llama.cpp 764 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_VULKAN)
  13. # include "ggml-vulkan.h"
  14. #elif defined(GGML_USE_SYCL)
  15. # include "ggml-sycl.h"
  16. #elif defined(GGML_USE_KOMPUTE)
  17. # include "ggml-kompute.h"
  18. #endif
  19. #ifdef GGML_USE_BLAS
  20. # include "ggml-blas.h"
  21. #endif
  22. #ifdef GGML_USE_METAL
  23. # include "ggml-metal.h"
  24. #endif
  25. // TODO: replace with ggml API call
  26. #define QK_K 256
  27. #ifdef __has_include
  28. #if __has_include(<unistd.h>)
  29. #include <unistd.h>
  30. #if defined(_POSIX_MAPPED_FILES)
  31. #include <sys/mman.h>
  32. #include <fcntl.h>
  33. #endif
  34. #if defined(_POSIX_MEMLOCK_RANGE)
  35. #include <sys/resource.h>
  36. #endif
  37. #endif
  38. #endif
  39. #if defined(_WIN32)
  40. #define WIN32_LEAN_AND_MEAN
  41. #ifndef NOMINMAX
  42. #define NOMINMAX
  43. #endif
  44. #include <windows.h>
  45. #ifndef PATH_MAX
  46. #define PATH_MAX MAX_PATH
  47. #endif
  48. #include <io.h>
  49. #endif
  50. #include <algorithm>
  51. #include <array>
  52. #include <cassert>
  53. #include <cctype>
  54. #include <cfloat>
  55. #include <cinttypes>
  56. #include <climits>
  57. #include <cmath>
  58. #include <cstdarg>
  59. #include <cstddef>
  60. #include <cstdint>
  61. #include <cstdio>
  62. #include <cstring>
  63. #include <ctime>
  64. #include <forward_list>
  65. #include <fstream>
  66. #include <functional>
  67. #include <future>
  68. #include <initializer_list>
  69. #include <locale>
  70. #include <map>
  71. #include <memory>
  72. #include <mutex>
  73. #include <numeric>
  74. #include <queue>
  75. #include <random>
  76. #include <regex>
  77. #include <set>
  78. #include <sstream>
  79. #include <thread>
  80. #include <type_traits>
  81. #include <unordered_map>
  82. #if defined(_MSC_VER)
  83. #pragma warning(disable: 4244 4267) // possible loss of data
  84. #endif
  85. #ifdef __GNUC__
  86. #ifdef __MINGW32__
  87. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  88. #else
  89. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  90. #endif
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...)
  93. #endif
  94. #define LLAMA_MAX_NODES 8192
  95. #define LLAMA_MAX_EXPERTS 160
  96. //
  97. // logging
  98. //
  99. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  100. static void llama_log_internal (ggml_log_level level, const char * format, ...);
  101. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  102. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  103. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  104. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  105. //
  106. // helpers
  107. //
  108. static size_t utf8_len(char src) {
  109. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  110. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  111. return lookup[highbits];
  112. }
  113. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  114. std::string result;
  115. for (size_t pos = 0; ; pos += search.length()) {
  116. auto new_pos = s.find(search, pos);
  117. if (new_pos == std::string::npos) {
  118. result += s.substr(pos, s.size() - pos);
  119. break;
  120. }
  121. result += s.substr(pos, new_pos - pos) + replace;
  122. pos = new_pos;
  123. }
  124. s = std::move(result);
  125. }
  126. static bool is_float_close(float a, float b, float abs_tol) {
  127. // Check for non-negative tolerance
  128. if (abs_tol < 0.0) {
  129. throw std::invalid_argument("Tolerance must be non-negative");
  130. }
  131. // Exact equality check
  132. if (a == b) {
  133. return true;
  134. }
  135. // Check for infinities
  136. if (std::isinf(a) || std::isinf(b)) {
  137. return false;
  138. }
  139. // Regular comparison using the provided absolute tolerance
  140. return std::fabs(b - a) <= abs_tol;
  141. }
  142. static void zeros(std::ofstream & file, size_t n) {
  143. char zero = 0;
  144. for (size_t i = 0; i < n; ++i) {
  145. file.write(&zero, 1);
  146. }
  147. }
  148. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  149. static std::string format(const char * fmt, ...) {
  150. va_list ap;
  151. va_list ap2;
  152. va_start(ap, fmt);
  153. va_copy(ap2, ap);
  154. int size = vsnprintf(NULL, 0, fmt, ap);
  155. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  156. std::vector<char> buf(size + 1);
  157. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  158. GGML_ASSERT(size2 == size);
  159. va_end(ap2);
  160. va_end(ap);
  161. return std::string(buf.data(), size);
  162. }
  163. //
  164. // gguf constants (sync with gguf.py)
  165. //
  166. enum llm_arch {
  167. LLM_ARCH_LLAMA,
  168. LLM_ARCH_FALCON,
  169. LLM_ARCH_BAICHUAN,
  170. LLM_ARCH_GROK,
  171. LLM_ARCH_GPT2,
  172. LLM_ARCH_GPTJ,
  173. LLM_ARCH_GPTNEOX,
  174. LLM_ARCH_MPT,
  175. LLM_ARCH_STARCODER,
  176. LLM_ARCH_REFACT,
  177. LLM_ARCH_BERT,
  178. LLM_ARCH_NOMIC_BERT,
  179. LLM_ARCH_JINA_BERT_V2,
  180. LLM_ARCH_BLOOM,
  181. LLM_ARCH_STABLELM,
  182. LLM_ARCH_QWEN,
  183. LLM_ARCH_QWEN2,
  184. LLM_ARCH_QWEN2MOE,
  185. LLM_ARCH_PHI2,
  186. LLM_ARCH_PHI3,
  187. LLM_ARCH_PLAMO,
  188. LLM_ARCH_CODESHELL,
  189. LLM_ARCH_ORION,
  190. LLM_ARCH_INTERNLM2,
  191. LLM_ARCH_MINICPM,
  192. LLM_ARCH_GEMMA,
  193. LLM_ARCH_STARCODER2,
  194. LLM_ARCH_MAMBA,
  195. LLM_ARCH_XVERSE,
  196. LLM_ARCH_COMMAND_R,
  197. LLM_ARCH_DBRX,
  198. LLM_ARCH_OLMO,
  199. LLM_ARCH_ARCTIC,
  200. LLM_ARCH_DEEPSEEK2,
  201. LLM_ARCH_UNKNOWN,
  202. };
  203. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  204. { LLM_ARCH_LLAMA, "llama" },
  205. { LLM_ARCH_FALCON, "falcon" },
  206. { LLM_ARCH_GROK, "grok" },
  207. { LLM_ARCH_GPT2, "gpt2" },
  208. { LLM_ARCH_GPTJ, "gptj" },
  209. { LLM_ARCH_GPTNEOX, "gptneox" },
  210. { LLM_ARCH_MPT, "mpt" },
  211. { LLM_ARCH_BAICHUAN, "baichuan" },
  212. { LLM_ARCH_STARCODER, "starcoder" },
  213. { LLM_ARCH_REFACT, "refact" },
  214. { LLM_ARCH_BERT, "bert" },
  215. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  216. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  217. { LLM_ARCH_BLOOM, "bloom" },
  218. { LLM_ARCH_STABLELM, "stablelm" },
  219. { LLM_ARCH_QWEN, "qwen" },
  220. { LLM_ARCH_QWEN2, "qwen2" },
  221. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  222. { LLM_ARCH_PHI2, "phi2" },
  223. { LLM_ARCH_PHI3, "phi3" },
  224. { LLM_ARCH_PLAMO, "plamo" },
  225. { LLM_ARCH_CODESHELL, "codeshell" },
  226. { LLM_ARCH_ORION, "orion" },
  227. { LLM_ARCH_INTERNLM2, "internlm2" },
  228. { LLM_ARCH_MINICPM, "minicpm" },
  229. { LLM_ARCH_GEMMA, "gemma" },
  230. { LLM_ARCH_STARCODER2, "starcoder2" },
  231. { LLM_ARCH_MAMBA, "mamba" },
  232. { LLM_ARCH_XVERSE, "xverse" },
  233. { LLM_ARCH_COMMAND_R, "command-r" },
  234. { LLM_ARCH_DBRX, "dbrx" },
  235. { LLM_ARCH_OLMO, "olmo" },
  236. { LLM_ARCH_ARCTIC, "arctic" },
  237. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  257. LLM_KV_FEED_FORWARD_LENGTH,
  258. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  259. LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
  260. LLM_KV_USE_PARALLEL_RESIDUAL,
  261. LLM_KV_TENSOR_DATA_LAYOUT,
  262. LLM_KV_EXPERT_COUNT,
  263. LLM_KV_EXPERT_USED_COUNT,
  264. LLM_KV_EXPERT_SHARED_COUNT,
  265. LLM_KV_EXPERT_WEIGHTS_SCALE,
  266. LLM_KV_POOLING_TYPE,
  267. LLM_KV_LOGIT_SCALE,
  268. LLM_KV_ATTENTION_HEAD_COUNT,
  269. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  270. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  271. LLM_KV_ATTENTION_CLAMP_KQV,
  272. LLM_KV_ATTENTION_KEY_LENGTH,
  273. LLM_KV_ATTENTION_VALUE_LENGTH,
  274. LLM_KV_ATTENTION_LAYERNORM_EPS,
  275. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  276. LLM_KV_ATTENTION_CAUSAL,
  277. LLM_KV_ATTENTION_Q_LORA_RANK,
  278. LLM_KV_ATTENTION_KV_LORA_RANK,
  279. LLM_KV_ROPE_DIMENSION_COUNT,
  280. LLM_KV_ROPE_FREQ_BASE,
  281. LLM_KV_ROPE_SCALE_LINEAR,
  282. LLM_KV_ROPE_SCALING_TYPE,
  283. LLM_KV_ROPE_SCALING_FACTOR,
  284. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  285. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  286. LLM_KV_ROPE_SCALING_FINETUNED,
  287. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  288. LLM_KV_SPLIT_NO,
  289. LLM_KV_SPLIT_COUNT,
  290. LLM_KV_SPLIT_TENSORS_COUNT,
  291. LLM_KV_SSM_INNER_SIZE,
  292. LLM_KV_SSM_CONV_KERNEL,
  293. LLM_KV_SSM_STATE_SIZE,
  294. LLM_KV_SSM_TIME_STEP_RANK,
  295. LLM_KV_TOKENIZER_MODEL,
  296. LLM_KV_TOKENIZER_PRE,
  297. LLM_KV_TOKENIZER_LIST,
  298. LLM_KV_TOKENIZER_TOKEN_TYPE,
  299. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  300. LLM_KV_TOKENIZER_SCORES,
  301. LLM_KV_TOKENIZER_MERGES,
  302. LLM_KV_TOKENIZER_BOS_ID,
  303. LLM_KV_TOKENIZER_EOS_ID,
  304. LLM_KV_TOKENIZER_UNK_ID,
  305. LLM_KV_TOKENIZER_SEP_ID,
  306. LLM_KV_TOKENIZER_PAD_ID,
  307. LLM_KV_TOKENIZER_CLS_ID,
  308. LLM_KV_TOKENIZER_MASK_ID,
  309. LLM_KV_TOKENIZER_ADD_BOS,
  310. LLM_KV_TOKENIZER_ADD_EOS,
  311. LLM_KV_TOKENIZER_ADD_PREFIX,
  312. LLM_KV_TOKENIZER_HF_JSON,
  313. LLM_KV_TOKENIZER_RWKV,
  314. LLM_KV_TOKENIZER_PREFIX_ID,
  315. LLM_KV_TOKENIZER_SUFFIX_ID,
  316. LLM_KV_TOKENIZER_MIDDLE_ID,
  317. LLM_KV_TOKENIZER_EOT_ID,
  318. };
  319. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  320. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  321. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  322. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  323. { LLM_KV_GENERAL_NAME, "general.name" },
  324. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  325. { LLM_KV_GENERAL_VERSION, "general.version" },
  326. { LLM_KV_GENERAL_URL, "general.url" },
  327. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  328. { LLM_KV_GENERAL_LICENSE, "general.license" },
  329. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  330. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  331. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  332. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  333. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  334. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  335. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  336. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  337. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  338. { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
  339. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  340. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  341. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  342. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  343. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  344. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  345. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  346. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  347. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  348. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  349. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  350. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  351. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  352. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  353. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  354. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  355. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  356. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  357. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  358. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  359. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  360. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  361. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  362. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  363. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  364. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  365. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  366. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  367. { LLM_KV_SPLIT_NO, "split.no" },
  368. { LLM_KV_SPLIT_COUNT, "split.count" },
  369. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  370. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  371. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  372. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  373. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  374. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  375. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  376. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  377. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  378. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  379. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  380. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  381. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  382. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  383. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  384. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  385. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  386. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  387. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  388. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  389. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  390. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  391. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  392. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  393. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  394. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  395. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  396. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  397. };
  398. struct LLM_KV {
  399. LLM_KV(llm_arch arch) : arch(arch) {}
  400. llm_arch arch;
  401. std::string operator()(llm_kv kv) const {
  402. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  403. }
  404. };
  405. enum llm_tensor {
  406. LLM_TENSOR_TOKEN_EMBD,
  407. LLM_TENSOR_TOKEN_EMBD_NORM,
  408. LLM_TENSOR_TOKEN_TYPES,
  409. LLM_TENSOR_POS_EMBD,
  410. LLM_TENSOR_OUTPUT,
  411. LLM_TENSOR_OUTPUT_NORM,
  412. LLM_TENSOR_ROPE_FREQS,
  413. LLM_TENSOR_ROPE_FACTORS_LONG,
  414. LLM_TENSOR_ROPE_FACTORS_SHORT,
  415. LLM_TENSOR_ATTN_Q,
  416. LLM_TENSOR_ATTN_K,
  417. LLM_TENSOR_ATTN_V,
  418. LLM_TENSOR_ATTN_QKV,
  419. LLM_TENSOR_ATTN_OUT,
  420. LLM_TENSOR_ATTN_NORM,
  421. LLM_TENSOR_ATTN_NORM_2,
  422. LLM_TENSOR_ATTN_OUT_NORM,
  423. LLM_TENSOR_ATTN_ROT_EMBD,
  424. LLM_TENSOR_FFN_GATE_INP,
  425. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  426. LLM_TENSOR_FFN_NORM,
  427. LLM_TENSOR_FFN_GATE,
  428. LLM_TENSOR_FFN_DOWN,
  429. LLM_TENSOR_FFN_UP,
  430. LLM_TENSOR_FFN_ACT,
  431. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  432. LLM_TENSOR_FFN_GATE_EXP,
  433. LLM_TENSOR_FFN_UP_EXP,
  434. LLM_TENSOR_FFN_NORM_EXPS,
  435. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  436. LLM_TENSOR_FFN_GATE_EXPS,
  437. LLM_TENSOR_FFN_UP_EXPS,
  438. LLM_TENSOR_FFN_DOWN_SHEXP,
  439. LLM_TENSOR_FFN_GATE_SHEXP,
  440. LLM_TENSOR_FFN_UP_SHEXP,
  441. LLM_TENSOR_ATTN_Q_NORM,
  442. LLM_TENSOR_ATTN_K_NORM,
  443. LLM_TENSOR_LAYER_OUT_NORM,
  444. LLM_TENSOR_SSM_IN,
  445. LLM_TENSOR_SSM_CONV1D,
  446. LLM_TENSOR_SSM_X,
  447. LLM_TENSOR_SSM_DT,
  448. LLM_TENSOR_SSM_A,
  449. LLM_TENSOR_SSM_D,
  450. LLM_TENSOR_SSM_OUT,
  451. LLM_TENSOR_ATTN_Q_A,
  452. LLM_TENSOR_ATTN_Q_B,
  453. LLM_TENSOR_ATTN_KV_A_MQA,
  454. LLM_TENSOR_ATTN_KV_B,
  455. LLM_TENSOR_ATTN_Q_A_NORM,
  456. LLM_TENSOR_ATTN_KV_A_NORM,
  457. };
  458. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  459. {
  460. LLM_ARCH_LLAMA,
  461. {
  462. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  463. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  464. { LLM_TENSOR_OUTPUT, "output" },
  465. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  466. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  467. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  468. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  469. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  470. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  471. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  472. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  473. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  474. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  475. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  476. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  477. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  478. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  479. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  480. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  481. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  482. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  483. },
  484. },
  485. {
  486. LLM_ARCH_BAICHUAN,
  487. {
  488. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  489. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  490. { LLM_TENSOR_OUTPUT, "output" },
  491. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  492. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  493. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  494. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  495. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  496. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  497. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  498. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  499. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  500. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  501. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  502. },
  503. },
  504. {
  505. LLM_ARCH_FALCON,
  506. {
  507. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  508. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  509. { LLM_TENSOR_OUTPUT, "output" },
  510. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  511. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  512. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  513. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  514. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  515. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  516. },
  517. },
  518. {
  519. LLM_ARCH_GROK,
  520. {
  521. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  522. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  523. { LLM_TENSOR_OUTPUT, "output" },
  524. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  525. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  526. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  527. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  528. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  529. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  530. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  531. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  532. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  533. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  534. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  535. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  536. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  537. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  538. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  539. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  540. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  541. },
  542. },
  543. {
  544. LLM_ARCH_GPT2,
  545. {
  546. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  547. { LLM_TENSOR_POS_EMBD, "position_embd" },
  548. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  549. { LLM_TENSOR_OUTPUT, "output" },
  550. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  551. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  552. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  553. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  554. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  555. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  556. },
  557. },
  558. {
  559. LLM_ARCH_GPTJ,
  560. {
  561. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  562. },
  563. },
  564. {
  565. LLM_ARCH_GPTNEOX,
  566. {
  567. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  568. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  569. { LLM_TENSOR_OUTPUT, "output" },
  570. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  571. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  572. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  573. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  574. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  575. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  576. },
  577. },
  578. {
  579. LLM_ARCH_MPT,
  580. {
  581. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  582. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  583. { LLM_TENSOR_OUTPUT, "output"},
  584. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  585. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  586. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  587. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  588. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  589. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  590. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  591. { LLM_TENSOR_POS_EMBD, "position_embd" },
  592. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  593. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  594. },
  595. },
  596. {
  597. LLM_ARCH_STARCODER,
  598. {
  599. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  600. { LLM_TENSOR_POS_EMBD, "position_embd" },
  601. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  602. { LLM_TENSOR_OUTPUT, "output" },
  603. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  604. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  605. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  606. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  607. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  608. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  609. },
  610. },
  611. {
  612. LLM_ARCH_REFACT,
  613. {
  614. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  615. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  616. { LLM_TENSOR_OUTPUT, "output" },
  617. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  618. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  619. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  620. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  621. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  622. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  623. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  624. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  625. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  626. },
  627. },
  628. {
  629. LLM_ARCH_BERT,
  630. {
  631. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  632. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  633. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  634. { LLM_TENSOR_POS_EMBD, "position_embd" },
  635. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  636. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  637. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  638. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  639. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  640. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  641. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  642. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  643. },
  644. },
  645. {
  646. LLM_ARCH_NOMIC_BERT,
  647. {
  648. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  649. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  650. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  651. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  652. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  653. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  654. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  655. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  656. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  657. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  658. },
  659. },
  660. {
  661. LLM_ARCH_JINA_BERT_V2,
  662. {
  663. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  664. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  665. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  666. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  667. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  668. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  669. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  670. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  671. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  672. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  673. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  674. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  675. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  676. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  677. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  678. },
  679. },
  680. {
  681. LLM_ARCH_BLOOM,
  682. {
  683. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  684. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  685. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  686. { LLM_TENSOR_OUTPUT, "output" },
  687. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  688. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  689. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  690. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  691. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  692. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  693. },
  694. },
  695. {
  696. LLM_ARCH_STABLELM,
  697. {
  698. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  699. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  700. { LLM_TENSOR_OUTPUT, "output" },
  701. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  702. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  703. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  704. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  705. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  706. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  707. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  708. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  709. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  710. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  711. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  712. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  713. },
  714. },
  715. {
  716. LLM_ARCH_QWEN,
  717. {
  718. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  719. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  720. { LLM_TENSOR_OUTPUT, "output" },
  721. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  722. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  723. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  724. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  725. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  726. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  727. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  728. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  729. },
  730. },
  731. {
  732. LLM_ARCH_QWEN2,
  733. {
  734. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  735. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  736. { LLM_TENSOR_OUTPUT, "output" },
  737. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  738. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  739. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  740. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  741. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  742. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  743. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  744. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  745. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  746. },
  747. },
  748. {
  749. LLM_ARCH_QWEN2MOE,
  750. {
  751. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  752. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  753. { LLM_TENSOR_OUTPUT, "output" },
  754. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  755. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  756. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  757. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  758. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  759. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  760. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  761. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  762. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  763. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  764. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  765. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  766. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  767. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  768. },
  769. },
  770. {
  771. LLM_ARCH_PHI2,
  772. {
  773. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  774. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  775. { LLM_TENSOR_OUTPUT, "output" },
  776. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  777. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  778. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  779. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  780. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  781. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  782. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  783. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  784. },
  785. },
  786. {
  787. LLM_ARCH_PHI3,
  788. {
  789. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  790. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  791. { LLM_TENSOR_OUTPUT, "output" },
  792. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  793. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  794. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  795. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  796. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  797. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  798. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  799. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  800. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  801. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  802. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  803. },
  804. },
  805. {
  806. LLM_ARCH_PLAMO,
  807. {
  808. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  809. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  810. { LLM_TENSOR_OUTPUT, "output" },
  811. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  812. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  813. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  814. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  815. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  816. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  817. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  818. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  819. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  820. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  821. },
  822. },
  823. {
  824. LLM_ARCH_CODESHELL,
  825. {
  826. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  827. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  828. { LLM_TENSOR_OUTPUT, "output" },
  829. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  830. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  831. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  832. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  833. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  834. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  835. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  836. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  837. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  838. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  839. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  840. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  841. },
  842. },
  843. {
  844. LLM_ARCH_ORION,
  845. {
  846. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  847. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  848. { LLM_TENSOR_OUTPUT, "output" },
  849. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  850. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  851. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  852. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  853. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  854. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  855. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  856. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  857. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  858. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  859. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  860. },
  861. },
  862. {
  863. LLM_ARCH_INTERNLM2,
  864. {
  865. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  866. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  867. { LLM_TENSOR_OUTPUT, "output" },
  868. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  869. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  870. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  871. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  872. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  873. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  874. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  875. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  876. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  877. },
  878. },
  879. {
  880. LLM_ARCH_MINICPM,
  881. {
  882. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  883. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  884. { LLM_TENSOR_OUTPUT, "output" },
  885. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  886. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  887. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  888. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  889. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  890. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  891. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  892. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  893. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  894. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  895. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  896. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  897. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  898. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  899. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  900. },
  901. },
  902. {
  903. LLM_ARCH_GEMMA,
  904. {
  905. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  906. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  907. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  908. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  909. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  910. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  911. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  912. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  913. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  914. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  915. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  916. },
  917. },
  918. {
  919. LLM_ARCH_STARCODER2,
  920. {
  921. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  922. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  923. { LLM_TENSOR_OUTPUT, "output" },
  924. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  925. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  926. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  927. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  928. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  929. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  930. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  931. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  932. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  933. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  934. },
  935. },
  936. {
  937. LLM_ARCH_MAMBA,
  938. {
  939. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  940. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  941. { LLM_TENSOR_OUTPUT, "output" },
  942. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  943. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  944. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  945. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  946. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  947. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  948. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  949. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  950. },
  951. },
  952. {
  953. LLM_ARCH_XVERSE,
  954. {
  955. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  956. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  957. { LLM_TENSOR_OUTPUT, "output" },
  958. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  959. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  960. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  961. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  962. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  963. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  964. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  965. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  966. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  967. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  968. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  969. },
  970. },
  971. {
  972. LLM_ARCH_COMMAND_R,
  973. {
  974. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  975. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  976. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  977. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  978. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  979. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  980. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  981. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  982. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  983. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  984. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  985. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  986. },
  987. },
  988. {
  989. LLM_ARCH_DBRX,
  990. {
  991. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  992. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  993. { LLM_TENSOR_OUTPUT, "output" },
  994. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  995. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  996. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  997. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  998. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  999. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1000. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1001. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1002. },
  1003. },
  1004. {
  1005. LLM_ARCH_OLMO,
  1006. {
  1007. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1008. { LLM_TENSOR_OUTPUT, "output" },
  1009. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1010. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1011. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1012. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1013. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1014. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1015. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1016. },
  1017. },
  1018. {
  1019. LLM_ARCH_ARCTIC,
  1020. {
  1021. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1022. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1023. { LLM_TENSOR_OUTPUT, "output" },
  1024. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1025. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1026. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1027. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1028. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1029. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1030. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1031. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1032. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1033. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1034. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1035. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1036. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1037. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1038. },
  1039. },
  1040. {
  1041. LLM_ARCH_DEEPSEEK2,
  1042. {
  1043. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1044. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1045. { LLM_TENSOR_OUTPUT, "output" },
  1046. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1047. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1048. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1049. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1050. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1051. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1052. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1053. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1054. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1055. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1056. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1057. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1058. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1059. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1060. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1061. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1062. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1063. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1064. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1065. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1066. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1067. },
  1068. },
  1069. {
  1070. LLM_ARCH_UNKNOWN,
  1071. {
  1072. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1073. },
  1074. },
  1075. };
  1076. static llm_arch llm_arch_from_string(const std::string & name) {
  1077. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1078. if (kv.second == name) {
  1079. return kv.first;
  1080. }
  1081. }
  1082. return LLM_ARCH_UNKNOWN;
  1083. }
  1084. // helper to handle gguf constants
  1085. // usage:
  1086. //
  1087. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1088. //
  1089. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1090. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1091. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1092. //
  1093. struct LLM_TN {
  1094. LLM_TN(llm_arch arch) : arch(arch) {}
  1095. llm_arch arch;
  1096. std::string operator()(llm_tensor tensor) const {
  1097. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1098. return "__missing__";
  1099. }
  1100. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1101. }
  1102. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1103. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1104. return "__missing__";
  1105. }
  1106. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1107. }
  1108. std::string operator()(llm_tensor tensor, int bid) const {
  1109. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1110. return "__missing__";
  1111. }
  1112. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1113. }
  1114. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1115. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1116. return "__missing__";
  1117. }
  1118. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1119. }
  1120. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1121. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1122. return "__missing__";
  1123. }
  1124. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1125. }
  1126. };
  1127. //
  1128. // gguf helpers
  1129. //
  1130. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1131. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1132. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1133. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1134. };
  1135. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1136. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1137. if (kv.second == name) {
  1138. return (llama_rope_scaling_type) kv.first;
  1139. }
  1140. }
  1141. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1142. }
  1143. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1144. switch (type) {
  1145. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1146. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1147. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1148. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1149. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1150. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1151. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1152. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1153. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1154. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1155. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1156. default: return format("unknown type %d", type);
  1157. }
  1158. }
  1159. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1160. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1161. switch (type) {
  1162. case GGUF_TYPE_STRING:
  1163. return gguf_get_val_str(ctx_gguf, i);
  1164. case GGUF_TYPE_ARRAY:
  1165. {
  1166. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1167. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1168. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1169. std::stringstream ss;
  1170. ss << "[";
  1171. for (int j = 0; j < arr_n; j++) {
  1172. if (arr_type == GGUF_TYPE_STRING) {
  1173. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1174. // escape quotes
  1175. replace_all(val, "\\", "\\\\");
  1176. replace_all(val, "\"", "\\\"");
  1177. ss << '"' << val << '"';
  1178. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1179. ss << "???";
  1180. } else {
  1181. ss << gguf_data_to_str(arr_type, data, j);
  1182. }
  1183. if (j < arr_n - 1) {
  1184. ss << ", ";
  1185. }
  1186. }
  1187. ss << "]";
  1188. return ss.str();
  1189. }
  1190. default:
  1191. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1192. }
  1193. }
  1194. //
  1195. // llama helpers
  1196. //
  1197. #if defined(_WIN32)
  1198. static std::string llama_format_win_err(DWORD err) {
  1199. LPSTR buf;
  1200. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1201. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1202. if (!size) {
  1203. return "FormatMessageA failed";
  1204. }
  1205. std::string ret(buf, size);
  1206. LocalFree(buf);
  1207. return ret;
  1208. }
  1209. #endif
  1210. template <typename T>
  1211. struct no_init {
  1212. T value;
  1213. no_init() { /* do nothing */ }
  1214. };
  1215. struct llama_file {
  1216. #if defined(_WIN32)
  1217. // use FILE * so we don't have to re-open the file to mmap
  1218. FILE * fp;
  1219. HANDLE fp_win32;
  1220. size_t size;
  1221. private:
  1222. std::string GetErrorMessageWin32(DWORD error_code) const {
  1223. std::string ret;
  1224. LPSTR lpMsgBuf = NULL;
  1225. DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1226. NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
  1227. if (!bufLen) {
  1228. ret = format("Win32 error code: %s", error_code);
  1229. } else {
  1230. ret = lpMsgBuf;
  1231. LocalFree(lpMsgBuf);
  1232. }
  1233. return ret;
  1234. }
  1235. public:
  1236. llama_file(const char * fname, const char * mode) {
  1237. fp = ggml_fopen(fname, mode);
  1238. if (fp == NULL) {
  1239. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1240. }
  1241. fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
  1242. seek(0, SEEK_END);
  1243. size = tell();
  1244. seek(0, SEEK_SET);
  1245. }
  1246. size_t tell() const {
  1247. // SetFilePointerEx returns the current position when seeking relative 0 bytes
  1248. LARGE_INTEGER li;
  1249. li.QuadPart = 0;
  1250. BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
  1251. if (!ret) {
  1252. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1253. }
  1254. return li.QuadPart;
  1255. }
  1256. void seek(size_t offset, int whence) const {
  1257. // no need to convert SEEK_* to FILE_*. The enums are the same.
  1258. // Still, keep static asserts to avoid failures in the future.
  1259. static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
  1260. static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
  1261. static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
  1262. LARGE_INTEGER li;
  1263. li.QuadPart = offset;
  1264. BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
  1265. if (!ret) {
  1266. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1267. }
  1268. }
  1269. void read_raw(void * ptr, size_t len) const {
  1270. // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
  1271. // use the Win32 API to do file io instead of the C/C++ library functions.
  1272. // There are conditions under which ReadFile cannot read chunks >64MB.
  1273. // Thus split the operation into smaller chunks if len exceeds this limit.
  1274. size_t bytes_read = 0;
  1275. while (bytes_read < len) {
  1276. size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
  1277. DWORD chunk_read = 0;
  1278. BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
  1279. if (!result) {
  1280. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1281. }
  1282. if (chunk_read < chunk_size || chunk_read == 0) {
  1283. throw std::runtime_error("unexpectedly reached end of file");
  1284. }
  1285. bytes_read += chunk_read;
  1286. } ;
  1287. }
  1288. uint32_t read_u32() const {
  1289. uint32_t val;
  1290. read_raw(&val, sizeof(val));
  1291. return val;
  1292. }
  1293. void write_raw(const void * ptr, size_t len) const {
  1294. // There are conditions under which WriteFile cannot write chunks >64MB.
  1295. // Thus split the operation into smaller chunks if len exceeds this limit.
  1296. size_t bytes_written = 0;
  1297. while (bytes_written < len) {
  1298. size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
  1299. DWORD chunk_written = 0;
  1300. BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
  1301. if (!result) {
  1302. throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1303. }
  1304. if (chunk_written < chunk_size || chunk_written == 0) {
  1305. throw std::runtime_error("unexpectedly failed to write bytes");
  1306. }
  1307. bytes_written += chunk_written;
  1308. }
  1309. }
  1310. void write_u32(std::uint32_t val) const {
  1311. write_raw(&val, sizeof(val));
  1312. }
  1313. ~llama_file() {
  1314. if (fp) {
  1315. std::fclose(fp);
  1316. }
  1317. }
  1318. #else
  1319. // use FILE * so we don't have to re-open the file to mmap
  1320. FILE * fp;
  1321. size_t size;
  1322. llama_file(const char * fname, const char * mode) {
  1323. fp = ggml_fopen(fname, mode);
  1324. if (fp == NULL) {
  1325. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1326. }
  1327. seek(0, SEEK_END);
  1328. size = tell();
  1329. seek(0, SEEK_SET);
  1330. }
  1331. size_t tell() const {
  1332. #ifdef _WIN32
  1333. __int64 ret = _ftelli64(fp);
  1334. #else
  1335. long ret = std::ftell(fp);
  1336. #endif
  1337. if (ret == -1) {
  1338. throw std::runtime_error(format("ftell error: %s", strerror(errno)));
  1339. }
  1340. return (size_t) ret;
  1341. }
  1342. void seek(size_t offset, int whence) const {
  1343. #ifdef _WIN32
  1344. int ret = _fseeki64(fp, (__int64) offset, whence);
  1345. #else
  1346. int ret = std::fseek(fp, (long) offset, whence);
  1347. #endif
  1348. if (ret != 0) {
  1349. throw std::runtime_error(format("seek error: %s", strerror(errno)));
  1350. }
  1351. }
  1352. void read_raw(void * ptr, size_t len) const {
  1353. if (len == 0) {
  1354. return;
  1355. }
  1356. errno = 0;
  1357. std::size_t ret = std::fread(ptr, len, 1, fp);
  1358. if (ferror(fp)) {
  1359. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1360. }
  1361. if (ret != 1) {
  1362. throw std::runtime_error("unexpectedly reached end of file");
  1363. }
  1364. }
  1365. uint32_t read_u32() const {
  1366. uint32_t ret;
  1367. read_raw(&ret, sizeof(ret));
  1368. return ret;
  1369. }
  1370. void write_raw(const void * ptr, size_t len) const {
  1371. if (len == 0) {
  1372. return;
  1373. }
  1374. errno = 0;
  1375. size_t ret = std::fwrite(ptr, len, 1, fp);
  1376. if (ret != 1) {
  1377. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1378. }
  1379. }
  1380. void write_u32(std::uint32_t val) const {
  1381. write_raw(&val, sizeof(val));
  1382. }
  1383. ~llama_file() {
  1384. if (fp) {
  1385. std::fclose(fp);
  1386. }
  1387. }
  1388. #endif
  1389. };
  1390. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1391. struct llama_mmap {
  1392. void * addr;
  1393. size_t size;
  1394. llama_mmap(const llama_mmap &) = delete;
  1395. #ifdef _POSIX_MAPPED_FILES
  1396. static constexpr bool SUPPORTED = true;
  1397. // list of mapped fragments (first_offset, last_offset)
  1398. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1399. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1400. size = file->size;
  1401. int fd = fileno(file->fp);
  1402. int flags = MAP_SHARED;
  1403. // prefetch/readahead impairs performance on NUMA systems
  1404. if (numa) { prefetch = 0; }
  1405. #ifdef __linux__
  1406. // advise the kernel to read the file sequentially (increases readahead)
  1407. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1408. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1409. strerror(errno));
  1410. }
  1411. if (prefetch) { flags |= MAP_POPULATE; }
  1412. #endif
  1413. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1414. if (addr == MAP_FAILED) { // NOLINT
  1415. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1416. }
  1417. if (prefetch > 0) {
  1418. // advise the kernel to preload the mapped memory
  1419. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1420. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1421. strerror(errno));
  1422. }
  1423. }
  1424. if (numa) {
  1425. // advise the kernel not to use readahead
  1426. // (because the next page might not belong on the same node)
  1427. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1428. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1429. strerror(errno));
  1430. }
  1431. }
  1432. // initialize list of mapped_fragments
  1433. mapped_fragments.emplace_back(0, file->size);
  1434. }
  1435. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1436. // align first to the next page
  1437. size_t offset_in_page = *first & (page_size - 1);
  1438. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1439. *first += offset_to_page;
  1440. // align last to the previous page
  1441. *last = *last & ~(page_size - 1);
  1442. if (*last <= *first) {
  1443. *last = *first;
  1444. }
  1445. }
  1446. // partially unmap the file in the range [first, last)
  1447. void unmap_fragment(size_t first, size_t last) {
  1448. // note: this function must not be called multiple times with overlapping ranges
  1449. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1450. int page_size = sysconf(_SC_PAGESIZE);
  1451. align_range(&first, &last, page_size);
  1452. size_t len = last - first;
  1453. if (len == 0) {
  1454. return;
  1455. }
  1456. GGML_ASSERT(first % page_size == 0);
  1457. GGML_ASSERT(last % page_size == 0);
  1458. GGML_ASSERT(last > first);
  1459. void * next_page_start = (uint8_t *) addr + first;
  1460. // unmap the range
  1461. if (munmap(next_page_start, len)) {
  1462. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1463. }
  1464. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1465. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1466. for (const auto & frag : mapped_fragments) {
  1467. if (frag.first < first && frag.second > last) {
  1468. // the range is in the middle of the fragment, split it
  1469. new_mapped_fragments.emplace_back(frag.first, first);
  1470. new_mapped_fragments.emplace_back(last, frag.second);
  1471. } else if (frag.first < first && frag.second > first) {
  1472. // the range starts in the middle of the fragment
  1473. new_mapped_fragments.emplace_back(frag.first, first);
  1474. } else if (frag.first < last && frag.second > last) {
  1475. // the range ends in the middle of the fragment
  1476. new_mapped_fragments.emplace_back(last, frag.second);
  1477. } else if (frag.first >= first && frag.second <= last) {
  1478. // the range covers the entire fragment
  1479. } else {
  1480. // the range is outside the fragment
  1481. new_mapped_fragments.push_back(frag);
  1482. }
  1483. }
  1484. mapped_fragments = std::move(new_mapped_fragments);
  1485. }
  1486. ~llama_mmap() {
  1487. for (const auto & frag : mapped_fragments) {
  1488. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1489. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1490. }
  1491. }
  1492. }
  1493. #elif defined(_WIN32)
  1494. static constexpr bool SUPPORTED = true;
  1495. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1496. GGML_UNUSED(numa);
  1497. size = file->size;
  1498. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1499. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1500. if (hMapping == NULL) {
  1501. DWORD error = GetLastError();
  1502. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1503. }
  1504. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1505. DWORD error = GetLastError();
  1506. CloseHandle(hMapping);
  1507. if (addr == NULL) {
  1508. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1509. }
  1510. if (prefetch > 0) {
  1511. #if _WIN32_WINNT >= 0x602
  1512. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1513. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1514. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1515. // may fail on pre-Windows 8 systems
  1516. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1517. if (pPrefetchVirtualMemory) {
  1518. // advise the kernel to preload the mapped memory
  1519. WIN32_MEMORY_RANGE_ENTRY range;
  1520. range.VirtualAddress = addr;
  1521. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1522. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1523. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1524. llama_format_win_err(GetLastError()).c_str());
  1525. }
  1526. }
  1527. #else
  1528. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1529. #endif
  1530. }
  1531. }
  1532. void unmap_fragment(size_t first, size_t last) {
  1533. // not supported
  1534. GGML_UNUSED(first);
  1535. GGML_UNUSED(last);
  1536. }
  1537. ~llama_mmap() {
  1538. if (!UnmapViewOfFile(addr)) {
  1539. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1540. llama_format_win_err(GetLastError()).c_str());
  1541. }
  1542. }
  1543. #else
  1544. static constexpr bool SUPPORTED = false;
  1545. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1546. GGML_UNUSED(file);
  1547. GGML_UNUSED(prefetch);
  1548. GGML_UNUSED(numa);
  1549. throw std::runtime_error("mmap not supported");
  1550. }
  1551. void unmap_fragment(size_t first, size_t last) {
  1552. GGML_UNUSED(first);
  1553. GGML_UNUSED(last);
  1554. throw std::runtime_error("mmap not supported");
  1555. }
  1556. #endif
  1557. };
  1558. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1559. // Represents some region of memory being locked using mlock or VirtualLock;
  1560. // will automatically unlock on destruction.
  1561. struct llama_mlock {
  1562. void * addr = NULL;
  1563. size_t size = 0;
  1564. bool failed_already = false;
  1565. llama_mlock() {}
  1566. llama_mlock(const llama_mlock &) = delete;
  1567. ~llama_mlock() {
  1568. if (size) {
  1569. raw_unlock(addr, size);
  1570. }
  1571. }
  1572. void init(void * ptr) {
  1573. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1574. addr = ptr;
  1575. }
  1576. void grow_to(size_t target_size) {
  1577. GGML_ASSERT(addr);
  1578. if (failed_already) {
  1579. return;
  1580. }
  1581. size_t granularity = lock_granularity();
  1582. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1583. if (target_size > size) {
  1584. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1585. size = target_size;
  1586. } else {
  1587. failed_already = true;
  1588. }
  1589. }
  1590. }
  1591. #ifdef _POSIX_MEMLOCK_RANGE
  1592. static constexpr bool SUPPORTED = true;
  1593. static size_t lock_granularity() {
  1594. return (size_t) sysconf(_SC_PAGESIZE);
  1595. }
  1596. #ifdef __APPLE__
  1597. #define MLOCK_SUGGESTION \
  1598. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1599. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1600. #else
  1601. #define MLOCK_SUGGESTION \
  1602. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1603. #endif
  1604. bool raw_lock(const void * addr, size_t size) const {
  1605. if (!mlock(addr, size)) {
  1606. return true;
  1607. }
  1608. char* errmsg = std::strerror(errno);
  1609. bool suggest = (errno == ENOMEM);
  1610. // Check if the resource limit is fine after all
  1611. struct rlimit lock_limit;
  1612. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1613. suggest = false;
  1614. }
  1615. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1616. suggest = false;
  1617. }
  1618. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1619. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1620. return false;
  1621. }
  1622. #undef MLOCK_SUGGESTION
  1623. static void raw_unlock(void * addr, size_t size) {
  1624. if (munlock(addr, size)) {
  1625. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1626. }
  1627. }
  1628. #elif defined(_WIN32)
  1629. static constexpr bool SUPPORTED = true;
  1630. static size_t lock_granularity() {
  1631. SYSTEM_INFO si;
  1632. GetSystemInfo(&si);
  1633. return (size_t) si.dwPageSize;
  1634. }
  1635. bool raw_lock(void * ptr, size_t len) const {
  1636. for (int tries = 1; ; tries++) {
  1637. if (VirtualLock(ptr, len)) {
  1638. return true;
  1639. }
  1640. if (tries == 2) {
  1641. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1642. len, size, llama_format_win_err(GetLastError()).c_str());
  1643. return false;
  1644. }
  1645. // It failed but this was only the first try; increase the working
  1646. // set size and try again.
  1647. SIZE_T min_ws_size, max_ws_size;
  1648. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1649. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1650. llama_format_win_err(GetLastError()).c_str());
  1651. return false;
  1652. }
  1653. // Per MSDN: "The maximum number of pages that a process can lock
  1654. // is equal to the number of pages in its minimum working set minus
  1655. // a small overhead."
  1656. // Hopefully a megabyte is enough overhead:
  1657. size_t increment = len + 1048576;
  1658. // The minimum must be <= the maximum, so we need to increase both:
  1659. min_ws_size += increment;
  1660. max_ws_size += increment;
  1661. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1662. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1663. llama_format_win_err(GetLastError()).c_str());
  1664. return false;
  1665. }
  1666. }
  1667. }
  1668. static void raw_unlock(void * ptr, size_t len) {
  1669. if (!VirtualUnlock(ptr, len)) {
  1670. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1671. llama_format_win_err(GetLastError()).c_str());
  1672. }
  1673. }
  1674. #else
  1675. static constexpr bool SUPPORTED = false;
  1676. static size_t lock_granularity() {
  1677. return (size_t) 65536;
  1678. }
  1679. bool raw_lock(const void * addr, size_t len) const {
  1680. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1681. return false;
  1682. }
  1683. static void raw_unlock(const void * addr, size_t len) {}
  1684. #endif
  1685. };
  1686. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1687. // NOTE: avoid ever using this except for building the token_to_piece caches
  1688. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1689. std::vector<char> result(8, 0);
  1690. const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1691. if (n_tokens < 0) {
  1692. result.resize(-n_tokens);
  1693. int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1694. GGML_ASSERT(check == -n_tokens);
  1695. }
  1696. else {
  1697. result.resize(n_tokens);
  1698. }
  1699. return std::string(result.data(), result.size());
  1700. }
  1701. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1702. ggml_backend_buffer_type_t buft = nullptr;
  1703. #if defined(GGML_USE_CUDA)
  1704. // host buffers should only be used when data is expected to be copied to/from the GPU
  1705. if (host_buffer) {
  1706. buft = ggml_backend_cuda_host_buffer_type();
  1707. }
  1708. #elif defined(GGML_USE_SYCL)
  1709. if (host_buffer) {
  1710. buft = ggml_backend_sycl_host_buffer_type();
  1711. }
  1712. #elif defined(GGML_USE_CPU_HBM)
  1713. buft = ggml_backend_cpu_hbm_buffer_type();
  1714. #elif defined(GGML_USE_VULKAN)
  1715. if (host_buffer) {
  1716. buft = ggml_backend_vk_host_buffer_type();
  1717. }
  1718. #endif
  1719. if (buft == nullptr) {
  1720. buft = ggml_backend_cpu_buffer_type();
  1721. }
  1722. return buft;
  1723. GGML_UNUSED(host_buffer);
  1724. }
  1725. //
  1726. // globals
  1727. //
  1728. struct llama_state {
  1729. llama_state() {
  1730. #ifdef GGML_USE_METAL
  1731. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1732. #elif defined(GGML_USE_CUDA)
  1733. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1734. #endif
  1735. }
  1736. // We save the log callback globally
  1737. ggml_log_callback log_callback = llama_log_callback_default;
  1738. void * log_callback_user_data = nullptr;
  1739. };
  1740. static llama_state g_state;
  1741. // available llama models
  1742. enum e_model {
  1743. MODEL_UNKNOWN,
  1744. MODEL_14M,
  1745. MODEL_17M,
  1746. MODEL_22M,
  1747. MODEL_33M,
  1748. MODEL_70M,
  1749. MODEL_109M,
  1750. MODEL_137M,
  1751. MODEL_160M,
  1752. MODEL_335M,
  1753. MODEL_410M,
  1754. MODEL_0_5B,
  1755. MODEL_1B,
  1756. MODEL_1_4B,
  1757. MODEL_2B,
  1758. MODEL_2_8B,
  1759. MODEL_3B,
  1760. MODEL_4B,
  1761. MODEL_6_9B,
  1762. MODEL_7B,
  1763. MODEL_8B,
  1764. MODEL_12B,
  1765. MODEL_13B,
  1766. MODEL_14B,
  1767. MODEL_15B,
  1768. MODEL_16B,
  1769. MODEL_20B,
  1770. MODEL_30B,
  1771. MODEL_34B,
  1772. MODEL_35B,
  1773. MODEL_40B,
  1774. MODEL_65B,
  1775. MODEL_70B,
  1776. MODEL_236B,
  1777. MODEL_314B,
  1778. MODEL_SMALL,
  1779. MODEL_MEDIUM,
  1780. MODEL_LARGE,
  1781. MODEL_XL,
  1782. MODEL_A2_7B,
  1783. MODEL_8x7B,
  1784. MODEL_8x22B,
  1785. MODEL_16x12B,
  1786. MODEL_10B_128x3_66B,
  1787. };
  1788. static const size_t kiB = 1024;
  1789. static const size_t MiB = 1024*kiB;
  1790. static const size_t GiB = 1024*MiB;
  1791. struct llama_hparams {
  1792. bool vocab_only;
  1793. bool rope_finetuned;
  1794. bool use_par_res;
  1795. uint32_t n_vocab;
  1796. uint32_t n_ctx_train; // context size the model was trained on
  1797. uint32_t n_embd;
  1798. uint32_t n_head;
  1799. uint32_t n_head_kv;
  1800. uint32_t n_layer;
  1801. uint32_t n_rot;
  1802. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1803. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1804. uint32_t n_ff;
  1805. uint32_t n_expert = 0;
  1806. uint32_t n_expert_used = 0;
  1807. uint32_t n_vocab_type = 0; // for BERT-style token types
  1808. uint32_t n_layer_dense_lead = 0;
  1809. uint32_t n_lora_q = 0;
  1810. uint32_t n_lora_kv = 0;
  1811. uint32_t n_ff_exp = 0;
  1812. uint32_t n_ff_shexp = 0;
  1813. uint32_t n_expert_shared = 0;
  1814. float expert_weights_scale = 0.0;
  1815. float f_norm_eps;
  1816. float f_norm_rms_eps;
  1817. float rope_attn_factor = 1.0f;
  1818. float rope_freq_base_train;
  1819. float rope_freq_scale_train;
  1820. uint32_t n_ctx_orig_yarn;
  1821. float rope_yarn_log_mul;
  1822. // for State Space Models
  1823. uint32_t ssm_d_conv = 0;
  1824. uint32_t ssm_d_inner = 0;
  1825. uint32_t ssm_d_state = 0;
  1826. uint32_t ssm_dt_rank = 0;
  1827. float f_clamp_kqv = 0.0f;
  1828. float f_max_alibi_bias = 0.0f;
  1829. float f_logit_scale = 0.0f;
  1830. bool causal_attn = true;
  1831. bool use_alibi = false;
  1832. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1833. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1834. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1835. bool operator!=(const llama_hparams & other) const {
  1836. if (this->vocab_only != other.vocab_only) return true;
  1837. if (this->n_vocab != other.n_vocab) return true;
  1838. if (this->n_ctx_train != other.n_ctx_train) return true;
  1839. if (this->n_embd != other.n_embd) return true;
  1840. if (this->n_head != other.n_head) return true;
  1841. if (this->n_head_kv != other.n_head_kv) return true;
  1842. if (this->n_layer != other.n_layer) return true;
  1843. if (this->n_rot != other.n_rot) return true;
  1844. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1845. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1846. if (this->n_ff != other.n_ff) return true;
  1847. if (this->n_expert != other.n_expert) return true;
  1848. if (this->n_expert_used != other.n_expert_used) return true;
  1849. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1850. if (this->n_lora_q != other.n_lora_q) return true;
  1851. if (this->n_lora_kv != other.n_lora_kv) return true;
  1852. if (this->n_ff_exp != other.n_ff_exp) return true;
  1853. if (this->n_ff_shexp != other.n_ff_shexp) return true;
  1854. if (this->n_expert_shared != other.n_expert_shared) return true;
  1855. if (this->rope_finetuned != other.rope_finetuned) return true;
  1856. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  1857. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1858. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1859. if (this->ssm_d_state != other.ssm_d_state) return true;
  1860. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1861. const float EPSILON = 1e-9f;
  1862. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1863. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1864. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1865. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1866. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1867. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1868. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1869. return false;
  1870. }
  1871. uint32_t n_gqa() const {
  1872. if (n_head_kv == 0) {
  1873. return 0;
  1874. }
  1875. return n_head/n_head_kv;
  1876. }
  1877. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1878. return n_embd_head_k * n_head_kv;
  1879. }
  1880. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1881. return n_embd_head_v * n_head_kv;
  1882. }
  1883. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1884. // corresponds to Mamba's conv_states size
  1885. // TODO: maybe support other convolution strides than 1
  1886. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1887. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1888. }
  1889. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1890. // corresponds to Mamba's ssm_states size
  1891. return ssm_d_state * ssm_d_inner;
  1892. }
  1893. };
  1894. struct llama_cparams {
  1895. uint32_t n_ctx; // context size used during inference
  1896. uint32_t n_batch;
  1897. uint32_t n_ubatch;
  1898. uint32_t n_seq_max;
  1899. uint32_t n_threads; // number of threads to use for generation
  1900. uint32_t n_threads_batch; // number of threads to use for batch processing
  1901. float rope_freq_base;
  1902. float rope_freq_scale;
  1903. uint32_t n_ctx_orig_yarn;
  1904. // These hyperparameters are not exposed in GGUF, because all
  1905. // existing YaRN models use the same values for them.
  1906. float yarn_ext_factor;
  1907. float yarn_attn_factor;
  1908. float yarn_beta_fast;
  1909. float yarn_beta_slow;
  1910. float defrag_thold;
  1911. bool embeddings;
  1912. bool causal_attn;
  1913. bool offload_kqv;
  1914. bool flash_attn;
  1915. enum llama_pooling_type pooling_type;
  1916. ggml_backend_sched_eval_callback cb_eval;
  1917. void * cb_eval_user_data;
  1918. };
  1919. struct llama_layer {
  1920. // normalization
  1921. struct ggml_tensor * attn_norm;
  1922. struct ggml_tensor * attn_norm_b;
  1923. struct ggml_tensor * attn_norm_2;
  1924. struct ggml_tensor * attn_norm_2_b;
  1925. struct ggml_tensor * attn_q_norm;
  1926. struct ggml_tensor * attn_q_norm_b;
  1927. struct ggml_tensor * attn_k_norm;
  1928. struct ggml_tensor * attn_k_norm_b;
  1929. struct ggml_tensor * attn_out_norm;
  1930. struct ggml_tensor * attn_out_norm_b;
  1931. struct ggml_tensor * attn_q_a_norm;
  1932. struct ggml_tensor * attn_kv_a_norm;
  1933. // attention
  1934. struct ggml_tensor * wq;
  1935. struct ggml_tensor * wk;
  1936. struct ggml_tensor * wv;
  1937. struct ggml_tensor * wo;
  1938. struct ggml_tensor * wqkv;
  1939. struct ggml_tensor * wq_a;
  1940. struct ggml_tensor * wq_b;
  1941. struct ggml_tensor * wkv_a_mqa;
  1942. struct ggml_tensor * wkv_b;
  1943. // attention bias
  1944. struct ggml_tensor * bq;
  1945. struct ggml_tensor * bk;
  1946. struct ggml_tensor * bv;
  1947. struct ggml_tensor * bo;
  1948. struct ggml_tensor * bqkv;
  1949. // normalization
  1950. struct ggml_tensor * ffn_norm;
  1951. struct ggml_tensor * ffn_norm_b;
  1952. struct ggml_tensor * layer_out_norm;
  1953. struct ggml_tensor * layer_out_norm_b;
  1954. struct ggml_tensor * ffn_norm_exps;
  1955. // ff
  1956. struct ggml_tensor * ffn_gate; // w1
  1957. struct ggml_tensor * ffn_down; // w2
  1958. struct ggml_tensor * ffn_up; // w3
  1959. // ff MoE
  1960. struct ggml_tensor * ffn_gate_inp;
  1961. struct ggml_tensor * ffn_gate_exps;
  1962. struct ggml_tensor * ffn_down_exps;
  1963. struct ggml_tensor * ffn_up_exps ;
  1964. // ff shared expert (shexp)
  1965. struct ggml_tensor * ffn_gate_inp_shexp;
  1966. struct ggml_tensor * ffn_gate_shexp;
  1967. struct ggml_tensor * ffn_down_shexp;
  1968. struct ggml_tensor * ffn_up_shexp;
  1969. // ff bias
  1970. struct ggml_tensor * ffn_gate_b = nullptr;
  1971. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1972. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1973. struct ggml_tensor * ffn_act;
  1974. // mamba proj
  1975. struct ggml_tensor * ssm_in;
  1976. struct ggml_tensor * ssm_x;
  1977. struct ggml_tensor * ssm_dt;
  1978. struct ggml_tensor * ssm_out;
  1979. // mamba
  1980. struct ggml_tensor * ssm_conv1d;
  1981. struct ggml_tensor * ssm_a;
  1982. struct ggml_tensor * ssm_d;
  1983. // mamba bias
  1984. struct ggml_tensor * ssm_conv1d_b;
  1985. struct ggml_tensor * ssm_dt_b;
  1986. // long rope factors
  1987. struct ggml_tensor * rope_long = nullptr;
  1988. struct ggml_tensor * rope_short = nullptr;
  1989. };
  1990. struct llama_kv_cell {
  1991. llama_pos pos = -1;
  1992. llama_pos delta = 0;
  1993. int32_t src = 0; // used by recurrent state models to copy states
  1994. std::set<llama_seq_id> seq_id;
  1995. bool has_seq_id(const llama_seq_id & id) const {
  1996. return seq_id.find(id) != seq_id.end();
  1997. }
  1998. bool is_empty() const {
  1999. return seq_id.empty();
  2000. }
  2001. bool is_same_seq(const llama_kv_cell & other) const {
  2002. return seq_id == other.seq_id;
  2003. }
  2004. };
  2005. // ring-buffer of cached KV data
  2006. struct llama_kv_cache {
  2007. bool has_shift = false;
  2008. bool do_defrag = false;
  2009. bool do_copy = false;
  2010. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  2011. bool v_trans = true; // the value tensor is transposed
  2012. // Note: The value of head isn't only used to optimize searching
  2013. // for a free KV slot. llama_decode_internal also uses it, so it
  2014. // cannot be freely changed after a slot has been allocated.
