main.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "console.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "llama.h"
  7. #include "chat.h"
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <fstream>
  12. #include <iostream>
  13. #include <sstream>
  14. #include <string>
  15. #include <vector>
  16. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  17. #include <signal.h>
  18. #include <unistd.h>
  19. #elif defined (_WIN32)
  20. #define WIN32_LEAN_AND_MEAN
  21. #ifndef NOMINMAX
  22. #define NOMINMAX
  23. #endif
  24. #include <windows.h>
  25. #include <signal.h>
  26. #endif
  27. #if defined(_MSC_VER)
  28. #pragma warning(disable: 4244 4267) // possible loss of data
  29. #endif
  30. static const char * DEFAULT_SYSTEM_MESSAGE = "You are a helpful assistant";
  31. static llama_context ** g_ctx;
  32. static llama_model ** g_model;
  33. static common_sampler ** g_smpl;
  34. static common_params * g_params;
  35. static std::vector<llama_token> * g_input_tokens;
  36. static std::ostringstream * g_output_ss;
  37. static std::vector<llama_token> * g_output_tokens;
  38. static bool is_interacting = false;
  39. static bool need_insert_eot = false;
  40. static void print_usage(int argc, char ** argv) {
  41. (void) argc;
  42. LOG("\nexample usage:\n");
  43. LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
  44. LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
  45. LOG("\n");
  46. }
  47. static bool file_exists(const std::string & path) {
  48. std::ifstream f(path.c_str());
  49. return f.good();
  50. }
  51. static bool file_is_empty(const std::string & path) {
  52. std::ifstream f;
  53. f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
  54. f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
  55. return f.tellg() == 0;
  56. }
  57. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  58. static void sigint_handler(int signo) {
  59. if (signo == SIGINT) {
  60. if (!is_interacting && g_params->interactive) {
  61. is_interacting = true;
  62. need_insert_eot = true;
  63. } else {
  64. console::cleanup();
  65. LOG("\n");
  66. common_perf_print(*g_ctx, *g_smpl);
  67. // make sure all logs are flushed
  68. LOG("Interrupted by user\n");
  69. common_log_pause(common_log_main());
  70. _exit(130);
  71. }
  72. }
  73. }
  74. #endif
  75. int main(int argc, char ** argv) {
  76. common_params params;
  77. g_params = &params;
  78. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
  79. return 1;
  80. }
  81. common_init();
  82. auto & sparams = params.sampling;
  83. // save choice to use color for later
  84. // (note for later: this is a slightly awkward choice)
  85. console::init(params.simple_io, params.use_color);
  86. atexit([]() { console::cleanup(); });
  87. if (params.logits_all) {
  88. LOG_ERR("************\n");
  89. LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  90. LOG_ERR("************\n\n");
  91. return 0;
  92. }
  93. if (params.embedding) {
  94. LOG_ERR("************\n");
  95. LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  96. LOG_ERR("************\n\n");
  97. return 0;
  98. }
  99. if (params.n_ctx != 0 && params.n_ctx < 8) {
  100. LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
  101. params.n_ctx = 8;
  102. }
  103. if (params.rope_freq_base != 0.0) {
  104. LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
  105. }
  106. if (params.rope_freq_scale != 0.0) {
  107. LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
  108. }
  109. LOG_INF("%s: llama backend init\n", __func__);
  110. llama_backend_init();
  111. llama_numa_init(params.numa);
  112. llama_model * model = nullptr;
  113. llama_context * ctx = nullptr;
  114. common_sampler * smpl = nullptr;
  115. g_model = &model;
  116. g_ctx = &ctx;
  117. g_smpl = &smpl;
  118. std::vector<common_chat_msg> chat_msgs;
  119. // load the model and apply lora adapter, if any
  120. LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
  121. common_init_result llama_init = common_init_from_params(params);
  122. model = llama_init.model.get();
  123. ctx = llama_init.context.get();
  124. if (model == NULL) {
  125. LOG_ERR("%s: error: unable to load model\n", __func__);
  126. return 1;
  127. }
  128. const llama_vocab * vocab = llama_model_get_vocab(model);
  129. auto chat_templates = common_chat_templates_init(model, params.chat_template);
  130. LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
  131. auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
  132. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
  133. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");
  134. struct ggml_threadpool_params tpp_batch =
  135. ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
  136. struct ggml_threadpool_params tpp =
  137. ggml_threadpool_params_from_cpu_params(params.cpuparams);
  138. set_process_priority(params.cpuparams.priority);
  139. struct ggml_threadpool * threadpool_batch = NULL;
