ggml-metal.m 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. #import "ggml-metal.h"
  2. #import "ggml.h"
  3. #import <Foundation/Foundation.h>
  4. #import <Metal/Metal.h>
  5. #import <MetalPerformanceShaders/MetalPerformanceShaders.h>
  6. #ifdef GGML_METAL_NDEBUG
  7. #define metal_printf(...)
  8. #else
  9. #define metal_printf(...) fprintf(stderr, __VA_ARGS__)
  10. #endif
  11. #define UNUSED(x) (void)(x)
  12. struct ggml_metal_buffer {
  13. const char * name;
  14. void * data;
  15. size_t size;
  16. id<MTLBuffer> metal;
  17. };
  18. struct ggml_metal_context {
  19. float * logits;
  20. id<MTLDevice> device;
  21. id<MTLCommandQueue> queue;
  22. id<MTLLibrary> library;
  23. int n_buffers;
  24. struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
  25. // custom kernels
  26. #define GGML_METAL_DECL_KERNEL(name) \
  27. id<MTLFunction> function_##name; \
  28. id<MTLComputePipelineState> pipeline_##name
  29. GGML_METAL_DECL_KERNEL(add);
  30. GGML_METAL_DECL_KERNEL(mul);
  31. GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
  32. GGML_METAL_DECL_KERNEL(scale);
  33. GGML_METAL_DECL_KERNEL(silu);
  34. GGML_METAL_DECL_KERNEL(relu);
  35. GGML_METAL_DECL_KERNEL(gelu);
  36. GGML_METAL_DECL_KERNEL(soft_max);
  37. GGML_METAL_DECL_KERNEL(diag_mask_inf);
  38. GGML_METAL_DECL_KERNEL(get_rows_f16);
  39. GGML_METAL_DECL_KERNEL(get_rows_q4_0);
  40. GGML_METAL_DECL_KERNEL(get_rows_q4_1);
  41. GGML_METAL_DECL_KERNEL(get_rows_q2_k);
  42. GGML_METAL_DECL_KERNEL(get_rows_q4_k);
  43. GGML_METAL_DECL_KERNEL(get_rows_q6_k);
  44. GGML_METAL_DECL_KERNEL(rms_norm);
  45. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
  46. GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
  47. GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
  48. GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
  49. GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
  50. GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
  51. GGML_METAL_DECL_KERNEL(rope);
  52. GGML_METAL_DECL_KERNEL(cpy_f32_f16);
  53. GGML_METAL_DECL_KERNEL(cpy_f32_f32);
  54. #undef GGML_METAL_DECL_KERNEL
  55. };
  56. // MSL code
  57. // TODO: move the contents here when ready
  58. // for now it is easier to work in a separate file
  59. static NSString * const msl_library_source = @"see metal.metal";
  60. struct ggml_metal_context * ggml_metal_init(void) {
  61. fprintf(stderr, "%s: allocating\n", __func__);
  62. struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
  63. ctx->device = MTLCreateSystemDefaultDevice();
  64. ctx->queue = [ctx->device newCommandQueue];
  65. // determine if we can use MPS
  66. if (MPSSupportsMTLDevice(ctx->device)) {
  67. fprintf(stderr, "%s: using MPS\n", __func__);
  68. } else {
  69. fprintf(stderr, "%s: not using MPS\n", __func__);
  70. GGML_ASSERT(false && "MPS not supported");
  71. }
  72. #if 0
  73. // compile from source string and show compile log
  74. {
  75. NSError * error = nil;
  76. ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
  77. if (error) {
  78. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  79. exit(1);
  80. }
  81. }
  82. #else
  83. UNUSED(msl_library_source);
  84. // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
  85. {
  86. NSError * error = nil;
  87. //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
  88. NSString * path = [[NSBundle mainBundle] pathForResource:@"ggml-metal" ofType:@"metal"];
  89. fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
  90. NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
  91. if (error) {
  92. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  93. exit(1);
  94. }
  95. ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
  96. if (error) {
  97. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  98. exit(1);
  99. }
  100. }
  101. #endif
  102. // load kernels
  103. {
  104. #define GGML_METAL_ADD_KERNEL(name) \
  105. ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
  106. ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
  107. fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
  108. GGML_METAL_ADD_KERNEL(add);
  109. GGML_METAL_ADD_KERNEL(mul);
  110. GGML_METAL_ADD_KERNEL(mul_row);
  111. GGML_METAL_ADD_KERNEL(scale);
  112. GGML_METAL_ADD_KERNEL(silu);
  113. GGML_METAL_ADD_KERNEL(relu);
  114. GGML_METAL_ADD_KERNEL(gelu);
  115. GGML_METAL_ADD_KERNEL(soft_max);
  116. GGML_METAL_ADD_KERNEL(diag_mask_inf);
  117. GGML_METAL_ADD_KERNEL(get_rows_f16);
  118. GGML_METAL_ADD_KERNEL(get_rows_q4_0);
  119. GGML_METAL_ADD_KERNEL(get_rows_q4_1);
  120. GGML_METAL_ADD_KERNEL(get_rows_q2_k);
  121. GGML_METAL_ADD_KERNEL(get_rows_q4_k);
  122. GGML_METAL_ADD_KERNEL(get_rows_q6_k);
  123. GGML_METAL_ADD_KERNEL(rms_norm);
  124. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
  125. GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
  126. GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
  127. GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
  128. GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
  129. GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
  130. GGML_METAL_ADD_KERNEL(rope);
  131. GGML_METAL_ADD_KERNEL(cpy_f32_f16);