  2015. uint32_t head = 0;
  2016. uint32_t size = 0;
  2017. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  2018. // computed before each graph build
  2019. uint32_t n = 0;
  2020. ggml_type type_k = GGML_TYPE_F16;
  2021. ggml_type type_v = GGML_TYPE_F16;
  2022. std::vector<llama_kv_cell> cells;
  2023. std::vector<struct ggml_tensor *> k_l; // per layer
  2024. std::vector<struct ggml_tensor *> v_l;
  2025. std::vector<struct ggml_context *> ctxs;
  2026. std::vector<ggml_backend_buffer_t> bufs;
  2027. size_t total_size() const {
  2028. size_t size = 0;
  2029. for (ggml_backend_buffer_t buf : bufs) {
  2030. size += ggml_backend_buffer_get_size(buf);
  2031. }
  2032. return size;
  2033. }
  2034. ~llama_kv_cache() {
  2035. for (struct ggml_context * ctx : ctxs) {
  2036. ggml_free(ctx);
  2037. }
  2038. for (ggml_backend_buffer_t buf : bufs) {
  2039. ggml_backend_buffer_free(buf);
  2040. }
  2041. }
  2042. };
  2043. struct llama_control_vector {
  2044. std::vector<struct ggml_tensor *> tensors; // per layer
  2045. std::vector<struct ggml_context *> ctxs;
  2046. std::vector<ggml_backend_buffer_t> bufs;
  2047. int32_t layer_start = -1;
  2048. int32_t layer_end = -1;
  2049. ggml_tensor * tensor_for(int il) const {
  2050. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  2051. return nullptr;
  2052. }
  2053. return tensors[il];
  2054. }
  2055. ~llama_control_vector() {
  2056. for (struct ggml_context * ctx : ctxs) {
  2057. ggml_free(ctx);
  2058. }
  2059. for (ggml_backend_buffer_t buf : bufs) {
  2060. ggml_backend_buffer_free(buf);
  2061. }
  2062. }
  2063. };
  2064. struct llama_vocab {
  2065. using id = int32_t;
  2066. using token = std::string;
  2067. using tattr = llama_token_attr;
  2068. struct token_data {
  2069. token text;
  2070. float score;
  2071. tattr attr;
  2072. };
  2073. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  2074. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  2075. std::unordered_map<token, id> token_to_id;
  2076. std::vector<token_data> id_to_token;
  2077. std::vector<id> cache_special_tokens;
  2078. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  2079. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  2080. // default LLaMA special tokens
  2081. id special_bos_id = 1;
  2082. id special_eos_id = 2;
  2083. id special_unk_id = 0;
  2084. id special_sep_id = -1;
  2085. id special_pad_id = -1;
  2086. id special_cls_id = -1;
  2087. id special_mask_id = -1;
  2088. id linefeed_id = 13;
  2089. id special_prefix_id = -1;
  2090. id special_suffix_id = -1;
  2091. id special_middle_id = -1;
  2092. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  2093. // tokenizer flags
  2094. bool tokenizer_add_space_prefix = true;
  2095. bool tokenizer_add_bos = false;
  2096. bool tokenizer_add_eos = false;
  2097. bool tokenizer_ignore_merges = false;
  2098. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2099. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2100. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2101. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2102. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2103. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  2104. if (it == bpe_ranks.end()) {
  2105. return -1;
  2106. }
  2107. return it->second;
  2108. }
  2109. };
  2110. struct llama_model {
  2111. e_model type = MODEL_UNKNOWN;
  2112. llm_arch arch = LLM_ARCH_UNKNOWN;
  2113. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  2114. std::string name = "n/a";
  2115. llama_hparams hparams = {};
  2116. llama_vocab vocab;
  2117. struct ggml_tensor * tok_embd;
  2118. struct ggml_tensor * type_embd;
  2119. struct ggml_tensor * pos_embd;
  2120. struct ggml_tensor * tok_norm;
  2121. struct ggml_tensor * tok_norm_b;
  2122. struct ggml_tensor * output_norm;
  2123. struct ggml_tensor * output_norm_b;
  2124. struct ggml_tensor * output;
  2125. struct ggml_tensor * output_b;
  2126. std::vector<llama_layer> layers;
  2127. llama_split_mode split_mode;
  2128. int main_gpu;
  2129. int n_gpu_layers;
  2130. std::vector<std::string> rpc_servers;
  2131. // gguf metadata
  2132. std::unordered_map<std::string, std::string> gguf_kv;
  2133. // layer -> buffer type mapping
  2134. struct layer_buft {
  2135. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2136. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2137. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2138. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2139. ggml_backend_buffer_type_t buft; // everything else
  2140. };
  2141. layer_buft buft_input;
  2142. layer_buft buft_output;
  2143. std::vector<layer_buft> buft_layer;
  2144. // contexts where the model tensors metadata is stored
  2145. std::vector<struct ggml_context *> ctxs;
  2146. // the model memory buffers for the tensor data
  2147. std::vector<ggml_backend_buffer_t> bufs;
  2148. // model memory mapped files
  2149. llama_mmaps mappings;
  2150. // objects representing data potentially being locked in memory
  2151. llama_mlocks mlock_bufs;
  2152. llama_mlocks mlock_mmaps;
  2153. // for quantize-stats only
  2154. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2155. int64_t t_load_us = 0;
  2156. int64_t t_start_us = 0;
  2157. ~llama_model() {
  2158. for (struct ggml_context * ctx : ctxs) {
  2159. ggml_free(ctx);
  2160. }
  2161. for (ggml_backend_buffer_t buf : bufs) {
  2162. #ifdef GGML_USE_CUDA
  2163. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2164. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2165. }
  2166. #endif
  2167. ggml_backend_buffer_free(buf);
  2168. }
  2169. }
  2170. };
  2171. struct llama_context {
  2172. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2173. ~llama_context() {
  2174. ggml_backend_sched_free(sched);
  2175. for (ggml_backend_t backend : backends) {
  2176. ggml_backend_free(backend);
  2177. }
  2178. ggml_backend_buffer_free(buf_output);
  2179. }
  2180. llama_cparams cparams;
  2181. std::vector<ggml_backend_t> backends;
  2182. #ifdef GGML_USE_METAL
  2183. ggml_backend_t backend_metal = nullptr;
  2184. #endif
  2185. #ifdef GGML_USE_BLAS
  2186. ggml_backend_t backend_blas = nullptr;
  2187. #endif
  2188. ggml_backend_t backend_cpu = nullptr;
  2189. const llama_model & model;
  2190. // key + value cache for the self attention
  2191. struct llama_kv_cache kv_self;
  2192. std::mt19937 rng;
  2193. bool has_evaluated_once = false;
  2194. int64_t t_start_us;
  2195. int64_t t_load_us;
  2196. int64_t t_sample_us = 0;
  2197. int64_t t_p_eval_us = 0;
  2198. int64_t t_eval_us = 0;
  2199. int64_t t_compute_start_us = 0;
  2200. int64_t n_queued_tokens = 0;
  2201. int32_t n_sample = 0; // number of tokens sampled
  2202. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2203. int32_t n_eval = 0; // number of eval calls
  2204. // host buffer for the model output (logits and embeddings)
  2205. ggml_backend_buffer_t buf_output = nullptr;
  2206. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2207. size_t logits_size = 0; // capacity (of floats) for logits
  2208. float * logits = nullptr;
  2209. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2210. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2211. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2212. bool logits_all = false;
  2213. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2214. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2215. size_t embd_size = 0; // capacity (of floats) for embeddings
  2216. float * embd = nullptr;
  2217. // sequence embeddings output (map of [n_embd] vectors)
  2218. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2219. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2220. // memory buffers used to evaluate the model
  2221. std::vector<uint8_t> buf_compute_meta;
  2222. ggml_backend_sched_t sched = nullptr;
  2223. ggml_abort_callback abort_callback = nullptr;
  2224. void * abort_callback_data = nullptr;
  2225. // input tensors
  2226. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2227. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2228. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2229. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2230. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2231. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2232. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2233. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2234. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2235. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2236. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2237. // control vectors
  2238. struct llama_control_vector cvec;
  2239. };
  2240. static size_t llama_get_device_count(const llama_model & model) {
  2241. size_t count = 1;
  2242. #if defined(GGML_USE_CUDA)
  2243. count = ggml_backend_cuda_get_device_count();
  2244. #elif defined(GGML_USE_SYCL)
  2245. count = ggml_backend_sycl_get_device_count();
  2246. #elif defined(GGML_USE_VULKAN)
  2247. count = ggml_backend_vk_get_device_count();
  2248. #endif
  2249. #if defined(GGML_USE_RPC)
  2250. count += model.rpc_servers.size();
  2251. #endif
  2252. return count;
  2253. GGML_UNUSED(model);
  2254. }
  2255. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2256. ggml_backend_buffer_type_t buft = nullptr;
  2257. #if defined(GGML_USE_RPC)
  2258. int dev_count = (int)llama_get_device_count(model);
  2259. int rpc_count = (int)model.rpc_servers.size();
  2260. if (gpu >= dev_count - rpc_count) {
  2261. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2262. return ggml_backend_rpc_buffer_type(endpoint);
  2263. }
  2264. #endif
  2265. #if defined(GGML_USE_METAL)
  2266. buft = ggml_backend_metal_buffer_type();
  2267. #elif defined(GGML_USE_CUDA)
  2268. buft = ggml_backend_cuda_buffer_type(gpu);
  2269. #elif defined(GGML_USE_VULKAN)
  2270. buft = ggml_backend_vk_buffer_type(gpu);
  2271. #elif defined(GGML_USE_SYCL)
  2272. buft = ggml_backend_sycl_buffer_type(gpu);
  2273. #elif defined(GGML_USE_KOMPUTE)
  2274. buft = ggml_backend_kompute_buffer_type(gpu);
  2275. if (buft == nullptr) {
  2276. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2277. }
  2278. #endif
  2279. if (buft == nullptr) {
  2280. buft = llama_default_buffer_type_cpu(true);
  2281. }
  2282. return buft;
  2283. GGML_UNUSED(model);
  2284. GGML_UNUSED(gpu);
  2285. }
  2286. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2287. ggml_backend_buffer_type_t buft = nullptr;
  2288. #ifdef GGML_USE_CUDA
  2289. if (ggml_backend_cuda_get_device_count() > 1) {
  2290. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2291. }
  2292. #endif
  2293. #ifdef GGML_USE_SYCL
  2294. if (ggml_backend_sycl_get_device_count() > 1) {
  2295. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2296. }
  2297. #endif
  2298. if (buft == nullptr) {
  2299. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2300. }
  2301. return buft;
  2302. GGML_UNUSED(tensor_split);
  2303. }
  2304. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2305. #if defined(GGML_USE_RPC)
  2306. int dev_count = (int)llama_get_device_count(model);
  2307. int rpc_count = (int)model.rpc_servers.size();
  2308. if (device >= dev_count - rpc_count) {
  2309. size_t total;
  2310. size_t free;
  2311. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2312. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2313. return free;
  2314. }
  2315. #endif
  2316. #if defined(GGML_USE_CUDA)
  2317. size_t total;
  2318. size_t free;
  2319. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2320. return free;
  2321. #elif defined(GGML_USE_SYCL)
  2322. size_t total;
  2323. size_t free;
  2324. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2325. return free;
  2326. #elif defined(GGML_USE_VULKAN)
  2327. size_t total;
  2328. size_t free;
  2329. ggml_backend_vk_get_device_memory(device, &free, &total);
  2330. return free;
  2331. #else
  2332. return 1;
  2333. #endif
  2334. GGML_UNUSED(model);
  2335. GGML_UNUSED(device);
  2336. }
  2337. //
  2338. // kv cache helpers
  2339. //
  2340. static bool llama_kv_cache_init(
  2341. struct llama_kv_cache & cache,
  2342. const llama_context * ctx,
  2343. ggml_type type_k,
  2344. ggml_type type_v,
  2345. uint32_t kv_size,
  2346. bool offload) {
  2347. const llama_model & model = ctx->model;
  2348. const llama_cparams & cparams = ctx->cparams;
  2349. const struct llama_hparams & hparams = model.hparams;
  2350. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2351. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2352. const int64_t n_layer = hparams.n_layer;
  2353. cache.has_shift = false;
  2354. // TODO: find a nicer way to add other recurrent model architectures
  2355. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2356. cache.v_trans = !cparams.flash_attn;
  2357. // TODO: support mixed recurrent Transformer architectures
  2358. // NOTE: (!a || b) is a logical implication (a -> b)
  2359. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2360. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2361. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2362. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2363. cache.head = 0;
  2364. cache.size = kv_size;
  2365. cache.used = 0;
  2366. cache.type_k = type_k;
  2367. cache.type_v = type_v;
  2368. cache.cells.clear();
  2369. cache.cells.resize(kv_size);
  2370. if (cache.recurrent) {
  2371. // init state copy sources
  2372. for (uint32_t i = 0; i < cache.size; ++i) {
  2373. cache.cells[i].src = i;
  2374. }
  2375. }
  2376. // count used buffer types
  2377. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2378. if (offload) {
  2379. for (int64_t i = 0; i < n_layer; ++i) {
  2380. buft_layer_count[model.buft_layer[i].buft]++;
  2381. }
  2382. } else {
  2383. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2384. }
  2385. // create a context for each buffer type
  2386. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2387. for (auto & it : buft_layer_count) {
  2388. int n_layers = it.second;
  2389. struct ggml_init_params params = {
  2390. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2391. /*.mem_buffer =*/ NULL,
  2392. /*.no_alloc =*/ true,
  2393. };
  2394. ggml_context * ctx = ggml_init(params);
  2395. if (!ctx) {
  2396. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2397. return false;
  2398. }
  2399. ctx_map[it.first] = ctx;
  2400. cache.ctxs.push_back(ctx);
  2401. }
  2402. cache.k_l.reserve(n_layer);
  2403. cache.v_l.reserve(n_layer);
  2404. for (int i = 0; i < (int) n_layer; i++) {
  2405. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2406. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2407. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2408. ggml_format_name(k, "cache_k_l%d", i);
  2409. ggml_format_name(v, "cache_v_l%d", i);
  2410. cache.k_l.push_back(k);
  2411. cache.v_l.push_back(v);
  2412. }
  2413. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2414. for (auto it : ctx_map) {
  2415. ggml_backend_buffer_type_t buft = it.first;
  2416. ggml_context * ctx = it.second;
  2417. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2418. if (!buf) {
  2419. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2420. return false;
  2421. }
  2422. ggml_backend_buffer_clear(buf, 0);
  2423. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2424. cache.bufs.push_back(buf);
  2425. }
  2426. return true;
  2427. }
  2428. // find an empty slot of size "n_tokens" in the cache
  2429. // updates the cache head
  2430. // Note: On success, it's important that cache.head points
  2431. // to the first cell of the slot.
  2432. static bool llama_kv_cache_find_slot(
  2433. struct llama_kv_cache & cache,
  2434. const struct llama_batch & batch) {
  2435. const uint32_t n_tokens = batch.n_tokens;
  2436. if (cache.recurrent) {
  2437. // For recurrent state architectures (like Mamba),
  2438. // each KV cache cell can store the state for a whole sequence.
  2439. llama_seq_id min = cache.size - 1;
  2440. llama_seq_id max = 0;
  2441. for (uint32_t i = 0; i < n_tokens; ++i) {
  2442. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2443. llama_seq_id seq_id = batch.seq_id[i][j];
  2444. // make sure it's a valid seq_id
  2445. if ((uint32_t) seq_id < cache.size) {
  2446. if (seq_id > max) {
  2447. max = seq_id;
  2448. }
  2449. if (seq_id < min) {
  2450. min = seq_id;
  2451. }
  2452. // Assuming the tokens are in-order
  2453. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2454. // What should happen when the pos backtracks or skips a value?
  2455. // Clearing the state mid-batch would require special-casing which isn't done.
  2456. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2457. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2458. }
  2459. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2460. cache.used += 1;
  2461. }
  2462. cache.cells[seq_id].pos = batch.pos[i];
  2463. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2464. } else {
  2465. // too big seq_id
  2466. // TODO: would it be possible to resize the KV cache size instead?
  2467. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2468. return false;
  2469. }
  2470. }
  2471. }
  2472. // allow getting the range of used cells, from head to head + n
  2473. cache.head = min;
  2474. cache.n = max - min + 1;
  2475. // sanity check
  2476. return max >= min;
  2477. }
  2478. // otherwise, one cell per token.
  2479. if (n_tokens > cache.size) {
  2480. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2481. return false;
  2482. }
  2483. uint32_t n_tested = 0;
  2484. while (true) {
  2485. if (cache.head + n_tokens > cache.size) {
  2486. n_tested += cache.size - cache.head;
  2487. cache.head = 0;
  2488. continue;
  2489. }
  2490. bool found = true;
  2491. for (uint32_t i = 0; i < n_tokens; i++) {
  2492. if (cache.cells[cache.head + i].pos >= 0) {
  2493. found = false;
  2494. cache.head += i + 1;
  2495. n_tested += i + 1;
  2496. break;
  2497. }
  2498. }
  2499. if (found) {
  2500. break;
  2501. }
  2502. if (n_tested >= cache.size) {
  2503. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2504. return false;
  2505. }
  2506. }
  2507. for (uint32_t i = 0; i < n_tokens; i++) {
  2508. cache.cells[cache.head + i].pos = batch.pos[i];
  2509. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2510. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2511. }
  2512. }
  2513. cache.used += n_tokens;
  2514. return true;
  2515. }
  2516. // find how many cells are currently in use
  2517. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2518. for (uint32_t i = cache.size; i > 0; --i) {
  2519. const llama_kv_cell & cell = cache.cells[i - 1];
  2520. if (cell.pos >= 0 && !cell.is_empty()) {
  2521. return i;
  2522. }
  2523. }
  2524. return 0;
  2525. }
  2526. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2527. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2528. cache.cells[i].pos = -1;
  2529. cache.cells[i].seq_id.clear();
  2530. }
  2531. cache.head = 0;
  2532. cache.used = 0;
  2533. for (auto & buf : cache.bufs) {
  2534. ggml_backend_buffer_clear(buf, 0);
  2535. }
  2536. }
  2537. static bool llama_kv_cache_seq_rm(
  2538. struct llama_kv_cache & cache,
  2539. llama_seq_id seq_id,
  2540. llama_pos p0,
  2541. llama_pos p1) {
  2542. uint32_t new_head = cache.size;
  2543. if (p0 < 0) p0 = 0;
  2544. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2545. // models like Mamba can't have a state partially erased
  2546. if (cache.recurrent) {
  2547. if (seq_id >= (int64_t) cache.size) {
  2548. // could be fatal
  2549. return false;
  2550. }
  2551. if (0 <= seq_id) {
  2552. // partial intersection is invalid
  2553. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2554. return false;
  2555. }
  2556. } else {
  2557. // seq_id is negative, then the range should include everything or nothing
  2558. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2559. return false;
  2560. }
  2561. }
  2562. }
  2563. for (uint32_t i = 0; i < cache.size; ++i) {
  2564. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2565. if (seq_id < 0) {
  2566. cache.cells[i].seq_id.clear();
  2567. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2568. cache.cells[i].seq_id.erase(seq_id);
  2569. } else {
  2570. continue;
  2571. }
  2572. if (cache.cells[i].is_empty()) {
  2573. // keep count of the number of used cells
  2574. if (cache.cells[i].pos >= 0) cache.used--;
  2575. cache.cells[i].pos = -1;
  2576. if (new_head == cache.size) new_head = i;
  2577. }
  2578. }
  2579. }
  2580. // If we freed up a slot, set head to it so searching can start there.
  2581. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2582. return true;
  2583. }
  2584. static void llama_kv_cache_seq_cp(
  2585. struct llama_kv_cache & cache,
  2586. llama_seq_id seq_id_src,
  2587. llama_seq_id seq_id_dst,
  2588. llama_pos p0,
  2589. llama_pos p1) {
  2590. if (p0 < 0) p0 = 0;
  2591. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2592. if (cache.recurrent) {
  2593. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2594. seq_id_src = cache.cells[seq_id_src].src;
  2595. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2596. // intent to "copy from"
  2597. // supports copy chains thanks to taking the source of the source
  2598. cache.cells[seq_id_dst].src = seq_id_src;
  2599. // preserve the "keep or clear" status of the copied sequence
  2600. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2601. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2602. } else {
  2603. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2604. }
  2605. cache.do_copy = true;
  2606. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2607. }
  2608. return;
  2609. }
  2610. // otherwise, this is the KV cache of a Transformer-like model
  2611. cache.head = 0;
  2612. for (uint32_t i = 0; i < cache.size; ++i) {
  2613. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2614. cache.cells[i].seq_id.insert(seq_id_dst);
  2615. }
  2616. }
  2617. }
  2618. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2619. uint32_t new_head = cache.size;
  2620. for (uint32_t i = 0; i < cache.size; ++i) {
  2621. if (!cache.cells[i].has_seq_id(seq_id)) {
  2622. if (cache.cells[i].pos >= 0) cache.used--;
  2623. cache.cells[i].pos = -1;
  2624. cache.cells[i].seq_id.clear();
  2625. if (new_head == cache.size) new_head = i;
  2626. } else {
  2627. cache.cells[i].seq_id.clear();
  2628. cache.cells[i].seq_id.insert(seq_id);
  2629. }
  2630. }
  2631. // If we freed up a slot, set head to it so searching can start there.
  2632. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2633. }
  2634. static void llama_kv_cache_seq_add(
  2635. struct llama_kv_cache & cache,
  2636. llama_seq_id seq_id,
  2637. llama_pos p0,
  2638. llama_pos p1,
  2639. llama_pos delta) {
  2640. uint32_t new_head = cache.size;
  2641. if (p0 < 0) p0 = 0;
  2642. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2643. if (cache.recurrent) {
  2644. // for Mamba-like models, only the pos needs to be shifted
  2645. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2646. llama_kv_cell & cell = cache.cells[seq_id];
  2647. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2648. cell.pos += delta;
  2649. }
  2650. }
  2651. return;
  2652. }
  2653. for (uint32_t i = 0; i < cache.size; ++i) {
  2654. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2655. cache.has_shift = true;
  2656. cache.cells[i].pos += delta;
  2657. cache.cells[i].delta += delta;
  2658. if (cache.cells[i].pos < 0) {
  2659. if (!cache.cells[i].is_empty()) {
  2660. cache.used--;
  2661. }
  2662. cache.cells[i].pos = -1;
  2663. cache.cells[i].seq_id.clear();
  2664. if (new_head == cache.size) {
  2665. new_head = i;
  2666. }
  2667. }
  2668. }
  2669. }
  2670. // If we freed up a slot, set head to it so searching can start there.
  2671. // Otherwise we just start the next search from the beginning.
  2672. cache.head = new_head != cache.size ? new_head : 0;
  2673. }
  2674. static void llama_kv_cache_seq_div(
  2675. struct llama_kv_cache & cache,
  2676. llama_seq_id seq_id,
  2677. llama_pos p0,
  2678. llama_pos p1,
  2679. int d) {
  2680. if (p0 < 0) p0 = 0;
  2681. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2682. if (cache.recurrent) {
  2683. // for Mamba-like models, only the pos needs to be changed
  2684. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2685. llama_kv_cell & cell = cache.cells[seq_id];
  2686. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2687. cell.pos /= d;
  2688. }
  2689. }
  2690. return;
  2691. }
  2692. for (uint32_t i = 0; i < cache.size; ++i) {
  2693. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2694. cache.has_shift = true;
  2695. {
  2696. llama_pos p_old = cache.cells[i].pos;
  2697. cache.cells[i].pos /= d;
  2698. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2699. }
  2700. }
  2701. }
  2702. }
  2703. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2704. llama_pos result = 0;
  2705. for (uint32_t i = 0; i < cache.size; ++i) {
  2706. if (cache.cells[i].has_seq_id(seq_id)) {
  2707. result = std::max(result, cache.cells[i].pos);
  2708. }
  2709. }
  2710. return result;
  2711. }
  2712. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2713. cache.do_defrag = true;
  2714. }
  2715. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2716. // the FA kernels require padding to avoid extra runtime boundary checks
  2717. return cparams.flash_attn ? 256u : 32u;
  2718. }
  2719. //
  2720. // model loading and saving
  2721. //
  2722. enum llama_fver {
  2723. GGUF_FILE_VERSION_V1 = 1,
  2724. GGUF_FILE_VERSION_V2 = 2,
  2725. GGUF_FILE_VERSION_V3 = 3,
  2726. };
  2727. static const char * llama_file_version_name(llama_fver version) {
  2728. switch (version) {
  2729. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2730. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2731. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2732. }
  2733. return "unknown";
  2734. }
  2735. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2736. char buf[256];
  2737. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2738. for (size_t i = 1; i < ne.size(); i++) {
  2739. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2740. }
  2741. return buf;
  2742. }
  2743. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2744. char buf[256];
  2745. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2746. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2747. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2748. }
  2749. return buf;
  2750. }
  2751. namespace GGUFMeta {
  2752. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2753. struct GKV_Base_Type {
  2754. static constexpr gguf_type gt = gt_;
  2755. static T getter(const gguf_context * ctx, const int kid) {
  2756. return gfun(ctx, kid);
  2757. }
  2758. };
  2759. template<typename T> struct GKV_Base;
  2760. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2761. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2762. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2763. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2764. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2765. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2766. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2767. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2768. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2769. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2770. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2771. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2772. template<> struct GKV_Base<std::string> {
  2773. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2774. static std::string getter(const gguf_context * ctx, const int kid) {
  2775. return gguf_get_val_str(ctx, kid);
  2776. }
  2777. };
  2778. struct ArrayInfo {
  2779. const gguf_type gt;
  2780. const size_t length;
  2781. const void * data;
  2782. };
  2783. template<> struct GKV_Base<ArrayInfo> {
  2784. public:
  2785. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2786. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2787. return ArrayInfo {
  2788. gguf_get_arr_type(ctx, k),
  2789. size_t(gguf_get_arr_n(ctx, k)),
  2790. gguf_get_arr_data(ctx, k),
  2791. };
  2792. }
  2793. };
  2794. template<typename T>
  2795. class GKV : public GKV_Base<T> {
  2796. GKV() = delete;
  2797. public:
  2798. static T get_kv(const gguf_context * ctx, const int k) {
  2799. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2800. if (kt != GKV::gt) {
  2801. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2802. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2803. }
  2804. return GKV::getter(ctx, k);
  2805. }
  2806. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2807. switch (ty) {
  2808. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2809. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2810. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2811. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2812. }
  2813. return "unknown";
  2814. }
  2815. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2816. if (!ovrd) { return false; }
  2817. if (ovrd->tag == expected_type) {
  2818. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2819. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2820. switch (ovrd->tag) {
  2821. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2822. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2823. } break;
  2824. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2825. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2826. } break;
  2827. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2828. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2829. } break;
  2830. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2831. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2832. } break;
  2833. default:
  2834. // Shouldn't be possible to end up here, but just in case...
  2835. throw std::runtime_error(
  2836. format("Unsupported attempt to override %s type for metadata key %s\n",
  2837. override_type_to_str(ovrd->tag), ovrd->key));
  2838. }
  2839. return true;
  2840. }
  2841. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2842. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2843. return false;
  2844. }
  2845. template<typename OT>
  2846. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2847. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2848. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2849. target = ovrd->val_bool;
  2850. return true;
  2851. }
  2852. return false;
  2853. }
  2854. template<typename OT>
  2855. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2856. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2857. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2858. target = ovrd->val_i64;
  2859. return true;
  2860. }
  2861. return false;
  2862. }
  2863. template<typename OT>
  2864. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2865. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2866. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2867. target = ovrd->val_f64;
  2868. return true;
  2869. }
  2870. return false;
  2871. }
  2872. template<typename OT>
  2873. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2874. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2875. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2876. target = ovrd->val_str;
  2877. return true;
  2878. }
  2879. return false;
  2880. }
  2881. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2882. if (try_override<T>(target, ovrd)) {
  2883. return true;
  2884. }
  2885. if (k < 0) { return false; }
  2886. target = get_kv(ctx, k);
  2887. return true;
  2888. }
  2889. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2890. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2891. }
  2892. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2893. return set(ctx, key.c_str(), target, ovrd);
  2894. }
  2895. };
  2896. }
  2897. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2898. struct llama_model_loader {
  2899. int n_kv = 0;
  2900. int n_tensors = 0;
  2901. int n_created = 0;
  2902. int64_t n_elements = 0;
  2903. size_t n_bytes = 0;
  2904. bool use_mmap = false;
  2905. bool check_tensors;
  2906. llama_files files;
  2907. llama_ftype ftype;
  2908. llama_fver fver;
  2909. llama_mmaps mappings;
  2910. // Holds information on a model weight
  2911. struct llama_tensor_weight {
  2912. uint16_t idx; // source file index
  2913. size_t offs; // tensor data offset in the original file
  2914. ggml_tensor * tensor;
  2915. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2916. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2917. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2918. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2919. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2920. }
  2921. }
  2922. };
  2923. std::vector<llama_tensor_weight> weights;
  2924. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2925. struct gguf_context * meta = NULL;
  2926. std::vector<ggml_context *> contexts;
  2927. std::string arch_name;
  2928. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2929. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2930. int trace = 0;
  2931. if (getenv("LLAMA_TRACE")) {
  2932. trace = atoi(getenv("LLAMA_TRACE"));
  2933. }
  2934. if (param_overrides_p != nullptr) {
  2935. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2936. kv_overrides.insert({std::string(p->key), *p});
  2937. }
  2938. }
  2939. struct ggml_context * ctx = NULL;
  2940. struct gguf_init_params params = {
  2941. /*.no_alloc = */ true,
  2942. /*.ctx = */ &ctx,
  2943. };
  2944. meta = gguf_init_from_file(fname.c_str(), params);
  2945. if (!meta) {
  2946. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2947. }
  2948. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2949. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2950. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2951. contexts.emplace_back(ctx);
  2952. // Save tensors data offset of the main file.
  2953. // For subsidiary files, `meta` tensor data offset must not be used,
  2954. // so we build a unified tensors index for weights.
  2955. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2956. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2957. }
  2958. uint16_t n_split = 0;
  2959. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2960. // Load additional GGML contexts
  2961. if (n_split > 1) {
  2962. uint16_t idx = 0;
  2963. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2964. if (idx != 0) {
  2965. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2966. }
  2967. char split_prefix[PATH_MAX] = {0};
  2968. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2969. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2970. }
  2971. if (trace > 0) {
  2972. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2973. }
  2974. char split_path[PATH_MAX] = {0};
  2975. for (idx = 1; idx < n_split; idx++) {
  2976. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2977. struct gguf_init_params split_params = {
  2978. /*.no_alloc = */ true,
  2979. /*.ctx = */ &ctx,
  2980. };
  2981. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2982. if (!ctx_gguf) {
  2983. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2984. }
  2985. files.emplace_back(new llama_file(split_path, "rb"));
  2986. contexts.emplace_back(ctx);
  2987. // Save tensors data offset info of the shard.
  2988. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2989. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2990. }
  2991. gguf_free(ctx_gguf);
  2992. }
  2993. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2994. // sanity check
  2995. {
  2996. const int n_tensors_loaded = (int) weights.size();
  2997. if (n_tensors != n_tensors_loaded) {
  2998. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2999. }
  3000. }
  3001. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  3002. }
  3003. n_kv = gguf_get_n_kv(meta);
  3004. n_tensors = weights.size();
  3005. fver = (enum llama_fver) gguf_get_version(meta);
  3006. std::set<std::string> tensor_names;
  3007. for (auto & w : weights) {
  3008. n_elements += ggml_nelements(w.tensor);
  3009. n_bytes += ggml_nbytes(w.tensor);
  3010. // make sure there is no duplicated tensor names
  3011. const std::string name(w.tensor->name);
  3012. auto found = tensor_names.find(name);
  3013. if (found != tensor_names.end()) {
  3014. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  3015. }
  3016. tensor_names.insert(name);
  3017. }
  3018. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  3019. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  3020. // determine file type based on the number of tensors for each quantization and print meta data
  3021. // TODO: make optional
  3022. {
  3023. std::map<enum ggml_type, uint32_t> n_type;
  3024. uint32_t n_type_max = 0;
  3025. enum ggml_type type_max = GGML_TYPE_F32;
  3026. for (int i = 0; i < n_tensors; i++) {
  3027. const ggml_tensor * tensor = weights.at(i).tensor;
  3028. enum ggml_type type = tensor->type;
  3029. n_type[type]++;
  3030. if (n_type_max < n_type[type]) {
  3031. n_type_max = n_type[type];
  3032. type_max = type;
  3033. }
  3034. if (trace > 0) {
  3035. const uint16_t sid = weights.at(i).idx;
  3036. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  3037. }
  3038. }
  3039. switch (type_max) {
  3040. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  3041. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  3042. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  3043. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  3044. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  3045. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  3046. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  3047. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  3048. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  3049. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  3050. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  3051. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  3052. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  3053. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  3054. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  3055. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  3056. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  3057. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  3058. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  3059. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  3060. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  3061. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  3062. default:
  3063. {
  3064. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  3065. ftype = LLAMA_FTYPE_ALL_F32;
  3066. } break;
  3067. }
  3068. // this is a way to mark that we have "guessed" the file type
  3069. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  3070. {
  3071. const int kid = gguf_find_key(meta, "general.file_type");
  3072. if (kid >= 0) {
  3073. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  3074. }
  3075. }
  3076. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  3077. for (int i = 0; i < n_kv; i++) {
  3078. const char * name = gguf_get_key(meta, i);
  3079. const enum gguf_type type = gguf_get_kv_type(meta, i);
  3080. const std::string type_name =
  3081. type == GGUF_TYPE_ARRAY
  3082. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  3083. : gguf_type_name(type);
  3084. std::string value = gguf_kv_to_str(meta, i);
  3085. const size_t MAX_VALUE_LEN = 40;
  3086. if (value.size() > MAX_VALUE_LEN) {
  3087. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  3088. }
  3089. replace_all(value, "\n", "\\n");
  3090. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  3091. }
  3092. // print type counts
  3093. for (auto & kv : n_type) {
  3094. if (kv.second == 0) {
  3095. continue;
  3096. }
  3097. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  3098. }
  3099. }
  3100. if (!llama_mmap::SUPPORTED) {
  3101. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  3102. use_mmap = false;
  3103. }
  3104. this->use_mmap = use_mmap;
  3105. this->check_tensors = check_tensors;
  3106. }
  3107. ~llama_model_loader() {
  3108. if (meta) {
  3109. gguf_free(meta);
  3110. }
  3111. for (auto * ctx : contexts) {
  3112. ggml_free(ctx);
  3113. }
  3114. }
  3115. template<typename T>
  3116. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3117. get_arr_n(const std::string & key, T & result, const bool required = true) {
  3118. const int kid = gguf_find_key(meta, key.c_str());
  3119. if (kid < 0) {
  3120. if (required) {
  3121. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3122. }
  3123. return false;
  3124. }
  3125. struct GGUFMeta::ArrayInfo arr_info =
  3126. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3127. result = arr_info.length;
  3128. return true;
  3129. }
  3130. template<typename T>
  3131. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3132. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3133. return get_arr_n(llm_kv(kid), result, required);
  3134. }
  3135. template<typename T>
  3136. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3137. const int kid = gguf_find_key(meta, key.c_str());
  3138. if (kid < 0) {
  3139. if (required) {
  3140. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3141. }
  3142. return false;
  3143. }
  3144. struct GGUFMeta::ArrayInfo arr_info =
  3145. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3146. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3147. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3148. }
  3149. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3150. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3151. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3152. result.resize(arr_info.length);
  3153. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3154. return true;
  3155. }
  3156. template<typename T>
  3157. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3158. return get_arr(llm_kv(kid), result, required);
  3159. }
  3160. template<typename T>
  3161. bool get_key(const std::string & key, T & result, const bool required = true) {
  3162. auto it = kv_overrides.find(key);
  3163. const struct llama_model_kv_override * override =
  3164. it != kv_overrides.end() ? &it->second : nullptr;
  3165. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3166. if (required && !found) {
  3167. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3168. }
  3169. return found;
  3170. }
  3171. template<typename T>
  3172. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3173. return get_key(llm_kv(kid), result, required);
  3174. }
  3175. std::string get_arch_name() const {
  3176. return arch_name;
  3177. }
  3178. enum llm_arch get_arch() const {
  3179. return llm_kv.arch;
  3180. }
  3181. const char * get_tensor_name(int i) const {
  3182. return weights.at(i).tensor->name;
  3183. }
  3184. const llama_tensor_weight * get_weight(const char * name) const {
  3185. for (const auto & weight : weights) {
  3186. if (strcmp(name, weight.tensor->name) == 0) {
  3187. return &weight;
  3188. }
  3189. }
  3190. return nullptr;
  3191. }
  3192. const llama_tensor_weight * get_weight(int i) const {
  3193. return get_weight(get_tensor_name(i));
  3194. }
  3195. const llama_tensor_weight & require_weight(const char * name) const {
  3196. const llama_tensor_weight * weight = get_weight(name);
  3197. if (!weight) {
  3198. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3199. }
  3200. return *weight;
  3201. }
  3202. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3203. const auto * weight = get_weight(name);
  3204. if (!weight) {
  3205. return nullptr;
  3206. }
  3207. return weight->tensor;
  3208. }
  3209. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3210. struct ggml_tensor * tensor = get_tensor_meta(name);
  3211. if (!tensor) {
  3212. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3213. }
  3214. return tensor;
  3215. }
  3216. struct ggml_tensor * get_tensor_meta(int i) const {
  3217. return get_tensor_meta(get_tensor_name(i));
  3218. }
  3219. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3220. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3221. ggml_set_name(tensor, ggml_get_name(cur));
  3222. if (duplicated) {
  3223. size_data += ggml_nbytes(cur);
  3224. } else {
  3225. n_created++;
  3226. }
  3227. return tensor;
  3228. }
  3229. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3230. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3231. if (cur == NULL) {
  3232. if (!required) {
  3233. return NULL;
  3234. }
  3235. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3236. }
  3237. {
  3238. bool is_ok = true;
  3239. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3240. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3241. is_ok = false;
  3242. break;
  3243. }
  3244. }
  3245. if (!is_ok) {
  3246. throw std::runtime_error(
  3247. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3248. __func__, name.c_str(),
  3249. llama_format_tensor_shape(ne).c_str(),
  3250. llama_format_tensor_shape(cur).c_str()));
  3251. }
  3252. }
  3253. return cur;
  3254. }
  3255. static const int TENSOR_NOT_REQUIRED = 1;
  3256. static const int TENSOR_DUPLICATED = 2;
  3257. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3258. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3259. if (cur == NULL) {
  3260. return NULL;
  3261. }
  3262. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3263. }
  3264. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3265. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3266. if (cur == NULL) {
  3267. return NULL;
  3268. }
  3269. if (cur->type != base->type) {
  3270. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3271. }
  3272. std::array<int64_t, GGML_MAX_DIMS> dims;
  3273. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3274. dims[i] = i < ne.size() ? ne[i] : 1;
  3275. }
  3276. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3277. dims[0], dims[1], dims[2], dims[3],
  3278. cur->nb[1], cur->nb[2], cur->nb[3],
  3279. offset);
  3280. ggml_set_name(tensor, name.c_str());
  3281. n_created++;
  3282. return tensor;
  3283. }
  3284. void done_getting_tensors() const {
  3285. if (n_created != n_tensors) {
  3286. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3287. }
  3288. }
  3289. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3290. if (use_mmap) {
  3291. mappings.reserve(files.size());
  3292. mmaps_used.reserve(files.size());
  3293. for (const auto & file : files) {
  3294. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3295. mmaps_used.emplace_back(mapping->size, 0);
  3296. if (mlock_mmaps) {
  3297. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3298. mlock_mmap->init(mapping->addr);
  3299. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3300. }
  3301. mappings.emplace_back(std::move(mapping));
  3302. }
  3303. }
  3304. // compute the total size of all tensors for progress reporting
  3305. for (auto & w : weights) {
  3306. size_data += ggml_nbytes(w.tensor);
  3307. }
  3308. }
  3309. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3310. GGML_ASSERT(!mappings.empty());
  3311. const auto & mapping = mappings.at(idx);
  3312. *first = mapping->size;
  3313. *last = 0;
  3314. *addr = mapping->addr;
  3315. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3316. try {
  3317. const auto * weight = get_weight(ggml_get_name(tensor));
  3318. if (!weight) {
  3319. continue;
  3320. }
  3321. if (weight->idx != idx) {
  3322. continue;
  3323. }
  3324. *first = std::min(*first, weight->offs);
  3325. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3326. } catch(...) {
  3327. // the tensor is not in the model
  3328. }
  3329. }
  3330. }
  3331. // for backwards compatibility, does not support ggml-backend
  3332. void load_data_for(struct ggml_tensor * cur) const {
  3333. const auto & w = require_weight(ggml_get_name(cur));
  3334. if (use_mmap) {
  3335. const auto & mapping = mappings.at(w.idx);
  3336. if (cur->data == nullptr) {
  3337. cur->data = (uint8_t *)mapping->addr + w.offs;
  3338. } else {
  3339. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3340. }
  3341. } else {
  3342. GGML_ASSERT(cur->data != nullptr);
  3343. GGML_ASSERT(w.idx < files.size());
  3344. const auto & file = files.at(w.idx);
  3345. file->seek(w.offs, SEEK_SET);
  3346. file->read_raw(cur->data, ggml_nbytes(cur));
  3347. }
  3348. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3349. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3350. }
  3351. }
  3352. size_t size_done = 0;
  3353. size_t size_data = 0;
  3354. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3355. // Returns false if cancelled by progress_callback
  3356. bool load_all_data(
  3357. struct ggml_context * ctx,
  3358. llama_buf_map & bufs_mmap,
  3359. llama_mlocks * lmlocks,
  3360. llama_progress_callback progress_callback,
  3361. void * progress_callback_user_data) {
  3362. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3363. std::vector<no_init<uint8_t>> read_buf;
  3364. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3365. #if defined(GGML_USE_CUDA)
  3366. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  3367. // NVMe raid configurations might require more / larger buffers.
  3368. constexpr size_t num_buffers = 4;
  3369. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  3370. std::vector<ggml_backend_buffer_t> host_buffers;
  3371. std::vector<void*> host_ptrs;
  3372. std::vector<ggml_backend_event_t> events;
  3373. size_t buffer_idx = 0; // buffer to use for async loads
  3374. ggml_backend_t cuda_backend = nullptr;
  3375. if (!use_mmap && !check_tensors) {
  3376. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  3377. // First determine if the CUDA backend is active, and if so, determine the device ID.
  3378. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
  3379. if (buf) {
  3380. ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
  3381. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  3382. auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
  3383. if (buffer_type == cuda_buffer_type) {
  3384. cuda_backend = ggml_backend_cuda_init(i);
  3385. break;
  3386. }
  3387. }
  3388. }
  3389. // If the cuda backend is active create pinned memory buffers and events for synchronisation.
  3390. if (cuda_backend) {
  3391. for (size_t idx = 0; idx < num_buffers; ++idx) {
  3392. host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
  3393. host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
  3394. events.emplace_back(ggml_backend_event_new(cuda_backend));
  3395. }
  3396. }
  3397. }
  3398. #endif
  3399. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3400. const auto * weight = get_weight(ggml_get_name(cur));
  3401. if (weight == nullptr) {
  3402. // this can happen with split experts models
  3403. continue;
  3404. }
  3405. if (progress_callback) {
  3406. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3407. return false;
  3408. }
  3409. }
  3410. size_t n_size = ggml_nbytes(cur);
  3411. if (use_mmap) {
  3412. const auto & mapping = mappings.at(weight->idx);
  3413. ggml_backend_buffer_t buf_mmap = nullptr;
  3414. if (bufs_mmap.count(weight->idx)) {
  3415. buf_mmap = bufs_mmap.at(weight->idx);
  3416. }
  3417. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3418. if (check_tensors) {
  3419. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3420. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3421. }));
  3422. }
  3423. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3424. if (buf_mmap && cur->data == nullptr) {
  3425. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3426. if (lmlocks) {
  3427. const auto & lmlock = lmlocks->at(weight->idx);
  3428. lmlock->grow_to(weight->offs + n_size);
  3429. }
  3430. auto & mmap_used = mmaps_used[weight->idx];
  3431. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3432. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3433. } else {
  3434. ggml_backend_tensor_set(cur, data, 0, n_size);
  3435. }
  3436. } else {
  3437. GGML_ASSERT(weight->idx < files.size());
  3438. const auto & file = files.at(weight->idx);
  3439. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3440. file->seek(weight->offs, SEEK_SET);
  3441. file->read_raw(cur->data, n_size);
  3442. if (check_tensors) {
  3443. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3444. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3445. }));
  3446. }
  3447. } else {
  3448. #if defined(GGML_USE_CUDA)
  3449. // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  3450. if (cuda_backend) {
  3451. file->seek(weight->offs, SEEK_SET);
  3452. size_t bytes_read = 0;
  3453. while (bytes_read < n_size) {
  3454. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  3455. ggml_backend_event_synchronize(events[buffer_idx]);
  3456. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  3457. ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  3458. ggml_backend_event_record(events[buffer_idx]);
  3459. bytes_read += read_iteration;
  3460. ++buffer_idx;
  3461. buffer_idx %= num_buffers;
  3462. }
  3463. }
  3464. else
  3465. #endif
  3466. {
  3467. read_buf.resize(n_size);
  3468. file->seek(weight->offs, SEEK_SET);
  3469. file->read_raw(read_buf.data(), n_size);
  3470. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3471. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3472. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3473. }
  3474. }
  3475. }
  3476. }
  3477. size_done += n_size;
  3478. }
  3479. #if defined(GGML_USE_CUDA)
  3480. // free temporary resources used for async cuda uploads
  3481. if (cuda_backend) {
  3482. for (size_t idx = 0; idx < num_buffers;++idx) {
  3483. ggml_backend_event_synchronize(events[idx]);
  3484. ggml_backend_event_free(events[idx]);
  3485. ggml_backend_buffer_free(host_buffers[idx]);
  3486. }
  3487. ggml_backend_free(cuda_backend);
  3488. }
  3489. #endif
  3490. // check validation results
  3491. bool validation_failed = false;
  3492. for (auto & future : validation_result) {
  3493. auto result = future.get();
  3494. if (!result.second) {
  3495. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3496. validation_failed = true;
  3497. }
  3498. }
  3499. if (validation_failed) {
  3500. throw std::runtime_error("found tensors with invalid data");
  3501. }
  3502. // check if this is the last call and do final cleanup
  3503. if (size_done >= size_data) {
  3504. // unmap offloaded tensors and metadata
  3505. if (use_mmap) {
  3506. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3507. const auto & mmap_used = mmaps_used.at(idx);
  3508. auto & mapping = mappings.at(idx);
  3509. mapping->unmap_fragment(0, mmap_used.first);
  3510. if (mmap_used.second != 0) {
  3511. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3512. }
  3513. }
  3514. }
  3515. if (progress_callback) {
  3516. // Even though the model is done loading, we still honor
  3517. // cancellation since we need to free allocations.
  3518. return progress_callback(1.0f, progress_callback_user_data);
  3519. }
  3520. }
  3521. return true;
  3522. }
  3523. };
  3524. template<>
  3525. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3526. uint32_t tmp;
  3527. const bool found = get_key(kid, tmp, required);
  3528. if (found) {
  3529. result = (enum llama_pooling_type) tmp;
  3530. } else {
  3531. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3532. }
  3533. return found;
  3534. }
  3535. //
  3536. // load LLaMA models
  3537. //
  3538. static const char * llama_model_arch_name(llm_arch arch) {
  3539. auto it = LLM_ARCH_NAMES.find(arch);
  3540. if (it == LLM_ARCH_NAMES.end()) {
  3541. return "unknown";
  3542. }
  3543. return it->second;
  3544. }
  3545. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3546. if (ftype & LLAMA_FTYPE_GUESSED) {
  3547. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3548. }
  3549. switch (ftype) {
  3550. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3551. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3552. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3553. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3554. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3555. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3556. return "Q4_1, some F16";
  3557. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3558. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3559. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3560. // K-quants
  3561. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3562. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3563. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3564. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3565. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3566. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3567. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3568. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3569. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3570. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3571. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3572. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3573. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3574. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3575. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3576. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3577. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3578. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3579. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3580. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3581. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3582. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3583. default: return "unknown, may not work";
  3584. }
  3585. }
  3586. static const char * llama_model_type_name(e_model type) {
  3587. switch (type) {
  3588. case MODEL_14M: return "14M";
  3589. case MODEL_17M: return "17M";
  3590. case MODEL_22M: return "22M";
  3591. case MODEL_33M: return "33M";
  3592. case MODEL_70M: return "70M";
  3593. case MODEL_109M: return "109M";
  3594. case MODEL_137M: return "137M";
  3595. case MODEL_160M: return "160M";
  3596. case MODEL_335M: return "335M";
  3597. case MODEL_410M: return "410M";
  3598. case MODEL_0_5B: return "0.5B";
  3599. case MODEL_1B: return "1B";
  3600. case MODEL_1_4B: return "1.4B";
  3601. case MODEL_2B: return "2B";
  3602. case MODEL_2_8B: return "2.8B";
  3603. case MODEL_3B: return "3B";
  3604. case MODEL_4B: return "4B";
  3605. case MODEL_6_9B: return "6.9B";
  3606. case MODEL_7B: return "7B";
  3607. case MODEL_8B: return "8B";
  3608. case MODEL_12B: return "12B";
  3609. case MODEL_13B: return "13B";
  3610. case MODEL_14B: return "14B";
  3611. case MODEL_15B: return "15B";
  3612. case MODEL_16B: return "16B";
  3613. case MODEL_20B: return "20B";
  3614. case MODEL_30B: return "30B";
  3615. case MODEL_34B: return "34B";
  3616. case MODEL_35B: return "35B";
  3617. case MODEL_40B: return "40B";
  3618. case MODEL_65B: return "65B";
  3619. case MODEL_70B: return "70B";
  3620. case MODEL_236B: return "236B";
  3621. case MODEL_314B: return "314B";
  3622. case MODEL_SMALL: return "0.1B";
  3623. case MODEL_MEDIUM: return "0.4B";
  3624. case MODEL_LARGE: return "0.8B";
  3625. case MODEL_XL: return "1.5B";
  3626. case MODEL_A2_7B: return "A2.7B";
  3627. case MODEL_8x7B: return "8x7B";
  3628. case MODEL_8x22B: return "8x22B";
  3629. case MODEL_16x12B: return "16x12B";
  3630. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3631. default: return "?B";
  3632. }
  3633. }
  3634. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3635. switch (type) {
  3636. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3637. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3638. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3639. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3640. default: return "unknown";
  3641. }
  3642. }
  3643. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3644. model.arch = ml.get_arch();
  3645. if (model.arch == LLM_ARCH_UNKNOWN) {
  3646. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3647. }
  3648. }
  3649. static void llm_load_hparams(
  3650. llama_model_loader & ml,
  3651. llama_model & model) {
  3652. auto & hparams = model.hparams;
  3653. const gguf_context * ctx = ml.meta;
  3654. // get metadata as string
  3655. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3656. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3657. if (type == GGUF_TYPE_ARRAY) {
  3658. continue;
  3659. }
  3660. const char * name = gguf_get_key(ctx, i);
  3661. const std::string value = gguf_kv_to_str(ctx, i);
  3662. model.gguf_kv.emplace(name, value);
  3663. }
  3664. // get general kv
  3665. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3666. // get hparams kv
  3667. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3668. // everything past this point is not vocab-related
  3669. if (hparams.vocab_only) {
  3670. return;
  3671. }
  3672. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3673. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3674. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3675. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3676. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3677. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3678. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3679. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3680. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3681. if (hparams.n_expert > 0) {
  3682. GGML_ASSERT(hparams.n_expert_used > 0);
  3683. } else {
  3684. GGML_ASSERT(hparams.n_expert_used == 0);
  3685. }
  3686. // n_head_kv is optional, default to n_head
  3687. hparams.n_head_kv = hparams.n_head;
  3688. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3689. bool rope_finetuned = false;
  3690. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3691. hparams.rope_finetuned = rope_finetuned;
  3692. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  3693. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  3694. // rope_freq_base (optional)
  3695. hparams.rope_freq_base_train = 10000.0f;
  3696. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3697. std::string rope_scaling("linear");
  3698. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3699. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3700. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3701. // rope_freq_scale (inverse of the kv) is optional
  3702. float ropescale = 0.0f;
  3703. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3704. // try the old key name
  3705. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3706. }
  3707. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3708. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3709. // sanity check for n_rot (optional)
  3710. {
  3711. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3712. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3713. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3714. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3715. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3716. }
  3717. }
  3718. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3719. // gpt-j n_rot = rotary_dim
  3720. }
  3721. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3722. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3723. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3724. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3725. // arch-specific KVs
  3726. switch (model.arch) {
  3727. case LLM_ARCH_LLAMA:
  3728. {
  3729. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3730. if (hparams.n_expert == 8) {
  3731. switch (hparams.n_layer) {
  3732. case 32: model.type = e_model::MODEL_8x7B; break;
  3733. case 56: model.type = e_model::MODEL_8x22B; break;
  3734. default: model.type = e_model::MODEL_UNKNOWN;
  3735. }
  3736. } else {
  3737. switch (hparams.n_layer) {
  3738. case 22: model.type = e_model::MODEL_1B; break;
  3739. case 26: model.type = e_model::MODEL_3B; break;
  3740. // granite uses a vocab with len 49152
  3741. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3742. case 36: model.type = e_model::MODEL_8B; break; // granite
  3743. case 40: model.type = e_model::MODEL_13B; break;
  3744. case 48: model.type = e_model::MODEL_34B; break;
  3745. case 60: model.type = e_model::MODEL_30B; break;
  3746. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3747. default: model.type = e_model::MODEL_UNKNOWN;
  3748. }
  3749. }
  3750. } break;
  3751. case LLM_ARCH_MINICPM:
  3752. {
  3753. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3754. switch (hparams.n_layer) {
  3755. case 40: model.type = e_model::MODEL_2B; break;
  3756. default: model.type = e_model::MODEL_UNKNOWN;
  3757. }
  3758. } break;
  3759. case LLM_ARCH_GROK:
  3760. {
  3761. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3762. switch (hparams.n_layer) {
  3763. case 64: model.type = e_model::MODEL_314B; break;
  3764. default: model.type = e_model::MODEL_UNKNOWN;
  3765. }
  3766. } break;
  3767. case LLM_ARCH_FALCON:
  3768. {
  3769. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3770. switch (hparams.n_layer) {
  3771. case 32: model.type = e_model::MODEL_7B; break;
  3772. case 60: model.type = e_model::MODEL_40B; break;
  3773. default: model.type = e_model::MODEL_UNKNOWN;
  3774. }
  3775. } break;
  3776. case LLM_ARCH_BAICHUAN:
  3777. {
  3778. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3779. switch (hparams.n_layer) {
  3780. case 32: model.type = e_model::MODEL_7B; break;
  3781. case 40: model.type = e_model::MODEL_13B; break;
  3782. default: model.type = e_model::MODEL_UNKNOWN;
  3783. }
  3784. if (model.type == e_model::MODEL_13B) {
  3785. // TODO: become GGUF KV parameter
  3786. hparams.f_max_alibi_bias = 8.0f;
  3787. }
  3788. } break;
  3789. case LLM_ARCH_STARCODER:
  3790. {
  3791. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3792. switch (hparams.n_layer) {
  3793. case 24: model.type = e_model::MODEL_1B; break;
  3794. case 36: model.type = e_model::MODEL_3B; break;
  3795. case 42: model.type = e_model::MODEL_7B; break;
  3796. case 40: model.type = e_model::MODEL_15B; break;
  3797. default: model.type = e_model::MODEL_UNKNOWN;
  3798. }
  3799. } break;
  3800. case LLM_ARCH_REFACT:
  3801. {
  3802. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3803. switch (hparams.n_layer) {
  3804. case 32: model.type = e_model::MODEL_1B; break;
  3805. default: model.type = e_model::MODEL_UNKNOWN;
  3806. }
  3807. // TODO: become GGUF KV parameter
  3808. hparams.f_max_alibi_bias = 8.0f;
  3809. } break;
  3810. case LLM_ARCH_BERT:
  3811. {
  3812. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3813. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3814. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3815. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3816. switch (hparams.n_layer) {
  3817. case 3:
  3818. model.type = e_model::MODEL_17M; break; // bge-micro
  3819. case 6:
  3820. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3821. case 12:
  3822. switch (hparams.n_embd) {
  3823. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3824. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3825. } break;
  3826. case 24:
  3827. model.type = e_model::MODEL_335M; break; // bge-large
  3828. }
  3829. } break;
  3830. case LLM_ARCH_JINA_BERT_V2:
  3831. {
  3832. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3833. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3834. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3835. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3836. hparams.f_max_alibi_bias = 8.0f;
  3837. switch (hparams.n_layer) {
  3838. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3839. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3840. }
  3841. } break;
  3842. case LLM_ARCH_NOMIC_BERT:
  3843. {
  3844. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3845. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3846. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3847. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3848. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3849. model.type = e_model::MODEL_137M;
  3850. }
  3851. } break;
  3852. case LLM_ARCH_BLOOM:
  3853. {
  3854. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3855. switch (hparams.n_layer) {
  3856. case 24: model.type = e_model::MODEL_1B; break;
  3857. case 30:
  3858. switch (hparams.n_embd) {
  3859. case 2560: model.type = e_model::MODEL_3B; break;
  3860. case 4096: model.type = e_model::MODEL_7B; break;
  3861. } break;
  3862. }
  3863. // TODO: become GGUF KV parameter
  3864. hparams.f_max_alibi_bias = 8.0f;
  3865. } break;
  3866. case LLM_ARCH_MPT:
  3867. {
  3868. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3869. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3870. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3871. switch (hparams.n_layer) {
  3872. case 32: model.type = e_model::MODEL_7B; break;
  3873. case 48: model.type = e_model::MODEL_30B; break;
  3874. default: model.type = e_model::MODEL_UNKNOWN;
  3875. }
  3876. } break;
  3877. case LLM_ARCH_STABLELM:
  3878. {
  3879. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3880. switch (hparams.n_layer) {
  3881. case 24: model.type = e_model::MODEL_1B; break;
  3882. case 32: model.type = e_model::MODEL_3B; break;
  3883. case 40: model.type = e_model::MODEL_12B; break;
  3884. default: model.type = e_model::MODEL_UNKNOWN;
  3885. }
  3886. } break;
  3887. case LLM_ARCH_QWEN:
  3888. {
  3889. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3890. switch (hparams.n_layer) {
  3891. case 32: model.type = e_model::MODEL_7B; break;
  3892. case 40: model.type = e_model::MODEL_13B; break;
  3893. default: model.type = e_model::MODEL_UNKNOWN;
  3894. }
  3895. } break;
  3896. case LLM_ARCH_QWEN2:
  3897. {
  3898. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3899. switch (hparams.n_layer) {
  3900. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3901. case 32: model.type = e_model::MODEL_7B; break;
  3902. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3903. case 80: model.type = e_model::MODEL_70B; break;
  3904. default: model.type = e_model::MODEL_UNKNOWN;
  3905. }
  3906. } break;
  3907. case LLM_ARCH_QWEN2MOE:
  3908. {
  3909. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  3910. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  3911. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3912. switch (hparams.n_layer) {
  3913. case 24: model.type = e_model::MODEL_A2_7B; break;
  3914. default: model.type = e_model::MODEL_UNKNOWN;
  3915. }
  3916. } break;
  3917. case LLM_ARCH_PHI2:
  3918. {
  3919. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3920. switch (hparams.n_layer) {
  3921. case 24: model.type = e_model::MODEL_1B; break;
  3922. case 32: model.type = e_model::MODEL_3B; break;
  3923. default: model.type = e_model::MODEL_UNKNOWN;
  3924. }
  3925. } break;
  3926. case LLM_ARCH_PHI3:
  3927. {
  3928. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3929. switch (hparams.n_layer) {
  3930. case 24: model.type = e_model::MODEL_1B; break;
  3931. case 32: model.type = e_model::MODEL_3B; break;
  3932. case 40: model.type = e_model::MODEL_14B; break;
  3933. default: model.type = e_model::MODEL_UNKNOWN;
  3934. }
  3935. } break;
  3936. case LLM_ARCH_PLAMO:
  3937. {
  3938. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3939. switch (hparams.n_layer) {
  3940. case 40: model.type = e_model::MODEL_13B; break;
  3941. default: model.type = e_model::MODEL_UNKNOWN;
  3942. }
  3943. } break;
  3944. case LLM_ARCH_GPT2:
  3945. {
  3946. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3947. switch (hparams.n_layer) {
  3948. case 12: model.type = e_model::MODEL_SMALL; break;
  3949. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3950. case 36: model.type = e_model::MODEL_LARGE; break;
  3951. case 48: model.type = e_model::MODEL_XL; break;
  3952. default: model.type = e_model::MODEL_UNKNOWN;
  3953. }
  3954. } break;
  3955. case LLM_ARCH_CODESHELL:
  3956. {
  3957. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3958. switch (hparams.n_layer) {
  3959. case 42: model.type = e_model::MODEL_SMALL; break;
  3960. default: model.type = e_model::MODEL_UNKNOWN;
  3961. }
  3962. } break;
  3963. case LLM_ARCH_ORION:
  3964. {
  3965. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3966. switch (hparams.n_layer) {
  3967. case 40: model.type = e_model::MODEL_14B; break;
  3968. default: model.type = e_model::MODEL_UNKNOWN;
  3969. }
  3970. } break;
  3971. case LLM_ARCH_INTERNLM2:
  3972. {
  3973. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3974. switch (hparams.n_layer) {
  3975. case 32: model.type = e_model::MODEL_7B; break;
  3976. case 48: model.type = e_model::MODEL_20B; break;
  3977. default: model.type = e_model::MODEL_UNKNOWN;
  3978. }
  3979. } break;
  3980. case LLM_ARCH_GEMMA:
  3981. {
  3982. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3983. switch (hparams.n_layer) {
  3984. case 18: model.type = e_model::MODEL_2B; break;
  3985. case 28: model.type = e_model::MODEL_7B; break;
  3986. default: model.type = e_model::MODEL_UNKNOWN;
  3987. }
  3988. } break;
  3989. case LLM_ARCH_STARCODER2:
  3990. {
  3991. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3992. switch (hparams.n_layer) {
  3993. case 30: model.type = e_model::MODEL_3B; break;
  3994. case 32: model.type = e_model::MODEL_7B; break;
  3995. case 40: model.type = e_model::MODEL_15B; break;
  3996. case 52: model.type = e_model::MODEL_20B; break; // granite
  3997. case 88: model.type = e_model::MODEL_34B; break; // granite
  3998. default: model.type = e_model::MODEL_UNKNOWN;
  3999. }
  4000. } break;
  4001. case LLM_ARCH_MAMBA:
  4002. {
  4003. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  4004. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  4005. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  4006. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  4007. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4008. switch (hparams.n_layer) {
  4009. case 24:
  4010. switch (hparams.n_embd) {
  4011. case 768: model.type = e_model::MODEL_SMALL; break;
  4012. default: model.type = e_model::MODEL_UNKNOWN;
  4013. } break;
  4014. case 48:
  4015. switch (hparams.n_embd) {
  4016. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  4017. case 1536: model.type = e_model::MODEL_LARGE; break;
  4018. case 2048: model.type = e_model::MODEL_XL; break;
  4019. default: model.type = e_model::MODEL_UNKNOWN;
  4020. } break;
  4021. case 64:
  4022. switch (hparams.n_embd) {
  4023. case 2560: model.type = e_model::MODEL_3B; break;
  4024. default: model.type = e_model::MODEL_UNKNOWN;
  4025. } break;
  4026. default: model.type = e_model::MODEL_UNKNOWN;
  4027. }
  4028. } break;
  4029. case LLM_ARCH_XVERSE:
  4030. {
  4031. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4032. switch (hparams.n_layer) {
  4033. case 32: model.type = e_model::MODEL_7B; break;
  4034. case 40: model.type = e_model::MODEL_13B; break;
  4035. case 80: model.type = e_model::MODEL_65B; break;
  4036. default: model.type = e_model::MODEL_UNKNOWN;
  4037. }
  4038. } break;
  4039. case LLM_ARCH_COMMAND_R:
  4040. {
  4041. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  4042. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4043. switch (hparams.n_layer) {
  4044. case 40: model.type = e_model::MODEL_35B; break;
  4045. default: model.type = e_model::MODEL_UNKNOWN;
  4046. }
  4047. } break;
  4048. case LLM_ARCH_DBRX:
  4049. {
  4050. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4051. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  4052. switch (hparams.n_layer) {
  4053. case 40: model.type = e_model::MODEL_16x12B; break;
  4054. default: model.type = e_model::MODEL_UNKNOWN;
  4055. }
  4056. } break;
  4057. case LLM_ARCH_OLMO:
  4058. {
  4059. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4060. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  4061. switch (hparams.n_layer) {
  4062. case 22: model.type = e_model::MODEL_1B; break;
  4063. case 32: model.type = e_model::MODEL_7B; break;
  4064. case 80: model.type = e_model::MODEL_70B; break;
  4065. default: model.type = e_model::MODEL_UNKNOWN;
  4066. }
  4067. } break;
  4068. case LLM_ARCH_GPTNEOX:
  4069. {
  4070. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4071. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  4072. switch (hparams.n_layer) {
  4073. case 6:
  4074. switch (hparams.n_ff) {
  4075. case 512: model.type = e_model::MODEL_14M; break;
  4076. case 2048: model.type = e_model::MODEL_70M; break;
  4077. default: model.type = e_model::MODEL_UNKNOWN;
  4078. } break;
  4079. case 12:
  4080. switch (hparams.n_ff) {
  4081. case 3072: model.type = e_model::MODEL_160M; break;
  4082. default: model.type = e_model::MODEL_UNKNOWN;
  4083. } break;
  4084. case 16:
  4085. switch (hparams.n_ff) {
  4086. case 8192: model.type = e_model::MODEL_1B; break;
  4087. default: model.type = e_model::MODEL_UNKNOWN;
  4088. } break;
  4089. case 24:
  4090. switch (hparams.n_ff) {
  4091. case 4096: model.type = e_model::MODEL_410M; break;
  4092. case 8192: model.type = e_model::MODEL_1_4B; break;
  4093. default: model.type = e_model::MODEL_UNKNOWN;
  4094. } break;
  4095. case 32:
  4096. switch (hparams.n_ff) {
  4097. case 10240: model.type = e_model::MODEL_2_8B; break;
  4098. case 16384: model.type = e_model::MODEL_6_9B; break;
  4099. default: model.type = e_model::MODEL_UNKNOWN;
  4100. } break;
  4101. case 36:
  4102. switch (hparams.n_ff) {
  4103. case 20480: model.type = e_model::MODEL_12B; break;
  4104. default: model.type = e_model::MODEL_UNKNOWN;
  4105. } break;
  4106. case 44:
  4107. switch (hparams.n_ff) {
  4108. case 24576: model.type = e_model::MODEL_20B; break;
  4109. default: model.type = e_model::MODEL_UNKNOWN;
  4110. } break;
  4111. default: model.type = e_model::MODEL_UNKNOWN;
  4112. }
  4113. } break;
  4114. case LLM_ARCH_ARCTIC:
  4115. {
  4116. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4117. if (hparams.n_expert == 128) {
  4118. switch (hparams.n_layer) {
  4119. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  4120. default: model.type = e_model::MODEL_UNKNOWN;
  4121. }
  4122. } else {
  4123. model.type = e_model::MODEL_UNKNOWN;
  4124. }
  4125. } break;
  4126. case LLM_ARCH_DEEPSEEK2:
  4127. {
  4128. bool is_lite = (hparams.n_layer == 27);
  4129. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4130. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  4131. if (!is_lite) {
  4132. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  4133. }
  4134. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  4135. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  4136. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  4137. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  4138. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  4139. switch (hparams.n_layer) {
  4140. case 27: model.type = e_model::MODEL_16B; break;
  4141. case 60: model.type = e_model::MODEL_236B; break;
  4142. default: model.type = e_model::MODEL_UNKNOWN;
  4143. }
  4144. } break;
  4145. default: (void)0;
  4146. }
  4147. model.ftype = ml.ftype;
  4148. if (hparams.f_max_alibi_bias > 0.0f) {
  4149. hparams.use_alibi = true;
  4150. }
  4151. hparams.rope_type = llama_rope_type(&model);
  4152. }
  4153. // TODO: This should probably be in llama.h
  4154. static std::vector<llama_vocab::id> llama_tokenize_internal(
  4155. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  4156. );
  4157. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  4158. static void llm_load_vocab(
  4159. llama_model_loader & ml,
  4160. llama_model & model) {
  4161. auto & vocab = model.vocab;
  4162. struct gguf_context * ctx = ml.meta;
  4163. const auto kv = LLM_KV(model.arch);
  4164. // determine vocab type
  4165. {
  4166. std::string tokenizer_model;
  4167. std::string tokenizer_pre;
  4168. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  4169. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4170. if (tokenizer_model == "no_vocab") {
  4171. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  4172. // default special tokens
  4173. vocab.special_bos_id = -1;
  4174. vocab.special_eos_id = -1;
  4175. vocab.special_unk_id = -1;
  4176. vocab.special_sep_id = -1;
  4177. vocab.special_pad_id = -1;
  4178. vocab.special_cls_id = -1;
  4179. vocab.special_mask_id = -1;
  4180. vocab.linefeed_id = -1;
  4181. return;
  4182. } else if (tokenizer_model == "llama") {
  4183. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4184. // default special tokens
  4185. vocab.special_bos_id = 1;
  4186. vocab.special_eos_id = 2;
  4187. vocab.special_unk_id = 0;
  4188. vocab.special_sep_id = -1;
  4189. vocab.special_pad_id = -1;
  4190. vocab.special_cls_id = -1;
  4191. vocab.special_mask_id = -1;
  4192. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4193. if (add_space_prefix_keyidx != -1) {
  4194. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4195. } // The default value of add_space_prefix is true.