  140. if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
  141. threadpool_batch = ggml_threadpool_new_fn(&tpp_batch);
  142. if (!threadpool_batch) {
  143. LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
  144. return 1;
  145. }
  146. // Start the non-batch threadpool in the paused state
  147. tpp.paused = true;
  148. }
  149. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  150. if (!threadpool) {
  151. LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  152. return 1;
  153. }
  154. llama_attach_threadpool(ctx, threadpool, threadpool_batch);
  155. const int n_ctx_train = llama_model_n_ctx_train(model);
  156. const int n_ctx = llama_n_ctx(ctx);
  157. if (n_ctx > n_ctx_train) {
  158. LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
  159. }
  160. // auto enable conversation mode if chat template is available
  161. const bool has_chat_template = common_chat_templates_was_explicit(chat_templates.get());
  162. if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
  163. if (has_chat_template) {
  164. LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
  165. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  166. } else {
  167. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  168. }
  169. }
  170. // in case user force-activate conversation mode (via -cnv) without proper chat template, we show a warning
  171. if (params.conversation_mode && !has_chat_template) {
  172. LOG_WRN("%s: chat template is not available or is not supported. This may cause the model to output suboptimal responses\n", __func__);
  173. }
  174. // print chat template example in conversation mode
  175. if (params.conversation_mode) {
  176. if (params.enable_chat_template) {
  177. if (!params.prompt.empty()) {
  178. LOG_WRN("*** User-specified prompt in conversation mode will be ignored, did you mean to set --system-prompt (-sys) instead?\n");
  179. }
  180. LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(chat_templates.get(), params.use_jinja).c_str());
  181. } else {
  182. LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
  183. }
  184. }
  185. // print system information
  186. {
  187. LOG_INF("\n");
  188. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  189. LOG_INF("\n");
  190. }
  191. std::string path_session = params.path_prompt_cache;
  192. std::vector<llama_token> session_tokens;
  193. if (!path_session.empty()) {
  194. LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  195. if (!file_exists(path_session)) {
  196. LOG_INF("%s: session file does not exist, will create.\n", __func__);
  197. } else if (file_is_empty(path_session)) {
  198. LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
  199. } else {
  200. // The file exists and is not empty
  201. session_tokens.resize(n_ctx);
  202. size_t n_token_count_out = 0;
  203. if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  204. LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
  205. return 1;
  206. }
  207. session_tokens.resize(n_token_count_out);
  208. LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
  209. }
  210. }
  211. const bool add_bos = llama_vocab_get_add_bos(vocab) && !params.use_jinja;
  212. if (!llama_model_has_encoder(model)) {
  213. GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
  214. }
  215. LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
  216. std::vector<llama_token> embd_inp;
  217. auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
  218. common_chat_msg new_msg;
  219. new_msg.role = role;
  220. new_msg.content = content;
  221. auto formatted = common_chat_format_single(chat_templates.get(), chat_msgs, new_msg, role == "user", g_params->use_jinja);
  222. chat_msgs.push_back(new_msg);
  223. LOG_DBG("formatted: '%s'\n", formatted.c_str());
  224. return formatted;
  225. };
  226. {
  227. auto prompt = (params.conversation_mode && params.enable_chat_template)
  228. // format the system prompt in conversation mode (fallback to default if empty)
  229. ? chat_add_and_format("system", params.system_prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.system_prompt)
  230. // otherwise use the prompt as is
  231. : params.prompt;
  232. if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
  233. LOG_DBG("tokenize the prompt\n");
  234. embd_inp = common_tokenize(ctx, prompt, true, true);
  235. } else {
  236. LOG_DBG("use session tokens\n");
  237. embd_inp = session_tokens;
  238. }
  239. LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
  240. LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
  241. }
  242. // Should not run without any tokens
  243. if (embd_inp.empty()) {
  244. if (add_bos) {
  245. embd_inp.push_back(llama_vocab_bos(vocab));
  246. LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
  247. } else {
  248. LOG_ERR("input is empty\n");
  249. return -1;
  250. }
  251. }
  252. // Tokenize negative prompt
