, dst);
  8775. } break;
  8776. default:
  8777. {
  8778. GGML_ASSERT(false);
  8779. } break;
  8780. }
  8781. }
  8782. // ggml_compute_forward_elu
  8783. static void ggml_compute_forward_elu_f32(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0,
  8786. struct ggml_tensor * dst) {
  8787. assert(params->ith == 0);
  8788. assert(ggml_are_same_shape(src0, dst));
  8789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8790. return;
  8791. }
  8792. const int n = ggml_nrows(src0);
  8793. const int nc = src0->ne[0];
  8794. assert(dst->nb[0] == sizeof(float));
  8795. assert(src0->nb[0] == sizeof(float));
  8796. for (int i = 0; i < n; i++) {
  8797. ggml_vec_elu_f32(nc,
  8798. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8799. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8800. }
  8801. }
  8802. static void ggml_compute_forward_elu(
  8803. const struct ggml_compute_params * params,
  8804. const struct ggml_tensor * src0,
  8805. struct ggml_tensor * dst) {
  8806. switch (src0->type) {
  8807. case GGML_TYPE_F32:
  8808. {
  8809. ggml_compute_forward_elu_f32(params, src0, dst);
  8810. } break;
  8811. default:
  8812. {
  8813. GGML_ASSERT(false);
  8814. } break;
  8815. }
  8816. }
  8817. // ggml_compute_forward_relu
  8818. static void ggml_compute_forward_relu_f32(
  8819. const struct ggml_compute_params * params,
  8820. const struct ggml_tensor * src0,
  8821. struct ggml_tensor * dst) {
  8822. assert(params->ith == 0);
  8823. assert(ggml_are_same_shape(src0, dst));
  8824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8825. return;
  8826. }
  8827. const int n = ggml_nrows(src0);
  8828. const int nc = src0->ne[0];
  8829. assert(dst->nb[0] == sizeof(float));
  8830. assert(src0->nb[0] == sizeof(float));
  8831. for (int i = 0; i < n; i++) {
  8832. ggml_vec_relu_f32(nc,
  8833. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8834. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8835. }
  8836. }
  8837. static void ggml_compute_forward_relu(
  8838. const struct ggml_compute_params * params,
  8839. const struct ggml_tensor * src0,
  8840. struct ggml_tensor * dst) {
  8841. switch (src0->type) {
  8842. case GGML_TYPE_F32:
  8843. {
  8844. ggml_compute_forward_relu_f32(params, src0, dst);
  8845. } break;
  8846. default:
  8847. {
  8848. GGML_ASSERT(false);
  8849. } break;
  8850. }
  8851. }
  8852. // ggml_compute_forward_gelu
  8853. static void ggml_compute_forward_gelu_f32(
  8854. const struct ggml_compute_params * params,
  8855. const struct ggml_tensor * src0,
  8856. struct ggml_tensor * dst) {
  8857. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8858. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8859. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8861. return;
  8862. }
  8863. const int ith = params->ith;
  8864. const int nth = params->nth;
  8865. const int nc = src0->ne[0];
  8866. const int nr = ggml_nrows(src0);
  8867. // rows per thread
  8868. const int dr = (nr + nth - 1)/nth;
  8869. // row range for this thread
  8870. const int ir0 = dr*ith;
  8871. const int ir1 = MIN(ir0 + dr, nr);
  8872. for (int i1 = ir0; i1 < ir1; i1++) {
  8873. ggml_vec_gelu_f32(nc,
  8874. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8875. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8876. #ifndef NDEBUG
  8877. for (int k = 0; k < nc; k++) {
  8878. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8879. UNUSED(x);
  8880. assert(!isnan(x));
  8881. assert(!isinf(x));
  8882. }
  8883. #endif
  8884. }
  8885. }
  8886. static void ggml_compute_forward_gelu(
  8887. const struct ggml_compute_params * params,
  8888. const struct ggml_tensor * src0,
  8889. struct ggml_tensor * dst) {
  8890. switch (src0->type) {
  8891. case GGML_TYPE_F32:
  8892. {
  8893. ggml_compute_forward_gelu_f32(params, src0, dst);
  8894. } break;
  8895. default:
  8896. {
  8897. GGML_ASSERT(false);
  8898. } break;
  8899. }
  8900. }
  8901. // ggml_compute_forward_gelu_quick
  8902. static void ggml_compute_forward_gelu_quick_f32(
  8903. const struct ggml_compute_params * params,
  8904. const struct ggml_tensor * src0,
  8905. struct ggml_tensor * dst) {
  8906. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8907. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8908. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8910. return;
  8911. }
  8912. const int ith = params->ith;
  8913. const int nth = params->nth;
  8914. const int nc = src0->ne[0];
  8915. const int nr = ggml_nrows(src0);
  8916. // rows per thread
  8917. const int dr = (nr + nth - 1)/nth;
  8918. // row range for this thread
  8919. const int ir0 = dr*ith;
  8920. const int ir1 = MIN(ir0 + dr, nr);
  8921. for (int i1 = ir0; i1 < ir1; i1++) {
  8922. ggml_vec_gelu_quick_f32(nc,
  8923. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8924. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8925. #ifndef NDEBUG
  8926. for (int k = 0; k < nc; k++) {
  8927. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8928. UNUSED(x);
  8929. assert(!isnan(x));
  8930. assert(!isinf(x));
  8931. }
  8932. #endif
  8933. }
  8934. }
  8935. static void ggml_compute_forward_gelu_quick(
  8936. const struct ggml_compute_params * params,
  8937. const struct ggml_tensor * src0,
  8938. struct ggml_tensor * dst) {
  8939. switch (src0->type) {
  8940. case GGML_TYPE_F32:
  8941. {
  8942. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8943. } break;
  8944. default:
  8945. {
  8946. GGML_ASSERT(false);
  8947. } break;
  8948. }
  8949. }
  8950. // ggml_compute_forward_silu
  8951. static void ggml_compute_forward_silu_f32(
  8952. const struct ggml_compute_params * params,
  8953. const struct ggml_tensor * src0,
  8954. struct ggml_tensor * dst) {
  8955. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8956. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8957. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8959. return;
  8960. }
  8961. const int ith = params->ith;
  8962. const int nth = params->nth;
  8963. const int nc = src0->ne[0];
  8964. const int nr = ggml_nrows(src0);
  8965. // rows per thread
  8966. const int dr = (nr + nth - 1)/nth;
  8967. // row range for this thread
  8968. const int ir0 = dr*ith;
  8969. const int ir1 = MIN(ir0 + dr, nr);
  8970. for (int i1 = ir0; i1 < ir1; i1++) {
  8971. ggml_vec_silu_f32(nc,
  8972. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8973. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8974. #ifndef NDEBUG
  8975. for (int k = 0; k < nc; k++) {
  8976. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8977. UNUSED(x);
  8978. assert(!isnan(x));
  8979. assert(!isinf(x));
  8980. }
  8981. #endif
  8982. }
  8983. }
  8984. static void ggml_compute_forward_silu(
  8985. const struct ggml_compute_params * params,
  8986. const struct ggml_tensor * src0,
  8987. struct ggml_tensor * dst) {
  8988. switch (src0->type) {
  8989. case GGML_TYPE_F32:
  8990. {
  8991. ggml_compute_forward_silu_f32(params, src0, dst);
  8992. } break;
  8993. default:
  8994. {
  8995. GGML_ASSERT(false);
  8996. } break;
  8997. }
  8998. }
  8999. // ggml_compute_forward_silu_back
  9000. static void ggml_compute_forward_silu_back_f32(
  9001. const struct ggml_compute_params * params,
  9002. const struct ggml_tensor * src0,
  9003. const struct ggml_tensor * grad,
  9004. struct ggml_tensor * dst) {
  9005. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9006. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9007. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9008. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9009. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9010. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9011. return;
  9012. }
  9013. const int ith = params->ith;
  9014. const int nth = params->nth;
  9015. const int nc = src0->ne[0];
  9016. const int nr = ggml_nrows(src0);
  9017. // rows per thread
  9018. const int dr = (nr + nth - 1)/nth;
  9019. // row range for this thread
  9020. const int ir0 = dr*ith;
  9021. const int ir1 = MIN(ir0 + dr, nr);
  9022. for (int i1 = ir0; i1 < ir1; i1++) {
  9023. ggml_vec_silu_backward_f32(nc,
  9024. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9025. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9026. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9027. #ifndef NDEBUG
  9028. for (int k = 0; k < nc; k++) {
  9029. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9030. UNUSED(x);
  9031. assert(!isnan(x));
  9032. assert(!isinf(x));
  9033. }
  9034. #endif
  9035. }
  9036. }
  9037. static void ggml_compute_forward_silu_back(
  9038. const struct ggml_compute_params * params,
  9039. const struct ggml_tensor * src0,
  9040. const struct ggml_tensor * grad,
  9041. struct ggml_tensor * dst) {
  9042. switch (src0->type) {
  9043. case GGML_TYPE_F32:
  9044. {
  9045. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  9046. } break;
  9047. default:
  9048. {
  9049. GGML_ASSERT(false);
  9050. } break;
  9051. }
  9052. }
  9053. // ggml_compute_forward_norm
  9054. static void ggml_compute_forward_norm_f32(
  9055. const struct ggml_compute_params * params,
  9056. const struct ggml_tensor * src0,
  9057. struct ggml_tensor * dst) {
  9058. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9060. return;
  9061. }
  9062. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9063. const int ith = params->ith;
  9064. const int nth = params->nth;
  9065. GGML_TENSOR_UNARY_OP_LOCALS;
  9066. float eps;
  9067. memcpy(&eps, dst->op_params, sizeof(float));
  9068. // TODO: optimize
  9069. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9070. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9071. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9072. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9073. ggml_float sum = 0.0;
  9074. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9075. sum += (ggml_float)x[i00];
  9076. }
  9077. float mean = sum/ne00;
  9078. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9079. ggml_float sum2 = 0.0;
  9080. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9081. float v = x[i00] - mean;
  9082. y[i00] = v;
  9083. sum2 += (ggml_float)(v*v);
  9084. }
  9085. float variance = sum2/ne00;
  9086. const float scale = 1.0f/sqrtf(variance + eps);
  9087. ggml_vec_scale_f32(ne00, y, scale);
  9088. }
  9089. }
  9090. }
  9091. }
  9092. static void ggml_compute_forward_norm(
  9093. const struct ggml_compute_params * params,
  9094. const struct ggml_tensor * src0,
  9095. struct ggml_tensor * dst) {
  9096. switch (src0->type) {
  9097. case GGML_TYPE_F32:
  9098. {
  9099. ggml_compute_forward_norm_f32(params, src0, dst);
  9100. } break;
  9101. default:
  9102. {
  9103. GGML_ASSERT(false);
  9104. } break;
  9105. }
  9106. }
  9107. // ggml_compute_forward_group_rms_norm
  9108. static void ggml_compute_forward_rms_norm_f32(
  9109. const struct ggml_compute_params * params,
  9110. const struct ggml_tensor * src0,
  9111. struct ggml_tensor * dst) {
  9112. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9114. return;
  9115. }
  9116. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9117. const int ith = params->ith;
  9118. const int nth = params->nth;
  9119. GGML_TENSOR_UNARY_OP_LOCALS;
  9120. float eps;
  9121. memcpy(&eps, dst->op_params, sizeof(float));
  9122. // TODO: optimize
  9123. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9124. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9125. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9126. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9127. ggml_float sum = 0.0;
  9128. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9129. sum += (ggml_float)(x[i00] * x[i00]);
  9130. }
  9131. const float mean = sum/ne00;
  9132. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9133. memcpy(y, x, ne00 * sizeof(float));
  9134. // for (int i00 = 0; i00 < ne00; i00++) {
  9135. // y[i00] = x[i00];
  9136. // }
  9137. const float scale = 1.0f/sqrtf(mean + eps);
  9138. ggml_vec_scale_f32(ne00, y, scale);
  9139. }
  9140. }
  9141. }
  9142. }
  9143. static void ggml_compute_forward_rms_norm(
  9144. const struct ggml_compute_params * params,
  9145. const struct ggml_tensor * src0,
  9146. struct ggml_tensor * dst) {
  9147. switch (src0->type) {
  9148. case GGML_TYPE_F32:
  9149. {
  9150. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  9151. } break;
  9152. default:
  9153. {
  9154. GGML_ASSERT(false);
  9155. } break;
  9156. }
  9157. }
  9158. static void ggml_compute_forward_rms_norm_back_f32(
  9159. const struct ggml_compute_params * params,
  9160. const struct ggml_tensor * src0,
  9161. const struct ggml_tensor * src1,
  9162. struct ggml_tensor * dst) {
  9163. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9165. return;
  9166. }
  9167. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9168. const int ith = params->ith;
  9169. const int nth = params->nth;
  9170. GGML_TENSOR_BINARY_OP_LOCALS;
  9171. float eps;
  9172. memcpy(&eps, dst->op_params, sizeof(float));
  9173. // TODO: optimize
  9174. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9175. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9176. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9177. // src1 is same shape as src0 => same indices
  9178. const int64_t i11 = i01;
  9179. const int64_t i12 = i02;
  9180. const int64_t i13 = i03;
  9181. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9182. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9183. ggml_float sum_xx = 0.0;
  9184. ggml_float sum_xdz = 0.0;
  9185. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9186. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9187. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9188. }
  9189. //const float mean = (float)(sum_xx)/ne00;
  9190. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9191. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9192. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9193. // we could cache rms from forward pass to improve performance.
  9194. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9195. //const float rms = sqrtf(mean_eps);
  9196. const float rrms = 1.0f / sqrtf(mean_eps);
  9197. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9198. {
  9199. // z = rms_norm(x)
  9200. //
  9201. // rms_norm(src0) =
  9202. // scale(
  9203. // src0,
  9204. // div(
  9205. // 1,
  9206. // sqrt(
  9207. // add(
  9208. // scale(
  9209. // sum(
  9210. // sqr(
  9211. // src0)),
  9212. // (1.0/N)),
  9213. // eps))));
  9214. // postorder:
  9215. // ## op args grad
  9216. // 00 param src0 grad[#00]
  9217. // 01 const 1
  9218. // 02 sqr (#00) grad[#02]
  9219. // 03 sum (#02) grad[#03]
  9220. // 04 const 1/N
  9221. // 05 scale (#03, #04) grad[#05]
  9222. // 06 const eps
  9223. // 07 add (#05, #06) grad[#07]
  9224. // 08 sqrt (#07) grad[#08]
  9225. // 09 div (#01,#08) grad[#09]
  9226. // 10 scale (#00,#09) grad[#10]
  9227. //
  9228. // backward pass, given grad[#10]
  9229. // #10: scale
  9230. // grad[#00] += scale(grad[#10],#09)
  9231. // grad[#09] += sum(mul(grad[#10],#00))
  9232. // #09: div
  9233. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9234. // #08: sqrt
  9235. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9236. // #07: add
  9237. // grad[#05] += grad[#07]
  9238. // #05: scale
  9239. // grad[#03] += scale(grad[#05],#04)
  9240. // #03: sum
  9241. // grad[#02] += repeat(grad[#03], #02)
  9242. // #02:
  9243. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9244. //
  9245. // substitute and simplify:
  9246. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9247. // grad[#02] = repeat(grad[#03], #02)
  9248. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9249. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9250. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9251. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9252. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9253. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9254. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9255. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9256. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9257. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9258. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9259. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9260. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9261. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9262. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9263. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9264. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9265. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9266. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9267. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9268. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9269. // a = b*c + d*e
  9270. // a = b*c*f/f + d*e*f/f
  9271. // a = (b*c*f + d*e*f)*(1/f)
  9272. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9273. // a = (b + d*e/c)*c
  9274. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9275. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9276. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9277. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9278. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9279. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9280. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9281. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9282. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9283. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9284. }
  9285. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9286. // post-order:
  9287. // dx := x
  9288. // dx := scale(dx,-mean_xdz/mean_eps)
  9289. // dx := add(dx, dz)
  9290. // dx := scale(dx, rrms)
  9291. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9292. ggml_vec_cpy_f32 (ne00, dx, x);
  9293. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9294. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9295. ggml_vec_acc_f32 (ne00, dx, dz);
  9296. ggml_vec_scale_f32(ne00, dx, rrms);
  9297. }
  9298. }
  9299. }
  9300. }
  9301. static void ggml_compute_forward_rms_norm_back(
  9302. const struct ggml_compute_params * params,
  9303. const struct ggml_tensor * src0,
  9304. const struct ggml_tensor * src1,
  9305. struct ggml_tensor * dst) {
  9306. switch (src0->type) {
  9307. case GGML_TYPE_F32:
  9308. {
  9309. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  9310. } break;
  9311. default:
  9312. {
  9313. GGML_ASSERT(false);
  9314. } break;
  9315. }
  9316. }
  9317. // ggml_compute_forward_group_norm
  9318. static void ggml_compute_forward_group_norm_f32(
  9319. const struct ggml_compute_params * params,
  9320. const struct ggml_tensor * src0,
  9321. struct ggml_tensor * dst) {
  9322. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9324. return;
  9325. }
  9326. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9327. const int ith = params->ith;
  9328. const int nth = params->nth;
  9329. GGML_TENSOR_UNARY_OP_LOCALS;
  9330. const float eps = 1e-6f; // TODO: make this a parameter
  9331. // TODO: optimize
  9332. int n_channels = src0->ne[2];
  9333. int n_groups = dst->op_params[0];
  9334. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9335. for (int i = ith; i < n_groups; i+=nth) {
  9336. int start = i * n_channels_per_group;
  9337. int end = start + n_channels_per_group;
  9338. if (end > n_channels) {
  9339. end = n_channels;
  9340. }
  9341. int step = end - start;
  9342. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9343. ggml_float sum = 0.0;
  9344. for (int64_t i02 = start; i02 < end; i02++) {
  9345. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9346. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9347. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9348. sum += (ggml_float)x[i00];
  9349. }
  9350. }
  9351. }
  9352. float mean = sum / (ne00 * ne01 * step);
  9353. ggml_float sum2 = 0.0;
  9354. for (int64_t i02 = start; i02 < end; i02++) {
  9355. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9356. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9357. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9358. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9359. float v = x[i00] - mean;
  9360. y[i00] = v;
  9361. sum2 += (ggml_float)(v * v);
  9362. }
  9363. }
  9364. }
  9365. float variance = sum2 / (ne00 * ne01 * step);
  9366. const float scale = 1.0f / sqrtf(variance + eps);
  9367. for (int64_t i02 = start; i02 < end; i02++) {
  9368. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9369. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9370. ggml_vec_scale_f32(ne00, y, scale);
  9371. }
  9372. }
  9373. }
  9374. }
  9375. }
  9376. static void ggml_compute_forward_group_norm(
  9377. const struct ggml_compute_params * params,
  9378. const struct ggml_tensor * src0,
  9379. struct ggml_tensor * dst) {
  9380. switch (src0->type) {
  9381. case GGML_TYPE_F32:
  9382. {
  9383. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9384. } break;
  9385. default:
  9386. {
  9387. GGML_ASSERT(false);
  9388. } break;
  9389. }
  9390. }
  9391. // ggml_compute_forward_mul_mat
  9392. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9393. // helper function to determine if it is better to use BLAS or not
  9394. // for large matrices, BLAS is faster
  9395. static bool ggml_compute_forward_mul_mat_use_blas(
  9396. const struct ggml_tensor * src0,
  9397. const struct ggml_tensor * src1,
  9398. struct ggml_tensor * dst) {
  9399. //const int64_t ne00 = src0->ne[0];
  9400. //const int64_t ne01 = src0->ne[1];
  9401. const int64_t ne10 = src1->ne[0];
  9402. const int64_t ne0 = dst->ne[0];
  9403. const int64_t ne1 = dst->ne[1];
  9404. // TODO: find the optimal values for these
  9405. if (ggml_is_contiguous(src0) &&
  9406. ggml_is_contiguous(src1) &&
  9407. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9408. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9409. return true;
  9410. }
  9411. return false;
  9412. }
  9413. #endif
  9414. static void ggml_compute_forward_mul_mat(
  9415. const struct ggml_compute_params * params,
  9416. const struct ggml_tensor * src0,
  9417. const struct ggml_tensor * src1,
  9418. struct ggml_tensor * dst) {
  9419. int64_t t0 = ggml_perf_time_us();
  9420. UNUSED(t0);
  9421. GGML_TENSOR_BINARY_OP_LOCALS;
  9422. const int ith = params->ith;
  9423. const int nth = params->nth;
  9424. const enum ggml_type type = src0->type;
  9425. const bool src1_cont = ggml_is_contiguous(src1);
  9426. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9427. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9428. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9429. GGML_ASSERT(ne0 == ne01);
  9430. GGML_ASSERT(ne1 == ne11);
  9431. GGML_ASSERT(ne2 == ne12);
  9432. GGML_ASSERT(ne3 == ne13);
  9433. // we don't support permuted src0 or src1
  9434. GGML_ASSERT(nb00 == ggml_type_size(type));
  9435. GGML_ASSERT(nb10 == sizeof(float));
  9436. // dst cannot be transposed or permuted
  9437. GGML_ASSERT(nb0 == sizeof(float));
  9438. GGML_ASSERT(nb0 <= nb1);
  9439. GGML_ASSERT(nb1 <= nb2);
  9440. GGML_ASSERT(nb2 <= nb3);
  9441. // broadcast factors
  9442. const int64_t r2 = ne12/ne02;
  9443. const int64_t r3 = ne13/ne03;
  9444. // nb01 >= nb00 - src0 is not transposed
  9445. // compute by src0 rows
  9446. #if defined(GGML_USE_CLBLAST)
  9447. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9448. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  9449. // ref: https://github.com/ggerganov/ggml/pull/224
  9450. GGML_ASSERT(ne02 == ne12);
  9451. GGML_ASSERT(ne03 == ne13);
  9452. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9453. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9454. }
  9455. return;
  9456. }
  9457. #endif
  9458. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9459. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9460. if (params->ith != 0) {
  9461. return;
  9462. }
  9463. if (params->type == GGML_TASK_INIT) {
  9464. return;
  9465. }
  9466. if (params->type == GGML_TASK_FINALIZE) {
  9467. return;
  9468. }
  9469. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9470. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9471. // broadcast src0 into src1 across 2nd,3rd dimension
  9472. const int64_t i03 = i13/r3;
  9473. const int64_t i02 = i12/r2;
  9474. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9475. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9476. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9477. if (type != GGML_TYPE_F32) {
  9478. float * const wdata = params->wdata;
  9479. ggml_to_float_t const to_float = type_traits[type].to_float;
  9480. size_t id = 0;
  9481. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9482. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9483. id += ne00;
  9484. }
  9485. assert(id*sizeof(float) <= params->wsize);
  9486. x = wdata;
  9487. }
  9488. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9489. ne11, ne01, ne10,
  9490. 1.0f, y, ne10,
  9491. x, ne00,
  9492. 0.0f, d, ne01);
  9493. }
  9494. }
  9495. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9496. return;
  9497. }
  9498. #endif
  9499. if (params->type == GGML_TASK_INIT) {
  9500. if (src1->type != vec_dot_type) {
  9501. char * wdata = params->wdata;
  9502. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9503. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9504. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9505. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9506. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9507. wdata += row_size;
  9508. }
  9509. }
  9510. }
  9511. }
  9512. return;
  9513. }
  9514. if (params->type == GGML_TASK_FINALIZE) {
  9515. return;
  9516. }
  9517. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9518. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9519. const int64_t nr0 = ne01; // src0 rows
  9520. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9521. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9522. // distribute the thread work across the inner or outer loop based on which one is larger
  9523. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9524. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9525. const int64_t ith0 = ith % nth0;
  9526. const int64_t ith1 = ith / nth0;
  9527. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9528. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9529. const int64_t ir010 = dr0*ith0;
  9530. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9531. const int64_t ir110 = dr1*ith1;
  9532. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9533. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9534. // threads with no work simply yield (not sure if it helps)
  9535. if (ir010 >= ir011 || ir110 >= ir111) {
  9536. sched_yield();
  9537. return;
  9538. }
  9539. assert(ne12 % ne02 == 0);
  9540. assert(ne13 % ne03 == 0);
  9541. // block-tiling attempt
  9542. const int64_t blck_0 = 16;
  9543. const int64_t blck_1 = 16;
  9544. // attempt to reduce false-sharing (does not seem to make a difference)
  9545. float tmp[16];
  9546. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9547. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9548. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9549. const int64_t i13 = (ir1/(ne12*ne11));
  9550. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9551. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9552. // broadcast src0 into src1
  9553. const int64_t i03 = i13/r3;
  9554. const int64_t i02 = i12/r2;
  9555. const int64_t i1 = i11;
  9556. const int64_t i2 = i12;
  9557. const int64_t i3 = i13;
  9558. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9559. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9560. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9561. // the original src1 data pointer, so we should index using the indices directly
  9562. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9563. const char * src1_col = (const char *) wdata +
  9564. (src1_cont || src1->type != vec_dot_type
  9565. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9566. : (i11*nb11 + i12*nb12 + i13*nb13));
  9567. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9568. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9569. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9570. //}
  9571. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9572. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9573. }
  9574. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9575. }
  9576. }
  9577. }
  9578. }
  9579. // ggml_compute_forward_out_prod
  9580. static void ggml_compute_forward_out_prod_f32(
  9581. const struct ggml_compute_params * params,
  9582. const struct ggml_tensor * src0,
  9583. const struct ggml_tensor * src1,
  9584. struct ggml_tensor * dst) {
  9585. // int64_t t0 = ggml_perf_time_us();
  9586. // UNUSED(t0);
  9587. GGML_TENSOR_BINARY_OP_LOCALS;
  9588. const int ith = params->ith;
  9589. const int nth = params->nth;
  9590. GGML_ASSERT(ne02 == ne12);
  9591. GGML_ASSERT(ne03 == ne13);
  9592. GGML_ASSERT(ne2 == ne12);
  9593. GGML_ASSERT(ne3 == ne13);
  9594. // we don't support permuted src0 or src1
  9595. GGML_ASSERT(nb00 == sizeof(float));
  9596. // dst cannot be transposed or permuted
  9597. GGML_ASSERT(nb0 == sizeof(float));
  9598. // GGML_ASSERT(nb0 <= nb1);
  9599. // GGML_ASSERT(nb1 <= nb2);
  9600. // GGML_ASSERT(nb2 <= nb3);
  9601. GGML_ASSERT(ne0 == ne00);
  9602. GGML_ASSERT(ne1 == ne10);
  9603. GGML_ASSERT(ne2 == ne02);
  9604. GGML_ASSERT(ne3 == ne03);
  9605. // nb01 >= nb00 - src0 is not transposed
  9606. // compute by src0 rows
  9607. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9608. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9609. if (params->type == GGML_TASK_INIT) {
  9610. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9611. return;
  9612. }
  9613. if (params->type == GGML_TASK_FINALIZE) {
  9614. return;
  9615. }
  9616. // dst[:,:,:,:] = 0
  9617. // for i2,i3:
  9618. // for i1:
  9619. // for i01:
  9620. // for i0:
  9621. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9622. // parallelize by last three dimensions
  9623. // total rows in dst
  9624. const int64_t nr = ne1*ne2*ne3;
  9625. // rows per thread
  9626. const int64_t dr = (nr + nth - 1)/nth;
  9627. // row range for this thread
  9628. const int64_t ir0 = dr*ith;
  9629. const int64_t ir1 = MIN(ir0 + dr, nr);
  9630. // block-tiling attempt
  9631. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9632. const int64_t blck_1 = 16;
  9633. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9634. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9635. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9636. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9637. for (int64_t ir = bir; ir < bir1; ++ir) {
  9638. // dst indices
  9639. const int64_t i3 = ir/(ne2*ne1);
  9640. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9641. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9642. const int64_t i02 = i2;
  9643. const int64_t i03 = i3;
  9644. //const int64_t i10 = i1;
  9645. const int64_t i12 = i2;
  9646. const int64_t i13 = i3;
  9647. #if GGML_VEC_MAD_UNROLL > 2
  9648. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9649. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9650. const int64_t i11 = i01;
  9651. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9652. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9653. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9654. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9655. }
  9656. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9657. const int64_t i11 = i01;
  9658. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9659. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9660. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9661. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9662. }
  9663. #else
  9664. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9665. const int64_t i11 = i01;
  9666. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9667. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9668. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9669. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9670. }
  9671. #endif
  9672. }
  9673. }
  9674. }
  9675. //int64_t t1 = ggml_perf_time_us();
  9676. //static int64_t acc = 0;
  9677. //acc += t1 - t0;
  9678. //if (t1 - t0 > 10) {
  9679. // printf("\n");
  9680. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9681. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9682. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9683. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9684. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9685. //}
  9686. }
  9687. static void ggml_compute_forward_out_prod_q_f32(
  9688. const struct ggml_compute_params * params,
  9689. const struct ggml_tensor * src0,
  9690. const struct ggml_tensor * src1,
  9691. struct ggml_tensor * dst) {
  9692. // int64_t t0 = ggml_perf_time_us();
  9693. // UNUSED(t0);
  9694. GGML_TENSOR_BINARY_OP_LOCALS;
  9695. const int ith = params->ith;
  9696. const int nth = params->nth;
  9697. const enum ggml_type type = src0->type;
  9698. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9699. GGML_ASSERT(ne02 == ne12);
  9700. GGML_ASSERT(ne03 == ne13);
  9701. GGML_ASSERT(ne2 == ne12);
  9702. GGML_ASSERT(ne3 == ne13);
  9703. // we don't support permuted src0 dim0
  9704. GGML_ASSERT(nb00 == ggml_type_size(type));
  9705. // dst dim0 cannot be transposed or permuted
  9706. GGML_ASSERT(nb0 == sizeof(float));
  9707. // GGML_ASSERT(nb0 <= nb1);
  9708. // GGML_ASSERT(nb1 <= nb2);
  9709. // GGML_ASSERT(nb2 <= nb3);
  9710. GGML_ASSERT(ne0 == ne00);
  9711. GGML_ASSERT(ne1 == ne10);
  9712. GGML_ASSERT(ne2 == ne02);
  9713. GGML_ASSERT(ne3 == ne03);
  9714. // nb01 >= nb00 - src0 is not transposed
  9715. // compute by src0 rows
  9716. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9717. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9718. if (params->type == GGML_TASK_INIT) {
  9719. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9720. return;
  9721. }
  9722. if (params->type == GGML_TASK_FINALIZE) {
  9723. return;
  9724. }
  9725. // parallelize by last three dimensions
  9726. // total rows in dst
  9727. const int64_t nr = ne1*ne2*ne3;
  9728. // rows per thread
  9729. const int64_t dr = (nr + nth - 1)/nth;
  9730. // row range for this thread
  9731. const int64_t ir0 = dr*ith;
  9732. const int64_t ir1 = MIN(ir0 + dr, nr);
  9733. // dst[:,:,:,:] = 0
  9734. // for i2,i3:
  9735. // for i1:
  9736. // for i01:
  9737. // for i0:
  9738. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9739. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9740. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9741. // dst indices
  9742. const int64_t i3 = ir/(ne2*ne1);
  9743. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9744. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9745. const int64_t i02 = i2;
  9746. const int64_t i03 = i3;
  9747. //const int64_t i10 = i1;
  9748. const int64_t i12 = i2;
  9749. const int64_t i13 = i3;
  9750. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9751. const int64_t i11 = i01;
  9752. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9753. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9754. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9755. dequantize_row_q(s0, wdata, ne0);
  9756. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9757. }
  9758. }
  9759. //int64_t t1 = ggml_perf_time_us();
  9760. //static int64_t acc = 0;
  9761. //acc += t1 - t0;
  9762. //if (t1 - t0 > 10) {
  9763. // printf("\n");
  9764. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9765. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9766. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9767. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9768. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9769. //}
  9770. }
  9771. static void ggml_compute_forward_out_prod(
  9772. const struct ggml_compute_params * params,
  9773. const struct ggml_tensor * src0,
  9774. const struct ggml_tensor * src1,
  9775. struct ggml_tensor * dst) {
  9776. switch (src0->type) {
  9777. case GGML_TYPE_Q4_0:
  9778. case GGML_TYPE_Q4_1:
  9779. case GGML_TYPE_Q5_0:
  9780. case GGML_TYPE_Q5_1:
  9781. case GGML_TYPE_Q8_0:
  9782. case GGML_TYPE_Q2_K:
  9783. case GGML_TYPE_Q3_K:
  9784. case GGML_TYPE_Q4_K:
  9785. case GGML_TYPE_Q5_K:
  9786. case GGML_TYPE_Q6_K:
  9787. {
  9788. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9789. } break;
  9790. case GGML_TYPE_F16:
  9791. {
  9792. GGML_ASSERT(false); // todo
  9793. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9794. } break;
  9795. case GGML_TYPE_F32:
  9796. {
  9797. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9798. } break;
  9799. default:
  9800. {
  9801. GGML_ASSERT(false);
  9802. } break;
  9803. }
  9804. }
  9805. // ggml_compute_forward_scale
  9806. static void ggml_compute_forward_scale_f32(
  9807. const struct ggml_compute_params * params,
  9808. const struct ggml_tensor * src0,
  9809. const struct ggml_tensor * src1,
  9810. struct ggml_tensor * dst) {
  9811. GGML_ASSERT(ggml_is_contiguous(src0));
  9812. GGML_ASSERT(ggml_is_contiguous(dst));
  9813. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9814. GGML_ASSERT(ggml_is_scalar(src1));
  9815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9816. return;
  9817. }
  9818. // scale factor
  9819. const float v = *(float *) src1->data;
  9820. const int ith = params->ith;
  9821. const int nth = params->nth;
  9822. const int nc = src0->ne[0];
  9823. const int nr = ggml_nrows(src0);
  9824. // rows per thread
  9825. const int dr = (nr + nth - 1)/nth;
  9826. // row range for this thread
  9827. const int ir0 = dr*ith;
  9828. const int ir1 = MIN(ir0 + dr, nr);
  9829. const size_t nb01 = src0->nb[1];
  9830. const size_t nb1 = dst->nb[1];
  9831. for (int i1 = ir0; i1 < ir1; i1++) {
  9832. if (dst->data != src0->data) {
  9833. // src0 is same shape as dst => same indices
  9834. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9835. }
  9836. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9837. }
  9838. }
  9839. static void ggml_compute_forward_scale(
  9840. const struct ggml_compute_params * params,
  9841. const struct ggml_tensor * src0,
  9842. const struct ggml_tensor * src1,
  9843. struct ggml_tensor * dst) {
  9844. switch (src0->type) {
  9845. case GGML_TYPE_F32:
  9846. {
  9847. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9848. } break;
  9849. default:
  9850. {
  9851. GGML_ASSERT(false);
  9852. } break;
  9853. }
  9854. }
  9855. // ggml_compute_forward_set
  9856. static void ggml_compute_forward_set_f32(
  9857. const struct ggml_compute_params * params,
  9858. const struct ggml_tensor * src0,
  9859. const struct ggml_tensor * src1,
  9860. struct ggml_tensor * dst) {
  9861. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9862. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9863. // view src0 and dst with these strides and data offset inbytes during set
  9864. // nb0 is implicitely element_size because src0 and dst are contiguous
  9865. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9866. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9867. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9868. size_t offset = ((int32_t *) dst->op_params)[3];
  9869. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9870. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9871. // memcpy needs to be synchronized across threads to avoid race conditions.