  4196. } else if (tokenizer_model == "bert") {
  4197. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4198. // default special tokens
  4199. vocab.special_bos_id = -1;
  4200. vocab.special_eos_id = -1;
  4201. vocab.special_unk_id = 100;
  4202. vocab.special_sep_id = 102;
  4203. vocab.special_pad_id = 0;
  4204. vocab.special_cls_id = 101;
  4205. vocab.special_mask_id = 103;
  4206. vocab.tokenizer_add_space_prefix = false;
  4207. } else if (tokenizer_model == "gpt2") {
  4208. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4209. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4210. if (add_space_prefix_keyidx != -1) {
  4211. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4212. }
  4213. // read bpe merges and populate bpe ranks
  4214. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4215. if (merges_keyidx == -1) {
  4216. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4217. }
  4218. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4219. for (int i = 0; i < n_merges; i++) {
  4220. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4221. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4222. std::string first;
  4223. std::string second;
  4224. const size_t pos = word.find(' ', 1);
  4225. if (pos != std::string::npos) {
  4226. first = word.substr(0, pos);
  4227. second = word.substr(pos + 1);
  4228. }
  4229. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4230. }
  4231. // default special tokens
  4232. vocab.special_bos_id = 11;
  4233. vocab.special_eos_id = 11;
  4234. vocab.special_unk_id = -1;
  4235. vocab.special_sep_id = -1;
  4236. vocab.special_pad_id = -1;
  4237. vocab.special_cls_id = -1;
  4238. vocab.special_mask_id = -1;
  4239. } else {
  4240. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4241. }
  4242. // for now, only BPE models have pre-tokenizers
  4243. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4244. if (tokenizer_pre.empty()) {
  4245. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4246. LLAMA_LOG_WARN("%s: \n", __func__);
  4247. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4248. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4249. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4250. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4251. LLAMA_LOG_WARN("%s: \n", __func__);
  4252. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4253. } else if (tokenizer_pre == "default") {
  4254. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4255. } else if (
  4256. tokenizer_pre == "llama3" ||
  4257. tokenizer_pre == "llama-v3" ||
  4258. tokenizer_pre == "llama-bpe") {
  4259. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4260. vocab.tokenizer_ignore_merges = true;
  4261. vocab.tokenizer_add_bos = true;
  4262. } else if (
  4263. tokenizer_pre == "deepseek-llm") {
  4264. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4265. } else if (
  4266. tokenizer_pre == "deepseek-coder") {
  4267. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4268. } else if (
  4269. tokenizer_pre == "falcon") {
  4270. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4271. } else if (
  4272. tokenizer_pre == "mpt") {
  4273. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4274. } else if (
  4275. tokenizer_pre == "starcoder") {
  4276. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4277. } else if (
  4278. tokenizer_pre == "gpt-2" ||
  4279. tokenizer_pre == "jina-es" ||
  4280. tokenizer_pre == "jina-de" ||
  4281. tokenizer_pre == "jina-v2-es" ||
  4282. tokenizer_pre == "jina-v2-de" ||
  4283. tokenizer_pre == "jina-v2-code") {
  4284. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4285. } else if (
  4286. tokenizer_pre == "refact") {
  4287. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4288. } else if (
  4289. tokenizer_pre == "command-r") {
  4290. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4291. } else if (
  4292. tokenizer_pre == "qwen2") {
  4293. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4294. } else if (
  4295. tokenizer_pre == "stablelm2") {
  4296. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4297. } else if (
  4298. tokenizer_pre == "olmo") {
  4299. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4300. } else if (
  4301. tokenizer_pre == "dbrx") {
  4302. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4303. } else if (
  4304. tokenizer_pre == "smaug-bpe") {
  4305. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4306. } else if (
  4307. tokenizer_pre == "poro-chat") {
  4308. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
  4309. } else {
  4310. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4311. }
  4312. } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4313. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4314. vocab.tokenizer_add_bos = true;
  4315. vocab.tokenizer_add_eos = false;
  4316. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4317. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4318. vocab.tokenizer_add_bos = true;
  4319. vocab.tokenizer_add_eos = false;
  4320. } else {
  4321. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4322. }
  4323. }
  4324. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4325. if (token_idx == -1) {
  4326. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4327. }
  4328. const float * scores = nullptr;
  4329. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4330. if (score_idx != -1) {
  4331. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4332. }
  4333. const int * toktypes = nullptr;
  4334. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4335. if (toktype_idx != -1) {
  4336. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4337. }
  4338. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4339. vocab.id_to_token.resize(n_vocab);
  4340. for (uint32_t i = 0; i < n_vocab; i++) {
  4341. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4342. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4343. vocab.token_to_id[word] = i;
  4344. auto & token_data = vocab.id_to_token[i];
  4345. token_data.text = std::move(word);
  4346. token_data.score = scores ? scores[i] : 0.0f;
  4347. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4348. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4349. switch(toktypes[i]) {
  4350. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4351. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4352. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4353. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4354. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4355. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4356. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4357. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4358. }
  4359. }
  4360. }
  4361. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4362. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4363. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4364. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4365. // prior to support of FIM special tokens in GGUF, the following
  4366. // will allow those models to continue to work. The general names
  4367. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4368. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4369. // new versions of these models have been published.
  4370. std::string gen_name;
  4371. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4372. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4373. [](unsigned char c){ return std::tolower(c); });
  4374. if (gen_name.find("code") != std::string::npos) {
  4375. if (model.arch == LLM_ARCH_LLAMA
  4376. && 32010 < vocab.id_to_token.size()
  4377. && vocab.id_to_token[32007].text == "<PRE>"
  4378. && vocab.id_to_token[32008].text == "<SUF>"
  4379. && vocab.id_to_token[32009].text == "<MID>"
  4380. && vocab.id_to_token[32010].text == "<EOT>") {
  4381. vocab.special_prefix_id = 32007;
  4382. vocab.special_suffix_id = 32008;
  4383. vocab.special_middle_id = 32009;
  4384. vocab.special_eot_id = 32010;
  4385. } else if (model.arch == LLM_ARCH_GEMMA
  4386. && 107 < vocab.id_to_token.size()
  4387. && vocab.id_to_token[67].text == "<|fim_prefix|>"
  4388. && vocab.id_to_token[69].text == "<|fim_suffix|>"
  4389. && vocab.id_to_token[68].text == "<|fim_middle|>"
  4390. && vocab.id_to_token[107].text == "<end_of_turn>") {
  4391. vocab.special_prefix_id = 67;
  4392. vocab.special_suffix_id = 69;
  4393. vocab.special_middle_id = 68;
  4394. // TODO: this is not EOT, it is "file separator" token, needs fix
  4395. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4396. //vocab.special_eot_id = 70;
  4397. vocab.special_eot_id = 107;
  4398. }
  4399. }
  4400. try {
  4401. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4402. } catch (const std::exception & e) {
  4403. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4404. vocab.linefeed_id = vocab.special_pad_id;
  4405. }
  4406. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4407. vocab.linefeed_id = vocab.special_pad_id;
  4408. } else {
  4409. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4410. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4411. vocab.linefeed_id = ids[0];
  4412. }
  4413. // special tokens
  4414. {
  4415. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4416. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4417. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4418. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4419. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4420. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4421. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4422. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4423. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4424. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4425. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4426. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4427. };
  4428. for (const auto & it : special_token_types) {
  4429. const std::string & key = kv(std::get<0>(it));
  4430. int32_t & id = std::get<1>(it);
  4431. uint32_t new_id;
  4432. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4433. continue;
  4434. }
  4435. if (new_id >= vocab.id_to_token.size()) {
  4436. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4437. __func__, key.c_str(), new_id, id);
  4438. } else {
  4439. id = new_id;
  4440. }
  4441. }
  4442. // Handle add_bos_token and add_eos_token
  4443. {
  4444. bool temp = true;
  4445. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4446. vocab.tokenizer_add_bos = temp;
  4447. }
  4448. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4449. vocab.tokenizer_add_eos = temp;
  4450. }
  4451. }
  4452. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4453. //
  4454. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4455. // for now, we apply this workaround to find the EOT token based on its text
  4456. if (vocab.special_eot_id == -1) {
  4457. for (const auto & t : vocab.token_to_id) {
  4458. if (
  4459. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4460. // need to fix convert script
  4461. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4462. (t.first == "<|eot_id|>" ||
  4463. t.first == "<|im_end|>" ||
  4464. t.first == "<|end|>" ||
  4465. t.first == "<end_of_turn>" ||
  4466. t.first == "<|endoftext|>"
  4467. )
  4468. ) {
  4469. vocab.special_eot_id = t.second;
  4470. break;
  4471. }
  4472. }
  4473. }
  4474. }
  4475. // build special tokens cache
  4476. {
  4477. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4478. if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
  4479. vocab.cache_special_tokens.push_back(id);
  4480. }
  4481. }
  4482. std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  4483. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4484. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4485. }
  4486. );
  4487. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  4488. }
  4489. // build token to piece cache
  4490. {
  4491. size_t size_cache = 0;
  4492. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  4493. for (uint32_t id = 0; id < n_vocab; ++id) {
  4494. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  4495. size_cache += cache_token_to_piece[id].size();
  4496. }
  4497. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  4498. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  4499. }
  4500. // Handle per token attributes
  4501. //NOTE: Each model customizes per token attributes.
  4502. //NOTE: Per token attributes are missing from the GGUF file.
  4503. //TODO: Extract attributes from GGUF file.
  4504. {
  4505. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  4506. for (auto substr : substrs) {
  4507. if (str.find(substr) < std::string::npos) {
  4508. return true;
  4509. }
  4510. }
  4511. return false;
  4512. };
  4513. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  4514. uint32_t current = vocab.id_to_token.at(id).attr;
  4515. current = value ? (current | attr) : (current & ~attr);
  4516. vocab.id_to_token[id].attr = (llama_token_attr) current;
  4517. };
  4518. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  4519. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  4520. };
  4521. std::string model_name;
  4522. std::string tokenizer_pre;
  4523. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  4524. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4525. // model name to lowercase
  4526. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  4527. [] (const std::string::value_type x) {
  4528. return std::tolower(x);
  4529. }
  4530. );
  4531. // set attributes by model/tokenizer name
  4532. if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
  4533. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  4534. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  4535. for (auto id : vocab.cache_special_tokens) {
  4536. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4537. }
  4538. for (auto token : {"</s>"}) {
  4539. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4540. }
  4541. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  4542. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  4543. }
  4544. }
  4545. }
  4546. }
  4547. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4548. const auto & hparams = model.hparams;
  4549. const auto & vocab = model.vocab;
  4550. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4551. // hparams
  4552. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4553. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4554. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4555. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4556. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4557. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4558. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4559. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4560. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4561. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4562. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4563. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4564. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4565. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4566. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4567. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4568. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4569. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4570. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4571. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4572. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4573. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4574. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4575. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4576. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4577. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4578. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4579. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4580. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4581. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4582. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  4583. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4584. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4585. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4586. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4587. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4588. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4589. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4590. if (ml.n_elements >= 1e12) {
  4591. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4592. } else if (ml.n_elements >= 1e9) {
  4593. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4594. } else if (ml.n_elements >= 1e6) {
  4595. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4596. } else {
  4597. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4598. }
  4599. if (ml.n_bytes < GiB) {
  4600. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4601. } else {
  4602. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4603. }
  4604. // general kv
  4605. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4606. // special tokens
  4607. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4608. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4609. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4610. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4611. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4612. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4613. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4614. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4615. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4616. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4617. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4618. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4619. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4620. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4621. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4622. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4623. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4624. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4625. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4626. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4627. }
  4628. if (model.arch == LLM_ARCH_QWEN2MOE) {
  4629. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4630. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  4631. }
  4632. }
  4633. // Returns false if cancelled by progress_callback
  4634. static bool llm_load_tensors(
  4635. llama_model_loader & ml,
  4636. llama_model & model,
  4637. int n_gpu_layers,
  4638. enum llama_split_mode split_mode,
  4639. int main_gpu,
  4640. const float * tensor_split,
  4641. bool use_mlock,
  4642. llama_progress_callback progress_callback,
  4643. void * progress_callback_user_data) {
  4644. model.t_start_us = ggml_time_us();
  4645. auto & hparams = model.hparams;
  4646. #ifdef GGML_USE_SYCL
  4647. // disable MoE with SYCL until mul_mat_id is updated
  4648. if (hparams.n_expert > 0) {
  4649. n_gpu_layers = 0;
  4650. }
  4651. #endif
  4652. model.split_mode = split_mode;
  4653. model.main_gpu = main_gpu;
  4654. model.n_gpu_layers = n_gpu_layers;
  4655. const int64_t n_layer = hparams.n_layer;
  4656. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4657. bool use_mmap_buffer = true;
  4658. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4659. model.buft_input = llama_default_buffer_type_cpu(true);
  4660. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4661. model.buft_layer.resize(n_layer);
  4662. // assign cpu layers
  4663. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4664. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4665. }
  4666. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4667. // calculate the split points
  4668. int device_count = llama_get_device_count(model);
  4669. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4670. std::vector<float> splits(device_count);
  4671. if (all_zero) {
  4672. // default split, by free memory
  4673. for (int i = 0; i < device_count; ++i) {
  4674. splits[i] = llama_get_device_memory(model, i);
  4675. }
  4676. } else {
  4677. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4678. }
  4679. // sum and normalize the splits to get the split points
  4680. float split_sum = 0.0f;
  4681. for (int i = 0; i < device_count; ++i) {
  4682. split_sum += splits[i];
  4683. splits[i] = split_sum;
  4684. }
  4685. for (int i = 0; i < device_count; ++i) {
  4686. splits[i] /= split_sum;
  4687. }
  4688. // assign the repeating layers to the devices according to the splits
  4689. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4690. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4691. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4692. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4693. }
  4694. // assign the output layer
  4695. if (n_gpu_layers > n_layer) {
  4696. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4697. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4698. } else {
  4699. model.buft_output = llama_default_buffer_type_cpu(true);
  4700. }
  4701. } else {
  4702. ggml_backend_buffer_type_t split_buft;
  4703. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4704. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4705. } else {
  4706. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4707. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4708. }
  4709. // assign the repeating layers
  4710. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4711. model.buft_layer[i] = {
  4712. split_buft,
  4713. llama_default_buffer_type_offload(model, main_gpu)
  4714. };
  4715. }
  4716. // assign the output layer
  4717. if (n_gpu_layers > n_layer) {
  4718. model.buft_output = {
  4719. split_buft,
  4720. llama_default_buffer_type_offload(model, main_gpu)
  4721. };
  4722. } else {
  4723. model.buft_output = llama_default_buffer_type_cpu(true);
  4724. }
  4725. }
  4726. // count used buffer types
  4727. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4728. buft_layer_count[model.buft_input.buft]++;
  4729. buft_layer_count[model.buft_input.buft_matrix]++;
  4730. buft_layer_count[model.buft_output.buft]++;
  4731. buft_layer_count[model.buft_output.buft_matrix]++;
  4732. for (int64_t i = 0; i < n_layer; ++i) {
  4733. buft_layer_count[model.buft_layer[i].buft]++;
  4734. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4735. }
  4736. // create one context per buffer type
  4737. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4738. // for moe merged tensors
  4739. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4740. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4741. for (auto & it : buft_layer_count) {
  4742. struct ggml_init_params params = {
  4743. /*.mem_size =*/ ctx_size,
  4744. /*.mem_buffer =*/ NULL,
  4745. /*.no_alloc =*/ true,
  4746. };
  4747. ggml_context * ctx = ggml_init(params);
  4748. if (!ctx) {
  4749. throw std::runtime_error(format("failed to create context"));
  4750. }
  4751. ctx_map[it.first] = ctx;
  4752. model.ctxs.push_back(ctx);
  4753. }
  4754. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4755. // create tensors for the weights
  4756. {
  4757. const int64_t n_embd = hparams.n_embd;
  4758. const int64_t n_embd_head = (hparams.n_head == 0) ? 0 : n_embd / hparams.n_head;
  4759. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4760. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4761. const int64_t n_embd_gqa = n_embd_v_gqa;
  4762. const int64_t n_vocab = hparams.n_vocab;
  4763. const int64_t n_vocab_type = hparams.n_vocab_type;
  4764. const int64_t n_ff = hparams.n_ff;
  4765. const int64_t n_expert = hparams.n_expert;
  4766. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4767. throw std::runtime_error("model has expert layers but no expert layers are used");
  4768. }
  4769. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4770. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4771. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4772. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4773. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4774. model.layers.resize(n_layer);
  4775. const auto tn = LLM_TN(model.arch);
  4776. switch (model.arch) {
  4777. case LLM_ARCH_LLAMA:
  4778. case LLM_ARCH_REFACT:
  4779. case LLM_ARCH_MINICPM:
  4780. {
  4781. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4782. // output
  4783. {
  4784. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4785. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4786. // if output is NULL, init from the input tok embed
  4787. if (model.output == NULL) {
  4788. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4789. }
  4790. }
  4791. for (int i = 0; i < n_layer; ++i) {
  4792. ggml_context * ctx_layer = ctx_for_layer(i);
  4793. ggml_context * ctx_split = ctx_for_layer_split(i);
  4794. auto & layer = model.layers[i];
  4795. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4796. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4797. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4798. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4799. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4800. // optional bias tensors
  4801. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4802. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4803. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4804. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4805. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4806. if (n_expert == 0) {
  4807. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4808. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4809. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4810. // optional MLP bias
  4811. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4812. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4813. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4814. } else {
  4815. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4816. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4817. if (layer.ffn_gate_exps) {
  4818. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4819. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4820. } else {
  4821. // merge split expert into a single tensor for compatibility with older models
  4822. // requires disabling mmap
  4823. use_mmap_buffer = false;
  4824. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4825. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4826. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4827. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4828. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4829. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4830. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4831. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4832. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4833. for (uint32_t x = 0; x < n_expert; ++x) {
  4834. // the individual experts are loaded into a view of the merged tensor
  4835. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4836. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4837. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4838. }
  4839. }
  4840. }
  4841. }
  4842. } break;
  4843. case LLM_ARCH_GROK:
  4844. {
  4845. if (n_expert == 0) {
  4846. throw std::runtime_error("Grok model cannot have zero experts");
  4847. }
  4848. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4849. // output
  4850. {
  4851. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4852. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4853. // if output is NULL, init from the input tok embed
  4854. if (model.output == NULL) {
  4855. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4856. }
  4857. }
  4858. for (int i = 0; i < n_layer; ++i) {
  4859. ggml_context * ctx_layer = ctx_for_layer(i);
  4860. ggml_context * ctx_split = ctx_for_layer_split(i);
  4861. auto & layer = model.layers[i];
  4862. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4863. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4864. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4865. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4866. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4867. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4868. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4869. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4870. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4871. if (layer.ffn_gate_exps) {
  4872. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4873. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4874. } else {
  4875. // merge split expert into a single tensor for compatibility with older models
  4876. // requires disabling mmap
  4877. use_mmap_buffer = false;
  4878. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4879. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4880. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4881. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4882. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4883. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4884. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4885. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4886. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4887. for (uint32_t x = 0; x < n_expert; ++x) {
  4888. // the individual experts are loaded into a view of the merged tensor
  4889. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4890. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4891. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4892. }
  4893. }
  4894. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4895. }
  4896. } break;
  4897. case LLM_ARCH_DBRX:
  4898. {
  4899. if (n_expert == 0) {
  4900. throw std::runtime_error("DBRX model cannot have zero experts");
  4901. }
  4902. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4903. // output
  4904. {
  4905. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4906. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4907. }
  4908. for (int i = 0; i < n_layer; ++i) {
  4909. ggml_context * ctx_layer = ctx_for_layer(i);
  4910. ggml_context * ctx_split = ctx_for_layer_split(i);
  4911. auto & layer = model.layers[i];
  4912. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4913. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4914. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4915. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4916. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4917. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4918. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4919. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4920. }
  4921. } break;
  4922. case LLM_ARCH_BAICHUAN:
  4923. {
  4924. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4925. {
  4926. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4927. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4928. }
  4929. for (int i = 0; i < n_layer; ++i) {
  4930. ggml_context * ctx_layer = ctx_for_layer(i);
  4931. ggml_context * ctx_split = ctx_for_layer_split(i);
  4932. auto & layer = model.layers[i];
  4933. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4934. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4935. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4936. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4937. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4938. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4939. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4940. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4941. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4942. }
  4943. } break;
  4944. case LLM_ARCH_FALCON:
  4945. {
  4946. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4947. // output
  4948. {
  4949. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4950. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4951. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4952. if (!model.output) {
  4953. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4954. }
  4955. }
  4956. for (int i = 0; i < n_layer; ++i) {
  4957. ggml_context * ctx_layer = ctx_for_layer(i);
  4958. ggml_context * ctx_split = ctx_for_layer_split(i);
  4959. auto & layer = model.layers[i];
  4960. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4961. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4962. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4963. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4964. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4965. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4966. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4967. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4968. }
  4969. } break;
  4970. case LLM_ARCH_STARCODER:
  4971. {
  4972. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4973. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4974. // output
  4975. {
  4976. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4977. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4978. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4979. if (!model.output) {
  4980. // needs to be on GPU
  4981. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4982. }
  4983. }
  4984. for (int i = 0; i < n_layer; ++i) {
  4985. ggml_context * ctx_layer = ctx_for_layer(i);
  4986. ggml_context * ctx_split = ctx_for_layer_split(i);
  4987. auto & layer = model.layers[i];
  4988. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4989. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4990. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4991. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4992. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4993. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4994. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4995. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4996. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4997. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4998. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4999. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5000. }
  5001. } break;
  5002. case LLM_ARCH_BERT:
  5003. case LLM_ARCH_NOMIC_BERT:
  5004. {
  5005. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5006. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  5007. if (model.arch == LLM_ARCH_BERT) {
  5008. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5009. }
  5010. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5011. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5012. for (int i = 0; i < n_layer; ++i) {
  5013. ggml_context * ctx_layer = ctx_for_layer(i);
  5014. ggml_context * ctx_split = ctx_for_layer_split(i);
  5015. auto & layer = model.layers[i];
  5016. if (model.arch == LLM_ARCH_BERT) {
  5017. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5018. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5019. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5020. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5021. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5022. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5023. } else {
  5024. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5025. }
  5026. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5027. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  5028. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5029. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5030. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5031. if (model.arch == LLM_ARCH_BERT) {
  5032. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5033. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5034. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5035. } else {
  5036. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5037. }
  5038. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5039. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5040. }
  5041. } break;
  5042. case LLM_ARCH_JINA_BERT_V2:
  5043. {
  5044. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  5045. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  5046. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  5047. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  5048. for (int i = 0; i < n_layer; ++i) {
  5049. ggml_context * ctx_layer = ctx_for_layer(i);
  5050. ggml_context * ctx_split = ctx_for_layer_split(i);
  5051. auto & layer = model.layers[i]; // JinaBertLayer
  5052. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5053. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5054. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5055. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5056. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5057. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5058. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5059. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5060. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5061. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5062. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  5063. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  5064. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  5065. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5066. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5067. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5068. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5069. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5070. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5071. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5072. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5073. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5074. }
  5075. } break;
  5076. case LLM_ARCH_BLOOM:
  5077. {
  5078. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5079. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5080. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5081. // output
  5082. {
  5083. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5084. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5085. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5086. }
  5087. for (int i = 0; i < n_layer; ++i) {
  5088. ggml_context * ctx_layer = ctx_for_layer(i);
  5089. ggml_context * ctx_split = ctx_for_layer_split(i);
  5090. auto & layer = model.layers[i];
  5091. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5092. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5093. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5094. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5095. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5096. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5097. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5098. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5099. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5100. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5101. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5102. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5103. }
  5104. } break;
  5105. case LLM_ARCH_MPT:
  5106. {
  5107. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5108. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5109. // output
  5110. {
  5111. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5112. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5113. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5114. if (!model.output) {
  5115. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  5116. }
  5117. }
  5118. for (int i = 0; i < n_layer; ++i) {
  5119. ggml_context * ctx_layer = ctx_for_layer(i);
  5120. ggml_context * ctx_split = ctx_for_layer_split(i);
  5121. auto & layer = model.layers[i];
  5122. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5123. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5124. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5125. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5126. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5127. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5128. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5129. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5130. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5131. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5132. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5133. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5134. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5135. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5136. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5137. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5138. // AWQ ScaleActivation layer
  5139. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5140. }
  5141. } break;
  5142. case LLM_ARCH_STABLELM:
  5143. {
  5144. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5145. // output
  5146. {
  5147. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5148. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5149. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5150. }
  5151. for (int i = 0; i < n_layer; ++i) {
  5152. ggml_context * ctx_layer = ctx_for_layer(i);
  5153. ggml_context * ctx_split = ctx_for_layer_split(i);
  5154. auto & layer = model.layers[i];
  5155. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5156. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5157. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5158. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5159. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5160. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5161. // optional bias tensors, present in Stable LM 2 1.6B
  5162. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5163. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5164. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5165. // optional q and k layernorms, present in StableLM 2 12B
  5166. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5167. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5168. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  5169. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5170. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5171. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5172. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5173. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5174. }
  5175. } break;
  5176. case LLM_ARCH_QWEN:
  5177. {
  5178. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5179. // output
  5180. {
  5181. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5182. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5183. }
  5184. for (int i = 0; i < n_layer; ++i) {
  5185. ggml_context * ctx_layer = ctx_for_layer(i);
  5186. ggml_context * ctx_split = ctx_for_layer_split(i);
  5187. auto & layer = model.layers[i];
  5188. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5189. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  5190. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  5191. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5192. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5193. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  5194. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  5195. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  5196. }
  5197. } break;
  5198. case LLM_ARCH_QWEN2:
  5199. {
  5200. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5201. // output
  5202. {
  5203. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5204. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5205. // if output is NULL, init from the input tok embed
  5206. if (model.output == NULL) {
  5207. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5208. }
  5209. }
  5210. for (int i = 0; i < n_layer; ++i) {
  5211. ggml_context * ctx_layer = ctx_for_layer(i);
  5212. ggml_context * ctx_split = ctx_for_layer_split(i);
  5213. auto & layer = model.layers[i];
  5214. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5215. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5216. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5217. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5218. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5219. // optional bias tensors
  5220. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5221. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5222. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5223. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5224. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5225. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5226. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5227. }
  5228. } break;
  5229. case LLM_ARCH_QWEN2MOE:
  5230. {
  5231. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5232. // output
  5233. {
  5234. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5235. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5236. }
  5237. for (int i = 0; i < n_layer; ++i) {
  5238. ggml_context * ctx_layer = ctx_for_layer(i);
  5239. ggml_context * ctx_split = ctx_for_layer_split(i);
  5240. auto & layer = model.layers[i];
  5241. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5242. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5243. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5244. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5245. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5246. // optional bias tensors
  5247. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5248. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5249. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5250. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5251. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5252. GGML_ASSERT(hparams.n_expert > 0);
  5253. GGML_ASSERT(hparams.n_expert_used > 0);
  5254. // MoE branch
  5255. auto n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / hparams.n_expert_used;
  5256. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5257. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5258. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5259. // Shared expert branch
  5260. auto n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  5261. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5262. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5263. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
  5264. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5265. }
  5266. } break;
  5267. case LLM_ARCH_PHI2:
  5268. {
  5269. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5270. // output
  5271. {
  5272. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5273. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5274. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5275. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5276. }
  5277. for (int i = 0; i < n_layer; ++i) {
  5278. ggml_context * ctx_layer = ctx_for_layer(i);
  5279. ggml_context * ctx_split = ctx_for_layer_split(i);
  5280. auto & layer = model.layers[i];
  5281. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5282. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5283. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5284. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5285. if (layer.wqkv == nullptr) {
  5286. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5287. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5288. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5289. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5290. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5291. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5292. }
  5293. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5294. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5295. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5296. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5297. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5298. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5299. }
  5300. } break;
  5301. case LLM_ARCH_PHI3:
  5302. {
  5303. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5304. // output
  5305. {
  5306. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5307. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5308. }
  5309. for (int i = 0; i < n_layer; ++i) {
  5310. ggml_context* ctx_layer = ctx_for_layer(i);
  5311. ggml_context* ctx_split = ctx_for_layer_split(i);
  5312. auto & layer = model.layers[i];
  5313. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5314. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5315. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5316. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5317. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5318. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5319. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5320. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5321. }
  5322. } break;
  5323. case LLM_ARCH_PLAMO:
  5324. {
  5325. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5326. // output
  5327. {
  5328. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5329. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5330. }
  5331. for (int i = 0; i < n_layer; ++i) {
  5332. ggml_context * ctx_layer = ctx_for_layer(i);
  5333. ggml_context * ctx_split = ctx_for_layer_split(i);
  5334. auto & layer = model.layers[i];
  5335. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5336. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5337. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5338. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5339. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5340. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5341. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5342. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5343. }
  5344. } break;
  5345. case LLM_ARCH_GPT2:
  5346. {
  5347. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5348. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5349. // output
  5350. {
  5351. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5352. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5353. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5354. }
  5355. for (int i = 0; i < n_layer; ++i) {
  5356. ggml_context * ctx_layer = ctx_for_layer(i);
  5357. ggml_context * ctx_split = ctx_for_layer_split(i);
  5358. auto & layer = model.layers[i];
  5359. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5360. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5361. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5362. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5363. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5364. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5365. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5366. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5367. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5368. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5369. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5370. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5371. }
  5372. } break;
  5373. case LLM_ARCH_CODESHELL:
  5374. {
  5375. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5376. // output
  5377. {
  5378. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5379. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5380. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5381. }
  5382. for (int i = 0; i < n_layer; ++i) {
  5383. ggml_context * ctx_layer = ctx_for_layer(i);
  5384. ggml_context * ctx_split = ctx_for_layer_split(i);
  5385. auto & layer = model.layers[i];
  5386. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5387. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5388. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5389. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5390. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5391. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5392. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5393. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5394. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5395. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5396. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5397. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5398. }
  5399. } break;
  5400. case LLM_ARCH_ORION:
  5401. {
  5402. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5403. {
  5404. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5405. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5406. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5407. }
  5408. for (int i = 0; i < n_layer; ++i) {
  5409. ggml_context * ctx_layer = ctx_for_layer(i);
  5410. ggml_context * ctx_split = ctx_for_layer_split(i);
  5411. auto & layer = model.layers[i];
  5412. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5413. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5414. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5415. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5416. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5417. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5418. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5419. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5420. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5421. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5422. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5423. }
  5424. } break;
  5425. case LLM_ARCH_INTERNLM2:
  5426. {
  5427. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5428. // output
  5429. {
  5430. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5431. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5432. }
  5433. for (int i = 0; i < n_layer; ++i) {
  5434. ggml_context * ctx_layer = ctx_for_layer(i);
  5435. ggml_context * ctx_split = ctx_for_layer_split(i);
  5436. auto & layer = model.layers[i];
  5437. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5438. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5439. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5440. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5441. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5442. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5443. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5444. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5445. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5446. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5447. }
  5448. } break;
  5449. case LLM_ARCH_GEMMA:
  5450. {
  5451. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5452. // output
  5453. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5454. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5455. const int64_t n_ff = hparams.n_ff;
  5456. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5457. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5458. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5459. for (uint32_t i = 0; i < n_layer; ++i) {
  5460. ggml_context * ctx_layer = ctx_for_layer(i);
  5461. ggml_context * ctx_split = ctx_for_layer_split(i);
  5462. auto & layer = model.layers[i];
  5463. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5464. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5465. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5466. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5467. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5468. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5469. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5470. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5471. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5472. }
  5473. } break;
  5474. case LLM_ARCH_STARCODER2:
  5475. {
  5476. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5477. // output
  5478. {
  5479. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5480. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5481. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5482. // if output is NULL, init from the input tok embed
  5483. if (model.output == NULL) {
  5484. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5485. }
  5486. }
  5487. for (int i = 0; i < n_layer; ++i) {
  5488. ggml_context * ctx_layer = ctx_for_layer(i);
  5489. ggml_context * ctx_split = ctx_for_layer_split(i);
  5490. auto & layer = model.layers[i];
  5491. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5492. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5493. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5494. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5495. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5496. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5497. // optional bias tensors
  5498. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5499. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5500. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5501. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5502. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5503. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5504. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5505. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5506. // optional bias tensors
  5507. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5508. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5509. }
  5510. } break;
  5511. case LLM_ARCH_MAMBA:
  5512. {
  5513. const int64_t d_conv = hparams.ssm_d_conv;
  5514. const int64_t d_inner = hparams.ssm_d_inner;
  5515. const int64_t d_state = hparams.ssm_d_state;
  5516. const int64_t dt_rank = hparams.ssm_dt_rank;
  5517. // only an expansion factor of 2 is supported for now
  5518. GGML_ASSERT(2 * n_embd == d_inner);
  5519. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5520. // output
  5521. {
  5522. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5523. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5524. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5525. if (model.output == NULL) {
  5526. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5527. }
  5528. }
  5529. for (int i = 0; i < n_layer; ++i) {
  5530. ggml_context * ctx_layer = ctx_for_layer(i);
  5531. ggml_context * ctx_split = ctx_for_layer_split(i);
  5532. auto & layer = model.layers[i];
  5533. // norm
  5534. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5535. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5536. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5537. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5538. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5539. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5540. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5541. // no "weight" suffix for these
  5542. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5543. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5544. // out_proj
  5545. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5546. }
  5547. } break;
  5548. case LLM_ARCH_XVERSE:
  5549. {
  5550. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5551. {
  5552. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5553. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5554. }
  5555. for (int i = 0; i < n_layer; ++i) {
  5556. ggml_context * ctx_layer = ctx_for_layer(i);
  5557. ggml_context * ctx_split = ctx_for_layer_split(i);
  5558. auto & layer = model.layers[i];
  5559. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5560. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5561. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5562. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5563. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5564. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5565. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5566. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5567. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5568. }
  5569. } break;
  5570. case LLM_ARCH_COMMAND_R:
  5571. {
  5572. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5573. // output
  5574. {
  5575. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5576. // init output from the input tok embed
  5577. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5578. }
  5579. for (int i = 0; i < n_layer; ++i) {
  5580. ggml_context * ctx_layer = ctx_for_layer(i);
  5581. ggml_context * ctx_split = ctx_for_layer_split(i);
  5582. auto & layer = model.layers[i];
  5583. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5584. if (n_layer >= 64){
  5585. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5586. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5587. }
  5588. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5589. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5590. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5591. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5592. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5593. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5594. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5595. }
  5596. } break;
  5597. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5598. {
  5599. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5600. // output
  5601. {
  5602. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5603. // if output is NULL, init from the input tok embed
  5604. if (model.output == NULL) {
  5605. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5606. }
  5607. }
  5608. for (int i = 0; i < n_layer; ++i) {
  5609. ggml_context * ctx_split = ctx_for_layer_split(i);
  5610. auto & layer = model.layers[i];
  5611. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5612. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5613. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5614. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5615. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5616. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5617. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5618. }
  5619. } break;
  5620. case LLM_ARCH_GPTNEOX:
  5621. {
  5622. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5623. // output
  5624. {
  5625. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5626. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5627. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5628. }
  5629. for (int i = 0; i < n_layer; ++i) {
  5630. ggml_context * ctx_layer = ctx_for_layer(i);
  5631. ggml_context * ctx_split = ctx_for_layer_split(i);
  5632. auto & layer = model.layers[i];
  5633. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5634. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5635. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5636. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5637. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5638. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5639. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5640. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5641. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5642. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5643. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5644. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5645. }
  5646. } break;
  5647. case LLM_ARCH_ARCTIC:
  5648. {
  5649. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5650. // output
  5651. {
  5652. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5653. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5654. // if output is NULL, init from the input tok embed
  5655. if (model.output == NULL) {
  5656. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5657. }
  5658. }
  5659. for (int i = 0; i < n_layer; ++i) {
  5660. ggml_context * ctx_layer = ctx_for_layer(i);
  5661. ggml_context * ctx_split = ctx_for_layer_split(i);
  5662. auto & layer = model.layers[i];
  5663. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5664. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5665. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5666. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5667. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5668. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5669. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5670. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5671. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5672. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5673. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5674. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5675. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5676. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5677. }
  5678. } break;
  5679. case LLM_ARCH_DEEPSEEK2:
  5680. {
  5681. bool is_lite = (hparams.n_layer == 27);
  5682. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5683. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5684. const uint32_t q_lora_rank = hparams.n_lora_q;
  5685. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5686. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5687. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5688. // output
  5689. {
  5690. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5691. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5692. }
  5693. for (int i = 0; i < n_layer; ++i) {
  5694. ggml_context * ctx_layer = ctx_for_layer(i);
  5695. ggml_context * ctx_split = ctx_for_layer_split(i);
  5696. auto & layer = model.layers[i];
  5697. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5698. if (!is_lite) {
  5699. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5700. }
  5701. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5702. if (!is_lite) {
  5703. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5704. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5705. } else {
  5706. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5707. }
  5708. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5709. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5710. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5711. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5712. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5713. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5714. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5715. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5716. } else {
  5717. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5718. GGML_ASSERT(hparams.n_expert > 0);
  5719. GGML_ASSERT(hparams.n_expert_used > 0);
  5720. // MoE branch
  5721. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5722. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5723. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5724. // Shared expert branch
  5725. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5726. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5727. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5728. }
  5729. }
  5730. } break;
  5731. default:
  5732. throw std::runtime_error("unknown architecture");
  5733. }
  5734. }
  5735. ml.done_getting_tensors();
  5736. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5737. model.mappings.reserve(ml.mappings.size());
  5738. // create the backend buffers
  5739. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5740. ctx_bufs.reserve(ctx_map.size());
  5741. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5742. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5743. model.bufs.reserve(n_max_backend_buffer);
  5744. for (auto & it : ctx_map) {
  5745. ggml_backend_buffer_type_t buft = it.first;
  5746. ggml_context * ctx = it.second;
  5747. llama_buf_map bufs;
  5748. bufs.reserve(n_max_backend_buffer);
  5749. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5750. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5751. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5752. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5753. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5754. void * addr = nullptr;
  5755. size_t first, last;
  5756. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5757. if (first >= last) {
  5758. continue;
  5759. }
  5760. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5761. if (buf == nullptr) {
  5762. throw std::runtime_error("unable to allocate backend CPU buffer");
  5763. }
  5764. model.bufs.push_back(buf);
  5765. bufs.emplace(idx, buf);
  5766. #ifdef GGML_USE_CUDA
  5767. if (n_layer >= n_gpu_layers) {
  5768. ggml_backend_cuda_register_host_buffer(
  5769. ggml_backend_buffer_get_base(buf),
  5770. ggml_backend_buffer_get_size(buf));
  5771. }
  5772. #endif
  5773. }
  5774. }
  5775. #ifdef GGML_USE_METAL
  5776. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5777. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5778. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5779. void * addr = nullptr;
  5780. size_t first, last;
  5781. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5782. if (first >= last) {
  5783. continue;
  5784. }
  5785. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5786. if (buf == nullptr) {
  5787. throw std::runtime_error("unable to allocate backend metal buffer");
  5788. }
  5789. model.bufs.push_back(buf);
  5790. bufs.emplace(idx, buf);
  5791. }
  5792. }
  5793. #endif
  5794. else {
  5795. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5796. if (buf == nullptr) {
  5797. throw std::runtime_error("unable to allocate backend buffer");
  5798. }
  5799. model.bufs.push_back(buf);
  5800. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5801. model.mlock_bufs.emplace_back(new llama_mlock);
  5802. auto & mlock_buf = model.mlock_bufs.back();
  5803. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5804. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5805. }
  5806. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5807. bufs.emplace(idx, buf);
  5808. }
  5809. }
  5810. if (bufs.empty()) {
  5811. throw std::runtime_error("failed to allocate buffer");
  5812. }
  5813. for (auto & buf : bufs) {
  5814. // indicate that this buffer contains weights
  5815. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5816. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5817. }
  5818. ctx_bufs.emplace_back(ctx, bufs);
  5819. }
  5820. if (llama_supports_gpu_offload()) {
  5821. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5822. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5823. if (n_gpu_layers > (int) hparams.n_layer) {
  5824. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5825. }
  5826. const int max_backend_supported_layers = hparams.n_layer + 1;
  5827. const int max_offloadable_layers = hparams.n_layer + 1;
  5828. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5829. }
  5830. // print memory requirements
  5831. for (ggml_backend_buffer_t buf : model.bufs) {
  5832. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5833. }
  5834. // populate tensors_by_name
  5835. for (ggml_context * ctx : model.ctxs) {
  5836. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5837. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5838. }
  5839. }
  5840. // load tensor data
  5841. for (auto & it : ctx_bufs) {
  5842. ggml_context * ctx = it.first;
  5843. auto & bufs = it.second;
  5844. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5845. return false;
  5846. }
  5847. }
  5848. if (use_mmap_buffer) {
  5849. for (auto & mapping : ml.mappings) {
  5850. model.mappings.emplace_back(std::move(mapping));
  5851. }
  5852. }
  5853. // loading time will be recalculate after the first eval, so
  5854. // we take page faults deferred by mmap() into consideration
  5855. model.t_load_us = ggml_time_us() - model.t_start_us;
  5856. return true;
  5857. }
  5858. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5859. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5860. try {
  5861. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5862. model.hparams.vocab_only = params.vocab_only;
  5863. try {
  5864. llm_load_arch(ml, model);
  5865. } catch(const std::exception & e) {
  5866. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5867. }
  5868. try {
  5869. llm_load_hparams(ml, model);
  5870. } catch(const std::exception & e) {
  5871. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5872. }
  5873. try {
  5874. llm_load_vocab(ml, model);
  5875. } catch(const std::exception & e) {
  5876. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5877. }
  5878. llm_load_print_meta(ml, model);
  5879. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5880. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5881. throw std::runtime_error("vocab size mismatch");
  5882. }
  5883. if (params.vocab_only) {
  5884. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5885. return 0;
  5886. }
  5887. #ifdef GGML_USE_KOMPUTE
  5888. if (params.n_gpu_layers > 0 && (
  5889. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5890. || !(
  5891. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5892. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5893. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5894. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5895. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5896. )
  5897. )) {
  5898. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5899. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5900. params.n_gpu_layers = 0;
  5901. }
  5902. #endif
  5903. if (!llm_load_tensors(
  5904. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5905. params.progress_callback, params.progress_callback_user_data
  5906. )) {
  5907. return -2;
  5908. }
  5909. } catch (const std::exception & err) {
  5910. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5911. return -1;
  5912. }
  5913. return 0;
  5914. }
  5915. //
  5916. // llm_build
  5917. //
  5918. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5919. enum llm_ffn_op_type {
  5920. LLM_FFN_SILU,
  5921. LLM_FFN_GELU,
  5922. LLM_FFN_RELU,
  5923. LLM_FFN_RELU_SQR,
  5924. };
  5925. enum llm_ffn_gate_type {
  5926. LLM_FFN_SEQ,
  5927. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5928. };
  5929. enum llm_norm_type {
  5930. LLM_NORM,
  5931. LLM_NORM_RMS,
  5932. };
  5933. static struct ggml_tensor * llm_build_inp_embd(
  5934. struct ggml_context * ctx,
  5935. struct llama_context & lctx,
  5936. const llama_hparams & hparams,
  5937. const llama_batch & batch,
  5938. struct ggml_tensor * tok_embd,
  5939. const llm_build_cb & cb) {
  5940. const int64_t n_embd = hparams.n_embd;
  5941. struct ggml_tensor * inpL;
  5942. if (batch.token) {
  5943. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5944. cb(lctx.inp_tokens, "inp_tokens", -1);
  5945. ggml_set_input(lctx.inp_tokens);
  5946. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5947. } else {
  5948. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5949. inpL = lctx.inp_embd;
  5950. ggml_set_input(lctx.inp_embd);
  5951. }
  5952. cb(inpL, "inp_embd", -1);
  5953. return inpL;
  5954. }
  5955. static void llm_build_kv_store(
  5956. struct ggml_context * ctx,
  5957. const llama_hparams & hparams,
  5958. const llama_cparams & cparams,
  5959. const llama_kv_cache & kv,
  5960. struct ggml_cgraph * graph,
  5961. struct ggml_tensor * k_cur,
  5962. struct ggml_tensor * v_cur,
  5963. int32_t n_tokens,
  5964. int32_t kv_head,
  5965. const llm_build_cb & cb,
  5966. int64_t il) {
  5967. const int64_t n_ctx = cparams.n_ctx;
  5968. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5969. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5970. GGML_ASSERT(kv.size == n_ctx);
  5971. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5972. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5973. cb(k_cache_view, "k_cache_view", il);
  5974. // note: storing RoPE-ed version of K in the KV cache
  5975. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5976. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5977. struct ggml_tensor * v_cache_view = nullptr;
  5978. if (cparams.flash_attn) {
  5979. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5980. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5981. } else {
  5982. // note: the V cache is transposed when not using flash attention
  5983. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5984. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5985. (kv_head)*ggml_element_size(kv.v_l[il]));
  5986. v_cur = ggml_transpose(ctx, v_cur);