  132. GGML_METAL_ADD_KERNEL(cpy_f32_f32);
  133. #undef GGML_METAL_ADD_KERNEL
  134. }
  135. return ctx;
  136. }
  137. void ggml_metal_free(struct ggml_metal_context * ctx) {
  138. fprintf(stderr, "%s: deallocating\n", __func__);
  139. free(ctx);
  140. }
  141. // finds the Metal buffer that contains the tensor data on the GPU device
  142. // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
  143. // Metal buffer based on the host memory pointer
  144. //
  145. static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
  146. //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
  147. for (int i = 0; i < ctx->n_buffers; ++i) {
  148. const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
  149. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  150. *offs = (size_t) ioffs;
  151. //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
  152. return ctx->buffers[i].metal;
  153. }
  154. }
  155. fprintf(stderr, "%s: error: buffer is nil\n", __func__);
  156. return nil;
  157. }
  158. bool ggml_metal_add_buffer(
  159. struct ggml_metal_context * ctx,
  160. const char * name,
  161. void * data,
  162. size_t size) {
  163. if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
  164. fprintf(stderr, "%s: too many buffers\n", __func__);
  165. return false;
  166. }
  167. if (data) {
  168. // verify that the buffer does not overlap with any of the existing buffers
  169. for (int i = 0; i < ctx->n_buffers; ++i) {
  170. const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
  171. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  172. fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
  173. return false;
  174. }
  175. }
  176. size_t page_size = getpagesize();
  177. size_t aligned_size = size;
  178. if ((aligned_size % page_size) != 0) {
  179. aligned_size += (page_size - (aligned_size % page_size));
  180. }
  181. ctx->buffers[ctx->n_buffers].name = name;
  182. ctx->buffers[ctx->n_buffers].data = data;
  183. ctx->buffers[ctx->n_buffers].size = size;
  184. if (ctx->device.maxBufferLength < aligned_size) {
  185. fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
  186. return false;
  187. }
  188. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
  189. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  190. fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  191. return false;
  192. } else {
  193. fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  194. }
  195. ++ctx->n_buffers;
  196. }
  197. return true;
  198. }
  199. void ggml_metal_set_tensor(
  200. struct ggml_metal_context * ctx,
  201. struct ggml_tensor * t) {
  202. metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
  203. size_t offs;
  204. id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
  205. memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
  206. }
  207. void ggml_metal_get_tensor(
  208. struct ggml_metal_context * ctx,
  209. struct ggml_tensor * t) {
  210. metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
  211. size_t offs;
  212. id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
  213. memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
  214. }
  215. void ggml_metal_graph_compute(
  216. struct ggml_metal_context * ctx,
  217. struct ggml_cgraph * gf) {
  218. metal_printf("%s: evaluating graph\n", __func__);
  219. size_t offs_src0 = 0;
  220. size_t offs_src1 = 0;
  221. size_t offs_dst = 0;
  222. id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
  223. id<MTLComputeCommandEncoder> encoder = nil;
  224. for (int i = 0; i < gf->n_nodes; ++i) {
  225. //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
  226. struct ggml_tensor * src0 = gf->nodes[i]->src0;
  227. struct ggml_tensor * src1 = gf->nodes[i]->src1;
  228. struct ggml_tensor * dst = gf->nodes[i];
  229. const int64_t ne00 = src0 ? src0->ne[0] : 0;
  230. const int64_t ne01 = src0 ? src0->ne[1] : 0;
  231. const int64_t ne02 = src0 ? src0->ne[2] : 0;
  232. const int64_t ne03 = src0 ? src0->ne[3] : 0;
  233. const uint64_t nb00 = src0 ? src0->nb[0] : 0;
  234. const uint64_t nb01 = src0 ? src0->nb[1] : 0;
  235. const uint64_t nb02 = src0 ? src0->nb[2] : 0;
  236. const uint64_t nb03 = src0 ? src0->nb[3] : 0;
  237. const int64_t ne10 = src1 ? src1->ne[0] : 0;
  238. const int64_t ne11 = src1 ? src1->ne[1] : 0;
  239. const int64_t ne12 = src1 ? src1->ne[2] : 0;
  240. const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  241. const uint64_t nb10 = src1 ? src1->nb[0] : 0;
  242. const uint64_t nb11 = src1 ? src1->nb[1] : 0;
  243. const uint64_t nb12 = src1 ? src1->nb[2] : 0;
  244. const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  245. const int64_t ne0 = dst ? dst->ne[0] : 0;
  246. const int64_t ne1 = dst ? dst->ne[1] : 0;
  247. const int64_t ne2 = dst ? dst->ne[2] : 0;
  248. const int64_t ne3 = dst ? dst->ne[3] : 0;
  249. const uint64_t nb0 = dst ? dst->nb[0] : 0;
  250. const uint64_t nb1 = dst ? dst->nb[1] : 0;
  251. const uint64_t nb2 = dst ? dst->nb[2] : 0;
  252. const uint64_t nb3 = dst ? dst->nb[3] : 0;
  253. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  254. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  255. const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