  9872. // => do it in INIT phase
  9873. memcpy(
  9874. ((char *) dst->data),
  9875. ((char *) src0->data),
  9876. ggml_nbytes(dst));
  9877. }
  9878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9879. return;
  9880. }
  9881. const int ith = params->ith;
  9882. const int nth = params->nth;
  9883. const int nr = ggml_nrows(src1);
  9884. const int nc = src1->ne[0];
  9885. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9886. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9887. // src0 and dst as viewed during set
  9888. const size_t nb0 = ggml_element_size(src0);
  9889. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9890. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9891. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9892. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9893. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9894. GGML_ASSERT(nb10 == sizeof(float));
  9895. // rows per thread
  9896. const int dr = (nr + nth - 1)/nth;
  9897. // row range for this thread
  9898. const int ir0 = dr*ith;
  9899. const int ir1 = MIN(ir0 + dr, nr);
  9900. for (int ir = ir0; ir < ir1; ++ir) {
  9901. // src0 and dst are viewed with shape of src1 and offset
  9902. // => same indices
  9903. const int i3 = ir/(ne12*ne11);
  9904. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9905. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9906. ggml_vec_cpy_f32(nc,
  9907. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9908. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9909. }
  9910. }
  9911. static void ggml_compute_forward_set(
  9912. const struct ggml_compute_params * params,
  9913. const struct ggml_tensor * src0,
  9914. const struct ggml_tensor * src1,
  9915. struct ggml_tensor * dst) {
  9916. switch (src0->type) {
  9917. case GGML_TYPE_F32:
  9918. {
  9919. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9920. } break;
  9921. case GGML_TYPE_F16:
  9922. case GGML_TYPE_Q4_0:
  9923. case GGML_TYPE_Q4_1:
  9924. case GGML_TYPE_Q5_0:
  9925. case GGML_TYPE_Q5_1:
  9926. case GGML_TYPE_Q8_0:
  9927. case GGML_TYPE_Q8_1:
  9928. case GGML_TYPE_Q2_K:
  9929. case GGML_TYPE_Q3_K:
  9930. case GGML_TYPE_Q4_K:
  9931. case GGML_TYPE_Q5_K:
  9932. case GGML_TYPE_Q6_K:
  9933. default:
  9934. {
  9935. GGML_ASSERT(false);
  9936. } break;
  9937. }
  9938. }
  9939. // ggml_compute_forward_cpy
  9940. static void ggml_compute_forward_cpy(
  9941. const struct ggml_compute_params * params,
  9942. const struct ggml_tensor * src0,
  9943. struct ggml_tensor * dst) {
  9944. ggml_compute_forward_dup(params, src0, dst);
  9945. }
  9946. // ggml_compute_forward_cont
  9947. static void ggml_compute_forward_cont(
  9948. const struct ggml_compute_params * params,
  9949. const struct ggml_tensor * src0,
  9950. struct ggml_tensor * dst) {
  9951. ggml_compute_forward_dup(params, src0, dst);
  9952. }
  9953. // ggml_compute_forward_reshape
  9954. static void ggml_compute_forward_reshape(
  9955. const struct ggml_compute_params * params,
  9956. const struct ggml_tensor * src0,
  9957. struct ggml_tensor * dst) {
  9958. // NOP
  9959. UNUSED(params);
  9960. UNUSED(src0);
  9961. UNUSED(dst);
  9962. }
  9963. // ggml_compute_forward_view
  9964. static void ggml_compute_forward_view(
  9965. const struct ggml_compute_params * params,
  9966. const struct ggml_tensor * src0) {
  9967. // NOP
  9968. UNUSED(params);
  9969. UNUSED(src0);
  9970. }
  9971. // ggml_compute_forward_permute
  9972. static void ggml_compute_forward_permute(
  9973. const struct ggml_compute_params * params,
  9974. const struct ggml_tensor * src0) {
  9975. // NOP
  9976. UNUSED(params);
  9977. UNUSED(src0);
  9978. }
  9979. // ggml_compute_forward_transpose
  9980. static void ggml_compute_forward_transpose(
  9981. const struct ggml_compute_params * params,
  9982. const struct ggml_tensor * src0) {
  9983. // NOP
  9984. UNUSED(params);
  9985. UNUSED(src0);
  9986. }
  9987. // ggml_compute_forward_get_rows
  9988. static void ggml_compute_forward_get_rows_q(
  9989. const struct ggml_compute_params * params,
  9990. const struct ggml_tensor * src0,
  9991. const struct ggml_tensor * src1,
  9992. struct ggml_tensor * dst) {
  9993. assert(params->ith == 0);
  9994. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9995. return;
  9996. }
  9997. const int nc = src0->ne[0];
  9998. const int nr = ggml_nelements(src1);
  9999. const enum ggml_type type = src0->type;
  10000. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10001. assert( dst->ne[0] == nc);
  10002. assert( dst->ne[1] == nr);
  10003. assert(src0->nb[0] == ggml_type_size(type));
  10004. for (int i = 0; i < nr; ++i) {
  10005. const int r = ((int32_t *) src1->data)[i];
  10006. dequantize_row_q(
  10007. (const void *) ((char *) src0->data + r*src0->nb[1]),
  10008. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  10009. }
  10010. }
  10011. static void ggml_compute_forward_get_rows_f16(
  10012. const struct ggml_compute_params * params,
  10013. const struct ggml_tensor * src0,
  10014. const struct ggml_tensor * src1,
  10015. struct ggml_tensor * dst) {
  10016. assert(params->ith == 0);
  10017. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10018. return;
  10019. }
  10020. const int nc = src0->ne[0];
  10021. const int nr = ggml_nelements(src1);
  10022. assert( dst->ne[0] == nc);
  10023. assert( dst->ne[1] == nr);
  10024. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  10025. for (int i = 0; i < nr; ++i) {
  10026. const int r = ((int32_t *) src1->data)[i];
  10027. for (int j = 0; j < nc; ++j) {
  10028. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  10029. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  10030. }
  10031. }
  10032. }
  10033. static void ggml_compute_forward_get_rows_f32(
  10034. const struct ggml_compute_params * params,
  10035. const struct ggml_tensor * src0,
  10036. const struct ggml_tensor * src1,
  10037. struct ggml_tensor * dst) {
  10038. assert(params->ith == 0);
  10039. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10040. return;
  10041. }
  10042. const int nc = src0->ne[0];
  10043. const int nr = ggml_nelements(src1);
  10044. assert( dst->ne[0] == nc);
  10045. assert( dst->ne[1] == nr);
  10046. assert(src0->nb[0] == sizeof(float));
  10047. for (int i = 0; i < nr; ++i) {
  10048. const int r = ((int32_t *) src1->data)[i];
  10049. ggml_vec_cpy_f32(nc,
  10050. (float *) ((char *) dst->data + i*dst->nb[1]),
  10051. (float *) ((char *) src0->data + r*src0->nb[1]));
  10052. }
  10053. }
  10054. static void ggml_compute_forward_get_rows(
  10055. const struct ggml_compute_params * params,
  10056. const struct ggml_tensor * src0,
  10057. const struct ggml_tensor * src1,
  10058. struct ggml_tensor * dst) {
  10059. switch (src0->type) {
  10060. case GGML_TYPE_Q4_0:
  10061. case GGML_TYPE_Q4_1:
  10062. case GGML_TYPE_Q5_0:
  10063. case GGML_TYPE_Q5_1:
  10064. case GGML_TYPE_Q8_0:
  10065. case GGML_TYPE_Q8_1:
  10066. case GGML_TYPE_Q2_K:
  10067. case GGML_TYPE_Q3_K:
  10068. case GGML_TYPE_Q4_K:
  10069. case GGML_TYPE_Q5_K:
  10070. case GGML_TYPE_Q6_K:
  10071. {
  10072. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  10073. } break;
  10074. case GGML_TYPE_F16:
  10075. {
  10076. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  10077. } break;
  10078. case GGML_TYPE_F32:
  10079. {
  10080. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  10081. } break;
  10082. default:
  10083. {
  10084. GGML_ASSERT(false);
  10085. } break;
  10086. }
  10087. //static bool first = true;
  10088. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10089. //if (first) {
  10090. // first = false;
  10091. //} else {
  10092. // for (int k = 0; k < dst->ne[1]; ++k) {
  10093. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10094. // for (int i = 0; i < 16; ++i) {
  10095. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10096. // }
  10097. // printf("\n");
  10098. // }
  10099. // printf("\n");
  10100. // }
  10101. // printf("\n");
  10102. // exit(0);
  10103. //}
  10104. }
  10105. // ggml_compute_forward_get_rows_back
  10106. static void ggml_compute_forward_get_rows_back_f32_f16(
  10107. const struct ggml_compute_params * params,
  10108. const struct ggml_tensor * src0,
  10109. const struct ggml_tensor * src1,
  10110. struct ggml_tensor * dst) {
  10111. GGML_ASSERT(params->ith == 0);
  10112. GGML_ASSERT(ggml_is_contiguous(dst));
  10113. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10114. if (params->type == GGML_TASK_INIT) {
  10115. memset(dst->data, 0, ggml_nbytes(dst));
  10116. }
  10117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10118. return;
  10119. }
  10120. const int nc = src0->ne[0];
  10121. const int nr = ggml_nelements(src1);
  10122. GGML_ASSERT( dst->ne[0] == nc);
  10123. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10124. for (int i = 0; i < nr; ++i) {
  10125. const int r = ((int32_t *) src1->data)[i];
  10126. for (int j = 0; j < nc; ++j) {
  10127. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10128. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10129. }
  10130. }
  10131. }
  10132. static void ggml_compute_forward_get_rows_back_f32(
  10133. const struct ggml_compute_params * params,
  10134. const struct ggml_tensor * src0,
  10135. const struct ggml_tensor * src1,
  10136. struct ggml_tensor * dst) {
  10137. GGML_ASSERT(params->ith == 0);
  10138. GGML_ASSERT(ggml_is_contiguous(dst));
  10139. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10140. if (params->type == GGML_TASK_INIT) {
  10141. memset(dst->data, 0, ggml_nbytes(dst));
  10142. }
  10143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10144. return;
  10145. }
  10146. const int nc = src0->ne[0];
  10147. const int nr = ggml_nelements(src1);
  10148. GGML_ASSERT( dst->ne[0] == nc);
  10149. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10150. for (int i = 0; i < nr; ++i) {
  10151. const int r = ((int32_t *) src1->data)[i];
  10152. ggml_vec_add_f32(nc,
  10153. (float *) ((char *) dst->data + r*dst->nb[1]),
  10154. (float *) ((char *) dst->data + r*dst->nb[1]),
  10155. (float *) ((char *) src0->data + i*src0->nb[1]));
  10156. }
  10157. }
  10158. static void ggml_compute_forward_get_rows_back(
  10159. const struct ggml_compute_params * params,
  10160. const struct ggml_tensor * src0,
  10161. const struct ggml_tensor * src1,
  10162. struct ggml_tensor * dst) {
  10163. switch (src0->type) {
  10164. case GGML_TYPE_F16:
  10165. {
  10166. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  10167. } break;
  10168. case GGML_TYPE_F32:
  10169. {
  10170. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  10171. } break;
  10172. default:
  10173. {
  10174. GGML_ASSERT(false);
  10175. } break;
  10176. }
  10177. //static bool first = true;
  10178. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10179. //if (first) {
  10180. // first = false;
  10181. //} else {
  10182. // for (int k = 0; k < dst->ne[1]; ++k) {
  10183. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10184. // for (int i = 0; i < 16; ++i) {
  10185. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10186. // }
  10187. // printf("\n");
  10188. // }
  10189. // printf("\n");
  10190. // }
  10191. // printf("\n");
  10192. // exit(0);
  10193. //}
  10194. }
  10195. // ggml_compute_forward_diag
  10196. static void ggml_compute_forward_diag_f32(
  10197. const struct ggml_compute_params * params,
  10198. const struct ggml_tensor * src0,
  10199. struct ggml_tensor * dst) {
  10200. GGML_ASSERT(params->ith == 0);
  10201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10202. return;
  10203. }
  10204. // TODO: handle transposed/permuted matrices
  10205. GGML_TENSOR_UNARY_OP_LOCALS;
  10206. GGML_ASSERT(ne00 == ne0);
  10207. GGML_ASSERT(ne00 == ne1);
  10208. GGML_ASSERT(ne01 == 1);
  10209. GGML_ASSERT(ne02 == ne2);
  10210. GGML_ASSERT(ne03 == ne3);
  10211. GGML_ASSERT(nb00 == sizeof(float));
  10212. GGML_ASSERT(nb0 == sizeof(float));
  10213. for (int i3 = 0; i3 < ne3; i3++) {
  10214. for (int i2 = 0; i2 < ne2; i2++) {
  10215. for (int i1 = 0; i1 < ne1; i1++) {
  10216. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10217. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10218. for (int i0 = 0; i0 < i1; i0++) {
  10219. d[i0] = 0;
  10220. }
  10221. d[i1] = s[i1];
  10222. for (int i0 = i1+1; i0 < ne0; i0++) {
  10223. d[i0] = 0;
  10224. }
  10225. }
  10226. }
  10227. }
  10228. }
  10229. static void ggml_compute_forward_diag(
  10230. const struct ggml_compute_params * params,
  10231. const struct ggml_tensor * src0,
  10232. struct ggml_tensor * dst) {
  10233. switch (src0->type) {
  10234. case GGML_TYPE_F32:
  10235. {
  10236. ggml_compute_forward_diag_f32(params, src0, dst);
  10237. } break;
  10238. default:
  10239. {
  10240. GGML_ASSERT(false);
  10241. } break;
  10242. }
  10243. }
  10244. // ggml_compute_forward_diag_mask_inf
  10245. static void ggml_compute_forward_diag_mask_f32(
  10246. const struct ggml_compute_params * params,
  10247. const struct ggml_tensor * src0,
  10248. struct ggml_tensor * dst,
  10249. const float value) {
  10250. const int ith = params->ith;
  10251. const int nth = params->nth;
  10252. const int n_past = ((int32_t *) dst->op_params)[0];
  10253. const bool inplace = src0->data == dst->data;
  10254. GGML_ASSERT(n_past >= 0);
  10255. if (!inplace && (params->type == GGML_TASK_INIT)) {
  10256. // memcpy needs to be synchronized across threads to avoid race conditions.
  10257. // => do it in INIT phase
  10258. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10259. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10260. memcpy(
  10261. ((char *) dst->data),
  10262. ((char *) src0->data),
  10263. ggml_nbytes(dst));
  10264. }
  10265. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10266. return;
  10267. }
  10268. // TODO: handle transposed/permuted matrices
  10269. const int n = ggml_nrows(src0);
  10270. const int nc = src0->ne[0];
  10271. const int nr = src0->ne[1];
  10272. const int nz = n/nr;
  10273. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10274. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10275. for (int k = 0; k < nz; k++) {
  10276. for (int j = ith; j < nr; j += nth) {
  10277. for (int i = n_past; i < nc; i++) {
  10278. if (i > n_past + j) {
  10279. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10280. }
  10281. }
  10282. }
  10283. }
  10284. }
  10285. static void ggml_compute_forward_diag_mask_inf(
  10286. const struct ggml_compute_params * params,
  10287. const struct ggml_tensor * src0,
  10288. struct ggml_tensor * dst) {
  10289. switch (src0->type) {
  10290. case GGML_TYPE_F32:
  10291. {
  10292. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  10293. } break;
  10294. default:
  10295. {
  10296. GGML_ASSERT(false);
  10297. } break;
  10298. }
  10299. }
  10300. static void ggml_compute_forward_diag_mask_zero(
  10301. const struct ggml_compute_params * params,
  10302. const struct ggml_tensor * src0,
  10303. struct ggml_tensor * dst) {
  10304. switch (src0->type) {
  10305. case GGML_TYPE_F32:
  10306. {
  10307. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  10308. } break;
  10309. default:
  10310. {
  10311. GGML_ASSERT(false);
  10312. } break;
  10313. }
  10314. }
  10315. // ggml_compute_forward_soft_max
  10316. static void ggml_compute_forward_soft_max_f32(
  10317. const struct ggml_compute_params * params,
  10318. const struct ggml_tensor * src0,
  10319. struct ggml_tensor * dst) {
  10320. GGML_ASSERT(ggml_is_contiguous(src0));
  10321. GGML_ASSERT(ggml_is_contiguous(dst));
  10322. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10324. return;
  10325. }
  10326. // TODO: handle transposed/permuted matrices
  10327. const int ith = params->ith;
  10328. const int nth = params->nth;
  10329. const int nc = src0->ne[0];
  10330. const int nr = ggml_nrows(src0);
  10331. // rows per thread
  10332. const int dr = (nr + nth - 1)/nth;
  10333. // row range for this thread
  10334. const int ir0 = dr*ith;
  10335. const int ir1 = MIN(ir0 + dr, nr);
  10336. for (int i1 = ir0; i1 < ir1; i1++) {
  10337. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10338. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10339. #ifndef NDEBUG
  10340. for (int i = 0; i < nc; ++i) {
  10341. //printf("p[%d] = %f\n", i, p[i]);
  10342. assert(!isnan(sp[i]));
  10343. }
  10344. #endif
  10345. float max = -INFINITY;
  10346. ggml_vec_max_f32(nc, &max, sp);
  10347. ggml_float sum = 0.0;
  10348. uint16_t scvt;
  10349. for (int i = 0; i < nc; i++) {
  10350. if (sp[i] == -INFINITY) {
  10351. dp[i] = 0.0f;
  10352. } else {
  10353. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  10354. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  10355. memcpy(&scvt, &s, sizeof(scvt));
  10356. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  10357. sum += (ggml_float)val;
  10358. dp[i] = val;
  10359. }
  10360. }
  10361. assert(sum > 0.0);
  10362. sum = 1.0/sum;
  10363. ggml_vec_scale_f32(nc, dp, sum);
  10364. #ifndef NDEBUG
  10365. for (int i = 0; i < nc; ++i) {
  10366. assert(!isnan(dp[i]));
  10367. assert(!isinf(dp[i]));
  10368. }
  10369. #endif
  10370. }
  10371. }
  10372. static void ggml_compute_forward_soft_max(
  10373. const struct ggml_compute_params * params,
  10374. const struct ggml_tensor * src0,
  10375. struct ggml_tensor * dst) {
  10376. switch (src0->type) {
  10377. case GGML_TYPE_F32:
  10378. {
  10379. ggml_compute_forward_soft_max_f32(params, src0, dst);
  10380. } break;
  10381. default:
  10382. {
  10383. GGML_ASSERT(false);
  10384. } break;
  10385. }
  10386. }
  10387. // ggml_compute_forward_soft_max_back
  10388. static void ggml_compute_forward_soft_max_back_f32(
  10389. const struct ggml_compute_params * params,
  10390. const struct ggml_tensor * src0,
  10391. const struct ggml_tensor * src1,
  10392. struct ggml_tensor * dst) {
  10393. GGML_ASSERT(ggml_is_contiguous(src0));
  10394. GGML_ASSERT(ggml_is_contiguous(src1));
  10395. GGML_ASSERT(ggml_is_contiguous(dst));
  10396. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10397. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10399. return;
  10400. }
  10401. // TODO: handle transposed/permuted matrices
  10402. const int ith = params->ith;
  10403. const int nth = params->nth;
  10404. const int nc = src0->ne[0];
  10405. const int nr = ggml_nrows(src0);
  10406. // rows per thread
  10407. const int dr = (nr + nth - 1)/nth;
  10408. // row range for this thread
  10409. const int ir0 = dr*ith;
  10410. const int ir1 = MIN(ir0 + dr, nr);
  10411. for (int i1 = ir0; i1 < ir1; i1++) {
  10412. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10413. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10414. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10415. #ifndef NDEBUG
  10416. for (int i = 0; i < nc; ++i) {
  10417. //printf("p[%d] = %f\n", i, p[i]);
  10418. assert(!isnan(dy[i]));
  10419. assert(!isnan(y[i]));
  10420. }
  10421. #endif
  10422. // Jii = yi - yi*yi
  10423. // Jij = -yi*yj
  10424. // J = diag(y)-y.T*y
  10425. // dx = J * dy
  10426. // dxk = sum_i(Jki * dyi)
  10427. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10428. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10429. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10430. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10431. // dxk = -yk * dot(y, dy) + yk*dyk
  10432. // dxk = yk * (- dot(y, dy) + dyk)
  10433. // dxk = yk * (dyk - dot(y, dy))
  10434. //
  10435. // post-order:
  10436. // dot_y_dy := dot(y, dy)
  10437. // dx := dy
  10438. // dx := dx - dot_y_dy
  10439. // dx := dx * y
  10440. // linear runtime, no additional memory
  10441. float dot_y_dy = 0;
  10442. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  10443. ggml_vec_cpy_f32 (nc, dx, dy);
  10444. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10445. ggml_vec_mul_f32 (nc, dx, dx, y);
  10446. #ifndef NDEBUG
  10447. for (int i = 0; i < nc; ++i) {
  10448. assert(!isnan(dx[i]));
  10449. assert(!isinf(dx[i]));
  10450. }
  10451. #endif
  10452. }
  10453. }
  10454. static void ggml_compute_forward_soft_max_back(
  10455. const struct ggml_compute_params * params,
  10456. const struct ggml_tensor * src0,
  10457. const struct ggml_tensor * src1,
  10458. struct ggml_tensor * dst) {
  10459. switch (src0->type) {
  10460. case GGML_TYPE_F32:
  10461. {
  10462. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10463. } break;
  10464. default:
  10465. {
  10466. GGML_ASSERT(false);
  10467. } break;
  10468. }
  10469. }
  10470. // ggml_compute_forward_alibi
  10471. static void ggml_compute_forward_alibi_f32(
  10472. const struct ggml_compute_params * params,
  10473. const struct ggml_tensor * src0,
  10474. struct ggml_tensor * dst) {
  10475. assert(params->ith == 0);
  10476. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10477. return;
  10478. }
  10479. const int n_past = ((int32_t *) dst->op_params)[0];
  10480. const int n_head = ((int32_t *) dst->op_params)[1];
  10481. float max_bias;
  10482. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10483. assert(n_past >= 0);
  10484. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10485. const int ne1 = src0->ne[1]; // seq_len_without_past
  10486. const int ne2 = src0->ne[2]; // n_head -> this is k
  10487. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10488. const int n = ggml_nrows(src0);
  10489. const int ne2_ne3 = n/ne1; // ne2*ne3
  10490. const int nb0 = src0->nb[0];
  10491. const int nb1 = src0->nb[1];
  10492. const int nb2 = src0->nb[2];
  10493. //const int nb3 = src0->nb[3];
  10494. GGML_ASSERT(nb0 == sizeof(float));
  10495. GGML_ASSERT(ne1 + n_past == ne0);
  10496. GGML_ASSERT(n_head == ne2);
  10497. // add alibi to src0 (KQ_scaled)
  10498. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10499. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10500. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10501. for (int i = 0; i < ne0; i++) {
  10502. for (int j = 0; j < ne1; j++) {
  10503. for (int k = 0; k < ne2_ne3; k++) {
  10504. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10505. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10506. // TODO: k*nb2 or k*nb3
  10507. float m_k;
  10508. if (k < n_heads_log2_floor) {
  10509. m_k = powf(m0, k + 1);
  10510. } else {
  10511. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10512. }
  10513. pdst[0] = i * m_k + src[0];
  10514. }
  10515. }
  10516. }
  10517. }
  10518. static void ggml_compute_forward_alibi_f16(
  10519. const struct ggml_compute_params * params,
  10520. const struct ggml_tensor * src0,
  10521. struct ggml_tensor * dst) {
  10522. assert(params->ith == 0);
  10523. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10524. return;
  10525. }
  10526. //const int n_past = ((int32_t *) dst->op_params)[0];
  10527. const int n_head = ((int32_t *) dst->op_params)[1];
  10528. float max_bias;
  10529. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10530. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10531. const int ne1 = src0->ne[1]; // seq_len_without_past
  10532. const int ne2 = src0->ne[2]; // n_head -> this is k
  10533. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10534. const int n = ggml_nrows(src0);
  10535. const int ne2_ne3 = n/ne1; // ne2*ne3
  10536. const int nb0 = src0->nb[0];
  10537. const int nb1 = src0->nb[1];
  10538. const int nb2 = src0->nb[2];
  10539. //const int nb3 = src0->nb[3];
  10540. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10541. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10542. GGML_ASSERT(n_head == ne2);
  10543. // add alibi to src0 (KQ_scaled)
  10544. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10545. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10546. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10547. for (int i = 0; i < ne0; i++) {
  10548. for (int j = 0; j < ne1; j++) {
  10549. for (int k = 0; k < ne2_ne3; k++) {
  10550. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10551. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10552. // TODO: k*nb2 or k*nb3
  10553. float m_k;
  10554. if (k < n_heads_log2_floor) {
  10555. m_k = powf(m0, k + 1);
  10556. } else {
  10557. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10558. }
  10559. // we return F32
  10560. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10561. }
  10562. }
  10563. }
  10564. }
  10565. static void ggml_compute_forward_alibi(
  10566. const struct ggml_compute_params * params,
  10567. const struct ggml_tensor * src0,
  10568. struct ggml_tensor * dst) {
  10569. switch (src0->type) {
  10570. case GGML_TYPE_F16:
  10571. {
  10572. ggml_compute_forward_alibi_f16(params, src0, dst);
  10573. } break;
  10574. case GGML_TYPE_F32:
  10575. {
  10576. ggml_compute_forward_alibi_f32(params, src0, dst);
  10577. } break;
  10578. case GGML_TYPE_Q4_0:
  10579. case GGML_TYPE_Q4_1:
  10580. case GGML_TYPE_Q5_0:
  10581. case GGML_TYPE_Q5_1:
  10582. case GGML_TYPE_Q8_0:
  10583. case GGML_TYPE_Q8_1:
  10584. case GGML_TYPE_Q2_K:
  10585. case GGML_TYPE_Q3_K:
  10586. case GGML_TYPE_Q4_K:
  10587. case GGML_TYPE_Q5_K:
  10588. case GGML_TYPE_Q6_K:
  10589. case GGML_TYPE_Q8_K:
  10590. case GGML_TYPE_I8:
  10591. case GGML_TYPE_I16:
  10592. case GGML_TYPE_I32:
  10593. case GGML_TYPE_COUNT:
  10594. {
  10595. GGML_ASSERT(false);
  10596. } break;
  10597. }
  10598. }
  10599. // ggml_compute_forward_clamp
  10600. static void ggml_compute_forward_clamp_f32(
  10601. const struct ggml_compute_params * params,
  10602. const struct ggml_tensor * src0,
  10603. struct ggml_tensor * dst) {
  10604. assert(params->ith == 0);
  10605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10606. return;
  10607. }
  10608. float min;
  10609. float max;
  10610. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10611. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10612. const int ith = params->ith;
  10613. const int nth = params->nth;
  10614. const int n = ggml_nrows(src0);
  10615. const int nc = src0->ne[0];
  10616. const size_t nb00 = src0->nb[0];
  10617. const size_t nb01 = src0->nb[1];
  10618. const size_t nb0 = dst->nb[0];
  10619. const size_t nb1 = dst->nb[1];
  10620. GGML_ASSERT( nb0 == sizeof(float));
  10621. GGML_ASSERT(nb00 == sizeof(float));
  10622. for (int j = ith; j < n; j += nth) {
  10623. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10624. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10625. for (int i = 0; i < nc; i++) {
  10626. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10627. }
  10628. }
  10629. }
  10630. static void ggml_compute_forward_clamp(
  10631. const struct ggml_compute_params * params,
  10632. const struct ggml_tensor * src0,
  10633. struct ggml_tensor * dst) {
  10634. switch (src0->type) {
  10635. case GGML_TYPE_F32:
  10636. {
  10637. ggml_compute_forward_clamp_f32(params, src0, dst);
  10638. } break;
  10639. case GGML_TYPE_F16:
  10640. case GGML_TYPE_Q4_0:
  10641. case GGML_TYPE_Q4_1:
  10642. case GGML_TYPE_Q5_0:
  10643. case GGML_TYPE_Q5_1:
  10644. case GGML_TYPE_Q8_0:
  10645. case GGML_TYPE_Q8_1:
  10646. case GGML_TYPE_Q2_K:
  10647. case GGML_TYPE_Q3_K:
  10648. case GGML_TYPE_Q4_K:
  10649. case GGML_TYPE_Q5_K:
  10650. case GGML_TYPE_Q6_K:
  10651. case GGML_TYPE_Q8_K:
  10652. case GGML_TYPE_I8:
  10653. case GGML_TYPE_I16:
  10654. case GGML_TYPE_I32:
  10655. case GGML_TYPE_COUNT:
  10656. {
  10657. GGML_ASSERT(false);
  10658. } break;
  10659. }
  10660. }
  10661. // ggml_compute_forward_rope
  10662. static void ggml_compute_forward_rope_f32(
  10663. const struct ggml_compute_params * params,
  10664. const struct ggml_tensor * src0,
  10665. const struct ggml_tensor * src1,
  10666. struct ggml_tensor * dst) {
  10667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10668. return;
  10669. }
  10670. float freq_base;
  10671. float freq_scale;
  10672. // these two only relevant for xPos RoPE:
  10673. float xpos_base;
  10674. bool xpos_down;
  10675. //const int n_past = ((int32_t *) dst->op_params)[0];
  10676. const int n_dims = ((int32_t *) dst->op_params)[1];
  10677. const int mode = ((int32_t *) dst->op_params)[2];
  10678. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10679. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10680. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10681. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10682. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10683. GGML_TENSOR_UNARY_OP_LOCALS;
  10684. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10685. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10686. GGML_ASSERT(nb00 == sizeof(float));
  10687. const int ith = params->ith;
  10688. const int nth = params->nth;
  10689. const int nr = ggml_nrows(dst);
  10690. GGML_ASSERT(n_dims <= ne0);
  10691. GGML_ASSERT(n_dims % 2 == 0);
  10692. // rows per thread
  10693. const int dr = (nr + nth - 1)/nth;
  10694. // row range for this thread
  10695. const int ir0 = dr*ith;
  10696. const int ir1 = MIN(ir0 + dr, nr);
  10697. // row index used to determine which thread to use
  10698. int ir = 0;
  10699. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10700. const bool is_neox = mode & 2;
  10701. const bool is_glm = mode & 4;
  10702. const int32_t * pos = (const int32_t *) src1->data;
  10703. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10704. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10705. const int64_t p = pos[i2];
  10706. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10707. if (ir++ < ir0) continue;
  10708. if (ir > ir1) break;
  10709. float theta = freq_scale * (float)p;
  10710. if (is_glm) {
  10711. theta = MIN(p, n_ctx - 2);
  10712. float block_theta = MAX(p - (n_ctx - 2), 0);
  10713. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10714. const float cos_theta = cosf(theta);
  10715. const float sin_theta = sinf(theta);
  10716. const float cos_block_theta = cosf(block_theta);
  10717. const float sin_block_theta = sinf(block_theta);
  10718. theta *= theta_scale;
  10719. block_theta *= theta_scale;
  10720. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10721. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10722. const float x0 = src[0];
  10723. const float x1 = src[n_dims/2];
  10724. const float x2 = src[n_dims];
  10725. const float x3 = src[n_dims/2*3];
  10726. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10727. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10728. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10729. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10730. }
  10731. } else if (!is_neox) {
  10732. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10733. const float cos_theta = cosf(theta);
  10734. const float sin_theta = sinf(theta);
  10735. // zeta scaling for xPos only:
  10736. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10737. if (xpos_down) zeta = 1.0f / zeta;
  10738. theta *= theta_scale;
  10739. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10740. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10741. const float x0 = src[0];
  10742. const float x1 = src[1];
  10743. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10744. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10745. }
  10746. } else {
  10747. // TODO: this might be wrong for ne0 != n_dims - need double check
  10748. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10749. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10750. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10751. const float cos_theta = cosf(theta);
  10752. const float sin_theta = sinf(theta);
  10753. theta *= theta_scale;
  10754. const int64_t i0 = ib*n_dims + ic/2;
  10755. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10756. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10757. const float x0 = src[0];
  10758. const float x1 = src[n_dims/2];
  10759. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10760. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10761. }
  10762. }
  10763. }
  10764. }
  10765. }
  10766. }
  10767. }
  10768. static void ggml_compute_forward_rope_f16(
  10769. const struct ggml_compute_params * params,
  10770. const struct ggml_tensor * src0,
  10771. const struct ggml_tensor * src1,
  10772. struct ggml_tensor * dst) {
  10773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10774. return;
  10775. }
  10776. float freq_base;
  10777. float freq_scale;
  10778. //const int n_past = ((int32_t *) dst->op_params)[0];
  10779. const int n_dims = ((int32_t *) dst->op_params)[1];
  10780. const int mode = ((int32_t *) dst->op_params)[2];
  10781. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10782. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10783. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10784. GGML_TENSOR_UNARY_OP_LOCALS;
  10785. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10786. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10787. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10788. const int ith = params->ith;
  10789. const int nth = params->nth;
  10790. const int nr = ggml_nrows(dst);
  10791. GGML_ASSERT(n_dims <= ne0);
  10792. GGML_ASSERT(n_dims % 2 == 0);
  10793. // rows per thread
  10794. const int dr = (nr + nth - 1)/nth;
  10795. // row range for this thread
  10796. const int ir0 = dr*ith;
  10797. const int ir1 = MIN(ir0 + dr, nr);
  10798. // row index used to determine which thread to use
  10799. int ir = 0;
  10800. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10801. const bool is_neox = mode & 2;
  10802. const bool is_glm = mode & 4;
  10803. const int32_t * pos = (const int32_t *) src1->data;
  10804. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10805. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10806. const int64_t p = pos[i2];
  10807. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10808. if (ir++ < ir0) continue;
  10809. if (ir > ir1) break;
  10810. float theta = freq_scale * (float)p;
  10811. if (is_glm) {
  10812. theta = MIN(p, n_ctx - 2);
  10813. float block_theta = MAX(p - (n_ctx - 2), 0);
  10814. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10815. const float cos_theta = cosf(theta);
  10816. const float sin_theta = sinf(theta);
  10817. const float cos_block_theta = cosf(block_theta);
  10818. const float sin_block_theta = sinf(block_theta);
  10819. theta *= theta_scale;
  10820. block_theta *= theta_scale;
  10821. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10822. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10823. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10824. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10825. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10826. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10827. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10828. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10829. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10830. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10831. }
  10832. } if (!is_neox) {
  10833. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10834. const float cos_theta = cosf(theta);
  10835. const float sin_theta = sinf(theta);
  10836. theta *= theta_scale;
  10837. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10838. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10839. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10840. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10841. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10842. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10843. }
  10844. } else {
  10845. // TODO: this might be wrong for ne0 != n_dims - need double check
  10846. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10847. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10848. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10849. const float cos_theta = cosf(theta);
  10850. const float sin_theta = sinf(theta);
  10851. theta *= theta_scale;
  10852. const int64_t i0 = ib*n_dims + ic/2;
  10853. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10854. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10855. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10856. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10857. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10858. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10859. }
  10860. }
  10861. }
  10862. }
  10863. }
  10864. }
  10865. }
  10866. static void ggml_compute_forward_rope(
  10867. const struct ggml_compute_params * params,
  10868. const struct ggml_tensor * src0,
  10869. const struct ggml_tensor * src1,
  10870. struct ggml_tensor * dst) {
  10871. switch (src0->type) {
  10872. case GGML_TYPE_F16:
  10873. {
  10874. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10875. } break;
  10876. case GGML_TYPE_F32:
  10877. {
  10878. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10879. } break;
  10880. default:
  10881. {
  10882. GGML_ASSERT(false);
  10883. } break;
  10884. }
  10885. }
  10886. // ggml_compute_forward_rope_back
  10887. static void ggml_compute_forward_rope_back_f32(
  10888. const struct ggml_compute_params * params,
  10889. const struct ggml_tensor * src0,
  10890. const struct ggml_tensor * src1,
  10891. struct ggml_tensor * dst) {
  10892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10893. return;
  10894. }
  10895. // y = rope(x, src1)
  10896. // dx = rope_back(dy, src1)
  10897. // src0 is dy, src1 contains options
  10898. float freq_base;
  10899. float freq_scale;
  10900. // these two only relevant for xPos RoPE:
  10901. float xpos_base;
  10902. bool xpos_down;
  10903. //const int n_past = ((int32_t *) dst->op_params)[0];
  10904. const int n_dims = ((int32_t *) dst->op_params)[1];
  10905. const int mode = ((int32_t *) dst->op_params)[2];
  10906. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10907. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10908. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10909. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10910. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10911. GGML_TENSOR_UNARY_OP_LOCALS;
  10912. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10913. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10914. assert(nb0 == sizeof(float));
  10915. const int ith = params->ith;
  10916. const int nth = params->nth;
  10917. const int nr = ggml_nrows(dst);
  10918. // rows per thread
  10919. const int dr = (nr + nth - 1)/nth;
  10920. // row range for this thread
  10921. const int ir0 = dr*ith;
  10922. const int ir1 = MIN(ir0 + dr, nr);
  10923. // row index used to determine which thread to use
  10924. int ir = 0;
  10925. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10926. const bool is_neox = mode & 2;
  10927. const int32_t * pos = (const int32_t *) src1->data;
  10928. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10929. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10930. const int64_t p = pos[i2];
  10931. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10932. if (ir++ < ir0) continue;
  10933. if (ir > ir1) break;
  10934. float theta = freq_scale * (float)p;
  10935. if (!is_neox) {
  10936. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10937. const float cos_theta = cosf(theta);
  10938. const float sin_theta = sinf(theta);
  10939. // zeta scaling for xPos only:
  10940. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10941. if (xpos_down) zeta = 1.0f / zeta;
  10942. theta *= theta_scale;
  10943. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10944. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10945. const float dy0 = dy[0];
  10946. const float dy1 = dy[1];
  10947. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10948. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10949. }
  10950. } else {
  10951. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10952. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10953. const float cos_theta = cosf(theta);
  10954. const float sin_theta = sinf(theta);
  10955. theta *= theta_scale;
  10956. const int64_t i0 = ib*n_dims + ic/2;
  10957. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10958. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10959. const float dy0 = dy[0];
  10960. const float dy1 = dy[n_dims/2];
  10961. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10962. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10963. }
  10964. }
  10965. }
  10966. }
  10967. }
  10968. }
  10969. }
  10970. static void ggml_compute_forward_rope_back_f16(
  10971. const struct ggml_compute_params * params,
  10972. const struct ggml_tensor * src0,
  10973. const struct ggml_tensor * src1,
  10974. struct ggml_tensor * dst) {
  10975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10976. return;
  10977. }
  10978. // y = rope(x, src1)
  10979. // dx = rope_back(dy, src1)
  10980. // src0 is dy, src1 contains options
  10981. //const int n_past = ((int32_t *) dst->op_params)[0];
  10982. const int n_dims = ((int32_t *) dst->op_params)[1];
  10983. const int mode = ((int32_t *) dst->op_params)[2];
  10984. GGML_TENSOR_UNARY_OP_LOCALS;
  10985. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10986. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10987. assert(nb0 == sizeof(ggml_fp16_t));
  10988. const int ith = params->ith;
  10989. const int nth = params->nth;
  10990. const int nr = ggml_nrows(dst);
  10991. // rows per thread
  10992. const int dr = (nr + nth - 1)/nth;
  10993. // row range for this thread
  10994. const int ir0 = dr*ith;
  10995. const int ir1 = MIN(ir0 + dr, nr);
  10996. // row index used to determine which thread to use
  10997. int ir = 0;
  10998. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10999. const bool is_neox = mode & 2;
  11000. const int32_t * pos = (const int32_t *) src1->data;
  11001. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11002. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11003. const int64_t p = pos[i2];
  11004. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11005. if (ir++ < ir0) continue;
  11006. if (ir > ir1) break;
  11007. float theta = (float)p;
  11008. if (!is_neox) {
  11009. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11010. const float cos_theta = cosf(theta);
  11011. const float sin_theta = sinf(theta);
  11012. theta *= theta_scale;
  11013. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11014. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11015. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  11016. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  11017. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  11018. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  11019. }
  11020. } else {
  11021. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  11022. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  11023. const float cos_theta = cosf(theta);
  11024. const float sin_theta = sinf(theta);
  11025. theta *= theta_scale;
  11026. const int64_t i0 = ib*n_dims + ic/2;
  11027. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11028. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11029. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  11030. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  11031. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  11032. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  11033. }
  11034. }
  11035. }
  11036. }
  11037. }
  11038. }
  11039. }
  11040. static void ggml_compute_forward_rope_back(
  11041. const struct ggml_compute_params * params,
  11042. const struct ggml_tensor * src0,
  11043. const struct ggml_tensor * src1,
  11044. struct ggml_tensor * dst) {
  11045. switch (src0->type) {
  11046. case GGML_TYPE_F16:
  11047. {
  11048. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  11049. } break;
  11050. case GGML_TYPE_F32:
  11051. {
  11052. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  11053. } break;
  11054. default:
  11055. {
  11056. GGML_ASSERT(false);
  11057. } break;
  11058. }
  11059. }
  11060. // ggml_compute_forward_conv_1d
  11061. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  11062. const struct ggml_compute_params * params,
  11063. const struct ggml_tensor * src0,
  11064. const struct ggml_tensor * src1,
  11065. struct ggml_tensor * dst) {
  11066. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11067. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11068. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11069. int64_t t0 = ggml_perf_time_us();
  11070. UNUSED(t0);
  11071. GGML_TENSOR_BINARY_OP_LOCALS;
  11072. const int ith = params->ith;
  11073. const int nth = params->nth;
  11074. const int nk = ne00;
  11075. const int nh = nk/2;
  11076. const int ew0 = ggml_up32(ne01);
  11077. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11078. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11079. GGML_ASSERT(nb10 == sizeof(float));
  11080. if (params->type == GGML_TASK_INIT) {
  11081. // TODO: fix this memset (wsize is overestimated)
  11082. memset(params->wdata, 0, params->wsize);
  11083. // prepare kernel data (src0)
  11084. {
  11085. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11086. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11087. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11088. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11089. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  11090. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11091. dst_data[i00*ew0 + i01] = src[i00];
  11092. }
  11093. }
  11094. }
  11095. }
  11096. // prepare source data (src1)
  11097. {
  11098. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  11099. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11100. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11101. ggml_fp16_t * dst_data = wdata;