  5987. }
  5988. cb(v_cache_view, "v_cache_view", il);
  5989. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5990. }
  5991. static struct ggml_tensor * llm_build_norm(
  5992. struct ggml_context * ctx,
  5993. struct ggml_tensor * cur,
  5994. const llama_hparams & hparams,
  5995. struct ggml_tensor * mw,
  5996. struct ggml_tensor * mb,
  5997. llm_norm_type type,
  5998. const llm_build_cb & cb,
  5999. int il) {
  6000. switch (type) {
  6001. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  6002. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  6003. }
  6004. if (mw || mb) {
  6005. cb(cur, "norm", il);
  6006. }
  6007. if (mw) {
  6008. cur = ggml_mul(ctx, cur, mw);
  6009. if (mb) {
  6010. cb(cur, "norm_w", il);
  6011. }
  6012. }
  6013. if (mb) {
  6014. cur = ggml_add(ctx, cur, mb);
  6015. }
  6016. return cur;
  6017. }
  6018. static struct ggml_tensor * llm_build_ffn(
  6019. struct ggml_context * ctx,
  6020. struct ggml_tensor * cur,
  6021. struct ggml_tensor * up,
  6022. struct ggml_tensor * up_b,
  6023. struct ggml_tensor * gate,
  6024. struct ggml_tensor * gate_b,
  6025. struct ggml_tensor * down,
  6026. struct ggml_tensor * down_b,
  6027. struct ggml_tensor * act_scales,
  6028. llm_ffn_op_type type_op,
  6029. llm_ffn_gate_type type_gate,
  6030. const llm_build_cb & cb,
  6031. int il) {
  6032. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  6033. cb(tmp, "ffn_up", il);
  6034. if (up_b) {
  6035. tmp = ggml_add(ctx, tmp, up_b);
  6036. cb(tmp, "ffn_up_b", il);
  6037. }
  6038. if (gate) {
  6039. switch (type_gate) {
  6040. case LLM_FFN_SEQ:
  6041. {
  6042. cur = ggml_mul_mat(ctx, gate, tmp);
  6043. cb(cur, "ffn_gate", il);
  6044. } break;
  6045. case LLM_FFN_PAR:
  6046. {
  6047. cur = ggml_mul_mat(ctx, gate, cur);
  6048. cb(cur, "ffn_gate", il);
  6049. } break;
  6050. }
  6051. if (gate_b) {
  6052. cur = ggml_add(ctx, cur, gate_b);
  6053. cb(cur, "ffn_gate_b", il);
  6054. }
  6055. } else {
  6056. cur = tmp;
  6057. }
  6058. switch (type_op) {
  6059. case LLM_FFN_SILU:
  6060. {
  6061. cur = ggml_silu(ctx, cur);
  6062. cb(cur, "ffn_silu", il);
  6063. } break;
  6064. case LLM_FFN_GELU:
  6065. {
  6066. cur = ggml_gelu(ctx, cur);
  6067. cb(cur, "ffn_gelu", il);
  6068. if (act_scales != NULL) {
  6069. cur = ggml_div(ctx, cur, act_scales);
  6070. cb(cur, "ffn_act", il);
  6071. }
  6072. } break;
  6073. case LLM_FFN_RELU:
  6074. {
  6075. cur = ggml_relu(ctx, cur);
  6076. cb(cur, "ffn_relu", il);
  6077. } break;
  6078. case LLM_FFN_RELU_SQR:
  6079. {
  6080. cur = ggml_relu(ctx, cur);
  6081. cb(cur, "ffn_relu", il);
  6082. cur = ggml_sqr(ctx, cur);
  6083. cb(cur, "ffn_sqr(relu)", il);
  6084. } break;
  6085. }
  6086. if (type_gate == LLM_FFN_PAR) {
  6087. cur = ggml_mul(ctx, cur, tmp);
  6088. cb(cur, "ffn_gate_par", il);
  6089. }
  6090. cur = ggml_mul_mat(ctx, down, cur);
  6091. if (down_b) {
  6092. cb(cur, "ffn_down", il);
  6093. }
  6094. if (down_b) {
  6095. cur = ggml_add(ctx, cur, down_b);
  6096. }
  6097. return cur;
  6098. }
  6099. static struct ggml_tensor * llm_build_moe_ffn(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * cur,
  6102. struct ggml_tensor * gate_inp,
  6103. struct ggml_tensor * up_exps,
  6104. struct ggml_tensor * gate_exps,
  6105. struct ggml_tensor * down_exps,
  6106. int64_t n_expert,
  6107. int64_t n_expert_used,
  6108. llm_ffn_op_type type_op,
  6109. bool norm_w,
  6110. bool scale_w,
  6111. float w_scale,
  6112. const llm_build_cb & cb,
  6113. int il) {
  6114. int64_t n_embd = cur->ne[0];
  6115. int64_t n_tokens = cur->ne[1];
  6116. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  6117. cb(logits, "ffn_moe_logits", il);
  6118. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  6119. cb(probs, "ffn_moe_probs", il);
  6120. // select experts
  6121. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  6122. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  6123. cb(selected_experts, "ffn_moe_topk", il);
  6124. ggml_tensor * weights = ggml_get_rows(ctx,
  6125. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  6126. cb(weights, "ffn_moe_weights", il);
  6127. if (norm_w) {
  6128. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  6129. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  6130. cb(weights_sum, "ffn_moe_weights_sum", il);
  6131. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  6132. cb(weights, "ffn_moe_weights_norm", il);
  6133. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  6134. }
  6135. if (scale_w) {
  6136. weights = ggml_scale(ctx, weights, w_scale);
  6137. cb(weights, "ffn_moe_weights_scaled", il);
  6138. }
  6139. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  6140. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6141. cb(up, "ffn_moe_up", il);
  6142. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6143. cb(gate, "ffn_moe_gate", il);
  6144. switch (type_op) {
  6145. case LLM_FFN_SILU:
  6146. {
  6147. gate = ggml_silu(ctx, gate);
  6148. cb(gate, "ffn_moe_silu", il);
  6149. } break;
  6150. case LLM_FFN_GELU:
  6151. {
  6152. gate = ggml_gelu(ctx, gate);
  6153. cb(gate, "ffn_moe_gelu", il);
  6154. } break;
  6155. default:
  6156. GGML_ASSERT(false);
  6157. }
  6158. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  6159. cb(par, "ffn_moe_gate_par", il);
  6160. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  6161. cb(experts, "ffn_moe_down", il);
  6162. experts = ggml_mul(ctx, experts, weights);
  6163. // aggregate experts
  6164. ggml_tensor * moe_out = nullptr;
  6165. for (int i = 0; i < n_expert_used; ++i) {
  6166. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  6167. experts->nb[2], i*experts->nb[1]);
  6168. if (i == 0) {
  6169. moe_out = cur_expert;
  6170. } else {
  6171. moe_out = ggml_add(ctx, moe_out, cur_expert);
  6172. }
  6173. }
  6174. if (n_expert_used == 1) {
  6175. // avoid returning a non-contiguous tensor
  6176. moe_out = ggml_cont(ctx, moe_out);
  6177. }
  6178. return moe_out;
  6179. }
  6180. static struct ggml_tensor * llm_build_kqv(
  6181. struct ggml_context * ctx,
  6182. const llama_model & model,
  6183. const llama_hparams & hparams,
  6184. const llama_cparams & cparams,
  6185. const llama_kv_cache & kv,
  6186. struct ggml_cgraph * graph,
  6187. struct ggml_tensor * wo,
  6188. struct ggml_tensor * wo_b,
  6189. struct ggml_tensor * q_cur,
  6190. struct ggml_tensor * kq_mask,
  6191. int32_t n_tokens,
  6192. int32_t n_kv,
  6193. float kq_scale,
  6194. const llm_build_cb & cb,
  6195. int il) {
  6196. const int64_t n_ctx = cparams.n_ctx;
  6197. const int64_t n_head = hparams.n_head;
  6198. const int64_t n_head_kv = hparams.n_head_kv;
  6199. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6200. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6201. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6202. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6203. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  6204. cb(q, "q", il);
  6205. struct ggml_tensor * k =
  6206. ggml_view_3d(ctx, kv.k_l[il],
  6207. n_embd_head_k, n_kv, n_head_kv,
  6208. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6209. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6210. 0);
  6211. cb(k, "k", il);
  6212. struct ggml_tensor * cur;
  6213. if (cparams.flash_attn) {
  6214. GGML_UNUSED(model);
  6215. GGML_UNUSED(n_ctx);
  6216. // split cached v into n_head heads (not transposed)
  6217. struct ggml_tensor * v =
  6218. ggml_view_3d(ctx, kv.v_l[il],
  6219. n_embd_head_v, n_kv, n_head_kv,
  6220. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6221. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6222. 0);
  6223. cb(v, "v", il);
  6224. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6225. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6226. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6227. }
  6228. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6229. } else {
  6230. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6231. cb(kq, "kq", il);
  6232. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6233. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6234. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6235. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6236. }
  6237. if (model.arch == LLM_ARCH_GROK) {
  6238. // need to do the following:
  6239. // multiply by attn_output_multiplyer of 0.08838834764831845
  6240. // and then :
  6241. // kq = 30 * tanh(kq / 30)
  6242. // before the softmax below
  6243. //try from phi2
  6244. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6245. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6246. kq = ggml_scale(ctx, kq, 30);
  6247. }
  6248. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6249. cb(kq, "kq_soft_max_ext", il);
  6250. GGML_ASSERT(kv.size == n_ctx);
  6251. // split cached v into n_head heads
  6252. struct ggml_tensor * v =
  6253. ggml_view_3d(ctx, kv.v_l[il],
  6254. n_kv, n_embd_head_v, n_head_kv,
  6255. ggml_element_size(kv.v_l[il])*n_ctx,
  6256. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  6257. 0);
  6258. cb(v, "v", il);
  6259. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  6260. cb(kqv, "kqv", il);
  6261. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  6262. cb(kqv_merged, "kqv_merged", il);
  6263. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  6264. cb(cur, "kqv_merged_cont", il);
  6265. }
  6266. ggml_build_forward_expand(graph, cur);
  6267. cur = ggml_mul_mat(ctx, wo, cur);
  6268. if (wo_b) {
  6269. cb(cur, "kqv_wo", il);
  6270. }
  6271. if (wo_b) {
  6272. cur = ggml_add(ctx, cur, wo_b);
  6273. }
  6274. return cur;
  6275. }
  6276. static struct ggml_tensor * llm_build_kv(
  6277. struct ggml_context * ctx,
  6278. const llama_model & model,
  6279. const llama_hparams & hparams,
  6280. const llama_cparams & cparams,
  6281. const llama_kv_cache & kv,
  6282. struct ggml_cgraph * graph,
  6283. struct ggml_tensor * wo,
  6284. struct ggml_tensor * wo_b,
  6285. struct ggml_tensor * k_cur,
  6286. struct ggml_tensor * v_cur,
  6287. struct ggml_tensor * q_cur,
  6288. struct ggml_tensor * kq_mask,
  6289. int32_t n_tokens,
  6290. int32_t kv_head,
  6291. int32_t n_kv,
  6292. float kq_scale,
  6293. const llm_build_cb & cb,
  6294. int il) {
  6295. // these nodes are added to the graph together so that they are not reordered
  6296. // by doing so, the number of splits in the graph is reduced
  6297. ggml_build_forward_expand(graph, q_cur);
  6298. ggml_build_forward_expand(graph, k_cur);
  6299. ggml_build_forward_expand(graph, v_cur);
  6300. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6301. struct ggml_tensor * cur;
  6302. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6303. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6304. cb(cur, "kqv_out", il);
  6305. return cur;
  6306. }
  6307. struct llm_build_context {
  6308. const llama_model & model;
  6309. llama_context & lctx;
  6310. const llama_hparams & hparams;
  6311. const llama_cparams & cparams;
  6312. const llama_batch & batch;
  6313. const llama_kv_cache & kv_self;
  6314. const int64_t n_embd;
  6315. const int64_t n_layer;
  6316. const int64_t n_rot;
  6317. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6318. const int64_t n_head;
  6319. const int64_t n_head_kv;
  6320. const int64_t n_embd_head_k;
  6321. const int64_t n_embd_k_gqa;
  6322. const int64_t n_embd_head_v;
  6323. const int64_t n_embd_v_gqa;
  6324. const int64_t n_expert;
  6325. const int64_t n_expert_used;
  6326. const float freq_base;
  6327. const float freq_scale;
  6328. const float ext_factor;
  6329. const float attn_factor;
  6330. const float beta_fast;
  6331. const float beta_slow;
  6332. const float norm_eps;
  6333. const float norm_rms_eps;
  6334. const int32_t n_tokens;
  6335. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6336. const int32_t n_outputs;
  6337. const int32_t kv_head; // index of where we store new KV data in the cache
  6338. const int32_t n_ctx_orig;
  6339. const bool flash_attn;
  6340. const enum llama_pooling_type pooling_type;
  6341. const enum llama_rope_type rope_type;
  6342. const llm_build_cb & cb;
  6343. std::vector<uint8_t> & buf_compute_meta;
  6344. struct ggml_context * ctx0 = nullptr;
  6345. // TODO: consider making the entire interface noexcept
  6346. llm_build_context(
  6347. llama_context & lctx,
  6348. const llama_batch & batch,
  6349. const llm_build_cb & cb,
  6350. bool worst_case) :
  6351. model (lctx.model),
  6352. lctx (lctx),
  6353. hparams (model.hparams),
  6354. cparams (lctx.cparams),
  6355. batch (batch),
  6356. kv_self (lctx.kv_self),
  6357. n_embd (hparams.n_embd),
  6358. n_layer (hparams.n_layer),
  6359. n_rot (hparams.n_rot),
  6360. n_ctx (cparams.n_ctx),
  6361. n_head (hparams.n_head),
  6362. n_head_kv (hparams.n_head_kv),
  6363. n_embd_head_k (hparams.n_embd_head_k),
  6364. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6365. n_embd_head_v (hparams.n_embd_head_v),
  6366. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6367. n_expert (hparams.n_expert),
  6368. n_expert_used (hparams.n_expert_used),
  6369. freq_base (cparams.rope_freq_base),
  6370. freq_scale (cparams.rope_freq_scale),
  6371. ext_factor (cparams.yarn_ext_factor),
  6372. attn_factor (cparams.yarn_attn_factor),
  6373. beta_fast (cparams.yarn_beta_fast),
  6374. beta_slow (cparams.yarn_beta_slow),
  6375. norm_eps (hparams.f_norm_eps),
  6376. norm_rms_eps (hparams.f_norm_rms_eps),
  6377. n_tokens (batch.n_tokens),
  6378. n_kv (worst_case ? kv_self.size : kv_self.n),
  6379. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6380. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6381. n_ctx_orig (cparams.n_ctx_orig_yarn),
  6382. flash_attn (cparams.flash_attn),
  6383. pooling_type (cparams.pooling_type),
  6384. rope_type (hparams.rope_type),
  6385. cb (cb),
  6386. buf_compute_meta (lctx.buf_compute_meta) {
  6387. // all initializations should be done in init()
  6388. }
  6389. void init() {
  6390. struct ggml_init_params params = {
  6391. /*.mem_size =*/ buf_compute_meta.size(),
  6392. /*.mem_buffer =*/ buf_compute_meta.data(),
  6393. /*.no_alloc =*/ true,
  6394. };
  6395. ctx0 = ggml_init(params);
  6396. lctx.inp_tokens = nullptr;
  6397. lctx.inp_embd = nullptr;
  6398. lctx.inp_pos = nullptr;
  6399. lctx.inp_out_ids = nullptr;
  6400. lctx.inp_KQ_mask = nullptr;
  6401. lctx.inp_K_shift = nullptr;
  6402. lctx.inp_mean = nullptr;
  6403. lctx.inp_cls = nullptr;
  6404. lctx.inp_s_copy = nullptr;
  6405. lctx.inp_s_mask = nullptr;
  6406. lctx.inp_s_seq = nullptr;
  6407. }
  6408. void free() {
  6409. if (ctx0) {
  6410. ggml_free(ctx0);
  6411. ctx0 = nullptr;
  6412. }
  6413. }
  6414. struct ggml_cgraph * build_k_shift() {
  6415. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6416. GGML_ASSERT(kv_self.size == n_ctx);
  6417. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6418. cb(lctx.inp_K_shift, "K_shift", -1);
  6419. ggml_set_input(lctx.inp_K_shift);
  6420. for (int il = 0; il < n_layer; ++il) {
  6421. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6422. struct ggml_tensor * tmp =
  6423. // we rotate only the first n_rot dimensions
  6424. ggml_rope_ext_inplace(ctx0,
  6425. ggml_view_3d(ctx0, kv_self.k_l[il],
  6426. n_embd_head_k, n_head_kv, n_ctx,
  6427. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6428. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6429. 0),
  6430. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6431. ext_factor, attn_factor, beta_fast, beta_slow);
  6432. cb(tmp, "K_shifted", il);
  6433. ggml_build_forward_expand(gf, tmp);
  6434. }
  6435. return gf;
  6436. }
  6437. struct ggml_cgraph * build_s_copy() {
  6438. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6439. GGML_ASSERT(kv_self.recurrent);
  6440. struct ggml_tensor * state_copy = build_inp_s_copy();
  6441. for (int il = 0; il < n_layer; ++il) {
  6442. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6443. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6444. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6445. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6446. // TODO: name the intermediate tensors with cb()
  6447. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6448. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6449. }
  6450. return gf;
  6451. }
  6452. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6453. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6454. for (uint32_t i = 0; i < ids.size(); ++i) {
  6455. const uint32_t id = ids[i];
  6456. if (i == id || id == ids.size()) {
  6457. continue;
  6458. }
  6459. uint32_t nm = 1;
  6460. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6461. nm++;
  6462. }
  6463. for (int il = 0; il < n_layer; ++il) {
  6464. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6465. n_embd_k_gqa, nm,
  6466. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6467. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6468. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6469. n_embd_k_gqa, nm,
  6470. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6471. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6472. ggml_tensor * view_v_src;
  6473. ggml_tensor * view_v_dst;
  6474. if (flash_attn) {
  6475. // NOTE: the V cache is not transposed when using flash attention
  6476. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6477. n_embd_v_gqa, nm,
  6478. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6479. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6480. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6481. n_embd_v_gqa, nm,
  6482. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6483. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6484. } else {
  6485. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6486. nm, n_embd_v_gqa,
  6487. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6488. ggml_row_size(kv_self.v_l[il]->type, i));
  6489. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6490. nm, n_embd_v_gqa,
  6491. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6492. ggml_row_size(kv_self.v_l[il]->type, id));
  6493. }
  6494. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6495. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6496. }
  6497. i += nm - 1;
  6498. }
  6499. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6500. return gf;
  6501. }
  6502. struct ggml_tensor * build_inp_pos() {
  6503. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6504. cb(lctx.inp_pos, "inp_pos", -1);
  6505. ggml_set_input(lctx.inp_pos);
  6506. return lctx.inp_pos;
  6507. }
  6508. struct ggml_tensor * build_rope_factors(int il) {
  6509. // choose long/short freq factors based on the context size
  6510. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6511. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  6512. return model.layers[il].rope_long;
  6513. }
  6514. return model.layers[il].rope_short;
  6515. }
  6516. struct ggml_tensor * build_inp_out_ids() {
  6517. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6518. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6519. ggml_set_input(lctx.inp_out_ids);
  6520. return lctx.inp_out_ids;
  6521. }
  6522. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6523. if (causal) {
  6524. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6525. } else {
  6526. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6527. }
  6528. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6529. ggml_set_input(lctx.inp_KQ_mask);
  6530. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6531. }
  6532. struct ggml_tensor * build_inp_mean() {
  6533. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6534. cb(lctx.inp_mean, "inp_mean", -1);
  6535. ggml_set_input(lctx.inp_mean);
  6536. return lctx.inp_mean;
  6537. }
  6538. struct ggml_tensor * build_inp_cls() {
  6539. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6540. cb(lctx.inp_cls, "inp_cls", -1);
  6541. ggml_set_input(lctx.inp_cls);
  6542. return lctx.inp_cls;
  6543. }
  6544. struct ggml_tensor * build_inp_s_copy() {
  6545. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6546. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6547. ggml_set_input(lctx.inp_s_copy);
  6548. return lctx.inp_s_copy;
  6549. }
  6550. struct ggml_tensor * build_inp_s_mask() {
  6551. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6552. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6553. ggml_set_input(lctx.inp_s_mask);
  6554. return lctx.inp_s_mask;
  6555. }
  6556. struct ggml_tensor * build_inp_s_seq() {
  6557. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6558. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6559. ggml_set_input(lctx.inp_s_seq);
  6560. return lctx.inp_s_seq;
  6561. }
  6562. struct ggml_cgraph * build_llama() {
  6563. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6564. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6565. int32_t n_tokens = this->n_tokens;
  6566. const int64_t n_embd_head = hparams.n_embd_head_v;
  6567. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6568. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6569. struct ggml_tensor * cur;
  6570. struct ggml_tensor * inpL;
  6571. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6572. // inp_pos - contains the positions
  6573. struct ggml_tensor * inp_pos = build_inp_pos();
  6574. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6575. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6576. for (int il = 0; il < n_layer; ++il) {
  6577. struct ggml_tensor * inpSA = inpL;
  6578. // norm
  6579. cur = llm_build_norm(ctx0, inpL, hparams,
  6580. model.layers[il].attn_norm, NULL,
  6581. LLM_NORM_RMS, cb, il);
  6582. cb(cur, "attn_norm", il);
  6583. // self-attention
  6584. {
  6585. // compute Q and K and RoPE them
  6586. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6587. cb(Qcur, "Qcur", il);
  6588. if (model.layers[il].bq) {
  6589. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6590. cb(Qcur, "Qcur", il);
  6591. }
  6592. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6593. cb(Kcur, "Kcur", il);
  6594. if (model.layers[il].bk) {
  6595. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6596. cb(Kcur, "Kcur", il);
  6597. }
  6598. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6599. cb(Vcur, "Vcur", il);
  6600. if (model.layers[il].bv) {
  6601. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6602. cb(Vcur, "Vcur", il);
  6603. }
  6604. Qcur = ggml_rope_ext(
  6605. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6606. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6607. ext_factor, attn_factor, beta_fast, beta_slow
  6608. );
  6609. cb(Qcur, "Qcur", il);
  6610. Kcur = ggml_rope_ext(
  6611. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6612. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6613. ext_factor, attn_factor, beta_fast, beta_slow
  6614. );
  6615. cb(Kcur, "Kcur", il);
  6616. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6617. model.layers[il].wo, model.layers[il].bo,
  6618. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6619. }
  6620. if (il == n_layer - 1) {
  6621. // skip computing output for unused tokens
  6622. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6623. n_tokens = n_outputs;
  6624. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6625. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6626. }
  6627. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6628. cb(ffn_inp, "ffn_inp", il);
  6629. // feed-forward network
  6630. if (model.layers[il].ffn_gate_inp == nullptr) {
  6631. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6632. model.layers[il].ffn_norm, NULL,
  6633. LLM_NORM_RMS, cb, il);
  6634. cb(cur, "ffn_norm", il);
  6635. cur = llm_build_ffn(ctx0, cur,
  6636. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6637. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6638. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6639. NULL,
  6640. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6641. cb(cur, "ffn_out", il);
  6642. } else {
  6643. // MoE branch
  6644. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6645. model.layers[il].ffn_norm, NULL,
  6646. LLM_NORM_RMS, cb, il);
  6647. cb(cur, "ffn_norm", il);
  6648. cur = llm_build_moe_ffn(ctx0, cur,
  6649. model.layers[il].ffn_gate_inp,
  6650. model.layers[il].ffn_up_exps,
  6651. model.layers[il].ffn_gate_exps,
  6652. model.layers[il].ffn_down_exps,
  6653. n_expert, n_expert_used,
  6654. LLM_FFN_SILU, true,
  6655. false, 0.0,
  6656. cb, il);
  6657. cb(cur, "ffn_moe_out", il);
  6658. }
  6659. cur = ggml_add(ctx0, cur, ffn_inp);
  6660. cb(cur, "ffn_out", il);
  6661. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6662. if (layer_dir != nullptr) {
  6663. cur = ggml_add(ctx0, cur, layer_dir);
  6664. }
  6665. cb(cur, "l_out", il);
  6666. // input for next layer
  6667. inpL = cur;
  6668. }
  6669. cur = inpL;
  6670. cur = llm_build_norm(ctx0, cur, hparams,
  6671. model.output_norm, NULL,
  6672. LLM_NORM_RMS, cb, -1);
  6673. cb(cur, "result_norm", -1);
  6674. // lm_head
  6675. cur = ggml_mul_mat(ctx0, model.output, cur);
  6676. cb(cur, "result_output", -1);
  6677. ggml_build_forward_expand(gf, cur);
  6678. return gf;
  6679. }
  6680. struct ggml_cgraph * build_baichuan() {
  6681. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6682. const int64_t n_embd_head = hparams.n_embd_head_v;
  6683. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6684. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6685. struct ggml_tensor * cur;
  6686. struct ggml_tensor * inpL;
  6687. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6688. // inp_pos - contains the positions
  6689. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6690. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6691. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6692. for (int il = 0; il < n_layer; ++il) {
  6693. struct ggml_tensor * inpSA = inpL;
  6694. cur = llm_build_norm(ctx0, inpL, hparams,
  6695. model.layers[il].attn_norm, NULL,
  6696. LLM_NORM_RMS, cb, il);
  6697. cb(cur, "attn_norm", il);
  6698. // self-attention
  6699. {
  6700. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6701. cb(Qcur, "Qcur", il);
  6702. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6703. cb(Kcur, "Kcur", il);
  6704. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6705. cb(Vcur, "Vcur", il);
  6706. switch (model.type) {
  6707. case MODEL_7B:
  6708. Qcur = ggml_rope_ext(
  6709. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6710. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6711. ext_factor, attn_factor, beta_fast, beta_slow
  6712. );
  6713. Kcur = ggml_rope_ext(
  6714. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6715. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6716. ext_factor, attn_factor, beta_fast, beta_slow
  6717. );
  6718. break;
  6719. case MODEL_13B:
  6720. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6721. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6722. break;
  6723. default:
  6724. GGML_ASSERT(false);
  6725. }
  6726. cb(Qcur, "Qcur", il);
  6727. cb(Kcur, "Kcur", il);
  6728. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6729. model.layers[il].wo, NULL,
  6730. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6731. }
  6732. if (il == n_layer - 1) {
  6733. // skip computing output for unused tokens
  6734. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6735. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6736. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6737. }
  6738. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6739. cb(ffn_inp, "ffn_inp", il);
  6740. // feed-forward network
  6741. {
  6742. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6743. model.layers[il].ffn_norm, NULL,
  6744. LLM_NORM_RMS, cb, il);
  6745. cb(cur, "ffn_norm", il);
  6746. cur = llm_build_ffn(ctx0, cur,
  6747. model.layers[il].ffn_up, NULL,
  6748. model.layers[il].ffn_gate, NULL,
  6749. model.layers[il].ffn_down, NULL,
  6750. NULL,
  6751. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6752. cb(cur, "ffn_out", il);
  6753. }
  6754. cur = ggml_add(ctx0, cur, ffn_inp);
  6755. cb(cur, "l_out", il);
  6756. // input for next layer
  6757. inpL = cur;
  6758. }
  6759. cur = inpL;
  6760. cur = llm_build_norm(ctx0, cur, hparams,
  6761. model.output_norm, NULL,
  6762. LLM_NORM_RMS, cb, -1);
  6763. cb(cur, "result_norm", -1);
  6764. // lm_head
  6765. cur = ggml_mul_mat(ctx0, model.output, cur);
  6766. cb(cur, "result_output", -1);
  6767. ggml_build_forward_expand(gf, cur);
  6768. return gf;
  6769. }
  6770. struct ggml_cgraph * build_xverse() {
  6771. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6772. const int64_t n_embd_head = hparams.n_embd_head_v;
  6773. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6774. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6775. struct ggml_tensor * cur;
  6776. struct ggml_tensor * inpL;
  6777. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6778. // inp_pos - contains the positions
  6779. struct ggml_tensor * inp_pos = build_inp_pos();
  6780. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6781. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6782. for (int il = 0; il < n_layer; ++il) {
  6783. struct ggml_tensor * inpSA = inpL;
  6784. cur = llm_build_norm(ctx0, inpL, hparams,
  6785. model.layers[il].attn_norm, NULL,
  6786. LLM_NORM_RMS, cb, il);
  6787. cb(cur, "attn_norm", il);
  6788. // self-attention
  6789. {
  6790. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6791. cb(Qcur, "Qcur", il);
  6792. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6793. cb(Kcur, "Kcur", il);
  6794. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6795. cb(Vcur, "Vcur", il);
  6796. Qcur = ggml_rope_ext(
  6797. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6798. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6799. ext_factor, attn_factor, beta_fast, beta_slow
  6800. );
  6801. cb(Qcur, "Qcur", il);
  6802. Kcur = ggml_rope_ext(
  6803. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6804. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6805. ext_factor, attn_factor, beta_fast, beta_slow
  6806. );
  6807. cb(Kcur, "Kcur", il);
  6808. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6809. model.layers[il].wo, NULL,
  6810. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6811. }
  6812. if (il == n_layer - 1) {
  6813. // skip computing output for unused tokens
  6814. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6815. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6816. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6817. }
  6818. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6819. cb(ffn_inp, "ffn_inp", il);
  6820. // feed-forward network
  6821. {
  6822. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6823. model.layers[il].ffn_norm, NULL,
  6824. LLM_NORM_RMS, cb, il);
  6825. cb(cur, "ffn_norm", il);
  6826. cur = llm_build_ffn(ctx0, cur,
  6827. model.layers[il].ffn_up, NULL,
  6828. model.layers[il].ffn_gate, NULL,
  6829. model.layers[il].ffn_down, NULL,
  6830. NULL,
  6831. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6832. cb(cur, "ffn_out", il);
  6833. }
  6834. cur = ggml_add(ctx0, cur, ffn_inp);
  6835. cb(cur, "l_out", il);
  6836. // input for next layer
  6837. inpL = cur;
  6838. }
  6839. cur = inpL;
  6840. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6841. cb(cur, "result_norm", -1);
  6842. // lm_head
  6843. cur = ggml_mul_mat(ctx0, model.output, cur);
  6844. cb(cur, "result_output", -1);
  6845. ggml_build_forward_expand(gf, cur);
  6846. return gf;
  6847. }
  6848. struct ggml_cgraph * build_falcon() {
  6849. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6850. const int64_t n_embd_head = hparams.n_embd_head_v;
  6851. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6852. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6853. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6854. struct ggml_tensor * cur;
  6855. struct ggml_tensor * inpL;
  6856. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6857. // inp_pos - contains the positions
  6858. struct ggml_tensor * inp_pos = build_inp_pos();
  6859. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6860. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6861. for (int il = 0; il < n_layer; ++il) {
  6862. struct ggml_tensor * attn_norm;
  6863. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6864. model.layers[il].attn_norm,
  6865. model.layers[il].attn_norm_b,
  6866. LLM_NORM, cb, il);
  6867. cb(attn_norm, "attn_norm", il);
  6868. // self-attention
  6869. {
  6870. if (model.layers[il].attn_norm_2) {
  6871. // Falcon-40B
  6872. cur = llm_build_norm(ctx0, inpL, hparams,
  6873. model.layers[il].attn_norm_2,
  6874. model.layers[il].attn_norm_2_b,
  6875. LLM_NORM, cb, il);
  6876. cb(cur, "attn_norm_2", il);
  6877. } else {
  6878. cur = attn_norm;
  6879. }
  6880. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6881. cb(cur, "wqkv", il);
  6882. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6883. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6884. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6885. cb(Qcur, "Qcur", il);
  6886. cb(Kcur, "Kcur", il);
  6887. cb(Vcur, "Vcur", il);
  6888. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6889. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6890. // using mode = 2 for neox mode
  6891. Qcur = ggml_rope_ext(
  6892. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6893. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6894. );
  6895. cb(Qcur, "Qcur", il);
  6896. Kcur = ggml_rope_ext(
  6897. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6898. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6899. );
  6900. cb(Kcur, "Kcur", il);
  6901. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6902. model.layers[il].wo, NULL,
  6903. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6904. }
  6905. if (il == n_layer - 1) {
  6906. // skip computing output for unused tokens
  6907. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6908. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6909. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6910. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6911. }
  6912. struct ggml_tensor * ffn_inp = cur;
  6913. // feed forward
  6914. {
  6915. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6916. model.layers[il].ffn_up, NULL,
  6917. NULL, NULL,
  6918. model.layers[il].ffn_down, NULL,
  6919. NULL,
  6920. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6921. cb(cur, "ffn_out", il);
  6922. }
  6923. cur = ggml_add(ctx0, cur, ffn_inp);
  6924. cb(cur, "l_out", il);
  6925. cur = ggml_add(ctx0, cur, inpL);
  6926. cb(cur, "l_out", il);
  6927. // input for next layer
  6928. inpL = cur;
  6929. }
  6930. cur = inpL;
  6931. // norm
  6932. cur = llm_build_norm(ctx0, cur, hparams,
  6933. model.output_norm,
  6934. model.output_norm_b,
  6935. LLM_NORM, cb, -1);
  6936. cb(cur, "result_norm", -1);
  6937. cur = ggml_mul_mat(ctx0, model.output, cur);
  6938. cb(cur, "result_output", -1);
  6939. ggml_build_forward_expand(gf, cur);
  6940. return gf;
  6941. }
  6942. struct ggml_cgraph * build_grok() {
  6943. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6944. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6945. int32_t n_tokens = this->n_tokens;
  6946. const int64_t n_embd_head = hparams.n_embd_head_v;
  6947. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6948. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6949. struct ggml_tensor * cur;
  6950. struct ggml_tensor * inpL;
  6951. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6952. // multiply by embedding_multiplier_scale of 78.38367176906169
  6953. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6954. // inp_pos - contains the positions
  6955. struct ggml_tensor * inp_pos = build_inp_pos();
  6956. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6957. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6958. for (int il = 0; il < n_layer; ++il) {
  6959. struct ggml_tensor * inpSA = inpL;
  6960. // norm
  6961. cur = llm_build_norm(ctx0, inpL, hparams,
  6962. model.layers[il].attn_norm, NULL,
  6963. LLM_NORM_RMS, cb, il);
  6964. cb(cur, "attn_norm", il);
  6965. // self-attention
  6966. {
  6967. // compute Q and K and RoPE them
  6968. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6969. cb(Qcur, "Qcur", il);
  6970. if (model.layers[il].bq) {
  6971. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6972. cb(Qcur, "Qcur", il);
  6973. }
  6974. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6975. cb(Kcur, "Kcur", il);
  6976. if (model.layers[il].bk) {
  6977. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6978. cb(Kcur, "Kcur", il);
  6979. }
  6980. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6981. cb(Vcur, "Vcur", il);
  6982. if (model.layers[il].bv) {
  6983. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6984. cb(Vcur, "Vcur", il);
  6985. }
  6986. Qcur = ggml_rope_ext(
  6987. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6988. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6989. ext_factor, attn_factor, beta_fast, beta_slow
  6990. );
  6991. cb(Qcur, "Qcur", il);
  6992. Kcur = ggml_rope_ext(
  6993. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6994. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6995. ext_factor, attn_factor, beta_fast, beta_slow
  6996. );
  6997. cb(Kcur, "Kcur", il);
  6998. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6999. model.layers[il].wo, model.layers[il].bo,
  7000. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7001. }
  7002. if (il == n_layer - 1) {
  7003. // skip computing output for unused tokens
  7004. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7005. n_tokens = n_outputs;
  7006. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7007. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7008. }
  7009. // Grok
  7010. // if attn_out_norm is present then apply it before adding the input
  7011. if (model.layers[il].attn_out_norm) {
  7012. cur = llm_build_norm(ctx0, cur, hparams,
  7013. model.layers[il].attn_out_norm, NULL,
  7014. LLM_NORM_RMS, cb, il);
  7015. cb(cur, "attn_out_norm", il);
  7016. }
  7017. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7018. cb(ffn_inp, "ffn_inp", il);
  7019. // feed-forward network
  7020. // MoE branch
  7021. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7022. model.layers[il].ffn_norm, NULL,
  7023. LLM_NORM_RMS, cb, il);
  7024. cb(cur, "ffn_norm", il);
  7025. cur = llm_build_moe_ffn(ctx0, cur,
  7026. model.layers[il].ffn_gate_inp,
  7027. model.layers[il].ffn_up_exps,
  7028. model.layers[il].ffn_gate_exps,
  7029. model.layers[il].ffn_down_exps,
  7030. n_expert, n_expert_used,
  7031. LLM_FFN_GELU, true,
  7032. false, 0.0,
  7033. cb, il);
  7034. cb(cur, "ffn_moe_out", il);
  7035. // Grok
  7036. // if layer_out_norm is present then apply it before adding the input
  7037. // Idea: maybe ffn_out_norm is a better name
  7038. if (model.layers[il].layer_out_norm) {
  7039. cur = llm_build_norm(ctx0, cur, hparams,
  7040. model.layers[il].layer_out_norm, NULL,
  7041. LLM_NORM_RMS, cb, il);
  7042. cb(cur, "layer_out_norm", il);
  7043. }
  7044. cur = ggml_add(ctx0, cur, ffn_inp);
  7045. cb(cur, "ffn_out", il);
  7046. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7047. if (layer_dir != nullptr) {
  7048. cur = ggml_add(ctx0, cur, layer_dir);
  7049. }
  7050. cb(cur, "l_out", il);
  7051. // input for next layer
  7052. inpL = cur;
  7053. }
  7054. cur = inpL;
  7055. cur = llm_build_norm(ctx0, cur, hparams,
  7056. model.output_norm, NULL,
  7057. LLM_NORM_RMS, cb, -1);
  7058. cb(cur, "result_norm", -1);
  7059. // lm_head
  7060. cur = ggml_mul_mat(ctx0, model.output, cur);
  7061. // Grok
  7062. // multiply logits by output_multiplier_scale of 0.5773502691896257
  7063. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  7064. cb(cur, "result_output", -1);
  7065. ggml_build_forward_expand(gf, cur);
  7066. return gf;
  7067. }
  7068. struct ggml_cgraph * build_dbrx() {
  7069. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7070. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7071. int32_t n_tokens = this->n_tokens;
  7072. const int64_t n_embd_head = hparams.n_embd_head_v;
  7073. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7074. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7075. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7076. struct ggml_tensor * cur;
  7077. struct ggml_tensor * inpL;
  7078. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7079. // inp_pos - contains the positions
  7080. struct ggml_tensor * inp_pos = build_inp_pos();
  7081. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7082. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7083. for (int il = 0; il < n_layer; ++il) {
  7084. struct ggml_tensor * inpSA = inpL;
  7085. // norm
  7086. cur = llm_build_norm(ctx0, inpL, hparams,
  7087. model.layers[il].attn_norm, NULL,
  7088. LLM_NORM, cb, il);
  7089. cb(cur, "attn_norm", il);
  7090. // self-attention
  7091. {
  7092. struct ggml_tensor * Qcur = nullptr;
  7093. struct ggml_tensor * Kcur = nullptr;
  7094. struct ggml_tensor * Vcur = nullptr;
  7095. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7096. cb(cur, "wqkv", il);
  7097. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7098. cb(cur, "wqkv_clamped", il);
  7099. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7100. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7101. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7102. cb(Qcur, "Qcur", il);
  7103. cb(Kcur, "Kcur", il);
  7104. cb(Vcur, "Vcur", il);
  7105. Qcur = ggml_rope_ext(
  7106. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7107. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7108. ext_factor, attn_factor, beta_fast, beta_slow
  7109. );
  7110. cb(Qcur, "Qcur", il);
  7111. Kcur = ggml_rope_ext(
  7112. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7113. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7114. ext_factor, attn_factor, beta_fast, beta_slow
  7115. );
  7116. cb(Kcur, "Kcur", il);
  7117. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7118. model.layers[il].wo, NULL,
  7119. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7120. }
  7121. if (il == n_layer - 1) {
  7122. // skip computing output for unused tokens
  7123. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7124. n_tokens = n_outputs;
  7125. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7126. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7127. }
  7128. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7129. cb(ffn_inp, "ffn_inp", il);
  7130. // feed-forward network
  7131. // MoE branch
  7132. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7133. model.layers[il].attn_out_norm, NULL,
  7134. LLM_NORM, cb, il);
  7135. cb(cur, "attn_out_norm", il);
  7136. cur = llm_build_moe_ffn(ctx0, cur,
  7137. model.layers[il].ffn_gate_inp,
  7138. model.layers[il].ffn_up_exps,
  7139. model.layers[il].ffn_gate_exps,
  7140. model.layers[il].ffn_down_exps,
  7141. n_expert, n_expert_used,
  7142. LLM_FFN_SILU, true,
  7143. false, 0.0,
  7144. cb, il);
  7145. cb(cur, "ffn_moe_out", il);
  7146. cur = ggml_add(ctx0, cur, ffn_inp);
  7147. cb(cur, "ffn_out", il);
  7148. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7149. if (layer_dir != nullptr) {
  7150. cur = ggml_add(ctx0, cur, layer_dir);
  7151. }
  7152. cb(cur, "l_out", il);
  7153. // input for next layer
  7154. inpL = cur;
  7155. }
  7156. cur = inpL;
  7157. cur = llm_build_norm(ctx0, cur, hparams,
  7158. model.output_norm, NULL,
  7159. LLM_NORM, cb, -1);
  7160. cb(cur, "result_norm", -1);
  7161. // lm_head
  7162. cur = ggml_mul_mat(ctx0, model.output, cur);
  7163. cb(cur, "result_output", -1);
  7164. ggml_build_forward_expand(gf, cur);
  7165. return gf;
  7166. }
  7167. struct ggml_cgraph * build_starcoder() {
  7168. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7169. const int64_t n_embd_head = hparams.n_embd_head_v;
  7170. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7171. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7172. struct ggml_tensor * cur;
  7173. struct ggml_tensor * inpL;
  7174. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7175. // inp_pos - contains the positions
  7176. struct ggml_tensor * inp_pos = build_inp_pos();
  7177. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7178. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7179. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7180. cb(pos, "pos_embd", -1);
  7181. inpL = ggml_add(ctx0, inpL, pos);
  7182. cb(inpL, "inpL", -1);
  7183. for (int il = 0; il < n_layer; ++il) {
  7184. cur = llm_build_norm(ctx0, inpL, hparams,
  7185. model.layers[il].attn_norm,
  7186. model.layers[il].attn_norm_b,
  7187. LLM_NORM, cb, il);
  7188. cb(cur, "attn_norm", il);
  7189. // self-attention
  7190. {
  7191. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7192. cb(cur, "wqkv", il);
  7193. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7194. cb(cur, "bqkv", il);
  7195. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7196. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7197. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7198. cb(Qcur, "Qcur", il);
  7199. cb(Kcur, "Kcur", il);
  7200. cb(Vcur, "Vcur", il);
  7201. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7202. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7203. model.layers[il].wo, model.layers[il].bo,
  7204. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7205. }
  7206. if (il == n_layer - 1) {
  7207. // skip computing output for unused tokens
  7208. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7209. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7210. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7211. }
  7212. // add the input
  7213. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7214. cb(ffn_inp, "ffn_inp", il);
  7215. // FF
  7216. {
  7217. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7218. model.layers[il].ffn_norm,
  7219. model.layers[il].ffn_norm_b,
  7220. LLM_NORM, cb, il);
  7221. cb(cur, "ffn_norm", il);
  7222. cur = llm_build_ffn(ctx0, cur,
  7223. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7224. NULL, NULL,
  7225. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7226. NULL,
  7227. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7228. cb(cur, "ffn_out", il);
  7229. }
  7230. inpL = ggml_add(ctx0, cur, ffn_inp);
  7231. cb(inpL, "l_out", il);
  7232. }
  7233. cur = llm_build_norm(ctx0, inpL, hparams,
  7234. model.output_norm,
  7235. model.output_norm_b,
  7236. LLM_NORM, cb, -1);
  7237. cb(cur, "result_norm", -1);
  7238. cur = ggml_mul_mat(ctx0, model.output, cur);
  7239. cb(cur, "result_output", -1);
  7240. ggml_build_forward_expand(gf, cur);
  7241. return gf;
  7242. }
  7243. struct ggml_cgraph * build_refact() {
  7244. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7245. const int64_t n_embd_head = hparams.n_embd_head_v;
  7246. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7247. struct ggml_tensor * cur;
  7248. struct ggml_tensor * inpL;
  7249. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7250. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7251. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7252. for (int il = 0; il < n_layer; ++il) {
  7253. struct ggml_tensor * inpSA = inpL;
  7254. cur = llm_build_norm(ctx0, inpL, hparams,
  7255. model.layers[il].attn_norm, NULL,
  7256. LLM_NORM_RMS, cb, il);
  7257. cb(cur, "attn_norm", il);
  7258. // self-attention
  7259. {
  7260. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7261. cb(Qcur, "Qcur", il);
  7262. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7263. cb(Kcur, "Kcur", il);
  7264. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7265. cb(Vcur, "Vcur", il);
  7266. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7267. cb(Kcur, "Kcur", il);
  7268. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7269. cb(Qcur, "Qcur", il);
  7270. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7271. model.layers[il].wo, NULL,
  7272. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7273. }
  7274. if (il == n_layer - 1) {
  7275. // skip computing output for unused tokens
  7276. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7277. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7278. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7279. }
  7280. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7281. cb(ffn_inp, "ffn_inp", il);
  7282. // feed-forward network
  7283. {
  7284. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7285. model.layers[il].ffn_norm, NULL,
  7286. LLM_NORM_RMS, cb, il);
  7287. cb(cur, "ffn_norm", il);
  7288. cur = llm_build_ffn(ctx0, cur,
  7289. model.layers[il].ffn_up, NULL,
  7290. model.layers[il].ffn_gate, NULL,
  7291. model.layers[il].ffn_down, NULL,
  7292. NULL,
  7293. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7294. cb(cur, "ffn_out", il);
  7295. }
  7296. cur = ggml_add(ctx0, cur, ffn_inp);
  7297. cb(cur, "l_out", il);
  7298. // input for next layer
  7299. inpL = cur;
  7300. }
  7301. cur = inpL;
  7302. cur = llm_build_norm(ctx0, cur, hparams,
  7303. model.output_norm, NULL,
  7304. LLM_NORM_RMS, cb, -1);
  7305. cb(cur, "result_norm", -1);
  7306. // lm_head
  7307. cur = ggml_mul_mat(ctx0, model.output, cur);
  7308. cb(cur, "result_output", -1);
  7309. ggml_build_forward_expand(gf, cur);
  7310. return gf;
  7311. }
  7312. struct ggml_cgraph * build_bert() {
  7313. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7314. const int64_t n_embd_head = hparams.n_embd_head_v;
  7315. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7316. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7317. struct ggml_tensor * cur;
  7318. struct ggml_tensor * inpL;
  7319. struct ggml_tensor * inp_pos = nullptr;
  7320. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7321. inp_pos = build_inp_pos();
  7322. }
  7323. struct ggml_tensor * inp_mean = build_inp_mean();
  7324. struct ggml_tensor * inp_cls = build_inp_cls();
  7325. // construct input embeddings (token, type, position)
  7326. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7327. // token types are hardcoded to zero ("Sentence A")
  7328. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7329. inpL = ggml_add(ctx0, inpL, type_row0);
  7330. if (model.arch == LLM_ARCH_BERT) {
  7331. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7332. }
  7333. cb(inpL, "inp_embd", -1);
  7334. // embed layer norm
  7335. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7336. cb(inpL, "inp_norm", -1);
  7337. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7338. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7339. // iterate layers
  7340. for (int il = 0; il < n_layer; ++il) {
  7341. struct ggml_tensor * cur = inpL;
  7342. struct ggml_tensor * Qcur;
  7343. struct ggml_tensor * Kcur;
  7344. struct ggml_tensor * Vcur;
  7345. // self-attention
  7346. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7347. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7348. cb(Qcur, "Qcur", il);
  7349. if (model.layers[il].attn_q_norm) {
  7350. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7351. model.layers[il].attn_q_norm,
  7352. model.layers[il].attn_q_norm_b,
  7353. LLM_NORM, cb, il);
  7354. }
  7355. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7356. cb(Kcur, "Kcur", il);
  7357. if (model.layers[il].attn_k_norm) {
  7358. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7359. model.layers[il].attn_k_norm,
  7360. model.layers[il].attn_k_norm_b,
  7361. LLM_NORM, cb, il);
  7362. }
  7363. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7364. cb(Vcur, "Vcur", il);
  7365. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7366. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7367. } else {
  7368. // compute Q and K and RoPE them
  7369. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7370. cb(cur, "wqkv", il);
  7371. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7372. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7373. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7374. cb(Qcur, "Qcur", il);
  7375. cb(Kcur, "Kcur", il);
  7376. cb(Vcur, "Vcur", il);
  7377. Qcur = ggml_rope_ext(
  7378. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7379. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7380. ext_factor, attn_factor, beta_fast, beta_slow
  7381. );
  7382. cb(Qcur, "Qcur", il);
  7383. Kcur = ggml_rope_ext(
  7384. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7385. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7386. ext_factor, attn_factor, beta_fast, beta_slow
  7387. );
  7388. cb(Kcur, "Kcur", il);
  7389. }
  7390. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7391. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7392. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7393. cb(kq, "kq", il);
  7394. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7395. cb(kq, "kq_soft_max_ext", il);
  7396. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7397. cb(v, "v", il);
  7398. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7399. cb(kqv, "kqv", il);
  7400. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7401. cb(kqv_merged, "kqv_merged", il);
  7402. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7403. cb(cur, "kqv_merged_cont", il);
  7404. ggml_build_forward_expand(gf, cur);
  7405. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7406. if (model.layers[il].bo) {
  7407. cb(cur, "kqv_wo", il);
  7408. }
  7409. if (model.layers[il].bo) {
  7410. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7411. }
  7412. cb(cur, "kqv_out", il);
  7413. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7414. // skip computing output for unused tokens
  7415. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7416. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7417. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7418. }
  7419. // re-add the layer input
  7420. cur = ggml_add(ctx0, cur, inpL);
  7421. // attention layer norm
  7422. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7423. if (model.layers[il].attn_norm_2 != nullptr) {
  7424. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  7425. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
  7426. }
  7427. struct ggml_tensor * ffn_inp = cur;
  7428. cb(ffn_inp, "ffn_inp", il);
  7429. // feed-forward network
  7430. if (model.arch == LLM_ARCH_BERT) {
  7431. cur = llm_build_ffn(ctx0, cur,
  7432. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7433. NULL, NULL,
  7434. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7435. NULL,
  7436. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7437. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7438. cur = llm_build_ffn(ctx0, cur,
  7439. model.layers[il].ffn_up, NULL,
  7440. model.layers[il].ffn_gate, NULL,
  7441. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7442. NULL,
  7443. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7444. } else {
  7445. cur = llm_build_ffn(ctx0, cur,
  7446. model.layers[il].ffn_up, NULL,
  7447. model.layers[il].ffn_gate, NULL,
  7448. model.layers[il].ffn_down, NULL,
  7449. NULL,
  7450. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7451. }
  7452. cb(cur, "ffn_out", il);
  7453. // attentions bypass the intermediate layer
  7454. cur = ggml_add(ctx0, cur, ffn_inp);
  7455. // output layer norm
  7456. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7457. // input for next layer
  7458. inpL = cur;
  7459. }
  7460. // final output
  7461. cur = inpL;
  7462. cb(cur, "result_embd", -1);
  7463. // pooling layer
  7464. switch (pooling_type) {
  7465. case LLAMA_POOLING_TYPE_NONE:
  7466. {
  7467. // nop
  7468. } break;
  7469. case LLAMA_POOLING_TYPE_MEAN:
  7470. {
  7471. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7472. cb(cur, "result_embd_pooled", -1);
  7473. } break;
  7474. case LLAMA_POOLING_TYPE_CLS:
  7475. {
  7476. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7477. cb(cur, "result_embd_pooled", -1);
  7478. } break;
  7479. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7480. {
  7481. GGML_ASSERT(false && "Invalid pooling type");
  7482. } break;
  7483. }
  7484. ggml_build_forward_expand(gf, cur);
  7485. return gf;
  7486. }
  7487. struct ggml_cgraph * build_bloom() {
  7488. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7489. const int64_t n_embd_head = hparams.n_embd_head_v;
  7490. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7491. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7492. struct ggml_tensor * cur;
  7493. struct ggml_tensor * inpL;
  7494. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7495. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7496. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7497. inpL = llm_build_norm(ctx0, inpL, hparams,
  7498. model.tok_norm,
  7499. model.tok_norm_b,
  7500. LLM_NORM, cb, -1);
  7501. cb(inpL, "inp_norm", -1);
  7502. for (int il = 0; il < n_layer; ++il) {
  7503. cur = llm_build_norm(ctx0, inpL, hparams,
  7504. model.layers[il].attn_norm,
  7505. model.layers[il].attn_norm_b,
  7506. LLM_NORM, cb, il);
  7507. cb(cur, "attn_norm", il);
  7508. // self-attention
  7509. {
  7510. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7511. cb(cur, "wqkv", il);
  7512. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7513. cb(cur, "bqkv", il);
  7514. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7515. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7516. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7517. cb(Qcur, "Qcur", il);
  7518. cb(Kcur, "Kcur", il);
  7519. cb(Vcur, "Vcur", il);
  7520. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7521. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7522. model.layers[il].wo, model.layers[il].bo,
  7523. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7524. }
  7525. if (il == n_layer - 1) {
  7526. // skip computing output for unused tokens
  7527. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7528. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7529. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7530. }
  7531. // Add the input
  7532. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7533. cb(ffn_inp, "ffn_inp", il);
  7534. // FF
  7535. {
  7536. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7537. model.layers[il].ffn_norm,
  7538. model.layers[il].ffn_norm_b,
  7539. LLM_NORM, cb, il);
  7540. cb(cur, "ffn_norm", il);
  7541. cur = llm_build_ffn(ctx0, cur,
  7542. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7543. NULL, NULL,
  7544. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7545. NULL,
  7546. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7547. cb(cur, "ffn_out", il);
  7548. }
  7549. inpL = ggml_add(ctx0, cur, ffn_inp);
  7550. cb(inpL, "l_out", il);
  7551. }
  7552. cur = llm_build_norm(ctx0, inpL, hparams,
  7553. model.output_norm,
  7554. model.output_norm_b,
  7555. LLM_NORM, cb, -1);
  7556. cb(cur, "result_norm", -1);
  7557. cur = ggml_mul_mat(ctx0, model.output, cur);
  7558. cb(cur, "result_output", -1);
  7559. ggml_build_forward_expand(gf, cur);
  7560. return gf;
  7561. }
  7562. struct ggml_cgraph * build_mpt() {
  7563. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7564. const int64_t n_embd_head = hparams.n_embd_head_v;
  7565. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7566. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7567. struct ggml_tensor * cur;
  7568. struct ggml_tensor * pos;
  7569. struct ggml_tensor * inpL;
  7570. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7571. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7572. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7573. if (model.pos_embd) {
  7574. // inp_pos - contains the positions
  7575. struct ggml_tensor * inp_pos = build_inp_pos();
  7576. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7577. cb(pos, "pos_embd", -1);
  7578. inpL = ggml_add(ctx0, inpL, pos);
  7579. cb(inpL, "inpL", -1);
  7580. }
  7581. for (int il = 0; il < n_layer; ++il) {
  7582. struct ggml_tensor * attn_norm;
  7583. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7584. model.layers[il].attn_norm,
  7585. model.layers[il].attn_norm_b,
  7586. LLM_NORM, cb, il);
  7587. cb(attn_norm, "attn_norm", il);
  7588. // self-attention
  7589. {
  7590. cur = attn_norm;
  7591. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7592. cb(cur, "wqkv", il);
  7593. if (model.layers[il].bqkv){
  7594. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7595. cb(cur, "bqkv", il);
  7596. }
  7597. if (hparams.f_clamp_kqv > 0.0f) {
  7598. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7599. cb(cur, "wqkv_clamped", il);
  7600. }
  7601. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7602. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7603. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7604. cb(Qcur, "Qcur", il);
  7605. cb(Kcur, "Kcur", il);
  7606. cb(Vcur, "Vcur", il);
  7607. // Q/K Layernorm
  7608. if (model.layers[il].attn_q_norm) {
  7609. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7610. model.layers[il].attn_q_norm,
  7611. model.layers[il].attn_q_norm_b,
  7612. LLM_NORM, cb, il);
  7613. cb(Qcur, "Qcur", il);
  7614. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7615. model.layers[il].attn_k_norm,
  7616. model.layers[il].attn_k_norm_b,
  7617. LLM_NORM, cb, il);
  7618. cb(Kcur, "Kcur", il);
  7619. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7620. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7621. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7622. model.layers[il].wo, model.layers[il].bo,
  7623. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7624. } else {
  7625. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7626. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7627. model.layers[il].wo, model.layers[il].bo,
  7628. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7629. }
  7630. }
  7631. if (il == n_layer - 1) {
  7632. // skip computing output for unused tokens
  7633. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7634. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7635. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7636. }
  7637. // Add the input
  7638. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7639. cb(ffn_inp, "ffn_inp", il);
  7640. // feed forward
  7641. {
  7642. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7643. model.layers[il].ffn_norm,
  7644. model.layers[il].ffn_norm_b,
  7645. LLM_NORM, cb, il);
  7646. cb(cur, "ffn_norm", il);
  7647. cur = llm_build_ffn(ctx0, cur,
  7648. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7649. NULL, NULL,
  7650. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7651. model.layers[il].ffn_act,
  7652. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7653. cb(cur, "ffn_out", il);
  7654. }
  7655. cur = ggml_add(ctx0, cur, ffn_inp);
  7656. cb(cur, "l_out", il);
  7657. // input for next layer
  7658. inpL = cur;
  7659. }
  7660. cur = inpL;
  7661. cur = llm_build_norm(ctx0, cur, hparams,
  7662. model.output_norm,
  7663. model.output_norm_b,
  7664. LLM_NORM, cb, -1);
  7665. cb(cur, "result_norm", -1);
  7666. cur = ggml_mul_mat(ctx0, model.output, cur);
  7667. cb(cur, "result_output", -1);
  7668. ggml_build_forward_expand(gf, cur);
  7669. return gf;
  7670. }
  7671. struct ggml_cgraph * build_stablelm() {
  7672. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7673. const int64_t n_embd_head = hparams.n_embd_head_v;
  7674. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7675. struct ggml_tensor * cur;
  7676. struct ggml_tensor * inpL;
  7677. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7678. // inp_pos - contains the positions
  7679. struct ggml_tensor * inp_pos = build_inp_pos();
  7680. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7681. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7682. for (int il = 0; il < n_layer; ++il) {
  7683. // norm
  7684. cur = llm_build_norm(ctx0, inpL, hparams,
  7685. model.layers[il].attn_norm,
  7686. model.layers[il].attn_norm_b,
  7687. LLM_NORM, cb, il);
  7688. cb(cur, "attn_norm", il);
  7689. struct ggml_tensor * inpSA = cur;
  7690. // self-attention
  7691. {
  7692. // compute Q and K and RoPE them
  7693. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7694. cb(Qcur, "Qcur", il);
  7695. if (model.layers[il].bq) {
  7696. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7697. cb(Qcur, "Qcur", il);
  7698. }
  7699. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7700. cb(Kcur, "Kcur", il);
  7701. if (model.layers[il].bk) {
  7702. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7703. cb(Kcur, "Kcur", il);
  7704. }
  7705. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7706. cb(Vcur, "Vcur", il);
  7707. if (model.layers[il].bv) {
  7708. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7709. cb(Vcur, "Vcur", il);
  7710. }
  7711. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7712. cb(Qcur, "Qcur", il);
  7713. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7714. cb(Kcur, "Kcur", il);
  7715. if (model.layers[il].attn_q_norm) {
  7716. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7717. model.layers[il].attn_q_norm,
  7718. NULL,
  7719. LLM_NORM, cb, il);
  7720. cb(Qcur, "Qcur", il);
  7721. }
  7722. if (model.layers[il].attn_k_norm) {
  7723. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7724. model.layers[il].attn_k_norm,
  7725. NULL,
  7726. LLM_NORM, cb, il);
  7727. cb(Kcur, "Kcur", il);
  7728. }
  7729. Qcur = ggml_rope_ext(
  7730. ctx0, Qcur, inp_pos, nullptr,
  7731. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7732. ext_factor, attn_factor, beta_fast, beta_slow
  7733. );
  7734. cb(Qcur, "Qcur", il);
  7735. Kcur = ggml_rope_ext(
  7736. ctx0, Kcur, inp_pos, nullptr,
  7737. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7738. ext_factor, attn_factor, beta_fast, beta_slow
  7739. );
  7740. cb(Kcur, "Kcur", il);
  7741. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7742. model.layers[il].wo, NULL,
  7743. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7744. }
  7745. if (il == n_layer - 1) {
  7746. // skip computing output for unused tokens
  7747. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7748. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7749. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7750. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7751. }
  7752. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7753. cb(ffn_inp, "ffn_inp", il);
  7754. // feed-forward network
  7755. {
  7756. if (model.layers[il].ffn_norm) {
  7757. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7758. model.layers[il].ffn_norm,
  7759. model.layers[il].ffn_norm_b,
  7760. LLM_NORM, cb, il);
  7761. cb(cur, "ffn_norm", il);
  7762. } else {
  7763. // parallel residual
  7764. cur = inpSA;
  7765. }
  7766. cur = llm_build_ffn(ctx0, cur,
  7767. model.layers[il].ffn_up, NULL,
  7768. model.layers[il].ffn_gate, NULL,
  7769. model.layers[il].ffn_down, NULL,
  7770. NULL,
  7771. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7772. cb(cur, "ffn_out", il);
  7773. }
  7774. cur = ggml_add(ctx0, cur, ffn_inp);
  7775. cb(cur, "l_out", il);
  7776. // input for next layer
  7777. inpL = cur;
  7778. }
  7779. cur = inpL;
  7780. cur = llm_build_norm(ctx0, cur, hparams,
  7781. model.output_norm,
  7782. model.output_norm_b,
  7783. LLM_NORM, cb, -1);
  7784. cb(cur, "result_norm", -1);
  7785. // lm_head
  7786. cur = ggml_mul_mat(ctx0, model.output, cur);
  7787. cb(cur, "result_output", -1);
  7788. ggml_build_forward_expand(gf, cur);
  7789. return gf;
  7790. }
  7791. struct ggml_cgraph * build_qwen() {
  7792. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7793. const int64_t n_embd_head = hparams.n_embd_head_v;
  7794. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7795. struct ggml_tensor * cur;
  7796. struct ggml_tensor * inpL;
  7797. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7798. // inp_pos - contains the positions
  7799. struct ggml_tensor * inp_pos = build_inp_pos();
  7800. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7801. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7802. for (int il = 0; il < n_layer; ++il) {
  7803. struct ggml_tensor * inpSA = inpL;
  7804. cur = llm_build_norm(ctx0, inpL, hparams,
  7805. model.layers[il].attn_norm, NULL,
  7806. LLM_NORM_RMS, cb, il);
  7807. cb(cur, "attn_norm", il);
  7808. // self-attention
  7809. {
  7810. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7811. cb(cur, "wqkv", il);
  7812. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7813. cb(cur, "bqkv", il);
  7814. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7815. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7816. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7817. cb(Qcur, "Qcur", il);
  7818. cb(Kcur, "Kcur", il);
  7819. cb(Vcur, "Vcur", il);
  7820. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7821. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7822. // using mode = 2 for neox mode
  7823. Qcur = ggml_rope_ext(
  7824. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7825. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7826. );
  7827. cb(Qcur, "Qcur", il);
  7828. Kcur = ggml_rope_ext(
  7829. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7830. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7831. );
  7832. cb(Kcur, "Kcur", il);
  7833. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7834. model.layers[il].wo, NULL,
  7835. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7836. }
  7837. if (il == n_layer - 1) {
  7838. // skip computing output for unused tokens
  7839. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7840. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7841. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7842. }
  7843. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7844. cb(ffn_inp, "ffn_inp", il);
  7845. // feed-forward forward
  7846. {
  7847. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7848. model.layers[il].ffn_norm, NULL,
  7849. LLM_NORM_RMS, cb, il);
  7850. cb(cur, "ffn_norm", il);
  7851. cur = llm_build_ffn(ctx0, cur,
  7852. model.layers[il].ffn_up, NULL,
  7853. model.layers[il].ffn_gate, NULL,
  7854. model.layers[il].ffn_down, NULL,
  7855. NULL,
  7856. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7857. cb(cur, "ffn_out", il);
  7858. }
  7859. cur = ggml_add(ctx0, cur, ffn_inp);
  7860. cb(cur, "l_out", il);
  7861. // input for next layer
  7862. inpL = cur;
  7863. }
  7864. cur = inpL;
  7865. cur = llm_build_norm(ctx0, cur, hparams,
  7866. model.output_norm, NULL,
  7867. LLM_NORM_RMS, cb, -1);
  7868. cb(cur, "result_norm", -1);
  7869. // lm_head
  7870. cur = ggml_mul_mat(ctx0, model.output, cur);
  7871. cb(cur, "result_output", -1);
  7872. ggml_build_forward_expand(gf, cur);
  7873. return gf;
  7874. }
  7875. struct ggml_cgraph * build_qwen2() {
  7876. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7877. const int64_t n_embd_head = hparams.n_embd_head_v;
  7878. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7879. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7880. struct ggml_tensor * cur;
  7881. struct ggml_tensor * inpL;
  7882. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7883. // inp_pos - contains the positions
  7884. struct ggml_tensor * inp_pos = build_inp_pos();
  7885. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7886. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7887. for (int il = 0; il < n_layer; ++il) {
  7888. struct ggml_tensor * inpSA = inpL;
  7889. // norm
  7890. cur = llm_build_norm(ctx0, inpL, hparams,
  7891. model.layers[il].attn_norm, NULL,
  7892. LLM_NORM_RMS, cb, il);
  7893. cb(cur, "attn_norm", il);
  7894. // self-attention
  7895. {
  7896. // compute Q and K and RoPE them
  7897. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7898. cb(Qcur, "Qcur", il);
  7899. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7900. cb(Qcur, "Qcur", il);
  7901. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7902. cb(Kcur, "Kcur", il);
  7903. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7904. cb(Kcur, "Kcur", il);
  7905. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7906. cb(Vcur, "Vcur", il);
  7907. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7908. cb(Vcur, "Vcur", il);
  7909. Qcur = ggml_rope_ext(
  7910. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7911. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7912. ext_factor, attn_factor, beta_fast, beta_slow
  7913. );
  7914. cb(Qcur, "Qcur", il);
  7915. Kcur = ggml_rope_ext(
  7916. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7917. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7918. ext_factor, attn_factor, beta_fast, beta_slow
  7919. );
  7920. cb(Kcur, "Kcur", il);
  7921. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7922. model.layers[il].wo, model.layers[il].bo,
  7923. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7924. }
  7925. if (il == n_layer - 1) {
  7926. // skip computing output for unused tokens
  7927. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7928. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7929. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7930. }
  7931. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7932. cb(ffn_inp, "ffn_inp", il);
  7933. // feed-forward network
  7934. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7935. model.layers[il].ffn_norm, NULL,
  7936. LLM_NORM_RMS, cb, il);
  7937. cb(cur, "ffn_norm", il);
  7938. cur = llm_build_ffn(ctx0, cur,
  7939. model.layers[il].ffn_up, NULL,
  7940. model.layers[il].ffn_gate, NULL,
  7941. model.layers[il].ffn_down, NULL,
  7942. NULL,
  7943. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7944. cb(cur, "ffn_out", il);
  7945. cur = ggml_add(ctx0, cur, ffn_inp);
  7946. cb(cur, "l_out", il);
  7947. // input for next layer
  7948. inpL = cur;
  7949. }
  7950. cur = inpL;
  7951. cur = llm_build_norm(ctx0, cur, hparams,
  7952. model.output_norm, NULL,
  7953. LLM_NORM_RMS, cb, -1);
  7954. cb(cur, "result_norm", -1);
  7955. // lm_head
  7956. cur = ggml_mul_mat(ctx0, model.output, cur);
  7957. cb(cur, "result_output", -1);
  7958. ggml_build_forward_expand(gf, cur);
  7959. return gf;
  7960. }
  7961. struct ggml_cgraph * build_qwen2moe() {
  7962. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7963. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7964. int32_t n_tokens = this->n_tokens;
  7965. const int64_t n_embd_head = hparams.n_embd_head_v;
  7966. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7967. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7968. struct ggml_tensor * cur;
  7969. struct ggml_tensor * inpL;
  7970. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7971. // inp_pos - contains the positions
  7972. struct ggml_tensor * inp_pos = build_inp_pos();
  7973. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7974. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7975. for (int il = 0; il < n_layer; ++il) {
  7976. struct ggml_tensor * inpSA = inpL;
  7977. // norm
  7978. cur = llm_build_norm(ctx0, inpL, hparams,
  7979. model.layers[il].attn_norm, NULL,
  7980. LLM_NORM_RMS, cb, il);
  7981. cb(cur, "attn_norm", il);
  7982. // self_attention
  7983. {
  7984. // compute Q and K and RoPE them
  7985. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7986. cb(Qcur, "Qcur", il);
  7987. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7988. cb(Qcur, "Qcur", il);
  7989. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7990. cb(Kcur, "Kcur", il);
  7991. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7992. cb(Kcur, "Kcur", il);
  7993. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7994. cb(Vcur, "Vcur", il);
  7995. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7996. cb(Vcur, "Vcur", il);
  7997. Qcur = ggml_rope_ext(
  7998. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7999. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8000. ext_factor, attn_factor, beta_fast, beta_slow
  8001. );
  8002. cb(Qcur, "Qcur", il);
  8003. Kcur = ggml_rope_ext(
  8004. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8005. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8006. ext_factor, attn_factor, beta_fast, beta_slow