  256. id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
  257. id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
  258. id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
  259. //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
  260. //if (src0) {
  261. // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
  262. // ggml_is_contiguous(src0), src0->name);
  263. //}
  264. //if (src1) {
  265. // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
  266. // ggml_is_contiguous(src1), src1->name);
  267. //}
  268. //if (dst) {
  269. // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
  270. // dst->name);
  271. //}
  272. switch (dst->op) {
  273. case GGML_OP_RESHAPE:
  274. case GGML_OP_VIEW:
  275. case GGML_OP_TRANSPOSE:
  276. case GGML_OP_PERMUTE:
  277. {
  278. // noop
  279. } break;
  280. case GGML_OP_ADD:
  281. {
  282. if (encoder == nil) {
  283. encoder = [command_buffer computeCommandEncoder];
  284. }
  285. [encoder setComputePipelineState:ctx->pipeline_add];
  286. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  287. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  288. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  289. const int64_t n = ggml_nelements(dst);
  290. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  291. } break;
  292. case GGML_OP_MUL:
  293. {
  294. if (encoder == nil) {
  295. encoder = [command_buffer computeCommandEncoder];
  296. }
  297. if (ggml_nelements(src1) == ne10) {
  298. // src1 is a row
  299. [encoder setComputePipelineState:ctx->pipeline_mul_row];
  300. } else {
  301. [encoder setComputePipelineState:ctx->pipeline_mul];
  302. }
  303. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  304. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  305. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  306. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  307. const int64_t n = ggml_nelements(dst);
  308. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  309. } break;
  310. case GGML_OP_SCALE:
  311. {
  312. if (encoder == nil) {
  313. encoder = [command_buffer computeCommandEncoder];
  314. }
  315. const float scale = *(const float *) src1->data;
  316. [encoder setComputePipelineState:ctx->pipeline_scale];
  317. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  318. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  319. [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
  320. const int64_t n = ggml_nelements(dst);
  321. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  322. } break;
  323. case GGML_OP_SILU:
  324. {
  325. if (encoder == nil) {
  326. encoder = [command_buffer computeCommandEncoder];
  327. }
  328. [encoder setComputePipelineState:ctx->pipeline_silu];
  329. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  330. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  331. const int64_t n = ggml_nelements(dst);
  332. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  333. } break;
  334. case GGML_OP_RELU:
  335. {
  336. if (encoder == nil) {
  337. encoder = [command_buffer computeCommandEncoder];
  338. }
  339. [encoder setComputePipelineState:ctx->pipeline_relu];
  340. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  341. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  342. const int64_t n = ggml_nelements(dst);
  343. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  344. } break;
  345. case GGML_OP_GELU:
  346. {
  347. if (encoder == nil) {
  348. encoder = [command_buffer computeCommandEncoder];
  349. }
  350. [encoder setComputePipelineState:ctx->pipeline_gelu];
  351. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  352. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  353. const int64_t n = ggml_nelements(dst);
  354. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  355. } break;
  356. case GGML_OP_SOFT_MAX:
  357. {
  358. if (encoder == nil) {
  359. encoder = [command_buffer computeCommandEncoder];
  360. }
  361. const int nth = 32;
  362. [encoder setComputePipelineState:ctx->pipeline_soft_max];
  363. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  364. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  365. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  366. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  367. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  368. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  369. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  370. } break;
  371. case GGML_OP_DIAG_MASK_INF:
  372. {
  373. if (encoder == nil) {
  374. encoder = [command_buffer computeCommandEncoder];
  375. }
  376. const int n_past = ((int32_t *)(src1->data))[0];
  377. [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
  378. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  379. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  380. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  381. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  382. [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
  383. [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  384. } break;