  253. if ((int) embd_inp.size() > n_ctx - 4) {
  254. LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  255. return 1;
  256. }
  257. // debug message about similarity of saved session, if applicable
  258. size_t n_matching_session_tokens = 0;
  259. if (!session_tokens.empty()) {
  260. for (llama_token id : session_tokens) {
  261. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  262. break;
  263. }
  264. n_matching_session_tokens++;
  265. }
  266. if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
  267. LOG_INF("%s: using full prompt from session file\n", __func__);
  268. } else if (n_matching_session_tokens >= embd_inp.size()) {
  269. LOG_INF("%s: session file has exact match for prompt!\n", __func__);
  270. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  271. LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  272. __func__, n_matching_session_tokens, embd_inp.size());
  273. } else {
  274. LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
  275. __func__, n_matching_session_tokens, embd_inp.size());
  276. }
  277. // remove any "future" tokens that we might have inherited from the previous session
  278. llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
  279. }
  280. LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
  281. embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
  282. // if we will use the cache for the full prompt without reaching the end of the cache, force
  283. // reevaluation of the last token to recalculate the cached logits
  284. if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
  285. LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
  286. session_tokens.resize(embd_inp.size() - 1);
  287. }
  288. // number of tokens to keep when resetting context
  289. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
  290. params.n_keep = (int)embd_inp.size();
  291. } else {
  292. params.n_keep += add_bos; // always keep the BOS token
  293. }
  294. if (params.conversation_mode) {
  295. params.interactive_first = true;
  296. }
  297. // enable interactive mode if interactive start is specified
  298. if (params.interactive_first) {
  299. params.interactive = true;
  300. }
  301. if (params.verbose_prompt) {
  302. LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  303. LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  304. for (int i = 0; i < (int) embd_inp.size(); i++) {
  305. LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
  306. }
  307. if (params.n_keep > add_bos) {
  308. LOG_INF("%s: static prompt based on n_keep: '", __func__);
  309. for (int i = 0; i < params.n_keep; i++) {
  310. LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
  311. }
  312. LOG_CNT("'\n");
  313. }
  314. LOG_INF("\n");
  315. }
  316. // ctrl+C handling
  317. {
  318. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  319. struct sigaction sigint_action;
  320. sigint_action.sa_handler = sigint_handler;
  321. sigemptyset (&sigint_action.sa_mask);
  322. sigint_action.sa_flags = 0;
  323. sigaction(SIGINT, &sigint_action, NULL);
  324. #elif defined (_WIN32)
  325. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  326. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  327. };
  328. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  329. #endif
  330. }
  331. if (params.interactive) {
  332. LOG_INF("%s: interactive mode on.\n", __func__);
  333. if (!params.antiprompt.empty()) {
  334. for (const auto & antiprompt : params.antiprompt) {
  335. LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
  336. if (params.verbose_prompt) {
  337. auto tmp = common_tokenize(ctx, antiprompt, false, true);
  338. for (int i = 0; i < (int) tmp.size(); i++) {
  339. LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
  340. }
  341. }
  342. }
  343. }
  344. if (params.input_prefix_bos) {
  345. LOG_INF("Input prefix with BOS\n");
  346. }
  347. if (!params.input_prefix.empty()) {
  348. LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
  349. if (params.verbose_prompt) {
  350. auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
  351. for (int i = 0; i < (int) tmp.size(); i++) {
  352. LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
  353. }
  354. }
  355. }
  356. if (!params.input_suffix.empty()) {
  357. LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
  358. if (params.verbose_prompt) {
  359. auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
  360. for (int i = 0; i < (int) tmp.size(); i++) {
  361. LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
  362. }
  363. }
  364. }
  365. }
  366. smpl = common_sampler_init(model, sparams);
  367. if (!smpl) {
  368. LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
  369. return 1;
  370. }
  371. LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
  372. LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
  373. LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