  11102. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11103. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11104. }
  11105. }
  11106. }
  11107. return;
  11108. }
  11109. if (params->type == GGML_TASK_FINALIZE) {
  11110. return;
  11111. }
  11112. // total rows in dst
  11113. const int nr = ne02;
  11114. // rows per thread
  11115. const int dr = (nr + nth - 1)/nth;
  11116. // row range for this thread
  11117. const int ir0 = dr*ith;
  11118. const int ir1 = MIN(ir0 + dr, nr);
  11119. for (int i1 = ir0; i1 < ir1; i1++) {
  11120. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11121. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  11122. dst_data[i0] = 0;
  11123. for (int k = -nh; k <= nh; k++) {
  11124. float v = 0.0f;
  11125. ggml_vec_dot_f16(ew0, &v,
  11126. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11127. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11128. dst_data[i0] += v;
  11129. }
  11130. }
  11131. }
  11132. }
  11133. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  11134. const struct ggml_compute_params * params,
  11135. const struct ggml_tensor * src0,
  11136. const struct ggml_tensor * src1,
  11137. struct ggml_tensor * dst) {
  11138. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11139. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11140. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11141. int64_t t0 = ggml_perf_time_us();
  11142. UNUSED(t0);
  11143. GGML_TENSOR_BINARY_OP_LOCALS;
  11144. const int ith = params->ith;
  11145. const int nth = params->nth;
  11146. const int nk = ne00;
  11147. const int nh = nk/2;
  11148. const int ew0 = ggml_up32(ne01);
  11149. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11150. GGML_ASSERT(nb00 == sizeof(float));
  11151. GGML_ASSERT(nb10 == sizeof(float));
  11152. if (params->type == GGML_TASK_INIT) {
  11153. // TODO: fix this memset (wsize is overestimated)
  11154. memset(params->wdata, 0, params->wsize);
  11155. // prepare kernel data (src0)
  11156. {
  11157. float * const wdata = (float *) params->wdata + 0;
  11158. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11159. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11160. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11161. float * dst_data = wdata + i02*ew0*ne00;
  11162. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11163. dst_data[i00*ew0 + i01] = src[i00];
  11164. }
  11165. }
  11166. }
  11167. }
  11168. // prepare source data (src1)
  11169. {
  11170. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  11171. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11172. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11173. float * dst_data = wdata;
  11174. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11175. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  11176. }
  11177. }
  11178. }
  11179. return;
  11180. }
  11181. if (params->type == GGML_TASK_FINALIZE) {
  11182. return;
  11183. }
  11184. // total rows in dst
  11185. const int nr = ne02;
  11186. // rows per thread
  11187. const int dr = (nr + nth - 1)/nth;
  11188. // row range for this thread
  11189. const int ir0 = dr*ith;
  11190. const int ir1 = MIN(ir0 + dr, nr);
  11191. for (int i1 = ir0; i1 < ir1; i1++) {
  11192. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11193. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  11194. dst_data[i0] = 0;
  11195. for (int k = -nh; k <= nh; k++) {
  11196. float v = 0.0f;
  11197. ggml_vec_dot_f32(ew0, &v,
  11198. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11199. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11200. dst_data[i0] += v;
  11201. }
  11202. }
  11203. }
  11204. }
  11205. static void ggml_compute_forward_conv_1d_s1_ph(
  11206. const struct ggml_compute_params * params,
  11207. const struct ggml_tensor * src0,
  11208. const struct ggml_tensor * src1,
  11209. struct ggml_tensor * dst) {
  11210. switch (src0->type) {
  11211. case GGML_TYPE_F16:
  11212. {
  11213. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  11214. } break;
  11215. case GGML_TYPE_F32:
  11216. {
  11217. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  11218. } break;
  11219. default:
  11220. {
  11221. GGML_ASSERT(false);
  11222. } break;
  11223. }
  11224. }
  11225. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  11226. const struct ggml_compute_params * params,
  11227. const struct ggml_tensor * src0,
  11228. const struct ggml_tensor * src1,
  11229. struct ggml_tensor * dst) {
  11230. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11231. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11232. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11233. int64_t t0 = ggml_perf_time_us();
  11234. UNUSED(t0);
  11235. GGML_TENSOR_BINARY_OP_LOCALS;
  11236. const int ith = params->ith;
  11237. const int nth = params->nth;
  11238. const int nk = ne00;
  11239. const int nh = nk/2;
  11240. const int ew0 = ggml_up32(ne01);
  11241. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11242. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11243. GGML_ASSERT(nb10 == sizeof(float));
  11244. if (params->type == GGML_TASK_INIT) {
  11245. // TODO: fix this memset (wsize is overestimated)
  11246. memset(params->wdata, 0, params->wsize);
  11247. // prepare kernel data (src0)
  11248. {
  11249. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11250. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11251. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11252. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11253. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  11254. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11255. dst_data[i00*ew0 + i01] = src[i00];
  11256. }
  11257. }
  11258. }
  11259. }
  11260. // prepare source data (src1)
  11261. {
  11262. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  11263. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11264. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11265. ggml_fp16_t * dst_data = wdata;
  11266. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11267. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11268. }
  11269. }
  11270. }
  11271. return;
  11272. }
  11273. if (params->type == GGML_TASK_FINALIZE) {
  11274. return;
  11275. }
  11276. // total rows in dst
  11277. const int nr = ne02;
  11278. // rows per thread
  11279. const int dr = (nr + nth - 1)/nth;
  11280. // row range for this thread
  11281. const int ir0 = dr*ith;
  11282. const int ir1 = MIN(ir0 + dr, nr);
  11283. for (int i1 = ir0; i1 < ir1; i1++) {
  11284. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11285. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  11286. dst_data[i0/2] = 0;
  11287. for (int k = -nh; k <= nh; k++) {
  11288. float v = 0.0f;
  11289. ggml_vec_dot_f16(ew0, &v,
  11290. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11291. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11292. dst_data[i0/2] += v;
  11293. }
  11294. }
  11295. }
  11296. }
  11297. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  11298. const struct ggml_compute_params * params,
  11299. const struct ggml_tensor * src0,
  11300. const struct ggml_tensor * src1,
  11301. struct ggml_tensor * dst) {
  11302. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11303. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11304. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11305. int64_t t0 = ggml_perf_time_us();
  11306. UNUSED(t0);
  11307. GGML_TENSOR_BINARY_OP_LOCALS;
  11308. const int ith = params->ith;
  11309. const int nth = params->nth;
  11310. const int nk = ne00;
  11311. const int nh = nk/2;
  11312. const int ew0 = ggml_up32(ne01);
  11313. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11314. GGML_ASSERT(nb00 == sizeof(float));
  11315. GGML_ASSERT(nb10 == sizeof(float));
  11316. if (params->type == GGML_TASK_INIT) {
  11317. // TODO: fix this memset (wsize is overestimated)
  11318. memset(params->wdata, 0, params->wsize);
  11319. // prepare kernel data (src0)
  11320. {
  11321. float * const wdata = (float *) params->wdata + 0;
  11322. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11323. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11324. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11325. float * dst_data = wdata + i02*ew0*ne00;
  11326. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11327. dst_data[i00*ew0 + i01] = src[i00];
  11328. }
  11329. }
  11330. }
  11331. }
  11332. // prepare source data (src1)
  11333. {
  11334. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  11335. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11336. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11337. float * dst_data = wdata;
  11338. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11339. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  11340. }
  11341. }
  11342. }
  11343. return;
  11344. }
  11345. if (params->type == GGML_TASK_FINALIZE) {
  11346. return;
  11347. }
  11348. // total rows in dst
  11349. const int nr = ne02;
  11350. // rows per thread
  11351. const int dr = (nr + nth - 1)/nth;
  11352. // row range for this thread
  11353. const int ir0 = dr*ith;
  11354. const int ir1 = MIN(ir0 + dr, nr);
  11355. for (int i1 = ir0; i1 < ir1; i1++) {
  11356. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11357. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  11358. dst_data[i0/2] = 0;
  11359. for (int k = -nh; k <= nh; k++) {
  11360. float v = 0.0f;
  11361. ggml_vec_dot_f32(ew0, &v,
  11362. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11363. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11364. dst_data[i0/2] += v;
  11365. }
  11366. }
  11367. }
  11368. }
  11369. static void ggml_compute_forward_conv_1d_s2_ph(
  11370. const struct ggml_compute_params * params,
  11371. const struct ggml_tensor * src0,
  11372. const struct ggml_tensor * src1,
  11373. struct ggml_tensor * dst) {
  11374. switch (src0->type) {
  11375. case GGML_TYPE_F16:
  11376. {
  11377. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  11378. } break;
  11379. case GGML_TYPE_F32:
  11380. {
  11381. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  11382. } break;
  11383. default:
  11384. {
  11385. GGML_ASSERT(false);
  11386. } break;
  11387. }
  11388. }
  11389. // ggml_compute_forward_conv_1d
  11390. static void ggml_compute_forward_conv_1d(
  11391. const struct ggml_compute_params * params,
  11392. const struct ggml_tensor * src0,
  11393. const struct ggml_tensor * src1,
  11394. struct ggml_tensor * dst) {
  11395. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11396. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  11397. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  11398. GGML_ASSERT(d0 == 1); // dilation not supported
  11399. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  11400. if (s0 == 1) {
  11401. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  11402. } else if (s0 == 2) {
  11403. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  11404. } else {
  11405. GGML_ASSERT(false); // only stride 1 and 2 supported
  11406. };
  11407. }
  11408. // ggml_compute_forward_conv_2d
  11409. static void ggml_compute_forward_conv_2d_f16_f32(
  11410. const struct ggml_compute_params * params,
  11411. const struct ggml_tensor * src0,
  11412. const struct ggml_tensor * src1,
  11413. struct ggml_tensor * dst) {
  11414. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11415. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11416. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11417. int64_t t0 = ggml_perf_time_us();
  11418. UNUSED(t0);
  11419. GGML_TENSOR_BINARY_OP_LOCALS;
  11420. const int ith = params->ith;
  11421. const int nth = params->nth;
  11422. const int nk0 = ne00;
  11423. const int nk1 = ne01;
  11424. // size of the convolution row - the kernel size unrolled across all channels
  11425. const int ew0 = nk0*nk1*ne02;
  11426. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11427. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  11428. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  11429. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  11430. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  11431. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  11432. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11433. GGML_ASSERT(nb10 == sizeof(float));
  11434. if (params->type == GGML_TASK_INIT) {
  11435. memset(params->wdata, 0, params->wsize);
  11436. // prepare source data (src1)
  11437. {
  11438. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11439. for (int i12 = 0; i12 < ne12; i12++) {
  11440. const float * const src = (float *)((char *) src1->data + i12*nb12);
  11441. ggml_fp16_t * dst_data = wdata;
  11442. for (int i1 = 0; i1 < ne1; i1++) {
  11443. for (int i0 = 0; i0 < ne0; i0++) {
  11444. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11445. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11446. const int idx0 = i0*s0 + ik0*d0 - p0;
  11447. const int idx1 = i1*s1 + ik1*d1 - p1;
  11448. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  11449. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11450. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  11451. }
  11452. }
  11453. }
  11454. }
  11455. }
  11456. }
  11457. }
  11458. return;
  11459. }
  11460. if (params->type == GGML_TASK_FINALIZE) {
  11461. return;
  11462. }
  11463. // total patches in dst
  11464. const int np = ne2;
  11465. // patches per thread
  11466. const int dp = (np + nth - 1)/nth;
  11467. // patch range for this thread
  11468. const int ip0 = dp*ith;
  11469. const int ip1 = MIN(ip0 + dp, np);
  11470. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11471. for (int i3 = 0; i3 < ne3; i3++) {
  11472. for (int i2 = ip0; i2 < ip1; i2++) {
  11473. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11474. for (int i1 = 0; i1 < ne1; ++i1) {
  11475. for (int i0 = 0; i0 < ne0; ++i0) {
  11476. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11477. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11478. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11479. }
  11480. }
  11481. }
  11482. }
  11483. }
  11484. static void ggml_compute_forward_conv_2d(
  11485. const struct ggml_compute_params * params,
  11486. const struct ggml_tensor * src0,
  11487. const struct ggml_tensor * src1,
  11488. struct ggml_tensor * dst) {
  11489. switch (src0->type) {
  11490. case GGML_TYPE_F16:
  11491. {
  11492. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11493. } break;
  11494. case GGML_TYPE_F32:
  11495. {
  11496. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11497. GGML_ASSERT(false);
  11498. } break;
  11499. default:
  11500. {
  11501. GGML_ASSERT(false);
  11502. } break;
  11503. }
  11504. }
  11505. // ggml_compute_forward_conv_transpose_2d
  11506. static void ggml_compute_forward_conv_transpose_2d(
  11507. const struct ggml_compute_params * params,
  11508. const struct ggml_tensor * src0,
  11509. const struct ggml_tensor * src1,
  11510. struct ggml_tensor * dst) {
  11511. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11512. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11513. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11514. int64_t t0 = ggml_perf_time_us();
  11515. UNUSED(t0);
  11516. GGML_TENSOR_BINARY_OP_LOCALS;
  11517. const int ith = params->ith;
  11518. const int nth = params->nth;
  11519. const int nk = ne00*ne01*ne02*ne03;
  11520. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11521. GGML_ASSERT(nb10 == sizeof(float));
  11522. if (params->type == GGML_TASK_INIT) {
  11523. memset(params->wdata, 0, params->wsize);
  11524. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11525. {
  11526. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11527. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11528. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11529. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11530. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11531. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11532. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11533. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11534. }
  11535. }
  11536. }
  11537. }
  11538. }
  11539. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11540. {
  11541. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11542. for (int i12 = 0; i12 < ne12; i12++) {
  11543. for (int i11 = 0; i11 < ne11; i11++) {
  11544. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11545. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11546. for (int i10 = 0; i10 < ne10; i10++) {
  11547. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11548. }
  11549. }
  11550. }
  11551. }
  11552. return;
  11553. }
  11554. if (params->type == GGML_TASK_FINALIZE) {
  11555. return;
  11556. }
  11557. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11558. // total patches in dst
  11559. const int np = ne2;
  11560. // patches per thread
  11561. const int dp = (np + nth - 1)/nth;
  11562. // patch range for this thread
  11563. const int ip0 = dp*ith;
  11564. const int ip1 = MIN(ip0 + dp, np);
  11565. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11566. ggml_fp16_t * const wdata_src = wdata + nk;
  11567. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11568. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11569. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11570. for (int i11 = 0; i11 < ne11; i11++) {
  11571. for (int i10 = 0; i10 < ne10; i10++) {
  11572. const int i1n = i11*ne10*ne12 + i10*ne12;
  11573. for (int i01 = 0; i01 < ne01; i01++) {
  11574. for (int i00 = 0; i00 < ne00; i00++) {
  11575. float v = 0;
  11576. ggml_vec_dot_f16(ne03, &v,
  11577. wdata_src + i1n,
  11578. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11579. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11580. }
  11581. }
  11582. }
  11583. }
  11584. }
  11585. }
  11586. // ggml_compute_forward_pool_1d_sk_p0
  11587. static void ggml_compute_forward_pool_1d_sk_p0(
  11588. const struct ggml_compute_params * params,
  11589. const enum ggml_op_pool op,
  11590. const struct ggml_tensor * src,
  11591. const int k,
  11592. struct ggml_tensor * dst) {
  11593. assert(src->type == GGML_TYPE_F32);
  11594. assert(params->ith == 0);
  11595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11596. return;
  11597. }
  11598. const char * cdata = (const char *)src->data;
  11599. const char * const data_end = cdata + ggml_nbytes(src);
  11600. float * drow = (float *)dst->data;
  11601. const int64_t rs = dst->ne[0];
  11602. while (cdata < data_end) {
  11603. const float * const srow = (const float *)cdata;
  11604. int j = 0;
  11605. for (int64_t i = 0; i < rs; ++i) {
  11606. switch (op) {
  11607. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11608. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11609. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11610. }
  11611. for (int ki = 0; ki < k; ++ki) {
  11612. switch (op) {
  11613. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11614. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11615. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11616. }
  11617. ++j;
  11618. }
  11619. switch (op) {
  11620. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11621. case GGML_OP_POOL_MAX: break;
  11622. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11623. }
  11624. }
  11625. cdata += src->nb[1];
  11626. drow += rs;
  11627. }
  11628. }
  11629. // ggml_compute_forward_pool_1d
  11630. static void ggml_compute_forward_pool_1d(
  11631. const struct ggml_compute_params * params,
  11632. const struct ggml_tensor * src0,
  11633. struct ggml_tensor * dst) {
  11634. const int32_t * opts = (const int32_t *)dst->op_params;
  11635. enum ggml_op_pool op = opts[0];
  11636. const int k0 = opts[1];
  11637. const int s0 = opts[2];
  11638. const int p0 = opts[3];
  11639. GGML_ASSERT(p0 == 0); // padding not supported
  11640. GGML_ASSERT(k0 == s0); // only s = k supported
  11641. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11642. }
  11643. // ggml_compute_forward_pool_2d_sk_p0
  11644. static void ggml_compute_forward_pool_2d_sk_p0(
  11645. const struct ggml_compute_params * params,
  11646. const enum ggml_op_pool op,
  11647. const struct ggml_tensor * src,
  11648. const int k0,
  11649. const int k1,
  11650. struct ggml_tensor * dst) {
  11651. assert(src->type == GGML_TYPE_F32);
  11652. assert(params->ith == 0);
  11653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11654. return;
  11655. }
  11656. const char * cdata = (const char*)src->data;
  11657. const char * const data_end = cdata + ggml_nbytes(src);
  11658. const int64_t px = dst->ne[0];
  11659. const int64_t py = dst->ne[1];
  11660. const int64_t pa = px * py;
  11661. float * dplane = (float *)dst->data;
  11662. const int ka = k0 * k1;
  11663. while (cdata < data_end) {
  11664. for (int oy = 0; oy < py; ++oy) {
  11665. float * const drow = dplane + oy * px;
  11666. for (int ox = 0; ox < px; ++ox) {
  11667. float * const out = drow + ox;
  11668. switch (op) {
  11669. case GGML_OP_POOL_AVG: *out = 0; break;
  11670. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11671. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11672. }
  11673. const int ix = ox * k0;
  11674. const int iy = oy * k1;
  11675. for (int ky = 0; ky < k1; ++ky) {
  11676. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11677. for (int kx = 0; kx < k0; ++kx) {
  11678. int j = ix + kx;
  11679. switch (op) {
  11680. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11681. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11682. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11683. }
  11684. }
  11685. }
  11686. switch (op) {
  11687. case GGML_OP_POOL_AVG: *out /= ka; break;
  11688. case GGML_OP_POOL_MAX: break;
  11689. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11690. }
  11691. }
  11692. }
  11693. cdata += src->nb[2];
  11694. dplane += pa;
  11695. }
  11696. }
  11697. // ggml_compute_forward_pool_2d
  11698. static void ggml_compute_forward_pool_2d(
  11699. const struct ggml_compute_params * params,
  11700. const struct ggml_tensor * src0,
  11701. struct ggml_tensor * dst) {
  11702. const int32_t * opts = (const int32_t *)dst->op_params;
  11703. enum ggml_op_pool op = opts[0];
  11704. const int k0 = opts[1];
  11705. const int k1 = opts[2];
  11706. const int s0 = opts[3];
  11707. const int s1 = opts[4];
  11708. const int p0 = opts[5];
  11709. const int p1 = opts[6];
  11710. GGML_ASSERT(p0 == 0);
  11711. GGML_ASSERT(p1 == 0); // padding not supported
  11712. GGML_ASSERT(k0 == s0);
  11713. GGML_ASSERT(k1 == s1); // only s = k supported
  11714. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11715. }
  11716. // ggml_compute_forward_upscale
  11717. static void ggml_compute_forward_upscale_f32(
  11718. const struct ggml_compute_params * params,
  11719. const struct ggml_tensor * src0,
  11720. struct ggml_tensor * dst) {
  11721. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11722. return;
  11723. }
  11724. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11725. const int ith = params->ith;
  11726. GGML_TENSOR_UNARY_OP_LOCALS;
  11727. const int scale_factor = dst->op_params[0];
  11728. // TODO: optimize
  11729. for (int i03 = 0; i03 < ne03; i03++) {
  11730. for (int i02 = ith; i02 < ne02; i02++) {
  11731. for (int m = 0; m < dst->ne[1]; m++) {
  11732. int i01 = m / scale_factor;
  11733. for (int n = 0; n < dst->ne[0]; n++) {
  11734. int i00 = n / scale_factor;
  11735. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11736. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11737. *y = *x;
  11738. }
  11739. }
  11740. }
  11741. }
  11742. }
  11743. static void ggml_compute_forward_upscale(
  11744. const struct ggml_compute_params * params,
  11745. const struct ggml_tensor * src0,
  11746. struct ggml_tensor * dst) {
  11747. switch (src0->type) {
  11748. case GGML_TYPE_F32:
  11749. {
  11750. ggml_compute_forward_upscale_f32(params, src0, dst);
  11751. } break;
  11752. default:
  11753. {
  11754. GGML_ASSERT(false);
  11755. } break;
  11756. }
  11757. }
  11758. // ggml_compute_forward_flash_attn
  11759. static void ggml_compute_forward_flash_attn_f32(
  11760. const struct ggml_compute_params * params,
  11761. const struct ggml_tensor * q,
  11762. const struct ggml_tensor * k,
  11763. const struct ggml_tensor * v,
  11764. const bool masked,
  11765. struct ggml_tensor * dst) {
  11766. int64_t t0 = ggml_perf_time_us();
  11767. UNUSED(t0);
  11768. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11769. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11770. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11771. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11772. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11773. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11774. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11775. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11776. const int ith = params->ith;
  11777. const int nth = params->nth;
  11778. const int64_t D = neq0;
  11779. const int64_t N = neq1;
  11780. const int64_t P = nek1 - N;
  11781. const int64_t M = P + N;
  11782. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11783. GGML_ASSERT(ne0 == D);
  11784. GGML_ASSERT(ne1 == N);
  11785. GGML_ASSERT(P >= 0);
  11786. GGML_ASSERT(nbq0 == sizeof(float));
  11787. GGML_ASSERT(nbk0 == sizeof(float));
  11788. GGML_ASSERT(nbv0 == sizeof(float));
  11789. GGML_ASSERT(neq0 == D);
  11790. GGML_ASSERT(nek0 == D);
  11791. GGML_ASSERT(nev1 == D);
  11792. GGML_ASSERT(neq1 == N);
  11793. GGML_ASSERT(nek1 == N + P);
  11794. GGML_ASSERT(nev1 == D);
  11795. // dst cannot be transposed or permuted
  11796. GGML_ASSERT(nb0 == sizeof(float));
  11797. GGML_ASSERT(nb0 <= nb1);
  11798. GGML_ASSERT(nb1 <= nb2);
  11799. GGML_ASSERT(nb2 <= nb3);
  11800. if (params->type == GGML_TASK_INIT) {
  11801. return;
  11802. }
  11803. if (params->type == GGML_TASK_FINALIZE) {
  11804. return;
  11805. }
  11806. // parallelize by q rows using ggml_vec_dot_f32
  11807. // total rows in q
  11808. const int nr = neq1*neq2*neq3;
  11809. // rows per thread
  11810. const int dr = (nr + nth - 1)/nth;
  11811. // row range for this thread
  11812. const int ir0 = dr*ith;
  11813. const int ir1 = MIN(ir0 + dr, nr);
  11814. const float scale = 1.0f/sqrtf(D);
  11815. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11816. for (int ir = ir0; ir < ir1; ++ir) {
  11817. // q indices
  11818. const int iq3 = ir/(neq2*neq1);
  11819. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11820. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11821. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11822. for (int i = M; i < Mup; ++i) {
  11823. S[i] = -INFINITY;
  11824. }
  11825. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11826. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11827. // k indices
  11828. const int ik3 = iq3;
  11829. const int ik2 = iq2 % nek2;
  11830. const int ik1 = ic;
  11831. // S indices
  11832. const int i1 = ik1;
  11833. ggml_vec_dot_f32(neq0,
  11834. S + i1,
  11835. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11836. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11837. }
  11838. // scale
  11839. ggml_vec_scale_f32(masked_begin, S, scale);
  11840. for (int64_t i = masked_begin; i < M; i++) {
  11841. S[i] = -INFINITY;
  11842. }
  11843. // softmax
  11844. // exclude known -INF S[..] values from max and loop
  11845. // dont forget to set their SW values to zero
  11846. {
  11847. float max = -INFINITY;
  11848. ggml_vec_max_f32(masked_begin, &max, S);
  11849. ggml_float sum = 0.0;
  11850. {
  11851. #ifdef GGML_SOFT_MAX_ACCELERATE
  11852. max = -max;
  11853. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11854. vvexpf(S, S, &Mup);
  11855. ggml_vec_sum_f32(Mup, &sum, S);
  11856. #else
  11857. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11858. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11859. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11860. if (i >= masked_begin) {
  11861. break;
  11862. }
  11863. float * SS = S + i;
  11864. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11865. if (i + j >= masked_begin) {
  11866. break;
  11867. } else if (SS[j] == -INFINITY) {
  11868. SS[j] = 0.0f;
  11869. } else {
  11870. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11871. const float val = expf(SS[j] - max);
  11872. #else
  11873. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11874. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11875. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11876. #endif
  11877. sump[j] += (ggml_float)val;
  11878. SS[j] = val;
  11879. }
  11880. }
  11881. }
  11882. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11883. sum += sump[i];
  11884. }
  11885. #endif
  11886. }
  11887. assert(sum > 0.0);
  11888. sum = 1.0/sum;
  11889. ggml_vec_scale_f32(masked_begin, S, sum);
  11890. #ifndef NDEBUG
  11891. for (int i = 0; i < masked_begin; ++i) {
  11892. assert(!isnan(S[i]));
  11893. assert(!isinf(S[i]));
  11894. }
  11895. #endif
  11896. }
  11897. for (int64_t ic = 0; ic < nev1; ++ic) {
  11898. // dst indices
  11899. const int i1 = iq1;
  11900. const int i2 = iq2;
  11901. const int i3 = iq3;
  11902. // v indices
  11903. const int iv2 = iq2 % nev2;
  11904. const int iv3 = iq3;
  11905. ggml_vec_dot_f32(masked_begin,
  11906. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11907. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11908. S);
  11909. }
  11910. }
  11911. }
  11912. static void ggml_compute_forward_flash_attn_f16(
  11913. const struct ggml_compute_params * params,
  11914. const struct ggml_tensor * q,
  11915. const struct ggml_tensor * k,
  11916. const struct ggml_tensor * v,
  11917. const bool masked,
  11918. struct ggml_tensor * dst) {
  11919. int64_t t0 = ggml_perf_time_us();
  11920. UNUSED(t0);
  11921. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11922. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11923. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11924. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11925. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11926. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11927. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11928. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11929. const int ith = params->ith;
  11930. const int nth = params->nth;
  11931. const int64_t D = neq0;
  11932. const int64_t N = neq1;
  11933. const int64_t P = nek1 - N;
  11934. const int64_t M = P + N;
  11935. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11936. GGML_ASSERT(ne0 == D);
  11937. GGML_ASSERT(ne1 == N);
  11938. GGML_ASSERT(P >= 0);
  11939. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11940. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11941. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11942. GGML_ASSERT(neq0 == D);
  11943. GGML_ASSERT(nek0 == D);
  11944. GGML_ASSERT(nev1 == D);
  11945. GGML_ASSERT(neq1 == N);
  11946. GGML_ASSERT(nek1 == N + P);
  11947. GGML_ASSERT(nev1 == D);
  11948. // dst cannot be transposed or permuted
  11949. GGML_ASSERT(nb0 == sizeof(float));
  11950. GGML_ASSERT(nb0 <= nb1);
  11951. GGML_ASSERT(nb1 <= nb2);
  11952. GGML_ASSERT(nb2 <= nb3);
  11953. if (params->type == GGML_TASK_INIT) {
  11954. return;
  11955. }
  11956. if (params->type == GGML_TASK_FINALIZE) {
  11957. return;
  11958. }
  11959. // parallelize by q rows using ggml_vec_dot_f32
  11960. // total rows in q
  11961. const int nr = neq1*neq2*neq3;
  11962. // rows per thread
  11963. const int dr = (nr + nth - 1)/nth;
  11964. // row range for this thread
  11965. const int ir0 = dr*ith;
  11966. const int ir1 = MIN(ir0 + dr, nr);
  11967. const float scale = 1.0f/sqrtf(D);
  11968. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11969. for (int ir = ir0; ir < ir1; ++ir) {
  11970. // q indices
  11971. const int iq3 = ir/(neq2*neq1);
  11972. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11973. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11974. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11975. for (int i = M; i < Mup; ++i) {
  11976. S[i] = -INFINITY;
  11977. }
  11978. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11979. for (int64_t ic = 0; ic < nek1; ++ic) {
  11980. // k indices
  11981. const int ik3 = iq3;
  11982. const int ik2 = iq2 % nek2;
  11983. const int ik1 = ic;
  11984. // S indices
  11985. const int i1 = ik1;
  11986. ggml_vec_dot_f16(neq0,
  11987. S + i1,
  11988. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11989. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11990. }
  11991. } else {
  11992. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11993. // k indices
  11994. const int ik3 = iq3;
  11995. const int ik2 = iq2 % nek2;
  11996. const int ik1 = ic;
  11997. // S indices
  11998. const int i1 = ik1;
  11999. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12000. S + i1,
  12001. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12002. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12003. }
  12004. }
  12005. // scale
  12006. ggml_vec_scale_f32(nek1, S, scale);
  12007. if (masked) {
  12008. for (int64_t i = P; i < M; i++) {
  12009. if (i > P + iq1) {
  12010. S[i] = -INFINITY;
  12011. }
  12012. }
  12013. }
  12014. // softmax
  12015. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12016. // dont forget to set their S values to zero
  12017. {
  12018. float max = -INFINITY;
  12019. ggml_vec_max_f32(M, &max, S);
  12020. ggml_float sum = 0.0;
  12021. {
  12022. #ifdef GGML_SOFT_MAX_ACCELERATE
  12023. max = -max;
  12024. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12025. vvexpf(S, S, &Mup);
  12026. ggml_vec_sum_f32(Mup, &sum, S);
  12027. #else
  12028. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12029. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12030. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12031. float * SS = S + i;
  12032. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12033. if (SS[j] == -INFINITY) {
  12034. SS[j] = 0.0f;
  12035. } else {
  12036. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12037. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12038. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12039. sump[j] += (ggml_float)val;
  12040. SS[j] = val;
  12041. }
  12042. }
  12043. }
  12044. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12045. sum += sump[i];
  12046. }
  12047. #endif
  12048. }
  12049. assert(sum > 0.0);
  12050. sum = 1.0/sum;
  12051. ggml_vec_scale_f32(M, S, sum);
  12052. #ifndef NDEBUG
  12053. for (int i = 0; i < M; ++i) {
  12054. assert(!isnan(S[i]));
  12055. assert(!isinf(S[i]));
  12056. }
  12057. #endif
  12058. }
  12059. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12060. for (int64_t i = 0; i < M; i++) {
  12061. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12062. }
  12063. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12064. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12065. for (int64_t ic = 0; ic < nev1; ++ic) {
  12066. // dst indices
  12067. const int i1 = iq1;
  12068. const int i2 = iq2;
  12069. const int i3 = iq3;
  12070. // v indices
  12071. const int iv2 = iq2 % nev2;
  12072. const int iv3 = iq3;
  12073. ggml_vec_dot_f16(nev0,
  12074. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12075. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12076. S16);
  12077. }
  12078. } else {
  12079. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12080. // dst indices
  12081. const int i1 = iq1;
  12082. const int i2 = iq2;
  12083. const int i3 = iq3;
  12084. // v indices
  12085. const int iv2 = iq2 % nev2;
  12086. const int iv3 = iq3;
  12087. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12088. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12089. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12090. S16);
  12091. }
  12092. }
  12093. }
  12094. }
  12095. static void ggml_compute_forward_flash_attn(
  12096. const struct ggml_compute_params * params,
  12097. const struct ggml_tensor * q,
  12098. const struct ggml_tensor * k,
  12099. const struct ggml_tensor * v,
  12100. const bool masked,
  12101. struct ggml_tensor * dst) {
  12102. switch (q->type) {
  12103. case GGML_TYPE_F16:
  12104. {
  12105. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  12106. } break;
  12107. case GGML_TYPE_F32:
  12108. {
  12109. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  12110. } break;
  12111. default:
  12112. {
  12113. GGML_ASSERT(false);
  12114. } break;
  12115. }
  12116. }
  12117. // ggml_compute_forward_flash_ff
  12118. static void ggml_compute_forward_flash_ff_f16(
  12119. const struct ggml_compute_params * params,
  12120. const struct ggml_tensor * a, // F16
  12121. const struct ggml_tensor * b0, // F16 fc_w
  12122. const struct ggml_tensor * b1, // F32 fc_b
  12123. const struct ggml_tensor * c0, // F16 proj_w
  12124. const struct ggml_tensor * c1, // F32 proj_b
  12125. struct ggml_tensor * dst) {
  12126. int64_t t0 = ggml_perf_time_us();
  12127. UNUSED(t0);
  12128. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  12129. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  12130. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  12131. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  12132. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  12133. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  12134. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  12135. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  12136. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  12137. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  12138. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12139. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  12140. const int ith = params->ith;
  12141. const int nth = params->nth;
  12142. const int64_t D = nea0;
  12143. //const int64_t N = nea1;
  12144. const int64_t M = neb01;
  12145. GGML_ASSERT(ne0 == nea0);
  12146. GGML_ASSERT(ne1 == nea1);
  12147. GGML_ASSERT(ne2 == nea2);
  12148. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12149. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12150. GGML_ASSERT(nbb10 == sizeof(float));
  12151. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12152. GGML_ASSERT(nbc10 == sizeof(float));
  12153. GGML_ASSERT(neb00 == D);
  12154. GGML_ASSERT(neb01 == M);
  12155. GGML_ASSERT(neb10 == M);
  12156. GGML_ASSERT(neb11 == 1);
  12157. GGML_ASSERT(nec00 == M);
  12158. GGML_ASSERT(nec01 == D);
  12159. GGML_ASSERT(nec10 == D);
  12160. GGML_ASSERT(nec11 == 1);
  12161. // dst cannot be transposed or permuted
  12162. GGML_ASSERT(nb0 == sizeof(float));
  12163. GGML_ASSERT(nb0 <= nb1);
  12164. GGML_ASSERT(nb1 <= nb2);
  12165. GGML_ASSERT(nb2 <= nb3);
  12166. if (params->type == GGML_TASK_INIT) {
  12167. return;
  12168. }
  12169. if (params->type == GGML_TASK_FINALIZE) {
  12170. return;
  12171. }
  12172. // parallelize by a rows using ggml_vec_dot_f32
  12173. // total rows in a
  12174. const int nr = nea1*nea2*nea3;
  12175. // rows per thread
  12176. const int dr = (nr + nth - 1)/nth;
  12177. // row range for this thread
  12178. const int ir0 = dr*ith;
  12179. const int ir1 = MIN(ir0 + dr, nr);
  12180. for (int ir = ir0; ir < ir1; ++ir) {
  12181. // a indices
  12182. const int ia3 = ir/(nea2*nea1);
  12183. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12184. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12185. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12186. for (int64_t ic = 0; ic < neb01; ++ic) {
  12187. // b0 indices
  12188. const int ib03 = ia3;
  12189. const int ib02 = ia2;
  12190. const int ib01 = ic;
  12191. // S indices
  12192. const int i1 = ib01;
  12193. ggml_vec_dot_f16(nea0,
  12194. S + i1,
  12195. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  12196. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  12197. }
  12198. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12199. //ggml_vec_gelu_f32(neb01, S, S);
  12200. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12201. for (int64_t i = 0; i < M; i++) {
  12202. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12203. }
  12204. ggml_vec_gelu_f16(neb01, S16, S16);
  12205. {
  12206. // dst indices
  12207. const int i1 = ia1;
  12208. const int i2 = ia2;
  12209. const int i3 = ia3;
  12210. for (int64_t ic = 0; ic < nec01; ++ic) {
  12211. ggml_vec_dot_f16(neb01,
  12212. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12213. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  12214. S16);
  12215. }
  12216. ggml_vec_add_f32(nec01,
  12217. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12218. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12219. (float *) c1->data);
  12220. }
  12221. }
  12222. }
  12223. static void ggml_compute_forward_flash_ff(
  12224. const struct ggml_compute_params * params,
  12225. const struct ggml_tensor * a,
  12226. const struct ggml_tensor * b0,
  12227. const struct ggml_tensor * b1,
  12228. const struct ggml_tensor * c0,
  12229. const struct ggml_tensor * c1,
  12230. struct ggml_tensor * dst) {
  12231. switch (b0->type) {
  12232. case GGML_TYPE_F16:
  12233. {
  12234. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  12235. } break;
  12236. case GGML_TYPE_F32:
  12237. {
  12238. GGML_ASSERT(false); // TODO
  12239. } break;
  12240. default:
  12241. {
  12242. GGML_ASSERT(false);
  12243. } break;
  12244. }
  12245. }
  12246. // ggml_compute_forward_flash_attn_back
  12247. static void ggml_compute_forward_flash_attn_back_f32(
  12248. const struct ggml_compute_params * params,
  12249. const struct ggml_tensor * q,
  12250. const struct ggml_tensor * k,
  12251. const struct ggml_tensor * v,
  12252. const struct ggml_tensor * d,
  12253. const bool masked,
  12254. struct ggml_tensor * dst) {
  12255. int64_t t0 = ggml_perf_time_us();
  12256. UNUSED(t0);
  12257. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  12258. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  12259. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  12260. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  12261. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  12262. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  12263. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  12264. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  12265. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12266. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  12267. const int ith = params->ith;
  12268. const int nth = params->nth;
  12269. const int64_t D = neq0;
  12270. const int64_t N = neq1;
  12271. const int64_t P = nek1 - N;
  12272. const int64_t M = P + N;
  12273. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12274. const int mxDM = MAX(D, Mup);
  12275. // GGML_ASSERT(ne0 == D);
  12276. // GGML_ASSERT(ne1 == N);
  12277. GGML_ASSERT(P >= 0);
  12278. GGML_ASSERT(nbq0 == sizeof(float));
  12279. GGML_ASSERT(nbk0 == sizeof(float));
  12280. GGML_ASSERT(nbv0 == sizeof(float));
  12281. GGML_ASSERT(neq0 == D);
  12282. GGML_ASSERT(nek0 == D);
  12283. GGML_ASSERT(nev1 == D);
  12284. GGML_ASSERT(ned0 == D);
  12285. GGML_ASSERT(neq1 == N);
  12286. GGML_ASSERT(nek1 == N + P);
  12287. GGML_ASSERT(nev1 == D);
  12288. GGML_ASSERT(ned1 == N);
  12289. // dst cannot be transposed or permuted
  12290. GGML_ASSERT(nb0 == sizeof(float));
  12291. GGML_ASSERT(nb0 <= nb1);
  12292. GGML_ASSERT(nb1 <= nb2);
  12293. GGML_ASSERT(nb2 <= nb3);
  12294. if (params->type == GGML_TASK_INIT) {
  12295. if (ith == 0) {
  12296. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12297. }
  12298. return;
  12299. }
  12300. if (params->type == GGML_TASK_FINALIZE) {
  12301. return;
  12302. }
  12303. const int64_t elem_q = ggml_nelements(q);
  12304. const int64_t elem_k = ggml_nelements(k);
  12305. enum ggml_type result_type = dst->type;
  12306. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12307. const size_t tsize = ggml_type_size(result_type);
  12308. const size_t offs_q = 0;
  12309. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12310. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12311. void * grad_q = (char *) dst->data;
  12312. void * grad_k = (char *) dst->data + offs_k;
  12313. void * grad_v = (char *) dst->data + offs_v;
  12314. const size_t nbgq1 = nb0*neq0;
  12315. const size_t nbgq2 = nb0*neq0*neq1;
  12316. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12317. const size_t nbgk1 = nb0*nek0;
  12318. const size_t nbgk2 = nb0*nek0*nek1;
  12319. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12320. const size_t nbgv1 = nb0*nev0;
  12321. const size_t nbgv2 = nb0*nev0*nev1;
  12322. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12323. // parallelize by k rows using ggml_vec_dot_f32
  12324. // total rows in k
  12325. const int nr = nek2*nek3;
  12326. // rows per thread
  12327. const int dr = (nr + nth - 1)/nth;
  12328. // row range for this thread
  12329. const int ir0 = dr*ith;
  12330. const int ir1 = MIN(ir0 + dr, nr);
  12331. const float scale = 1.0f/sqrtf(D);
  12332. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12333. // how often k2 (and v2) is repeated in q2
  12334. int nrep = neq2/nek2;
  12335. for (int ir = ir0; ir < ir1; ++ir) {
  12336. // q indices
  12337. const int ik3 = ir/(nek2);
  12338. const int ik2 = ir - ik3*nek2;
  12339. const int iq3 = ik3;
  12340. const int id3 = ik3;
  12341. const int iv3 = ik3;
  12342. const int iv2 = ik2;
  12343. for (int irep = 0; irep < nrep; ++irep) {
  12344. const int iq2 = ik2 + irep*nek2;
  12345. const int id2 = iq2;
  12346. // (ik2 + irep*nek2) % nek2 == ik2
  12347. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12348. const int id1 = iq1;
  12349. // not sure about CACHE_LINE_SIZE_F32..