  385. case GGML_OP_MUL_MAT:
  386. {
  387. // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
  388. GGML_ASSERT(ne00 == ne10);
  389. GGML_ASSERT(ne02 == ne12);
  390. if (ggml_is_contiguous(src0) &&
  391. ggml_is_contiguous(src1) &&
  392. (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
  393. if (encoder != nil) {
  394. [encoder endEncoding];
  395. encoder = nil;
  396. }
  397. MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  398. MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  399. // for F32 x F32 we use MPS
  400. MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
  401. matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
  402. MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
  403. matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
  404. MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
  405. matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
  406. MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
  407. initWithDevice:ctx->device transposeLeft:false transposeRight:true
  408. resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
  409. // we need to do ne02 multiplications
  410. // TODO: is there a way to do this in parallel - currently very slow ..
  411. // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
  412. for (int64_t i02 = 0; i02 < ne02; ++i02) {
  413. size_t offs_src0_cur = offs_src0 + i02*nb02;
  414. size_t offs_src1_cur = offs_src1 + i02*nb12;
  415. size_t offs_dst_cur = offs_dst + i02*nb2;
  416. MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
  417. MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
  418. MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
  419. [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
  420. }
  421. } else {
  422. if (encoder == nil) {
  423. encoder = [command_buffer computeCommandEncoder];
  424. }
  425. int nth0 = 32;
  426. int nth1 = 1;
  427. // use custom matrix x vector kernel
  428. switch (src0t) {
  429. case GGML_TYPE_F16:
  430. {
  431. GGML_ASSERT(ne02 == ne12);
  432. nth0 = 64;
  433. nth1 = 1;
  434. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
  435. } break;
  436. case GGML_TYPE_Q4_0:
  437. {
  438. GGML_ASSERT(ne02 == 1);
  439. GGML_ASSERT(ne12 == 1);
  440. nth0 = 8;
  441. nth1 = 8;
  442. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
  443. } break;
  444. case GGML_TYPE_Q4_1:
  445. {
  446. GGML_ASSERT(ne02 == 1);
  447. GGML_ASSERT(ne12 == 1);
  448. nth0 = 8;
  449. nth1 = 8;
  450. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
  451. } break;
  452. case GGML_TYPE_Q2_K:
  453. {
  454. GGML_ASSERT(ne02 == 1);
  455. GGML_ASSERT(ne12 == 1);
  456. nth0 = 4;
  457. nth1 = 16;
  458. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
  459. } break;
  460. case GGML_TYPE_Q4_K:
  461. {
  462. GGML_ASSERT(ne02 == 1);
  463. GGML_ASSERT(ne12 == 1);
  464. nth0 = 4;
  465. nth1 = 16;
  466. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
  467. } break;
  468. case GGML_TYPE_Q6_K:
  469. {
  470. GGML_ASSERT(ne02 == 1);
  471. GGML_ASSERT(ne12 == 1);
  472. nth0 = 4;
  473. nth1 = 16;
  474. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
  475. } break;
  476. default:
  477. {
  478. fprintf(stderr, "Asserting on type %d\n",(int)src0t);
  479. GGML_ASSERT(false && "not implemented");
  480. }
  481. };
  482. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  483. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  484. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  485. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  486. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  487. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
  488. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
  489. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
  490. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
  491. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
  492. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
  493. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
  494. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
  495. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
  496. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
  497. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
  498. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  499. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  500. } else if (src0t == GGML_TYPE_Q2_K) {
  501. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  502. [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  503. } else if (src0t == GGML_TYPE_Q4_K) {
  504. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  505. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  506. } else if (src0t == GGML_TYPE_Q6_K) {
  507. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  508. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  509. } else {
  510. [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
  511. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  512. }
  513. }
  514. } break;
  515. case GGML_OP_GET_ROWS:
  516. {
  517. if (encoder == nil) {