  8007. );
  8008. cb(Kcur, "Kcur", il);
  8009. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8010. model.layers[il].wo, model.layers[il].bo,
  8011. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8012. }
  8013. if (il == n_layer - 1) {
  8014. // skip computing output for unused tokens
  8015. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8016. n_tokens = n_outputs;
  8017. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8018. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8019. }
  8020. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8021. cb(ffn_inp, "ffn_inp", il);
  8022. // MoE branch
  8023. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8024. model.layers[il].ffn_norm, NULL,
  8025. LLM_NORM_RMS, cb, il);
  8026. cb(cur, "ffn_norm", il);
  8027. ggml_tensor * moe_out =
  8028. llm_build_moe_ffn(ctx0, cur,
  8029. model.layers[il].ffn_gate_inp,
  8030. model.layers[il].ffn_up_exps,
  8031. model.layers[il].ffn_gate_exps,
  8032. model.layers[il].ffn_down_exps,
  8033. n_expert, n_expert_used,
  8034. LLM_FFN_SILU, false,
  8035. false, 0.0,
  8036. cb, il);
  8037. cb(cur, "ffn_moe_out", il);
  8038. // FFN shared expert
  8039. {
  8040. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  8041. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  8042. // sigmoid
  8043. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  8044. cb(cur_gate, "ffn_shexp_gate", il);
  8045. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  8046. model.layers[il].ffn_up_shexp, NULL,
  8047. model.layers[il].ffn_gate_shexp, NULL,
  8048. model.layers[il].ffn_down_shexp, NULL,
  8049. NULL,
  8050. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8051. cb(cur_ffn, "ffn_shexp", il);
  8052. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  8053. cb(ffn_shexp_out, "ffn_shexp_out", il);
  8054. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  8055. cb(moe_out, "ffn_out", il);
  8056. cur = moe_out;
  8057. }
  8058. cur = ggml_add(ctx0, cur, ffn_inp);
  8059. cb(cur, "l_out", il);
  8060. // input for next layer
  8061. inpL = cur;
  8062. }
  8063. cur = inpL;
  8064. cur = llm_build_norm(ctx0, cur, hparams,
  8065. model.output_norm, NULL,
  8066. LLM_NORM_RMS, cb, -1);
  8067. cb(cur, "result_norm", -1);
  8068. // lm_head
  8069. cur = ggml_mul_mat(ctx0, model.output, cur);
  8070. cb(cur, "result_output", -1);
  8071. ggml_build_forward_expand(gf, cur);
  8072. return gf;
  8073. }
  8074. struct ggml_cgraph * build_phi2() {
  8075. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8076. const int64_t n_embd_head = hparams.n_embd_head_v;
  8077. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8078. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8079. struct ggml_tensor * cur;
  8080. struct ggml_tensor * attn_norm_output;
  8081. struct ggml_tensor * ffn_output;
  8082. struct ggml_tensor * inpL;
  8083. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8084. // inp_pos - contains the positions
  8085. struct ggml_tensor * inp_pos = build_inp_pos();
  8086. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8087. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8088. for (int il = 0; il < n_layer; ++il) {
  8089. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8090. model.layers[il].attn_norm,
  8091. model.layers[il].attn_norm_b,
  8092. LLM_NORM, cb, il);
  8093. cb(attn_norm_output, "attn_norm", il);
  8094. // self-attention
  8095. {
  8096. struct ggml_tensor * Qcur = nullptr;
  8097. struct ggml_tensor * Kcur = nullptr;
  8098. struct ggml_tensor * Vcur = nullptr;
  8099. if (model.layers[il].wqkv) {
  8100. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8101. cb(cur, "wqkv", il);
  8102. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8103. cb(cur, "bqkv", il);
  8104. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8105. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8106. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8107. } else {
  8108. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8109. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8110. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8111. }
  8112. cb(Qcur, "Qcur", il);
  8113. cb(Kcur, "Kcur", il);
  8114. cb(Vcur, "Vcur", il);
  8115. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8116. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8117. Qcur = ggml_rope_ext(
  8118. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8119. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8120. );
  8121. cb(Qcur, "Qcur", il);
  8122. // with phi2, we scale the Q to avoid precision issues
  8123. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  8124. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  8125. cb(Qcur, "Qcur", il);
  8126. Kcur = ggml_rope_ext(
  8127. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8128. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8129. );
  8130. cb(Kcur, "Kcur", il);
  8131. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8132. model.layers[il].wo, model.layers[il].bo,
  8133. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8134. }
  8135. if (il == n_layer - 1) {
  8136. // skip computing output for unused tokens
  8137. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8138. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8139. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8140. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  8141. }
  8142. // FF
  8143. {
  8144. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  8145. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8146. NULL, NULL,
  8147. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8148. NULL,
  8149. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8150. cb(ffn_output, "ffn_out", il);
  8151. }
  8152. cur = ggml_add(ctx0, cur, ffn_output);
  8153. cb(cur, "l_out", il);
  8154. cur = ggml_add(ctx0, cur, inpL);
  8155. cb(cur, "l_out", il);
  8156. inpL = cur;
  8157. }
  8158. cur = llm_build_norm(ctx0, inpL, hparams,
  8159. model.output_norm,
  8160. model.output_norm_b,
  8161. LLM_NORM, cb, -1);
  8162. cb(cur, "result_norm", -1);
  8163. cur = ggml_mul_mat(ctx0, model.output, cur);
  8164. cb(cur, "result_output_no_bias", -1);
  8165. cur = ggml_add(ctx0, cur, model.output_b);
  8166. cb(cur, "result_output", -1);
  8167. ggml_build_forward_expand(gf, cur);
  8168. return gf;
  8169. }
  8170. struct ggml_cgraph * build_phi3() {
  8171. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8172. const int64_t n_embd_head = hparams.n_embd_head_v;
  8173. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8174. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8175. struct ggml_tensor * cur;
  8176. struct ggml_tensor * inpL;
  8177. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8178. // inp_pos - contains the positions
  8179. struct ggml_tensor * inp_pos = build_inp_pos();
  8180. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8181. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8182. for (int il = 0; il < n_layer; ++il) {
  8183. auto residual = inpL;
  8184. // self-attention
  8185. {
  8186. // rope freq factors for 128k context
  8187. struct ggml_tensor * rope_factors = build_rope_factors(il);
  8188. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8189. model.layers[il].attn_norm,
  8190. NULL,
  8191. LLM_NORM_RMS, cb, il);
  8192. cb(attn_norm_output, "attn_norm", il);
  8193. struct ggml_tensor * Qcur = nullptr;
  8194. struct ggml_tensor * Kcur = nullptr;
  8195. struct ggml_tensor * Vcur = nullptr;
  8196. if (model.layers[il].wqkv) {
  8197. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8198. cb(cur, "wqkv", il);
  8199. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  8200. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  8201. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  8202. }
  8203. else {
  8204. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8205. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8206. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8207. }
  8208. cb(Qcur, "Qcur", il);
  8209. cb(Kcur, "Kcur", il);
  8210. cb(Vcur, "Vcur", il);
  8211. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8212. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8213. Qcur = ggml_rope_ext(
  8214. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8215. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8216. );
  8217. cb(Qcur, "Qcur", il);
  8218. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8219. cb(Qcur, "Qcur", il);
  8220. Kcur = ggml_rope_ext(
  8221. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8222. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8223. );
  8224. cb(Kcur, "Kcur", il);
  8225. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8226. model.layers[il].wo, model.layers[il].bo,
  8227. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8228. }
  8229. if (il == n_layer - 1) {
  8230. // skip computing output for unused tokens
  8231. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  8232. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8233. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  8234. }
  8235. cur = ggml_add(ctx0, cur, residual);
  8236. residual = cur;
  8237. cur = llm_build_norm(ctx0, cur, hparams,
  8238. model.layers[il].ffn_norm, NULL,
  8239. LLM_NORM_RMS, cb, il);
  8240. cb(cur, "ffn_norm", il);
  8241. // FF
  8242. // special-case: the up and gate tensors are merged into a single tensor
  8243. // TOOD: support into llm_build_ffn
  8244. {
  8245. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  8246. cb(up, "ffn_up", il);
  8247. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  8248. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  8249. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  8250. cb(y, "ffn_gate", il);
  8251. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  8252. cb(down, "ffn_down", il);
  8253. cur = down;
  8254. cb(cur, "ffn_out", il);
  8255. }
  8256. cur = ggml_add(ctx0, residual, cur);
  8257. cb(cur, "l_out", il);
  8258. inpL = cur;
  8259. }
  8260. cur = llm_build_norm(ctx0, inpL, hparams,
  8261. model.output_norm,
  8262. NULL,
  8263. LLM_NORM_RMS, cb, -1);
  8264. cb(cur, "result_norm", -1);
  8265. cur = ggml_mul_mat(ctx0, model.output, cur);
  8266. cb(cur, "result_output", -1);
  8267. ggml_build_forward_expand(gf, cur);
  8268. return gf;
  8269. }
  8270. struct ggml_cgraph * build_plamo() {
  8271. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8272. const int64_t n_embd_head = hparams.n_embd_head_v;
  8273. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8274. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8275. struct ggml_tensor * cur;
  8276. struct ggml_tensor * inpL;
  8277. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8278. // inp_pos - contains the positions
  8279. struct ggml_tensor * inp_pos = build_inp_pos();
  8280. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8281. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8282. for (int il = 0; il < n_layer; ++il) {
  8283. // norm
  8284. cur = llm_build_norm(ctx0, inpL, hparams,
  8285. model.layers[il].attn_norm, NULL,
  8286. LLM_NORM_RMS, cb, il);
  8287. cb(cur, "attn_norm", il);
  8288. struct ggml_tensor * attention_norm = cur;
  8289. // self-attention
  8290. {
  8291. // compute Q and K and RoPE them
  8292. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8293. cb(Qcur, "Qcur", il);
  8294. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8295. cb(Kcur, "Kcur", il);
  8296. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8297. cb(Vcur, "Vcur", il);
  8298. Qcur = ggml_rope_ext(
  8299. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8300. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8301. ext_factor, attn_factor, beta_fast, beta_slow);
  8302. cb(Qcur, "Qcur", il);
  8303. Kcur = ggml_rope_ext(
  8304. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8305. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8306. ext_factor, attn_factor, beta_fast, beta_slow);
  8307. cb(Kcur, "Kcur", il);
  8308. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8309. model.layers[il].wo, NULL,
  8310. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8311. }
  8312. struct ggml_tensor * sa_out = cur;
  8313. cur = attention_norm;
  8314. if (il == n_layer - 1) {
  8315. // skip computing output for unused tokens
  8316. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8317. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8318. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8319. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8320. }
  8321. // feed-forward network
  8322. {
  8323. cur = llm_build_ffn(ctx0, cur,
  8324. model.layers[il].ffn_up, NULL,
  8325. model.layers[il].ffn_gate, NULL,
  8326. model.layers[il].ffn_down, NULL,
  8327. NULL,
  8328. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8329. cb(cur, "ffn_out", il);
  8330. }
  8331. cur = ggml_add(ctx0, cur, sa_out);
  8332. cb(cur, "l_out", il);
  8333. cur = ggml_add(ctx0, cur, inpL);
  8334. cb(cur, "l_out", il);
  8335. // input for next layer
  8336. inpL = cur;
  8337. }
  8338. cur = inpL;
  8339. cur = llm_build_norm(ctx0, cur, hparams,
  8340. model.output_norm, NULL,
  8341. LLM_NORM_RMS, cb, -1);
  8342. cb(cur, "result_norm", -1);
  8343. // lm_head
  8344. cur = ggml_mul_mat(ctx0, model.output, cur);
  8345. cb(cur, "result_output", -1);
  8346. ggml_build_forward_expand(gf, cur);
  8347. return gf;
  8348. }
  8349. struct ggml_cgraph * build_gpt2() {
  8350. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8351. const int64_t n_embd_head = hparams.n_embd_head_v;
  8352. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8353. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8354. struct ggml_tensor * cur;
  8355. struct ggml_tensor * pos;
  8356. struct ggml_tensor * inpL;
  8357. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8358. // inp_pos - contains the positions
  8359. struct ggml_tensor * inp_pos = build_inp_pos();
  8360. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8361. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8362. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8363. cb(pos, "pos_embd", -1);
  8364. inpL = ggml_add(ctx0, inpL, pos);
  8365. cb(inpL, "inpL", -1);
  8366. for (int il = 0; il < n_layer; ++il) {
  8367. cur = llm_build_norm(ctx0, inpL, hparams,
  8368. model.layers[il].attn_norm,
  8369. model.layers[il].attn_norm_b,
  8370. LLM_NORM, cb, il);
  8371. cb(cur, "attn_norm", il);
  8372. // self-attention
  8373. {
  8374. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8375. cb(cur, "wqkv", il);
  8376. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8377. cb(cur, "bqkv", il);
  8378. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8379. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8380. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8381. cb(Qcur, "Qcur", il);
  8382. cb(Kcur, "Kcur", il);
  8383. cb(Vcur, "Vcur", il);
  8384. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8385. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8386. model.layers[il].wo, model.layers[il].bo,
  8387. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8388. }
  8389. if (il == n_layer - 1) {
  8390. // skip computing output for unused tokens
  8391. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8392. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8393. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8394. }
  8395. // add the input
  8396. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8397. cb(ffn_inp, "ffn_inp", il);
  8398. // FF
  8399. {
  8400. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8401. model.layers[il].ffn_norm,
  8402. model.layers[il].ffn_norm_b,
  8403. LLM_NORM, cb, il);
  8404. cb(cur, "ffn_norm", il);
  8405. cur = llm_build_ffn(ctx0, cur,
  8406. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8407. NULL, NULL,
  8408. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8409. NULL,
  8410. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8411. cb(cur, "ffn_out", il);
  8412. }
  8413. inpL = ggml_add(ctx0, cur, ffn_inp);
  8414. cb(inpL, "l_out", il);
  8415. }
  8416. cur = llm_build_norm(ctx0, inpL, hparams,
  8417. model.output_norm,
  8418. model.output_norm_b,
  8419. LLM_NORM, cb, -1);
  8420. cb(cur, "result_norm", -1);
  8421. cur = ggml_mul_mat(ctx0, model.output, cur);
  8422. cb(cur, "result_output", -1);
  8423. ggml_build_forward_expand(gf, cur);
  8424. return gf;
  8425. }
  8426. struct ggml_cgraph * build_codeshell() {
  8427. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8428. const int64_t n_embd_head = hparams.n_embd_head_v;
  8429. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8430. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8431. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8432. struct ggml_tensor * cur;
  8433. struct ggml_tensor * inpL;
  8434. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8435. // inp_pos - contains the positions
  8436. struct ggml_tensor * inp_pos = build_inp_pos();
  8437. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8438. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8439. for (int il = 0; il < n_layer; ++il) {
  8440. cur = llm_build_norm(ctx0, inpL, hparams,
  8441. model.layers[il].attn_norm,
  8442. model.layers[il].attn_norm_b,
  8443. LLM_NORM, cb, il);
  8444. cb(cur, "attn_norm", il);
  8445. // self-attention
  8446. {
  8447. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8448. cb(cur, "wqkv", il);
  8449. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8450. cb(cur, "bqkv", il);
  8451. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8452. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8453. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8454. cb(tmpq, "tmpq", il);
  8455. cb(tmpk, "tmpk", il);
  8456. cb(Vcur, "Vcur", il);
  8457. struct ggml_tensor * Qcur = ggml_rope_ext(
  8458. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8459. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8460. ext_factor, attn_factor, beta_fast, beta_slow
  8461. );
  8462. cb(Qcur, "Qcur", il);
  8463. struct ggml_tensor * Kcur = ggml_rope_ext(
  8464. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8465. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8466. ext_factor, attn_factor, beta_fast, beta_slow
  8467. );
  8468. cb(Kcur, "Kcur", il);
  8469. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8470. model.layers[il].wo, model.layers[il].bo,
  8471. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8472. }
  8473. if (il == n_layer - 1) {
  8474. // skip computing output for unused tokens
  8475. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8476. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8477. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8478. }
  8479. // add the input
  8480. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8481. cb(ffn_inp, "ffn_inp", il);
  8482. // FF
  8483. {
  8484. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8485. model.layers[il].ffn_norm,
  8486. model.layers[il].ffn_norm_b,
  8487. LLM_NORM, cb, il);
  8488. cb(cur, "ffn_norm", il);
  8489. cur = llm_build_ffn(ctx0, cur,
  8490. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8491. NULL, NULL,
  8492. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8493. NULL,
  8494. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8495. cb(cur, "ffn_out", il);
  8496. }
  8497. inpL = ggml_add(ctx0, cur, ffn_inp);
  8498. cb(inpL, "l_out", il);
  8499. }
  8500. cur = llm_build_norm(ctx0, inpL, hparams,
  8501. model.output_norm,
  8502. model.output_norm_b,
  8503. LLM_NORM, cb, -1);
  8504. cb(cur, "result_norm", -1);
  8505. cur = ggml_mul_mat(ctx0, model.output, cur);
  8506. cb(cur, "result_output", -1);
  8507. ggml_build_forward_expand(gf, cur);
  8508. return gf;
  8509. }
  8510. struct ggml_cgraph * build_orion() {
  8511. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8512. const int64_t n_embd_head = hparams.n_embd_head_v;
  8513. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8514. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8515. struct ggml_tensor * cur;
  8516. struct ggml_tensor * inpL;
  8517. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8518. // inp_pos - contains the positions
  8519. struct ggml_tensor * inp_pos = build_inp_pos();
  8520. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8521. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8522. for (int il = 0; il < n_layer; ++il) {
  8523. struct ggml_tensor * inpSA = inpL;
  8524. // norm
  8525. cur = llm_build_norm(ctx0, inpL, hparams,
  8526. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8527. LLM_NORM, cb, il);
  8528. cb(cur, "attn_norm", il);
  8529. // self-attention
  8530. {
  8531. // compute Q and K and RoPE them
  8532. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8533. cb(Qcur, "Qcur", il);
  8534. // if (model.layers[il].bq) {
  8535. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8536. // cb(Qcur, "Qcur", il);
  8537. // }
  8538. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8539. cb(Kcur, "Kcur", il);
  8540. // if (model.layers[il].bk) {
  8541. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8542. // cb(Kcur, "Kcur", il);
  8543. // }
  8544. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8545. cb(Vcur, "Vcur", il);
  8546. // if (model.layers[il].bv) {
  8547. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8548. // cb(Vcur, "Vcur", il);
  8549. // }
  8550. Qcur = ggml_rope_ext(
  8551. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8552. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8553. ext_factor, attn_factor, beta_fast, beta_slow
  8554. );
  8555. cb(Qcur, "Qcur", il);
  8556. Kcur = ggml_rope_ext(
  8557. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8558. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8559. ext_factor, attn_factor, beta_fast, beta_slow
  8560. );
  8561. cb(Kcur, "Kcur", il);
  8562. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8563. model.layers[il].wo, NULL,
  8564. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8565. }
  8566. if (il == n_layer - 1) {
  8567. // skip computing output for unused tokens
  8568. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8569. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8570. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8571. }
  8572. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8573. cb(ffn_inp, "ffn_inp", il);
  8574. // feed-forward network
  8575. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8576. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8577. LLM_NORM, cb, il);
  8578. cb(cur, "ffn_norm", il);
  8579. cur = llm_build_ffn(ctx0, cur,
  8580. model.layers[il].ffn_up, NULL,
  8581. model.layers[il].ffn_gate, NULL,
  8582. model.layers[il].ffn_down, NULL,
  8583. NULL,
  8584. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8585. cb(cur, "ffn_out", il);
  8586. cur = ggml_add(ctx0, cur, ffn_inp);
  8587. cb(cur, "l_out", il);
  8588. // input for next layer
  8589. inpL = cur;
  8590. }
  8591. cur = inpL;
  8592. cur = llm_build_norm(ctx0, cur, hparams,
  8593. model.output_norm, model.output_norm_b,
  8594. LLM_NORM, cb, -1);
  8595. cb(cur, "result_norm", -1);
  8596. // lm_head
  8597. cur = ggml_mul_mat(ctx0, model.output, cur);
  8598. cb(cur, "result_output", -1);
  8599. ggml_build_forward_expand(gf, cur);
  8600. return gf;
  8601. }
  8602. struct ggml_cgraph * build_internlm2() {
  8603. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8604. const int64_t n_embd_head = hparams.n_embd_head_v;
  8605. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8606. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8607. struct ggml_tensor * cur;
  8608. struct ggml_tensor * inpL;
  8609. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8610. // inp_pos - contains the positions
  8611. struct ggml_tensor * inp_pos = build_inp_pos();
  8612. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8613. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8614. for (int il = 0; il < n_layer; ++il) {
  8615. struct ggml_tensor * inpSA = inpL;
  8616. // norm
  8617. cur = llm_build_norm(ctx0, inpL, hparams,
  8618. model.layers[il].attn_norm, NULL,
  8619. LLM_NORM_RMS, cb, il);
  8620. cb(cur, "attn_norm", il);
  8621. // self-attention
  8622. {
  8623. // compute Q and K and RoPE them
  8624. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8625. cb(Qcur, "Qcur", il);
  8626. if (model.layers[il].bq) {
  8627. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8628. cb(Qcur, "Qcur", il);
  8629. }
  8630. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8631. cb(Kcur, "Kcur", il);
  8632. if (model.layers[il].bk) {
  8633. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8634. cb(Kcur, "Kcur", il);
  8635. }
  8636. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8637. cb(Vcur, "Vcur", il);
  8638. if (model.layers[il].bv) {
  8639. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8640. cb(Vcur, "Vcur", il);
  8641. }
  8642. Qcur = ggml_rope_ext(
  8643. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8644. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8645. ext_factor, attn_factor, beta_fast, beta_slow
  8646. );
  8647. cb(Qcur, "Qcur", il);
  8648. Kcur = ggml_rope_ext(
  8649. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8650. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8651. ext_factor, attn_factor, beta_fast, beta_slow
  8652. );
  8653. cb(Kcur, "Kcur", il);
  8654. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8655. model.layers[il].wo, model.layers[il].bo,
  8656. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8657. }
  8658. if (il == n_layer - 1) {
  8659. // skip computing output for unused tokens
  8660. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8661. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8662. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8663. }
  8664. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8665. cb(ffn_inp, "ffn_inp", il);
  8666. // feed-forward network
  8667. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8668. model.layers[il].ffn_norm, NULL,
  8669. LLM_NORM_RMS, cb, il);
  8670. cb(cur, "ffn_norm", il);
  8671. cur = llm_build_ffn(ctx0, cur,
  8672. model.layers[il].ffn_up, NULL,
  8673. model.layers[il].ffn_gate, NULL,
  8674. model.layers[il].ffn_down, NULL,
  8675. NULL,
  8676. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8677. cb(cur, "ffn_out", il);
  8678. cur = ggml_add(ctx0, cur, ffn_inp);
  8679. cb(cur, "l_out", il);
  8680. // input for next layer
  8681. inpL = cur;
  8682. }
  8683. cur = inpL;
  8684. cur = llm_build_norm(ctx0, cur, hparams,
  8685. model.output_norm, NULL,
  8686. LLM_NORM_RMS, cb, -1);
  8687. cb(cur, "result_norm", -1);
  8688. // lm_head
  8689. cur = ggml_mul_mat(ctx0, model.output, cur);
  8690. cb(cur, "result_output", -1);
  8691. ggml_build_forward_expand(gf, cur);
  8692. return gf;
  8693. }
  8694. // ref: https://arxiv.org/abs/2203.03466
  8695. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8696. // based on the original build_llama() function
  8697. struct ggml_cgraph * build_minicpm() {
  8698. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8699. const int64_t n_embd_head = hparams.n_embd_head_v;
  8700. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8701. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8702. const int64_t n_embd = hparams.n_embd;
  8703. //TODO: if the model varies, these parameters need to be read from the model
  8704. const int64_t n_embd_base = 256;
  8705. const float scale_embd = 12.0f;
  8706. const float scale_depth = 1.4f;
  8707. struct ggml_tensor * cur;
  8708. struct ggml_tensor * inpL;
  8709. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8710. // scale the input embeddings
  8711. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8712. cb(inpL, "inp_scaled", -1);
  8713. // inp_pos - contains the positions
  8714. struct ggml_tensor * inp_pos = build_inp_pos();
  8715. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8716. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8717. for (int il = 0; il < n_layer; ++il) {
  8718. struct ggml_tensor * inpSA = inpL;
  8719. // norm
  8720. cur = llm_build_norm(ctx0, inpL, hparams,
  8721. model.layers[il].attn_norm, NULL,
  8722. LLM_NORM_RMS, cb, il);
  8723. cb(cur, "attn_norm", il);
  8724. // self-attention
  8725. {
  8726. // compute Q and K and RoPE them
  8727. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8728. cb(Qcur, "Qcur", il);
  8729. if (model.layers[il].bq) {
  8730. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8731. cb(Qcur, "Qcur", il);
  8732. }
  8733. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8734. cb(Kcur, "Kcur", il);
  8735. if (model.layers[il].bk) {
  8736. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8737. cb(Kcur, "Kcur", il);
  8738. }
  8739. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8740. cb(Vcur, "Vcur", il);
  8741. if (model.layers[il].bv) {
  8742. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8743. cb(Vcur, "Vcur", il);
  8744. }
  8745. Qcur = ggml_rope_ext(
  8746. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8747. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8748. ext_factor, attn_factor, beta_fast, beta_slow
  8749. );
  8750. cb(Qcur, "Qcur", il);
  8751. Kcur = ggml_rope_ext(
  8752. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8753. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8754. ext_factor, attn_factor, beta_fast, beta_slow
  8755. );
  8756. cb(Kcur, "Kcur", il);
  8757. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8758. model.layers[il].wo, model.layers[il].bo,
  8759. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8760. }
  8761. if (il == n_layer - 1) {
  8762. // skip computing output for unused tokens
  8763. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8764. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8765. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8766. }
  8767. // scale_res - scale the hidden states for residual connection
  8768. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8769. cur = ggml_scale(ctx0, cur, scale_res);
  8770. cb(cur, "hidden_scaled", -1);
  8771. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8772. cb(ffn_inp, "ffn_inp", il);
  8773. // feed-forward network
  8774. {
  8775. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8776. model.layers[il].ffn_norm, NULL,
  8777. LLM_NORM_RMS, cb, il);
  8778. cb(cur, "ffn_norm", il);
  8779. cur = llm_build_ffn(ctx0, cur,
  8780. model.layers[il].ffn_up, NULL,
  8781. model.layers[il].ffn_gate, NULL,
  8782. model.layers[il].ffn_down, NULL,
  8783. NULL,
  8784. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8785. cb(cur, "ffn_out", il);
  8786. }
  8787. // scale the hidden states for residual connection
  8788. cur = ggml_scale(ctx0, cur, scale_res);
  8789. cb(cur, "hidden_scaled_ffn", -1);
  8790. cur = ggml_add(ctx0, cur, ffn_inp);
  8791. cb(cur, "l_out", il);
  8792. // input for next layer
  8793. inpL = cur;
  8794. }
  8795. cur = inpL;
  8796. cur = llm_build_norm(ctx0, cur, hparams,
  8797. model.output_norm, NULL,
  8798. LLM_NORM_RMS, cb, -1);
  8799. cb(cur, "result_norm", -1);
  8800. // lm_head scaling
  8801. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8802. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8803. cb(cur, "lmhead_scaling", -1);
  8804. // lm_head
  8805. cur = ggml_mul_mat(ctx0, model.output, cur);
  8806. cb(cur, "result_output", -1);
  8807. ggml_build_forward_expand(gf, cur);
  8808. return gf;
  8809. }
  8810. struct ggml_cgraph * build_gemma() {
  8811. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8812. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8813. struct ggml_tensor * cur;
  8814. struct ggml_tensor * inpL;
  8815. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8816. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8817. cb(inpL, "inp_scaled", -1);
  8818. // inp_pos - contains the positions
  8819. struct ggml_tensor * inp_pos = build_inp_pos();
  8820. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8821. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8822. for (int il = 0; il < n_layer; ++il) {
  8823. // norm
  8824. cur = llm_build_norm(ctx0, inpL, hparams,
  8825. model.layers[il].attn_norm, NULL,
  8826. LLM_NORM_RMS, cb, il);
  8827. cb(cur, "attn_norm", il);
  8828. // self-attention
  8829. {
  8830. // compute Q and K and RoPE them
  8831. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8832. cb(Qcur, "Qcur", il);
  8833. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8834. cb(Kcur, "Kcur", il);
  8835. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8836. cb(Vcur, "Vcur", il);
  8837. Qcur = ggml_rope_ext(
  8838. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8839. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8840. ext_factor, attn_factor, beta_fast, beta_slow);
  8841. cb(Qcur, "Qcur", il);
  8842. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8843. cb(Qcur, "Qcur_scaled", il);
  8844. Kcur = ggml_rope_ext(
  8845. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8846. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8847. ext_factor, attn_factor, beta_fast, beta_slow);
  8848. cb(Kcur, "Kcur", il);
  8849. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8850. model.layers[il].wo, NULL,
  8851. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8852. }
  8853. if (il == n_layer - 1) {
  8854. // skip computing output for unused tokens
  8855. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8856. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8857. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8858. }
  8859. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8860. cb(sa_out, "sa_out", il);
  8861. cur = llm_build_norm(ctx0, sa_out, hparams,
  8862. model.layers[il].ffn_norm, NULL,
  8863. LLM_NORM_RMS, cb, il);
  8864. cb(cur, "ffn_norm", il);
  8865. // feed-forward network
  8866. {
  8867. cur = llm_build_ffn(ctx0, cur,
  8868. model.layers[il].ffn_up, NULL,
  8869. model.layers[il].ffn_gate, NULL,
  8870. model.layers[il].ffn_down, NULL,
  8871. NULL,
  8872. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8873. cb(cur, "ffn_out", il);
  8874. }
  8875. cur = ggml_add(ctx0, cur, sa_out);
  8876. cb(cur, "l_out", il);
  8877. // input for next layer
  8878. inpL = cur;
  8879. }
  8880. cur = inpL;
  8881. cur = llm_build_norm(ctx0, cur, hparams,
  8882. model.output_norm, NULL,
  8883. LLM_NORM_RMS, cb, -1);
  8884. cb(cur, "result_norm", -1);
  8885. // lm_head
  8886. cur = ggml_mul_mat(ctx0, model.output, cur);
  8887. cb(cur, "result_output", -1);
  8888. ggml_build_forward_expand(gf, cur);
  8889. return gf;
  8890. }
  8891. struct ggml_cgraph * build_starcoder2() {
  8892. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8893. const int64_t n_embd_head = hparams.n_embd_head_v;
  8894. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8895. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8896. struct ggml_tensor * cur;
  8897. struct ggml_tensor * inpL;
  8898. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8899. // inp_pos - contains the positions
  8900. struct ggml_tensor * inp_pos = build_inp_pos();
  8901. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8902. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8903. for (int il = 0; il < n_layer; ++il) {
  8904. struct ggml_tensor * inpSA = inpL;
  8905. // norm
  8906. cur = llm_build_norm(ctx0, inpL, hparams,
  8907. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8908. LLM_NORM, cb, il);
  8909. cb(cur, "attn_norm", il);
  8910. // self-attention
  8911. {
  8912. // compute Q and K and RoPE them
  8913. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8914. cb(Qcur, "Qcur", il);
  8915. if (model.layers[il].bq) {
  8916. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8917. cb(Qcur, "Qcur", il);
  8918. }
  8919. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8920. cb(Kcur, "Kcur", il);
  8921. if (model.layers[il].bk) {
  8922. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8923. cb(Kcur, "Kcur", il);
  8924. }
  8925. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8926. cb(Vcur, "Vcur", il);
  8927. if (model.layers[il].bv) {
  8928. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8929. cb(Vcur, "Vcur", il);
  8930. }
  8931. Qcur = ggml_rope_ext(
  8932. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8933. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8934. ext_factor, attn_factor, beta_fast, beta_slow
  8935. );
  8936. cb(Qcur, "Qcur", il);
  8937. Kcur = ggml_rope_ext(
  8938. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8939. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8940. ext_factor, attn_factor, beta_fast, beta_slow
  8941. );
  8942. cb(Kcur, "Kcur", il);
  8943. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8944. model.layers[il].wo, model.layers[il].bo,
  8945. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8946. }
  8947. if (il == n_layer - 1) {
  8948. // skip computing output for unused tokens
  8949. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8950. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8951. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8952. }
  8953. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8954. cb(ffn_inp, "ffn_inp", il);
  8955. // feed-forward network
  8956. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8957. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8958. LLM_NORM, cb, il);
  8959. cb(cur, "ffn_norm", il);
  8960. cur = llm_build_ffn(ctx0, cur,
  8961. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8962. NULL, NULL,
  8963. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8964. NULL,
  8965. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8966. cb(cur, "ffn_out", il);
  8967. cur = ggml_add(ctx0, cur, ffn_inp);
  8968. cb(cur, "l_out", il);
  8969. // input for next layer
  8970. inpL = cur;
  8971. }
  8972. cur = inpL;
  8973. cur = llm_build_norm(ctx0, cur, hparams,
  8974. model.output_norm, model.output_norm_b,
  8975. LLM_NORM, cb, -1);
  8976. cb(cur, "result_norm", -1);
  8977. // lm_head
  8978. cur = ggml_mul_mat(ctx0, model.output, cur);
  8979. cb(cur, "result_output", -1);
  8980. ggml_build_forward_expand(gf, cur);
  8981. return gf;
  8982. }
  8983. struct ggml_cgraph * build_mamba() {
  8984. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8985. const int64_t d_model = n_embd;
  8986. const int64_t d_conv = hparams.ssm_d_conv;
  8987. const int64_t d_inner = hparams.ssm_d_inner;
  8988. GGML_ASSERT(2 * d_model == d_inner);
  8989. const int64_t d_state = hparams.ssm_d_state;
  8990. const int64_t dt_rank = hparams.ssm_dt_rank;
  8991. struct ggml_tensor * cur;
  8992. struct ggml_tensor * inpL;
  8993. // {n_embd, n_tokens}
  8994. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8995. struct ggml_tensor * state_mask = build_inp_s_mask();
  8996. struct ggml_tensor * state_seq = build_inp_s_seq();
  8997. for (int il = 0; il < n_layer; ++il) {
  8998. // (ab)using the KV cache to store the states
  8999. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  9000. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  9001. // clear states of sequences which are starting at the beginning of this batch
  9002. {
  9003. conv_states = ggml_mul(ctx0,
  9004. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  9005. state_mask);
  9006. ssm_states = ggml_mul(ctx0,
  9007. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  9008. state_mask);
  9009. }
  9010. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  9011. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  9012. // norm
  9013. cur = llm_build_norm(ctx0, inpL, hparams,
  9014. model.layers[il].attn_norm, NULL,
  9015. LLM_NORM_RMS, cb, il);
  9016. cb(cur, "attn_norm", il);
  9017. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  9018. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  9019. // split the above in two
  9020. // => {d_inner, n_tokens}
  9021. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  9022. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  9023. // conv
  9024. {
  9025. // Custom operator which is needed only to ease simultaneous sequence processing.
  9026. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  9027. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  9028. // then element-wise multiply that with the conv1d weigth,
  9029. // then sum the elements of each row,
  9030. // (the last two steps are a dot product over rows (also doable with mul_mat))
  9031. // then permute away the ne[0] dimension,
  9032. // and then you're left with the resulting x tensor.
  9033. // The new conv_states is the last (d_conv - 1) columns
  9034. // of the last 3rd dimensional "layer" of the self-overlapping view.
  9035. // For simultaneous sequences, it's more complicated.
  9036. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  9037. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  9038. ggml_build_forward_expand(gf,
  9039. ggml_cpy(ctx0,
  9040. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  9041. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  9042. // extract x from x_conv
  9043. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  9044. // bias
  9045. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  9046. x = ggml_silu(ctx0, x);
  9047. }
  9048. // ssm
  9049. {
  9050. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  9051. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  9052. // split
  9053. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  9054. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  9055. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  9056. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  9057. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  9058. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  9059. // Custom operator to optimize the parallel associative scan
  9060. // as described in the Annex D of the Mamba paper.
  9061. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  9062. // because only a single tensor can be returned.
  9063. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  9064. // store last states (the second part of y_ssm_states)
  9065. ggml_build_forward_expand(gf,
  9066. ggml_cpy(ctx0,
  9067. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  9068. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  9069. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  9070. if (il == n_layer - 1) {
  9071. // skip computing output for unused tokens
  9072. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9073. x = ggml_get_rows(ctx0, x, inp_out_ids);
  9074. y = ggml_get_rows(ctx0, y, inp_out_ids);
  9075. z = ggml_get_rows(ctx0, z, inp_out_ids);
  9076. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9077. }
  9078. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  9079. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  9080. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  9081. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  9082. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  9083. }
  9084. // residual
  9085. cur = ggml_add(ctx0, cur, inpL);
  9086. cb(cur, "l_out", il);
  9087. // input for next layer
  9088. inpL = cur;
  9089. }
  9090. // final rmsnorm
  9091. cur = llm_build_norm(ctx0, inpL, hparams,
  9092. model.output_norm, NULL,
  9093. LLM_NORM_RMS, cb, -1);
  9094. cb(cur, "result_norm", -1);
  9095. // lm_head
  9096. cur = ggml_mul_mat(ctx0, model.output, cur);
  9097. cb(cur, "result_output", -1);
  9098. ggml_build_forward_expand(gf, cur);
  9099. return gf;
  9100. }
  9101. struct ggml_cgraph * build_command_r() {
  9102. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9103. const int64_t n_embd_head = hparams.n_embd_head_v;
  9104. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9105. const float f_logit_scale = hparams.f_logit_scale;
  9106. struct ggml_tensor * cur;
  9107. struct ggml_tensor * inpL;
  9108. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9109. // inp_pos - contains the positions
  9110. struct ggml_tensor * inp_pos = build_inp_pos();
  9111. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9112. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9113. for (int il = 0; il < n_layer; ++il) {
  9114. // norm
  9115. cur = llm_build_norm(ctx0, inpL, hparams,
  9116. model.layers[il].attn_norm, NULL,
  9117. LLM_NORM, cb, il);
  9118. cb(cur, "attn_norm", il);
  9119. struct ggml_tensor * ffn_inp = cur;
  9120. // self-attention
  9121. {
  9122. // compute Q and K and RoPE them
  9123. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9124. cb(Qcur, "Qcur", il);
  9125. if (model.layers[il].bq) {
  9126. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9127. cb(Qcur, "Qcur", il);
  9128. }
  9129. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9130. cb(Kcur, "Kcur", il);
  9131. if (model.layers[il].bk) {
  9132. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9133. cb(Kcur, "Kcur", il);
  9134. }
  9135. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9136. cb(Vcur, "Vcur", il);
  9137. if (model.layers[il].bv) {
  9138. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9139. cb(Vcur, "Vcur", il);
  9140. }
  9141. if (model.layers[il].attn_q_norm) {
  9142. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9143. ggml_element_size(Qcur) * n_embd_head,
  9144. ggml_element_size(Qcur) * n_embd_head * n_head,
  9145. 0);
  9146. cb(Qcur, "Qcur", il);
  9147. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9148. ggml_element_size(Kcur) * n_embd_head,
  9149. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9150. 0);
  9151. cb(Kcur, "Kcur", il);
  9152. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  9153. model.layers[il].attn_q_norm,
  9154. NULL,
  9155. LLM_NORM, cb, il);
  9156. cb(Qcur, "Qcur", il);
  9157. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  9158. model.layers[il].attn_k_norm,
  9159. NULL,
  9160. LLM_NORM, cb, il);
  9161. cb(Kcur, "Kcur", il);
  9162. }
  9163. Qcur = ggml_rope_ext(
  9164. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9165. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9166. ext_factor, attn_factor, beta_fast, beta_slow
  9167. );
  9168. cb(Qcur, "Qcur", il);
  9169. Kcur = ggml_rope_ext(
  9170. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9171. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9172. ext_factor, attn_factor, beta_fast, beta_slow
  9173. );
  9174. cb(Kcur, "Kcur", il);
  9175. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9176. model.layers[il].wo, model.layers[il].bo,
  9177. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9178. }
  9179. if (il == n_layer - 1) {
  9180. // skip computing output for unused tokens
  9181. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9182. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9183. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9184. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  9185. }
  9186. struct ggml_tensor * attn_out = cur;
  9187. // feed-forward network
  9188. {
  9189. cur = llm_build_ffn(ctx0, ffn_inp,
  9190. model.layers[il].ffn_up, NULL,
  9191. model.layers[il].ffn_gate, NULL,
  9192. model.layers[il].ffn_down, NULL,
  9193. NULL,
  9194. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9195. cb(cur, "ffn_out", il);
  9196. }
  9197. // add together residual + FFN + self-attention
  9198. cur = ggml_add(ctx0, cur, inpL);
  9199. cur = ggml_add(ctx0, cur, attn_out);
  9200. cb(cur, "l_out", il);
  9201. // input for next layer
  9202. inpL = cur;
  9203. }
  9204. cur = inpL;
  9205. cur = llm_build_norm(ctx0, cur, hparams,
  9206. model.output_norm, NULL,
  9207. LLM_NORM, cb, -1);
  9208. cb(cur, "result_norm", -1);
  9209. // lm_head
  9210. cur = ggml_mul_mat(ctx0, model.output, cur);
  9211. if (f_logit_scale) {
  9212. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9213. }
  9214. cb(cur, "result_output", -1);
  9215. ggml_build_forward_expand(gf, cur);
  9216. return gf;
  9217. }
  9218. // ref: https://allenai.org/olmo
  9219. // based on the original build_llama() function, changes:
  9220. // * non-parametric layer norm
  9221. // * clamp qkv
  9222. // * removed bias
  9223. // * removed MoE
  9224. struct ggml_cgraph * build_olmo() {
  9225. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9226. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9227. int32_t n_tokens = this->n_tokens;
  9228. const int64_t n_embd_head = hparams.n_embd_head_v;
  9229. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9230. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9231. struct ggml_tensor * cur;
  9232. struct ggml_tensor * inpL;
  9233. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9234. // inp_pos - contains the positions
  9235. struct ggml_tensor * inp_pos = build_inp_pos();
  9236. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9237. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9238. for (int il = 0; il < n_layer; ++il) {
  9239. struct ggml_tensor * inpSA = inpL;
  9240. // norm
  9241. cur = llm_build_norm(ctx0, inpL, hparams,
  9242. NULL, NULL,
  9243. LLM_NORM, cb, il);
  9244. cb(cur, "attn_norm", il);
  9245. // self-attention
  9246. {
  9247. // compute Q and K and RoPE them
  9248. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9249. cb(Qcur, "Qcur", il);
  9250. if (hparams.f_clamp_kqv > 0.0f) {
  9251. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9252. cb(Qcur, "Qcur", il);
  9253. }
  9254. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9255. cb(Kcur, "Kcur", il);
  9256. if (hparams.f_clamp_kqv > 0.0f) {
  9257. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9258. cb(Kcur, "Kcur", il);
  9259. }
  9260. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9261. cb(Vcur, "Vcur", il);
  9262. if (hparams.f_clamp_kqv > 0.0f) {
  9263. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9264. cb(Vcur, "Vcur", il);
  9265. }
  9266. Qcur = ggml_rope_ext(
  9267. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9268. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9269. ext_factor, attn_factor, beta_fast, beta_slow
  9270. );
  9271. cb(Qcur, "Qcur", il);
  9272. Kcur = ggml_rope_ext(
  9273. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9274. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9275. ext_factor, attn_factor, beta_fast, beta_slow
  9276. );
  9277. cb(Kcur, "Kcur", il);
  9278. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9279. model.layers[il].wo, nullptr,
  9280. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9281. }
  9282. if (il == n_layer - 1) {
  9283. // skip computing output for unused tokens
  9284. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9285. n_tokens = n_outputs;
  9286. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9287. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9288. }
  9289. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9290. cb(ffn_inp, "ffn_inp", il);
  9291. // feed-forward network
  9292. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9293. NULL, NULL,
  9294. LLM_NORM, cb, il);
  9295. cb(cur, "ffn_norm", il);
  9296. cur = llm_build_ffn(ctx0, cur,
  9297. model.layers[il].ffn_up, NULL,
  9298. model.layers[il].ffn_gate, NULL,
  9299. model.layers[il].ffn_down, NULL,
  9300. NULL,
  9301. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9302. cb(cur, "ffn_out", il);
  9303. cur = ggml_add(ctx0, cur, ffn_inp);
  9304. cb(cur, "ffn_out", il);
  9305. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9306. if (layer_dir != nullptr) {
  9307. cur = ggml_add(ctx0, cur, layer_dir);
  9308. }
  9309. cb(cur, "l_out", il);
  9310. // input for next layer
  9311. inpL = cur;
  9312. }
  9313. cur = inpL;
  9314. cur = llm_build_norm(ctx0, cur, hparams,
  9315. NULL, NULL,
  9316. LLM_NORM, cb, -1);
  9317. cb(cur, "result_norm", -1);
  9318. // lm_head
  9319. cur = ggml_mul_mat(ctx0, model.output, cur);
  9320. cb(cur, "result_output", -1);
  9321. ggml_build_forward_expand(gf, cur);
  9322. return gf;
  9323. }
  9324. struct ggml_cgraph * build_gptneox() {
  9325. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9326. const int64_t n_embd_head = hparams.n_embd_head_v;
  9327. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9328. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9329. struct ggml_tensor * cur;
  9330. struct ggml_tensor * inpL;
  9331. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9332. // inp_pos - contains the positions
  9333. struct ggml_tensor * inp_pos = build_inp_pos();
  9334. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9335. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9336. for (int il = 0; il < n_layer; ++il) {
  9337. cur = llm_build_norm(ctx0, inpL, hparams,
  9338. model.layers[il].attn_norm,
  9339. model.layers[il].attn_norm_b,
  9340. LLM_NORM, cb, il);
  9341. cb(cur, "attn_norm", il);
  9342. // self-attention
  9343. {
  9344. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9345. cb(cur, "wqkv", il);
  9346. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9347. cb(cur, "bqkv", il);
  9348. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9349. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9350. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9351. cb(Qcur, "Qcur", il);
  9352. cb(Kcur, "Kcur", il);
  9353. cb(Vcur, "Vcur", il);
  9354. Qcur = ggml_rope_ext(
  9355. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9356. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9357. ext_factor, attn_factor, beta_fast, beta_slow
  9358. );
  9359. cb(Qcur, "Qcur", il);
  9360. Kcur = ggml_rope_ext(
  9361. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9362. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9363. ext_factor, attn_factor, beta_fast, beta_slow
  9364. );
  9365. cb(Kcur, "Kcur", il);
  9366. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9367. model.layers[il].wo, model.layers[il].bo,
  9368. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9369. }
  9370. if (il == n_layer - 1) {
  9371. // skip computing output for unused tokens
  9372. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9373. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9374. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9375. }
  9376. // ffn
  9377. if (hparams.use_par_res) {
  9378. // attention and ffn are computed in parallel
  9379. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9380. struct ggml_tensor * attn_out = cur;
  9381. cur = llm_build_norm(ctx0, inpL, hparams,
  9382. model.layers[il].ffn_norm,
  9383. model.layers[il].ffn_norm_b,
  9384. LLM_NORM, cb, il);
  9385. cb(cur, "ffn_norm", il);
  9386. cur = llm_build_ffn(ctx0, cur,
  9387. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9388. NULL, NULL,
  9389. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9390. NULL,
  9391. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9392. cb(cur, "ffn_out", il);
  9393. cur = ggml_add(ctx0, cur, inpL);
  9394. cb(cur, "ffn_out", il);
  9395. inpL = ggml_add(ctx0, cur, attn_out);
  9396. cb(inpL, "l_out", il);
  9397. } else {
  9398. // attention and ffn are computed sequentially
  9399. // x = x + attn(ln1(x))
  9400. // x = x + ffn(ln2(x))
  9401. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9402. cb(ffn_inp, "ffn_inp", il);
  9403. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9404. model.layers[il].ffn_norm,
  9405. model.layers[il].ffn_norm_b,
  9406. LLM_NORM, cb, il);
  9407. cb(cur, "ffn_norm", il);
  9408. cur = llm_build_ffn(ctx0, cur,
  9409. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9410. NULL, NULL,
  9411. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9412. NULL,
  9413. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9414. cb(cur, "ffn_out", il);
  9415. inpL = ggml_add(ctx0, cur, ffn_inp);
  9416. cb(inpL, "l_out", il);
  9417. }
  9418. }
  9419. cur = llm_build_norm(ctx0, inpL, hparams,
  9420. model.output_norm,
  9421. model.output_norm_b,
  9422. LLM_NORM, cb, -1);
  9423. cb(cur, "result_norm", -1);
  9424. cur = ggml_mul_mat(ctx0, model.output, cur);
  9425. cb(cur, "result_output", -1);
  9426. ggml_build_forward_expand(gf, cur);
  9427. return gf;
  9428. }
  9429. struct ggml_cgraph * build_arctic() {
  9430. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9431. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9432. int32_t n_tokens = this->n_tokens;
  9433. const int64_t n_embd_head = hparams.n_embd_head_v;
  9434. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9435. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9436. struct ggml_tensor * cur;
  9437. struct ggml_tensor * inpL;
  9438. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9439. // inp_pos - contains the positions
  9440. struct ggml_tensor * inp_pos = build_inp_pos();
  9441. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9442. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9443. for (int il = 0; il < n_layer; ++il) {
  9444. struct ggml_tensor * inpSA = inpL;
  9445. // norm
  9446. cur = llm_build_norm(ctx0, inpL, hparams,
  9447. model.layers[il].attn_norm, NULL,
  9448. LLM_NORM_RMS, cb, il);
  9449. cb(cur, "attn_norm", il);
  9450. // self-attention
  9451. {
  9452. // compute Q and K and RoPE them
  9453. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9454. cb(Qcur, "Qcur", il);
  9455. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9456. cb(Kcur, "Kcur", il);
  9457. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9458. cb(Vcur, "Vcur", il);
  9459. Qcur = ggml_rope_ext(
  9460. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9461. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9462. ext_factor, attn_factor, beta_fast, beta_slow
  9463. );
  9464. cb(Qcur, "Qcur", il);
  9465. Kcur = ggml_rope_ext(
  9466. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9467. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9468. ext_factor, attn_factor, beta_fast, beta_slow
  9469. );
  9470. cb(Kcur, "Kcur", il);
  9471. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9472. model.layers[il].wo, NULL,
  9473. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9474. }
  9475. if (il == n_layer - 1) {
  9476. // skip computing output for unused tokens
  9477. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9478. n_tokens = n_outputs;
  9479. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9480. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9481. }
  9482. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9483. cb(ffn_inp, "ffn_inp", il);
  9484. // feed-forward network
  9485. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9486. model.layers[il].ffn_norm, NULL,
  9487. LLM_NORM_RMS, cb, il);
  9488. cb(cur, "ffn_norm", il);
  9489. cur = llm_build_ffn(ctx0, cur,
  9490. model.layers[il].ffn_up, NULL,
  9491. model.layers[il].ffn_gate, NULL,
  9492. model.layers[il].ffn_down, NULL,
  9493. NULL,
  9494. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9495. cb(cur, "ffn_out", il);
  9496. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9497. cb(ffn_out, "ffn_out", il);
  9498. // MoE
  9499. cur = llm_build_norm(ctx0, inpSA, hparams,
  9500. model.layers[il].ffn_norm_exps, NULL,
  9501. LLM_NORM_RMS, cb, il);
  9502. cb(cur, "ffn_norm_exps", il);
  9503. cur = llm_build_moe_ffn(ctx0, cur,
  9504. model.layers[il].ffn_gate_inp,
  9505. model.layers[il].ffn_up_exps,
  9506. model.layers[il].ffn_gate_exps,
  9507. model.layers[il].ffn_down_exps,
  9508. n_expert, n_expert_used,
  9509. LLM_FFN_SILU, true,
  9510. false, 0.0,
  9511. cb, il);
  9512. cb(cur, "ffn_moe_out", il);
  9513. cur = ggml_add(ctx0, cur, ffn_out);
  9514. cb(cur, "ffn_out", il);
  9515. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9516. if (layer_dir != nullptr) {
  9517. cur = ggml_add(ctx0, cur, layer_dir);
  9518. }
  9519. cb(cur, "l_out", il);
  9520. // input for next layer
  9521. inpL = cur;
  9522. }
  9523. cur = inpL;
  9524. cur = llm_build_norm(ctx0, cur, hparams,
  9525. model.output_norm, NULL,
  9526. LLM_NORM_RMS, cb, -1);
  9527. cb(cur, "result_norm", -1);
  9528. // lm_head
  9529. cur = ggml_mul_mat(ctx0, model.output, cur);
  9530. cb(cur, "result_output", -1);
  9531. ggml_build_forward_expand(gf, cur);
  9532. return gf;
  9533. }
  9534. struct ggml_cgraph * build_deepseek2() {
  9535. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9536. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9537. int32_t n_tokens = this->n_tokens;
  9538. bool is_lite = (hparams.n_layer == 27);
  9539. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9540. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9541. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9542. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9543. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9544. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9545. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9546. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9547. struct ggml_tensor * cur;
  9548. struct ggml_tensor * inpL;
  9549. // {n_embd, n_tokens}
  9550. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9551. // inp_pos - contains the positions
  9552. struct ggml_tensor * inp_pos = build_inp_pos();
  9553. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9554. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9555. for (int il = 0; il < n_layer; ++il) {
  9556. struct ggml_tensor * inpSA = inpL;
  9557. // norm
  9558. cur = llm_build_norm(ctx0, inpL, hparams,
  9559. model.layers[il].attn_norm, NULL,
  9560. LLM_NORM_RMS, cb, il);
  9561. cb(cur, "attn_norm", il);
  9562. // self_attention
  9563. {
  9564. struct ggml_tensor * q = NULL;
  9565. if (!is_lite) {
  9566. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9567. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9568. cb(q, "q", il);
  9569. q = llm_build_norm(ctx0, q, hparams,
  9570. model.layers[il].attn_q_a_norm, NULL,
  9571. LLM_NORM_RMS, cb, il);
  9572. cb(q, "q", il);
  9573. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9574. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9575. cb(q, "q", il);
  9576. } else {
  9577. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9578. cb(q, "q", il);
  9579. }
  9580. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9581. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9582. ggml_row_size(q->type, hparams.n_embd_head_k),
  9583. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9584. 0);
  9585. cb(q_nope, "q_nope", il);
  9586. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9587. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9588. ggml_row_size(q->type, hparams.n_embd_head_k),
  9589. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9590. ggml_row_size(q->type, n_embd_head_qk_nope));
  9591. cb(q_pe, "q_pe", il);
  9592. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9593. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9594. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9595. // split into {kv_lora_rank, n_tokens}
  9596. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9597. kv_pe_compresseed->nb[1],
  9598. 0);
  9599. cb(kv_compressed, "kv_compressed", il);
  9600. // and {n_embd_head_qk_rope, n_tokens}
  9601. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9602. kv_pe_compresseed->nb[1],
  9603. kv_pe_compresseed->nb[1],
  9604. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9605. cb(k_pe, "k_pe", il);
  9606. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9607. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9608. model.layers[il].attn_kv_a_norm, NULL,
  9609. LLM_NORM_RMS, cb, il);
  9610. cb(kv_compressed, "kv_compressed", il);
  9611. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9612. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9613. cb(kv, "kv", il);
  9614. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9615. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9616. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9617. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9618. 0);
  9619. cb(k_nope, "k_nope", il);
  9620. // and {n_head * n_embd_head_v, n_tokens}
  9621. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9622. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9623. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9624. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9625. cb(v_states, "v_states", il);
  9626. v_states = ggml_cont(ctx0, v_states);
  9627. cb(v_states, "v_states", il);
  9628. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9629. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9630. 0);
  9631. cb(v_states, "v_states", il);
  9632. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9633. q_pe = ggml_rope_ext(
  9634. ctx0, q_pe, inp_pos, nullptr,
  9635. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9636. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9637. );
  9638. cb(q_pe, "q_pe", il);
  9639. // shared RoPE key
  9640. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9641. k_pe = ggml_rope_ext(
  9642. ctx0, k_pe, inp_pos, nullptr,
  9643. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9644. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9645. );
  9646. cb(k_pe, "k_pe", il);
  9647. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9648. cb(q_states, "q_states", il);
  9649. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9650. cb(k_states, "k_states", il);
  9651. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9652. model.layers[il].wo, NULL,
  9653. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9654. }
  9655. if (il == n_layer - 1) {
  9656. // skip computing output for unused tokens
  9657. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9658. n_tokens = n_outputs;
  9659. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9660. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9661. }
  9662. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9663. cb(ffn_inp, "ffn_inp", il);
  9664. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9665. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9666. model.layers[il].ffn_norm, NULL,
  9667. LLM_NORM_RMS, cb, il);
  9668. cb(cur, "ffn_norm", il);
  9669. cur = llm_build_ffn(ctx0, cur,
  9670. model.layers[il].ffn_up, NULL,
  9671. model.layers[il].ffn_gate, NULL,
  9672. model.layers[il].ffn_down, NULL,
  9673. NULL,
  9674. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9675. cb(cur, "ffn_out", il);
  9676. } else {
  9677. // MoE branch
  9678. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9679. model.layers[il].ffn_norm, NULL,
  9680. LLM_NORM_RMS, cb, il);
  9681. cb(cur, "ffn_norm", il);
  9682. ggml_tensor * moe_out =
  9683. llm_build_moe_ffn(ctx0, cur,
  9684. model.layers[il].ffn_gate_inp,
  9685. model.layers[il].ffn_up_exps,
  9686. model.layers[il].ffn_gate_exps,
  9687. model.layers[il].ffn_down_exps,
  9688. n_expert, n_expert_used,
  9689. LLM_FFN_SILU, false,
  9690. true, hparams.expert_weights_scale,
  9691. cb, il);
  9692. cb(moe_out, "ffn_moe_out", il);
  9693. // FFN shared expert
  9694. {
  9695. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9696. model.layers[il].ffn_up_shexp, NULL,
  9697. model.layers[il].ffn_gate_shexp, NULL,
  9698. model.layers[il].ffn_down_shexp, NULL,
  9699. NULL,
  9700. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9701. cb(ffn_shexp, "ffn_shexp", il);
  9702. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9703. cb(cur, "ffn_out", il);
  9704. }
  9705. }
  9706. cur = ggml_add(ctx0, cur, ffn_inp);
  9707. cb(cur, "l_out", il);
  9708. // input for next layer
  9709. inpL = cur;
  9710. }
  9711. cur = inpL;
  9712. cur = llm_build_norm(ctx0, cur, hparams,
  9713. model.output_norm, NULL,
  9714. LLM_NORM_RMS, cb, -1);
  9715. cb(cur, "result_norm", -1);
  9716. // lm_head
  9717. cur = ggml_mul_mat(ctx0, model.output, cur);
  9718. cb(cur, "result_output", -1);
  9719. ggml_build_forward_expand(gf, cur);
  9720. return gf;
  9721. }
  9722. };
  9723. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9724. llama_batch dummy;
  9725. dummy.n_tokens = 0;
  9726. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9727. struct llm_build_context llm(lctx, dummy, cb, false);
  9728. llm.init();
  9729. struct ggml_cgraph * result = llm.build_defrag(ids);
  9730. llm.free();
  9731. return result;
  9732. }
  9733. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9734. llama_batch dummy;
  9735. dummy.n_tokens = 0;
  9736. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9737. struct llm_build_context llm(lctx, dummy, cb, false);
  9738. llm.init();
  9739. struct ggml_cgraph * result = llm.build_k_shift();
  9740. llm.free();
  9741. return result;
  9742. }
  9743. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9744. llama_batch dummy;
  9745. dummy.n_tokens = 0;
  9746. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9747. struct llm_build_context llm(lctx, dummy, cb, false);
  9748. llm.init();
  9749. struct ggml_cgraph * result = llm.build_s_copy();
  9750. llm.free();
  9751. return result;
  9752. }
  9753. static struct ggml_cgraph * llama_build_graph(
  9754. llama_context & lctx,
  9755. const llama_batch & batch,
  9756. bool worst_case) {
  9757. const auto & model = lctx.model;
  9758. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9759. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9760. if (il >= 0) {
  9761. ggml_format_name(cur, "%s-%d", name, il);
  9762. } else {
  9763. ggml_set_name(cur, name);
  9764. }
  9765. if (!lctx.cparams.offload_kqv) {
  9766. if (strcmp(name, "kqv_merged_cont") == 0) {
  9767. // all nodes between the KV store and the attention output are run on the CPU
  9768. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9769. }
  9770. }
  9771. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9772. // FIXME: fix in ggml_backend_sched
  9773. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9774. if (batch.n_tokens < 32 || full_offload) {
  9775. if (il != -1 && strcmp(name, "norm") == 0) {
  9776. for (auto * backend : lctx.backends) {
  9777. if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
  9778. (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
  9779. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9780. break;
  9781. }
  9782. }
  9783. }
  9784. }
  9785. };
  9786. struct ggml_cgraph * result = NULL;
  9787. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9788. llm.init();
  9789. switch (model.arch) {
  9790. case LLM_ARCH_LLAMA:
  9791. {
  9792. result = llm.build_llama();
  9793. } break;
  9794. case LLM_ARCH_BAICHUAN:
  9795. {
  9796. result = llm.build_baichuan();
  9797. } break;
  9798. case LLM_ARCH_FALCON:
  9799. {
  9800. result = llm.build_falcon();
  9801. } break;
  9802. case LLM_ARCH_GROK:
  9803. {
  9804. result = llm.build_grok();
  9805. } break;
  9806. case LLM_ARCH_STARCODER:
  9807. {
  9808. result = llm.build_starcoder();
  9809. } break;
  9810. case LLM_ARCH_REFACT:
  9811. {
  9812. result = llm.build_refact();
  9813. } break;
  9814. case LLM_ARCH_BERT:
  9815. case LLM_ARCH_JINA_BERT_V2:
  9816. case LLM_ARCH_NOMIC_BERT:
  9817. {
  9818. result = llm.build_bert();
  9819. } break;
  9820. case LLM_ARCH_BLOOM:
  9821. {
  9822. result = llm.build_bloom();
  9823. } break;
  9824. case LLM_ARCH_MPT:
  9825. {
  9826. result = llm.build_mpt();
  9827. } break;
  9828. case LLM_ARCH_STABLELM:
  9829. {
  9830. result = llm.build_stablelm();
  9831. } break;
  9832. case LLM_ARCH_QWEN:
  9833. {
  9834. result = llm.build_qwen();
  9835. } break;
  9836. case LLM_ARCH_QWEN2:
  9837. {
  9838. result = llm.build_qwen2();
  9839. } break;
  9840. case LLM_ARCH_QWEN2MOE:
  9841. {
  9842. result = llm.build_qwen2moe();
  9843. } break;
  9844. case LLM_ARCH_PHI2:
  9845. {
  9846. result = llm.build_phi2();
  9847. } break;
  9848. case LLM_ARCH_PHI3:
  9849. {
  9850. result = llm.build_phi3();
  9851. } break;
  9852. case LLM_ARCH_PLAMO:
  9853. {
  9854. result = llm.build_plamo();
  9855. } break;
  9856. case LLM_ARCH_GPT2:
  9857. {
  9858. result = llm.build_gpt2();
  9859. } break;
  9860. case LLM_ARCH_CODESHELL:
  9861. {
  9862. result = llm.build_codeshell();
  9863. } break;
  9864. case LLM_ARCH_ORION:
  9865. {
  9866. result = llm.build_orion();
  9867. } break;
  9868. case LLM_ARCH_INTERNLM2:
  9869. {
  9870. result = llm.build_internlm2();
  9871. } break;
  9872. case LLM_ARCH_MINICPM:
  9873. {
  9874. result = llm.build_minicpm();
  9875. } break;
  9876. case LLM_ARCH_GEMMA:
  9877. {
  9878. result = llm.build_gemma();
  9879. } break;
  9880. case LLM_ARCH_STARCODER2:
  9881. {
  9882. result = llm.build_starcoder2();
  9883. } break;
  9884. case LLM_ARCH_MAMBA:
  9885. {
  9886. result = llm.build_mamba();
  9887. } break;
  9888. case LLM_ARCH_XVERSE:
  9889. {
  9890. result = llm.build_xverse();
  9891. } break;
  9892. case LLM_ARCH_COMMAND_R:
  9893. {
  9894. result = llm.build_command_r();
  9895. } break;
  9896. case LLM_ARCH_DBRX:
  9897. {
  9898. result = llm.build_dbrx();
  9899. } break;
  9900. case LLM_ARCH_OLMO:
  9901. {
  9902. result = llm.build_olmo();
  9903. } break;
  9904. case LLM_ARCH_GPTNEOX:
  9905. {
  9906. result = llm.build_gptneox();
  9907. } break;
  9908. case LLM_ARCH_ARCTIC:
  9909. {
  9910. result = llm.build_arctic();
  9911. } break;
  9912. case LLM_ARCH_DEEPSEEK2:
  9913. {
  9914. result = llm.build_deepseek2();
  9915. } break;
  9916. default:
  9917. GGML_ASSERT(false);
  9918. }
  9919. llm.free();
  9920. return result;
  9921. }
  9922. static void llama_set_k_shift(llama_context & lctx) {
  9923. const int64_t kv_size = lctx.kv_self.size;
  9924. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9925. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9926. for (int i = 0; i < kv_size; ++i) {
  9927. data[i] = lctx.kv_self.cells[i].delta;
  9928. }
  9929. }
  9930. static void llama_set_s_copy(llama_context & lctx) {
  9931. const int64_t kv_size = lctx.kv_self.size;
  9932. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9933. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9934. for (int i = 0; i < kv_size; ++i) {
  9935. data[i] = lctx.kv_self.cells[i].src;
  9936. }
  9937. }
  9938. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9939. //
  9940. // set input data
  9941. //
  9942. const auto & hparams = lctx.model.hparams;
  9943. const auto & cparams = lctx.cparams;
  9944. const auto & kv_self = lctx.kv_self;
  9945. if (batch.token) {
  9946. const int64_t n_tokens = batch.n_tokens;
  9947. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9948. }
  9949. if (batch.embd) {
  9950. const int64_t n_embd = hparams.n_embd;
  9951. const int64_t n_tokens = batch.n_tokens;
  9952. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9953. }
  9954. if (batch.pos && lctx.inp_pos) {
  9955. const int64_t n_tokens = batch.n_tokens;
  9956. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9957. }
  9958. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9959. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9960. const int64_t n_tokens = batch.n_tokens;
  9961. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9962. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9963. if (lctx.n_outputs == n_tokens) {
  9964. for (int i = 0; i < n_tokens; ++i) {
  9965. data[i] = i;
  9966. }
  9967. } else if (batch.logits) {
  9968. int32_t n_outputs = 0;
  9969. for (int i = 0; i < n_tokens; ++i) {
  9970. if (batch.logits[i]) {
  9971. data[n_outputs++] = i;
  9972. }
  9973. }
  9974. // the graph needs to have been passed the correct number of outputs
  9975. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9976. } else if (lctx.n_outputs == 1) {
  9977. // only keep last output
  9978. data[0] = n_tokens - 1;
  9979. } else {
  9980. GGML_ASSERT(lctx.n_outputs == 0);
  9981. }
  9982. }
  9983. GGML_ASSERT(
  9984. // (!a || b) is a logical implication (a -> b)
  9985. // !hparams.causal_attn -> !cparams.causal_attn
  9986. (hparams.causal_attn || !cparams.causal_attn) &&
  9987. "causal attention with embedding models is not supported"
  9988. );
  9989. if (lctx.inp_KQ_mask) {
  9990. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9991. if (cparams.causal_attn) {
  9992. const int64_t n_kv = kv_self.n;
  9993. const int64_t n_tokens = batch.n_tokens;
  9994. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9995. float * data = (float *) lctx.inp_KQ_mask->data;
  9996. // For causal attention, use only the previous KV cells
  9997. // of the correct sequence for each token of the batch.