  12350. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12351. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12352. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12353. for (int i = M; i < Mup; ++i) {
  12354. S[i] = -INFINITY;
  12355. }
  12356. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12357. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12358. // k indices
  12359. const int ik1 = ic;
  12360. // S indices
  12361. const int i1 = ik1;
  12362. ggml_vec_dot_f32(neq0,
  12363. S + i1,
  12364. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12365. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12366. }
  12367. // scale
  12368. ggml_vec_scale_f32(masked_begin, S, scale);
  12369. for (int64_t i = masked_begin; i < M; i++) {
  12370. S[i] = -INFINITY;
  12371. }
  12372. // softmax
  12373. // exclude known -INF S[..] values from max and loop
  12374. // dont forget to set their SM values to zero
  12375. {
  12376. float max = -INFINITY;
  12377. ggml_vec_max_f32(masked_begin, &max, S);
  12378. ggml_float sum = 0.0;
  12379. {
  12380. #ifdef GGML_SOFT_MAX_ACCELERATE
  12381. max = -max;
  12382. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12383. vvexpf(SM, SM, &Mup);
  12384. ggml_vec_sum_f32(Mup, &sum, SM);
  12385. #else
  12386. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12387. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12388. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12389. if (i >= masked_begin) {
  12390. break;
  12391. }
  12392. float * SR = S + i;
  12393. float * SW = SM + i;
  12394. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12395. if (i + j >= masked_begin) {
  12396. break;
  12397. } else if (SR[j] == -INFINITY) {
  12398. SW[j] = 0.0f;
  12399. } else {
  12400. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12401. const float val = expf(SR[j] - max);
  12402. #else
  12403. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12404. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12405. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12406. #endif
  12407. sump[j] += (ggml_float)val;
  12408. SW[j] = val;
  12409. }
  12410. }
  12411. }
  12412. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12413. sum += sump[i];
  12414. }
  12415. #endif
  12416. }
  12417. assert(sum > 0.0);
  12418. sum = 1.0/sum;
  12419. ggml_vec_scale_f32(masked_begin, SM, sum);
  12420. }
  12421. // step-by-step explanation
  12422. {
  12423. // forward-process shape grads from backward process
  12424. // parallel_for ik2,ik3:
  12425. // for irep:
  12426. // iq2 = ik2 + irep*nek2
  12427. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12428. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12429. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12430. // for iq1:
  12431. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12432. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12433. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12434. // S0 = -Inf [D,1,1,1]
  12435. // ~S1[i] = dot(kcur[:D,i], qcur)
  12436. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12437. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12438. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12439. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12440. // ~S5[i] = dot(vcur[:,i], S4)
  12441. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12442. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12443. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12444. // dst backward-/ grad[dst] = d
  12445. //
  12446. // output gradients with their dependencies:
  12447. //
  12448. // grad[kcur] = grad[S1].T @ qcur
  12449. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12450. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12451. // grad[S4] = grad[S5] @ vcur
  12452. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12453. // grad[qcur] = grad[S1] @ kcur
  12454. // grad[vcur] = grad[S5].T @ S4
  12455. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12456. //
  12457. // in post-order:
  12458. //
  12459. // S1 = qcur @ kcur.T
  12460. // S2 = S1 * scale
  12461. // S3 = diag_mask_inf(S2, P)
  12462. // S4 = softmax(S3)
  12463. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12464. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12465. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12466. // grad[qcur] = grad[S1] @ kcur
  12467. // grad[kcur] = grad[S1].T @ qcur
  12468. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12469. //
  12470. // using less variables (SM=S4):
  12471. //
  12472. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12473. // SM = softmax(S)
  12474. // S = d[:D,iq1,iq2,iq3] @ vcur
  12475. // dot_SM_gradSM = dot(SM, S)
  12476. // S = SM * (S - dot(SM, S))
  12477. // S = diag_mask_zero(S, P) * scale
  12478. //
  12479. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12480. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12481. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12482. }
  12483. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12484. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12485. // for ic:
  12486. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12487. // exclude known future zero S[..] values from operation
  12488. ggml_vec_set_f32(masked_begin, S, 0);
  12489. for (int64_t ic = 0; ic < D; ++ic) {
  12490. ggml_vec_mad_f32(masked_begin,
  12491. S,
  12492. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12493. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12494. }
  12495. // S = SM * (S - dot(SM, S))
  12496. float dot_SM_gradSM = 0;
  12497. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  12498. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12499. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12500. // S = diag_mask_zero(S, P) * scale
  12501. // already done by above ggml_vec_set_f32
  12502. // exclude known zero S[..] values from operation
  12503. ggml_vec_scale_f32(masked_begin, S, scale);
  12504. // S shape [M,1]
  12505. // SM shape [M,1]
  12506. // kcur shape [D,M]
  12507. // qcur shape [D,1]
  12508. // vcur shape [M,D]
  12509. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12510. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12511. // for ic:
  12512. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12513. // exclude known zero S[..] values from loop
  12514. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12515. ggml_vec_mad_f32(D,
  12516. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12517. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12518. S[ic]);
  12519. }
  12520. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12521. // for ic:
  12522. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12523. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12524. // exclude known zero S[..] values from loop
  12525. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12526. ggml_vec_mad_f32(D,
  12527. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12528. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12529. S[ic]);
  12530. }
  12531. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12532. // for ic:
  12533. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12534. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12535. // exclude known zero SM[..] values from mad
  12536. for (int64_t ic = 0; ic < D; ++ic) {
  12537. ggml_vec_mad_f32(masked_begin,
  12538. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12539. SM,
  12540. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12541. }
  12542. }
  12543. }
  12544. }
  12545. }
  12546. static void ggml_compute_forward_flash_attn_back(
  12547. const struct ggml_compute_params * params,
  12548. const struct ggml_tensor * q,
  12549. const struct ggml_tensor * k,
  12550. const struct ggml_tensor * v,
  12551. const struct ggml_tensor * d,
  12552. const bool masked,
  12553. struct ggml_tensor * dst) {
  12554. switch (q->type) {
  12555. case GGML_TYPE_F32:
  12556. {
  12557. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12558. } break;
  12559. default:
  12560. {
  12561. GGML_ASSERT(false);
  12562. } break;
  12563. }
  12564. }
  12565. // ggml_compute_forward_win_part
  12566. static void ggml_compute_forward_win_part_f32(
  12567. const struct ggml_compute_params * params,
  12568. const struct ggml_tensor * src0,
  12569. struct ggml_tensor * dst) {
  12570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12571. return;
  12572. }
  12573. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12574. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12575. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12576. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12577. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12578. assert(ne00 == ne0);
  12579. assert(ne3 == nep0*nep1);
  12580. // TODO: optimize / multi-thread
  12581. for (int py = 0; py < nep1; ++py) {
  12582. for (int px = 0; px < nep0; ++px) {
  12583. const int64_t i3 = py*nep0 + px;
  12584. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12585. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12586. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12587. const int64_t i02 = py*w + i2;
  12588. const int64_t i01 = px*w + i1;
  12589. const int64_t i00 = i0;
  12590. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12591. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12592. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12593. ((float *) dst->data)[i] = 0.0f;
  12594. } else {
  12595. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12596. }
  12597. }
  12598. }
  12599. }
  12600. }
  12601. }
  12602. }
  12603. static void ggml_compute_forward_win_part(
  12604. const struct ggml_compute_params * params,
  12605. const struct ggml_tensor * src0,
  12606. struct ggml_tensor * dst) {
  12607. switch (src0->type) {
  12608. case GGML_TYPE_F32:
  12609. {
  12610. ggml_compute_forward_win_part_f32(params, src0, dst);
  12611. } break;
  12612. default:
  12613. {
  12614. GGML_ASSERT(false);
  12615. } break;
  12616. }
  12617. }
  12618. // ggml_compute_forward_win_unpart
  12619. static void ggml_compute_forward_win_unpart_f32(
  12620. const struct ggml_compute_params * params,
  12621. const struct ggml_tensor * src0,
  12622. struct ggml_tensor * dst) {
  12623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12624. return;
  12625. }
  12626. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12627. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12628. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12629. // padding
  12630. const int px = (w - ne1%w)%w;
  12631. //const int py = (w - ne2%w)%w;
  12632. const int npx = (px + ne1)/w;
  12633. //const int npy = (py + ne2)/w;
  12634. assert(ne0 == ne00);
  12635. // TODO: optimize / multi-thread
  12636. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12637. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12638. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12639. const int ip2 = i2/w;
  12640. const int ip1 = i1/w;
  12641. const int64_t i02 = i2%w;
  12642. const int64_t i01 = i1%w;
  12643. const int64_t i00 = i0;
  12644. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12645. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12646. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12647. }
  12648. }
  12649. }
  12650. }
  12651. static void ggml_compute_forward_win_unpart(
  12652. const struct ggml_compute_params * params,
  12653. const struct ggml_tensor * src0,
  12654. struct ggml_tensor * dst) {
  12655. switch (src0->type) {
  12656. case GGML_TYPE_F32:
  12657. {
  12658. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12659. } break;
  12660. default:
  12661. {
  12662. GGML_ASSERT(false);
  12663. } break;
  12664. }
  12665. }
  12666. //gmml_compute_forward_unary
  12667. static void ggml_compute_forward_unary(
  12668. const struct ggml_compute_params * params,
  12669. const struct ggml_tensor * src0,
  12670. struct ggml_tensor * dst) {
  12671. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12672. switch (op) {
  12673. case GGML_UNARY_OP_ABS:
  12674. {
  12675. ggml_compute_forward_abs(params, src0, dst);
  12676. } break;
  12677. case GGML_UNARY_OP_SGN:
  12678. {
  12679. ggml_compute_forward_sgn(params, src0, dst);
  12680. } break;
  12681. case GGML_UNARY_OP_NEG:
  12682. {
  12683. ggml_compute_forward_neg(params, src0, dst);
  12684. } break;
  12685. case GGML_UNARY_OP_STEP:
  12686. {
  12687. ggml_compute_forward_step(params, src0, dst);
  12688. } break;
  12689. case GGML_UNARY_OP_TANH:
  12690. {
  12691. ggml_compute_forward_tanh(params, src0, dst);
  12692. } break;
  12693. case GGML_UNARY_OP_ELU:
  12694. {
  12695. ggml_compute_forward_elu(params, src0, dst);
  12696. } break;
  12697. case GGML_UNARY_OP_RELU:
  12698. {
  12699. ggml_compute_forward_relu(params, src0, dst);
  12700. } break;
  12701. case GGML_UNARY_OP_GELU:
  12702. {
  12703. ggml_compute_forward_gelu(params, src0, dst);
  12704. } break;
  12705. case GGML_UNARY_OP_GELU_QUICK:
  12706. {
  12707. ggml_compute_forward_gelu_quick(params, src0, dst);
  12708. } break;
  12709. case GGML_UNARY_OP_SILU:
  12710. {
  12711. ggml_compute_forward_silu(params, src0, dst);
  12712. } break;
  12713. default:
  12714. {
  12715. GGML_ASSERT(false);
  12716. } break;
  12717. }
  12718. }
  12719. // ggml_compute_forward_get_rel_pos
  12720. static void ggml_compute_forward_get_rel_pos_f16(
  12721. const struct ggml_compute_params * params,
  12722. const struct ggml_tensor * src0,
  12723. struct ggml_tensor * dst) {
  12724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12725. return;
  12726. }
  12727. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12728. GGML_TENSOR_UNARY_OP_LOCALS;
  12729. const int64_t w = ne1;
  12730. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12731. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12732. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12733. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12734. const int64_t pos = (w - i1 - 1) + i2;
  12735. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12736. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12737. }
  12738. }
  12739. }
  12740. }
  12741. static void ggml_compute_forward_get_rel_pos(
  12742. const struct ggml_compute_params * params,
  12743. const struct ggml_tensor * src0,
  12744. struct ggml_tensor * dst) {
  12745. switch (src0->type) {
  12746. case GGML_TYPE_F16:
  12747. {
  12748. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12749. } break;
  12750. default:
  12751. {
  12752. GGML_ASSERT(false);
  12753. } break;
  12754. }
  12755. }
  12756. // ggml_compute_forward_add_rel_pos
  12757. static void ggml_compute_forward_add_rel_pos_f32(
  12758. const struct ggml_compute_params * params,
  12759. const struct ggml_tensor * src0,
  12760. const struct ggml_tensor * src1,
  12761. const struct ggml_tensor * src2,
  12762. struct ggml_tensor * dst) {
  12763. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12764. if (!inplace && params->type == GGML_TASK_INIT) {
  12765. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12766. return;
  12767. }
  12768. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12769. return;
  12770. }
  12771. int64_t t0 = ggml_perf_time_us();
  12772. UNUSED(t0);
  12773. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12774. float * src1_data = (float *) src1->data;
  12775. float * src2_data = (float *) src2->data;
  12776. float * dst_data = (float *) dst->data;
  12777. const int64_t ne10 = src1->ne[0];
  12778. const int64_t ne11 = src1->ne[1];
  12779. const int64_t ne12 = src1->ne[2];
  12780. const int64_t ne13 = src1->ne[3];
  12781. const int ith = params->ith;
  12782. const int nth = params->nth;
  12783. // total patches in dst
  12784. const int np = ne13;
  12785. // patches per thread
  12786. const int dp = (np + nth - 1)/nth;
  12787. // patch range for this thread
  12788. const int ip0 = dp*ith;
  12789. const int ip1 = MIN(ip0 + dp, np);
  12790. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12791. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12792. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12793. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12794. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12795. const int64_t jp0 = jp1 + i10;
  12796. const float src1_e = src1_data[jp0];
  12797. const float src2_e = src2_data[jp0];
  12798. const int64_t jdh = jp0 * ne10;
  12799. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12800. for (int64_t j = 0; j < ne10; ++j) {
  12801. dst_data[jdh + j ] += src2_e;
  12802. dst_data[jdw + j*ne10] += src1_e;
  12803. }
  12804. }
  12805. }
  12806. }
  12807. }
  12808. }
  12809. static void ggml_compute_forward_add_rel_pos(
  12810. const struct ggml_compute_params * params,
  12811. const struct ggml_tensor * src0,
  12812. const struct ggml_tensor * src1,
  12813. const struct ggml_tensor * src2,
  12814. struct ggml_tensor * dst) {
  12815. switch (src0->type) {
  12816. case GGML_TYPE_F32:
  12817. {
  12818. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12819. } break;
  12820. default:
  12821. {
  12822. GGML_ASSERT(false);
  12823. } break;
  12824. }
  12825. }
  12826. // ggml_compute_forward_map_unary
  12827. static void ggml_compute_forward_map_unary_f32(
  12828. const struct ggml_compute_params * params,
  12829. const struct ggml_tensor * src0,
  12830. struct ggml_tensor * dst,
  12831. const ggml_unary_op_f32_t fun) {
  12832. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12834. return;
  12835. }
  12836. const int n = ggml_nrows(src0);
  12837. const int nc = src0->ne[0];
  12838. assert( dst->nb[0] == sizeof(float));
  12839. assert(src0->nb[0] == sizeof(float));
  12840. for (int i = 0; i < n; i++) {
  12841. fun(nc,
  12842. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12843. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12844. }
  12845. }
  12846. static void ggml_compute_forward_map_unary(
  12847. const struct ggml_compute_params * params,
  12848. const struct ggml_tensor * src0,
  12849. struct ggml_tensor * dst,
  12850. const ggml_unary_op_f32_t fun) {
  12851. switch (src0->type) {
  12852. case GGML_TYPE_F32:
  12853. {
  12854. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12855. } break;
  12856. default:
  12857. {
  12858. GGML_ASSERT(false);
  12859. } break;
  12860. }
  12861. }
  12862. // ggml_compute_forward_map_binary
  12863. static void ggml_compute_forward_map_binary_f32(
  12864. const struct ggml_compute_params * params,
  12865. const struct ggml_tensor * src0,
  12866. const struct ggml_tensor * src1,
  12867. struct ggml_tensor * dst,
  12868. const ggml_binary_op_f32_t fun) {
  12869. assert(params->ith == 0);
  12870. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12871. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12872. return;
  12873. }
  12874. const int n = ggml_nrows(src0);
  12875. const int nc = src0->ne[0];
  12876. assert( dst->nb[0] == sizeof(float));
  12877. assert(src0->nb[0] == sizeof(float));
  12878. assert(src1->nb[0] == sizeof(float));
  12879. for (int i = 0; i < n; i++) {
  12880. fun(nc,
  12881. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12882. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12883. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12884. }
  12885. }
  12886. static void ggml_compute_forward_map_binary(
  12887. const struct ggml_compute_params * params,
  12888. const struct ggml_tensor * src0,
  12889. const struct ggml_tensor * src1,
  12890. struct ggml_tensor * dst,
  12891. const ggml_binary_op_f32_t fun) {
  12892. switch (src0->type) {
  12893. case GGML_TYPE_F32:
  12894. {
  12895. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12896. } break;
  12897. default:
  12898. {
  12899. GGML_ASSERT(false);
  12900. } break;
  12901. }
  12902. }
  12903. // ggml_compute_forward_map_custom1
  12904. static void ggml_compute_forward_map_custom1_f32(
  12905. const struct ggml_compute_params * params,
  12906. const struct ggml_tensor * a,
  12907. struct ggml_tensor * dst,
  12908. const ggml_custom1_op_f32_t fun) {
  12909. assert(params->ith == 0);
  12910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12911. return;
  12912. }
  12913. fun(dst, a);
  12914. }
  12915. // ggml_compute_forward_map_custom2
  12916. static void ggml_compute_forward_map_custom2_f32(
  12917. const struct ggml_compute_params * params,
  12918. const struct ggml_tensor * a,
  12919. const struct ggml_tensor * b,
  12920. struct ggml_tensor * dst,
  12921. const ggml_custom2_op_f32_t fun) {
  12922. assert(params->ith == 0);
  12923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12924. return;
  12925. }
  12926. fun(dst, a, b);
  12927. }
  12928. // ggml_compute_forward_map_custom3
  12929. static void ggml_compute_forward_map_custom3_f32(
  12930. const struct ggml_compute_params * params,
  12931. const struct ggml_tensor * a,
  12932. const struct ggml_tensor * b,
  12933. const struct ggml_tensor * c,
  12934. struct ggml_tensor * dst,
  12935. const ggml_custom3_op_f32_t fun) {
  12936. assert(params->ith == 0);
  12937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12938. return;
  12939. }
  12940. fun(dst, a, b, c);
  12941. }
  12942. // ggml_compute_forward_map_custom1
  12943. static void ggml_compute_forward_map_custom1(
  12944. const struct ggml_compute_params * params,
  12945. const struct ggml_tensor * a,
  12946. struct ggml_tensor * dst) {
  12947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12948. return;
  12949. }
  12950. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12951. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12952. }
  12953. // ggml_compute_forward_map_custom2
  12954. static void ggml_compute_forward_map_custom2(
  12955. const struct ggml_compute_params * params,
  12956. const struct ggml_tensor * a,
  12957. const struct ggml_tensor * b,
  12958. struct ggml_tensor * dst) {
  12959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12960. return;
  12961. }
  12962. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12963. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12964. }
  12965. // ggml_compute_forward_map_custom3
  12966. static void ggml_compute_forward_map_custom3(
  12967. const struct ggml_compute_params * params,
  12968. const struct ggml_tensor * a,
  12969. const struct ggml_tensor * b,
  12970. const struct ggml_tensor * c,
  12971. struct ggml_tensor * dst) {
  12972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12973. return;
  12974. }
  12975. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12976. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12977. }
  12978. // ggml_compute_forward_cross_entropy_loss
  12979. static void ggml_compute_forward_cross_entropy_loss_f32(
  12980. const struct ggml_compute_params * params,
  12981. const struct ggml_tensor * src0,
  12982. const struct ggml_tensor * src1,
  12983. struct ggml_tensor * dst) {
  12984. GGML_ASSERT(ggml_is_contiguous(src0));
  12985. GGML_ASSERT(ggml_is_contiguous(src1));
  12986. GGML_ASSERT(ggml_is_scalar(dst));
  12987. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12988. const int ith = params->ith;
  12989. const int nth = params->nth;
  12990. float * sums = (float *) params->wdata;
  12991. // TODO: handle transposed/permuted matrices
  12992. const int nc = src0->ne[0];
  12993. const int nr = ggml_nrows(src0);
  12994. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12995. if (params->type == GGML_TASK_INIT) {
  12996. if (ith == 0) {
  12997. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12998. }
  12999. return;
  13000. }
  13001. if (params->type == GGML_TASK_FINALIZE) {
  13002. if (ith == 0) {
  13003. float * dp = (float *) dst->data;
  13004. ggml_vec_sum_f32(nth, dp, sums);
  13005. dp[0] *= -1.0f / (float) nr;
  13006. }
  13007. return;
  13008. }
  13009. const double eps = 1e-9;
  13010. // rows per thread
  13011. const int dr = (nr + nth - 1)/nth;
  13012. // row range for this thread
  13013. const int ir0 = dr*ith;
  13014. const int ir1 = MIN(ir0 + dr, nr);
  13015. for (int i1 = ir0; i1 < ir1; i1++) {
  13016. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13017. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13018. float * st = ((float *) params->wdata) + nth + ith*nc;
  13019. #ifndef NDEBUG
  13020. for (int i = 0; i < nc; ++i) {
  13021. //printf("p[%d] = %f\n", i, p[i]);
  13022. assert(!isnan(s0[i]));
  13023. assert(!isnan(s1[i]));
  13024. }
  13025. #endif
  13026. // soft_max
  13027. ggml_float sum = 0.0;
  13028. {
  13029. float max = -INFINITY;
  13030. ggml_vec_max_f32(nc, &max, s0);
  13031. uint16_t scvt; UNUSED(scvt);
  13032. for (int i = 0; i < nc; i++) {
  13033. if (s0[i] == -INFINITY) {
  13034. st[i] = 0.0f;
  13035. } else {
  13036. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13037. const float s = s0[i] - max;
  13038. const float val = expf(s);
  13039. #else
  13040. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13041. memcpy(&scvt, &s, sizeof(scvt));
  13042. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13043. #endif
  13044. sum += (ggml_float)val;
  13045. st[i] = val;
  13046. }
  13047. }
  13048. assert(sum > 0.0);
  13049. // sum = 1.0/sum;
  13050. }
  13051. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13052. sum = (1.0 - eps) / sum;
  13053. ggml_vec_scale_f32(nc, st, sum);
  13054. ggml_vec_add1_f32(nc, st, st, eps);
  13055. ggml_vec_log_f32(nc, st, st);
  13056. ggml_vec_mul_f32(nc, st, st, s1);
  13057. float st_sum = 0;
  13058. ggml_vec_sum_f32(nc, &st_sum, st);
  13059. sums[ith] += st_sum;
  13060. #ifndef NDEBUG
  13061. for (int i = 0; i < nc; ++i) {
  13062. assert(!isnan(st[i]));
  13063. assert(!isinf(st[i]));
  13064. }
  13065. #endif
  13066. }
  13067. }
  13068. static void ggml_compute_forward_cross_entropy_loss(
  13069. const struct ggml_compute_params * params,
  13070. const struct ggml_tensor * src0,
  13071. const struct ggml_tensor * src1,
  13072. struct ggml_tensor * dst) {
  13073. switch (src0->type) {
  13074. case GGML_TYPE_F32:
  13075. {
  13076. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  13077. } break;
  13078. default:
  13079. {
  13080. GGML_ASSERT(false);
  13081. } break;
  13082. }
  13083. }
  13084. // ggml_compute_forward_cross_entropy_loss_back
  13085. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13086. const struct ggml_compute_params * params,
  13087. const struct ggml_tensor * src0,
  13088. const struct ggml_tensor * src1,
  13089. const struct ggml_tensor * opt0,
  13090. struct ggml_tensor * dst) {
  13091. GGML_ASSERT(ggml_is_contiguous(dst));
  13092. GGML_ASSERT(ggml_is_contiguous(src0));
  13093. GGML_ASSERT(ggml_is_contiguous(src1));
  13094. GGML_ASSERT(ggml_is_contiguous(opt0));
  13095. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13096. const int64_t ith = params->ith;
  13097. const int64_t nth = params->nth;
  13098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13099. return;
  13100. }
  13101. const double eps = 1e-9;
  13102. // TODO: handle transposed/permuted matrices
  13103. const int64_t nc = src0->ne[0];
  13104. const int64_t nr = ggml_nrows(src0);
  13105. // rows per thread
  13106. const int64_t dr = (nr + nth - 1)/nth;
  13107. // row range for this thread
  13108. const int64_t ir0 = dr*ith;
  13109. const int64_t ir1 = MIN(ir0 + dr, nr);
  13110. float * d = (float *) opt0->data;
  13111. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13112. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13113. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13114. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13115. #ifndef NDEBUG
  13116. for (int i = 0; i < nc; ++i) {
  13117. //printf("p[%d] = %f\n", i, p[i]);
  13118. assert(!isnan(s0[i]));
  13119. assert(!isnan(s1[i]));
  13120. }
  13121. #endif
  13122. // soft_max
  13123. ggml_float sum = 0.0;
  13124. {
  13125. float max = -INFINITY;
  13126. ggml_vec_max_f32(nc, &max, s0);
  13127. uint16_t scvt; UNUSED(scvt);
  13128. for (int i = 0; i < nc; i++) {
  13129. if (s0[i] == -INFINITY) {
  13130. ds0[i] = 0.0f;
  13131. } else {
  13132. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13133. const float s = s0[i] - max;
  13134. const float val = expf(s);
  13135. #else
  13136. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13137. memcpy(&scvt, &s, sizeof(scvt));
  13138. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13139. #endif
  13140. sum += (ggml_float)val;
  13141. ds0[i] = val;
  13142. }
  13143. }
  13144. assert(sum > 0.0);
  13145. sum = (1.0 - eps)/sum;
  13146. }
  13147. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13148. ggml_vec_scale_f32(nc, ds0, sum);
  13149. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13150. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13151. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13152. #ifndef NDEBUG
  13153. for (int i = 0; i < nc; ++i) {
  13154. assert(!isnan(ds0[i]));
  13155. assert(!isinf(ds0[i]));
  13156. }
  13157. #endif
  13158. }
  13159. }
  13160. static void ggml_compute_forward_cross_entropy_loss_back(
  13161. const struct ggml_compute_params * params,
  13162. const struct ggml_tensor * src0,
  13163. const struct ggml_tensor * src1,
  13164. const struct ggml_tensor * opt0,
  13165. struct ggml_tensor * dst) {
  13166. switch (src0->type) {
  13167. case GGML_TYPE_F32:
  13168. {
  13169. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  13170. } break;
  13171. default:
  13172. {
  13173. GGML_ASSERT(false);
  13174. } break;
  13175. }
  13176. }
  13177. /////////////////////////////////
  13178. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13179. GGML_ASSERT(params);
  13180. #ifdef GGML_USE_CUBLAS
  13181. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  13182. if (skip_cpu) {
  13183. return;
  13184. }
  13185. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  13186. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  13187. #endif // GGML_USE_CUBLAS
  13188. switch (tensor->op) {
  13189. case GGML_OP_DUP:
  13190. {
  13191. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  13192. } break;
  13193. case GGML_OP_ADD:
  13194. {
  13195. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  13196. } break;
  13197. case GGML_OP_ADD1:
  13198. {
  13199. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  13200. } break;
  13201. case GGML_OP_ACC:
  13202. {
  13203. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  13204. } break;
  13205. case GGML_OP_SUB:
  13206. {
  13207. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  13208. } break;
  13209. case GGML_OP_MUL:
  13210. {
  13211. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  13212. } break;
  13213. case GGML_OP_DIV:
  13214. {
  13215. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  13216. } break;
  13217. case GGML_OP_SQR:
  13218. {
  13219. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  13220. } break;
  13221. case GGML_OP_SQRT:
  13222. {
  13223. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  13224. } break;
  13225. case GGML_OP_LOG:
  13226. {
  13227. ggml_compute_forward_log(params, tensor->src[0], tensor);
  13228. } break;
  13229. case GGML_OP_SUM:
  13230. {
  13231. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  13232. } break;
  13233. case GGML_OP_SUM_ROWS:
  13234. {
  13235. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  13236. } break;
  13237. case GGML_OP_MEAN:
  13238. {
  13239. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  13240. } break;
  13241. case GGML_OP_ARGMAX:
  13242. {
  13243. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  13244. } break;
  13245. case GGML_OP_REPEAT:
  13246. {
  13247. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  13248. } break;
  13249. case GGML_OP_REPEAT_BACK:
  13250. {
  13251. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  13252. } break;
  13253. case GGML_OP_CONCAT:
  13254. {
  13255. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  13256. } break;
  13257. case GGML_OP_SILU_BACK:
  13258. {
  13259. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  13260. } break;
  13261. case GGML_OP_NORM:
  13262. {
  13263. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  13264. } break;
  13265. case GGML_OP_RMS_NORM:
  13266. {
  13267. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  13268. } break;
  13269. case GGML_OP_RMS_NORM_BACK:
  13270. {
  13271. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  13272. } break;
  13273. case GGML_OP_GROUP_NORM:
  13274. {
  13275. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  13276. } break;
  13277. case GGML_OP_MUL_MAT:
  13278. {
  13279. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  13280. } break;
  13281. case GGML_OP_OUT_PROD:
  13282. {
  13283. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  13284. } break;
  13285. case GGML_OP_SCALE:
  13286. {
  13287. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  13288. } break;
  13289. case GGML_OP_SET:
  13290. {
  13291. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  13292. } break;
  13293. case GGML_OP_CPY:
  13294. {
  13295. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  13296. } break;
  13297. case GGML_OP_CONT:
  13298. {
  13299. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  13300. } break;
  13301. case GGML_OP_RESHAPE:
  13302. {
  13303. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  13304. } break;
  13305. case GGML_OP_VIEW:
  13306. {
  13307. ggml_compute_forward_view(params, tensor->src[0]);
  13308. } break;
  13309. case GGML_OP_PERMUTE:
  13310. {
  13311. ggml_compute_forward_permute(params, tensor->src[0]);
  13312. } break;
  13313. case GGML_OP_TRANSPOSE:
  13314. {
  13315. ggml_compute_forward_transpose(params, tensor->src[0]);
  13316. } break;
  13317. case GGML_OP_GET_ROWS:
  13318. {
  13319. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  13320. } break;
  13321. case GGML_OP_GET_ROWS_BACK:
  13322. {
  13323. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  13324. } break;
  13325. case GGML_OP_DIAG:
  13326. {
  13327. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  13328. } break;
  13329. case GGML_OP_DIAG_MASK_INF:
  13330. {
  13331. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  13332. } break;
  13333. case GGML_OP_DIAG_MASK_ZERO:
  13334. {
  13335. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  13336. } break;
  13337. case GGML_OP_SOFT_MAX:
  13338. {
  13339. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  13340. } break;
  13341. case GGML_OP_SOFT_MAX_BACK:
  13342. {
  13343. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  13344. } break;
  13345. case GGML_OP_ROPE:
  13346. {
  13347. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  13348. } break;
  13349. case GGML_OP_ROPE_BACK:
  13350. {
  13351. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  13352. } break;
  13353. case GGML_OP_ALIBI:
  13354. {
  13355. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  13356. } break;
  13357. case GGML_OP_CLAMP:
  13358. {
  13359. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  13360. } break;
  13361. case GGML_OP_CONV_1D:
  13362. {
  13363. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  13364. } break;
  13365. case GGML_OP_CONV_2D:
  13366. {
  13367. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  13368. } break;
  13369. case GGML_OP_CONV_TRANSPOSE_2D:
  13370. {
  13371. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  13372. } break;
  13373. case GGML_OP_POOL_1D:
  13374. {
  13375. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  13376. } break;
  13377. case GGML_OP_POOL_2D:
  13378. {
  13379. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  13380. } break;
  13381. case GGML_OP_UPSCALE:
  13382. {
  13383. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  13384. } break;
  13385. case GGML_OP_FLASH_ATTN:
  13386. {
  13387. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13388. GGML_ASSERT(t == 0 || t == 1);
  13389. const bool masked = t != 0;
  13390. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  13391. } break;
  13392. case GGML_OP_FLASH_FF:
  13393. {
  13394. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  13395. } break;
  13396. case GGML_OP_FLASH_ATTN_BACK:
  13397. {
  13398. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13399. GGML_ASSERT(t == 0 || t == 1);
  13400. bool masked = t != 0;
  13401. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  13402. } break;
  13403. case GGML_OP_WIN_PART:
  13404. {
  13405. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  13406. } break;
  13407. case GGML_OP_WIN_UNPART:
  13408. {
  13409. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  13410. } break;
  13411. case GGML_OP_UNARY:
  13412. {
  13413. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  13414. } break;
  13415. case GGML_OP_GET_REL_POS:
  13416. {
  13417. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  13418. } break;
  13419. case GGML_OP_ADD_REL_POS:
  13420. {
  13421. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13422. } break;
  13423. case GGML_OP_MAP_UNARY:
  13424. {
  13425. ggml_unary_op_f32_t fun;
  13426. memcpy(&fun, tensor->op_params, sizeof(fun));
  13427. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  13428. }
  13429. break;
  13430. case GGML_OP_MAP_BINARY:
  13431. {
  13432. ggml_binary_op_f32_t fun;
  13433. memcpy(&fun, tensor->op_params, sizeof(fun));
  13434. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  13435. }
  13436. break;
  13437. case GGML_OP_MAP_CUSTOM1_F32:
  13438. {
  13439. ggml_custom1_op_f32_t fun;
  13440. memcpy(&fun, tensor->op_params, sizeof(fun));
  13441. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  13442. }
  13443. break;
  13444. case GGML_OP_MAP_CUSTOM2_F32:
  13445. {
  13446. ggml_custom2_op_f32_t fun;
  13447. memcpy(&fun, tensor->op_params, sizeof(fun));
  13448. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  13449. }
  13450. break;
  13451. case GGML_OP_MAP_CUSTOM3_F32:
  13452. {
  13453. ggml_custom3_op_f32_t fun;
  13454. memcpy(&fun, tensor->op_params, sizeof(fun));
  13455. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  13456. }
  13457. break;
  13458. case GGML_OP_MAP_CUSTOM1:
  13459. {
  13460. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  13461. }
  13462. break;
  13463. case GGML_OP_MAP_CUSTOM2:
  13464. {
  13465. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  13466. }
  13467. break;
  13468. case GGML_OP_MAP_CUSTOM3:
  13469. {
  13470. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13471. }
  13472. break;
  13473. case GGML_OP_CROSS_ENTROPY_LOSS:
  13474. {
  13475. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13476. }
  13477. break;
  13478. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13479. {
  13480. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13481. }
  13482. break;
  13483. case GGML_OP_NONE:
  13484. {
  13485. // nop
  13486. } break;
  13487. case GGML_OP_COUNT:
  13488. {
  13489. GGML_ASSERT(false);
  13490. } break;
  13491. }
  13492. }
  13493. ////////////////////////////////////////////////////////////////////////////////
  13494. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13495. static size_t hash(void * p) {
  13496. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13497. }
  13498. static size_t hash_find(void * hash_table[], void * p) {
  13499. size_t h = hash(p);
  13500. // linear probing
  13501. size_t i = h;
  13502. while (hash_table[i] != NULL && hash_table[i] != p) {
  13503. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13504. if (i == h) {
  13505. // visited all hash table entries -> not found
  13506. return GGML_GRAPH_HASHTABLE_SIZE;
  13507. }
  13508. }
  13509. return i;
  13510. }
  13511. static bool hash_insert(void * hash_table[], void * p) {
  13512. size_t i = hash_find(hash_table, p);
  13513. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13514. if (hash_table[i] == p) {
  13515. return true;
  13516. }
  13517. // insert
  13518. GGML_ASSERT(hash_table[i] == NULL);
  13519. hash_table[i] = p;
  13520. return false;
  13521. }
  13522. static bool hash_contains(void * hash_table[], void * p) {
  13523. size_t i = hash_find(hash_table, p);
  13524. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  13525. }
  13526. struct hash_map {
  13527. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  13528. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  13529. };
  13530. static struct hash_map * new_hash_map(void) {
  13531. struct hash_map * result = malloc(sizeof(struct hash_map));
  13532. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  13533. result->keys[i] = NULL;
  13534. result->vals[i] = NULL;
  13535. }
  13536. return result;
  13537. }
  13538. static void free_hash_map(struct hash_map * map) {
  13539. free(map);
  13540. }
  13541. // gradient checkpointing
  13542. static struct ggml_tensor * ggml_recompute_graph_node(
  13543. struct ggml_context * ctx,
  13544. struct ggml_cgraph * graph,
  13545. struct hash_map * replacements,
  13546. struct ggml_tensor * node) {
  13547. if (node == NULL) {
  13548. return NULL;
  13549. }
  13550. if (node->is_param) {
  13551. return node;
  13552. }
  13553. if (!hash_contains(graph->visited_hash_table, node)) {
  13554. return node;
  13555. }
  13556. int count_children = 0;
  13557. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13558. if (node->src[k]) {
  13559. ++count_children;
  13560. }
  13561. }
  13562. if (count_children == 0) {
  13563. return node;
  13564. }
  13565. size_t i = hash_find(replacements->keys, node);
  13566. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13567. if (replacements->keys[i] == node) {
  13568. return (struct ggml_tensor *) replacements->vals[i];
  13569. }
  13570. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  13571. // insert clone into replacements
  13572. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  13573. replacements->keys[i] = node;
  13574. replacements->vals[i] = clone;
  13575. clone->op = node->op;
  13576. clone->grad = node->grad;
  13577. clone->is_param = node->is_param;
  13578. clone->extra = node->extra;
  13579. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13580. clone->nb[k] = node->nb[k];
  13581. }
  13582. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13583. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13584. }
  13585. if (node->view_src != NULL) {
  13586. clone->data = (node->view_src->data == NULL)
  13587. ? NULL // view_src not yet allocated
  13588. : (char *) node->view_src->data // view_src already allocated
  13589. + node->view_offs;
  13590. clone->view_src = node->view_src;
  13591. clone->view_offs = node->view_offs;
  13592. }
  13593. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13594. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13595. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13596. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13597. return clone;
  13598. }
  13599. void ggml_build_backward_gradient_checkpointing(
  13600. struct ggml_context * ctx,
  13601. struct ggml_cgraph * gf,
  13602. struct ggml_cgraph * gb,
  13603. struct ggml_cgraph * gb_tmp,
  13604. struct ggml_tensor * * checkpoints,
  13605. int n_checkpoints) {
  13606. *gb_tmp = *gf;
  13607. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13608. if (n_checkpoints <= 0) {
  13609. *gb = *gb_tmp;
  13610. return;
  13611. }
  13612. struct hash_map * replacements = new_hash_map();
  13613. // insert checkpoints in replacements
  13614. for (int i = 0; i < n_checkpoints; ++i) {
  13615. size_t k = hash_find(replacements->keys, checkpoints[i]);
  13616. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13617. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  13618. replacements->keys[k] = checkpoints[i];
  13619. replacements->vals[k] = checkpoints[i];
  13620. }
  13621. *gb = *gf;
  13622. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13623. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13624. // by recomputing them from checkpoints
  13625. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13626. struct ggml_tensor * node = gb_tmp->nodes[i];
  13627. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13628. // insert new tensors recomputing src, reusing already made replacements,
  13629. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13630. // recurse for input tensors,
  13631. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  13632. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13633. }
  13634. // insert rewritten backward node with replacements made into resulting backward graph gb
  13635. ggml_build_forward_expand(gb, node);
  13636. }
  13637. free_hash_map(replacements);
  13638. }
  13639. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13640. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13641. if (hash_contains(zero_table, a)) {
  13642. return b;
  13643. } else {
  13644. return ggml_add_impl(ctx, a, b, false);
  13645. }
  13646. }
  13647. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  13648. if (hash_contains(zero_table, a)) {
  13649. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  13650. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13651. } else {
  13652. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13653. }
  13654. }
  13655. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13656. if (hash_contains(zero_table, a)) {
  13657. return ggml_repeat(ctx, b, a);
  13658. } else {
  13659. return ggml_add1_impl(ctx, a, b, false);
  13660. }
  13661. }
  13662. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13663. if (hash_contains(zero_table, a)) {
  13664. return ggml_neg(ctx, b);
  13665. } else {
  13666. return ggml_sub_impl(ctx, a, b, false);
  13667. }
  13668. }
  13669. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  13670. struct ggml_tensor * src0 = tensor->src[0];
  13671. struct ggml_tensor * src1 = tensor->src[1];
  13672. switch (tensor->op) {
  13673. case GGML_OP_DUP:
  13674. {
  13675. if (src0->grad) {
  13676. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13677. }
  13678. } break;
  13679. case GGML_OP_ADD:
  13680. {
  13681. if (src0->grad) {
  13682. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13683. }
  13684. if (src1->grad) {
  13685. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13686. }
  13687. } break;
  13688. case GGML_OP_ADD1:
  13689. {
  13690. if (src0->grad) {
  13691. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13692. }
  13693. if (src1->grad) {
  13694. src1->grad = ggml_add_or_set(ctx,
  13695. src1->grad,
  13696. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13697. zero_table);
  13698. }
  13699. } break;
  13700. case GGML_OP_ACC:
  13701. {
  13702. if (src0->grad) {
  13703. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13704. }
  13705. if (src1->grad) {
  13706. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13707. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13708. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13709. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13710. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13711. tensor->grad,
  13712. src1->grad->ne[0],
  13713. src1->grad->ne[1],
  13714. src1->grad->ne[2],
  13715. src1->grad->ne[3],
  13716. nb1, nb2, nb3, offset);
  13717. src1->grad =
  13718. ggml_add_or_set(ctx,
  13719. src1->grad,
  13720. ggml_reshape(ctx,
  13721. ggml_cont(ctx, tensor_grad_view),
  13722. src1->grad),
  13723. zero_table);
  13724. }
  13725. } break;
  13726. case GGML_OP_SUB:
  13727. {
  13728. if (src0->grad) {
  13729. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13730. }
  13731. if (src1->grad) {
  13732. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13733. }
  13734. } break;
  13735. case GGML_OP_MUL:
  13736. {
  13737. if (src0->grad) {
  13738. src0->grad =
  13739. ggml_add_or_set(ctx,
  13740. src0->grad,
  13741. ggml_mul(ctx, src1, tensor->grad),
  13742. zero_table);
  13743. }
  13744. if (src1->grad) {
  13745. src1->grad =
  13746. ggml_add_or_set(ctx,
  13747. src1->grad,
  13748. ggml_mul(ctx, src0, tensor->grad),
  13749. zero_table);
  13750. }
  13751. } break;
  13752. case GGML_OP_DIV:
  13753. {
  13754. if (src0->grad) {
  13755. src0->grad =
  13756. ggml_add_or_set(ctx,
  13757. src0->grad,
  13758. ggml_div(ctx, tensor->grad, src1),
  13759. zero_table);
  13760. }
  13761. if (src1->grad) {
  13762. src1->grad =
  13763. ggml_sub_or_set(ctx,
  13764. src1->grad,
  13765. ggml_mul(ctx,
  13766. tensor->grad,
  13767. ggml_div(ctx, tensor, src1)),
  13768. zero_table);
  13769. }
  13770. } break;
  13771. case GGML_OP_SQR:
  13772. {
  13773. if (src0->grad) {
  13774. src0->grad =
  13775. ggml_add_or_set(ctx,
  13776. src0->grad,
  13777. ggml_scale(ctx,
  13778. ggml_mul(ctx, src0, tensor->grad),
  13779. ggml_new_f32(ctx, 2.0f)),
  13780. zero_table);
  13781. }
  13782. } break;
  13783. case GGML_OP_SQRT:
  13784. {
  13785. if (src0->grad) {
  13786. src0->grad =
  13787. ggml_add_or_set(ctx,
  13788. src0->grad,
  13789. ggml_scale(ctx,
  13790. ggml_div(ctx,
  13791. tensor->grad,
  13792. tensor),
  13793. ggml_new_f32(ctx, 0.5f)),
  13794. zero_table);
  13795. }
  13796. } break;
  13797. case GGML_OP_LOG:
  13798. {
  13799. if (src0->grad) {
  13800. src0->grad =
  13801. ggml_add_or_set(ctx,
  13802. src0->grad,
  13803. ggml_div(ctx,
  13804. tensor->grad,
  13805. src0),
  13806. zero_table);
  13807. }
  13808. } break;
  13809. case GGML_OP_SUM:
  13810. {
  13811. if (src0->grad) {
  13812. src0->grad =
  13813. ggml_add1_or_set(ctx,
  13814. src0->grad,
  13815. tensor->grad,
  13816. zero_table);
  13817. }
  13818. } break;
  13819. case GGML_OP_SUM_ROWS:
  13820. {
  13821. if (src0->grad) {
  13822. src0->grad =
  13823. ggml_add_or_set(ctx,
  13824. src0->grad,
  13825. ggml_repeat(ctx,
  13826. tensor->grad,
  13827. src0->grad),
  13828. zero_table);
  13829. }
  13830. } break;
  13831. case GGML_OP_MEAN:
  13832. case GGML_OP_ARGMAX:
  13833. {
  13834. GGML_ASSERT(false); // TODO: implement
  13835. } break;
  13836. case GGML_OP_REPEAT:
  13837. {
  13838. // necessary for llama
  13839. if (src0->grad) {
  13840. src0->grad = ggml_add_or_set(ctx,
  13841. src0->grad,
  13842. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13843. zero_table);
  13844. }
  13845. } break;
  13846. case GGML_OP_REPEAT_BACK:
  13847. {
  13848. if (src0->grad) {
  13849. // TODO: test this
  13850. src0->grad = ggml_add_or_set(ctx,
  13851. src0->grad,
  13852. ggml_repeat(ctx, tensor->grad, src0->grad),
  13853. zero_table);
  13854. }
  13855. } break;
  13856. case GGML_OP_CONCAT:
  13857. {
  13858. GGML_ASSERT(false); // TODO: implement
  13859. } break;
  13860. case GGML_OP_SILU_BACK:
  13861. {
  13862. GGML_ASSERT(false); // TODO: not implemented
  13863. } break;
  13864. case GGML_OP_NORM:
  13865. {
  13866. GGML_ASSERT(false); // TODO: not implemented
  13867. } break;
  13868. case GGML_OP_RMS_NORM:
  13869. {
  13870. // necessary for llama
  13871. if (src0->grad) {
  13872. float eps;
  13873. memcpy(&eps, tensor->op_params, sizeof(float));
  13874. src0->grad = ggml_add_or_set(ctx,
  13875. src0->grad,
  13876. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13877. zero_table);
  13878. }
  13879. } break;
  13880. case GGML_OP_RMS_NORM_BACK:
  13881. {
  13882. GGML_ASSERT(false); // TODO: not implemented
  13883. } break;
  13884. case GGML_OP_GROUP_NORM:
  13885. {
  13886. GGML_ASSERT(false); // TODO: not implemented
  13887. } break;
  13888. case GGML_OP_MUL_MAT:
  13889. {
  13890. // https://cs231n.github.io/optimization-2/#staged
  13891. // # forward pass
  13892. // s0 = np.random.randn(5, 10)
  13893. // s1 = np.random.randn(10, 3)
  13894. // t = s0.dot(s1)
  13895. // # now suppose we had the gradient on t from above in the circuit
  13896. // dt = np.random.randn(*t.shape) # same shape as t
  13897. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13898. // ds1 = t.T.dot(dt)
  13899. // tensor.shape [m,p,qq,rr]
  13900. // src0.shape [n,m,q1,r1]
  13901. // src1.shape [n,p,qq,rr]
  13902. // necessary for llama
  13903. if (src0->grad) {
  13904. struct ggml_tensor * s1_tg =
  13905. ggml_out_prod(ctx, // [n,m,qq,rr]
  13906. src1, // [n,p,qq,rr]
  13907. tensor->grad); // [m,p,qq,rr]
  13908. const int64_t qq = s1_tg->ne[2];
  13909. const int64_t rr = s1_tg->ne[3];
  13910. const int64_t q1 = src0->ne[2];
  13911. const int64_t r1 = src0->ne[3];
  13912. const bool ne2_broadcasted = qq > q1;
  13913. const bool ne3_broadcasted = rr > r1;
  13914. if (ne2_broadcasted || ne3_broadcasted) {
  13915. // sum broadcast repetitions of s1_tg into shape of src0
  13916. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13917. }
  13918. src0->grad =
  13919. ggml_add_or_set(ctx,
  13920. src0->grad, // [n,m,q1,r1]
  13921. s1_tg, // [n,m,q1,r1]
  13922. zero_table);
  13923. }
  13924. if (src1->grad) {
  13925. src1->grad =
  13926. ggml_add_or_set(ctx,
  13927. src1->grad, // [n,p,qq,rr]
  13928. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13929. // ggml_cont(ctx, // [m,n,q1,r1]
  13930. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13931. // tensor->grad), // [m,p,qq,rr]
  13932. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13933. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13934. // // and then use ggml_out_prod
  13935. ggml_out_prod(ctx, // [n,p,qq,rr]
  13936. src0, // [n,m,q1,r1]
  13937. ggml_transpose(ctx, // [p,m,qq,rr]
  13938. tensor->grad)), // [m,p,qq,rr]
  13939. zero_table);
  13940. }
  13941. } break;
  13942. case GGML_OP_OUT_PROD:
  13943. {
  13944. GGML_ASSERT(false); // TODO: not implemented
  13945. } break;
  13946. case GGML_OP_SCALE:
  13947. {
  13948. // necessary for llama
  13949. if (src0->grad) {
  13950. src0->grad =
  13951. ggml_add_or_set(ctx,
  13952. src0->grad,
  13953. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13954. zero_table);
  13955. }
  13956. if (src1->grad) {
  13957. src1->grad =
  13958. ggml_add_or_set(ctx,
  13959. src1->grad,
  13960. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13961. zero_table);
  13962. }
  13963. } break;
  13964. case GGML_OP_SET:
  13965. {
  13966. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13967. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13968. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13969. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13970. struct ggml_tensor * tensor_grad_view = NULL;
  13971. if (src0->grad || src1->grad) {
  13972. GGML_ASSERT(src0->type == tensor->type);
  13973. GGML_ASSERT(tensor->grad->type == tensor->type);
  13974. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13975. tensor_grad_view = ggml_view_4d(ctx,
  13976. tensor->grad,
  13977. src1->grad->ne[0],
  13978. src1->grad->ne[1],
  13979. src1->grad->ne[2],
  13980. src1->grad->ne[3],
  13981. nb1, nb2, nb3, offset);
  13982. }
  13983. if (src0->grad) {
  13984. src0->grad = ggml_add_or_set(ctx,
  13985. src0->grad,
  13986. ggml_acc_impl(ctx,
  13987. tensor->grad,
  13988. ggml_neg(ctx, tensor_grad_view),
  13989. nb1, nb2, nb3, offset, false),
  13990. zero_table);
  13991. }
  13992. if (src1->grad) {
  13993. src1->grad =
  13994. ggml_add_or_set(ctx,
  13995. src1->grad,
  13996. ggml_reshape(ctx,
  13997. ggml_cont(ctx, tensor_grad_view),
  13998. src1->grad),
  13999. zero_table);
  14000. }
  14001. } break;
  14002. case GGML_OP_CPY:
  14003. {
  14004. // necessary for llama
  14005. // cpy overwrites value of src1 by src0 and returns view(src1)
  14006. // the overwriting is mathematically equivalent to:
  14007. // tensor = src0 * 1 + src1 * 0
  14008. if (src0->grad) {
  14009. // dsrc0 = dtensor * 1
  14010. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14011. }
  14012. if (src1->grad) {
  14013. // dsrc1 = dtensor * 0 -> noop
  14014. }
  14015. } break;
  14016. case GGML_OP_CONT:
  14017. {
  14018. // same as cpy
  14019. if (src0->grad) {
  14020. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14021. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14022. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14023. }
  14024. } break;
  14025. case GGML_OP_RESHAPE:
  14026. {
  14027. // necessary for llama
  14028. if (src0->grad) {
  14029. src0->grad =
  14030. ggml_add_or_set(ctx, src0->grad,
  14031. ggml_reshape(ctx,
  14032. ggml_is_contiguous(tensor->grad)
  14033. ? tensor->grad
  14034. : ggml_cont(ctx, tensor->grad),
  14035. src0->grad),
  14036. zero_table);
  14037. }
  14038. } break;
  14039. case GGML_OP_VIEW:
  14040. {
  14041. // necessary for llama
  14042. if (src0->grad) {
  14043. size_t offset;
  14044. memcpy(&offset, tensor->op_params, sizeof(offset));
  14045. size_t nb1 = tensor->nb[1];
  14046. size_t nb2 = tensor->nb[2];
  14047. size_t nb3 = tensor->nb[3];
  14048. if (src0->type != src0->grad->type) {
  14049. // gradient is typically F32, but src0 could be other type
  14050. size_t ng = ggml_element_size(src0->grad);
  14051. size_t n0 = ggml_element_size(src0);
  14052. GGML_ASSERT(offset % n0 == 0);
  14053. GGML_ASSERT(nb1 % n0 == 0);
  14054. GGML_ASSERT(nb2 % n0 == 0);
  14055. GGML_ASSERT(nb3 % n0 == 0);
  14056. offset = (offset / n0) * ng;
  14057. nb1 = (nb1 / n0) * ng;
  14058. nb2 = (nb2 / n0) * ng;
  14059. nb3 = (nb3 / n0) * ng;
  14060. }
  14061. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14062. }
  14063. } break;
  14064. case GGML_OP_PERMUTE:
  14065. {
  14066. // necessary for llama
  14067. if (src0->grad) {
  14068. int32_t * axes = (int32_t *) tensor->op_params;
  14069. int axis0 = axes[0] & 0x3;
  14070. int axis1 = axes[1] & 0x3;
  14071. int axis2 = axes[2] & 0x3;
  14072. int axis3 = axes[3] & 0x3;
  14073. int axes_backward[4] = {0,0,0,0};
  14074. axes_backward[axis0] = 0;
  14075. axes_backward[axis1] = 1;
  14076. axes_backward[axis2] = 2;
  14077. axes_backward[axis3] = 3;
  14078. src0->grad =
  14079. ggml_add_or_set(ctx, src0->grad,
  14080. ggml_permute(ctx,
  14081. tensor->grad,
  14082. axes_backward[0],
  14083. axes_backward[1],
  14084. axes_backward[2],
  14085. axes_backward[3]),
  14086. zero_table);
  14087. }
  14088. } break;
  14089. case GGML_OP_TRANSPOSE:
  14090. {
  14091. // necessary for llama
  14092. if (src0->grad) {
  14093. src0->grad =
  14094. ggml_add_or_set(ctx, src0->grad,
  14095. ggml_transpose(ctx, tensor->grad),
  14096. zero_table);
  14097. }
  14098. } break;
  14099. case GGML_OP_GET_ROWS:
  14100. {
  14101. // necessary for llama (only for tokenizer)
  14102. if (src0->grad) {
  14103. src0->grad =
  14104. ggml_add_or_set(ctx, src0->grad,
  14105. // last ggml_get_rows_back argument src0->grad is only
  14106. // necessary to setup correct output shape
  14107. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14108. zero_table);
  14109. }
  14110. if (src1->grad) {
  14111. // noop
  14112. }
  14113. } break;
  14114. case GGML_OP_GET_ROWS_BACK:
  14115. {
  14116. GGML_ASSERT(false); // TODO: not implemented
  14117. } break;
  14118. case GGML_OP_DIAG:
  14119. {
  14120. GGML_ASSERT(false); // TODO: not implemented
  14121. } break;
  14122. case GGML_OP_DIAG_MASK_INF:
  14123. {
  14124. // necessary for llama
  14125. if (src0->grad) {
  14126. const int n_past = ((int32_t *) tensor->op_params)[0];
  14127. src0->grad =
  14128. ggml_add_or_set(ctx, src0->grad,
  14129. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14130. zero_table);
  14131. }
  14132. } break;
  14133. case GGML_OP_DIAG_MASK_ZERO:
  14134. {
  14135. // necessary for llama
  14136. if (src0->grad) {
  14137. const int n_past = ((int32_t *) tensor->op_params)[0];
  14138. src0->grad =
  14139. ggml_add_or_set(ctx, src0->grad,
  14140. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14141. zero_table);
  14142. }
  14143. } break;
  14144. case GGML_OP_SOFT_MAX:
  14145. {
  14146. // necessary for llama
  14147. if (src0->grad) {
  14148. src0->grad =
  14149. ggml_add_or_set(ctx, src0->grad,
  14150. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14151. zero_table);
  14152. }
  14153. } break;
  14154. case GGML_OP_SOFT_MAX_BACK:
  14155. {
  14156. GGML_ASSERT(false); // TODO: not implemented
  14157. } break;
  14158. case GGML_OP_ROPE:
  14159. {
  14160. // necessary for llama
  14161. if (src0->grad) {
  14162. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14163. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14164. const int mode = ((int32_t *) tensor->op_params)[2];
  14165. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14166. float freq_base;
  14167. float freq_scale;
  14168. float xpos_base;
  14169. bool xpos_down;
  14170. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14171. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14172. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14173. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14174. src0->grad = ggml_add_or_set(ctx,
  14175. src0->grad,
  14176. ggml_rope_back(ctx,
  14177. tensor->grad,
  14178. src1,
  14179. n_dims,
  14180. mode,
  14181. n_ctx,
  14182. freq_base,
  14183. freq_scale,
  14184. xpos_base,
  14185. xpos_down),
  14186. zero_table);
  14187. }
  14188. } break;
  14189. case GGML_OP_ROPE_BACK:
  14190. {
  14191. if (src0->grad) {
  14192. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14193. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14194. const int mode = ((int32_t *) tensor->op_params)[2];
  14195. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14196. float freq_base;
  14197. float freq_scale;
  14198. float xpos_base;
  14199. bool xpos_down;
  14200. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14201. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14202. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14203. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14204. src0->grad = ggml_add_or_set(ctx,
  14205. src0->grad,
  14206. ggml_rope_impl(ctx,
  14207. tensor->grad,
  14208. src1,
  14209. n_dims,
  14210. mode,
  14211. n_ctx,
  14212. freq_base,
  14213. freq_scale,
  14214. xpos_base,
  14215. xpos_down,
  14216. false),
  14217. zero_table);
  14218. }
  14219. } break;
  14220. case GGML_OP_ALIBI:
  14221. {
  14222. GGML_ASSERT(false); // TODO: not implemented
  14223. } break;
  14224. case GGML_OP_CLAMP:
  14225. {
  14226. GGML_ASSERT(false); // TODO: not implemented
  14227. } break;
  14228. case GGML_OP_CONV_1D:
  14229. {
  14230. GGML_ASSERT(false); // TODO: not implemented
  14231. } break;
  14232. case GGML_OP_CONV_2D:
  14233. {
  14234. GGML_ASSERT(false); // TODO: not implemented
  14235. } break;
  14236. case GGML_OP_CONV_TRANSPOSE_2D:
  14237. {
  14238. GGML_ASSERT(false); // TODO: not implemented
  14239. } break;
  14240. case GGML_OP_POOL_1D:
  14241. {
  14242. GGML_ASSERT(false); // TODO: not implemented
  14243. } break;
  14244. case GGML_OP_POOL_2D:
  14245. {
  14246. GGML_ASSERT(false); // TODO: not implemented
  14247. } break;
  14248. case GGML_OP_UPSCALE:
  14249. {
  14250. GGML_ASSERT(false); // TODO: not implemented
  14251. } break;
  14252. case GGML_OP_FLASH_ATTN:
  14253. {
  14254. struct ggml_tensor * flash_grad = NULL;
  14255. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14256. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14257. GGML_ASSERT(t == 0 || t == 1);
  14258. bool masked = t != 0;
  14259. flash_grad =
  14260. ggml_flash_attn_back(ctx,
  14261. src0,
  14262. src1,
  14263. tensor->src[2],
  14264. tensor->grad,
  14265. masked);
  14266. }
  14267. struct ggml_tensor * src2 = tensor->src[2];
  14268. const int64_t elem_q = ggml_nelements(src0);
  14269. const int64_t elem_k = ggml_nelements(src1);
  14270. const int64_t elem_v = ggml_nelements(src2);
  14271. enum ggml_type result_type = flash_grad->type;
  14272. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14273. const size_t tsize = ggml_type_size(result_type);
  14274. const size_t offs_q = 0;
  14275. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14276. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14277. if (src0->grad) {
  14278. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14279. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14280. src0->grad = ggml_add_or_set(ctx,
  14281. src0->grad,
  14282. grad_q,
  14283. zero_table);
  14284. }
  14285. if (src1->grad) {
  14286. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14287. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14288. src1->grad = ggml_add_or_set(ctx,
  14289. src1->grad,
  14290. grad_k,
  14291. zero_table);
  14292. }
  14293. if (src2->grad) {
  14294. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14295. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14296. src2->grad = ggml_add_or_set(ctx,
  14297. src2->grad,
  14298. grad_v,
  14299. zero_table);
  14300. }
  14301. } break;
  14302. case GGML_OP_FLASH_FF:
  14303. {
  14304. GGML_ASSERT(false); // not supported
  14305. } break;
  14306. case GGML_OP_FLASH_ATTN_BACK:
  14307. {
  14308. GGML_ASSERT(false); // not supported
  14309. } break;
  14310. case GGML_OP_WIN_PART:
  14311. case GGML_OP_WIN_UNPART:
  14312. case GGML_OP_UNARY:
  14313. {
  14314. switch (ggml_get_unary_op(tensor)) {
  14315. case GGML_UNARY_OP_ABS:
  14316. {
  14317. if (src0->grad) {
  14318. src0->grad =
  14319. ggml_add_or_set(ctx,
  14320. src0->grad,
  14321. ggml_mul(ctx,
  14322. ggml_sgn(ctx, src0),
  14323. tensor->grad),
  14324. zero_table);
  14325. }
  14326. } break;
  14327. case GGML_UNARY_OP_SGN:
  14328. {
  14329. if (src0->grad) {
  14330. // noop
  14331. }
  14332. } break;
  14333. case GGML_UNARY_OP_NEG:
  14334. {