  374. LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  375. // group-attention state
  376. // number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
  377. int ga_i = 0;
  378. const int ga_n = params.grp_attn_n;
  379. const int ga_w = params.grp_attn_w;
  380. if (ga_n != 1) {
  381. GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
  382. GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
  383. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
  384. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
  385. LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
  386. }
  387. LOG_INF("\n");
  388. if (params.interactive) {
  389. const char * control_message;
  390. if (params.multiline_input) {
  391. control_message = " - To return control to the AI, end your input with '\\'.\n"
  392. " - To return control without starting a new line, end your input with '/'.\n";
  393. } else {
  394. control_message = " - Press Return to return control to the AI.\n"
  395. " - To return control without starting a new line, end your input with '/'.\n"
  396. " - If you want to submit another line, end your input with '\\'.\n";
  397. }
  398. LOG_INF("== Running in interactive mode. ==\n");
  399. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  400. LOG_INF( " - Press Ctrl+C to interject at any time.\n");
  401. #endif
  402. LOG_INF( "%s", control_message);
  403. if (params.conversation_mode && params.enable_chat_template && params.system_prompt.empty()) {
  404. LOG_INF( " - Not using system message. To change it, set a different value via -sys PROMPT\n");
  405. }
  406. LOG_INF("\n");
  407. is_interacting = params.interactive_first;
  408. }
  409. bool is_antiprompt = false;
  410. bool input_echo = true;
  411. bool display = true;
  412. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  413. int n_past = 0;
  414. int n_remain = params.n_predict;
  415. int n_consumed = 0;
  416. int n_session_consumed = 0;
  417. std::vector<int> input_tokens; g_input_tokens = &input_tokens;
  418. std::vector<int> output_tokens; g_output_tokens = &output_tokens;
  419. std::ostringstream output_ss; g_output_ss = &output_ss;
  420. std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
  421. // the first thing we will do is to output the prompt, so set color accordingly
  422. console::set_display(console::prompt);
  423. display = params.display_prompt;
  424. std::vector<llama_token> embd;
  425. // single-token antiprompts
  426. std::vector<llama_token> antiprompt_token;
  427. for (const std::string & antiprompt : params.antiprompt) {
  428. auto ids = ::common_tokenize(ctx, antiprompt, false, true);
  429. if (ids.size() == 1) {
  430. antiprompt_token.push_back(ids[0]);
  431. }
  432. }
  433. if (llama_model_has_encoder(model)) {
  434. int enc_input_size = embd_inp.size();
  435. llama_token * enc_input_buf = embd_inp.data();
  436. if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
  437. LOG_ERR("%s : failed to eval\n", __func__);
  438. return 1;
  439. }
  440. llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
  441. if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
  442. decoder_start_token_id = llama_vocab_bos(vocab);
  443. }
  444. embd_inp.clear();
  445. embd_inp.push_back(decoder_start_token_id);
  446. }
  447. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  448. // predict
  449. if (!embd.empty()) {
  450. // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
  451. // --prompt or --file which uses the same value.
  452. int max_embd_size = n_ctx - 4;
  453. // Ensure the input doesn't exceed the context size by truncating embd if necessary.
  454. if ((int) embd.size() > max_embd_size) {
  455. const int skipped_tokens = (int) embd.size() - max_embd_size;
  456. embd.resize(max_embd_size);
  457. console::set_display(console::error);
  458. LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
  459. console::set_display(console::reset);
  460. }
  461. if (ga_n == 1) {
  462. // infinite text generation via context shifting
  463. // if we run out of context:
  464. // - take the n_keep first tokens from the original prompt (via n_past)
  465. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  466. if (n_past + (int) embd.size() >= n_ctx) {
  467. if (!params.ctx_shift){
  468. LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
  469. break;
  470. }
  471. if (params.n_predict == -2) {
  472. LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
  473. break;
  474. }
  475. const int n_left = n_past - params.n_keep;
  476. const int n_discard = n_left/2;
  477. LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
  478. n_past, n_left, n_ctx, params.n_keep, n_discard);
  479. llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
  480. llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
  481. n_past -= n_discard;
  482. LOG_DBG("after swap: n_past = %d\n", n_past);
  483. LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