  9998. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9999. for (int h = 0; h < 1; ++h) {
  10000. for (int j = 0; j < n_tokens; ++j) {
  10001. const llama_pos pos = batch.pos[j];
  10002. const llama_seq_id seq_id = batch.seq_id[j][0];
  10003. for (int i = 0; i < n_kv; ++i) {
  10004. float f;
  10005. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  10006. f = -INFINITY;
  10007. } else {
  10008. if (hparams.use_alibi) {
  10009. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  10010. } else {
  10011. f = 0.0f;
  10012. }
  10013. }
  10014. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  10015. }
  10016. }
  10017. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  10018. for (int j = 0; j < n_kv; ++j) {
  10019. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  10020. }
  10021. }
  10022. }
  10023. } else {
  10024. // when using kv cache, the mask needs to match the kv cache size
  10025. const int64_t n_tokens = batch.n_tokens;
  10026. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  10027. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  10028. float * data = (float *) lctx.inp_KQ_mask->data;
  10029. for (int h = 0; h < 1; ++h) {
  10030. for (int j = 0; j < n_tokens; ++j) {
  10031. const llama_seq_id seq_id = batch.seq_id[j][0];
  10032. for (int i = 0; i < n_tokens; ++i) {
  10033. float f = -INFINITY;
  10034. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  10035. if (batch.seq_id[i][s] == seq_id) {
  10036. if (hparams.use_alibi) {
  10037. f = -fabs(batch.pos[i] - batch.pos[j]);
  10038. } else {
  10039. f = 0.0f;
  10040. }
  10041. break;
  10042. }
  10043. }
  10044. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  10045. }
  10046. for (int i = n_tokens; i < n_stride; ++i) {
  10047. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  10048. }
  10049. }
  10050. }
  10051. }
  10052. }
  10053. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  10054. const int64_t n_tokens = batch.n_tokens;
  10055. GGML_ASSERT(lctx.inp_mean);
  10056. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  10057. float * data = (float *) lctx.inp_mean->data;
  10058. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  10059. std::vector<uint64_t> sum(n_tokens, 0);
  10060. for (int i = 0; i < n_tokens; ++i) {
  10061. const llama_seq_id seq_id = batch.seq_id[i][0];
  10062. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  10063. sum[seq_id] += 1;
  10064. }
  10065. std::vector<float> div(n_tokens, 0.0f);
  10066. for (int i = 0; i < n_tokens; ++i) {
  10067. const uint64_t s = sum[i];
  10068. if (s > 0) {
  10069. div[i] = 1.0f/float(s);
  10070. }
  10071. }
  10072. for (int i = 0; i < n_tokens; ++i) {
  10073. const llama_seq_id seq_id = batch.seq_id[i][0];
  10074. data[seq_id*n_tokens + i] = div[seq_id];
  10075. }
  10076. }
  10077. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  10078. const int64_t n_tokens = batch.n_tokens;
  10079. GGML_ASSERT(lctx.inp_cls);
  10080. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  10081. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  10082. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  10083. for (int i = 0; i < n_tokens; ++i) {
  10084. const llama_seq_id seq_id = batch.seq_id[i][0];
  10085. const llama_pos pos = batch.pos[i];
  10086. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  10087. if (pos == 0) {
  10088. data[seq_id] = i;
  10089. }
  10090. }
  10091. }
  10092. if (kv_self.recurrent) {
  10093. const int64_t n_kv = kv_self.n;
  10094. if (lctx.inp_s_mask) {
  10095. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  10096. float * data = (float *) lctx.inp_s_mask->data;
  10097. // states which are not affected by the current batch are left untouched
  10098. for (int i = 0; i < n_kv; ++i) {
  10099. llama_seq_id seq_id = i + lctx.kv_self.head;
  10100. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  10101. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  10102. data[i] = (float) has_self_seq;
  10103. // ensure current sequences will be kept
  10104. if (!has_self_seq && kv_cell.pos >= 0) {
  10105. kv_cell.seq_id.insert(seq_id);
  10106. }
  10107. }
  10108. }
  10109. // For Mamba (and other recurrent architectures),
  10110. // update the correct state(s)/sequence(s) for each token of the batch.
  10111. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  10112. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  10113. if (lctx.inp_s_seq) {
  10114. const int64_t n_tokens = batch.n_tokens;
  10115. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  10116. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  10117. for (int j = 0; j < n_tokens; ++j) {
  10118. const int32_t n_seq = batch.n_seq_id[j];
  10119. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  10120. for (int i = 0; i < n_kv; ++i) {
  10121. if (i < n_seq) {
  10122. // for this type of model, the head is the minimum seq_id of the batch
  10123. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  10124. } else {
  10125. data[j*n_kv + i] = -1;
  10126. }
  10127. }
  10128. }
  10129. }
  10130. }
  10131. }
  10132. // Make sure enough space is available for outputs.
  10133. // Returns max number of outputs for which space was reserved.
  10134. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  10135. const auto & cparams = lctx.cparams;
  10136. const auto & hparams = lctx.model.hparams;
  10137. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  10138. const auto n_batch = cparams.n_batch;
  10139. const auto n_vocab = hparams.n_vocab;
  10140. const auto n_embd = hparams.n_embd;
  10141. // TODO: use a per-batch flag for logits presence instead
  10142. const bool has_logits = cparams.causal_attn;
  10143. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  10144. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  10145. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  10146. if (lctx.output_ids.empty()) {
  10147. // init, never resized afterwards
  10148. lctx.output_ids.resize(n_batch);
  10149. }
  10150. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  10151. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  10152. // alloc only when more than the current capacity is required
  10153. // TODO: also consider shrinking the buffer
  10154. if (!lctx.buf_output || prev_size < new_size) {
  10155. if (lctx.buf_output) {
  10156. #ifndef NDEBUG
  10157. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  10158. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  10159. #endif
  10160. ggml_backend_buffer_free(lctx.buf_output);
  10161. lctx.buf_output = nullptr;
  10162. lctx.logits = nullptr;
  10163. lctx.embd = nullptr;
  10164. }
  10165. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  10166. if (lctx.buf_output == nullptr) {
  10167. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  10168. return 0;
  10169. }
  10170. }
  10171. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  10172. lctx.logits = has_logits ? output_base : nullptr;
  10173. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  10174. lctx.output_size = n_outputs_max;
  10175. lctx.logits_size = logits_size;
  10176. lctx.embd_size = embd_size;
  10177. // set all ids as invalid (negative)
  10178. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  10179. ggml_backend_buffer_clear(lctx.buf_output, 0);
  10180. lctx.n_outputs = 0;
  10181. return n_outputs_max;
  10182. }
  10183. static void llama_graph_compute(
  10184. llama_context & lctx,
  10185. ggml_cgraph * gf,
  10186. int n_threads) {
  10187. #ifdef GGML_USE_METAL
  10188. if (ggml_backend_is_metal(lctx.backend_metal)) {
  10189. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  10190. }
  10191. #endif
  10192. if (lctx.backend_cpu != nullptr) {
  10193. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  10194. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  10195. }
  10196. #ifdef GGML_USE_BLAS
  10197. if (lctx.backend_blas != nullptr) {
  10198. ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
  10199. }
  10200. #endif
  10201. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  10202. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  10203. }
  10204. // decode a batch of tokens by evaluating the transformer
  10205. //
  10206. // - lctx: llama context
  10207. // - batch: batch to evaluate
  10208. //
  10209. // return 0 on success
  10210. // return positive int on warning
  10211. // return negative int on error
  10212. //
  10213. static int llama_decode_internal(
  10214. llama_context & lctx,
  10215. llama_batch batch_all) { // TODO: rename back to batch
  10216. const uint32_t n_tokens_all = batch_all.n_tokens;
  10217. if (n_tokens_all == 0) {
  10218. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  10219. return -1;
  10220. }
  10221. const auto & model = lctx.model;
  10222. const auto & hparams = model.hparams;
  10223. const auto & cparams = lctx.cparams;
  10224. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  10225. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  10226. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  10227. if (lctx.t_compute_start_us == 0) {
  10228. lctx.t_compute_start_us = ggml_time_us();
  10229. }
  10230. lctx.n_queued_tokens += n_tokens_all;
  10231. auto & kv_self = lctx.kv_self;
  10232. const int64_t n_embd = hparams.n_embd;
  10233. const int64_t n_vocab = hparams.n_vocab;
  10234. uint32_t n_outputs = 0;
  10235. uint32_t n_outputs_prev = 0;
  10236. const auto n_ubatch = cparams.n_ubatch;
  10237. std::vector<llama_pos> pos;
  10238. std::vector<int32_t> n_seq_id;
  10239. std::vector<llama_seq_id *> seq_id_arr;
  10240. std::vector<std::vector<llama_seq_id>> seq_id;
  10241. // count outputs
  10242. if (batch_all.logits) {
  10243. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10244. n_outputs += batch_all.logits[i] != 0;
  10245. }
  10246. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  10247. n_outputs = n_tokens_all;
  10248. } else {
  10249. // keep last output only
  10250. n_outputs = 1;
  10251. }
  10252. // reserve output buffer
  10253. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  10254. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  10255. return -2;
  10256. };
  10257. // set output mappings
  10258. if (batch_all.logits) {
  10259. int32_t i_logits = 0;
  10260. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10261. if (batch_all.logits[i]) {
  10262. lctx.output_ids[i] = i_logits++;
  10263. }
  10264. }
  10265. } else {
  10266. for (uint32_t i = 0; i < n_outputs; ++i) {
  10267. lctx.output_ids[i] = i;
  10268. }
  10269. }
  10270. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  10271. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  10272. llama_batch u_batch = {
  10273. /* .n_tokens = */ (int32_t) n_tokens,
  10274. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  10275. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  10276. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  10277. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  10278. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  10279. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  10280. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  10281. /* .all_pos_1 = */ batch_all.all_pos_1,
  10282. /* .all_seq_id = */ batch_all.all_seq_id,
  10283. };
  10284. // count the outputs in this u_batch
  10285. {
  10286. int32_t n_outputs_new = 0;
  10287. if (u_batch.logits) {
  10288. for (uint32_t i = 0; i < n_tokens; i++) {
  10289. n_outputs_new += u_batch.logits[i] != 0;
  10290. }
  10291. } else if (n_outputs == n_tokens_all) {
  10292. n_outputs_new = n_tokens;
  10293. } else {
  10294. // keep last output only
  10295. if (cur_token + n_tokens >= n_tokens_all) {
  10296. n_outputs_new = 1;
  10297. }
  10298. }
  10299. // needs to happen before the graph is built
  10300. lctx.n_outputs = n_outputs_new;
  10301. }
  10302. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10303. GGML_ASSERT(n_threads > 0);
  10304. // helpers for smoother batch API transition
  10305. // after deprecating the llama_eval calls, these will be removed
  10306. if (u_batch.pos == nullptr) {
  10307. pos.resize(n_tokens);
  10308. for (uint32_t i = 0; i < n_tokens; i++) {
  10309. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10310. }
  10311. u_batch.pos = pos.data();
  10312. }
  10313. if (u_batch.seq_id == nullptr) {
  10314. n_seq_id.resize(n_tokens);
  10315. seq_id.resize(n_tokens);
  10316. seq_id_arr.resize(n_tokens);
  10317. for (uint32_t i = 0; i < n_tokens; i++) {
  10318. n_seq_id[i] = 1;
  10319. seq_id[i].resize(1);
  10320. seq_id[i][0] = u_batch.all_seq_id;
  10321. seq_id_arr[i] = seq_id[i].data();
  10322. }
  10323. u_batch.n_seq_id = n_seq_id.data();
  10324. u_batch.seq_id = seq_id_arr.data();
  10325. }
  10326. // non-causal masks do not use the KV cache
  10327. if (hparams.causal_attn) {
  10328. llama_kv_cache_update(&lctx);
  10329. // if we have enough unused cells before the current head ->
  10330. // better to start searching from the beginning of the cache, hoping to fill it
  10331. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10332. kv_self.head = 0;
  10333. }
  10334. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10335. return 1;
  10336. }
  10337. if (!kv_self.recurrent) {
  10338. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10339. // after enough generations, the benefit from this heuristic disappears
  10340. // if we start defragmenting the cache, the benefit from this will be more important
  10341. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10342. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10343. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10344. }
  10345. }
  10346. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10347. ggml_backend_sched_reset(lctx.sched);
  10348. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10349. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10350. // the output is always the last tensor in the graph
  10351. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10352. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10353. if (lctx.n_outputs == 0) {
  10354. // no output
  10355. res = nullptr;
  10356. embd = nullptr;
  10357. } else if (!hparams.causal_attn) {
  10358. res = nullptr; // do not extract logits for embedding models such as BERT
  10359. // token or sequence embeddings
  10360. embd = gf->nodes[gf->n_nodes - 1];
  10361. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  10362. } else if (cparams.embeddings) {
  10363. // the embeddings could be in the second to last tensor, or any of the previous tensors
  10364. int i_embd = gf->n_nodes - 2;
  10365. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  10366. i_embd = gf->n_nodes - i;
  10367. if (i_embd < 0) { break; }
  10368. embd = gf->nodes[i_embd];
  10369. }
  10370. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  10371. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  10372. if (!cparams.causal_attn) {
  10373. res = nullptr; // do not extract logits when not needed
  10374. // skip computing logits
  10375. // TODO: is this safe?
  10376. gf->n_nodes = i_embd + 1;
  10377. }
  10378. } else {
  10379. embd = nullptr; // do not extract embeddings when not needed
  10380. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10381. }
  10382. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10383. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10384. llama_set_inputs(lctx, u_batch);
  10385. llama_graph_compute(lctx, gf, n_threads);
  10386. // update the kv ring buffer
  10387. {
  10388. kv_self.head += n_tokens;
  10389. // Ensure kv cache head points to a valid index.
  10390. if (kv_self.head >= kv_self.size) {
  10391. kv_self.head = 0;
  10392. }
  10393. }
  10394. #ifdef GGML_PERF
  10395. // print timing information per ggml operation (for debugging purposes)
  10396. // requires GGML_PERF to be defined
  10397. ggml_graph_print(gf);
  10398. #endif
  10399. // plot the computation graph in dot format (for debugging purposes)
  10400. //if (n_past%100 == 0) {
  10401. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10402. //}
  10403. // extract logits
  10404. if (res) {
  10405. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10406. GGML_ASSERT(backend_res != nullptr);
  10407. GGML_ASSERT(lctx.logits != nullptr);
  10408. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10409. const int32_t n_outputs_new = lctx.n_outputs;
  10410. if (n_outputs_new) {
  10411. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10412. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10413. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10414. }
  10415. }
  10416. // extract embeddings
  10417. if (embd) {
  10418. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10419. GGML_ASSERT(backend_embd != nullptr);
  10420. switch (cparams.pooling_type) {
  10421. case LLAMA_POOLING_TYPE_NONE:
  10422. {
  10423. // extract token embeddings
  10424. GGML_ASSERT(lctx.embd != nullptr);
  10425. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10426. const int32_t n_outputs_new = lctx.n_outputs;
  10427. if (n_outputs_new) {
  10428. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10429. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10430. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10431. }
  10432. } break;
  10433. case LLAMA_POOLING_TYPE_CLS:
  10434. case LLAMA_POOLING_TYPE_MEAN:
  10435. {
  10436. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  10437. // extract sequence embeddings
  10438. auto & embd_seq_out = lctx.embd_seq;
  10439. embd_seq_out.clear();
  10440. for (uint32_t i = 0; i < n_tokens; i++) {
  10441. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10442. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10443. continue;
  10444. }
  10445. embd_seq_out[seq_id].resize(n_embd);
  10446. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10447. }
  10448. } break;
  10449. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10450. {
  10451. GGML_ASSERT(false && "unknown pooling type");
  10452. } break;
  10453. }
  10454. }
  10455. n_outputs_prev += lctx.n_outputs;
  10456. }
  10457. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10458. lctx.n_outputs = n_outputs;
  10459. // wait for the computation to finish (automatically done when obtaining the model output)
  10460. //llama_synchronize(&lctx);
  10461. // decide if we need to defrag the kv cache
  10462. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10463. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10464. // queue defragmentation for next llama_kv_cache_update
  10465. if (fragmentation > cparams.defrag_thold) {
  10466. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10467. llama_kv_cache_defrag(kv_self);
  10468. }
  10469. }
  10470. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10471. // overlap with device computation.
  10472. ggml_backend_sched_reset(lctx.sched);
  10473. return 0;
  10474. }
  10475. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10476. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10477. auto & kv_self = lctx.kv_self;
  10478. const auto & hparams = lctx.model.hparams;
  10479. const uint32_t n_layer = hparams.n_layer;
  10480. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10481. const uint32_t n_used = kv_self.used;
  10482. assert(n_used <= n_kv);
  10483. //const int64_t t_start = ggml_time_us();
  10484. // number of cells moved
  10485. uint32_t n_moves = 0;
  10486. // each move requires 6*n_layer tensors (see build_defrag)
  10487. // - source view, destination view, copy operation
  10488. // - x2 for keys and values
  10489. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10490. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10491. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10492. // determine which KV cells to move where
  10493. //
  10494. // cell i moves to ids[i]
  10495. //
  10496. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10497. //
  10498. std::vector<uint32_t> ids(n_kv, n_kv);
  10499. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10500. const auto & cell0 = kv_self.cells[i0];
  10501. if (!cell0.is_empty()) {
  10502. ids[i0] = i0;
  10503. continue;
  10504. }
  10505. // found a hole - fill it with data from the end of the cache
  10506. uint32_t nh = 1;
  10507. // determine the size of the hole
  10508. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10509. nh++;
  10510. }
  10511. uint32_t nf = 0;
  10512. uint32_t is = n_kv - 1;
  10513. // starting from the end, find nh non-empty cells
  10514. for (; is > i0; --is) {
  10515. const auto & cell1 = kv_self.cells[is];
  10516. if (cell1.is_empty() || ids[is] != n_kv) {
  10517. continue;
  10518. }
  10519. // non-empty cell which is not yet moved
  10520. nf++;
  10521. if (nf == nh) {
  10522. break;
  10523. }
  10524. }
  10525. // this can only happen if `n_used` is not accurate, which would be a bug
  10526. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10527. nf = 0;
  10528. uint32_t i1 = is;
  10529. // are we moving a continuous block of memory?
  10530. bool cont = false;
  10531. // should we stop searching for the next move?
  10532. bool stop = false;
  10533. // go back and move the nf cells to the hole
  10534. for (; i1 < n_kv; ++i1) {
  10535. auto & cell1 = kv_self.cells[i1];
  10536. if (cell1.is_empty() || ids[i1] != n_kv) {
  10537. if (n_moves == max_moves) {
  10538. stop = true;
  10539. break;
  10540. }
  10541. cont = false;
  10542. continue;
  10543. }
  10544. // this cell goes to (i0 + nf)
  10545. ids[i1] = i0 + nf;
  10546. // move the cell meta data
  10547. kv_self.cells[i0 + nf] = cell1;
  10548. // clear the old cell and move the head there
  10549. cell1 = llama_kv_cell();
  10550. kv_self.head = n_used;
  10551. if (!cont) {
  10552. n_moves++;
  10553. cont = true;
  10554. }
  10555. nf++;
  10556. if (nf == nh) {
  10557. break;
  10558. }
  10559. }
  10560. if (stop || n_moves == max_moves) {
  10561. break;
  10562. }
  10563. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10564. i0 += nh - 1;
  10565. }
  10566. if (n_moves == 0) {
  10567. return;
  10568. }
  10569. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10570. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10571. #if 0
  10572. // CPU defrag
  10573. //
  10574. // TODO: optimizations are possible:
  10575. // - multiple threads
  10576. // - avoid copying to the host memory when already there
  10577. //
  10578. // likely not worth the effort, as we have ggml_graph based defrag
  10579. //
  10580. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10581. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10582. const uint32_t kv_size = kv_self.size;
  10583. std::vector<uint8_t> buf_k;
  10584. std::vector<uint8_t> buf_v;
  10585. for (uint32_t il = 0; il < n_layer; ++il) {
  10586. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10587. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10588. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10589. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10590. buf_k.resize(k_size);
  10591. buf_v.resize(v_size);
  10592. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10593. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10594. // batch move [i, i+nm) to [id, id+nm)
  10595. // note: cells can move only to a lower index
  10596. for (uint32_t i = 0; i < n_kv; ++i) {
  10597. const uint32_t id = ids[i];
  10598. if (i == id || id == n_kv) {
  10599. continue;
  10600. }
  10601. uint32_t nm = 1;
  10602. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10603. nm++;
  10604. }
  10605. // move keys
  10606. {
  10607. const int64_t os = i*k_size_row;
  10608. const int64_t od = id*k_size_row;
  10609. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10610. }
  10611. // move values (note: they are transposed)
  10612. {
  10613. const int64_t os = i;
  10614. const int64_t od = id;
  10615. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10616. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10617. }
  10618. }
  10619. i += nm - 1;
  10620. }
  10621. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10622. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10623. }
  10624. #else
  10625. // ggml_graph defrag
  10626. ggml_backend_sched_reset(lctx.sched);
  10627. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10628. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10629. #endif
  10630. //const int64_t t_end = ggml_time_us();
  10631. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10632. }
  10633. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10634. bool need_reserve = false;
  10635. // apply K-shift if needed
  10636. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10637. {
  10638. ggml_backend_sched_reset(lctx.sched);
  10639. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10640. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10641. llama_set_k_shift(lctx);
  10642. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10643. need_reserve = true;
  10644. }
  10645. {
  10646. auto & kv_self = lctx.kv_self;
  10647. kv_self.has_shift = false;
  10648. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10649. kv_self.cells[i].delta = 0;
  10650. }
  10651. }
  10652. }
  10653. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10654. {
  10655. ggml_backend_sched_reset(lctx.sched);
  10656. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10657. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10658. llama_set_s_copy(lctx);
  10659. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10660. need_reserve = true;
  10661. }
  10662. {
  10663. auto & kv_self = lctx.kv_self;
  10664. kv_self.do_copy = false;
  10665. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10666. kv_self.cells[i].src = i;
  10667. }
  10668. }
  10669. }
  10670. // defragment the KV cache if needed
  10671. if (lctx.kv_self.do_defrag) {
  10672. llama_kv_cache_defrag_internal(lctx);
  10673. need_reserve = true;
  10674. lctx.kv_self.do_defrag = false;
  10675. }
  10676. // reserve a worst case graph again
  10677. if (need_reserve) {
  10678. // TODO: extract to a function
  10679. // build worst-case graph
  10680. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10681. int n_past = lctx.cparams.n_ctx - n_tokens;
  10682. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10683. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10684. // initialize scheduler with the worst-case graph
  10685. ggml_backend_sched_reset(lctx.sched);
  10686. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10687. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10688. }
  10689. }
  10690. }
  10691. //
  10692. // tokenizer
  10693. //
  10694. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10695. return vocab.type;
  10696. }
  10697. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10698. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10699. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  10700. }
  10701. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10702. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10703. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  10704. }
  10705. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10706. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10707. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  10708. }
  10709. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10710. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10711. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  10712. }
  10713. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10714. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10715. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  10716. }
  10717. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10718. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10719. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10720. const auto & token_data = vocab.id_to_token.at(id);
  10721. switch (llama_vocab_get_type(vocab)) {
  10722. case LLAMA_VOCAB_TYPE_SPM: {
  10723. auto buf = token_data.text.substr(3, 2);
  10724. return strtol(buf.c_str(), NULL, 16);
  10725. }
  10726. case LLAMA_VOCAB_TYPE_BPE: {
  10727. GGML_ASSERT(false);
  10728. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10729. }
  10730. case LLAMA_VOCAB_TYPE_WPM: {
  10731. GGML_ASSERT(false);
  10732. }
  10733. default:
  10734. GGML_ASSERT(false);
  10735. }
  10736. }
  10737. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10738. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10739. static const char * hex = "0123456789ABCDEF";
  10740. switch (llama_vocab_get_type(vocab)) {
  10741. case LLAMA_VOCAB_TYPE_SPM: {
  10742. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10743. auto token = vocab.token_to_id.find(buf);
  10744. if (token != vocab.token_to_id.end()) {
  10745. return (*token).second;
  10746. }
  10747. // Try to fall back to just the byte as a string
  10748. const char buf2[2] = { (char)ch, 0 };
  10749. return vocab.token_to_id.at(buf2);
  10750. }
  10751. case LLAMA_VOCAB_TYPE_WPM:
  10752. case LLAMA_VOCAB_TYPE_BPE: {
  10753. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10754. }
  10755. default:
  10756. GGML_ASSERT(false);
  10757. }
  10758. }
  10759. static void llama_escape_whitespace(std::string & text) {
  10760. replace_all(text, " ", "\xe2\x96\x81");
  10761. }
  10762. static void llama_unescape_whitespace(std::string & word) {
  10763. replace_all(word, "\xe2\x96\x81", " ");
  10764. }
  10765. struct llm_symbol {
  10766. using index = int;
  10767. index prev;
  10768. index next;
  10769. const char * text;
  10770. size_t n;
  10771. };
  10772. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10773. // SPM tokenizer
  10774. // original implementation:
  10775. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10776. struct llm_bigram_spm {
  10777. struct comparator {
  10778. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10779. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10780. }
  10781. };
  10782. using queue_storage = std::vector<llm_bigram_spm>;
  10783. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10784. llm_symbol::index left;
  10785. llm_symbol::index right;
  10786. float score;
  10787. size_t size;
  10788. };
  10789. struct llm_tokenizer_spm {
  10790. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10791. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10792. // split string into utf8 chars
  10793. int index = 0;
  10794. size_t offs = 0;
  10795. while (offs < text.size()) {
  10796. llm_symbol sym;
  10797. size_t len = utf8_len(text[offs]);
  10798. sym.text = text.c_str() + offs;
  10799. sym.n = std::min(len, text.size() - offs);
  10800. offs += sym.n;
  10801. sym.prev = index - 1;
  10802. sym.next = offs == text.size() ? -1 : index + 1;
  10803. index++;
  10804. symbols.emplace_back(sym);
  10805. }
  10806. // seed the work queue with all possible 2-character tokens.
  10807. for (size_t i = 1; i < symbols.size(); ++i) {
  10808. try_add_bigram(i - 1, i);
  10809. }
  10810. // keep substituting the highest frequency pairs for as long as we can.
  10811. while (!work_queue.empty()) {
  10812. auto bigram = work_queue.top();
  10813. work_queue.pop();
  10814. auto & left_sym = symbols[bigram.left];
  10815. auto & right_sym = symbols[bigram.right];
  10816. // if one of the symbols already got merged, skip it.
  10817. if (left_sym.n == 0 || right_sym.n == 0 ||
  10818. left_sym.n + right_sym.n != bigram.size) {
  10819. continue;
  10820. }
  10821. // merge the right sym into the left one
  10822. left_sym.n += right_sym.n;
  10823. right_sym.n = 0;
  10824. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10825. // remove the right sym from the chain
  10826. left_sym.next = right_sym.next;
  10827. if (right_sym.next >= 0) {
  10828. symbols[right_sym.next].prev = bigram.left;
  10829. }
  10830. // find more substitutions
  10831. try_add_bigram(left_sym.prev, bigram.left);
  10832. try_add_bigram(bigram.left, left_sym.next);
  10833. }
  10834. for (int i = 0; i != -1; i = symbols[i].next) {
  10835. auto & symbol = symbols[i];
  10836. resegment(symbol, output);
  10837. }
  10838. }
  10839. private:
  10840. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10841. auto text = std::string(symbol.text, symbol.n);
  10842. auto token = vocab.token_to_id.find(text);
  10843. // Do we need to support is_unused?
  10844. if (token != vocab.token_to_id.end()) {
  10845. output.push_back((*token).second);
  10846. return;
  10847. }
  10848. const auto p = rev_merge.find(text);
  10849. if (p == rev_merge.end()) {
  10850. // output any symbols that did not form tokens as bytes.
  10851. output.reserve(output.size() + symbol.n);
  10852. for (int j = 0; j < (int)symbol.n; ++j) {
  10853. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10854. output.push_back(token_id);
  10855. }
  10856. return;
  10857. }
  10858. resegment(symbols[p->second.first], output);
  10859. resegment(symbols[p->second.second], output);
  10860. }
  10861. void try_add_bigram(int left, int right) {
  10862. if (left == -1 || right == -1) {
  10863. return;
  10864. }
  10865. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10866. auto token = vocab.token_to_id.find(text);
  10867. if (token == vocab.token_to_id.end()) {
  10868. return;
  10869. }
  10870. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10871. return;
  10872. }
  10873. const auto & tok_data = vocab.id_to_token[(*token).second];
  10874. llm_bigram_spm bigram;
  10875. bigram.left = left;
  10876. bigram.right = right;
  10877. bigram.score = tok_data.score;
  10878. bigram.size = text.size();
  10879. work_queue.push(bigram);
  10880. // Do we need to support is_unused?
  10881. rev_merge[text] = std::make_pair(left, right);
  10882. }
  10883. const llama_vocab & vocab;
  10884. std::vector<llm_symbol> symbols;
  10885. llm_bigram_spm::queue work_queue;
  10886. std::map<std::string, std::pair<int, int>> rev_merge;
  10887. };
  10888. // BPE tokenizer
  10889. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10890. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10891. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10892. struct llm_bigram_bpe {
  10893. struct comparator {
  10894. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10895. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10896. }
  10897. };
  10898. using queue_storage = std::vector<llm_bigram_bpe>;
  10899. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10900. llm_symbol::index left;
  10901. llm_symbol::index right;
  10902. std::string text;
  10903. int rank;
  10904. size_t size;
  10905. };
  10906. struct llm_tokenizer_bpe {
  10907. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
  10908. GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
  10909. switch (vocab.type_pre) {
  10910. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10911. regex_exprs = {
  10912. // original regex from tokenizer.json
  10913. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10914. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10915. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10916. };
  10917. break;
  10918. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10919. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10920. regex_exprs = {
  10921. // same as llama3
  10922. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10923. };
  10924. break;
  10925. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10926. regex_exprs = {
  10927. "[\r\n]",
  10928. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10929. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10930. "\\s+$",
  10931. "[一-龥ࠀ-一가-퟿]+",
  10932. "\\p{N}+",
  10933. };
  10934. break;
  10935. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10936. regex_exprs = {
  10937. "[\r\n]",
  10938. "\\s?\\p{L}+",
  10939. "\\s?\\p{P}+",
  10940. "[一-龥ࠀ-一가-퟿]+",
  10941. "\\p{N}",
  10942. };
  10943. break;
  10944. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10945. regex_exprs = {
  10946. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  10947. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10948. "[0-9][0-9][0-9]",
  10949. };
  10950. break;
  10951. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10952. // TODO: MPT pre-tokenization regexes are unknown
  10953. // the following are close, but not exact. run the following:
  10954. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10955. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10956. regex_exprs = {
  10957. "\\s?\\p{L}+",
  10958. "\\s?\\p{P}+",
  10959. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10960. };
  10961. break;
  10962. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10963. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10964. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10965. regex_exprs = {
  10966. "\\p{N}",
  10967. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10968. };
  10969. break;
  10970. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10971. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10972. regex_exprs = {
  10973. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10974. };
  10975. break;
  10976. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10977. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10978. regex_exprs = {
  10979. // original regex from tokenizer.json
  10980. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10981. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10982. };
  10983. break;
  10984. case LLAMA_VOCAB_PRE_TYPE_PORO:
  10985. regex_exprs = {
  10986. " ?[^(\\s|.,!?…。,、।۔،)]+",
  10987. };
  10988. break;
  10989. default:
  10990. // default regex for BPE tokenization pre-processing
  10991. regex_exprs = {
  10992. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10993. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10994. "\\p{N}+",
  10995. "[0-9][0-9][0-9]",
  10996. };
  10997. break;
  10998. }
  10999. }
  11000. void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
  11001. output.push_back(token_id);
  11002. }
  11003. bool append_bos(std::vector<llama_vocab::id> & output) const {
  11004. if (vocab.tokenizer_add_bos) {
  11005. GGML_ASSERT(vocab.special_bos_id != -1);
  11006. output.push_back(vocab.special_bos_id);
  11007. return true;
  11008. }
  11009. return false;
  11010. }
  11011. bool append_eos(std::vector<llama_vocab::id> & output) const {
  11012. if (vocab.tokenizer_add_eos) {
  11013. GGML_ASSERT(vocab.special_eos_id != -1);
  11014. output.push_back(vocab.special_eos_id);
  11015. return true;
  11016. }
  11017. return false;
  11018. }
  11019. void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
  11020. if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11021. LLAMA_LOG_WARN(
  11022. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11023. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11024. "Are you sure this is what you want?\n", __FUNCTION__);
  11025. }
  11026. if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
  11027. LLAMA_LOG_WARN(
  11028. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  11029. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  11030. "Are you sure this is what you want?\n", __FUNCTION__);
  11031. }
  11032. }
  11033. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  11034. int final_prev_index = -1;
  11035. const auto word_collection = unicode_regex_split(text, regex_exprs);
  11036. symbols_final.clear();
  11037. for (auto & word : word_collection) {
  11038. work_queue = llm_bigram_bpe::queue();
  11039. symbols.clear();
  11040. int index = 0;
  11041. size_t offset = 0;
  11042. if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  11043. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  11044. offset = word.size();
  11045. }
  11046. while (offset < word.size()) {
  11047. llm_symbol sym;
  11048. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  11049. sym.text = word.c_str() + offset;
  11050. sym.n = char_len;
  11051. offset += sym.n;
  11052. sym.prev = index - 1;
  11053. sym.next = offset == word.size() ? -1 : index + 1;
  11054. index++;
  11055. symbols.emplace_back(sym);
  11056. }
  11057. for (size_t i = 1; i < symbols.size(); ++i) {
  11058. add_new_bigram(i - 1, i);
  11059. }
  11060. // build token(s)
  11061. while (!work_queue.empty()) {
  11062. auto bigram = work_queue.top();
  11063. work_queue.pop();
  11064. auto & left_symbol = symbols[bigram.left];
  11065. auto & right_symbol = symbols[bigram.right];
  11066. if (left_symbol.n == 0 || right_symbol.n == 0) {
  11067. continue;
  11068. }
  11069. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  11070. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  11071. if (left_token + right_token != bigram.text) {
  11072. continue; // Skip this bigram if it's outdated
  11073. }
  11074. // merge the right sym into the left one
  11075. left_symbol.n += right_symbol.n;
  11076. right_symbol.n = 0;
  11077. // remove the right sym from the chain
  11078. left_symbol.next = right_symbol.next;
  11079. if (right_symbol.next >= 0) {
  11080. symbols[right_symbol.next].prev = bigram.left;
  11081. }
  11082. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  11083. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  11084. }
  11085. // add the finished tokens to the final list keeping correct order for next and prev
  11086. for (auto & sym : symbols) {
  11087. if (sym.n > 0) {
  11088. sym.prev = final_prev_index;
  11089. sym.next = -1;
  11090. if (final_prev_index != -1) {
  11091. symbols_final[final_prev_index].next = symbols_final.size();
  11092. }
  11093. symbols_final.emplace_back(sym);
  11094. final_prev_index = symbols_final.size() - 1;
  11095. }
  11096. }
  11097. }
  11098. symbols = symbols_final;
  11099. if (!symbols.empty()) {
  11100. for (int i = 0; i != -1; i = symbols[i].next) {
  11101. auto & symbol = symbols[i];
  11102. if (symbol.n == 0) {
  11103. continue;
  11104. }
  11105. const std::string str = std::string(symbol.text, symbol.n);
  11106. const auto token = vocab.token_to_id.find(str);
  11107. if (token == vocab.token_to_id.end()) {
  11108. for (auto j = str.begin(); j != str.end(); ++j) {
  11109. std::string byte_str(1, *j);
  11110. auto token_multibyte = vocab.token_to_id.find(byte_str);
  11111. if (token_multibyte != vocab.token_to_id.end()) {
  11112. output.push_back(token_multibyte->second);
  11113. }
  11114. }
  11115. } else {
  11116. output.push_back((*token).second);
  11117. }
  11118. }
  11119. }
  11120. }
  11121. private:
  11122. void add_new_bigram(int left, int right) {
  11123. if (left == -1 || right == -1) {
  11124. return;
  11125. }
  11126. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  11127. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  11128. int rank_found = -1;
  11129. rank_found = vocab.find_bpe_rank(left_token, right_token);
  11130. if (rank_found < 0) {
  11131. return;
  11132. }
  11133. llm_bigram_bpe bigram;
  11134. bigram.left = left;
  11135. bigram.right = right;
  11136. bigram.text = left_token + right_token;
  11137. bigram.size = left_token.size() + right_token.size();
  11138. bigram.rank = rank_found;
  11139. work_queue.push(bigram);
  11140. }
  11141. const llama_vocab & vocab;
  11142. std::vector<std::string> regex_exprs;
  11143. std::vector<llm_symbol> symbols;
  11144. std::vector<llm_symbol> symbols_final;
  11145. llm_bigram_bpe::queue work_queue;
  11146. };
  11147. struct llm_tokenizer_wpm {
  11148. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  11149. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  11150. const auto & token_map = vocab.token_to_id;
  11151. // normalize and split by whitespace
  11152. std::vector<std::string> words = preprocess(text);
  11153. // bos token prepended already
  11154. // find the longest tokens that form the words
  11155. for (const std::string &word : words) {
  11156. // skip empty words
  11157. if (word.size() == 0) {
  11158. continue;
  11159. }
  11160. // prepend phantom space
  11161. const std::string word1 = "\xe2\x96\x81" + word;
  11162. const int n = word1.size();
  11163. const size_t current_tokens = output.size();
  11164. // we're at the start of a new word
  11165. // move through character position in word
  11166. for (int i = 0; i < n; ++i) {
  11167. // loop through possible match length
  11168. bool match = false;
  11169. for (int j = n; j > i; j--) {
  11170. auto it = token_map.find(word1.substr(i, j - i));
  11171. if (it != token_map.end()) {
  11172. output.push_back(it->second);
  11173. match = true;
  11174. i = j - 1;
  11175. break;
  11176. }
  11177. }
  11178. if (!match) { // discard all
  11179. output.resize(current_tokens);
  11180. break; // and discard next tokens
  11181. }
  11182. }
  11183. // we didn't find any matches for this word
  11184. if (current_tokens == output.size()) {
  11185. output.push_back(vocab.special_unk_id);
  11186. }
  11187. }
  11188. }
  11189. std::vector<std::string> preprocess(const std::string & text) {
  11190. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  11191. std::vector<std::string> words(1, "");
  11192. for (const uint32_t cpt : cpts_nfd) {
  11193. const auto flags = unicode_cpt_flags(cpt);
  11194. if (flags.is_whitespace) {
  11195. if (words.back().size()) { // finish previous word if any
  11196. words.emplace_back();
  11197. }
  11198. continue;
  11199. }
  11200. assert (!flags.is_separator);
  11201. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  11202. continue;
  11203. }
  11204. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  11205. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  11206. if (words.back().size()) { // finish previous word if any
  11207. words.emplace_back();
  11208. }
  11209. words.back() = s; // single char word
  11210. words.emplace_back(); // start a new word
  11211. } else {
  11212. words.back() += s; // append char to word
  11213. }
  11214. }
  11215. if (!words.back().size()) {
  11216. words.pop_back();
  11217. }
  11218. return words;
  11219. }
  11220. static bool is_chinese_char(uint32_t cpt) {
  11221. return
  11222. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  11223. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  11224. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  11225. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  11226. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  11227. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  11228. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  11229. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  11230. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  11231. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  11232. }
  11233. const llama_vocab & vocab;
  11234. };
  11235. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  11236. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  11237. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  11238. } FRAGMENT_BUFFER_VARIANT_TYPE;
  11239. struct fragment_buffer_variant {
  11240. fragment_buffer_variant(llama_vocab::id _token)
  11241. :
  11242. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  11243. token(_token),
  11244. raw_text(_dummy),
  11245. offset(0),
  11246. length(0) {}
  11247. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  11248. :
  11249. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  11250. token((llama_vocab::id) - 1),
  11251. raw_text(_raw_text),
  11252. offset(_offset),
  11253. length(_length){
  11254. GGML_ASSERT(_offset >= 0);
  11255. GGML_ASSERT(_length >= 1);
  11256. GGML_ASSERT(offset + length <= raw_text.length());
  11257. }
  11258. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  11259. const llama_vocab::id token;
  11260. const std::string _dummy;
  11261. const std::string & raw_text;
  11262. const uint64_t offset;
  11263. const uint64_t length;
  11264. };
  11265. // #define PRETOKENIZERDEBUG
  11266. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  11267. // for each special token
  11268. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  11269. const auto & data = vocab.id_to_token[special_id];
  11270. const auto & special_token = data.text;
  11271. // for each text fragment
  11272. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  11273. while (it != buffer.end()) {
  11274. auto & fragment = (*it);
  11275. // if a fragment is text ( not yet processed )
  11276. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11277. auto & raw_text = fragment.raw_text;
  11278. auto raw_text_base_offset = fragment.offset;
  11279. auto raw_text_base_length = fragment.length;
  11280. // loop over the text
  11281. while (true) {
  11282. // find the first occurrence of a given special token in this fragment
  11283. // passing offset argument only limit the "search area" but match coordinates
  11284. // are still relative to the source full raw_text
  11285. auto match = raw_text.find(special_token, raw_text_base_offset);
  11286. // no occurrences found, stop processing this fragment for a given special token
  11287. if (match == std::string::npos) break;
  11288. // check if match is within bounds of offset <-> length
  11289. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  11290. #ifdef PRETOKENIZERDEBUG
  11291. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11292. #endif
  11293. auto source = std::distance(buffer.begin(), it);
  11294. // if match is further than base offset
  11295. // then we have some text to the left of it
  11296. if (match > raw_text_base_offset) {
  11297. // left
  11298. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  11299. int64_t left_reminder_length = match - raw_text_base_offset;
  11300. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  11301. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  11302. left_reminder_length--;
  11303. }
  11304. }
  11305. if (left_reminder_length > 0) {
  11306. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  11307. it++;
  11308. }
  11309. #ifdef PRETOKENIZERDEBUG
  11310. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  11311. #endif
  11312. }
  11313. // special token
  11314. buffer.emplace_after(it, special_id);
  11315. it++;
  11316. // right
  11317. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11318. int64_t right_reminder_offset = match + special_token.length();
  11319. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11320. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  11321. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  11322. right_reminder_offset++;
  11323. right_reminder_length--;
  11324. }
  11325. }
  11326. if (right_reminder_length > 0) {
  11327. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11328. it++;
  11329. }
  11330. #ifdef PRETOKENIZERDEBUG
  11331. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11332. #endif
  11333. if (source == 0) {
  11334. buffer.erase_after(buffer.before_begin());
  11335. } else {
  11336. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11337. }
  11338. // repeat for the right side
  11339. raw_text_base_offset = right_reminder_offset;
  11340. raw_text_base_length = right_reminder_length;
  11341. #ifdef PRETOKENIZERDEBUG
  11342. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11343. #endif
  11344. } else {
  11345. if (source == 0) {
  11346. buffer.erase_after(buffer.before_begin());
  11347. } else {
  11348. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11349. }
  11350. break;
  11351. }
  11352. }
  11353. }
  11354. it++;
  11355. }
  11356. }
  11357. }
  11358. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11359. std::vector<llama_vocab::id> output;
  11360. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11361. if (!raw_text.empty()) {
  11362. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11363. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11364. }
  11365. switch (vocab.type) {
  11366. case LLAMA_VOCAB_TYPE_SPM:
  11367. {
  11368. // OG tokenizer behavior:
  11369. //
  11370. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11371. // tokenizer.encode('', add_special_tokens=False) returns []
  11372. bool is_prev_special = false;
  11373. if (add_special && vocab.tokenizer_add_bos) {
  11374. GGML_ASSERT(vocab.special_bos_id != -1);
  11375. output.push_back(vocab.special_bos_id);
  11376. is_prev_special = true;
  11377. }
  11378. for (const auto & fragment : fragment_buffer) {
  11379. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11380. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11381. if (vocab.tokenizer_add_space_prefix) {
  11382. if (!output.size() || is_prev_special) { // prefix with space if first token
  11383. raw_text = " " + raw_text;
  11384. }
  11385. }
  11386. #ifdef PRETOKENIZERDEBUG
  11387. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11388. #endif
  11389. llm_tokenizer_spm tokenizer(vocab);
  11390. llama_escape_whitespace(raw_text);
  11391. tokenizer.tokenize(raw_text, output);
  11392. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11393. output.push_back(fragment.token);
  11394. is_prev_special = true;
  11395. }
  11396. }
  11397. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11398. LLAMA_LOG_WARN(
  11399. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11400. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11401. "Are you sure this is what you want?\n", __FUNCTION__);
  11402. }
  11403. if (add_special && vocab.tokenizer_add_eos) {
  11404. GGML_ASSERT(vocab.special_eos_id != -1);
  11405. output.push_back(vocab.special_eos_id);
  11406. }
  11407. } break;
  11408. case LLAMA_VOCAB_TYPE_BPE:
  11409. {
  11410. llm_tokenizer_bpe tokenizer(vocab);
  11411. if (add_special) {
  11412. tokenizer.append_bos(output);
  11413. }
  11414. for (const auto & fragment : fragment_buffer) {
  11415. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11416. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11417. #ifdef PRETOKENIZERDEBUG
  11418. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11419. #endif
  11420. tokenizer.tokenize(raw_text, output);
  11421. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11422. tokenizer.append(fragment.token, output);
  11423. }
  11424. }
  11425. if (add_special) {
  11426. tokenizer.append_eos(output);
  11427. tokenizer.check_double_bos_eos(output);
  11428. }
  11429. } break;
  11430. case LLAMA_VOCAB_TYPE_WPM:
  11431. {
  11432. if (add_special) {
  11433. GGML_ASSERT(vocab.special_cls_id != -1);
  11434. output.push_back(vocab.special_cls_id);
  11435. }
  11436. for (const auto & fragment : fragment_buffer) {
  11437. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11438. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11439. #ifdef PRETOKENIZERDEBUG
  11440. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11441. #endif
  11442. llm_tokenizer_wpm tokenizer(vocab);
  11443. tokenizer.tokenize(raw_text, output);
  11444. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11445. output.push_back(fragment.token);
  11446. }
  11447. }
  11448. if (add_special) {
  11449. GGML_ASSERT(vocab.special_sep_id != -1);
  11450. output.push_back(vocab.special_sep_id);
  11451. }
  11452. } break;
  11453. case LLAMA_VOCAB_TYPE_NONE:
  11454. GGML_ASSERT(false);
  11455. }
  11456. return output;
  11457. }
  11458. //
  11459. // grammar - internal
  11460. //
  11461. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11462. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11463. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11464. const std::string & src,
  11465. llama_partial_utf8 partial_start) {
  11466. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11467. const char * pos = src.c_str();
  11468. std::vector<uint32_t> code_points;
  11469. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11470. code_points.reserve(src.size() + 1);
  11471. uint32_t value = partial_start.value;
  11472. int n_remain = partial_start.n_remain;
  11473. // continue previous decode, if applicable
  11474. while (*pos != 0 && n_remain > 0) {
  11475. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11476. if ((next_byte >> 6) != 2) {
  11477. // invalid sequence, abort
  11478. code_points.push_back(0);
  11479. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11480. }
  11481. value = (value << 6) + (next_byte & 0x3F);
  11482. ++pos;
  11483. --n_remain;
  11484. }
  11485. if (partial_start.n_remain > 0 && n_remain == 0) {
  11486. code_points.push_back(value);
  11487. }
  11488. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11489. while (*pos != 0) {
  11490. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11491. uint8_t highbits = first_byte >> 4;
  11492. n_remain = lookup[highbits] - 1;
  11493. if (n_remain < 0) {
  11494. // invalid sequence, abort
  11495. code_points.clear();
  11496. code_points.push_back(0);
  11497. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11498. }
  11499. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11500. value = first_byte & mask;
  11501. ++pos;
  11502. while (*pos != 0 && n_remain > 0) {
  11503. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11504. ++pos;
  11505. --n_remain;
  11506. }
  11507. if (n_remain == 0) {
  11508. code_points.push_back(value);
  11509. }
  11510. }
  11511. code_points.push_back(0);
  11512. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11513. }
  11514. // returns true iff pos points to the end of one of the definitions of a rule
  11515. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11516. switch (pos->type) {
  11517. case LLAMA_GRETYPE_END: return true; // NOLINT
  11518. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11519. default: return false;
  11520. }
  11521. }
  11522. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11523. // asserts that pos is pointing to a char range element
  11524. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11525. const llama_grammar_element * pos,
  11526. const uint32_t chr) {
  11527. bool found = false;
  11528. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11529. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11530. do {
  11531. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11532. // inclusive range, e.g. [a-z]
  11533. found = found || (pos->value <= chr && chr <= pos[1].value);
  11534. pos += 2;
  11535. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11536. // Any character matches "."
  11537. found = true;
  11538. pos += 1;
  11539. } else {
  11540. // exact char match, e.g. [a] or "a"
  11541. found = found || pos->value == chr;
  11542. pos += 1;
  11543. }
  11544. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11545. return std::make_pair(found == is_positive_char, pos);
  11546. }
  11547. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11548. // range at pos (regular or inverse range)
  11549. // asserts that pos is pointing to a char range element
  11550. static bool llama_grammar_match_partial_char(
  11551. const llama_grammar_element * pos,
  11552. const llama_partial_utf8 partial_utf8) {
  11553. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11554. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11555. uint32_t partial_value = partial_utf8.value;
  11556. int n_remain = partial_utf8.n_remain;
  11557. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11558. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11559. return false;
  11560. }
  11561. // range of possible code points this partial UTF-8 sequence could complete to
  11562. uint32_t low = partial_value << (n_remain * 6);
  11563. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11564. if (low == 0) {
  11565. if (n_remain == 2) {
  11566. low = 1 << 11;
  11567. } else if (n_remain == 3) {
  11568. low = 1 << 16;
  11569. }
  11570. }
  11571. do {
  11572. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11573. // inclusive range, e.g. [a-z]
  11574. if (pos->value <= high && low <= pos[1].value) {
  11575. return is_positive_char;
  11576. }
  11577. pos += 2;
  11578. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11579. // Any character matches "."
  11580. return true;
  11581. } else {
  11582. // exact char match, e.g. [a] or "a"
  11583. if (low <= pos->value && pos->value <= high) {
  11584. return is_positive_char;
  11585. }
  11586. pos += 1;
  11587. }
  11588. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11589. return !is_positive_char;
  11590. }
  11591. // transforms a grammar pushdown stack into N possible stacks, all ending
  11592. // at a character range (terminal element)
  11593. static void llama_grammar_advance_stack(
  11594. const std::vector<std::vector<llama_grammar_element>> & rules,
  11595. const std::vector<const llama_grammar_element *> & stack,
  11596. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11597. if (stack.empty()) {
  11598. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11599. new_stacks.emplace_back(stack);
  11600. }
  11601. return;
  11602. }
  11603. const llama_grammar_element * pos = stack.back();
  11604. switch (pos->type) {
  11605. case LLAMA_GRETYPE_RULE_REF: {
  11606. const size_t rule_id = static_cast<size_t>(pos->value);
  11607. const llama_grammar_element * subpos = rules[rule_id].data();
  11608. do {
  11609. // init new stack without the top (pos)
  11610. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11611. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11612. // if this rule ref is followed by another element, add that to stack
  11613. new_stack.push_back(pos + 1);
  11614. }
  11615. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11616. // if alternate is nonempty, add to stack
  11617. new_stack.push_back(subpos);
  11618. }
  11619. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11620. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11621. // scan to end of alternate def
  11622. subpos++;
  11623. }
  11624. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11625. // there's another alternate def of this rule to process
  11626. subpos++;
  11627. } else {
  11628. break;
  11629. }
  11630. } while (true);
  11631. break;
  11632. }
  11633. case LLAMA_GRETYPE_CHAR:
  11634. case LLAMA_GRETYPE_CHAR_NOT:
  11635. case LLAMA_GRETYPE_CHAR_ANY:
  11636. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11637. // only add the stack if it's not a duplicate of one we already have
  11638. new_stacks.emplace_back(stack);
  11639. }
  11640. break;
  11641. default:
  11642. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11643. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11644. // those
  11645. GGML_ASSERT(false);
  11646. }
  11647. }
  11648. // takes a set of possible pushdown stacks on a grammar, which are required to
  11649. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11650. // produces the N possible stacks if the given char is accepted at those
  11651. // positions
  11652. void llama_grammar_accept(
  11653. const std::vector<std::vector<llama_grammar_element>> & rules,
  11654. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11655. const uint32_t chr,
  11656. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11657. new_stacks.clear();
  11658. for (const auto & stack : stacks) {
  11659. if (stack.empty()) {
  11660. continue;
  11661. }
  11662. auto match = llama_grammar_match_char(stack.back(), chr);
  11663. if (match.first) {
  11664. const llama_grammar_element * pos = match.second;
  11665. // update top of stack to next element, if any
  11666. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11667. if (!llama_grammar_is_end_of_sequence(pos)) {
  11668. new_stack.push_back(pos);
  11669. }
  11670. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11671. }
  11672. }
  11673. }
  11674. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11675. const std::vector<std::vector<llama_grammar_element>> & rules,
  11676. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11677. const std::vector<llama_grammar_candidate> & candidates);
  11678. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11679. const std::vector<std::vector<llama_grammar_element>> & rules,
  11680. const std::vector<const llama_grammar_element *> & stack,
  11681. const std::vector<llama_grammar_candidate> & candidates) {
  11682. std::vector<llama_grammar_candidate> rejects;
  11683. rejects.reserve(candidates.size());
  11684. if (stack.empty()) {
  11685. for (const auto & tok : candidates) {
  11686. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11687. rejects.push_back(tok);
  11688. }
  11689. }
  11690. return rejects;
  11691. }
  11692. const llama_grammar_element * stack_pos = stack.back();
  11693. std::vector<llama_grammar_candidate> next_candidates;
  11694. next_candidates.reserve(candidates.size());
  11695. for (const auto & tok : candidates) {
  11696. if (*tok.code_points == 0) {
  11697. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11698. // that cannot satisfy this position in grammar
  11699. if (tok.partial_utf8.n_remain != 0 &&
  11700. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11701. rejects.push_back(tok);
  11702. }
  11703. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11704. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11705. } else {
  11706. rejects.push_back(tok);
  11707. }
  11708. }
  11709. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11710. // update top of stack to next element, if any
  11711. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11712. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11713. stack_after.push_back(stack_pos_after);
  11714. }
  11715. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11716. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11717. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11718. for (const auto & tok : next_rejects) {
  11719. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11720. }
  11721. return rejects;
  11722. }
  11723. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11724. const std::vector<std::vector<llama_grammar_element>> & rules,
  11725. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11726. const std::vector<llama_grammar_candidate> & candidates) {
  11727. GGML_ASSERT(!stacks.empty()); // REVIEW
  11728. if (candidates.empty()) {
  11729. return std::vector<llama_grammar_candidate>();
  11730. }
  11731. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11732. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11733. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11734. }
  11735. return rejects;
  11736. }
  11737. static bool llama_grammar_detect_left_recursion(
  11738. const std::vector<std::vector<llama_grammar_element>> & rules,
  11739. size_t rule_index,
  11740. std::vector<bool> * rules_visited,
  11741. std::vector<bool> * rules_in_progress,
  11742. std::vector<bool> * rules_may_be_empty) {
  11743. if ((*rules_in_progress)[rule_index]) {
  11744. return true;
  11745. }
  11746. (*rules_in_progress)[rule_index] = true;
  11747. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11748. // First check if the rule might produce the empty string. This could be done combined with the second
  11749. // step but it's more readable as two steps.