  14335. if (src0->grad) {
  14336. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14337. }
  14338. } break;
  14339. case GGML_UNARY_OP_STEP:
  14340. {
  14341. if (src0->grad) {
  14342. // noop
  14343. }
  14344. } break;
  14345. case GGML_UNARY_OP_TANH:
  14346. {
  14347. GGML_ASSERT(false); // TODO: not implemented
  14348. } break;
  14349. case GGML_UNARY_OP_ELU:
  14350. {
  14351. GGML_ASSERT(false); // TODO: not implemented
  14352. } break;
  14353. case GGML_UNARY_OP_RELU:
  14354. {
  14355. if (src0->grad) {
  14356. src0->grad = ggml_add_or_set(ctx,
  14357. src0->grad,
  14358. ggml_mul(ctx,
  14359. ggml_step(ctx, src0),
  14360. tensor->grad),
  14361. zero_table);
  14362. }
  14363. } break;
  14364. case GGML_UNARY_OP_GELU:
  14365. {
  14366. GGML_ASSERT(false); // TODO: not implemented
  14367. } break;
  14368. case GGML_UNARY_OP_GELU_QUICK:
  14369. {
  14370. GGML_ASSERT(false); // TODO: not implemented
  14371. } break;
  14372. case GGML_UNARY_OP_SILU:
  14373. {
  14374. // necessary for llama
  14375. if (src0->grad) {
  14376. src0->grad = ggml_add_or_set(ctx,
  14377. src0->grad,
  14378. ggml_silu_back(ctx, src0, tensor->grad),
  14379. zero_table);
  14380. }
  14381. } break;
  14382. default:
  14383. GGML_ASSERT(false);
  14384. }
  14385. } break;
  14386. case GGML_OP_GET_REL_POS:
  14387. case GGML_OP_ADD_REL_POS:
  14388. case GGML_OP_MAP_UNARY:
  14389. case GGML_OP_MAP_BINARY:
  14390. case GGML_OP_MAP_CUSTOM1_F32:
  14391. case GGML_OP_MAP_CUSTOM2_F32:
  14392. case GGML_OP_MAP_CUSTOM3_F32:
  14393. case GGML_OP_MAP_CUSTOM1:
  14394. case GGML_OP_MAP_CUSTOM2:
  14395. case GGML_OP_MAP_CUSTOM3:
  14396. {
  14397. GGML_ASSERT(false); // not supported
  14398. } break;
  14399. case GGML_OP_CROSS_ENTROPY_LOSS:
  14400. {
  14401. if (src0->grad) {
  14402. src0->grad = ggml_add_or_set(ctx,
  14403. src0->grad,
  14404. ggml_cross_entropy_loss_back(ctx,
  14405. src0,
  14406. src1,
  14407. tensor->grad),
  14408. zero_table);
  14409. }
  14410. } break;
  14411. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14412. {
  14413. GGML_ASSERT(false); // not supported
  14414. } break;
  14415. case GGML_OP_NONE:
  14416. {
  14417. // nop
  14418. } break;
  14419. case GGML_OP_COUNT:
  14420. {
  14421. GGML_ASSERT(false);
  14422. } break;
  14423. }
  14424. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14425. if (tensor->src[i] && tensor->src[i]->grad) {
  14426. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14427. }
  14428. }
  14429. }
  14430. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14431. if (node->grad == NULL) {
  14432. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14433. // it can also happen during forward pass, if the user performs computations with constants
  14434. if (node->op != GGML_OP_NONE) {
  14435. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14436. }
  14437. }
  14438. // check if already visited
  14439. if (hash_insert(cgraph->visited_hash_table, node)) {
  14440. return;
  14441. }
  14442. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14443. const int k =
  14444. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14445. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14446. /* unknown order, just fall back to using i*/ i;
  14447. if (node->src[k]) {
  14448. ggml_visit_parents(cgraph, node->src[k]);
  14449. }
  14450. }
  14451. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14452. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14453. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  14454. if (strlen(node->name) == 0) {
  14455. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14456. }
  14457. cgraph->leafs[cgraph->n_leafs] = node;
  14458. cgraph->n_leafs++;
  14459. } else {
  14460. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  14461. if (strlen(node->name) == 0) {
  14462. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14463. }
  14464. cgraph->nodes[cgraph->n_nodes] = node;
  14465. cgraph->grads[cgraph->n_nodes] = node->grad;
  14466. cgraph->n_nodes++;
  14467. }
  14468. }
  14469. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14470. if (!expand) {
  14471. cgraph->n_nodes = 0;
  14472. cgraph->n_leafs = 0;
  14473. }
  14474. const int n0 = cgraph->n_nodes;
  14475. UNUSED(n0);
  14476. ggml_visit_parents(cgraph, tensor);
  14477. const int n_new = cgraph->n_nodes - n0;
  14478. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14479. if (n_new > 0) {
  14480. // the last added node should always be starting point
  14481. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14482. }
  14483. }
  14484. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14485. ggml_build_forward_impl(cgraph, tensor, true);
  14486. }
  14487. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  14488. struct ggml_cgraph result = {
  14489. /*.n_nodes =*/ 0,
  14490. /*.n_leafs =*/ 0,
  14491. /*.nodes =*/ { NULL },
  14492. /*.grads =*/ { NULL },
  14493. /*.leafs =*/ { NULL },
  14494. /*.hash_table =*/ { NULL },
  14495. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14496. /*.perf_runs =*/ 0,
  14497. /*.perf_cycles =*/ 0,
  14498. /*.perf_time_us =*/ 0,
  14499. };
  14500. ggml_build_forward_impl(&result, tensor, false);
  14501. return result;
  14502. }
  14503. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14504. GGML_ASSERT(gf->n_nodes > 0);
  14505. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14506. if (keep) {
  14507. for (int i = 0; i < gf->n_nodes; i++) {
  14508. struct ggml_tensor * node = gf->nodes[i];
  14509. if (node->grad) {
  14510. node->grad = ggml_dup_tensor(ctx, node);
  14511. gf->grads[i] = node->grad;
  14512. }
  14513. }
  14514. }
  14515. // remember original gradients which start with zero values
  14516. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  14517. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  14518. for (int i = 0; i < gf->n_nodes; i++) {
  14519. if (gf->grads[i]) {
  14520. hash_insert(zero_table, gf->grads[i]);
  14521. }
  14522. }
  14523. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14524. struct ggml_tensor * node = gf->nodes[i];
  14525. // inplace operations to add gradients are not created by ggml_compute_backward
  14526. // use allocator to automatically make inplace operations
  14527. if (node->grad) {
  14528. ggml_compute_backward(ctx, node, zero_table);
  14529. }
  14530. }
  14531. for (int i = 0; i < gf->n_nodes; i++) {
  14532. struct ggml_tensor * node = gf->nodes[i];
  14533. if (node->is_param) {
  14534. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14535. ggml_build_forward_expand(gb, node->grad);
  14536. }
  14537. }
  14538. free(zero_table);
  14539. }
  14540. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  14541. struct ggml_cgraph result = *gf;
  14542. ggml_build_backward_expand(ctx, gf, &result, keep);
  14543. return result;
  14544. }
  14545. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14546. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  14547. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14548. *cgraph = (struct ggml_cgraph) {
  14549. /*.n_nodes =*/ 0,
  14550. /*.n_leafs =*/ 0,
  14551. /*.nodes =*/ { NULL },
  14552. /*.grads =*/ { NULL },
  14553. /*.leafs =*/ { NULL },
  14554. /*.hash_table =*/ { NULL },
  14555. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14556. /*.perf_runs =*/ 0,
  14557. /*.perf_cycles =*/ 0,
  14558. /*.perf_time_us =*/ 0,
  14559. };
  14560. return cgraph;
  14561. }
  14562. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14563. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14564. ggml_build_forward_impl(cgraph, tensor, false);
  14565. return cgraph;
  14566. }
  14567. size_t ggml_graph_overhead(void) {
  14568. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14569. }
  14570. //
  14571. // thread data
  14572. //
  14573. // synchronization is done via busy loops
  14574. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14575. //
  14576. #ifdef __APPLE__
  14577. //#include <os/lock.h>
  14578. //
  14579. //typedef os_unfair_lock ggml_lock_t;
  14580. //
  14581. //#define ggml_lock_init(x) UNUSED(x)
  14582. //#define ggml_lock_destroy(x) UNUSED(x)
  14583. //#define ggml_lock_lock os_unfair_lock_lock
  14584. //#define ggml_lock_unlock os_unfair_lock_unlock
  14585. //
  14586. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14587. typedef int ggml_lock_t;
  14588. #define ggml_lock_init(x) UNUSED(x)
  14589. #define ggml_lock_destroy(x) UNUSED(x)
  14590. #define ggml_lock_lock(x) UNUSED(x)
  14591. #define ggml_lock_unlock(x) UNUSED(x)
  14592. #define GGML_LOCK_INITIALIZER 0
  14593. typedef pthread_t ggml_thread_t;
  14594. #define ggml_thread_create pthread_create
  14595. #define ggml_thread_join pthread_join
  14596. #else
  14597. //typedef pthread_spinlock_t ggml_lock_t;
  14598. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14599. //#define ggml_lock_destroy pthread_spin_destroy
  14600. //#define ggml_lock_lock pthread_spin_lock
  14601. //#define ggml_lock_unlock pthread_spin_unlock
  14602. typedef int ggml_lock_t;
  14603. #define ggml_lock_init(x) UNUSED(x)
  14604. #define ggml_lock_destroy(x) UNUSED(x)
  14605. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14606. #define ggml_lock_lock(x) _mm_pause()
  14607. #else
  14608. #define ggml_lock_lock(x) UNUSED(x)
  14609. #endif
  14610. #define ggml_lock_unlock(x) UNUSED(x)
  14611. #define GGML_LOCK_INITIALIZER 0
  14612. typedef pthread_t ggml_thread_t;
  14613. #define ggml_thread_create pthread_create
  14614. #define ggml_thread_join pthread_join
  14615. #endif
  14616. // Android's libc implementation "bionic" does not support setting affinity
  14617. #if defined(__linux__) && !defined(__BIONIC__)
  14618. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14619. if (!ggml_is_numa()) {
  14620. return;
  14621. }
  14622. // run thread on node_num thread_n / (threads per node)
  14623. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14624. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14625. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14626. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14627. CPU_ZERO_S(setsize, cpus);
  14628. for (size_t i = 0; i < node->n_cpus; ++i) {
  14629. CPU_SET_S(node->cpus[i], setsize, cpus);
  14630. }
  14631. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14632. if (rv) {
  14633. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14634. strerror(rv));
  14635. }
  14636. CPU_FREE(cpus);
  14637. }
  14638. static void clear_numa_thread_affinity(void) {
  14639. if (!ggml_is_numa()) {
  14640. return;
  14641. }
  14642. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14643. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14644. CPU_ZERO_S(setsize, cpus);
  14645. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14646. CPU_SET_S(i, setsize, cpus);
  14647. }
  14648. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14649. if (rv) {
  14650. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14651. strerror(rv));
  14652. }
  14653. CPU_FREE(cpus);
  14654. }
  14655. #else
  14656. // TODO: Windows etc.
  14657. // (the linux implementation may also work on BSD, someone should test)
  14658. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14659. static void clear_numa_thread_affinity(void) {}
  14660. #endif
  14661. struct ggml_compute_state_shared {
  14662. const struct ggml_cgraph * cgraph;
  14663. const struct ggml_cplan * cplan;
  14664. int64_t perf_node_start_cycles;
  14665. int64_t perf_node_start_time_us;
  14666. const int n_threads;
  14667. // synchronization primitives
  14668. atomic_int n_active; // num active threads
  14669. atomic_int node_n; // active graph node
  14670. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14671. void * abort_callback_data;
  14672. };
  14673. struct ggml_compute_state {
  14674. ggml_thread_t thrd;
  14675. int ith;
  14676. struct ggml_compute_state_shared * shared;
  14677. };
  14678. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14679. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14680. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14681. node->perf_runs++;
  14682. node->perf_cycles += cycles_cur;
  14683. node->perf_time_us += time_us_cur;
  14684. }
  14685. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14686. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14687. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14688. const struct ggml_cplan * cplan = state->shared->cplan;
  14689. const int * n_tasks_arr = cplan->n_tasks;
  14690. const int n_threads = state->shared->n_threads;
  14691. set_numa_thread_affinity(state->ith, n_threads);
  14692. int node_n = -1;
  14693. while (true) {
  14694. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14695. state->shared->node_n += 1;
  14696. return (thread_ret_t) GGML_EXIT_ABORTED;
  14697. }
  14698. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14699. // all other threads are finished and spinning
  14700. // do finalize and init here so we don't have synchronize again
  14701. struct ggml_compute_params params = {
  14702. /*.type =*/ GGML_TASK_FINALIZE,
  14703. /*.ith =*/ 0,
  14704. /*.nth =*/ 0,
  14705. /*.wsize =*/ cplan->work_size,
  14706. /*.wdata =*/ cplan->work_data,
  14707. };
  14708. if (node_n != -1) {
  14709. /* FINALIZE */
  14710. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14711. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14712. params.nth = n_tasks_arr[node_n];
  14713. ggml_compute_forward(&params, node);
  14714. }
  14715. ggml_graph_compute_perf_stats_node(node, state->shared);
  14716. }
  14717. // distribute new work or execute it direct if 1T
  14718. while (++node_n < cgraph->n_nodes) {
  14719. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14720. struct ggml_tensor * node = cgraph->nodes[node_n];
  14721. const int n_tasks = n_tasks_arr[node_n];
  14722. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14723. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14724. params.nth = n_tasks;
  14725. /* INIT */
  14726. if (GGML_OP_HAS_INIT[node->op]) {
  14727. params.type = GGML_TASK_INIT;
  14728. ggml_compute_forward(&params, node);
  14729. }
  14730. if (n_tasks == 1) {
  14731. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14732. // they do something more efficient than spinning (?)
  14733. params.type = GGML_TASK_COMPUTE;
  14734. ggml_compute_forward(&params, node);
  14735. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14736. params.type = GGML_TASK_FINALIZE;
  14737. ggml_compute_forward(&params, node);
  14738. }
  14739. ggml_graph_compute_perf_stats_node(node, state->shared);
  14740. } else {
  14741. break;
  14742. }
  14743. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14744. break;
  14745. }
  14746. }
  14747. atomic_store(&state->shared->n_active, n_threads);
  14748. atomic_store(&state->shared->node_n, node_n);
  14749. } else {
  14750. // wait for other threads to finish
  14751. const int last = node_n;
  14752. while (true) {
  14753. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14754. // depending on the workload and the operating system.
  14755. // since it is not clear what is the best approach, it should potentially become user-configurable
  14756. // ref: https://github.com/ggerganov/ggml/issues/291
  14757. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14758. sched_yield();
  14759. #endif
  14760. node_n = atomic_load(&state->shared->node_n);
  14761. if (node_n != last) break;
  14762. };
  14763. }
  14764. // check if we should stop
  14765. if (node_n >= cgraph->n_nodes) break;
  14766. /* COMPUTE */
  14767. struct ggml_tensor * node = cgraph->nodes[node_n];
  14768. const int n_tasks = n_tasks_arr[node_n];
  14769. struct ggml_compute_params params = {
  14770. /*.type =*/ GGML_TASK_COMPUTE,
  14771. /*.ith =*/ state->ith,
  14772. /*.nth =*/ n_tasks,
  14773. /*.wsize =*/ cplan->work_size,
  14774. /*.wdata =*/ cplan->work_data,
  14775. };
  14776. if (state->ith < n_tasks) {
  14777. ggml_compute_forward(&params, node);
  14778. }
  14779. }
  14780. return GGML_EXIT_SUCCESS;
  14781. }
  14782. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14783. if (n_threads <= 0) {
  14784. n_threads = GGML_DEFAULT_N_THREADS;
  14785. }
  14786. size_t work_size = 0;
  14787. struct ggml_cplan cplan;
  14788. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14789. // thread scheduling for the different operations + work buffer size estimation
  14790. for (int i = 0; i < cgraph->n_nodes; i++) {
  14791. int n_tasks = 1;
  14792. struct ggml_tensor * node = cgraph->nodes[i];
  14793. switch (node->op) {
  14794. case GGML_OP_CPY:
  14795. case GGML_OP_DUP:
  14796. {
  14797. n_tasks = n_threads;
  14798. size_t cur = 0;
  14799. if (ggml_is_quantized(node->type)) {
  14800. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14801. }
  14802. work_size = MAX(work_size, cur);
  14803. } break;
  14804. case GGML_OP_ADD:
  14805. case GGML_OP_ADD1:
  14806. {
  14807. n_tasks = n_threads;
  14808. size_t cur = 0;
  14809. if (ggml_is_quantized(node->src[0]->type)) {
  14810. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14811. }
  14812. work_size = MAX(work_size, cur);
  14813. } break;
  14814. case GGML_OP_ACC:
  14815. {
  14816. n_tasks = n_threads;
  14817. size_t cur = 0;
  14818. if (ggml_is_quantized(node->src[0]->type)) {
  14819. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14820. }
  14821. work_size = MAX(work_size, cur);
  14822. } break;
  14823. case GGML_OP_SUB:
  14824. case GGML_OP_DIV:
  14825. case GGML_OP_SQR:
  14826. case GGML_OP_SQRT:
  14827. case GGML_OP_LOG:
  14828. case GGML_OP_SUM:
  14829. case GGML_OP_SUM_ROWS:
  14830. case GGML_OP_MEAN:
  14831. case GGML_OP_ARGMAX:
  14832. case GGML_OP_REPEAT:
  14833. case GGML_OP_REPEAT_BACK:
  14834. {
  14835. n_tasks = 1;
  14836. } break;
  14837. case GGML_OP_UNARY:
  14838. {
  14839. switch (ggml_get_unary_op(node)) {
  14840. case GGML_UNARY_OP_ABS:
  14841. case GGML_UNARY_OP_SGN:
  14842. case GGML_UNARY_OP_NEG:
  14843. case GGML_UNARY_OP_STEP:
  14844. case GGML_UNARY_OP_TANH:
  14845. case GGML_UNARY_OP_ELU:
  14846. case GGML_UNARY_OP_RELU:
  14847. {
  14848. n_tasks = 1;
  14849. } break;
  14850. case GGML_UNARY_OP_GELU:
  14851. case GGML_UNARY_OP_GELU_QUICK:
  14852. case GGML_UNARY_OP_SILU:
  14853. {
  14854. n_tasks = n_threads;
  14855. } break;
  14856. }
  14857. } break;
  14858. case GGML_OP_SILU_BACK:
  14859. case GGML_OP_MUL:
  14860. case GGML_OP_NORM:
  14861. case GGML_OP_RMS_NORM:
  14862. case GGML_OP_RMS_NORM_BACK:
  14863. case GGML_OP_GROUP_NORM:
  14864. {
  14865. n_tasks = n_threads;
  14866. } break;
  14867. case GGML_OP_CONCAT:
  14868. case GGML_OP_MUL_MAT:
  14869. {
  14870. n_tasks = n_threads;
  14871. // TODO: use different scheduling for different matrix sizes
  14872. //const int nr0 = ggml_nrows(node->src[0]);
  14873. //const int nr1 = ggml_nrows(node->src[1]);
  14874. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14875. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14876. size_t cur = 0;
  14877. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14878. #if defined(GGML_USE_CUBLAS)
  14879. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14880. n_tasks = 1; // TODO: this actually is doing nothing
  14881. // the threads are still spinning
  14882. } else
  14883. #elif defined(GGML_USE_CLBLAST)
  14884. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14885. n_tasks = 1; // TODO: this actually is doing nothing
  14886. // the threads are still spinning
  14887. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14888. } else
  14889. #endif
  14890. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14891. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14892. n_tasks = 1; // TODO: this actually is doing nothing
  14893. // the threads are still spinning
  14894. if (node->src[0]->type != GGML_TYPE_F32) {
  14895. // here we need memory just for single 2D matrix from src0
  14896. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14897. }
  14898. } else
  14899. #endif
  14900. if (node->src[1]->type != vec_dot_type) {
  14901. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14902. } else {
  14903. cur = 0;
  14904. }
  14905. work_size = MAX(work_size, cur);
  14906. } break;
  14907. case GGML_OP_OUT_PROD:
  14908. {
  14909. n_tasks = n_threads;
  14910. size_t cur = 0;
  14911. if (ggml_is_quantized(node->src[0]->type)) {
  14912. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14913. }
  14914. work_size = MAX(work_size, cur);
  14915. } break;
  14916. case GGML_OP_SCALE:
  14917. {
  14918. n_tasks = 1;
  14919. } break;
  14920. case GGML_OP_SET:
  14921. case GGML_OP_CONT:
  14922. case GGML_OP_RESHAPE:
  14923. case GGML_OP_VIEW:
  14924. case GGML_OP_PERMUTE:
  14925. case GGML_OP_TRANSPOSE:
  14926. case GGML_OP_GET_ROWS:
  14927. case GGML_OP_GET_ROWS_BACK:
  14928. case GGML_OP_DIAG:
  14929. {
  14930. n_tasks = 1;
  14931. } break;
  14932. case GGML_OP_DIAG_MASK_ZERO:
  14933. case GGML_OP_DIAG_MASK_INF:
  14934. case GGML_OP_SOFT_MAX:
  14935. case GGML_OP_SOFT_MAX_BACK:
  14936. case GGML_OP_ROPE:
  14937. case GGML_OP_ROPE_BACK:
  14938. case GGML_OP_ADD_REL_POS:
  14939. {
  14940. n_tasks = n_threads;
  14941. } break;
  14942. case GGML_OP_ALIBI:
  14943. {
  14944. n_tasks = 1; //TODO
  14945. } break;
  14946. case GGML_OP_CLAMP:
  14947. {
  14948. n_tasks = 1; //TODO
  14949. } break;
  14950. case GGML_OP_CONV_1D:
  14951. {
  14952. n_tasks = n_threads;
  14953. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14954. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14955. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14956. size_t cur = 0;
  14957. const int nk = node->src[0]->ne[0];
  14958. if (node->src[0]->type == GGML_TYPE_F16 &&
  14959. node->src[1]->type == GGML_TYPE_F32) {
  14960. cur = sizeof(ggml_fp16_t)*(
  14961. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14962. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14963. );
  14964. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14965. node->src[1]->type == GGML_TYPE_F32) {
  14966. cur = sizeof(float)*(
  14967. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14968. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14969. );
  14970. } else {
  14971. GGML_ASSERT(false);
  14972. }
  14973. work_size = MAX(work_size, cur);
  14974. } break;
  14975. case GGML_OP_CONV_2D:
  14976. {
  14977. n_tasks = n_threads;
  14978. const int64_t ne00 = node->src[0]->ne[0]; // W
  14979. const int64_t ne01 = node->src[0]->ne[1]; // H
  14980. const int64_t ne02 = node->src[0]->ne[2]; // C
  14981. const int64_t ne03 = node->src[0]->ne[3]; // N
  14982. const int64_t ne10 = node->src[1]->ne[0]; // W
  14983. const int64_t ne11 = node->src[1]->ne[1]; // H
  14984. const int64_t ne12 = node->src[1]->ne[2]; // C
  14985. const int64_t ne0 = node->ne[0];
  14986. const int64_t ne1 = node->ne[1];
  14987. const int64_t ne2 = node->ne[2];
  14988. const int64_t nk = ne00*ne01;
  14989. const int64_t ew0 = nk * ne02;
  14990. UNUSED(ne03);
  14991. UNUSED(ne2);
  14992. size_t cur = 0;
  14993. if (node->src[0]->type == GGML_TYPE_F16 &&
  14994. node->src[1]->type == GGML_TYPE_F32) {
  14995. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14996. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14997. node->src[1]->type == GGML_TYPE_F32) {
  14998. cur = sizeof(float)* (ne10*ne11*ne12);
  14999. } else {
  15000. GGML_ASSERT(false);
  15001. }
  15002. work_size = MAX(work_size, cur);
  15003. } break;
  15004. case GGML_OP_CONV_TRANSPOSE_2D:
  15005. {
  15006. n_tasks = n_threads;
  15007. const int64_t ne00 = node->src[0]->ne[0]; // W
  15008. const int64_t ne01 = node->src[0]->ne[1]; // H
  15009. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15010. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15011. const int64_t ne10 = node->src[1]->ne[0]; // W
  15012. const int64_t ne11 = node->src[1]->ne[1]; // H
  15013. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15014. size_t cur = 0;
  15015. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15016. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15017. work_size = MAX(work_size, cur);
  15018. } break;
  15019. case GGML_OP_POOL_1D:
  15020. case GGML_OP_POOL_2D:
  15021. {
  15022. n_tasks = 1;
  15023. } break;
  15024. case GGML_OP_UPSCALE:
  15025. {
  15026. n_tasks = n_threads;
  15027. } break;
  15028. case GGML_OP_FLASH_ATTN:
  15029. {
  15030. n_tasks = n_threads;
  15031. size_t cur = 0;
  15032. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15033. if (node->src[1]->type == GGML_TYPE_F32) {
  15034. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15035. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15036. }
  15037. if (node->src[1]->type == GGML_TYPE_F16) {
  15038. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15039. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15040. }
  15041. work_size = MAX(work_size, cur);
  15042. } break;
  15043. case GGML_OP_FLASH_FF:
  15044. {
  15045. n_tasks = n_threads;
  15046. size_t cur = 0;
  15047. if (node->src[1]->type == GGML_TYPE_F32) {
  15048. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15049. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15050. }
  15051. if (node->src[1]->type == GGML_TYPE_F16) {
  15052. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15053. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15054. }
  15055. work_size = MAX(work_size, cur);
  15056. } break;
  15057. case GGML_OP_FLASH_ATTN_BACK:
  15058. {
  15059. n_tasks = n_threads;
  15060. size_t cur = 0;
  15061. const int64_t D = node->src[0]->ne[0];
  15062. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15063. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15064. if (node->src[1]->type == GGML_TYPE_F32) {
  15065. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15066. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15067. }
  15068. if (node->src[1]->type == GGML_TYPE_F16) {
  15069. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15070. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15071. }
  15072. work_size = MAX(work_size, cur);
  15073. } break;
  15074. case GGML_OP_WIN_PART:
  15075. case GGML_OP_WIN_UNPART:
  15076. case GGML_OP_GET_REL_POS:
  15077. case GGML_OP_MAP_UNARY:
  15078. case GGML_OP_MAP_BINARY:
  15079. case GGML_OP_MAP_CUSTOM1_F32:
  15080. case GGML_OP_MAP_CUSTOM2_F32:
  15081. case GGML_OP_MAP_CUSTOM3_F32:
  15082. {
  15083. n_tasks = 1;
  15084. } break;
  15085. case GGML_OP_MAP_CUSTOM1:
  15086. {
  15087. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  15088. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15089. n_tasks = n_threads;
  15090. } else {
  15091. n_tasks = MIN(p->n_tasks, n_threads);
  15092. }
  15093. } break;
  15094. case GGML_OP_MAP_CUSTOM2:
  15095. {
  15096. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  15097. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15098. n_tasks = n_threads;
  15099. } else {
  15100. n_tasks = MIN(p->n_tasks, n_threads);
  15101. }
  15102. } break;
  15103. case GGML_OP_MAP_CUSTOM3:
  15104. {
  15105. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  15106. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15107. n_tasks = n_threads;
  15108. } else {
  15109. n_tasks = MIN(p->n_tasks, n_threads);
  15110. }
  15111. } break;
  15112. case GGML_OP_CROSS_ENTROPY_LOSS:
  15113. {
  15114. n_tasks = n_threads;
  15115. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15116. work_size = MAX(work_size, cur);
  15117. } break;
  15118. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15119. {
  15120. n_tasks = n_threads;
  15121. } break;
  15122. case GGML_OP_NONE:
  15123. {
  15124. n_tasks = 1;
  15125. } break;
  15126. case GGML_OP_COUNT:
  15127. {
  15128. GGML_ASSERT(false);
  15129. } break;
  15130. }
  15131. cplan.n_tasks[i] = n_tasks;
  15132. }
  15133. if (work_size > 0) {
  15134. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15135. }
  15136. cplan.n_threads = n_threads;
  15137. cplan.work_size = work_size;
  15138. cplan.work_data = NULL;
  15139. return cplan;
  15140. }
  15141. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15142. {
  15143. GGML_ASSERT(cplan);
  15144. GGML_ASSERT(cplan->n_threads > 0);
  15145. if (cplan->work_size > 0) {
  15146. GGML_ASSERT(cplan->work_data);
  15147. }
  15148. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15149. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  15150. GGML_ASSERT(cplan->n_tasks[i] > 0);
  15151. }
  15152. }
  15153. }
  15154. const int n_threads = cplan->n_threads;
  15155. struct ggml_compute_state_shared state_shared = {
  15156. /*.cgraph =*/ cgraph,
  15157. /*.cgraph_plan =*/ cplan,
  15158. /*.perf_node_start_cycles =*/ 0,
  15159. /*.perf_node_start_time_us =*/ 0,
  15160. /*.n_threads =*/ n_threads,
  15161. /*.n_active =*/ n_threads,
  15162. /*.node_n =*/ -1,
  15163. /*.abort_callback =*/ NULL,
  15164. /*.abort_callback_data =*/ NULL,
  15165. };
  15166. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15167. // create thread pool
  15168. if (n_threads > 1) {
  15169. for (int j = 1; j < n_threads; ++j) {
  15170. workers[j] = (struct ggml_compute_state) {
  15171. .thrd = 0,
  15172. .ith = j,
  15173. .shared = &state_shared,
  15174. };
  15175. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15176. GGML_ASSERT(rc == 0);
  15177. UNUSED(rc);
  15178. }
  15179. }
  15180. workers[0].ith = 0;
  15181. workers[0].shared = &state_shared;
  15182. const int64_t perf_start_cycles = ggml_perf_cycles();
  15183. const int64_t perf_start_time_us = ggml_perf_time_us();
  15184. // this is a work thread too
  15185. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  15186. // don't leave affinity set on the main thread
  15187. clear_numa_thread_affinity();
  15188. // join or kill thread pool
  15189. if (n_threads > 1) {
  15190. for (int j = 1; j < n_threads; j++) {
  15191. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15192. GGML_ASSERT(rc == 0);
  15193. }
  15194. }
  15195. // performance stats (graph)
  15196. {
  15197. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15198. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15199. cgraph->perf_runs++;
  15200. cgraph->perf_cycles += perf_cycles_cur;
  15201. cgraph->perf_time_us += perf_time_us_cur;
  15202. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15203. __func__, cgraph->perf_runs,
  15204. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15205. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15206. (double) perf_time_us_cur / 1000.0,
  15207. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15208. }
  15209. return compute_status;
  15210. }
  15211. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15212. for (int i = 0; i < cgraph->n_nodes; i++) {
  15213. struct ggml_tensor * grad = cgraph->grads[i];
  15214. if (grad) {
  15215. ggml_set_zero(grad);
  15216. }
  15217. }
  15218. }
  15219. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15220. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15221. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15222. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15223. ggml_graph_compute(cgraph, &cplan);
  15224. }
  15225. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15226. for (int i = 0; i < cgraph->n_leafs; i++) {
  15227. struct ggml_tensor * leaf = cgraph->leafs[i];
  15228. if (strcmp(leaf->name, name) == 0) {
  15229. return leaf;
  15230. }
  15231. }
  15232. for (int i = 0; i < cgraph->n_nodes; i++) {
  15233. struct ggml_tensor * node = cgraph->nodes[i];
  15234. if (strcmp(node->name, name) == 0) {
  15235. return node;
  15236. }
  15237. }
  15238. return NULL;
  15239. }
  15240. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15241. const int64_t * ne = tensor->ne;
  15242. const size_t * nb = tensor->nb;
  15243. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15244. ggml_type_name(tensor->type),
  15245. ggml_op_name (tensor->op),
  15246. tensor->n_dims,
  15247. ne[0], ne[1], ne[2], ne[3],
  15248. nb[0], nb[1], nb[2], nb[3],
  15249. tensor->data,
  15250. tensor->name);
  15251. }
  15252. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15253. const int64_t * ne = tensor->ne;
  15254. const size_t * nb = tensor->nb;
  15255. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15256. arg,
  15257. ggml_type_name(tensor->type),
  15258. ggml_op_name (tensor->op),
  15259. tensor->n_dims,
  15260. ne[0], ne[1], ne[2], ne[3],
  15261. nb[0], nb[1], nb[2], nb[3],
  15262. tensor->data,
  15263. tensor->name);
  15264. }
  15265. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15266. uint64_t size_eval = 0;
  15267. // compute size of intermediate results
  15268. // TODO: does not take into account scratch buffers !!!!