  484. LOG_DBG("clear session path\n");
  485. path_session.clear();
  486. }
  487. } else {
  488. // context extension via Self-Extend
  489. while (n_past >= ga_i + ga_w) {
  490. const int ib = (ga_n*ga_i)/ga_w;
  491. const int bd = (ga_w/ga_n)*(ga_n - 1);
  492. const int dd = (ga_w/ga_n) - ib*bd - ga_w;
  493. LOG_DBG("\n");
  494. LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
  495. LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
  496. LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
  497. llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
  498. llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
  499. llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
  500. n_past -= bd;
  501. ga_i += ga_w/ga_n;
  502. LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
  503. }
  504. }
  505. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  506. if (n_session_consumed < (int) session_tokens.size()) {
  507. size_t i = 0;
  508. for ( ; i < embd.size(); i++) {
  509. if (embd[i] != session_tokens[n_session_consumed]) {
  510. session_tokens.resize(n_session_consumed);
  511. break;
  512. }
  513. n_past++;
  514. n_session_consumed++;
  515. if (n_session_consumed >= (int) session_tokens.size()) {
  516. ++i;
  517. break;
  518. }
  519. }
  520. if (i > 0) {
  521. embd.erase(embd.begin(), embd.begin() + i);
  522. }
  523. }
  524. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  525. int n_eval = (int) embd.size() - i;
  526. if (n_eval > params.n_batch) {
  527. n_eval = params.n_batch;
  528. }
  529. LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
  530. if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
  531. LOG_ERR("%s : failed to eval\n", __func__);
  532. return 1;
  533. }
  534. n_past += n_eval;
  535. LOG_DBG("n_past = %d\n", n_past);
  536. // Display total tokens alongside total time
  537. if (params.n_print > 0 && n_past % params.n_print == 0) {
  538. LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
  539. }
  540. }
  541. if (!embd.empty() && !path_session.empty()) {
  542. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  543. n_session_consumed = session_tokens.size();
  544. }
  545. }
  546. embd.clear();
  547. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  548. // optionally save the session on first sample (for faster prompt loading next time)
  549. if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
  550. need_to_save_session = false;
  551. llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  552. LOG_DBG("saved session to %s\n", path_session.c_str());
  553. }
  554. const llama_token id = common_sampler_sample(smpl, ctx, -1);
  555. common_sampler_accept(smpl, id, /* accept_grammar= */ true);
  556. // LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
  557. embd.push_back(id);
  558. // echo this to console
  559. input_echo = true;
  560. // decrement remaining sampling budget
  561. --n_remain;
  562. LOG_DBG("n_remain: %d\n", n_remain);
  563. } else {
  564. // some user input remains from prompt or interaction, forward it to processing
  565. LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
  566. while ((int) embd_inp.size() > n_consumed) {
  567. embd.push_back(embd_inp[n_consumed]);
  568. // push the prompt in the sampling context in order to apply repetition penalties later
  569. // for the prompt, we don't apply grammar rules
  570. common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
  571. ++n_consumed;
  572. if ((int) embd.size() >= params.n_batch) {
  573. break;
  574. }
  575. }
  576. }
  577. // display text
  578. if (input_echo && display) {
  579. for (auto id : embd) {
  580. const std::string token_str = common_token_to_piece(ctx, id, params.special);
  581. // Console/Stream Output
  582. LOG("%s", token_str.c_str());
  583. // Record Displayed Tokens To Log
  584. // Note: Generated tokens are created one by one hence this check
  585. if (embd.size() > 1) {
  586. // Incoming Requested Tokens
  587. input_tokens.push_back(id);
  588. } else {
  589. // Outgoing Generated Tokens
  590. output_tokens.push_back(id);
  591. output_ss << token_str;
  592. }
  593. }
  594. }
  595. // reset color to default if there is no pending user input
  596. if (input_echo && (int) embd_inp.size() == n_consumed) {
  597. console::set_display(console::reset);
  598. display = true;
  599. }
  600. // if not currently processing queued inputs;
  601. if ((int) embd_inp.size() <= n_consumed) {
  602. // check for reverse prompt in the last n_prev tokens
  603. if (!params.antiprompt.empty()) {
  604. const int n_prev = 32;
  605. const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
  606. is_antiprompt = false;
  607. // Check if each of the reverse prompts appears at the end of the output.
  608. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  609. // so we'll compensate for that by widening the search window a bit.