  11750. bool at_rule_start = true;
  11751. for (size_t i = 0; i < rule.size(); i++) {
  11752. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11753. if (at_rule_start) {
  11754. (*rules_may_be_empty)[rule_index] = true;
  11755. break;
  11756. }
  11757. at_rule_start = true;
  11758. } else {
  11759. at_rule_start = false;
  11760. }
  11761. }
  11762. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11763. // be empty)
  11764. bool recurse_into_nonterminal = true;
  11765. for (size_t i = 0; i < rule.size(); i++) {
  11766. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11767. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11768. return true;
  11769. }
  11770. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11771. recurse_into_nonterminal = false;
  11772. }
  11773. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11774. recurse_into_nonterminal = true;
  11775. } else {
  11776. recurse_into_nonterminal = false;
  11777. }
  11778. }
  11779. (*rules_in_progress)[rule_index] = false;
  11780. (*rules_visited)[rule_index] = true;
  11781. return false;
  11782. }
  11783. //
  11784. // grammar - external
  11785. //
  11786. struct llama_grammar * llama_grammar_init(
  11787. const llama_grammar_element ** rules,
  11788. size_t n_rules,
  11789. size_t start_rule_index) {
  11790. const llama_grammar_element * pos;
  11791. // copy rule definitions into vectors
  11792. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11793. for (size_t i = 0; i < n_rules; i++) {
  11794. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11795. vec_rules[i].push_back(*pos);
  11796. }
  11797. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11798. }
  11799. // Check for left recursion
  11800. std::vector<bool> rules_visited(n_rules);
  11801. std::vector<bool> rules_in_progress(n_rules);
  11802. std::vector<bool> rules_may_be_empty(n_rules);
  11803. for (size_t i = 0; i < n_rules; i++) {
  11804. if (rules_visited[i]) {
  11805. continue;
  11806. }
  11807. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11808. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11809. }
  11810. }
  11811. // loop over alternates of start rule to build initial stacks
  11812. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11813. pos = vec_rules[start_rule_index].data();
  11814. do {
  11815. std::vector<const llama_grammar_element *> stack;
  11816. if (!llama_grammar_is_end_of_sequence(pos)) {
  11817. // if alternate is nonempty, add to stack
  11818. stack.push_back(pos);
  11819. }
  11820. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11821. while (!llama_grammar_is_end_of_sequence(pos)) {
  11822. // scan to end of alternate def
  11823. pos++;
  11824. }
  11825. if (pos->type == LLAMA_GRETYPE_ALT) {
  11826. // there's another alternate def of this rule to process
  11827. pos++;
  11828. } else {
  11829. break;
  11830. }
  11831. } while (true);
  11832. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11833. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11834. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11835. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11836. }
  11837. void llama_grammar_free(struct llama_grammar * grammar) {
  11838. delete grammar;
  11839. }
  11840. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11841. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11842. // redirect elements in stacks to point to new rules
  11843. for (size_t is = 0; is < result->stacks.size(); is++) {
  11844. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11845. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11846. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11847. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11848. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11849. }
  11850. }
  11851. }
  11852. }
  11853. }
  11854. return result;
  11855. }
  11856. //
  11857. // sampling
  11858. //
  11859. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11860. if (seed == LLAMA_DEFAULT_SEED) {
  11861. seed = time(NULL);
  11862. }
  11863. ctx->rng.seed(seed);
  11864. }
  11865. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11866. GGML_ASSERT(candidates->size > 0);
  11867. const int64_t t_start_sample_us = ggml_time_us();
  11868. // Sort the logits in descending order
  11869. if (!candidates->sorted) {
  11870. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11871. return a.logit > b.logit;
  11872. });
  11873. candidates->sorted = true;
  11874. }
  11875. float max_l = candidates->data[0].logit;
  11876. float cum_sum = 0.0f;
  11877. for (size_t i = 0; i < candidates->size; ++i) {
  11878. float p = expf(candidates->data[i].logit - max_l);
  11879. candidates->data[i].p = p;
  11880. cum_sum += p;
  11881. }
  11882. for (size_t i = 0; i < candidates->size; ++i) {
  11883. candidates->data[i].p /= cum_sum;
  11884. }
  11885. if (ctx) {
  11886. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11887. }
  11888. }
  11889. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11890. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11891. // if (k >= (int32_t)candidates->size) {
  11892. // return;
  11893. // }
  11894. const int64_t t_start_sample_us = ggml_time_us();
  11895. if (k <= 0) {
  11896. k = candidates->size;
  11897. }
  11898. k = std::max(k, (int) min_keep);
  11899. k = std::min(k, (int) candidates->size);
  11900. // Sort scores in descending order
  11901. if (!candidates->sorted) {
  11902. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11903. return a.logit > b.logit;
  11904. };
  11905. if (k <= 128) {
  11906. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11907. } else {
  11908. constexpr int nbuckets = 128;
  11909. constexpr float bucket_low = -10.0f;
  11910. constexpr float bucket_high = 10.0f;
  11911. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11912. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11913. std::vector<int> bucket_idx(candidates->size);
  11914. std::vector<int> histo(nbuckets, 0);
  11915. for (int i = 0; i < (int)candidates->size; ++i) {
  11916. const float val = candidates->data[i].logit;
  11917. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11918. ib = std::max(0, std::min(nbuckets-1, ib));
  11919. bucket_idx[i] = ib;
  11920. ++histo[ib];
  11921. }
  11922. int nhave = 0;
  11923. int ib = nbuckets - 1;
  11924. for ( ; ib >= 0; --ib) {
  11925. nhave += histo[ib];
  11926. if (nhave >= k) break;
  11927. }
  11928. std::vector<llama_token_data> tmp_tokens(nhave);
  11929. auto ptr = tmp_tokens.data();
  11930. std::vector<llama_token_data*> bucket_ptrs;
  11931. bucket_ptrs.reserve(nbuckets - ib);
  11932. for (int j = nbuckets - 1; j >= ib; --j) {
  11933. bucket_ptrs.push_back(ptr);
  11934. ptr += histo[j];
  11935. }
  11936. for (int i = 0; i < (int)candidates->size; ++i) {
  11937. int j = bucket_idx[i];
  11938. if (j >= ib) {
  11939. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11940. }
  11941. }
  11942. ptr = tmp_tokens.data();
  11943. int ndone = 0;
  11944. for (int j = nbuckets-1; j > ib; --j) {
  11945. std::sort(ptr, ptr + histo[j], comp);
  11946. ptr += histo[j];
  11947. ndone += histo[j];
  11948. }
  11949. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11950. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11951. }
  11952. candidates->sorted = true;
  11953. }
  11954. candidates->size = k;
  11955. if (ctx) {
  11956. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11957. }
  11958. }
  11959. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11960. if (p >= 1.0f) {
  11961. return;
  11962. }
  11963. llama_sample_softmax(ctx, candidates);
  11964. const int64_t t_start_sample_us = ggml_time_us();
  11965. // Compute the cumulative probabilities
  11966. float cum_sum = 0.0f;
  11967. size_t last_idx = candidates->size;
  11968. for (size_t i = 0; i < candidates->size; ++i) {
  11969. cum_sum += candidates->data[i].p;
  11970. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11971. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11972. if (cum_sum >= p && i + 1 >= min_keep) {
  11973. last_idx = i + 1;
  11974. break;
  11975. }
  11976. }
  11977. // Resize the output vector to keep only the top-p tokens
  11978. candidates->size = last_idx;
  11979. if (ctx) {
  11980. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11981. }
  11982. }
  11983. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11984. if (p <= 0.0f || !candidates->size) {
  11985. return;
  11986. }
  11987. const int64_t t_start_sample_us = ggml_time_us();
  11988. bool min_p_applied = false;
  11989. // if the candidates aren't sorted, try the unsorted implementation first
  11990. if (!candidates->sorted) {
  11991. std::vector<llama_token_data> filtered_tokens;
  11992. float max_logit = -FLT_MAX;
  11993. for (size_t i = 0; i < candidates->size; ++i) {
  11994. max_logit = std::max(max_logit, candidates->data[i].logit);
  11995. }
  11996. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11997. for (size_t i = 0; i < candidates->size; ++i) {
  11998. if (candidates->data[i].logit >= min_logit) {
  11999. filtered_tokens.push_back(candidates->data[i]);
  12000. }
  12001. }
  12002. // if we have enough values the operation was a success
  12003. if (filtered_tokens.size() >= min_keep) {
  12004. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  12005. candidates->size = filtered_tokens.size();
  12006. min_p_applied = true;
  12007. }
  12008. }
  12009. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  12010. if (!min_p_applied) {
  12011. // Sort the logits in descending order
  12012. if (!candidates->sorted) {
  12013. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12014. return a.logit > b.logit;
  12015. });
  12016. candidates->sorted = true;
  12017. }
  12018. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  12019. size_t i = 1; // first token always matches
  12020. for (; i < candidates->size; ++i) {
  12021. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  12022. break; // prob too small
  12023. }
  12024. }
  12025. // Resize the output vector to keep only the matching tokens
  12026. candidates->size = i;
  12027. }
  12028. if (ctx) {
  12029. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12030. }
  12031. }
  12032. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  12033. if (z >= 1.0f || candidates->size <= 2) {
  12034. return;
  12035. }
  12036. llama_sample_softmax(nullptr, candidates);
  12037. const int64_t t_start_sample_us = ggml_time_us();
  12038. // Compute the first and second derivatives
  12039. std::vector<float> first_derivatives(candidates->size - 1);
  12040. std::vector<float> second_derivatives(candidates->size - 2);
  12041. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  12042. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  12043. }
  12044. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12045. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  12046. }
  12047. // Calculate absolute value of second derivatives
  12048. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12049. second_derivatives[i] = std::abs(second_derivatives[i]);
  12050. }
  12051. // Normalize the second derivatives
  12052. {
  12053. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  12054. if (second_derivatives_sum > 1e-6f) {
  12055. for (float & value : second_derivatives) {
  12056. value /= second_derivatives_sum;
  12057. }
  12058. } else {
  12059. for (float & value : second_derivatives) {
  12060. value = 1.0f / second_derivatives.size();
  12061. }
  12062. }
  12063. }
  12064. float cum_sum = 0.0f;
  12065. size_t last_idx = candidates->size;
  12066. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12067. cum_sum += second_derivatives[i];
  12068. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  12069. if (cum_sum > z && i >= min_keep) {
  12070. last_idx = i;
  12071. break;
  12072. }
  12073. }
  12074. // Resize the output vector to keep only the tokens above the tail location
  12075. candidates->size = last_idx;
  12076. if (ctx) {
  12077. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12078. }
  12079. }
  12080. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  12081. // Reference implementation:
  12082. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  12083. if (p >= 1.0f) {
  12084. return;
  12085. }
  12086. // Compute the softmax of logits and calculate entropy
  12087. llama_sample_softmax(nullptr, candidates);
  12088. const int64_t t_start_sample_us = ggml_time_us();
  12089. float entropy = 0.0f;
  12090. for (size_t i = 0; i < candidates->size; ++i) {
  12091. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  12092. }
  12093. // Compute the absolute difference between negative log probability and entropy for each candidate
  12094. std::vector<float> shifted_scores;
  12095. for (size_t i = 0; i < candidates->size; ++i) {
  12096. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  12097. shifted_scores.push_back(shifted_score);
  12098. }
  12099. // Sort tokens based on the shifted_scores and their corresponding indices
  12100. std::vector<size_t> indices(candidates->size);
  12101. std::iota(indices.begin(), indices.end(), 0);
  12102. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  12103. return shifted_scores[a] < shifted_scores[b];
  12104. });
  12105. // Compute the cumulative probabilities
  12106. float cum_sum = 0.0f;
  12107. size_t last_idx = indices.size();
  12108. for (size_t i = 0; i < indices.size(); ++i) {
  12109. size_t idx = indices[i];
  12110. cum_sum += candidates->data[idx].p;
  12111. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  12112. if (cum_sum > p && i >= min_keep - 1) {
  12113. last_idx = i + 1;
  12114. break;
  12115. }
  12116. }
  12117. // Resize the output vector to keep only the locally typical tokens
  12118. std::vector<llama_token_data> new_candidates;
  12119. for (size_t i = 0; i < last_idx; ++i) {
  12120. size_t idx = indices[i];
  12121. new_candidates.push_back(candidates->data[idx]);
  12122. }
  12123. // Replace the data in candidates with the new_candidates data
  12124. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  12125. candidates->size = new_candidates.size();
  12126. candidates->sorted = false;
  12127. if (ctx) {
  12128. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12129. }
  12130. }
  12131. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  12132. const int64_t t_start_sample_us = ggml_time_us();
  12133. // no need to do anything if there is only one (or zero) candidates
  12134. if(candidates_p->size <= 1) {
  12135. return;
  12136. }
  12137. // Calculate maximum possible entropy
  12138. float max_entropy = -logf(1.0f / candidates_p->size);
  12139. llama_sample_softmax(nullptr, candidates_p);
  12140. // Calculate entropy of the softmax probabilities
  12141. float entropy = 0.0f;
  12142. for (size_t i = 0; i < candidates_p->size; ++i) {
  12143. float prob = candidates_p->data[i].p;
  12144. if (prob > 0.0f) { // Ensure no log(0)
  12145. entropy -= prob * logf(prob);
  12146. }
  12147. }
  12148. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  12149. float normalized_entropy = entropy / max_entropy;
  12150. // Map the normalized entropy to the desired temperature range using the power function
  12151. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  12152. #ifdef DEBUG
  12153. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  12154. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  12155. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  12156. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  12157. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  12158. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  12159. #endif
  12160. // Apply the dynamically calculated temperature scaling
  12161. for (size_t i = 0; i < candidates_p->size; ++i) {
  12162. candidates_p->data[i].logit /= dyn_temp;
  12163. }
  12164. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  12165. double max_l_double = candidates_p->data[0].logit;
  12166. double cum_sum_double = 0.0;
  12167. for (size_t i = 0; i < candidates_p->size; ++i) {
  12168. double p = exp(candidates_p->data[i].logit - max_l_double);
  12169. candidates_p->data[i].p = p; // Store the scaled probability
  12170. cum_sum_double += p;
  12171. }
  12172. for (size_t i = 0; i < candidates_p->size; ++i) {
  12173. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  12174. }
  12175. #ifdef DEBUG
  12176. // Print the updated top 25 probabilities after temperature scaling
  12177. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  12178. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  12179. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  12180. }
  12181. #endif
  12182. if (ctx) {
  12183. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12184. }
  12185. }
  12186. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  12187. const int64_t t_start_sample_us = ggml_time_us();
  12188. for (size_t i = 0; i < candidates_p->size; ++i) {
  12189. candidates_p->data[i].logit /= temp;
  12190. }
  12191. if (ctx) {
  12192. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12193. }
  12194. }
  12195. void llama_sample_repetition_penalties(
  12196. struct llama_context * ctx,
  12197. llama_token_data_array * candidates,
  12198. const llama_token * last_tokens,
  12199. size_t penalty_last_n,
  12200. float penalty_repeat,
  12201. float penalty_freq,
  12202. float penalty_present) {
  12203. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  12204. return;
  12205. }
  12206. const int64_t t_start_sample_us = ggml_time_us();
  12207. // Create a frequency map to count occurrences of each token in last_tokens
  12208. std::unordered_map<llama_token, int> token_count;
  12209. for (size_t i = 0; i < penalty_last_n; ++i) {
  12210. token_count[last_tokens[i]]++;
  12211. }
  12212. // Apply frequency and presence penalties to the candidates
  12213. for (size_t i = 0; i < candidates->size; ++i) {
  12214. const auto token_iter = token_count.find(candidates->data[i].id);
  12215. if (token_iter == token_count.end()) {
  12216. continue;
  12217. }
  12218. const int count = token_iter->second;
  12219. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  12220. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  12221. if (candidates->data[i].logit <= 0) {
  12222. candidates->data[i].logit *= penalty_repeat;
  12223. } else {
  12224. candidates->data[i].logit /= penalty_repeat;
  12225. }
  12226. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  12227. }
  12228. candidates->sorted = false;
  12229. if (ctx) {
  12230. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12231. }
  12232. }
  12233. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  12234. GGML_ASSERT(ctx);
  12235. int64_t t_start_sample_us = ggml_time_us();
  12236. bool allow_eog = false;
  12237. for (const auto & stack : grammar->stacks) {
  12238. if (stack.empty()) {
  12239. allow_eog = true;
  12240. break;
  12241. }
  12242. }
  12243. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  12244. candidates_decoded.reserve(candidates->size);
  12245. std::vector<llama_grammar_candidate> candidates_grammar;
  12246. candidates_grammar.reserve(candidates->size);
  12247. for (size_t i = 0; i < candidates->size; ++i) {
  12248. const llama_token id = candidates->data[i].id;
  12249. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  12250. if (llama_token_is_eog(&ctx->model, id)) {
  12251. if (!allow_eog) {
  12252. candidates->data[i].logit = -INFINITY;
  12253. }
  12254. } else if (piece.empty() || piece[0] == 0) {
  12255. candidates->data[i].logit = -INFINITY;
  12256. } else {
  12257. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  12258. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  12259. }
  12260. }
  12261. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  12262. for (const auto & reject : rejects) {
  12263. candidates->data[reject.index].logit = -INFINITY;
  12264. }
  12265. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12266. }
  12267. static void llama_log_softmax(float * array, size_t size) {
  12268. float max_l = *std::max_element(array, array + size);
  12269. float sum = 0.f;
  12270. for (size_t i = 0; i < size; ++i) {
  12271. float p = expf(array[i] - max_l);
  12272. sum += p;
  12273. array[i] = p;
  12274. }
  12275. for (size_t i = 0; i < size; ++i) {
  12276. array[i] = logf(array[i] / sum);
  12277. }
  12278. }
  12279. void llama_sample_apply_guidance(
  12280. struct llama_context * ctx,
  12281. float * logits,
  12282. float * logits_guidance,
  12283. float scale) {
  12284. GGML_ASSERT(ctx);
  12285. const auto t_start_sample_us = ggml_time_us();
  12286. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  12287. llama_log_softmax(logits, n_vocab);
  12288. llama_log_softmax(logits_guidance, n_vocab);
  12289. for (int i = 0; i < n_vocab; ++i) {
  12290. auto & l = logits[i];
  12291. const auto & g = logits_guidance[i];
  12292. l = scale * (l - g) + g;
  12293. }
  12294. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12295. }
  12296. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  12297. GGML_ASSERT(ctx);
  12298. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  12299. int64_t t_start_sample_us;
  12300. t_start_sample_us = ggml_time_us();
  12301. llama_sample_softmax(nullptr, candidates);
  12302. // Estimate s_hat using the most probable m tokens
  12303. float s_hat = 0.0;
  12304. float sum_ti_bi = 0.0;
  12305. float sum_ti_sq = 0.0;
  12306. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12307. float t_i = logf(float(i + 2) / float(i + 1));
  12308. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12309. sum_ti_bi += t_i * b_i;
  12310. sum_ti_sq += t_i * t_i;
  12311. }
  12312. s_hat = sum_ti_bi / sum_ti_sq;
  12313. // Compute k from the estimated s_hat and target surprise value
  12314. float epsilon_hat = s_hat - 1;
  12315. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12316. // Sample the next word X using top-k sampling
  12317. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12318. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12319. llama_token X = llama_sample_token(ctx, candidates);
  12320. t_start_sample_us = ggml_time_us();
  12321. // Compute error as the difference between observed surprise and target surprise value
  12322. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12323. return candidate.id == X;
  12324. }));
  12325. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12326. float e = observed_surprise - tau;
  12327. // Update mu using the learning rate and error
  12328. *mu = *mu - eta * e;
  12329. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12330. return X;
  12331. }
  12332. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12333. int64_t t_start_sample_us;
  12334. t_start_sample_us = ggml_time_us();
  12335. llama_sample_softmax(ctx, candidates);
  12336. // Truncate the words with surprise values greater than mu
  12337. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12338. return -log2f(candidate.p) > *mu;
  12339. }));
  12340. if (candidates->size == 0) {
  12341. candidates->size = 1;
  12342. }
  12343. if (ctx) {
  12344. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12345. }
  12346. // Normalize the probabilities of the remaining words
  12347. llama_sample_softmax(ctx, candidates);
  12348. // Sample the next word X from the remaining words
  12349. llama_token X = llama_sample_token(ctx, candidates);
  12350. t_start_sample_us = ggml_time_us();
  12351. // Compute error as the difference between observed surprise and target surprise value
  12352. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12353. return candidate.id == X;
  12354. }));
  12355. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12356. float e = observed_surprise - tau;
  12357. // Update mu using the learning rate and error
  12358. *mu = *mu - eta * e;
  12359. if (ctx) {
  12360. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12361. }
  12362. return X;
  12363. }
  12364. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12365. const int64_t t_start_sample_us = ggml_time_us();
  12366. // Find max element
  12367. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12368. return a.logit < b.logit;
  12369. });
  12370. llama_token result = max_iter->id;
  12371. if (ctx) {
  12372. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12373. ctx->n_sample++;
  12374. }
  12375. return result;
  12376. }
  12377. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12378. GGML_ASSERT(ctx);
  12379. const int64_t t_start_sample_us = ggml_time_us();
  12380. llama_sample_softmax(nullptr, candidates);
  12381. std::vector<float> probs;
  12382. probs.reserve(candidates->size);
  12383. for (size_t i = 0; i < candidates->size; ++i) {
  12384. probs.push_back(candidates->data[i].p);
  12385. }
  12386. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12387. int idx = dist(rng);
  12388. llama_token result = candidates->data[idx].id;
  12389. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12390. ctx->n_sample++;
  12391. return result;
  12392. }
  12393. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12394. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12395. }
  12396. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12397. const int64_t t_start_sample_us = ggml_time_us();
  12398. if (llama_token_is_eog(&ctx->model, token)) {
  12399. for (const auto & stack : grammar->stacks) {
  12400. if (stack.empty()) {
  12401. return;
  12402. }
  12403. }
  12404. GGML_ASSERT(false);
  12405. }
  12406. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  12407. // Note terminating 0 in decoded string
  12408. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12409. const auto & code_points = decoded.first;
  12410. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12411. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12412. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12413. grammar->stacks = tmp_new_stacks;
  12414. }
  12415. grammar->partial_utf8 = decoded.second;
  12416. GGML_ASSERT(!grammar->stacks.empty());
  12417. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12418. }
  12419. //
  12420. // quantization
  12421. //
  12422. struct quantize_state_internal {
  12423. const llama_model & model;
  12424. const llama_model_quantize_params * params;
  12425. int n_attention_wv = 0;
  12426. int n_ffn_down = 0;
  12427. int n_ffn_gate = 0;
  12428. int n_ffn_up = 0;
  12429. int i_attention_wv = 0;
  12430. int i_ffn_down = 0;
  12431. int i_ffn_gate = 0;
  12432. int i_ffn_up = 0;
  12433. int n_k_quantized = 0;
  12434. int n_fallback = 0;
  12435. bool has_imatrix = false;
  12436. // used to figure out if a model shares tok_embd with the output weight
  12437. bool has_output = false;
  12438. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12439. : model(model)
  12440. , params(params)
  12441. {}
  12442. };
  12443. static void llama_tensor_dequantize_internal(
  12444. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12445. const size_t nelements, const int nthread
  12446. ) {
  12447. if (output.size() < nelements) {
  12448. output.resize(nelements);
  12449. }
  12450. float * f32_output = (float *) output.data();
  12451. ggml_type_traits_t qtype;
  12452. if (ggml_is_quantized(tensor->type)) {
  12453. qtype = ggml_internal_get_type_traits(tensor->type);
  12454. if (qtype.to_float == NULL) {
  12455. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12456. }
  12457. } else if (tensor->type != GGML_TYPE_F16 &&
  12458. tensor->type != GGML_TYPE_BF16) {
  12459. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12460. }
  12461. if (nthread < 2) {
  12462. if (tensor->type == GGML_TYPE_F16) {
  12463. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12464. } else if (tensor->type == GGML_TYPE_BF16) {
  12465. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12466. } else if (ggml_is_quantized(tensor->type)) {
  12467. qtype.to_float(tensor->data, f32_output, nelements);
  12468. } else {
  12469. GGML_ASSERT(false); // unreachable
  12470. }
  12471. return;
  12472. }
  12473. size_t block_size;
  12474. if (tensor->type == GGML_TYPE_F16 ||
  12475. tensor->type == GGML_TYPE_BF16) {
  12476. block_size = 1;
  12477. } else {
  12478. block_size = (size_t)ggml_blck_size(tensor->type);
  12479. }
  12480. size_t block_size_bytes = ggml_type_size(tensor->type);
  12481. GGML_ASSERT(nelements % block_size == 0);
  12482. size_t nblocks = nelements / block_size;
  12483. size_t blocks_per_thread = nblocks / nthread;
  12484. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12485. size_t in_buff_offs = 0;
  12486. size_t out_buff_offs = 0;
  12487. for (int tnum = 0; tnum < nthread; tnum++) {
  12488. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12489. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12490. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12491. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12492. if (typ == GGML_TYPE_F16) {
  12493. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12494. } else if (typ == GGML_TYPE_BF16) {
  12495. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12496. } else {
  12497. qtype.to_float(inbuf, outbuf, nels);
  12498. }
  12499. };
  12500. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12501. in_buff_offs += thr_block_bytes;
  12502. out_buff_offs += thr_elems;
  12503. }
  12504. for (auto & w : workers) { w.join(); }
  12505. workers.clear();
  12506. }
  12507. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12508. const std::string name = ggml_get_name(tensor);
  12509. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12510. const llm_arch arch = qs.model.arch;
  12511. const auto tn = LLM_TN(arch);
  12512. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12513. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12514. };
  12515. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12516. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12517. if (n_expert > 1) {
  12518. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12519. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12520. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12521. // tensor name.
  12522. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12523. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12524. }
  12525. if (i_layer < 0 || i_layer >= n_layer) {
  12526. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12527. }
  12528. }
  12529. return std::make_pair(i_layer, n_layer);
  12530. };
  12531. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12532. // with the quantization of the output tensor
  12533. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12534. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12535. new_type = qs.params->output_tensor_type;
  12536. } else {
  12537. int nx = tensor->ne[0];
  12538. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12539. new_type = GGML_TYPE_Q8_0;
  12540. }
  12541. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12542. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12543. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12544. new_type = GGML_TYPE_Q5_K;
  12545. }
  12546. else if (new_type != GGML_TYPE_Q8_0) {
  12547. new_type = GGML_TYPE_Q6_K;
  12548. }
  12549. }
  12550. } else if (name == "token_embd.weight") {
  12551. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12552. new_type = qs.params->token_embedding_type;
  12553. } else {
  12554. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12555. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12556. new_type = GGML_TYPE_Q2_K;
  12557. }
  12558. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12559. new_type = GGML_TYPE_IQ3_S;
  12560. }
  12561. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12562. new_type = GGML_TYPE_IQ3_S;
  12563. }
  12564. }
  12565. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12566. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12567. if (name.find("attn_v.weight") != std::string::npos) {
  12568. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12569. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12570. ++qs.i_attention_wv;
  12571. }
  12572. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12573. new_type = GGML_TYPE_Q4_K;
  12574. }
  12575. else if (name.find("ffn_down") != std::string::npos) {
  12576. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12577. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12578. }
  12579. ++qs.i_ffn_down;
  12580. }
  12581. else if (name.find("attn_output.weight") != std::string::npos) {
  12582. if (qs.model.hparams.n_expert == 8) {
  12583. new_type = GGML_TYPE_Q5_K;
  12584. } else {
  12585. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12586. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12587. }
  12588. }
  12589. } else if (name.find("attn_v.weight") != std::string::npos) {
  12590. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12591. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12592. }
  12593. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12594. new_type = GGML_TYPE_Q4_K;
  12595. }
  12596. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12597. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12598. }
  12599. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12600. new_type = GGML_TYPE_Q4_K;
  12601. }
  12602. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12603. new_type = GGML_TYPE_Q4_K;
  12604. }
  12605. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12606. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12607. }
  12608. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12609. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12610. new_type = GGML_TYPE_Q5_K;
  12611. }
  12612. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12613. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12614. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12615. if (qs.model.type == MODEL_70B) {
  12616. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12617. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12618. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12619. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12620. }
  12621. if (qs.model.hparams.n_expert == 8) {
  12622. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12623. // TODO: explore better strategies
  12624. new_type = GGML_TYPE_Q8_0;
  12625. }
  12626. ++qs.i_attention_wv;
  12627. } else if (name.find("attn_k.weight") != std::string::npos) {
  12628. if (qs.model.hparams.n_expert == 8) {
  12629. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12630. // TODO: explore better strategies
  12631. new_type = GGML_TYPE_Q8_0;
  12632. }
  12633. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12634. new_type = GGML_TYPE_IQ3_XXS;
  12635. }
  12636. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12637. new_type = GGML_TYPE_IQ2_S;
  12638. }
  12639. } else if (name.find("attn_q.weight") != std::string::npos) {
  12640. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12641. new_type = GGML_TYPE_IQ3_XXS;
  12642. }
  12643. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12644. new_type = GGML_TYPE_IQ2_S;
  12645. }
  12646. } else if (name.find("ffn_down") != std::string::npos) {
  12647. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12648. int i_layer = info.first, n_layer = info.second;
  12649. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12650. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12651. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12652. }
  12653. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12654. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12655. }
  12656. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12657. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12658. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12659. : GGML_TYPE_Q3_K;
  12660. }
  12661. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12662. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12663. new_type = GGML_TYPE_Q4_K;
  12664. }
  12665. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12666. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12667. }
  12668. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12669. if (arch == LLM_ARCH_FALCON) {
  12670. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12671. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12672. } else {
  12673. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12674. }
  12675. }
  12676. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12677. new_type = GGML_TYPE_Q5_K;
  12678. }
  12679. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12680. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12681. new_type = GGML_TYPE_Q5_K;
  12682. }
  12683. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12684. && qs.has_imatrix && i_layer < n_layer/8) {
  12685. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12686. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12687. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12688. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12689. }
  12690. ++qs.i_ffn_down;
  12691. } else if (name.find("attn_output.weight") != std::string::npos) {
  12692. if (arch != LLM_ARCH_FALCON) {
  12693. if (qs.model.hparams.n_expert == 8) {
  12694. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12695. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12696. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12697. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12698. new_type = GGML_TYPE_Q5_K;
  12699. }
  12700. } else {
  12701. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12702. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12703. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12704. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12705. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12706. }
  12707. } else {
  12708. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12709. }
  12710. }
  12711. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12712. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12713. new_type = GGML_TYPE_Q4_K;
  12714. }
  12715. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12716. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12717. }
  12718. else if (name.find("ffn_gate") != std::string::npos) {
  12719. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12720. int i_layer = info.first, n_layer = info.second;
  12721. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12722. new_type = GGML_TYPE_IQ3_XXS;
  12723. }
  12724. ++qs.i_ffn_gate;
  12725. }
  12726. else if (name.find("ffn_up") != std::string::npos) {
  12727. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12728. int i_layer = info.first, n_layer = info.second;
  12729. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12730. new_type = GGML_TYPE_IQ3_XXS;
  12731. }
  12732. ++qs.i_ffn_up;
  12733. }
  12734. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12735. //}
  12736. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12737. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12738. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12739. //}
  12740. // This can be used to reduce the size of the Q5_K_S model.
  12741. // The associated PPL increase is fully in line with the size reduction
  12742. //else {
  12743. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12744. //}
  12745. bool convert_incompatible_tensor = false;
  12746. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12747. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12748. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12749. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12750. new_type == GGML_TYPE_IQ1_M) {
  12751. int nx = tensor->ne[0];
  12752. int ny = tensor->ne[1];
  12753. if (nx % QK_K != 0) {
  12754. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12755. convert_incompatible_tensor = true;
  12756. } else {
  12757. ++qs.n_k_quantized;
  12758. }
  12759. }
  12760. if (convert_incompatible_tensor) {
  12761. switch (new_type) {
  12762. case GGML_TYPE_IQ2_XXS:
  12763. case GGML_TYPE_IQ2_XS:
  12764. case GGML_TYPE_IQ2_S:
  12765. case GGML_TYPE_IQ3_XXS:
  12766. case GGML_TYPE_IQ3_S:
  12767. case GGML_TYPE_IQ1_S:
  12768. case GGML_TYPE_IQ1_M:
  12769. case GGML_TYPE_Q2_K:
  12770. case GGML_TYPE_Q3_K:
  12771. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12772. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12773. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12774. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12775. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12776. }
  12777. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12778. ++qs.n_fallback;
  12779. }
  12780. return new_type;
  12781. }
  12782. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12783. if (nthread < 2) {
  12784. // single-thread
  12785. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12786. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12787. throw std::runtime_error("quantized data validation failed");
  12788. }
  12789. return new_size;
  12790. }
  12791. std::mutex mutex;
  12792. int64_t counter = 0;
  12793. size_t new_size = 0;
  12794. bool valid = true;
  12795. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12796. nrows, n_per_row, imatrix]() {
  12797. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12798. size_t local_size = 0;
  12799. while (true) {
  12800. std::unique_lock<std::mutex> lock(mutex);
  12801. int64_t first_row = counter; counter += nrows_per_chunk;
  12802. if (first_row >= nrows) {
  12803. if (local_size > 0) {
  12804. new_size += local_size;
  12805. }
  12806. break;
  12807. }
  12808. lock.unlock();
  12809. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12810. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12811. local_size += this_size;
  12812. // validate the quantized data
  12813. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12814. void * this_data = (char *) new_data + first_row * row_size;
  12815. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12816. std::unique_lock<std::mutex> lock(mutex);
  12817. valid = false;
  12818. break;
  12819. }
  12820. }
  12821. };
  12822. for (int it = 0; it < nthread - 1; ++it) {
  12823. workers.emplace_back(compute);
  12824. }
  12825. compute();
  12826. for (auto & w : workers) { w.join(); }
  12827. workers.clear();
  12828. if (!valid) {
  12829. throw std::runtime_error("quantized data validation failed");
  12830. }
  12831. return new_size;
  12832. }
  12833. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12834. ggml_type default_type;
  12835. llama_ftype ftype = params->ftype;
  12836. switch (params->ftype) {
  12837. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12838. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12839. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12840. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12841. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12842. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12843. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12844. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12845. // K-quants
  12846. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12847. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12848. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12849. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12850. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12851. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12852. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12853. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12854. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12855. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12856. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12857. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12858. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12859. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12860. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12861. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12862. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12863. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12864. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12865. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12866. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12867. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12868. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12869. }
  12870. int nthread = params->nthread;
  12871. if (nthread <= 0) {
  12872. nthread = std::thread::hardware_concurrency();
  12873. }
  12874. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12875. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12876. #if defined(__linux__) || defined(_WIN32)
  12877. constexpr bool use_mmap = true;
  12878. #else
  12879. constexpr bool use_mmap = false;
  12880. #endif
  12881. llama_model_kv_override * kv_overrides = nullptr;
  12882. if (params->kv_overrides) {
  12883. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12884. kv_overrides = v->data();
  12885. }
  12886. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12887. ml.init_mappings(false); // no prefetching
  12888. llama_model model;
  12889. llm_load_arch(ml, model);
  12890. llm_load_hparams(ml, model);
  12891. struct quantize_state_internal qs(model, params);
  12892. if (params->only_copy) {
  12893. ftype = model.ftype;
  12894. }
  12895. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12896. if (params->imatrix) {
  12897. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12898. if (imatrix_data) {
  12899. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12900. qs.has_imatrix = true;
  12901. // check imatrix for nans or infs
  12902. for (const auto & kv : *imatrix_data) {
  12903. for (float f : kv.second) {
  12904. if (!std::isfinite(f)) {
  12905. throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
  12906. }
  12907. }
  12908. }
  12909. }
  12910. }
  12911. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12912. struct gguf_context * ctx_out = gguf_init_empty();
  12913. // copy the KV pairs from the input file
  12914. gguf_set_kv (ctx_out, ml.meta);
  12915. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12916. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12917. // Remove split metadata
  12918. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12919. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12920. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12921. if (params->kv_overrides) {
  12922. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12923. for (auto & o : overrides) {
  12924. if (o.key[0] == 0) break;
  12925. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12926. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12927. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12928. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12929. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12930. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12931. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12932. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12933. } else {
  12934. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12935. }
  12936. }
  12937. }
  12938. for (int i = 0; i < ml.n_tensors; ++i) {
  12939. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12940. const std::string name = ggml_get_name(meta);
  12941. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12942. if (name.find("attn_v.weight") != std::string::npos ||
  12943. name.find("attn_qkv.weight") != std::string::npos) {
  12944. ++qs.n_attention_wv;
  12945. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12946. qs.has_output = true;
  12947. }
  12948. }
  12949. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12950. // sanity checks
  12951. //
  12952. // - qs.n_attention_wv == 0 for Mamba models
  12953. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12954. //
  12955. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12956. size_t total_size_org = 0;
  12957. size_t total_size_new = 0;
  12958. std::vector<std::thread> workers;
  12959. workers.reserve(nthread);
  12960. int idx = 0;
  12961. std::vector<no_init<uint8_t>> read_data;
  12962. std::vector<no_init<uint8_t>> work;
  12963. std::vector<no_init<float>> f32_conv_buf;
  12964. uint16_t n_split = 1;
  12965. // Assume split index is continuous
  12966. if (params->keep_split) {
  12967. for (int i = 0; i < ml.n_tensors; ++i) {
  12968. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12969. }
  12970. }
  12971. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12972. ctx_outs[0] = ctx_out;
  12973. // populate the original tensors so we get an initial meta data
  12974. for (int i = 0; i < ml.n_tensors; ++i) {
  12975. auto weight = ml.get_weight(i);
  12976. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12977. struct ggml_tensor * tensor = weight->tensor;
  12978. if (ctx_outs[i_split] == NULL) {
  12979. ctx_outs[i_split] = gguf_init_empty();
  12980. }
  12981. gguf_add_tensor(ctx_outs[i_split], tensor);
  12982. }
  12983. // Set split info if needed
  12984. if (n_split > 1) {
  12985. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12986. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12987. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12988. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12989. }
  12990. }
  12991. int cur_split = -1;
  12992. std::ofstream fout;
  12993. auto close_ofstream = [&]() {
  12994. // Write metadata and close file handler
  12995. if (fout.is_open()) {
  12996. fout.seekp(0);
  12997. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12998. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12999. fout.write((const char *) data.data(), data.size());
  13000. fout.close();
  13001. }
  13002. };
  13003. auto new_ofstream = [&](int index) {
  13004. cur_split = index;
  13005. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  13006. std::string fname = fname_out;
  13007. if (params->keep_split) {
  13008. char split_path[PATH_MAX] = {0};
  13009. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  13010. fname = std::string(split_path);
  13011. }
  13012. fout = std::ofstream(fname, std::ios::binary);
  13013. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  13014. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  13015. // placeholder for the meta data
  13016. ::zeros(fout, meta_size);
  13017. };
  13018. const auto tn = LLM_TN(model.arch);
  13019. new_ofstream(0);
  13020. for (int i = 0; i < ml.n_tensors; ++i) {
  13021. auto weight = ml.get_weight(i);
  13022. struct ggml_tensor * tensor = weight->tensor;
  13023. if (weight->idx != cur_split && params->keep_split) {
  13024. close_ofstream();
  13025. new_ofstream(weight->idx);
  13026. }
  13027. const std::string name = ggml_get_name(tensor);
  13028. if (!ml.use_mmap) {
  13029. if (read_data.size() < ggml_nbytes(tensor)) {
  13030. read_data.resize(ggml_nbytes(tensor));
  13031. }
  13032. tensor->data = read_data.data();
  13033. }
  13034. ml.load_data_for(tensor);
  13035. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  13036. ++idx, ml.n_tensors,
  13037. ggml_get_name(tensor),
  13038. llama_format_tensor_shape(tensor).c_str(),
  13039. ggml_type_name(tensor->type));
  13040. // This used to be a regex, but <regex> has an extreme cost to compile times.
  13041. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  13042. // quantize only 2D and 3D tensors (experts)
  13043. quantize &= (ggml_n_dims(tensor) >= 2);
  13044. // do not quantize norm tensors
  13045. quantize &= name.find("_norm.weight") == std::string::npos;
  13046. quantize &= params->quantize_output_tensor || name != "output.weight";
  13047. quantize &= !params->only_copy;
  13048. // do not quantize expert gating tensors
  13049. // NOTE: can't use LLM_TN here because the layer number is not known
  13050. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  13051. // do not quantize positional embeddings and token types (BERT)
  13052. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  13053. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  13054. // do not quantize Mamba's small yet 2D weights
  13055. // NOTE: can't use LLM_TN here because the layer number is not known
  13056. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  13057. quantize &= name.find("ssm_x.weight") == std::string::npos;
  13058. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  13059. enum ggml_type new_type;
  13060. void * new_data;
  13061. size_t new_size;
  13062. if (quantize) {
  13063. new_type = default_type;
  13064. // get more optimal quantization type based on the tensor shape, layer, etc.
  13065. if (!params->pure && ggml_is_quantized(default_type)) {
  13066. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  13067. }
  13068. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  13069. new_type = params->token_embedding_type;
  13070. }
  13071. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  13072. new_type = params->output_tensor_type;
  13073. }
  13074. // If we've decided to quantize to the same type the tensor is already
  13075. // in then there's nothing to do.
  13076. quantize = tensor->type != new_type;
  13077. }
  13078. if (!quantize) {
  13079. new_type = tensor->type;
  13080. new_data = tensor->data;
  13081. new_size = ggml_nbytes(tensor);
  13082. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  13083. } else {
  13084. const int64_t nelements = ggml_nelements(tensor);
  13085. const float * imatrix = nullptr;
  13086. if (imatrix_data) {
  13087. auto it = imatrix_data->find(tensor->name);
  13088. if (it == imatrix_data->end()) {
  13089. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  13090. } else {
  13091. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  13092. imatrix = it->second.data();
  13093. } else {
  13094. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  13095. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  13096. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  13097. // this is a significant error and it may be good idea to abort the process if this happens,
  13098. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  13099. // tok_embd should be ignored in this case, since it always causes this warning
  13100. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  13101. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  13102. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  13103. }
  13104. }
  13105. }
  13106. }
  13107. if ((new_type == GGML_TYPE_IQ2_XXS ||
  13108. new_type == GGML_TYPE_IQ2_XS ||
  13109. new_type == GGML_TYPE_IQ2_S ||
  13110. new_type == GGML_TYPE_IQ1_S ||
  13111. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  13112. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  13113. LLAMA_LOG_ERROR("\n\n============================================================\n");
  13114. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  13115. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  13116. LLAMA_LOG_ERROR("============================================================\n\n");
  13117. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  13118. }
  13119. float * f32_data;
  13120. if (tensor->type == GGML_TYPE_F32) {
  13121. f32_data = (float *) tensor->data;
  13122. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  13123. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  13124. } else {
  13125. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  13126. f32_data = (float *) f32_conv_buf.data();
  13127. }
  13128. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  13129. fflush(stdout);
  13130. if (work.size() < (size_t)nelements * 4) {
  13131. work.resize(nelements * 4); // upper bound on size
  13132. }
  13133. new_data = work.data();
  13134. const int64_t n_per_row = tensor->ne[0];
  13135. const int64_t nrows = tensor->ne[1];
  13136. static const int64_t min_chunk_size = 32 * 512;
  13137. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  13138. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  13139. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  13140. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  13141. // quantize each expert separately since they have different importance matrices
  13142. new_size = 0;
  13143. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  13144. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  13145. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  13146. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  13147. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  13148. }
  13149. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  13150. }
  13151. total_size_org += ggml_nbytes(tensor);
  13152. total_size_new += new_size;
  13153. // update the gguf meta data as we go
  13154. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  13155. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  13156. // write tensor data + padding
  13157. fout.write((const char *) new_data, new_size);
  13158. zeros(fout, GGML_PAD(new_size, align) - new_size);
  13159. }
  13160. close_ofstream();
  13161. for (auto & c:ctx_outs) {
  13162. gguf_free(c);
  13163. }
  13164. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  13165. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  13166. if (qs.n_fallback > 0) {
  13167. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  13168. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  13169. }
  13170. }
  13171. static int llama_apply_lora_from_file_internal(
  13172. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  13173. ) {
  13174. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  13175. const int64_t t_start_lora_us = ggml_time_us();
  13176. llama_file fin(path_lora, "rb");
  13177. // verify magic and version
  13178. {
  13179. uint32_t magic = fin.read_u32();
  13180. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  13181. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  13182. return 1;
  13183. }
  13184. uint32_t format_version = fin.read_u32();
  13185. if (format_version != 1) {
  13186. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  13187. return 1;
  13188. }
  13189. }
  13190. int32_t lora_r = fin.read_u32();
  13191. int32_t lora_alpha = fin.read_u32();
  13192. float scaling = scale * (float)lora_alpha / (float)lora_r;
  13193. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  13194. // load base model
  13195. std::unique_ptr<llama_model_loader> ml;
  13196. if (path_base_model) {
  13197. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  13198. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  13199. ml->init_mappings(/*prefetch*/ false); // no prefetching
  13200. }
  13201. struct tensor_meta {
  13202. std::string name;
  13203. ggml_type type;
  13204. int32_t ne[2];
  13205. size_t offset;
  13206. };
  13207. std::map<std::string, tensor_meta> tensor_meta_map;
  13208. // load all tensor meta
  13209. while (true) {
  13210. if (fin.tell() == fin.size) {
  13211. // eof
  13212. break;
  13213. }
  13214. int32_t n_dims;
  13215. int32_t name_len;
  13216. int32_t ftype;
  13217. fin.read_raw(&n_dims, sizeof(n_dims));
  13218. fin.read_raw(&name_len, sizeof(name_len));
  13219. fin.read_raw(&ftype, sizeof(ftype));
  13220. if (n_dims != 1 && n_dims != 2) {
  13221. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  13222. return 1;
  13223. }
  13224. int32_t ne[2] = { 1, 1 };
  13225. for (int i = 0; i < n_dims; ++i) {
  13226. fin.read_raw(&ne[i], sizeof(ne[i]));
  13227. }
  13228. std::string name;
  13229. {
  13230. GGML_ASSERT(name_len < GGML_MAX_NAME);
  13231. char buf[GGML_MAX_NAME];
  13232. fin.read_raw(buf, name_len);
  13233. name = std::string(buf, name_len);
  13234. }
  13235. // check for lora suffix
  13236. std::string lora_suffix;
  13237. if (name.length() > 6) {
  13238. lora_suffix = name.substr(name.length() - 6);
  13239. }
  13240. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  13241. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  13242. return 1;
  13243. }
  13244. // tensor type
  13245. ggml_type wtype;
  13246. switch (ftype) {
  13247. case 0: wtype = GGML_TYPE_F32; break;
  13248. case 1: wtype = GGML_TYPE_F16; break;
  13249. default:
  13250. {
  13251. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13252. __func__, ftype);
  13253. return 1;
  13254. }
  13255. }
  13256. // data offset
  13257. size_t offset = fin.tell();
  13258. offset = (offset + 31) & -32;
  13259. // skip tensor data
  13260. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13261. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13262. }
  13263. bool warned = false;
  13264. int n_tensors = 0;
  13265. // apply
  13266. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13267. if (backend_cpu == nullptr) {
  13268. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13269. return 1;
  13270. }
  13271. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13272. std::vector<no_init<uint8_t>> read_buf;
  13273. for (const auto & it : model.tensors_by_name) {
  13274. const std::string & base_name = it.first;
  13275. ggml_tensor * model_t = it.second;
  13276. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13277. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13278. continue;
  13279. }
  13280. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13281. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13282. ggml_init_params lora_init_params = {
  13283. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13284. /* .mem_buffer */ nullptr,
  13285. /* .no_alloc */ true,
  13286. };
  13287. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13288. if (lora_ctx == nullptr) {
  13289. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13290. ggml_backend_free(backend_cpu);
  13291. return 1;
  13292. }
  13293. // create tensors
  13294. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13295. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13296. ggml_set_name(loraA, metaA.name.c_str());
  13297. ggml_set_name(loraB, metaB.name.c_str());
  13298. ggml_tensor * base_t;
  13299. if (ml) {
  13300. if (!ml->get_tensor_meta(base_name.c_str())) {
  13301. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13302. return 1;
  13303. }
  13304. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13305. } else {
  13306. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13307. }
  13308. ggml_set_name(base_t, base_name.c_str());
  13309. // allocate in backend buffer
  13310. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13311. if (lora_buf == nullptr) {
  13312. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13313. return 1;
  13314. }
  13315. // load tensor data
  13316. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13317. read_buf.resize(ggml_nbytes(tensor));
  13318. fin.seek(tensor_meta.offset, SEEK_SET);
  13319. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13320. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13321. };
  13322. load_tensor(metaA, loraA);
  13323. load_tensor(metaB, loraB);
  13324. // load base model tensor data
  13325. if (ml) {
  13326. ml->load_data_for(base_t);
  13327. } else {
  13328. ggml_backend_tensor_copy(model_t, base_t);
  13329. }
  13330. if (ggml_is_quantized(base_t->type) && !warned) {
  13331. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13332. "use a f16 or f32 base model with --lora-base\n", __func__);
  13333. warned = true;
  13334. }
  13335. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13336. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13337. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13338. ggml_free(lora_ctx);
  13339. ggml_backend_buffer_free(lora_buf);
  13340. ggml_backend_free(backend_cpu);
  13341. return 1;
  13342. }
  13343. auto build_lora_graph = [&]() {
  13344. // w = w + BA*s
  13345. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13346. ggml_set_name(BA, "BA");
  13347. if (scaling != 1.0f) {
  13348. BA = ggml_scale(lora_ctx, BA, scaling);
  13349. ggml_set_name(BA, "BA_scaled");
  13350. }
  13351. ggml_tensor * r;
  13352. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13353. ggml_set_name(r, "r_add");
  13354. if (base_t->type != model_t->type) {
  13355. // convert the result to the model type
  13356. r = ggml_cast(lora_ctx, r, model_t->type);
  13357. ggml_set_name(r, "r_cast");
  13358. }
  13359. return r;
  13360. };
  13361. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13362. ggml_tensor * r = build_lora_graph();
  13363. ggml_build_forward_expand(gf, r);
  13364. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13365. if (graph_buf == nullptr) {
  13366. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13367. ggml_free(lora_ctx);
  13368. ggml_backend_buffer_free(lora_buf);
  13369. ggml_backend_free(backend_cpu);
  13370. return 1;
  13371. }
  13372. ggml_backend_graph_compute(backend_cpu, gf);
  13373. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13374. #if 0
  13375. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13376. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13377. // sched compute
  13378. ggml_build_forward_expand(gf, build_graph());
  13379. ggml_backend_sched_init_measure(sched, gf);
  13380. // create the graph again, since the previous one was destroyed by the measure
  13381. ggml_graph_clear(gf);
  13382. ggml_build_forward_expand(gf, build_graph());
  13383. ggml_backend_sched_graph_compute(sched, gf);
  13384. ggml_backend_sched_free(sched);
  13385. #endif
  13386. ggml_backend_buffer_free(lora_buf);
  13387. ggml_backend_buffer_free(graph_buf);
  13388. ggml_free(lora_ctx);
  13389. n_tensors++;
  13390. if (n_tensors % 4 == 0) {
  13391. LLAMA_LOG_INFO(".");
  13392. }
  13393. }
  13394. ggml_backend_free(backend_cpu);
  13395. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13396. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13397. return 0;
  13398. }
  13399. //
  13400. // interface implementation
  13401. //
  13402. struct llama_model_params llama_model_default_params() {
  13403. struct llama_model_params result = {
  13404. /*.n_gpu_layers =*/ 0,
  13405. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13406. /*.main_gpu =*/ 0,
  13407. /*.tensor_split =*/ nullptr,
  13408. /*.rpc_servers =*/ nullptr,
  13409. /*.progress_callback =*/ nullptr,
  13410. /*.progress_callback_user_data =*/ nullptr,
  13411. /*.kv_overrides =*/ nullptr,
  13412. /*.vocab_only =*/ false,
  13413. /*.use_mmap =*/ true,
  13414. /*.use_mlock =*/ false,
  13415. /*.check_tensors =*/ false,
  13416. };
  13417. #ifdef GGML_USE_METAL
  13418. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13419. result.n_gpu_layers = 999;
  13420. #endif
  13421. return result;
  13422. }
  13423. struct llama_context_params llama_context_default_params() {
  13424. struct llama_context_params result = {
  13425. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13426. /*.n_ctx =*/ 512,
  13427. /*.n_batch =*/ 2048,
  13428. /*.n_ubatch =*/ 512,
  13429. /*.n_seq_max =*/ 1,
  13430. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13431. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13432. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13433. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13434. /*.rope_freq_base =*/ 0.0f,
  13435. /*.rope_freq_scale =*/ 0.0f,
  13436. /*.yarn_ext_factor =*/ -1.0f,
  13437. /*.yarn_attn_factor =*/ 1.0f,
  13438. /*.yarn_beta_fast =*/ 32.0f,
  13439. /*.yarn_beta_slow =*/ 1.0f,
  13440. /*.yarn_orig_ctx =*/ 0,
  13441. /*.defrag_thold =*/ -1.0f,
  13442. /*.cb_eval =*/ nullptr,
  13443. /*.cb_eval_user_data =*/ nullptr,
  13444. /*.type_k =*/ GGML_TYPE_F16,
  13445. /*.type_v =*/ GGML_TYPE_F16,
  13446. /*.logits_all =*/ false,
  13447. /*.embeddings =*/ false,
  13448. /*.offload_kqv =*/ true,
  13449. /*.flash_attn =*/ false,
  13450. /*.abort_callback =*/ nullptr,
  13451. /*.abort_callback_data =*/ nullptr,
  13452. };
  13453. return result;
  13454. }
  13455. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13456. struct llama_model_quantize_params result = {
  13457. /*.nthread =*/ 0,
  13458. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13459. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13460. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13461. /*.allow_requantize =*/ false,
  13462. /*.quantize_output_tensor =*/ true,
  13463. /*.only_copy =*/ false,
  13464. /*.pure =*/ false,
  13465. /*.keep_split =*/ false,
  13466. /*.imatrix =*/ nullptr,
  13467. /*.kv_overrides =*/ nullptr,
  13468. };
  13469. return result;
  13470. }
  13471. size_t llama_max_devices(void) {
  13472. #if defined(GGML_USE_RPC)
  13473. return GGML_RPC_MAX_SERVERS;
  13474. #elif defined(GGML_USE_METAL)
  13475. return 1;
  13476. #elif defined(GGML_USE_CUDA)
  13477. return GGML_CUDA_MAX_DEVICES;
  13478. #elif defined(GGML_USE_SYCL)
  13479. return GGML_SYCL_MAX_DEVICES;
  13480. #elif defined(GGML_USE_VULKAN)
  13481. return GGML_VK_MAX_DEVICES;
  13482. #else
  13483. return 1;
  13484. #endif
  13485. }
  13486. bool llama_supports_mmap(void) {
  13487. return llama_mmap::SUPPORTED;
  13488. }
  13489. bool llama_supports_mlock(void) {
  13490. return llama_mlock::SUPPORTED;
  13491. }
  13492. bool llama_supports_gpu_offload(void) {
  13493. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13494. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13495. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13496. return true;
  13497. #else
  13498. return false;
  13499. #endif
  13500. }
  13501. void llama_backend_init(void) {
  13502. ggml_time_init();
  13503. // needed to initialize f16 tables
  13504. {
  13505. struct ggml_init_params params = { 0, NULL, false };
  13506. struct ggml_context * ctx = ggml_init(params);
  13507. ggml_free(ctx);
  13508. }
  13509. }
  13510. void llama_numa_init(enum ggml_numa_strategy numa) {
  13511. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13512. ggml_numa_init(numa);
  13513. }
  13514. }
  13515. void llama_backend_free(void) {
  13516. ggml_quantize_free();
  13517. }
  13518. int64_t llama_time_us(void) {
  13519. return ggml_time_us();
  13520. }
  13521. struct llama_model * llama_load_model_from_file(
  13522. const char * path_model,
  13523. struct llama_model_params params) {
  13524. ggml_time_init();
  13525. llama_model * model = new llama_model;
  13526. unsigned cur_percentage = 0;
  13527. if (params.progress_callback == NULL) {
  13528. params.progress_callback_user_data = &cur_percentage;
  13529. params.progress_callback = [](float progress, void * ctx) {
  13530. unsigned * cur_percentage_p = (unsigned *) ctx;
  13531. unsigned percentage = (unsigned) (100 * progress);
  13532. while (percentage > *cur_percentage_p) {
  13533. *cur_percentage_p = percentage;
  13534. LLAMA_LOG_INFO(".");
  13535. if (percentage >= 100) {
  13536. LLAMA_LOG_INFO("\n");
  13537. }
  13538. }
  13539. return true;
  13540. };
  13541. }
  13542. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  13543. // split the servers set them into model->rpc_servers
  13544. std::string servers(params.rpc_servers);
  13545. size_t pos = 0;
  13546. while ((pos = servers.find(",")) != std::string::npos) {
  13547. std::string server = servers.substr(0, pos);
  13548. model->rpc_servers.push_back(server);
  13549. servers.erase(0, pos + 1);
  13550. }
  13551. model->rpc_servers.push_back(servers);
  13552. }
  13553. int status = llama_model_load(path_model, *model, params);
  13554. GGML_ASSERT(status <= 0);
  13555. if (status < 0) {
  13556. if (status == -1) {
  13557. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13558. } else if (status == -2) {
  13559. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13560. }
  13561. delete model;
  13562. return nullptr;
  13563. }
  13564. return model;
  13565. }
  13566. void llama_free_model(struct llama_model * model) {
  13567. delete model;
  13568. }
  13569. struct llama_context * llama_new_context_with_model(
  13570. struct llama_model * model,
  13571. struct llama_context_params params) {
  13572. if (!model) {
  13573. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13574. return nullptr;
  13575. }
  13576. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13577. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13578. return nullptr;
  13579. }
  13580. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13581. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13582. return nullptr;
  13583. }
  13584. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13585. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13586. params.flash_attn = false;
  13587. }
  13588. if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
  13589. LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
  13590. params.flash_attn = false;
  13591. }
  13592. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  13593. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  13594. return nullptr;
  13595. }
  13596. llama_context * ctx = new llama_context(*model);
  13597. const auto & hparams = model->hparams;
  13598. auto & cparams = ctx->cparams;
  13599. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13600. cparams.n_threads = params.n_threads;
  13601. cparams.n_threads_batch = params.n_threads_batch;
  13602. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13603. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13604. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13605. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13606. cparams.defrag_thold = params.defrag_thold;
  13607. cparams.embeddings = params.embeddings;
  13608. cparams.offload_kqv = params.offload_kqv;
  13609. cparams.flash_attn = params.flash_attn;
  13610. cparams.pooling_type = params.pooling_type;
  13611. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13612. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13613. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13614. // this is necessary due to kv_self.n being padded later during inference
  13615. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13616. // with causal attention, the batch size is limited by the context size
  13617. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13618. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13619. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13620. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13621. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13622. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13623. cparams.n_batch = GGML_KQ_MASK_PAD;
  13624. }
  13625. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13626. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13627. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  13628. hparams.n_ctx_train;
  13629. cparams.cb_eval = params.cb_eval;
  13630. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13631. auto rope_scaling_type = params.rope_scaling_type;
  13632. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13633. rope_scaling_type = hparams.rope_scaling_type_train;
  13634. }
  13635. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13636. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13637. }
  13638. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13639. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13640. }
  13641. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13642. cparams.causal_attn = hparams.causal_attn;
  13643. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13644. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13645. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13646. } else {
  13647. cparams.pooling_type = hparams.pooling_type;
  13648. }
  13649. }
  13650. if (params.seed == LLAMA_DEFAULT_SEED) {
  13651. params.seed = time(NULL);
  13652. }
  13653. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13654. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13655. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13656. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13657. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13658. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13659. ctx->abort_callback = params.abort_callback;
  13660. ctx->abort_callback_data = params.abort_callback_data;
  13661. ctx->rng = std::mt19937(params.seed);
  13662. ctx->logits_all = params.logits_all;
  13663. uint32_t kv_size = cparams.n_ctx;
  13664. ggml_type type_k = params.type_k;
  13665. ggml_type type_v = params.type_v;
  13666. // Mamba only needs a constant number of KV cache cells per sequence
  13667. if (model->arch == LLM_ARCH_MAMBA) {
  13668. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13669. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13670. // it's probably best to keep as much precision as possible for the states
  13671. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13672. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13673. }
  13674. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13675. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13676. if (!hparams.vocab_only) {
  13677. // initialize backends
  13678. #if defined(GGML_USE_METAL)
  13679. if (model->n_gpu_layers > 0) {
  13680. ctx->backend_metal = ggml_backend_metal_init();
  13681. if (ctx->backend_metal == nullptr) {
  13682. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13683. llama_free(ctx);
  13684. return nullptr;
  13685. }
  13686. ctx->backends.push_back(ctx->backend_metal);
  13687. }
  13688. #elif defined(GGML_USE_CUDA)
  13689. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13690. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13691. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13692. if (backend == nullptr) {
  13693. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13694. llama_free(ctx);
  13695. return nullptr;
  13696. }
  13697. ctx->backends.push_back(backend);
  13698. } else {
  13699. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13700. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13701. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13702. if (backend == nullptr) {
  13703. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13704. llama_free(ctx);
  13705. return nullptr;
  13706. }
  13707. ctx->backends.push_back(backend);
  13708. }
  13709. }
  13710. #elif defined(GGML_USE_VULKAN)
  13711. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13712. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13713. llama_free(ctx);
  13714. return nullptr;
  13715. }
  13716. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13717. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  13718. if (backend == nullptr) {
  13719. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13720. llama_free(ctx);
  13721. return nullptr;
  13722. }
  13723. ctx->backends.push_back(backend);
  13724. } else {
  13725. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13726. ggml_backend_t backend = ggml_backend_vk_init(device);
  13727. if (backend == nullptr) {
  13728. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13729. llama_free(ctx);
  13730. return nullptr;
  13731. }
  13732. ctx->backends.push_back(backend);
  13733. }
  13734. }
  13735. #elif defined(GGML_USE_SYCL)
  13736. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13737. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13738. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13739. if (backend == nullptr) {
  13740. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  13741. llama_free(ctx);
  13742. return nullptr;
  13743. }
  13744. ctx->backends.push_back(backend);
  13745. } else {
  13746. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13747. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13748. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13749. if (backend == nullptr) {
  13750. int id_list[GGML_SYCL_MAX_DEVICES];