  15269. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15270. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15271. }
  15272. // print
  15273. {
  15274. FILE * fout = stdout;
  15275. fprintf(fout, "\n");
  15276. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15277. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15278. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15279. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15280. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15281. // header
  15282. fprintf(fout, "\n");
  15283. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15284. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15285. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15286. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15287. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15288. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15289. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15290. }
  15291. // header
  15292. fprintf(fout, "\n");
  15293. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15294. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15295. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15296. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15297. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15298. if (cgraph->nodes[i]->src[j]) {
  15299. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15300. }
  15301. }
  15302. fprintf(fout, "\n");
  15303. }
  15304. fprintf(fout, "\n");
  15305. }
  15306. // write binary data
  15307. {
  15308. FILE * fout = fopen(fname, "wb");
  15309. if (!fout) {
  15310. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15311. return;
  15312. }
  15313. // header
  15314. {
  15315. const uint32_t magic = GGML_FILE_MAGIC;
  15316. const uint32_t version = GGML_FILE_VERSION;
  15317. const uint32_t n_leafs = cgraph->n_leafs;
  15318. const uint32_t nodes = cgraph->n_nodes;
  15319. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15320. fwrite(&version, sizeof(uint32_t), 1, fout);
  15321. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15322. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  15323. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15324. }
  15325. // leafs
  15326. {
  15327. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15328. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15329. const uint32_t type = tensor->type;
  15330. const uint32_t op = tensor->op;
  15331. const uint32_t n_dims = tensor->n_dims;
  15332. fwrite(&type, sizeof(uint32_t), 1, fout);
  15333. fwrite(&op, sizeof(uint32_t), 1, fout);
  15334. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15335. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15336. const uint64_t ne = tensor->ne[j];
  15337. const uint64_t nb = tensor->nb[j];
  15338. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15339. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15340. }
  15341. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15342. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15343. // dump the data
  15344. // TODO: pad this to 32 byte boundary
  15345. {
  15346. const size_t size = ggml_nbytes(tensor);
  15347. fwrite(tensor->data, sizeof(char), size, fout);
  15348. }
  15349. }
  15350. }
  15351. // nodes
  15352. {
  15353. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15354. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15355. const uint32_t type = tensor->type;
  15356. const uint32_t op = tensor->op;
  15357. const uint32_t n_dims = tensor->n_dims;
  15358. fwrite(&type, sizeof(uint32_t), 1, fout);
  15359. fwrite(&op, sizeof(uint32_t), 1, fout);
  15360. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15361. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15362. const uint64_t ne = tensor->ne[j];
  15363. const uint64_t nb = tensor->nb[j];
  15364. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15365. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15366. }
  15367. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15368. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15369. // output the op arguments
  15370. {
  15371. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15372. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15373. args[j] = tensor->src[j];
  15374. }
  15375. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15376. if (args[j]) {
  15377. int32_t idx = -1;
  15378. // check if leaf
  15379. {
  15380. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15381. if (args[j] == cgraph->leafs[k]) {
  15382. idx = k;
  15383. break;
  15384. }
  15385. }
  15386. }
  15387. // check if node
  15388. if (idx == -1) {
  15389. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15390. if (args[j] == cgraph->nodes[k]) {
  15391. idx = GGML_MAX_NODES + k;
  15392. break;
  15393. }
  15394. }
  15395. }
  15396. if (idx == -1) {
  15397. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15398. return;
  15399. }
  15400. fwrite(&idx, sizeof(int32_t), 1, fout);
  15401. } else {
  15402. const int32_t nul = -1;
  15403. fwrite(&nul, sizeof(int32_t), 1, fout);
  15404. }
  15405. }
  15406. }
  15407. }
  15408. }
  15409. fclose(fout);
  15410. }
  15411. }
  15412. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15413. assert(*ctx_data == NULL);
  15414. assert(*ctx_eval == NULL);
  15415. struct ggml_cgraph result = { 0 };
  15416. struct ggml_tensor * data = NULL;
  15417. // read file into data
  15418. {
  15419. FILE * fin = fopen(fname, "rb");
  15420. if (!fin) {
  15421. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15422. return result;
  15423. }
  15424. size_t fsize = 0;
  15425. fseek(fin, 0, SEEK_END);
  15426. fsize = ftell(fin);
  15427. fseek(fin, 0, SEEK_SET);
  15428. // create the data context
  15429. {
  15430. const size_t overhead = 1*ggml_tensor_overhead();
  15431. struct ggml_init_params params = {
  15432. .mem_size = fsize + overhead,
  15433. .mem_buffer = NULL,
  15434. .no_alloc = false,
  15435. };
  15436. *ctx_data = ggml_init(params);
  15437. if (!*ctx_data) {
  15438. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15439. fclose(fin);
  15440. return result;
  15441. }
  15442. }
  15443. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15444. {
  15445. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15446. if (ret != fsize) {
  15447. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15448. fclose(fin);
  15449. return result;
  15450. }
  15451. }
  15452. fclose(fin);
  15453. }
  15454. // populate result
  15455. {
  15456. char * ptr = (char *) data->data;
  15457. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15458. if (magic != GGML_FILE_MAGIC) {
  15459. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15460. return result;
  15461. }
  15462. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15463. if (version != GGML_FILE_VERSION) {
  15464. fprintf(stderr, "%s: invalid version number\n", __func__);
  15465. return result;
  15466. }
  15467. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15468. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15469. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15470. result.n_leafs = n_leafs;
  15471. result.n_nodes = n_nodes;
  15472. // create the data context
  15473. {
  15474. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  15475. struct ggml_init_params params = {
  15476. .mem_size = size_eval + overhead,
  15477. .mem_buffer = NULL,
  15478. .no_alloc = true,
  15479. };
  15480. *ctx_eval = ggml_init(params);
  15481. if (!*ctx_eval) {
  15482. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15483. return result;
  15484. }
  15485. }
  15486. // leafs
  15487. {
  15488. uint32_t type;
  15489. uint32_t op;
  15490. uint32_t n_dims;
  15491. for (uint32_t i = 0; i < n_leafs; ++i) {
  15492. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15493. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15494. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15495. int64_t ne[GGML_MAX_DIMS];
  15496. size_t nb[GGML_MAX_DIMS];
  15497. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15498. uint64_t ne_cur;
  15499. uint64_t nb_cur;
  15500. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15501. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15502. ne[j] = ne_cur;
  15503. nb[j] = nb_cur;
  15504. }
  15505. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15506. tensor->op = (enum ggml_op) op;
  15507. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15508. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15509. tensor->data = (void *) ptr;
  15510. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15511. tensor->nb[j] = nb[j];
  15512. }
  15513. result.leafs[i] = tensor;
  15514. ptr += ggml_nbytes(tensor);
  15515. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15516. }
  15517. }
  15518. ggml_set_no_alloc(*ctx_eval, false);
  15519. // nodes
  15520. {
  15521. uint32_t type;
  15522. uint32_t op;
  15523. uint32_t n_dims;
  15524. for (uint32_t i = 0; i < n_nodes; ++i) {
  15525. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15526. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15527. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15528. enum ggml_op eop = (enum ggml_op) op;
  15529. int64_t ne[GGML_MAX_DIMS];
  15530. size_t nb[GGML_MAX_DIMS];
  15531. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15532. uint64_t ne_cur;
  15533. uint64_t nb_cur;
  15534. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15535. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15536. ne[j] = ne_cur;
  15537. nb[j] = nb_cur;
  15538. }
  15539. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15540. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15541. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15542. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15543. // parse args
  15544. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15545. const int32_t arg_idx = ptr_arg_idx[j];
  15546. if (arg_idx == -1) {
  15547. continue;
  15548. }
  15549. if (arg_idx < GGML_MAX_NODES) {
  15550. args[j] = result.leafs[arg_idx];
  15551. } else {
  15552. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  15553. }
  15554. }
  15555. // create the tensor
  15556. // "view" operations are handled differently
  15557. // TODO: handle inplace ops - currently a copy is always made
  15558. struct ggml_tensor * tensor = NULL;
  15559. switch (eop) {
  15560. // TODO: implement other view ops
  15561. case GGML_OP_RESHAPE:
  15562. {
  15563. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15564. } break;
  15565. case GGML_OP_VIEW:
  15566. {
  15567. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15568. size_t offs;
  15569. memcpy(&offs, ptr_op_params, sizeof(offs));
  15570. tensor->data = ((char *) tensor->data) + offs;
  15571. } break;
  15572. case GGML_OP_TRANSPOSE:
  15573. {
  15574. tensor = ggml_transpose(*ctx_eval, args[0]);
  15575. } break;
  15576. case GGML_OP_PERMUTE:
  15577. {
  15578. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15579. } break;
  15580. default:
  15581. {
  15582. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15583. tensor->op = eop;
  15584. } break;
  15585. }
  15586. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15587. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15588. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15589. tensor->nb[j] = nb[j];
  15590. }
  15591. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15592. tensor->src[j] = args[j];
  15593. }
  15594. result.nodes[i] = tensor;
  15595. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15596. }
  15597. }
  15598. }
  15599. return result;
  15600. }
  15601. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15602. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15603. GGML_PRINT("=== GRAPH ===\n");
  15604. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15605. for (int i = 0; i < cgraph->n_nodes; i++) {
  15606. struct ggml_tensor * node = cgraph->nodes[i];
  15607. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15608. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15609. i,
  15610. node->ne[0], node->ne[1], node->ne[2],
  15611. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15612. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15613. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15614. (double) node->perf_time_us / 1000.0,
  15615. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15616. }
  15617. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15618. for (int i = 0; i < cgraph->n_leafs; i++) {
  15619. struct ggml_tensor * node = cgraph->leafs[i];
  15620. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15621. i,
  15622. node->ne[0], node->ne[1],
  15623. ggml_op_name(node->op),
  15624. ggml_get_name(node));
  15625. }
  15626. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15627. if (perf_total_per_op_us[i] == 0) {
  15628. continue;
  15629. }
  15630. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15631. }
  15632. GGML_PRINT("========================================\n");
  15633. }
  15634. // check if node is part of the graph
  15635. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15636. if (cgraph == NULL) {
  15637. return true;
  15638. }
  15639. for (int i = 0; i < cgraph->n_nodes; i++) {
  15640. if (cgraph->nodes[i] == node) {
  15641. return true;
  15642. }
  15643. }
  15644. return false;
  15645. }
  15646. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15647. for (int i = 0; i < cgraph->n_nodes; i++) {
  15648. struct ggml_tensor * parent = cgraph->nodes[i];
  15649. if (parent->grad == node) {
  15650. return parent;
  15651. }
  15652. }
  15653. return NULL;
  15654. }
  15655. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15656. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15657. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15658. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15659. gparent0 ? (void *) gparent0 : (void *) parent,
  15660. gparent0 ? "g" : "x",
  15661. gparent ? (void *) gparent : (void *) node,
  15662. gparent ? "g" : "x",
  15663. gparent ? "empty" : "vee",
  15664. gparent ? "dashed" : "solid",
  15665. label);
  15666. }
  15667. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15668. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15669. (void *) parent, "x",
  15670. (void *) node, "x",
  15671. label);
  15672. }
  15673. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15674. char color[16];
  15675. FILE * fp = fopen(filename, "w");
  15676. GGML_ASSERT(fp);
  15677. fprintf(fp, "digraph G {\n");
  15678. fprintf(fp, " newrank = true;\n");
  15679. fprintf(fp, " rankdir = LR;\n");
  15680. for (int i = 0; i < gb->n_nodes; i++) {
  15681. struct ggml_tensor * node = gb->nodes[i];
  15682. if (ggml_graph_get_parent(gb, node) != NULL) {
  15683. continue;
  15684. }
  15685. if (node->is_param) {
  15686. snprintf(color, sizeof(color), "yellow");
  15687. } else if (node->grad) {
  15688. if (ggml_graph_find(gf, node)) {
  15689. snprintf(color, sizeof(color), "green");
  15690. } else {
  15691. snprintf(color, sizeof(color), "lightblue");
  15692. }
  15693. } else {
  15694. snprintf(color, sizeof(color), "white");
  15695. }
  15696. fprintf(fp, " \"%p\" [ "
  15697. "style = filled; fillcolor = %s; shape = record; "
  15698. "label=\"",
  15699. (void *) node, color);
  15700. if (strlen(node->name) > 0) {
  15701. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15702. } else {
  15703. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15704. }
  15705. if (node->n_dims == 2) {
  15706. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15707. } else {
  15708. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15709. }
  15710. if (node->grad) {
  15711. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15712. } else {
  15713. fprintf(fp, "\"; ]\n");
  15714. }
  15715. }
  15716. for (int i = 0; i < gb->n_leafs; i++) {
  15717. struct ggml_tensor * node = gb->leafs[i];
  15718. snprintf(color, sizeof(color), "pink");
  15719. fprintf(fp, " \"%p\" [ "
  15720. "style = filled; fillcolor = %s; shape = record; "
  15721. "label=\"<x>",
  15722. (void *) node, color);
  15723. if (strlen(node->name) > 0) {
  15724. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15725. } else {
  15726. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15727. }
  15728. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15729. if (ggml_nelements(node) < 5) {
  15730. fprintf(fp, " | (");
  15731. for (int j = 0; j < ggml_nelements(node); j++) {
  15732. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15733. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15734. }
  15735. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15736. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15737. }
  15738. else {
  15739. fprintf(fp, "#");
  15740. }
  15741. if (j < ggml_nelements(node) - 1) {
  15742. fprintf(fp, ", ");
  15743. }
  15744. }
  15745. fprintf(fp, ")");
  15746. }
  15747. fprintf(fp, "\"; ]\n");
  15748. }
  15749. for (int i = 0; i < gb->n_nodes; i++) {
  15750. struct ggml_tensor * node = gb->nodes[i];
  15751. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15752. if (node->src[j]) {
  15753. char label[16];
  15754. snprintf(label, sizeof(label), "src %d", j);
  15755. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15756. }
  15757. }
  15758. }
  15759. for (int i = 0; i < gb->n_leafs; i++) {
  15760. struct ggml_tensor * node = gb->leafs[i];
  15761. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15762. if (node->src[j]) {
  15763. char label[16];
  15764. snprintf(label, sizeof(label), "src %d", j);
  15765. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15766. }
  15767. }
  15768. }
  15769. fprintf(fp, "}\n");
  15770. fclose(fp);
  15771. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15772. }
  15773. ////////////////////////////////////////////////////////////////////////////////
  15774. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15775. int i = 0;
  15776. for (int p = 0; p < np; ++p) {
  15777. const int64_t ne = ggml_nelements(ps[p]) ;
  15778. // TODO: add function to set tensor from array
  15779. for (int64_t j = 0; j < ne; ++j) {
  15780. ggml_set_f32_1d(ps[p], j, x[i++]);
  15781. }
  15782. }
  15783. }
  15784. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15785. int i = 0;
  15786. for (int p = 0; p < np; ++p) {
  15787. const int64_t ne = ggml_nelements(ps[p]) ;
  15788. // TODO: add function to get all elements at once
  15789. for (int64_t j = 0; j < ne; ++j) {
  15790. x[i++] = ggml_get_f32_1d(ps[p], j);
  15791. }
  15792. }
  15793. }
  15794. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15795. int64_t i = 0;
  15796. for (int p = 0; p < np; ++p) {
  15797. const int64_t ne = ggml_nelements(ps[p]) ;
  15798. // TODO: add function to get all elements at once
  15799. for (int64_t j = 0; j < ne; ++j) {
  15800. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15801. }
  15802. }
  15803. }
  15804. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15805. int64_t i = 0;
  15806. for (int p = 0; p < np; ++p) {
  15807. const int64_t ne = ggml_nelements(ps[p]) ;
  15808. // TODO: add function to get all elements at once
  15809. for (int64_t j = 0; j < ne; ++j) {
  15810. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15811. }
  15812. }
  15813. }
  15814. //
  15815. // ADAM
  15816. //
  15817. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15818. //
  15819. static enum ggml_opt_result ggml_opt_adam(
  15820. struct ggml_context * ctx,
  15821. struct ggml_opt_context * opt,
  15822. struct ggml_opt_params params,
  15823. struct ggml_tensor * f,
  15824. struct ggml_cgraph * gf,
  15825. struct ggml_cgraph * gb,
  15826. ggml_opt_callback callback,
  15827. void * callback_data) {
  15828. GGML_ASSERT(ggml_is_scalar(f));
  15829. // these will store the parameters we want to optimize
  15830. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15831. int np = 0;
  15832. int64_t nx = 0;
  15833. for (int i = 0; i < gf->n_nodes; ++i) {
  15834. if (gf->nodes[i]->is_param) {
  15835. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15836. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15837. ps[np++] = gf->nodes[i];
  15838. nx += ggml_nelements(gf->nodes[i]);
  15839. }
  15840. }
  15841. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15842. int iter = opt->iter;
  15843. ggml_opt_init(opt->ctx, opt, params, nx);
  15844. opt->iter = iter;
  15845. }
  15846. // constants
  15847. float sched = params.adam.sched;
  15848. const float alpha = params.adam.alpha;
  15849. const float decay = params.adam.decay * alpha;
  15850. const float beta1 = params.adam.beta1;
  15851. const float beta2 = params.adam.beta2;
  15852. const float eps = params.adam.eps;
  15853. const float gclip = params.adam.gclip;
  15854. const int decay_min_ndim = params.adam.decay_min_ndim;
  15855. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15856. const float accum_norm = 1.0f / (float) n_accum;
  15857. float * g = opt->adam.g->data; // gradients
  15858. float * m = opt->adam.m->data; // first moment
  15859. float * v = opt->adam.v->data; // second moment
  15860. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15861. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15862. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15863. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15864. bool cancel = false;
  15865. // compute the function value
  15866. float fx = 0;
  15867. ggml_set_zero(opt->adam.g);
  15868. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15869. if (callback) {
  15870. callback(callback_data, accum_step, &sched, &cancel);
  15871. if (cancel) {
  15872. break;
  15873. }
  15874. }
  15875. // ggml_graph_reset (gf);
  15876. ggml_set_f32 (f->grad, 1.0f);
  15877. ggml_graph_compute(gb, &cplan);
  15878. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15879. fx += ggml_get_f32_1d(f, 0);
  15880. }
  15881. if (cancel) {
  15882. return GGML_OPT_DID_NOT_CONVERGE;
  15883. }
  15884. fx *= accum_norm;
  15885. opt->adam.fx_prev = fx;
  15886. opt->adam.fx_best = opt->adam.fx_prev;
  15887. if (pf) {
  15888. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15889. }
  15890. opt->loss_before = opt->adam.fx_prev;
  15891. opt->loss_after = opt->adam.fx_prev;
  15892. // initialize
  15893. if (opt->just_initialized) {
  15894. opt->adam.n_no_improvement = 0;
  15895. opt->just_initialized = false;
  15896. }
  15897. float * fx_best = &opt->adam.fx_best;
  15898. float * fx_prev = &opt->adam.fx_prev;
  15899. int * n_no_improvement = &opt->adam.n_no_improvement;
  15900. int iter0 = opt->iter;
  15901. // run the optimizer
  15902. for (int t = 0; t < params.adam.n_iter; ++t) {
  15903. if (cancel) {
  15904. break;
  15905. }
  15906. opt->iter = iter0 + t + 1;
  15907. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15908. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15909. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15910. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15911. for (int i = 0; i < np; ++i) {
  15912. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15913. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15914. }
  15915. const int64_t t_start_wall = ggml_time_us();
  15916. const int64_t t_start_cpu = ggml_cycles();
  15917. UNUSED(t_start_wall);
  15918. UNUSED(t_start_cpu);
  15919. {
  15920. float gnorm = 1.0f;
  15921. if (gclip > 0.0f) {
  15922. // gradient clipping
  15923. ggml_float sum = 0.0;
  15924. for (int64_t i = 0; i < nx; ++i) {
  15925. sum += (ggml_float)(g[i]*g[i]);
  15926. }
  15927. ggml_float norm = sqrt(sum);
  15928. if (norm > (ggml_float) gclip) {
  15929. gnorm = (float) ((ggml_float) gclip / norm);
  15930. }
  15931. }
  15932. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15933. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15934. int64_t i = 0;
  15935. for (int p = 0; p < np; ++p) {
  15936. const int64_t ne = ggml_nelements(ps[p]);
  15937. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15938. for (int64_t j = 0; j < ne; ++j) {
  15939. float x = ggml_get_f32_1d(ps[p], j);
  15940. float g_ = g[i]*gnorm;
  15941. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15942. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15943. float mh = m[i]*beta1h;
  15944. float vh = v[i]*beta2h;
  15945. vh = sqrtf(vh) + eps;
  15946. x = x*(1.0f - p_decay) - mh/vh;
  15947. ggml_set_f32_1d(ps[p], j, x);
  15948. ++i;
  15949. }
  15950. }
  15951. }
  15952. fx = 0;
  15953. ggml_set_zero(opt->adam.g);
  15954. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15955. if (callback) {
  15956. callback(callback_data, accum_step, &sched, &cancel);
  15957. if (cancel) {
  15958. break;
  15959. }
  15960. }
  15961. // ggml_graph_reset (gf);
  15962. ggml_set_f32 (f->grad, 1.0f);
  15963. ggml_graph_compute(gb, &cplan);
  15964. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15965. fx += ggml_get_f32_1d(f, 0);
  15966. }
  15967. if (cancel) {
  15968. break;
  15969. }
  15970. fx *= accum_norm;
  15971. opt->loss_after = fx;
  15972. // check convergence
  15973. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15974. GGML_PRINT_DEBUG("converged\n");
  15975. return GGML_OPT_OK;
  15976. }
  15977. // delta-based convergence test
  15978. if (pf != NULL) {
  15979. // need at least params.past iterations to start checking for convergence
  15980. if (params.past <= iter0 + t) {
  15981. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15982. if (fabsf(rate) < params.delta) {
  15983. return GGML_OPT_OK;
  15984. }
  15985. }
  15986. pf[(iter0 + t)%params.past] = fx;
  15987. }
  15988. // check for improvement
  15989. if (params.max_no_improvement > 0) {
  15990. if (fx_best[0] > fx) {
  15991. fx_best[0] = fx;
  15992. n_no_improvement[0] = 0;
  15993. } else {
  15994. ++n_no_improvement[0];
  15995. if (n_no_improvement[0] >= params.max_no_improvement) {
  15996. return GGML_OPT_OK;
  15997. }
  15998. }
  15999. }
  16000. fx_prev[0] = fx;
  16001. {
  16002. const int64_t t_end_cpu = ggml_cycles();
  16003. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16004. UNUSED(t_end_cpu);
  16005. const int64_t t_end_wall = ggml_time_us();
  16006. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16007. UNUSED(t_end_wall);
  16008. }
  16009. }
  16010. return GGML_OPT_DID_NOT_CONVERGE;
  16011. }
  16012. //
  16013. // L-BFGS
  16014. //
  16015. // the L-BFGS implementation below is based on the following implementation:
  16016. //
  16017. // https://github.com/chokkan/liblbfgs
  16018. //
  16019. struct ggml_lbfgs_iteration_data {
  16020. float alpha;
  16021. float ys;
  16022. float * s;
  16023. float * y;
  16024. };
  16025. static enum ggml_opt_result linesearch_backtracking(
  16026. const struct ggml_opt_params * params,
  16027. int nx,
  16028. float * x,
  16029. float * fx,
  16030. float * g,
  16031. float * d,
  16032. float * step,
  16033. const float * xp,
  16034. struct ggml_tensor * f,
  16035. struct ggml_cgraph * gb,
  16036. struct ggml_cplan * cplan,
  16037. const int np,
  16038. struct ggml_tensor * ps[],
  16039. bool * cancel,
  16040. ggml_opt_callback callback,
  16041. void * callback_data) {
  16042. int count = 0;
  16043. float width = 0.0f;
  16044. float dg = 0.0f;
  16045. float finit = 0.0f;
  16046. float dginit = 0.0f;
  16047. float dgtest = 0.0f;
  16048. const float dec = 0.5f;
  16049. const float inc = 2.1f;
  16050. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16051. const float accum_norm = 1.0f / (float) n_accum;
  16052. if (*step <= 0.f) {
  16053. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16054. }
  16055. // compute the initial gradient in the search direction
  16056. ggml_vec_dot_f32(nx, &dginit, g, d);
  16057. // make sure that d points to a descent direction
  16058. if (0 < dginit) {
  16059. return GGML_LINESEARCH_FAIL;
  16060. }
  16061. // initialize local variables
  16062. finit = *fx;
  16063. dgtest = params->lbfgs.ftol*dginit;
  16064. while (!*cancel) {
  16065. ggml_vec_cpy_f32(nx, x, xp);
  16066. ggml_vec_mad_f32(nx, x, d, *step);
  16067. // evaluate the function and gradient values
  16068. {
  16069. ggml_opt_set_params(np, ps, x);
  16070. *fx = 0;
  16071. memset(g, 0, sizeof(float)*nx);
  16072. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16073. if (callback) {
  16074. // LBFG-S does not support learning rate -> ignore learning schedule
  16075. float sched = 0;
  16076. callback(callback_data, accum_step, &sched, cancel);
  16077. if (*cancel) {
  16078. break;
  16079. }
  16080. }
  16081. // ggml_graph_reset (gf);
  16082. ggml_set_f32 (f->grad, 1.0f);
  16083. ggml_graph_compute(gb, cplan);
  16084. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16085. *fx += ggml_get_f32_1d(f, 0);
  16086. }
  16087. if (*cancel) {
  16088. break;
  16089. }
  16090. *fx *= accum_norm;
  16091. }
  16092. ++count;
  16093. if (*fx > finit + (*step)*dgtest) {
  16094. width = dec;
  16095. } else {
  16096. // Armijo condition is satisfied
  16097. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16098. return count;
  16099. }
  16100. ggml_vec_dot_f32(nx, &dg, g, d);
  16101. // check the Wolfe condition
  16102. if (dg < params->lbfgs.wolfe * dginit) {
  16103. width = inc;
  16104. } else {
  16105. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16106. // regular Wolfe conditions
  16107. return count;
  16108. }
  16109. if(dg > -params->lbfgs.wolfe*dginit) {
  16110. width = dec;
  16111. } else {
  16112. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16113. return count;
  16114. }
  16115. }
  16116. }
  16117. if (*step < params->lbfgs.min_step) {
  16118. return GGML_LINESEARCH_MINIMUM_STEP;
  16119. }
  16120. if (*step > params->lbfgs.max_step) {
  16121. return GGML_LINESEARCH_MAXIMUM_STEP;
  16122. }
  16123. if (params->lbfgs.max_linesearch <= count) {
  16124. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16125. }
  16126. (*step) *= width;
  16127. }
  16128. return GGML_LINESEARCH_FAIL;
  16129. }
  16130. static enum ggml_opt_result ggml_opt_lbfgs(
  16131. struct ggml_context * ctx,
  16132. struct ggml_opt_context * opt,
  16133. struct ggml_opt_params params,
  16134. struct ggml_tensor * f,
  16135. struct ggml_cgraph * gf,
  16136. struct ggml_cgraph * gb,
  16137. ggml_opt_callback callback,
  16138. void * callback_data) {
  16139. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16140. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16141. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16142. return GGML_OPT_INVALID_WOLFE;
  16143. }
  16144. }
  16145. const int m = params.lbfgs.m;
  16146. // these will store the parameters we want to optimize
  16147. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16148. int np = 0;
  16149. int nx = 0;
  16150. for (int i = 0; i < gf->n_nodes; ++i) {
  16151. if (gf->nodes[i]->is_param) {
  16152. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16153. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16154. ps[np++] = gf->nodes[i];
  16155. nx += ggml_nelements(gf->nodes[i]);
  16156. }
  16157. }
  16158. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16159. int iter = opt->iter;
  16160. ggml_opt_init(ctx, opt, params, nx);
  16161. opt->iter = iter;
  16162. }
  16163. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16164. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  16165. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16166. float * x = opt->lbfgs.x->data; // current parameters
  16167. float * xp = opt->lbfgs.xp->data; // previous parameters
  16168. float * g = opt->lbfgs.g->data; // current gradient
  16169. float * gp = opt->lbfgs.gp->data; // previous gradient
  16170. float * d = opt->lbfgs.d->data; // search direction
  16171. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16172. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16173. const float accum_norm = 1.0f / (float) n_accum;
  16174. float fx = 0.0f; // cost function value
  16175. float xnorm = 0.0f; // ||x||
  16176. float gnorm = 0.0f; // ||g||
  16177. // initialize x from the graph nodes
  16178. ggml_opt_get_params(np, ps, x);
  16179. // the L-BFGS memory
  16180. float * lm_alpha = opt->lbfgs.lmal->data;
  16181. float * lm_ys = opt->lbfgs.lmys->data;
  16182. float * lm_s = opt->lbfgs.lms->data;
  16183. float * lm_y = opt->lbfgs.lmy->data;
  16184. bool cancel = false;
  16185. // evaluate the function value and its gradient
  16186. {
  16187. ggml_opt_set_params(np, ps, x);
  16188. fx = 0;
  16189. memset(g, 0, sizeof(float)*nx);
  16190. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16191. if (callback) {
  16192. // LBFG-S does not support learning rate -> ignore learning schedule
  16193. float sched = 0;
  16194. callback(callback_data, accum_step, &sched, &cancel);
  16195. if (cancel) {
  16196. break;
  16197. }
  16198. }
  16199. // ggml_graph_reset (gf);
  16200. ggml_set_f32 (f->grad, 1.0f);
  16201. ggml_graph_compute(gb, &cplan);
  16202. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16203. fx += ggml_get_f32_1d(f, 0);
  16204. }
  16205. if (cancel) {
  16206. return GGML_OPT_DID_NOT_CONVERGE;
  16207. }
  16208. fx *= accum_norm;
  16209. opt->loss_before = fx;
  16210. opt->loss_after = fx;
  16211. }
  16212. // search direction = -gradient
  16213. ggml_vec_neg_f32(nx, d, g);
  16214. // ||x||, ||g||
  16215. ggml_vec_norm_f32(nx, &xnorm, x);
  16216. ggml_vec_norm_f32(nx, &gnorm, g);
  16217. if (xnorm < 1.0f) {
  16218. xnorm = 1.0f;
  16219. }
  16220. // already optimized
  16221. if (gnorm/xnorm <= params.lbfgs.eps) {
  16222. return GGML_OPT_OK;
  16223. }
  16224. if (opt->just_initialized) {
  16225. if (pf) {
  16226. pf[0] = fx;
  16227. }
  16228. opt->lbfgs.fx_best = fx;
  16229. // initial step
  16230. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16231. opt->lbfgs.j = 0;
  16232. opt->lbfgs.k = 1;
  16233. opt->lbfgs.end = 0;
  16234. opt->lbfgs.n_no_improvement = 0;
  16235. opt->just_initialized = false;
  16236. }
  16237. float * fx_best = &opt->lbfgs.fx_best;
  16238. float * step = &opt->lbfgs.step;
  16239. int * j = &opt->lbfgs.j;
  16240. int * k = &opt->lbfgs.k;
  16241. int * end = &opt->lbfgs.end;
  16242. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16243. int ls = 0;
  16244. int bound = 0;
  16245. float ys = 0.0f;
  16246. float yy = 0.0f;
  16247. float beta = 0.0f;
  16248. int it = 0;
  16249. while (true) {
  16250. // store the current position and gradient vectors
  16251. ggml_vec_cpy_f32(nx, xp, x);
  16252. ggml_vec_cpy_f32(nx, gp, g);
  16253. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16254. if (!cancel) {
  16255. break;
  16256. }
  16257. if (ls < 0) {
  16258. // linesearch failed - go back to the previous point and return
  16259. ggml_vec_cpy_f32(nx, x, xp);
  16260. ggml_vec_cpy_f32(nx, g, gp);
  16261. return ls;
  16262. }
  16263. opt->loss_after = fx;
  16264. ggml_vec_norm_f32(nx, &xnorm, x);
  16265. ggml_vec_norm_f32(nx, &gnorm, g);
  16266. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16267. if (xnorm < 1.0f) {
  16268. xnorm = 1.0f;
  16269. }
  16270. if (gnorm/xnorm <= params.lbfgs.eps) {
  16271. // converged
  16272. return GGML_OPT_OK;
  16273. }
  16274. // delta-based convergence test
  16275. if (pf != NULL) {
  16276. // need at least params.past iterations to start checking for convergence
  16277. if (params.past <= k[0]) {
  16278. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16279. if (fabsf(rate) < params.delta) {
  16280. return GGML_OPT_OK;
  16281. }
  16282. }
  16283. pf[k[0]%params.past] = fx;
  16284. }
  16285. // check for improvement
  16286. if (params.max_no_improvement > 0) {
  16287. if (fx < fx_best[0]) {
  16288. fx_best[0] = fx;
  16289. n_no_improvement[0] = 0;
  16290. } else {
  16291. n_no_improvement[0]++;
  16292. if (n_no_improvement[0] >= params.max_no_improvement) {
  16293. return GGML_OPT_OK;
  16294. }
  16295. }
  16296. }
  16297. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16298. // reached the maximum number of iterations
  16299. return GGML_OPT_DID_NOT_CONVERGE;
  16300. }
  16301. // update vectors s and y:
  16302. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16303. // y_{k+1} = g_{k+1} - g_{k}.
  16304. //
  16305. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16306. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16307. // compute scalars ys and yy:
  16308. // ys = y^t \cdot s -> 1 / \rho.
  16309. // yy = y^t \cdot y.