  610. for (std::string & antiprompt : params.antiprompt) {
  611. size_t extra_padding = params.interactive ? 0 : 2;
  612. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  613. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  614. : 0;
  615. if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
  616. if (params.interactive) {
  617. is_interacting = true;
  618. }
  619. is_antiprompt = true;
  620. break;
  621. }
  622. }
  623. // check for reverse prompt using special tokens
  624. llama_token last_token = common_sampler_last(smpl);
  625. for (auto token : antiprompt_token) {
  626. if (token == last_token) {
  627. if (params.interactive) {
  628. is_interacting = true;
  629. }
  630. is_antiprompt = true;
  631. break;
  632. }
  633. }
  634. if (is_antiprompt) {
  635. LOG_DBG("found antiprompt: %s\n", last_output.c_str());
  636. }
  637. }
  638. // deal with end of generation tokens in interactive mode
  639. if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
  640. LOG_DBG("found an EOG token\n");
  641. if (params.interactive) {
  642. if (!params.antiprompt.empty()) {
  643. // tokenize and inject first reverse prompt
  644. const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
  645. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  646. is_antiprompt = true;
  647. }
  648. if (params.enable_chat_template) {
  649. chat_add_and_format("assistant", assistant_ss.str());
  650. }
  651. is_interacting = true;
  652. LOG("\n");
  653. }
  654. }
  655. // if current token is not EOG, we add it to current assistant message
  656. if (params.conversation_mode) {
  657. const auto id = common_sampler_last(smpl);
  658. assistant_ss << common_token_to_piece(ctx, id, false);
  659. }
  660. if (n_past > 0 && is_interacting) {
  661. LOG_DBG("waiting for user input\n");
  662. if (params.conversation_mode) {
  663. LOG("\n> ");
  664. }
  665. if (params.input_prefix_bos) {
  666. LOG_DBG("adding input prefix BOS token\n");
  667. embd_inp.push_back(llama_vocab_bos(vocab));
  668. }
  669. std::string buffer;
  670. if (!params.input_prefix.empty() && !params.conversation_mode) {
  671. LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
  672. LOG("%s", params.input_prefix.c_str());
  673. }
  674. // color user input only
  675. console::set_display(console::user_input);
  676. display = params.display_prompt;
  677. std::string line;
  678. bool another_line = true;
  679. do {
  680. another_line = console::readline(line, params.multiline_input);
  681. buffer += line;
  682. } while (another_line);
  683. // done taking input, reset color
  684. console::set_display(console::reset);
  685. display = true;
  686. // Add tokens to embd only if the input buffer is non-empty
  687. // Entering a empty line lets the user pass control back
  688. if (buffer.length() > 1) {
  689. // append input suffix if any
  690. if (!params.input_suffix.empty() && !params.conversation_mode) {
  691. LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
  692. LOG("%s", params.input_suffix.c_str());
  693. }
  694. LOG_DBG("buffer: '%s'\n", buffer.c_str());
  695. const size_t original_size = embd_inp.size();
  696. if (params.escape) {
  697. string_process_escapes(buffer);
  698. }
  699. bool format_chat = params.conversation_mode && params.enable_chat_template;
  700. std::string user_inp = format_chat
  701. ? chat_add_and_format("user", std::move(buffer))
  702. : std::move(buffer);
  703. // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
  704. const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
  705. const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
  706. const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
  707. LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
  708. // if user stop generation mid-way, we must add EOT to finish model's last response
  709. if (need_insert_eot && format_chat) {
  710. llama_token eot = llama_vocab_eot(vocab);
  711. embd_inp.push_back(eot == LLAMA_TOKEN_NULL ? llama_vocab_eos(vocab) : eot);
  712. need_insert_eot = false;
  713. }
  714. embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
  715. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  716. embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
  717. for (size_t i = original_size; i < embd_inp.size(); ++i) {
  718. const llama_token token = embd_inp[i];
  719. output_tokens.push_back(token);
  720. output_ss << common_token_to_piece(ctx, token);
  721. }
  722. // reset assistant message
  723. assistant_ss.str("");
  724. n_remain -= line_inp.size();
  725. LOG_DBG("n_remain: %d\n", n_remain);
  726. } else {
  727. LOG_DBG("empty line, passing control back\n");
  728. }
  729. input_echo = false; // do not echo this again
  730. }
  731. if (n_past > 0) {
  732. if (is_interacting) {
  733. common_sampler_reset(smpl);
  734. }
  735. is_interacting = false;
  736. }
  737. }
  738. // end of generation
  739. if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !(params.interactive)) {
  740. LOG(" [end of text]\n");
  741. break;
  742. }
  743. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  744. // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
  745. if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
  746. n_remain = params.n_predict;
  747. is_interacting = true;
  748. }
  749. }
  750. if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
  751. LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  752. llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  753. }
  754. LOG("\n\n");
  755. common_perf_print(ctx, smpl);
  756. common_sampler_free(smpl);
  757. llama_backend_free();
  758. ggml_threadpool_free_fn(threadpool);
  759. ggml_threadpool_free_fn(threadpool_batch);
  760. return 0;
  761. }