  13751. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13752. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13753. llama_free(ctx);
  13754. return nullptr;
  13755. }
  13756. ctx->backends.push_back(backend);
  13757. }
  13758. }
  13759. #elif defined(GGML_USE_KOMPUTE)
  13760. if (model->n_gpu_layers > 0) {
  13761. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13762. if (backend == nullptr) {
  13763. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13764. llama_free(ctx);
  13765. return nullptr;
  13766. }
  13767. ctx->backends.push_back(backend);
  13768. }
  13769. #endif
  13770. #ifdef GGML_USE_BLAS
  13771. ctx->backend_blas = ggml_backend_blas_init();
  13772. if (ctx->backend_blas == nullptr) {
  13773. LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
  13774. } else {
  13775. ctx->backends.push_back(ctx->backend_blas);
  13776. }
  13777. #endif
  13778. #if defined(GGML_USE_RPC)
  13779. if (model->n_gpu_layers > 0) {
  13780. for (const auto & endpoint : model->rpc_servers) {
  13781. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  13782. if (backend == nullptr) {
  13783. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  13784. llama_free(ctx);
  13785. return nullptr;
  13786. }
  13787. ctx->backends.push_back(backend);
  13788. }
  13789. }
  13790. #endif
  13791. ctx->backend_cpu = ggml_backend_cpu_init();
  13792. if (ctx->backend_cpu == nullptr) {
  13793. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13794. llama_free(ctx);
  13795. return nullptr;
  13796. }
  13797. ctx->backends.push_back(ctx->backend_cpu);
  13798. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13799. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13800. llama_free(ctx);
  13801. return nullptr;
  13802. }
  13803. {
  13804. size_t memory_size_k = 0;
  13805. size_t memory_size_v = 0;
  13806. for (auto & k : ctx->kv_self.k_l) {
  13807. memory_size_k += ggml_nbytes(k);
  13808. }
  13809. for (auto & v : ctx->kv_self.v_l) {
  13810. memory_size_v += ggml_nbytes(v);
  13811. }
  13812. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13813. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13814. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13815. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13816. }
  13817. // graph outputs buffer
  13818. {
  13819. // resized during inference when a batch uses more outputs
  13820. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13821. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13822. llama_free(ctx);
  13823. return nullptr;
  13824. }
  13825. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13826. ggml_backend_buffer_name(ctx->buf_output),
  13827. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13828. }
  13829. // scheduler and compute buffers
  13830. {
  13831. // buffer types used for the compute buffer of each backend
  13832. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13833. for (auto * backend : ctx->backends) {
  13834. if (ggml_backend_is_cpu(backend)) {
  13835. // use host buffers for the CPU backend compute buffer
  13836. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13837. } else {
  13838. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13839. }
  13840. }
  13841. // buffer used to store the computation graph and the tensor meta data
  13842. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13843. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13844. bool pipeline_parallel =
  13845. llama_get_device_count(*model) > 1 &&
  13846. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13847. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13848. params.offload_kqv;
  13849. #ifndef GGML_USE_CUDA
  13850. // pipeline parallelism requires support for async compute and events
  13851. // currently this is only implemented in the CUDA backend
  13852. pipeline_parallel = false;
  13853. #endif
  13854. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13855. if (pipeline_parallel) {
  13856. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13857. }
  13858. // build worst-case graph
  13859. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13860. int n_past = cparams.n_ctx - n_tokens;
  13861. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13862. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13863. // initialize scheduler with the worst-case graph
  13864. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13865. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13866. llama_free(ctx);
  13867. return nullptr;
  13868. }
  13869. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13870. ggml_backend_t backend = ctx->backends[i];
  13871. ggml_backend_buffer_type_t buft = backend_buft[i];
  13872. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13873. if (size > 1) {
  13874. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13875. ggml_backend_buft_name(buft),
  13876. size / 1024.0 / 1024.0);
  13877. }
  13878. }
  13879. // note: the number of splits during measure is higher than during inference due to the kv shift
  13880. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13881. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13882. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13883. }
  13884. }
  13885. return ctx;
  13886. }
  13887. void llama_free(struct llama_context * ctx) {
  13888. delete ctx;
  13889. }
  13890. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13891. return &ctx->model;
  13892. }
  13893. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13894. return ctx->cparams.n_ctx;
  13895. }
  13896. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13897. return ctx->cparams.n_batch;
  13898. }
  13899. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13900. return ctx->cparams.n_ubatch;
  13901. }
  13902. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13903. return ctx->kv_self.size;
  13904. }
  13905. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13906. return model->vocab.type;
  13907. }
  13908. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13909. switch (model->arch) {
  13910. // these models do not use RoPE
  13911. case LLM_ARCH_GPT2:
  13912. case LLM_ARCH_GPTJ:
  13913. case LLM_ARCH_MPT:
  13914. case LLM_ARCH_REFACT:
  13915. case LLM_ARCH_BLOOM:
  13916. case LLM_ARCH_MAMBA:
  13917. case LLM_ARCH_JINA_BERT_V2:
  13918. return LLAMA_ROPE_TYPE_NONE;
  13919. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13920. case LLM_ARCH_LLAMA:
  13921. case LLM_ARCH_BAICHUAN:
  13922. case LLM_ARCH_STARCODER:
  13923. case LLM_ARCH_PLAMO:
  13924. case LLM_ARCH_CODESHELL:
  13925. case LLM_ARCH_ORION:
  13926. case LLM_ARCH_INTERNLM2:
  13927. case LLM_ARCH_MINICPM:
  13928. case LLM_ARCH_XVERSE:
  13929. case LLM_ARCH_COMMAND_R:
  13930. case LLM_ARCH_OLMO:
  13931. case LLM_ARCH_ARCTIC:
  13932. case LLM_ARCH_DEEPSEEK2:
  13933. return LLAMA_ROPE_TYPE_NORM;
  13934. // the pairs of head values are offset by n_rot/2
  13935. case LLM_ARCH_FALCON:
  13936. case LLM_ARCH_GROK:
  13937. case LLM_ARCH_DBRX:
  13938. case LLM_ARCH_BERT:
  13939. case LLM_ARCH_NOMIC_BERT:
  13940. case LLM_ARCH_STABLELM:
  13941. case LLM_ARCH_QWEN:
  13942. case LLM_ARCH_QWEN2:
  13943. case LLM_ARCH_QWEN2MOE:
  13944. case LLM_ARCH_PHI2:
  13945. case LLM_ARCH_PHI3:
  13946. case LLM_ARCH_GEMMA:
  13947. case LLM_ARCH_STARCODER2:
  13948. case LLM_ARCH_GPTNEOX:
  13949. return LLAMA_ROPE_TYPE_NEOX;
  13950. // all model arches should be listed explicitly here
  13951. case LLM_ARCH_UNKNOWN:
  13952. GGML_ASSERT(false && "unknown architecture");
  13953. break;
  13954. }
  13955. return LLAMA_ROPE_TYPE_NONE;
  13956. }
  13957. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13958. return ctx->cparams.pooling_type;
  13959. }
  13960. int32_t llama_n_vocab(const struct llama_model * model) {
  13961. return model->hparams.n_vocab;
  13962. }
  13963. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13964. return model->hparams.n_ctx_train;
  13965. }
  13966. int32_t llama_n_embd(const struct llama_model * model) {
  13967. return model->hparams.n_embd;
  13968. }
  13969. int32_t llama_n_layer(const struct llama_model * model) {
  13970. return model->hparams.n_layer;
  13971. }
  13972. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13973. return model->hparams.rope_freq_scale_train;
  13974. }
  13975. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13976. const auto & it = model->gguf_kv.find(key);
  13977. if (it == model->gguf_kv.end()) {
  13978. if (buf_size > 0) {
  13979. buf[0] = '\0';
  13980. }
  13981. return -1;
  13982. }
  13983. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13984. }
  13985. int32_t llama_model_meta_count(const struct llama_model * model) {
  13986. return (int)model->gguf_kv.size();
  13987. }
  13988. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13989. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13990. if (buf_size > 0) {
  13991. buf[0] = '\0';
  13992. }
  13993. return -1;
  13994. }
  13995. auto it = model->gguf_kv.begin();
  13996. std::advance(it, i);
  13997. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13998. }
  13999. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  14000. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  14001. if (buf_size > 0) {
  14002. buf[0] = '\0';
  14003. }
  14004. return -1;
  14005. }
  14006. auto it = model->gguf_kv.begin();
  14007. std::advance(it, i);
  14008. return snprintf(buf, buf_size, "%s", it->second.c_str());
  14009. }
  14010. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  14011. return snprintf(buf, buf_size, "%s %s %s",
  14012. llama_model_arch_name(model->arch),
  14013. llama_model_type_name(model->type),
  14014. llama_model_ftype_name(model->ftype).c_str());
  14015. }
  14016. uint64_t llama_model_size(const struct llama_model * model) {
  14017. uint64_t size = 0;
  14018. for (const auto & it : model->tensors_by_name) {
  14019. size += ggml_nbytes(it.second);
  14020. }
  14021. return size;
  14022. }
  14023. uint64_t llama_model_n_params(const struct llama_model * model) {
  14024. uint64_t nparams = 0;
  14025. for (const auto & it : model->tensors_by_name) {
  14026. nparams += ggml_nelements(it.second);
  14027. }
  14028. return nparams;
  14029. }
  14030. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  14031. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  14032. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  14033. return it.first == name;
  14034. });
  14035. if (it == model->tensors_by_name.end()) {
  14036. return nullptr;
  14037. }
  14038. return it->second;
  14039. }
  14040. uint32_t llama_model_quantize(
  14041. const char * fname_inp,
  14042. const char * fname_out,
  14043. const llama_model_quantize_params * params) {
  14044. try {
  14045. llama_model_quantize_internal(fname_inp, fname_out, params);
  14046. return 0;
  14047. } catch (const std::exception & err) {
  14048. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  14049. return 1;
  14050. }
  14051. }
  14052. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  14053. try {
  14054. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  14055. } catch (const std::exception & err) {
  14056. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  14057. return 1;
  14058. }
  14059. }
  14060. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  14061. GGML_ASSERT(cvec.tensors.empty());
  14062. GGML_ASSERT(cvec.ctxs.empty());
  14063. GGML_ASSERT(cvec.bufs.empty());
  14064. // count layer buffer types
  14065. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  14066. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  14067. buft_layer_count[model.buft_layer[i].buft]++;
  14068. }
  14069. // allocate contexts
  14070. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  14071. for (auto & it : buft_layer_count) {
  14072. int n_layers = it.second;
  14073. struct ggml_init_params params = {
  14074. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  14075. /*.mem_buffer =*/ NULL,
  14076. /*.no_alloc =*/ true,
  14077. };
  14078. ggml_context * ctx = ggml_init(params);
  14079. if (!ctx) {
  14080. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  14081. return 1;
  14082. }
  14083. ctx_map[it.first] = ctx;
  14084. }
  14085. // make tensors
  14086. cvec.tensors.reserve(model.hparams.n_layer);
  14087. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  14088. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14089. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  14090. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  14091. cvec.tensors.push_back(tensor);
  14092. }
  14093. // allocate tensors / buffers and zero
  14094. cvec.ctxs.reserve(ctx_map.size());
  14095. cvec.bufs.reserve(ctx_map.size());
  14096. for (auto it : ctx_map) {
  14097. ggml_backend_buffer_type_t buft = it.first;
  14098. ggml_context * ctx = it.second;
  14099. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  14100. if (!buf) {
  14101. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  14102. return false;
  14103. }
  14104. ggml_backend_buffer_clear(buf, 0);
  14105. cvec.ctxs.push_back(ctx);
  14106. cvec.bufs.push_back(buf);
  14107. }
  14108. return true;
  14109. }
  14110. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  14111. const llama_model & model = lctx->model;
  14112. llama_control_vector & cvec = lctx->cvec;
  14113. if (data == nullptr) {
  14114. // disable the current control vector (but leave allocated for later)
  14115. cvec.layer_start = -1;
  14116. cvec.layer_end = -1;
  14117. return 0;
  14118. }
  14119. if (n_embd != (int) model.hparams.n_embd) {
  14120. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  14121. return 1;
  14122. }
  14123. if (cvec.tensors.empty()) {
  14124. if (!llama_control_vector_init(cvec, model)) {
  14125. return 1;
  14126. }
  14127. }
  14128. cvec.layer_start = il_start;
  14129. cvec.layer_end = il_end;
  14130. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14131. assert(cvec.tensors[il] != nullptr);
  14132. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  14133. if (off + n_embd <= len) {
  14134. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  14135. }
  14136. }
  14137. return 0;
  14138. }
  14139. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  14140. struct llama_kv_cache_view result = {
  14141. /*.n_cells = */ 0,
  14142. /*.n_seq_max = */ n_seq_max,
  14143. /*.token_count = */ 0,
  14144. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  14145. /*.max_contiguous = */ 0,
  14146. /*.max_contiguous_idx = */ -1,
  14147. /*.cells = */ nullptr,
  14148. /*.cells_sequences = */ nullptr,
  14149. };
  14150. return result;
  14151. }
  14152. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  14153. if (view->cells != nullptr) {
  14154. free(view->cells);
  14155. view->cells = nullptr;
  14156. }
  14157. if (view->cells_sequences != nullptr) {
  14158. free(view->cells_sequences);
  14159. view->cells_sequences = nullptr;
  14160. }
  14161. }
  14162. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  14163. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  14164. view->n_cells = int32_t(ctx->kv_self.size);
  14165. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  14166. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  14167. view->cells = (struct llama_kv_cache_view_cell *)p;
  14168. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  14169. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  14170. view->cells_sequences = (llama_seq_id *)p;
  14171. }
  14172. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  14173. llama_kv_cache_view_cell * c_curr = view->cells;
  14174. llama_seq_id * cs_curr = view->cells_sequences;
  14175. int32_t used_cells = 0;
  14176. int32_t token_count = 0;
  14177. int32_t curr_contig_idx = -1;
  14178. uint32_t max_contig = 0;
  14179. int32_t max_contig_idx = -1;
  14180. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  14181. const size_t curr_size = kv_cells[i].seq_id.size();
  14182. token_count += curr_size;
  14183. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  14184. if (curr_size > 0) {
  14185. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  14186. max_contig = i - curr_contig_idx;
  14187. max_contig_idx = curr_contig_idx;
  14188. }
  14189. curr_contig_idx = -1;
  14190. } else if (curr_contig_idx < 0) {
  14191. curr_contig_idx = i;
  14192. }
  14193. int seq_idx = 0;
  14194. for (const llama_seq_id it : kv_cells[i].seq_id) {
  14195. if (seq_idx >= view->n_seq_max) {
  14196. break;
  14197. }
  14198. cs_curr[seq_idx] = it;
  14199. seq_idx++;
  14200. }
  14201. if (seq_idx != 0) {
  14202. used_cells++;
  14203. }
  14204. for (; seq_idx < view->n_seq_max; seq_idx++) {
  14205. cs_curr[seq_idx] = -1;
  14206. }
  14207. }
  14208. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  14209. max_contig_idx = curr_contig_idx;
  14210. max_contig = kv_cells.size() - curr_contig_idx;
  14211. }
  14212. view->max_contiguous = max_contig;
  14213. view->max_contiguous_idx = max_contig_idx;
  14214. view->token_count = token_count;
  14215. view->used_cells = used_cells;
  14216. if (uint32_t(used_cells) != ctx->kv_self.used) {
  14217. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  14218. __func__, ctx->kv_self.used, used_cells);
  14219. }
  14220. }
  14221. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  14222. int result = 0;
  14223. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  14224. result += ctx->kv_self.cells[i].seq_id.size();
  14225. }
  14226. return result;
  14227. }
  14228. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  14229. return ctx->kv_self.used;
  14230. }
  14231. void llama_kv_cache_clear(struct llama_context * ctx) {
  14232. llama_kv_cache_clear(ctx->kv_self);
  14233. }
  14234. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  14235. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  14236. }
  14237. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  14238. if (seq_id_src == seq_id_dst) {
  14239. return;
  14240. }
  14241. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  14242. }
  14243. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  14244. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  14245. }
  14246. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  14247. if (delta == 0) {
  14248. return;
  14249. }
  14250. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  14251. }
  14252. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  14253. if (d == 1) {
  14254. return;
  14255. }
  14256. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  14257. }
  14258. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  14259. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14260. }
  14261. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14262. llama_kv_cache_defrag(ctx->kv_self);
  14263. }
  14264. void llama_kv_cache_update(struct llama_context * ctx) {
  14265. llama_kv_cache_update_internal(*ctx);
  14266. }
  14267. // deprecated
  14268. size_t llama_get_state_size(const struct llama_context * ctx) {
  14269. return llama_state_get_size(ctx);
  14270. }
  14271. // deprecated
  14272. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14273. return llama_state_get_data(ctx, dst);
  14274. }
  14275. // deprecated
  14276. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14277. return llama_state_set_data(ctx, src);
  14278. }
  14279. // deprecated
  14280. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14281. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14282. }
  14283. // deprecated
  14284. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14285. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14286. }
  14287. // Returns the *maximum* size of the state
  14288. size_t llama_state_get_size(const struct llama_context * ctx) {
  14289. const auto & cparams = ctx->cparams;
  14290. const auto & hparams = ctx->model.hparams;
  14291. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14292. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14293. const size_t s_rng_size = sizeof(size_t);
  14294. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14295. const size_t s_n_outputs = sizeof(size_t);
  14296. // assume worst case for outputs although only currently set ones are serialized
  14297. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14298. const size_t s_logits_size = sizeof(size_t);
  14299. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14300. const size_t s_embedding_size = sizeof(size_t);
  14301. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14302. const size_t s_kv_buf_size = sizeof(size_t);
  14303. const size_t s_kv_head = sizeof(uint32_t);
  14304. const size_t s_kv_size = sizeof(uint32_t);
  14305. const size_t s_kv_used = sizeof(uint32_t);
  14306. const size_t s_v_trans = sizeof(uint32_t);
  14307. const size_t s_kv = ctx->kv_self.total_size();
  14308. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14309. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14310. const size_t s_total = (
  14311. + s_rng_size
  14312. + s_rng
  14313. + s_n_outputs
  14314. + s_output_pos
  14315. + s_logits_size
  14316. + s_logits
  14317. + s_embedding_size
  14318. + s_embedding
  14319. + s_kv_buf_size
  14320. + s_kv_head
  14321. + s_kv_size
  14322. + s_kv_used
  14323. + s_v_trans
  14324. + s_kv
  14325. + s_kv_cells
  14326. );
  14327. // on session change it is very likely that the state size has changed - so we need to update this function
  14328. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14329. return s_total;
  14330. }
  14331. // llama_context_data
  14332. struct llama_data_context {
  14333. virtual void write(const void * src, size_t size) = 0;
  14334. virtual size_t get_size_written() = 0;
  14335. virtual ~llama_data_context() = default;
  14336. };
  14337. struct llama_data_buffer_context : llama_data_context {
  14338. uint8_t * ptr;
  14339. size_t size_written = 0;
  14340. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14341. void write(const void * src, size_t size) override {
  14342. memcpy(ptr, src, size);
  14343. ptr += size;
  14344. size_written += size;
  14345. }
  14346. size_t get_size_written() override {
  14347. return size_written;
  14348. }
  14349. };
  14350. struct llama_data_file_context : llama_data_context {
  14351. llama_file * file;
  14352. size_t size_written = 0;
  14353. llama_data_file_context(llama_file * f) : file(f) {}
  14354. void write(const void * src, size_t size) override {
  14355. file->write_raw(src, size);
  14356. size_written += size;
  14357. }
  14358. size_t get_size_written() override {
  14359. return size_written;
  14360. }
  14361. };
  14362. /** copy state data into either a buffer or file depending on the passed in context
  14363. *
  14364. * file context:
  14365. * llama_file file("/path", "wb");
  14366. * llama_data_file_context data_ctx(&file);
  14367. * llama_state_get_data(ctx, &data_ctx);
  14368. *
  14369. * buffer context:
  14370. * std::vector<uint8_t> buf(max_size, 0);
  14371. * llama_data_buffer_context data_ctx(&buf.data());
  14372. * llama_state_get_data(ctx, &data_ctx);
  14373. *
  14374. */
  14375. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14376. llama_synchronize(ctx);
  14377. // copy rng
  14378. {
  14379. std::ostringstream rng_ss;
  14380. rng_ss << ctx->rng;
  14381. const std::string & rng_str = rng_ss.str();
  14382. const size_t rng_size = rng_str.size();
  14383. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14384. data_ctx->write(&rng_size, sizeof(rng_size));
  14385. data_ctx->write(rng_str.data(), rng_size);
  14386. }
  14387. // copy outputs
  14388. {
  14389. // Can't use ctx->n_outputs because it's not for the
  14390. // entire last batch when n_ubatch is smaller than n_batch
  14391. size_t n_outputs = 0;
  14392. // copy output ids
  14393. {
  14394. std::vector<int32_t> output_pos;
  14395. const size_t n_batch = ctx->cparams.n_batch;
  14396. const auto & output_ids = ctx->output_ids;
  14397. output_pos.resize(ctx->output_size);
  14398. // build a more compact representation of the output ids
  14399. for (size_t i = 0; i < n_batch; ++i) {
  14400. // map an output id to a position in the batch
  14401. int32_t pos = output_ids[i];
  14402. if (pos >= 0) {
  14403. if ((size_t) pos >= n_outputs) {
  14404. n_outputs = pos + 1;
  14405. }
  14406. GGML_ASSERT((size_t) pos < ctx->output_size);
  14407. output_pos[pos] = i;
  14408. }
  14409. }
  14410. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14411. if (n_outputs) {
  14412. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14413. }
  14414. }
  14415. // copy logits
  14416. {
  14417. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14418. data_ctx->write(&logits_size, sizeof(logits_size));
  14419. if (logits_size) {
  14420. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14421. }
  14422. }
  14423. // copy embeddings
  14424. {
  14425. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14426. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14427. if (embeddings_size) {
  14428. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14429. }
  14430. }
  14431. }
  14432. // copy kv cache
  14433. {
  14434. const auto & kv_self = ctx->kv_self;
  14435. const auto & hparams = ctx->model.hparams;
  14436. const uint32_t n_layer = hparams.n_layer;
  14437. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14438. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14439. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14440. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14441. const uint32_t kv_size = kv_self.size;
  14442. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14443. const uint32_t kv_used = kv_self.used;
  14444. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14445. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14446. data_ctx->write(&kv_head, sizeof(kv_head));
  14447. data_ctx->write(&kv_size, sizeof(kv_size));
  14448. data_ctx->write(&kv_used, sizeof(kv_used));
  14449. data_ctx->write(&v_trans, sizeof(v_trans));
  14450. if (kv_buf_size) {
  14451. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14452. std::vector<uint8_t> tmp_buf;
  14453. for (int il = 0; il < (int) n_layer; ++il) {
  14454. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14455. tmp_buf.resize(k_size);
  14456. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14457. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14458. if (kv_self.recurrent || !kv_self.v_trans) {
  14459. // v is contiguous for recurrent models
  14460. // TODO: use other tensors for state models than k and v
  14461. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14462. tmp_buf.resize(v_size);
  14463. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14464. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14465. continue;
  14466. }
  14467. // v is not contiguous, copy row by row
  14468. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14469. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14470. tmp_buf.resize(v_row_size);
  14471. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14472. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14473. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14474. }
  14475. }
  14476. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14477. }
  14478. for (uint32_t i = 0; i < kv_head; ++i) {
  14479. const auto & cell = kv_self.cells[i];
  14480. const llama_pos pos = cell.pos;
  14481. const size_t seq_id_size = cell.seq_id.size();
  14482. data_ctx->write(&pos, sizeof(pos));
  14483. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14484. for (auto seq_id : cell.seq_id) {
  14485. data_ctx->write(&seq_id, sizeof(seq_id));
  14486. }
  14487. }
  14488. }
  14489. }
  14490. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14491. llama_data_buffer_context data_ctx(dst);
  14492. llama_state_get_data_internal(ctx, &data_ctx);
  14493. return data_ctx.get_size_written();
  14494. }
  14495. // Sets the state reading from the specified source address
  14496. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14497. llama_synchronize(ctx);
  14498. const uint8_t * inp = src;
  14499. // set rng
  14500. {
  14501. size_t rng_size;
  14502. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14503. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14504. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14505. std::istringstream rng_ss(rng_str);
  14506. rng_ss >> ctx->rng;
  14507. GGML_ASSERT(!rng_ss.fail());
  14508. }
  14509. // set output ids
  14510. {
  14511. size_t n_outputs;
  14512. std::vector<int32_t> output_pos;
  14513. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14514. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14515. if (n_outputs) {
  14516. output_pos.resize(n_outputs);
  14517. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14518. inp += n_outputs * sizeof(int32_t);
  14519. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14520. int32_t id = output_pos[i];
  14521. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14522. ctx->output_ids[id] = i;
  14523. }
  14524. ctx->n_outputs = n_outputs;
  14525. }
  14526. }
  14527. // set logits
  14528. {
  14529. size_t logits_size;
  14530. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14531. GGML_ASSERT(ctx->logits_size >= logits_size);
  14532. if (logits_size) {
  14533. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14534. inp += logits_size * sizeof(float);
  14535. }
  14536. }
  14537. // set embeddings
  14538. {
  14539. size_t embeddings_size;
  14540. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14541. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14542. if (embeddings_size) {
  14543. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14544. inp += embeddings_size * sizeof(float);
  14545. }
  14546. }
  14547. // set kv cache
  14548. {
  14549. const auto & kv_self = ctx->kv_self;
  14550. const auto & hparams = ctx->model.hparams;
  14551. const uint32_t n_layer = hparams.n_layer;
  14552. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14553. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14554. size_t kv_buf_size;
  14555. uint32_t kv_head;
  14556. uint32_t kv_size;
  14557. uint32_t kv_used;
  14558. uint32_t v_trans;
  14559. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14560. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14561. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14562. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14563. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14564. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14565. if (kv_self.size != kv_size) {
  14566. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14567. GGML_ASSERT(kv_self.size >= kv_head);
  14568. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14569. __func__, kv_head, kv_size, kv_self.size);
  14570. }
  14571. llama_kv_cache_clear(ctx);
  14572. if (kv_buf_size) {
  14573. const size_t pre_kv_buf_size = inp - src;
  14574. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14575. for (int il = 0; il < (int) n_layer; ++il) {
  14576. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14577. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14578. inp += k_size;
  14579. if (kv_self.recurrent || !kv_self.v_trans) {
  14580. // v is contiguous for recurrent models
  14581. // TODO: use other tensors for state models than k and v
  14582. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14583. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14584. inp += v_size;
  14585. continue;
  14586. }
  14587. // v is not contiguous, copy row by row
  14588. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14589. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14590. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14591. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14592. inp += v_row_size;
  14593. }
  14594. }
  14595. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14596. }
  14597. ctx->kv_self.head = kv_head;
  14598. ctx->kv_self.used = kv_used;
  14599. for (uint32_t i = 0; i < kv_head; ++i) {
  14600. llama_pos pos;
  14601. size_t seq_id_size;
  14602. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14603. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14604. ctx->kv_self.cells[i].pos = pos;
  14605. llama_seq_id seq_id;
  14606. for (size_t j = 0; j < seq_id_size; ++j) {
  14607. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14608. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14609. }
  14610. }
  14611. }
  14612. const size_t nread = inp - src;
  14613. const size_t max_size = llama_state_get_size(ctx);
  14614. GGML_ASSERT(nread <= max_size);
  14615. return nread;
  14616. }
  14617. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14618. llama_file file(path_session, "rb");
  14619. // sanity checks
  14620. {
  14621. const uint32_t magic = file.read_u32();
  14622. const uint32_t version = file.read_u32();
  14623. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14624. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14625. return false;
  14626. }
  14627. llama_hparams session_hparams;
  14628. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14629. if (session_hparams != ctx->model.hparams) {
  14630. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14631. return false;
  14632. }
  14633. }
  14634. // load the prompt
  14635. {
  14636. const uint32_t n_token_count = file.read_u32();
  14637. if (n_token_count > n_token_capacity) {
  14638. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14639. return false;
  14640. }
  14641. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14642. *n_token_count_out = n_token_count;
  14643. }
  14644. // restore the context state
  14645. {
  14646. const size_t n_state_size_cur = file.size - file.tell();
  14647. const size_t n_state_size_max = llama_state_get_size(ctx);
  14648. if (n_state_size_cur > n_state_size_max) {
  14649. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14650. return false;
  14651. }
  14652. std::vector<uint8_t> state_data(n_state_size_max);
  14653. file.read_raw(state_data.data(), n_state_size_cur);
  14654. llama_state_set_data(ctx, state_data.data());
  14655. }
  14656. return true;
  14657. }
  14658. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14659. try {
  14660. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14661. } catch (const std::exception & err) {
  14662. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14663. return false;
  14664. }
  14665. }
  14666. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14667. llama_file file(path_session, "wb");
  14668. file.write_u32(LLAMA_SESSION_MAGIC);
  14669. file.write_u32(LLAMA_SESSION_VERSION);
  14670. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14671. // save the prompt
  14672. file.write_u32((uint32_t) n_token_count);
  14673. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14674. // save the context state using stream saving
  14675. llama_data_file_context data_ctx(&file);
  14676. llama_state_get_data_internal(ctx, &data_ctx);
  14677. return true;
  14678. }
  14679. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14680. try {
  14681. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14682. } catch (const std::exception & err) {
  14683. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14684. return false;
  14685. }
  14686. }
  14687. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14688. // save the size of size_t as a uint32_t for safety check
  14689. const size_t size_t_size_size = sizeof(uint32_t);
  14690. // other values
  14691. const size_t s_cell_count_size = sizeof(uint32_t);
  14692. const size_t s_layer_count_size = sizeof(uint32_t);
  14693. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14694. size_t s_cell_count = 0;
  14695. size_t s_cell_data_size = 0;
  14696. const auto & kv_self = ctx->kv_self;
  14697. const auto & hparams = ctx->model.hparams;
  14698. const uint32_t n_layer = hparams.n_layer;
  14699. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14700. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14701. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14702. const auto & cell = kv_self.cells[i];
  14703. if (cell.seq_id.count(seq_id) > 0) {
  14704. ++s_cell_count;
  14705. s_cell_data_size += sizeof(llama_pos);
  14706. }
  14707. }
  14708. for (int il = 0; il < (int)n_layer; ++il) {
  14709. // types of keys and values
  14710. s_cell_data_size += sizeof(int32_t) * 2;
  14711. // k_size_row and v_size_el values of layer
  14712. s_cell_data_size += sizeof(size_t) * 2;
  14713. // keys
  14714. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14715. s_cell_data_size += k_size_row * s_cell_count;
  14716. // values (transposed)
  14717. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14718. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14719. }
  14720. const size_t s_total = (
  14721. size_t_size_size +
  14722. s_cell_count_size +
  14723. s_layer_count_size +
  14724. n_embd_v_gqa_size +
  14725. s_cell_data_size
  14726. );
  14727. return s_total;
  14728. }
  14729. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14730. llama_synchronize(ctx);
  14731. const auto & kv_self = ctx->kv_self;
  14732. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14733. // Save the size of size_t as a uint32_t for safety check
  14734. const uint32_t size_t_size = sizeof(size_t);
  14735. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14736. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14737. uint32_t cell_count = 0;
  14738. // Count the number of cells with the specified seq_id
  14739. // Find all the ranges of cells with this seq id
  14740. {
  14741. uint32_t cell_range_begin = kv_self.size;
  14742. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14743. const auto & cell = kv_self.cells[i];
  14744. if (cell.has_seq_id(seq_id)) {
  14745. ++cell_count;
  14746. if (cell_range_begin == kv_self.size) {
  14747. cell_range_begin = i;
  14748. }
  14749. }
  14750. else {
  14751. if (cell_range_begin != kv_self.size) {
  14752. cell_ranges.emplace_back(cell_range_begin, i);
  14753. cell_range_begin = kv_self.size;
  14754. }
  14755. }
  14756. }
  14757. if (cell_range_begin != kv_self.size) {
  14758. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14759. }
  14760. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14761. uint32_t cell_count_check = 0;
  14762. for (const auto & range : cell_ranges) {
  14763. cell_count_check += range.second - range.first;
  14764. }
  14765. GGML_ASSERT(cell_count == cell_count_check);
  14766. }
  14767. // Write the cell count
  14768. data_ctx.write(&cell_count, sizeof(cell_count));
  14769. const auto & hparams = ctx->model.hparams;
  14770. const uint32_t n_layer = hparams.n_layer;
  14771. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14772. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14773. // Write the layer count
  14774. data_ctx.write(&n_layer, sizeof(n_layer));
  14775. // Write n_embd_v_gqa
  14776. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14777. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14778. for (const auto & range : cell_ranges) {
  14779. for (uint32_t i = range.first; i < range.second; ++i) {
  14780. const auto & cell = kv_self.cells[i];
  14781. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14782. }
  14783. }
  14784. // Iterate and write all the keys first, each row is a cell
  14785. // Get whole range at a time
  14786. std::vector<uint8_t> tmp_buf;
  14787. for (int il = 0; il < (int)n_layer; ++il) {
  14788. // Write key type
  14789. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14790. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14791. // Write row size of key
  14792. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14793. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14794. // Read each range of cells of k_size length each into tmp_buf and write out
  14795. for (const auto & range : cell_ranges) {
  14796. const size_t range_size = range.second - range.first;
  14797. tmp_buf.resize(range_size * k_size_row);
  14798. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14799. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14800. }
  14801. }
  14802. // TODO: simplify, reduce copy-paste
  14803. if (!kv_self.v_trans) {
  14804. for (int il = 0; il < (int)n_layer; ++il) {
  14805. // Write value type
  14806. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14807. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14808. // Write row size of value
  14809. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14810. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14811. // Read each range of cells of v_size length each into tmp_buf and write out
  14812. for (const auto & range : cell_ranges) {
  14813. const size_t range_size = range.second - range.first;
  14814. tmp_buf.resize(range_size * v_size_row);
  14815. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14816. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14817. }
  14818. }
  14819. } else {
  14820. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14821. const uint32_t kv_size = kv_self.size;
  14822. for (int il = 0; il < (int)n_layer; ++il) {
  14823. // Write value type
  14824. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14825. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14826. // Write element size
  14827. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14828. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14829. // For each row, we get the element values of each cell
  14830. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14831. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14832. for (const auto & range : cell_ranges) {
  14833. const size_t range_size = range.second - range.first;
  14834. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14835. tmp_buf.resize(range_size * v_size_el);
  14836. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14837. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14838. }
  14839. }
  14840. }
  14841. }
  14842. return data_ctx.get_size_written();
  14843. }
  14844. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14845. llama_data_buffer_context data_ctx(dst);
  14846. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14847. }
  14848. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14849. llama_synchronize(ctx);
  14850. auto & kv_self = ctx->kv_self;
  14851. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14852. // Wipe the slot
  14853. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14854. const uint8_t * inp = src;
  14855. // Read size of size_t
  14856. uint32_t size_t_size;
  14857. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14858. inp += sizeof(size_t_size);
  14859. if (size_t_size != sizeof(size_t)) {
  14860. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14861. return 0;
  14862. }
  14863. // Read the cell count
  14864. uint32_t cell_count;
  14865. memcpy(&cell_count, inp, sizeof(cell_count));
  14866. inp += sizeof(cell_count);
  14867. // Read the layer count
  14868. uint32_t n_layer_ref;
  14869. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14870. inp += sizeof(n_layer_ref);
  14871. // Read n_embd_v_gqa
  14872. uint32_t n_embd_v_gqa_ref;
  14873. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14874. inp += sizeof(n_embd_v_gqa_ref);
  14875. // Sanity check model compatibility
  14876. const auto & hparams = ctx->model.hparams;
  14877. const uint32_t n_layer = hparams.n_layer;
  14878. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14879. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14880. if (n_layer != n_layer_ref) {
  14881. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14882. return 0;
  14883. }
  14884. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14885. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14886. return 0;
  14887. }
  14888. // Allocate the new cells for the slot
  14889. if (cell_count) {
  14890. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14891. batch.n_tokens = cell_count;
  14892. for (uint32_t i = 0; i < cell_count; ++i) {
  14893. llama_pos pos;
  14894. memcpy(&pos, inp, sizeof(pos));
  14895. inp += sizeof(pos);
  14896. batch.pos[i] = pos;
  14897. batch.n_seq_id[i] = 1;
  14898. batch.seq_id[i][0] = dest_seq_id;
  14899. }
  14900. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14901. llama_batch_free(batch);
  14902. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14903. return 0;
  14904. }
  14905. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14906. // Assume that this is one contiguous block of cells
  14907. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14908. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14909. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14910. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14911. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14912. // Cleanup
  14913. llama_batch_free(batch);
  14914. }
  14915. const uint32_t kv_size = kv_self.size;
  14916. const uint32_t kv_head = kv_self.head;
  14917. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14918. for (int il = 0; il < (int)n_layer; ++il) {
  14919. // Read type of key
  14920. int32_t k_type_i_ref;
  14921. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14922. inp += sizeof(k_type_i_ref);
  14923. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14924. if (k_type_i != k_type_i_ref) {
  14925. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14926. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14927. return 0;
  14928. }
  14929. // Read row size of key
  14930. size_t k_size_row_ref;
  14931. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14932. inp += sizeof(k_size_row_ref);
  14933. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14934. if (k_size_row != k_size_row_ref) {
  14935. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14936. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14937. return 0;
  14938. }
  14939. if (cell_count) {
  14940. // Read and set the keys for the whole cell range
  14941. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14942. inp += cell_count * k_size_row;
  14943. }
  14944. }
  14945. // TODO: simplify, reduce copy-paste
  14946. if (!kv_self.v_trans) {
  14947. for (int il = 0; il < (int)n_layer; ++il) {
  14948. // Read type of value
  14949. int32_t v_type_i_ref;
  14950. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14951. inp += sizeof(v_type_i_ref);
  14952. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14953. if (v_type_i != v_type_i_ref) {
  14954. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14955. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14956. return 0;
  14957. }
  14958. // Read row size of value
  14959. size_t v_size_row_ref;
  14960. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14961. inp += sizeof(v_size_row_ref);
  14962. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14963. if (v_size_row != v_size_row_ref) {
  14964. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14965. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14966. return 0;
  14967. }
  14968. if (cell_count) {
  14969. // Read and set the values for the whole cell range
  14970. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14971. inp += cell_count * v_size_row;
  14972. }
  14973. }
  14974. } else {
  14975. // For each layer, read the values for each cell (transposed)
  14976. for (int il = 0; il < (int)n_layer; ++il) {
  14977. // Read type of value
  14978. int32_t v_type_i_ref;
  14979. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14980. inp += sizeof(v_type_i_ref);
  14981. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14982. if (v_type_i != v_type_i_ref) {
  14983. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14984. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14985. return 0;
  14986. }
  14987. // Read element size of value
  14988. size_t v_size_el_ref;
  14989. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14990. inp += sizeof(v_size_el_ref);
  14991. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14992. if (v_size_el != v_size_el_ref) {
  14993. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14994. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14995. return 0;
  14996. }
  14997. if (cell_count) {
  14998. // For each row in the transposed matrix, read the values for the whole cell range
  14999. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  15000. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  15001. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  15002. inp += cell_count * v_size_el;
  15003. }
  15004. }
  15005. }
  15006. }
  15007. const size_t nread = inp - src;
  15008. return nread;
  15009. }
  15010. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15011. llama_file file(filepath, "wb");
  15012. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  15013. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  15014. // save the prompt
  15015. file.write_u32((uint32_t)n_token_count);
  15016. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  15017. // save the context state using stream saving
  15018. llama_data_file_context data_ctx(&file);
  15019. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  15020. const size_t res = file.tell();
  15021. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  15022. return res;
  15023. }
  15024. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15025. llama_file file(filepath, "rb");
  15026. // version checks
  15027. {
  15028. const uint32_t magic = file.read_u32();
  15029. const uint32_t version = file.read_u32();
  15030. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  15031. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  15032. return 0;
  15033. }
  15034. }
  15035. // load the prompt
  15036. {
  15037. const uint32_t n_token_count = file.read_u32();
  15038. if (n_token_count > n_token_capacity) {
  15039. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  15040. return 0;
  15041. }
  15042. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  15043. *n_token_count_out = n_token_count;
  15044. }
  15045. // restore the context state
  15046. {
  15047. const size_t state_size = file.size - file.tell();
  15048. std::vector<uint8_t> state_data(state_size);
  15049. file.read_raw(state_data.data(), state_size);
  15050. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  15051. if (!nread) {
  15052. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  15053. return 0;
  15054. }
  15055. GGML_ASSERT(nread <= state_size);
  15056. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  15057. }
  15058. return file.tell();
  15059. }
  15060. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15061. try {
  15062. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  15063. } catch (const std::exception & err) {
  15064. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  15065. return 0;
  15066. }
  15067. }
  15068. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15069. try {
  15070. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  15071. } catch (const std::exception & err) {
  15072. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  15073. return 0;
  15074. }
  15075. }
  15076. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  15077. ctx->cparams.n_threads = n_threads;
  15078. ctx->cparams.n_threads_batch = n_threads_batch;
  15079. }
  15080. uint32_t llama_n_threads(struct llama_context * ctx) {
  15081. return ctx->cparams.n_threads;
  15082. }
  15083. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  15084. return ctx->cparams.n_threads_batch;
  15085. }
  15086. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  15087. ctx->abort_callback = abort_callback;
  15088. ctx->abort_callback_data = abort_callback_data;
  15089. }
  15090. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  15091. ctx->cparams.causal_attn = causal_attn;
  15092. }
  15093. struct llama_batch llama_batch_get_one(
  15094. llama_token * tokens,
  15095. int32_t n_tokens,
  15096. llama_pos pos_0,
  15097. llama_seq_id seq_id) {
  15098. return {
  15099. /*n_tokens =*/ n_tokens,
  15100. /*tokens =*/ tokens,
  15101. /*embd =*/ nullptr,
  15102. /*pos =*/ nullptr,
  15103. /*n_seq_id =*/ nullptr,
  15104. /*seq_id =*/ nullptr,
  15105. /*logits =*/ nullptr,
  15106. /*all_pos_0 =*/ pos_0,
  15107. /*all_pos_1 =*/ 1,
  15108. /*all_seq_id =*/ seq_id,
  15109. };
  15110. }
  15111. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  15112. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  15113. if (embd) {
  15114. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  15115. } else {
  15116. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  15117. }
  15118. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  15119. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  15120. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  15121. for (int i = 0; i < n_tokens_alloc; ++i) {
  15122. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  15123. }
  15124. batch.seq_id[n_tokens_alloc] = nullptr;
  15125. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  15126. return batch;
  15127. }
  15128. void llama_batch_free(struct llama_batch batch) {
  15129. if (batch.token) free(batch.token);
  15130. if (batch.embd) free(batch.embd);
  15131. if (batch.pos) free(batch.pos);
  15132. if (batch.n_seq_id) free(batch.n_seq_id);
  15133. if (batch.seq_id) {
  15134. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  15135. free(batch.seq_id[i]);
  15136. }
  15137. free(batch.seq_id);
  15138. }
  15139. if (batch.logits) free(batch.logits);
  15140. }
  15141. int32_t llama_decode(
  15142. struct llama_context * ctx,
  15143. struct llama_batch batch) {
  15144. const int ret = llama_decode_internal(*ctx, batch);
  15145. if (ret < 0) {
  15146. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  15147. }
  15148. return ret;
  15149. }
  15150. void llama_synchronize(struct llama_context * ctx) {
  15151. ggml_backend_sched_synchronize(ctx->sched);
  15152. // FIXME: if multiple single tokens are evaluated without a synchronization,
  15153. // the stats will be added to the prompt evaluation stats
  15154. // this should only happen when using batch size 1 to evaluate a batch
  15155. // add the evaluation to the stats
  15156. if (ctx->n_queued_tokens == 1) {
  15157. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15158. ctx->n_eval++;
  15159. } else if (ctx->n_queued_tokens > 1) {
  15160. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15161. ctx->n_p_eval += ctx->n_queued_tokens;
  15162. }
  15163. // get a more accurate load time, upon first eval
  15164. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  15165. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  15166. ctx->has_evaluated_once = true;
  15167. }
  15168. ctx->n_queued_tokens = 0;
  15169. ctx->t_compute_start_us = 0;
  15170. }
  15171. float * llama_get_logits(struct llama_context * ctx) {
  15172. llama_synchronize(ctx);
  15173. return ctx->logits;
  15174. }
  15175. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  15176. int32_t j = -1;
  15177. llama_synchronize(ctx);
  15178. try {
  15179. if (ctx->logits == nullptr) {
  15180. throw std::runtime_error("no logits");
  15181. }
  15182. if (i < 0) {
  15183. j = ctx->n_outputs + i;
  15184. if (j < 0) {
  15185. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15186. }
  15187. } else if ((size_t) i >= ctx->output_ids.size()) {
  15188. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15189. } else {
  15190. j = ctx->output_ids[i];
  15191. }
  15192. if (j < 0) {
  15193. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15194. }
  15195. if (j >= ctx->n_outputs) {
  15196. // This should not happen
  15197. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15198. }
  15199. return ctx->logits + j*ctx->model.hparams.n_vocab;
  15200. } catch (const std::exception & err) {
  15201. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  15202. #ifndef NDEBUG
  15203. GGML_ASSERT(false);
  15204. #endif
  15205. return nullptr;
  15206. }
  15207. }
  15208. float * llama_get_embeddings(struct llama_context * ctx) {
  15209. llama_synchronize(ctx);
  15210. return ctx->embd;
  15211. }
  15212. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  15213. int32_t j = -1;
  15214. llama_synchronize(ctx);
  15215. try {
  15216. if (ctx->embd == nullptr) {
  15217. throw std::runtime_error("no embeddings");
  15218. }
  15219. if (i < 0) {
  15220. j = ctx->n_outputs + i;
  15221. if (j < 0) {
  15222. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15223. }
  15224. } else if ((size_t) i >= ctx->output_ids.size()) {
  15225. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15226. } else {
  15227. j = ctx->output_ids[i];
  15228. }
  15229. if (j < 0) {
  15230. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15231. }
  15232. if (j >= ctx->n_outputs) {
  15233. // This should not happen
  15234. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15235. }
  15236. return ctx->embd + j*ctx->model.hparams.n_embd;
  15237. } catch (const std::exception & err) {
  15238. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  15239. #ifndef NDEBUG
  15240. GGML_ASSERT(false);
  15241. #endif
  15242. return nullptr;
  15243. }
  15244. }
  15245. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  15246. llama_synchronize(ctx);
  15247. auto it = ctx->embd_seq.find(seq_id);
  15248. if (it == ctx->embd_seq.end()) {
  15249. return nullptr;
  15250. }
  15251. return it->second.data();
  15252. }
  15253. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  15254. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15255. return model->vocab.id_to_token[token].text.c_str();
  15256. }
  15257. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  15258. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15259. return model->vocab.id_to_token[token].score;
  15260. }
  15261. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  15262. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15263. return model->vocab.id_to_token[token].attr;
  15264. }
  15265. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15266. return token != -1 && (
  15267. token == llama_token_eos(model) ||
  15268. token == llama_token_eot(model)
  15269. );
  15270. }
  15271. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15272. return llama_is_control_token(model->vocab, token);
  15273. }
  15274. llama_token llama_token_bos(const struct llama_model * model) {
  15275. return model->vocab.special_bos_id;
  15276. }
  15277. llama_token llama_token_eos(const struct llama_model * model) {
  15278. return model->vocab.special_eos_id;
  15279. }
  15280. llama_token llama_token_cls(const struct llama_model * model) {
  15281. return model->vocab.special_cls_id;
  15282. }
  15283. llama_token llama_token_sep(const struct llama_model * model) {
  15284. return model->vocab.special_sep_id;
  15285. }
  15286. llama_token llama_token_nl(const struct llama_model * model) {
  15287. return model->vocab.linefeed_id;
  15288. }
  15289. int32_t llama_add_bos_token(const struct llama_model * model) {
  15290. return model->vocab.tokenizer_add_bos;
  15291. }
  15292. int32_t llama_add_eos_token(const struct llama_model * model) {
  15293. return model->vocab.tokenizer_add_eos;
  15294. }
  15295. llama_token llama_token_prefix(const struct llama_model * model) {
  15296. return model->vocab.special_prefix_id;
  15297. }
  15298. llama_token llama_token_middle(const struct llama_model * model) {
  15299. return model->vocab.special_middle_id;
  15300. }
  15301. llama_token llama_token_suffix(const struct llama_model * model) {
  15302. return model->vocab.special_suffix_id;
  15303. }
  15304. llama_token llama_token_eot(const struct llama_model * model) {
  15305. return model->vocab.special_eot_id;
  15306. }
  15307. int32_t llama_tokenize(
  15308. const struct llama_model * model,
  15309. const char * text,
  15310. int32_t text_len,
  15311. llama_token * tokens,
  15312. int32_t n_tokens_max,
  15313. bool add_special,
  15314. bool parse_special) {
  15315. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15316. if (n_tokens_max < (int) res.size()) {
  15317. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15318. return -((int) res.size());
  15319. }
  15320. for (size_t i = 0; i < res.size(); i++) {
  15321. tokens[i] = res[i];
  15322. }
  15323. return res.size();
  15324. }
  15325. static std::string llama_decode_text(const std::string & text) {
  15326. std::string decoded_text;
  15327. const auto cpts = unicode_cpts_from_utf8(text);
  15328. for (const auto cpt : cpts) {
  15329. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15330. try {
  15331. decoded_text += unicode_utf8_to_byte(utf8);
  15332. } catch (const std::out_of_range & e) {
  15333. decoded_text += "[UNK_BYTE_0x";
  15334. for (const auto c : utf8) {
  15335. decoded_text += format("%02x", (uint8_t) c);
  15336. }
  15337. decoded_text += text + "]";
  15338. }
  15339. }
  15340. return decoded_text;
  15341. }
  15342. // does not write null-terminator to buf
  15343. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15344. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  15345. if (!special && llama_is_control_token(model->vocab, token)) {
  15346. return 0;
  15347. }
  15348. // if we have a cache - use it
  15349. {
  15350. const auto & cache = model->vocab.cache_token_to_piece;
  15351. if (!cache.empty()) {
  15352. const auto & res = cache.at(token);
  15353. if (length < (int) res.size()) {
  15354. return -(int) res.size();
  15355. }
  15356. memcpy(buf, res.c_str(), res.size());
  15357. return res.size();
  15358. }
  15359. }
  15360. if (0 <= token && token < llama_n_vocab(model)) {
  15361. switch (llama_vocab_get_type(model->vocab)) {
  15362. case LLAMA_VOCAB_TYPE_WPM:
  15363. case LLAMA_VOCAB_TYPE_SPM: {
  15364. // NOTE: we accept all unsupported token types,
  15365. // suppressing them like CONTROL tokens.
  15366. if (llama_is_normal_token(model->vocab, token)) {
  15367. std::string result = model->vocab.id_to_token[token].text;
  15368. llama_unescape_whitespace(result);
  15369. if (length < (int) result.length()) {
  15370. return -(int) result.length();
  15371. }
  15372. memcpy(buf, result.c_str(), result.length());
  15373. return result.length();
  15374. } else if (
  15375. (llama_is_user_defined_token(model->vocab, token)) ||
  15376. (llama_is_control_token (model->vocab, token) && special)) {
  15377. std::string result = model->vocab.id_to_token[token].text;
  15378. if (length < (int) result.length()) {
  15379. return -(int) result.length();
  15380. }
  15381. memcpy(buf, result.c_str(), result.length());
  15382. return result.length();
  15383. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15384. if (length < 3) {
  15385. return -3;
  15386. }
  15387. memcpy(buf, "\xe2\x96\x85", 3);
  15388. return 3;
  15389. } else if (llama_is_byte_token(model->vocab, token)) {
  15390. if (length < 1) {
  15391. return -1;
  15392. }
  15393. buf[0] = llama_token_to_byte(model->vocab, token);
  15394. return 1;
  15395. }
  15396. break;
  15397. }
  15398. case LLAMA_VOCAB_TYPE_BPE: {
  15399. // NOTE: we accept all unsupported token types,
  15400. // suppressing them like CONTROL tokens.
  15401. if (llama_is_normal_token(model->vocab, token)) {
  15402. std::string result = model->vocab.id_to_token[token].text;
  15403. result = llama_decode_text(result);
  15404. if (length < (int) result.length()) {
  15405. return -(int) result.length();
  15406. }
  15407. memcpy(buf, result.c_str(), result.length());
  15408. return result.length();
  15409. } else if (
  15410. (llama_is_user_defined_token(model->vocab, token)) ||
  15411. (llama_is_control_token (model->vocab, token) && special)) {
  15412. std::string result = model->vocab.id_to_token[token].text;
  15413. if (length < (int) result.length()) {
  15414. return -(int) result.length();
  15415. }
  15416. memcpy(buf, result.c_str(), result.length());
  15417. return result.length();
  15418. }
  15419. break;
  15420. }
  15421. default:
  15422. GGML_ASSERT(false);
  15423. }
  15424. }
  15425. return 0;
  15426. }
  15427. // trim whitespace from the beginning and end of a string
  15428. static std::string trim(const std::string & str) {
  15429. size_t start = 0;
  15430. size_t end = str.size();
  15431. while (start < end && isspace(str[start])) {
  15432. start += 1;
  15433. }
  15434. while (end > start && isspace(str[end - 1])) {
  15435. end -= 1;
  15436. }
  15437. return str.substr(start, end - start);
  15438. }
  15439. // Simple version of "llama_apply_chat_template" that only works with strings
  15440. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15441. static int32_t llama_chat_apply_template_internal(
  15442. const std::string & tmpl,
  15443. const std::vector<const llama_chat_message *> & chat,
  15444. std::string & dest, bool add_ass) {
  15445. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15446. std::stringstream ss;
  15447. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15448. // chatml template
  15449. for (auto message : chat) {
  15450. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15451. }
  15452. if (add_ass) {
  15453. ss << "<|im_start|>assistant\n";
  15454. }
  15455. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15456. // llama2 template and its variants
  15457. // [variant] support system message
  15458. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15459. // [variant] space before + after response
  15460. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15461. // [variant] add BOS inside history
  15462. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15463. // [variant] trim spaces from the input message
  15464. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15465. // construct the prompt
  15466. bool is_inside_turn = true; // skip BOS at the beginning
  15467. ss << "[INST] ";
  15468. for (auto message : chat) {
  15469. std::string content = strip_message ? trim(message->content) : message->content;
  15470. std::string role(message->role);
  15471. if (!is_inside_turn) {
  15472. is_inside_turn = true;
  15473. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15474. }
  15475. if (role == "system") {
  15476. if (support_system_message) {
  15477. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15478. } else {
  15479. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15480. ss << content << "\n";
  15481. }
  15482. } else if (role == "user") {
  15483. ss << content << " [/INST]";
  15484. } else {
  15485. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15486. is_inside_turn = false;
  15487. }
  15488. }
  15489. // llama2 templates seem to not care about "add_generation_prompt"
  15490. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15491. // Phi 3
  15492. for (auto message : chat) {
  15493. std::string role(message->role);
  15494. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15495. }
  15496. if (add_ass) {
  15497. ss << "<|assistant|>\n";
  15498. }
  15499. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15500. // zephyr template
  15501. for (auto message : chat) {
  15502. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15503. }
  15504. if (add_ass) {
  15505. ss << "<|assistant|>\n";
  15506. }
  15507. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15508. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15509. for (auto message : chat) {
  15510. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15511. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15512. }
  15513. if (add_ass) {
  15514. ss << "<s>assistant\n";
  15515. }
  15516. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15517. // google/gemma-7b-it
  15518. std::string system_prompt = "";
  15519. for (auto message : chat) {
  15520. std::string role(message->role);
  15521. if (role == "system") {
  15522. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15523. system_prompt = trim(message->content);
  15524. continue;
  15525. }
  15526. // in gemma, "assistant" is "model"
  15527. role = role == "assistant" ? "model" : message->role;
  15528. ss << "<start_of_turn>" << role << "\n";
  15529. if (!system_prompt.empty() && role != "model") {
  15530. ss << system_prompt << "\n\n";
  15531. system_prompt = "";
  15532. }
  15533. ss << trim(message->content) << "<end_of_turn>\n";
  15534. }
  15535. if (add_ass) {
  15536. ss << "<start_of_turn>model\n";
  15537. }
  15538. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15539. // OrionStarAI/Orion-14B-Chat
  15540. std::string system_prompt = "";
  15541. for (auto message : chat) {
  15542. std::string role(message->role);
  15543. if (role == "system") {
  15544. // there is no system message support, we will merge it with user prompt
  15545. system_prompt = message->content;
  15546. continue;
  15547. } else if (role == "user") {
  15548. ss << "Human: ";
  15549. if (!system_prompt.empty()) {
  15550. ss << system_prompt << "\n\n";
  15551. system_prompt = "";
  15552. }
  15553. ss << message->content << "\n\nAssistant: </s>";
  15554. } else {
  15555. ss << message->content << "</s>";
  15556. }
  15557. }
  15558. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15559. // openchat/openchat-3.5-0106,
  15560. for (auto message : chat) {
  15561. std::string role(message->role);
  15562. if (role == "system") {
  15563. ss << message->content << "<|end_of_turn|>";
  15564. } else {
  15565. role[0] = toupper(role[0]);
  15566. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15567. }
  15568. }
  15569. if (add_ass) {
  15570. ss << "GPT4 Correct Assistant:";
  15571. }
  15572. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15573. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15574. for (auto message : chat) {
  15575. std::string role(message->role);
  15576. if (role == "system") {
  15577. // Orca-Vicuna variant uses a system prefix
  15578. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15579. ss << "SYSTEM: " << message->content << "\n";
  15580. } else {
  15581. ss << message->content << "\n\n";
  15582. }
  15583. } else if (role == "user") {
  15584. ss << "USER: " << message->content << "\n";
  15585. } else if (role == "assistant") {
  15586. ss << "ASSISTANT: " << message->content << "</s>\n";
  15587. }
  15588. }
  15589. if (add_ass) {
  15590. ss << "ASSISTANT:";
  15591. }
  15592. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15593. // deepseek-ai/deepseek-coder-33b-instruct
  15594. for (auto message : chat) {
  15595. std::string role(message->role);
  15596. if (role == "system") {
  15597. ss << message->content;
  15598. } else if (role == "user") {
  15599. ss << "### Instruction:\n" << message->content << "\n";
  15600. } else if (role == "assistant") {
  15601. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15602. }
  15603. }
  15604. if (add_ass) {
  15605. ss << "### Response:\n";
  15606. }
  15607. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15608. // CohereForAI/c4ai-command-r-plus
  15609. for (auto message : chat) {
  15610. std::string role(message->role);
  15611. if (role == "system") {
  15612. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15613. } else if (role == "user") {
  15614. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15615. } else if (role == "assistant") {
  15616. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15617. }
  15618. }
  15619. if (add_ass) {
  15620. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15621. }
  15622. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15623. // Llama 3
  15624. for (auto message : chat) {
  15625. std::string role(message->role);
  15626. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15627. }
  15628. if (add_ass) {
  15629. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15630. }
  15631. } else {
  15632. // template not supported
  15633. return -1;
  15634. }
  15635. dest = ss.str();
  15636. return dest.size();
  15637. }
  15638. LLAMA_API int32_t llama_chat_apply_template(
  15639. const struct llama_model * model,
  15640. const char * tmpl,
  15641. const struct llama_chat_message * chat,
  15642. size_t n_msg,
  15643. bool add_ass,
  15644. char * buf,
  15645. int32_t length) {
  15646. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15647. if (tmpl == nullptr) {
  15648. GGML_ASSERT(model != nullptr);
  15649. // load template from model
  15650. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15651. std::string template_key = "tokenizer.chat_template";
  15652. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15653. if (res < 0) {
  15654. // worst case: there is no information about template, we will use chatml by default
  15655. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15656. } else {
  15657. curr_tmpl = std::string(model_template.data(), model_template.size());
  15658. }
  15659. }
  15660. // format the chat to string
  15661. std::vector<const llama_chat_message *> chat_vec;
  15662. chat_vec.resize(n_msg);
  15663. for (size_t i = 0; i < n_msg; i++) {
  15664. chat_vec[i] = &chat[i];
  15665. }
  15666. std::string formatted_chat;
  15667. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15668. if (res < 0) {
  15669. return res;
  15670. }
  15671. if (buf && length > 0) {
  15672. strncpy(buf, formatted_chat.c_str(), length);
  15673. }
  15674. return res;
  15675. }
  15676. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15677. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15678. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15679. return strlen(split_path);
  15680. }
  15681. return 0;
  15682. }
  15683. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15684. std::string str_split_path(split_path);
  15685. char postfix[32];
  15686. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15687. std::string str_postfix(postfix);
  15688. // check if dest ends with postfix
  15689. int size_prefix = str_split_path.size() - str_postfix.size();
  15690. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15691. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15692. return size_prefix;
  15693. }
  15694. return 0;
  15695. }
  15696. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15697. struct llama_timings result = {
  15698. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15699. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15700. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15701. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15702. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15703. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15704. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15705. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15706. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15707. };
  15708. return result;
  15709. }
  15710. void llama_print_timings(struct llama_context * ctx) {
  15711. const llama_timings timings = llama_get_timings(ctx);
  15712. LLAMA_LOG_INFO("\n");
  15713. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15714. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15715. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15716. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15717. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15718. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15719. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15720. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15721. }
  15722. void llama_reset_timings(struct llama_context * ctx) {
  15723. ctx->t_start_us = ggml_time_us();
  15724. ctx->t_sample_us = ctx->n_sample = 0;
  15725. ctx->t_eval_us = ctx->n_eval = 0;
  15726. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15727. }
  15728. const char * llama_print_system_info(void) {
  15729. static std::string s;
  15730. s = "";
  15731. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15732. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15733. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15734. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15735. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15736. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15737. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15738. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15739. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15740. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15741. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15742. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15743. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15744. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15745. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15746. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15747. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15748. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15749. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15750. #ifdef GGML_USE_LLAMAFILE
  15751. s += "LLAMAFILE = 1 | ";
  15752. #else
  15753. s += "LLAMAFILE = 0 | ";
  15754. #endif
  15755. return s.c_str();
  15756. }
  15757. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15758. fprintf(stream, "\n");
  15759. fprintf(stream, "###########\n");
  15760. fprintf(stream, "# Timings #\n");
  15761. fprintf(stream, "###########\n");
  15762. fprintf(stream, "\n");
  15763. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15764. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15765. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15766. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15767. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15768. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15769. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15770. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15771. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15772. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15773. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15774. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15775. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15776. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15777. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15778. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15779. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15780. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15781. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15782. }
  15783. // For internal test use
  15784. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15785. struct llama_context * ctx
  15786. ) {
  15787. return ctx->model.tensors_by_name;
  15788. }
  15789. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15790. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15791. g_state.log_callback_user_data = user_data;
  15792. #ifdef GGML_USE_METAL
  15793. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15794. #elif defined(GGML_USE_CUDA)
  15795. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15796. #endif
  15797. }
  15798. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15799. va_list args_copy;
  15800. va_copy(args_copy, args);
  15801. char buffer[128];
  15802. int len = vsnprintf(buffer, 128, format, args);
  15803. if (len < 128) {
  15804. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15805. } else {
  15806. char* buffer2 = new char[len+1];
  15807. vsnprintf(buffer2, len+1, format, args_copy);
  15808. buffer2[len] = 0;
  15809. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15810. delete[] buffer2;
  15811. }
  15812. va_end(args_copy);
  15813. }
  15814. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15815. va_list args;
  15816. va_start(args, format);
  15817. llama_log_internal_v(level, format, args);
  15818. va_end(args);
  15819. }
  15820. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15821. (void) level;
  15822. (void) user_data;
  15823. fputs(text, stderr);
  15824. fflush(stderr);
  15825. }