  16310. //
  16311. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  16312. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  16313. lm_ys[end[0]] = ys;
  16314. // find new search direction
  16315. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16316. bound = (m <= k[0]) ? m : k[0];
  16317. k[0]++;
  16318. it++;
  16319. end[0] = (end[0] + 1)%m;
  16320. // initialize search direction with -g
  16321. ggml_vec_neg_f32(nx, d, g);
  16322. j[0] = end[0];
  16323. for (int i = 0; i < bound; ++i) {
  16324. j[0] = (j[0] + m - 1) % m;
  16325. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16326. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  16327. lm_alpha[j[0]] /= lm_ys[j[0]];
  16328. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16329. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16330. }
  16331. ggml_vec_scale_f32(nx, d, ys/yy);
  16332. for (int i = 0; i < bound; ++i) {
  16333. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16334. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  16335. beta /= lm_ys[j[0]];
  16336. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16337. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16338. j[0] = (j[0] + 1)%m;
  16339. }
  16340. step[0] = 1.0;
  16341. }
  16342. return GGML_OPT_DID_NOT_CONVERGE;
  16343. }
  16344. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16345. struct ggml_opt_params result;
  16346. switch (type) {
  16347. case GGML_OPT_ADAM:
  16348. {
  16349. result = (struct ggml_opt_params) {
  16350. .type = GGML_OPT_ADAM,
  16351. .n_threads = 1,
  16352. .past = 0,
  16353. .delta = 1e-5f,
  16354. .max_no_improvement = 100,
  16355. .print_forward_graph = true,
  16356. .print_backward_graph = true,
  16357. .n_gradient_accumulation = 1,
  16358. .adam = {
  16359. .n_iter = 10000,
  16360. .sched = 1.000f,
  16361. .decay = 0.0f,
  16362. .decay_min_ndim = 2,
  16363. .alpha = 0.001f,
  16364. .beta1 = 0.9f,
  16365. .beta2 = 0.999f,
  16366. .eps = 1e-8f,
  16367. .eps_f = 1e-5f,
  16368. .eps_g = 1e-3f,
  16369. .gclip = 0.0f,
  16370. },
  16371. };
  16372. } break;
  16373. case GGML_OPT_LBFGS:
  16374. {
  16375. result = (struct ggml_opt_params) {
  16376. .type = GGML_OPT_LBFGS,
  16377. .n_threads = 1,
  16378. .past = 0,
  16379. .delta = 1e-5f,
  16380. .max_no_improvement = 0,
  16381. .print_forward_graph = true,
  16382. .print_backward_graph = true,
  16383. .n_gradient_accumulation = 1,
  16384. .lbfgs = {
  16385. .m = 6,
  16386. .n_iter = 100,
  16387. .max_linesearch = 20,
  16388. .eps = 1e-5f,
  16389. .ftol = 1e-4f,
  16390. .wolfe = 0.9f,
  16391. .min_step = 1e-20f,
  16392. .max_step = 1e+20f,
  16393. .linesearch = GGML_LINESEARCH_DEFAULT,
  16394. },
  16395. };
  16396. } break;
  16397. }
  16398. return result;
  16399. }
  16400. GGML_API void ggml_opt_init(
  16401. struct ggml_context * ctx,
  16402. struct ggml_opt_context * opt,
  16403. struct ggml_opt_params params,
  16404. int64_t nx) {
  16405. opt->ctx = ctx;
  16406. opt->params = params;
  16407. opt->iter = 0;
  16408. opt->nx = nx;
  16409. opt->just_initialized = true;
  16410. if (opt->ctx == NULL) {
  16411. struct ggml_init_params ctx_opt_params;
  16412. if (opt->params.type == GGML_OPT_ADAM) {
  16413. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16414. if (opt->params.past > 0) {
  16415. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16416. }
  16417. } else if (opt->params.type == GGML_OPT_LBFGS) {
  16418. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16419. if (opt->params.past > 0) {
  16420. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16421. }
  16422. }
  16423. ctx_opt_params.mem_buffer = NULL;
  16424. ctx_opt_params.no_alloc = false;
  16425. opt->ctx = ggml_init(ctx_opt_params);
  16426. }
  16427. switch (opt->params.type) {
  16428. case GGML_OPT_ADAM:
  16429. {
  16430. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16431. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16432. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16433. opt->adam.pf = params.past > 0
  16434. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16435. : NULL;
  16436. ggml_set_zero(opt->adam.m);
  16437. ggml_set_zero(opt->adam.v);
  16438. if (opt->adam.pf) {
  16439. ggml_set_zero(opt->adam.pf);
  16440. }
  16441. } break;
  16442. case GGML_OPT_LBFGS:
  16443. {
  16444. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16445. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16446. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16447. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16448. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16449. opt->lbfgs.pf = params.past > 0
  16450. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16451. : NULL;
  16452. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16453. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16454. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16455. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16456. ggml_set_zero(opt->lbfgs.x);
  16457. ggml_set_zero(opt->lbfgs.xp);
  16458. ggml_set_zero(opt->lbfgs.g);
  16459. ggml_set_zero(opt->lbfgs.gp);
  16460. ggml_set_zero(opt->lbfgs.d);
  16461. if (opt->lbfgs.pf) {
  16462. ggml_set_zero(opt->lbfgs.pf);
  16463. }
  16464. ggml_set_zero(opt->lbfgs.lmal);
  16465. ggml_set_zero(opt->lbfgs.lmys);
  16466. ggml_set_zero(opt->lbfgs.lms);
  16467. ggml_set_zero(opt->lbfgs.lmy);
  16468. } break;
  16469. }
  16470. }
  16471. enum ggml_opt_result ggml_opt(
  16472. struct ggml_context * ctx,
  16473. struct ggml_opt_params params,
  16474. struct ggml_tensor * f) {
  16475. bool free_ctx = false;
  16476. if (ctx == NULL) {
  16477. struct ggml_init_params params_ctx = {
  16478. .mem_size = 16*1024*1024,
  16479. .mem_buffer = NULL,
  16480. .no_alloc = false,
  16481. };
  16482. ctx = ggml_init(params_ctx);
  16483. if (ctx == NULL) {
  16484. return GGML_OPT_NO_CONTEXT;
  16485. }
  16486. free_ctx = true;
  16487. }
  16488. enum ggml_opt_result result = GGML_OPT_OK;
  16489. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16490. ggml_opt_init(ctx, opt, params, 0);
  16491. result = ggml_opt_resume(ctx, opt, f);
  16492. if (free_ctx) {
  16493. ggml_free(ctx);
  16494. }
  16495. return result;
  16496. }
  16497. enum ggml_opt_result ggml_opt_resume(
  16498. struct ggml_context * ctx,
  16499. struct ggml_opt_context * opt,
  16500. struct ggml_tensor * f) {
  16501. // build forward + backward compute graphs
  16502. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16503. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16504. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  16505. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  16506. *gf = ggml_build_forward (f);
  16507. *gb = ggml_build_backward(ctx, gf, true);
  16508. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16509. }
  16510. enum ggml_opt_result ggml_opt_resume_g(
  16511. struct ggml_context * ctx,
  16512. struct ggml_opt_context * opt,
  16513. struct ggml_tensor * f,
  16514. struct ggml_cgraph * gf,
  16515. struct ggml_cgraph * gb,
  16516. ggml_opt_callback callback,
  16517. void * callback_data) {
  16518. // build forward + backward compute graphs
  16519. enum ggml_opt_result result = GGML_OPT_OK;
  16520. switch (opt->params.type) {
  16521. case GGML_OPT_ADAM:
  16522. {
  16523. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16524. } break;
  16525. case GGML_OPT_LBFGS:
  16526. {
  16527. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16528. } break;
  16529. }
  16530. if (opt->params.print_forward_graph) {
  16531. ggml_graph_print (gf);
  16532. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16533. }
  16534. if (opt->params.print_backward_graph) {
  16535. ggml_graph_print (gb);
  16536. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16537. }
  16538. return result;
  16539. }
  16540. ////////////////////////////////////////////////////////////////////////////////
  16541. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16542. assert(k % QK4_0 == 0);
  16543. const int nb = k / QK4_0;
  16544. for (int b = 0; b < n; b += k) {
  16545. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16546. quantize_row_q4_0_reference(src + b, y, k);
  16547. for (int i = 0; i < nb; i++) {
  16548. for (int j = 0; j < QK4_0; j += 2) {
  16549. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16550. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16551. hist[vi0]++;
  16552. hist[vi1]++;
  16553. }
  16554. }
  16555. }
  16556. return (n/QK4_0*sizeof(block_q4_0));
  16557. }
  16558. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16559. assert(k % QK4_1 == 0);
  16560. const int nb = k / QK4_1;
  16561. for (int b = 0; b < n; b += k) {
  16562. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16563. quantize_row_q4_1_reference(src + b, y, k);
  16564. for (int i = 0; i < nb; i++) {
  16565. for (int j = 0; j < QK4_1; j += 2) {
  16566. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16567. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16568. hist[vi0]++;
  16569. hist[vi1]++;
  16570. }
  16571. }
  16572. }
  16573. return (n/QK4_1*sizeof(block_q4_1));
  16574. }
  16575. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16576. assert(k % QK5_0 == 0);
  16577. const int nb = k / QK5_0;
  16578. for (int b = 0; b < n; b += k) {
  16579. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16580. quantize_row_q5_0_reference(src + b, y, k);
  16581. for (int i = 0; i < nb; i++) {
  16582. uint32_t qh;
  16583. memcpy(&qh, &y[i].qh, sizeof(qh));
  16584. for (int j = 0; j < QK5_0; j += 2) {
  16585. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16586. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16587. // cast to 16 bins
  16588. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16589. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16590. hist[vi0]++;
  16591. hist[vi1]++;
  16592. }
  16593. }
  16594. }
  16595. return (n/QK5_0*sizeof(block_q5_0));
  16596. }
  16597. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16598. assert(k % QK5_1 == 0);
  16599. const int nb = k / QK5_1;
  16600. for (int b = 0; b < n; b += k) {
  16601. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16602. quantize_row_q5_1_reference(src + b, y, k);
  16603. for (int i = 0; i < nb; i++) {
  16604. uint32_t qh;
  16605. memcpy(&qh, &y[i].qh, sizeof(qh));
  16606. for (int j = 0; j < QK5_1; j += 2) {
  16607. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16608. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16609. // cast to 16 bins
  16610. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16611. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16612. hist[vi0]++;
  16613. hist[vi1]++;
  16614. }
  16615. }
  16616. }
  16617. return (n/QK5_1*sizeof(block_q5_1));
  16618. }
  16619. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16620. assert(k % QK8_0 == 0);
  16621. const int nb = k / QK8_0;
  16622. for (int b = 0; b < n; b += k) {
  16623. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16624. quantize_row_q8_0_reference(src + b, y, k);
  16625. for (int i = 0; i < nb; i++) {
  16626. for (int j = 0; j < QK8_0; ++j) {
  16627. const int8_t vi = y[i].qs[j];
  16628. hist[vi/16 + 8]++;
  16629. }
  16630. }
  16631. }
  16632. return (n/QK8_0*sizeof(block_q8_0));
  16633. }
  16634. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  16635. size_t result = 0;
  16636. switch (type) {
  16637. case GGML_TYPE_Q4_0:
  16638. {
  16639. GGML_ASSERT(start % QK4_0 == 0);
  16640. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  16641. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  16642. } break;
  16643. case GGML_TYPE_Q4_1:
  16644. {
  16645. GGML_ASSERT(start % QK4_1 == 0);
  16646. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  16647. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  16648. } break;
  16649. case GGML_TYPE_Q5_0:
  16650. {
  16651. GGML_ASSERT(start % QK5_0 == 0);
  16652. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  16653. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  16654. } break;
  16655. case GGML_TYPE_Q5_1:
  16656. {
  16657. GGML_ASSERT(start % QK5_1 == 0);
  16658. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  16659. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  16660. } break;
  16661. case GGML_TYPE_Q8_0:
  16662. {
  16663. GGML_ASSERT(start % QK8_0 == 0);
  16664. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16665. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16666. } break;
  16667. #ifdef GGML_USE_K_QUANTS
  16668. case GGML_TYPE_Q2_K:
  16669. {
  16670. GGML_ASSERT(start % QK_K == 0);
  16671. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16672. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16673. } break;
  16674. case GGML_TYPE_Q3_K:
  16675. {
  16676. GGML_ASSERT(start % QK_K == 0);
  16677. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16678. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16679. } break;
  16680. case GGML_TYPE_Q4_K:
  16681. {
  16682. GGML_ASSERT(start % QK_K == 0);
  16683. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16684. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16685. } break;
  16686. case GGML_TYPE_Q5_K:
  16687. {
  16688. GGML_ASSERT(start % QK_K == 0);
  16689. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16690. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16691. } break;
  16692. case GGML_TYPE_Q6_K:
  16693. {
  16694. GGML_ASSERT(start % QK_K == 0);
  16695. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16696. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16697. } break;
  16698. #endif
  16699. case GGML_TYPE_F16:
  16700. {
  16701. int elemsize = sizeof(ggml_fp16_t);
  16702. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16703. result = n * elemsize;
  16704. } break;
  16705. case GGML_TYPE_F32:
  16706. {
  16707. int elemsize = sizeof(float);
  16708. result = n * elemsize;
  16709. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16710. } break;
  16711. default:
  16712. assert(false);
  16713. }
  16714. return result;
  16715. }
  16716. ////////////////////////////////////////////////////////////////////////////////
  16717. struct gguf_str {
  16718. uint64_t n; // GGUFv2
  16719. char * data;
  16720. };
  16721. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16722. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16723. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16724. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16725. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16726. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16727. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16728. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16729. [GGUF_TYPE_BOOL] = sizeof(bool),
  16730. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16731. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16732. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16733. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16734. [GGUF_TYPE_ARRAY] = 0, // undefined
  16735. };
  16736. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16737. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16738. [GGUF_TYPE_UINT8] = "u8",
  16739. [GGUF_TYPE_INT8] = "i8",
  16740. [GGUF_TYPE_UINT16] = "u16",
  16741. [GGUF_TYPE_INT16] = "i16",
  16742. [GGUF_TYPE_UINT32] = "u32",
  16743. [GGUF_TYPE_INT32] = "i32",
  16744. [GGUF_TYPE_FLOAT32] = "f32",
  16745. [GGUF_TYPE_BOOL] = "bool",
  16746. [GGUF_TYPE_STRING] = "str",
  16747. [GGUF_TYPE_ARRAY] = "arr",
  16748. [GGUF_TYPE_UINT64] = "u64",
  16749. [GGUF_TYPE_INT64] = "i64",
  16750. [GGUF_TYPE_FLOAT64] = "f64",
  16751. };
  16752. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16753. union gguf_value {
  16754. uint8_t uint8;
  16755. int8_t int8;
  16756. uint16_t uint16;
  16757. int16_t int16;
  16758. uint32_t uint32;
  16759. int32_t int32;
  16760. float float32;
  16761. uint64_t uint64;
  16762. int64_t int64;
  16763. double float64;
  16764. bool bool_;
  16765. struct gguf_str str;
  16766. struct {
  16767. enum gguf_type type;
  16768. uint64_t n; // GGUFv2
  16769. void * data;
  16770. } arr;
  16771. };
  16772. struct gguf_kv {
  16773. struct gguf_str key;
  16774. enum gguf_type type;
  16775. union gguf_value value;
  16776. };
  16777. struct gguf_header {
  16778. uint32_t magic;
  16779. uint32_t version;
  16780. uint64_t n_tensors; // GGUFv2
  16781. uint64_t n_kv; // GGUFv2
  16782. };
  16783. struct gguf_tensor_info {
  16784. struct gguf_str name;
  16785. uint32_t n_dims;
  16786. uint64_t ne[GGML_MAX_DIMS];
  16787. enum ggml_type type;
  16788. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16789. // for writing API
  16790. const void * data;
  16791. size_t size;
  16792. };
  16793. struct gguf_context {
  16794. struct gguf_header header;
  16795. struct gguf_kv * kv;
  16796. struct gguf_tensor_info * infos;
  16797. size_t alignment;
  16798. size_t offset; // offset of `data` from beginning of file
  16799. size_t size; // size of `data` in bytes
  16800. //uint8_t * padding;
  16801. void * data;
  16802. };
  16803. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16804. const size_t n = fread(dst, 1, size, file);
  16805. *offset += n;
  16806. return n == size;
  16807. }
  16808. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16809. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16810. p->n = 0;
  16811. p->data = NULL;
  16812. bool ok = true;
  16813. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16814. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16815. return ok;
  16816. }
  16817. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16818. p->n = 0;
  16819. p->data = NULL;
  16820. bool ok = true;
  16821. uint32_t n = 0;
  16822. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16823. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16824. return ok;
  16825. }
  16826. struct gguf_context * gguf_init_empty(void) {
  16827. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16828. ctx->header.magic = GGUF_MAGIC;
  16829. ctx->header.version = GGUF_VERSION;
  16830. ctx->header.n_tensors = 0;
  16831. ctx->header.n_kv = 0;
  16832. ctx->kv = NULL;
  16833. ctx->infos = NULL;
  16834. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16835. ctx->offset = 0;
  16836. ctx->size = 0;
  16837. ctx->data = NULL;
  16838. return ctx;
  16839. }
  16840. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16841. FILE * file = fopen(fname, "rb");
  16842. if (!file) {
  16843. return NULL;
  16844. }
  16845. // offset from start of file
  16846. size_t offset = 0;
  16847. uint32_t magic = 0;
  16848. // check the magic before making allocations
  16849. {
  16850. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16851. if (magic != GGUF_MAGIC) {
  16852. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16853. fclose(file);
  16854. return NULL;
  16855. }
  16856. }
  16857. bool ok = true;
  16858. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16859. // read the header
  16860. {
  16861. ctx->header.magic = magic;
  16862. ctx->kv = NULL;
  16863. ctx->infos = NULL;
  16864. ctx->data = NULL;
  16865. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16866. if (ctx->header.version == 1) {
  16867. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16868. uint32_t n_tensors = 0;
  16869. uint32_t n_kv = 0;
  16870. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16871. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16872. ctx->header.n_tensors = n_tensors;
  16873. ctx->header.n_kv = n_kv;
  16874. } else {
  16875. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16876. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16877. }
  16878. if (!ok) {
  16879. fprintf(stderr, "%s: failed to read header\n", __func__);
  16880. fclose(file);
  16881. gguf_free(ctx);
  16882. return NULL;
  16883. }
  16884. }
  16885. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16886. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16887. if (ctx->header.version == 1) {
  16888. gguf_fread_str = gguf_fread_str_v1;
  16889. }
  16890. // read the kv pairs
  16891. {
  16892. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16893. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16894. struct gguf_kv * kv = &ctx->kv[i];
  16895. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16896. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16897. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16898. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16899. switch (kv->type) {
  16900. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16901. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16902. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16903. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16904. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16905. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16906. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16907. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16908. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16909. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16910. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16911. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16912. case GGUF_TYPE_ARRAY:
  16913. {
  16914. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16915. if (ctx->header.version == 1) {
  16916. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16917. uint32_t n = 0;
  16918. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16919. kv->value.arr.n = n;
  16920. } else {
  16921. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16922. }
  16923. switch (kv->value.arr.type) {
  16924. case GGUF_TYPE_UINT8:
  16925. case GGUF_TYPE_INT8:
  16926. case GGUF_TYPE_UINT16:
  16927. case GGUF_TYPE_INT16:
  16928. case GGUF_TYPE_UINT32:
  16929. case GGUF_TYPE_INT32:
  16930. case GGUF_TYPE_FLOAT32:
  16931. case GGUF_TYPE_UINT64:
  16932. case GGUF_TYPE_INT64:
  16933. case GGUF_TYPE_FLOAT64:
  16934. case GGUF_TYPE_BOOL:
  16935. {
  16936. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16937. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16938. } break;
  16939. case GGUF_TYPE_STRING:
  16940. {
  16941. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16942. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16943. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16944. }
  16945. } break;
  16946. case GGUF_TYPE_ARRAY:
  16947. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16948. };
  16949. } break;
  16950. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16951. };
  16952. if (!ok) {
  16953. break;
  16954. }
  16955. }
  16956. if (!ok) {
  16957. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16958. fclose(file);
  16959. gguf_free(ctx);
  16960. return NULL;
  16961. }
  16962. }
  16963. // read the tensor infos
  16964. {
  16965. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16966. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16967. struct gguf_tensor_info * info = &ctx->infos[i];
  16968. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16969. info->ne[j] = 1;
  16970. }
  16971. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16972. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16973. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16974. if (ctx->header.version == 1) {
  16975. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16976. uint32_t t = 0;
  16977. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16978. info->ne[j] = t;
  16979. } else {
  16980. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16981. }
  16982. }
  16983. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16984. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16985. if (!ok) {
  16986. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16987. fclose(file);
  16988. gguf_free(ctx);
  16989. return NULL;
  16990. }
  16991. }
  16992. }
  16993. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16994. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16995. if (alignment_idx != -1) {
  16996. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16997. }
  16998. // we require the data section to be aligned, so take into account any padding
  16999. {
  17000. const size_t offset_pad = offset % ctx->alignment;
  17001. if (offset_pad != 0) {
  17002. offset += ctx->alignment - offset_pad;
  17003. fseek(file, offset, SEEK_SET);
  17004. }
  17005. }
  17006. // store the current file offset - this is where the data section starts
  17007. ctx->offset = offset;
  17008. // compute the total size of the data section, taking into account the alignment
  17009. {
  17010. ctx->size = 0;
  17011. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17012. struct gguf_tensor_info * info = &ctx->infos[i];
  17013. const int64_t ne =
  17014. (int64_t) info->ne[0] *
  17015. (int64_t) info->ne[1] *
  17016. (int64_t) info->ne[2] *
  17017. (int64_t) info->ne[3];
  17018. if (ne % ggml_blck_size(info->type) != 0) {
  17019. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17020. __func__, info->name.data, ne, ggml_blck_size(info->type));
  17021. fclose(file);
  17022. gguf_free(ctx);
  17023. return NULL;
  17024. }
  17025. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  17026. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17027. }
  17028. }
  17029. // load the tensor data only if requested
  17030. if (params.ctx != NULL) {
  17031. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17032. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17033. // the ggml_tensor structs to the appropriate locations in the binary blob
  17034. // compute the exact size needed for the new ggml_context
  17035. const size_t mem_size =
  17036. params.no_alloc ?
  17037. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17038. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17039. struct ggml_init_params pdata = {
  17040. .mem_size = mem_size,
  17041. .mem_buffer = NULL,
  17042. .no_alloc = params.no_alloc,
  17043. };
  17044. *params.ctx = ggml_init(pdata);
  17045. struct ggml_context * ctx_data = *params.ctx;
  17046. struct ggml_tensor * data = NULL;
  17047. if (!params.no_alloc) {
  17048. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17049. ok = ok && data != NULL;
  17050. // read the binary blob with the tensor data
  17051. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17052. if (!ok) {
  17053. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17054. fclose(file);
  17055. ggml_free(ctx_data);
  17056. gguf_free(ctx);
  17057. return NULL;
  17058. }
  17059. ctx->data = data->data;
  17060. }
  17061. ggml_set_no_alloc(ctx_data, true);
  17062. // create the tensors
  17063. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17064. const int64_t ne[GGML_MAX_DIMS] = {
  17065. ctx->infos[i].ne[0],
  17066. ctx->infos[i].ne[1],
  17067. ctx->infos[i].ne[2],
  17068. ctx->infos[i].ne[3],
  17069. };
  17070. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17071. ok = ok && cur != NULL;
  17072. ggml_set_name(cur, ctx->infos[i].name.data);
  17073. if (!ok) {
  17074. break;
  17075. }
  17076. // point the data member to the appropriate location in the binary blob using the tensor infos
  17077. if (!params.no_alloc) {
  17078. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17079. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17080. }
  17081. }
  17082. if (!ok) {
  17083. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17084. fclose(file);
  17085. ggml_free(ctx_data);
  17086. gguf_free(ctx);
  17087. return NULL;
  17088. }
  17089. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17090. }
  17091. fclose(file);
  17092. return ctx;
  17093. }
  17094. void gguf_free(struct gguf_context * ctx) {
  17095. if (ctx == NULL) {
  17096. return;
  17097. }
  17098. if (ctx->kv) {
  17099. // free string memory - not great..
  17100. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17101. struct gguf_kv * kv = &ctx->kv[i];
  17102. if (kv->key.data) {
  17103. free(kv->key.data);
  17104. }
  17105. if (kv->type == GGUF_TYPE_STRING) {
  17106. if (kv->value.str.data) {
  17107. free(kv->value.str.data);
  17108. }
  17109. }
  17110. if (kv->type == GGUF_TYPE_ARRAY) {
  17111. if (kv->value.arr.data) {
  17112. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17113. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17114. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17115. if (str->data) {
  17116. free(str->data);
  17117. }
  17118. }
  17119. }
  17120. free(kv->value.arr.data);
  17121. }
  17122. }
  17123. }
  17124. free(ctx->kv);
  17125. }
  17126. if (ctx->infos) {
  17127. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17128. struct gguf_tensor_info * info = &ctx->infos[i];
  17129. if (info->name.data) {
  17130. free(info->name.data);
  17131. }
  17132. }
  17133. free(ctx->infos);
  17134. }
  17135. GGML_ALIGNED_FREE(ctx);
  17136. }
  17137. const char * gguf_type_name(enum gguf_type type) {
  17138. return GGUF_TYPE_NAME[type];
  17139. }
  17140. int gguf_get_version(const struct gguf_context * ctx) {
  17141. return ctx->header.version;
  17142. }
  17143. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17144. return ctx->alignment;
  17145. }
  17146. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17147. return ctx->offset;
  17148. }
  17149. void * gguf_get_data(const struct gguf_context * ctx) {
  17150. return ctx->data;
  17151. }
  17152. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17153. return ctx->header.n_kv;
  17154. }
  17155. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17156. // return -1 if key not found
  17157. int keyfound = -1;
  17158. const int n_kv = gguf_get_n_kv(ctx);
  17159. for (int i = 0; i < n_kv; ++i) {
  17160. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17161. keyfound = i;
  17162. break;
  17163. }
  17164. }
  17165. return keyfound;
  17166. }
  17167. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17168. return ctx->kv[key_id].key.data;
  17169. }
  17170. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17171. return ctx->kv[key_id].type;
  17172. }
  17173. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17174. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17175. return ctx->kv[key_id].value.arr.type;
  17176. }
  17177. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17178. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17179. return ctx->kv[key_id].value.arr.data;
  17180. }
  17181. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17182. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17183. struct gguf_kv * kv = &ctx->kv[key_id];
  17184. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17185. return str->data;
  17186. }
  17187. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17188. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17189. return ctx->kv[key_id].value.arr.n;
  17190. }
  17191. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17192. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17193. return ctx->kv[key_id].value.uint8;
  17194. }
  17195. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17196. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17197. return ctx->kv[key_id].value.int8;
  17198. }
  17199. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17200. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17201. return ctx->kv[key_id].value.uint16;
  17202. }
  17203. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17204. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17205. return ctx->kv[key_id].value.int16;
  17206. }
  17207. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17208. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17209. return ctx->kv[key_id].value.uint32;
  17210. }
  17211. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17212. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17213. return ctx->kv[key_id].value.int32;
  17214. }
  17215. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17216. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17217. return ctx->kv[key_id].value.float32;
  17218. }
  17219. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17220. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17221. return ctx->kv[key_id].value.uint64;
  17222. }
  17223. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17224. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17225. return ctx->kv[key_id].value.int64;
  17226. }
  17227. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17228. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17229. return ctx->kv[key_id].value.float64;
  17230. }
  17231. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17232. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17233. return ctx->kv[key_id].value.bool_;
  17234. }
  17235. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17236. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17237. return ctx->kv[key_id].value.str.data;
  17238. }
  17239. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17240. return ctx->header.n_tensors;
  17241. }
  17242. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17243. // return -1 if tensor not found
  17244. int tensorfound = -1;
  17245. const int n_tensors = gguf_get_n_tensors(ctx);
  17246. for (int i = 0; i < n_tensors; ++i) {
  17247. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17248. tensorfound = i;
  17249. break;
  17250. }
  17251. }
  17252. return tensorfound;
  17253. }
  17254. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17255. return ctx->infos[i].offset;
  17256. }
  17257. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17258. return ctx->infos[i].name.data;
  17259. }
  17260. // returns the index
  17261. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17262. const int idx = gguf_find_key(ctx, key);
  17263. if (idx >= 0) {
  17264. return idx;
  17265. }
  17266. const int n_kv = gguf_get_n_kv(ctx);
  17267. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17268. ctx->kv[n_kv].key.n = strlen(key);
  17269. ctx->kv[n_kv].key.data = strdup(key);
  17270. ctx->header.n_kv++;
  17271. return n_kv;
  17272. }
  17273. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17274. const int idx = gguf_get_or_add_key(ctx, key);
  17275. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17276. ctx->kv[idx].value.uint8 = val;
  17277. }
  17278. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17279. const int idx = gguf_get_or_add_key(ctx, key);
  17280. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17281. ctx->kv[idx].value.int8 = val;
  17282. }
  17283. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17284. const int idx = gguf_get_or_add_key(ctx, key);
  17285. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17286. ctx->kv[idx].value.uint16 = val;
  17287. }
  17288. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17289. const int idx = gguf_get_or_add_key(ctx, key);
  17290. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17291. ctx->kv[idx].value.int16 = val;
  17292. }
  17293. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17294. const int idx = gguf_get_or_add_key(ctx, key);
  17295. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17296. ctx->kv[idx].value.uint32 = val;
  17297. }
  17298. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17299. const int idx = gguf_get_or_add_key(ctx, key);
  17300. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17301. ctx->kv[idx].value.int32 = val;
  17302. }
  17303. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17304. const int idx = gguf_get_or_add_key(ctx, key);
  17305. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17306. ctx->kv[idx].value.float32 = val;
  17307. }
  17308. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17309. const int idx = gguf_get_or_add_key(ctx, key);
  17310. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17311. ctx->kv[idx].value.uint64 = val;
  17312. }
  17313. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17314. const int idx = gguf_get_or_add_key(ctx, key);
  17315. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17316. ctx->kv[idx].value.int64 = val;
  17317. }
  17318. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17319. const int idx = gguf_get_or_add_key(ctx, key);
  17320. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17321. ctx->kv[idx].value.float64 = val;
  17322. }
  17323. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17324. const int idx = gguf_get_or_add_key(ctx, key);
  17325. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17326. ctx->kv[idx].value.bool_ = val;
  17327. }
  17328. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17329. const int idx = gguf_get_or_add_key(ctx, key);
  17330. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17331. ctx->kv[idx].value.str.n = strlen(val);
  17332. ctx->kv[idx].value.str.data = strdup(val);
  17333. }
  17334. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17335. const int idx = gguf_get_or_add_key(ctx, key);
  17336. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17337. ctx->kv[idx].value.arr.type = type;
  17338. ctx->kv[idx].value.arr.n = n;
  17339. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  17340. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  17341. }
  17342. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17343. const int idx = gguf_get_or_add_key(ctx, key);
  17344. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17345. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17346. ctx->kv[idx].value.arr.n = n;
  17347. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  17348. for (int i = 0; i < n; i++) {
  17349. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17350. str->n = strlen(data[i]);
  17351. str->data = strdup(data[i]);
  17352. }
  17353. }
  17354. // set or add KV pairs from another context
  17355. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17356. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17357. switch (src->kv[i].type) {
  17358. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17359. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17360. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17361. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17362. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17363. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17364. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17365. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17366. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17367. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17368. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17369. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17370. case GGUF_TYPE_ARRAY:
  17371. {
  17372. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17373. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  17374. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17375. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17376. }
  17377. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17378. free(data);
  17379. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17380. GGML_ASSERT(false && "nested arrays not supported");
  17381. } else {
  17382. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17383. }
  17384. } break;
  17385. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17386. }
  17387. }
  17388. }
  17389. void gguf_add_tensor(
  17390. struct gguf_context * ctx,
  17391. const struct ggml_tensor * tensor) {
  17392. const int idx = ctx->header.n_tensors;
  17393. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17394. ctx->infos[idx].name.n = strlen(tensor->name);
  17395. ctx->infos[idx].name.data = strdup(tensor->name);
  17396. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17397. ctx->infos[idx].ne[i] = 1;
  17398. }
  17399. ctx->infos[idx].n_dims = tensor->n_dims;
  17400. for (int i = 0; i < tensor->n_dims; i++) {
  17401. ctx->infos[idx].ne[i] = tensor->ne[i];
  17402. }
  17403. ctx->infos[idx].type = tensor->type;
  17404. ctx->infos[idx].offset = 0;
  17405. ctx->infos[idx].data = tensor->data;
  17406. ctx->infos[idx].size = ggml_nbytes(tensor);
  17407. if (ctx->header.n_tensors > 0) {
  17408. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17409. }
  17410. ctx->header.n_tensors++;
  17411. }
  17412. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17413. const int idx = gguf_find_tensor(ctx, name);
  17414. if (idx < 0) {
  17415. GGML_ASSERT(false && "tensor not found");
  17416. }
  17417. ctx->infos[idx].type = type;
  17418. }
  17419. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17420. const int idx = gguf_find_tensor(ctx, name);
  17421. if (idx < 0) {
  17422. GGML_ASSERT(false && "tensor not found");
  17423. }
  17424. ctx->infos[idx].data = data;
  17425. ctx->infos[idx].size = size;
  17426. // update offsets
  17427. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17428. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17429. }
  17430. }
  17431. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17432. // fwrite(&val->n, sizeof(val->n), 1, file);
  17433. // fwrite(val->data, sizeof(char), val->n, file);
  17434. //}
  17435. //
  17436. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17437. // fwrite(val, sizeof(char), size, file);
  17438. //}
  17439. struct gguf_buf {
  17440. void * data;
  17441. size_t size;
  17442. size_t offset;
  17443. };
  17444. static struct gguf_buf gguf_buf_init(size_t size) {
  17445. struct gguf_buf buf = {
  17446. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  17447. /*buf.size =*/ size,
  17448. /*buf.offset =*/ 0,
  17449. };
  17450. return buf;
  17451. }
  17452. static void gguf_buf_free(struct gguf_buf buf) {
  17453. if (buf.data) {
  17454. free(buf.data);
  17455. }
  17456. }
  17457. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17458. if (buf->offset + size > buf->size) {
  17459. buf->size = 1.5*(buf->offset + size);
  17460. if (buf->data) {
  17461. buf->data = realloc(buf->data, buf->size);
  17462. }
  17463. }
  17464. }
  17465. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17466. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17467. if (buf->data) {
  17468. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17469. }
  17470. buf->offset += sizeof(val->n);
  17471. if (buf->data) {
  17472. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17473. }
  17474. buf->offset += val->n;
  17475. }
  17476. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17477. gguf_buf_grow(buf, el_size);
  17478. if (buf->data) {
  17479. memcpy((char *) buf->data + buf->offset, val, el_size);
  17480. }
  17481. buf->offset += el_size;
  17482. }
  17483. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17484. // write header
  17485. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17486. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17487. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17488. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17489. // write key-value pairs
  17490. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17491. struct gguf_kv * kv = &ctx->kv[i];
  17492. gguf_bwrite_str(buf, &kv->key);
  17493. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17494. switch (kv->type) {
  17495. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17496. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17497. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17498. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17499. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17500. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17501. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17502. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17503. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17504. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17505. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17506. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17507. case GGUF_TYPE_ARRAY:
  17508. {
  17509. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17510. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17511. switch (kv->value.arr.type) {
  17512. case GGUF_TYPE_UINT8:
  17513. case GGUF_TYPE_INT8:
  17514. case GGUF_TYPE_UINT16:
  17515. case GGUF_TYPE_INT16:
  17516. case GGUF_TYPE_UINT32:
  17517. case GGUF_TYPE_INT32:
  17518. case GGUF_TYPE_FLOAT32:
  17519. case GGUF_TYPE_UINT64:
  17520. case GGUF_TYPE_INT64:
  17521. case GGUF_TYPE_FLOAT64:
  17522. case GGUF_TYPE_BOOL:
  17523. {
  17524. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  17525. } break;
  17526. case GGUF_TYPE_STRING:
  17527. {
  17528. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17529. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17530. }
  17531. } break;
  17532. case GGUF_TYPE_ARRAY:
  17533. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17534. };
  17535. } break;
  17536. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  17537. };
  17538. }
  17539. // write tensor infos
  17540. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17541. struct gguf_tensor_info * info = &ctx->infos[i];
  17542. gguf_bwrite_str(buf, &info->name);
  17543. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17544. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17545. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17546. }
  17547. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17548. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17549. }
  17550. // we require the data section to be aligned, so take into account any padding
  17551. {
  17552. const size_t offset = buf->offset;
  17553. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17554. if (offset_pad != offset) {
  17555. uint8_t pad = 0;
  17556. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17557. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17558. }
  17559. }
  17560. }
  17561. if (only_meta) {
  17562. return;
  17563. }
  17564. size_t offset = 0;
  17565. // write tensor data
  17566. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17567. struct gguf_tensor_info * info = &ctx->infos[i];
  17568. const size_t size = info->size;
  17569. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17570. gguf_bwrite_el(buf, info->data, size);
  17571. if (size_pad != size) {
  17572. uint8_t pad = 0;
  17573. for (size_t j = 0; j < size_pad - size; ++j) {
  17574. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17575. }
  17576. }
  17577. GGML_ASSERT(offset == info->offset);
  17578. offset += size_pad;
  17579. }
  17580. }
  17581. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17582. FILE * file = fopen(fname, "wb");
  17583. if (!file) {
  17584. GGML_ASSERT(false && "failed to open file for writing");
  17585. }
  17586. struct gguf_buf buf = gguf_buf_init(16*1024);
  17587. gguf_write_to_buf(ctx, &buf, only_meta);
  17588. fwrite(buf.data, 1, buf.offset, file);
  17589. gguf_buf_free(buf);
  17590. fclose(file);
  17591. }
  17592. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17593. // no allocs - only compute size
  17594. struct gguf_buf buf = gguf_buf_init(0);
  17595. gguf_write_to_buf(ctx, &buf, true);
  17596. return buf.offset;
  17597. }
  17598. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17599. struct gguf_buf buf = gguf_buf_init(16*1024);
  17600. gguf_write_to_buf(ctx, &buf, true);
  17601. memcpy(data, buf.data, buf.offset);
  17602. gguf_buf_free(buf);
  17603. }
  17604. ////////////////////////////////////////////////////////////////////////////////
  17605. int ggml_cpu_has_avx(void) {
  17606. #if defined(__AVX__)
  17607. return 1;
  17608. #else
  17609. return 0;
  17610. #endif
  17611. }
  17612. int ggml_cpu_has_avx2(void) {
  17613. #if defined(__AVX2__)
  17614. return 1;
  17615. #else
  17616. return 0;
  17617. #endif
  17618. }
  17619. int ggml_cpu_has_avx512(void) {
  17620. #if defined(__AVX512F__)
  17621. return 1;
  17622. #else
  17623. return 0;
  17624. #endif
  17625. }
  17626. int ggml_cpu_has_avx512_vbmi(void) {
  17627. #if defined(__AVX512VBMI__)
  17628. return 1;
  17629. #else
  17630. return 0;
  17631. #endif
  17632. }
  17633. int ggml_cpu_has_avx512_vnni(void) {
  17634. #if defined(__AVX512VNNI__)
  17635. return 1;
  17636. #else
  17637. return 0;
  17638. #endif
  17639. }
  17640. int ggml_cpu_has_fma(void) {
  17641. #if defined(__FMA__)
  17642. return 1;
  17643. #else
  17644. return 0;
  17645. #endif
  17646. }
  17647. int ggml_cpu_has_neon(void) {
  17648. #if defined(__ARM_NEON)
  17649. return 1;
  17650. #else
  17651. return 0;
  17652. #endif
  17653. }
  17654. int ggml_cpu_has_arm_fma(void) {
  17655. #if defined(__ARM_FEATURE_FMA)
  17656. return 1;
  17657. #else
  17658. return 0;
  17659. #endif
  17660. }
  17661. int ggml_cpu_has_metal(void) {
  17662. #if defined(GGML_USE_METAL)
  17663. return 1;
  17664. #else
  17665. return 0;
  17666. #endif
  17667. }
  17668. int ggml_cpu_has_f16c(void) {
  17669. #if defined(__F16C__)
  17670. return 1;
  17671. #else
  17672. return 0;
  17673. #endif
  17674. }
  17675. int ggml_cpu_has_fp16_va(void) {
  17676. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17677. return 1;
  17678. #else
  17679. return 0;
  17680. #endif
  17681. }
  17682. int ggml_cpu_has_wasm_simd(void) {
  17683. #if defined(__wasm_simd128__)
  17684. return 1;
  17685. #else
  17686. return 0;
  17687. #endif
  17688. }
  17689. int ggml_cpu_has_blas(void) {
  17690. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17691. return 1;
  17692. #else
  17693. return 0;
  17694. #endif
  17695. }
  17696. int ggml_cpu_has_cublas(void) {
  17697. #if defined(GGML_USE_CUBLAS)
  17698. return 1;
  17699. #else
  17700. return 0;
  17701. #endif
  17702. }
  17703. int ggml_cpu_has_clblast(void) {
  17704. #if defined(GGML_USE_CLBLAST)
  17705. return 1;
  17706. #else
  17707. return 0;
  17708. #endif
  17709. }
  17710. int ggml_cpu_has_gpublas(void) {
  17711. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17712. }
  17713. int ggml_cpu_has_sse3(void) {
  17714. #if defined(__SSE3__)
  17715. return 1;
  17716. #else
  17717. return 0;
  17718. #endif
  17719. }
  17720. int ggml_cpu_has_ssse3(void) {
  17721. #if defined(__SSSE3__)
  17722. return 1;
  17723. #else
  17724. return 0;
  17725. #endif
  17726. }
  17727. int ggml_cpu_has_vsx(void) {
  17728. #if defined(__POWER9_VECTOR__)
  17729. return 1;
  17730. #else
  17731. return 0;
  17732. #endif
  17733. }
  17734. ////////////////////////////////////////////////////////////////////////////////