  518. encoder = [command_buffer computeCommandEncoder];
  519. }
  520. switch (src0->type) {
  521. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
  522. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
  523. case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
  524. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
  525. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
  526. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
  527. default: GGML_ASSERT(false && "not implemented");
  528. }
  529. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  530. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  531. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  532. [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
  533. [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
  534. [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
  535. const int64_t n = ggml_nelements(src1);
  536. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  537. } break;
  538. case GGML_OP_RMS_NORM:
  539. {
  540. if (encoder == nil) {
  541. encoder = [command_buffer computeCommandEncoder];
  542. }
  543. const float eps = 1e-6f;
  544. const int nth = 256;
  545. [encoder setComputePipelineState:ctx->pipeline_rms_norm];
  546. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  547. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  548. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  549. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  550. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  551. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  552. const int64_t nrows = ggml_nrows(src0);
  553. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  554. } break;
  555. case GGML_OP_ROPE:
  556. {
  557. if (encoder == nil) {
  558. encoder = [command_buffer computeCommandEncoder];
  559. }
  560. const int n_dims = ((int32_t *) src1->data)[1];
  561. const int mode = ((int32_t *) src1->data)[2];
  562. const int n_past = ((int32_t *)(src1->data))[0];
  563. [encoder setComputePipelineState:ctx->pipeline_rope];
  564. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  565. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  566. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  567. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  568. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  569. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  570. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  571. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  572. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  573. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  574. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  575. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  576. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  577. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  578. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  579. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  580. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  581. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  582. [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
  583. [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
  584. [encoder setBytes:&mode length:sizeof( int) atIndex:20];
  585. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  586. } break;
  587. case GGML_OP_CPY:
  588. {
  589. if (encoder == nil) {
  590. encoder = [command_buffer computeCommandEncoder];
  591. }
  592. const int nth = 32;
  593. switch (src0t) {
  594. case GGML_TYPE_F32:
  595. {
  596. switch (dstt) {
  597. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
  598. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
  599. default: GGML_ASSERT(false && "not implemented");
  600. };
  601. } break;
  602. default: GGML_ASSERT(false && "not implemented");
  603. }
  604. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  605. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  606. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  607. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  608. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  609. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  610. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  611. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  612. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  613. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  614. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  615. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  616. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  617. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  618. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  619. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  620. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  621. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  622. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  623. } break;
  624. default:
  625. fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  626. GGML_ASSERT(false);
  627. }
  628. }
  629. if (encoder != nil) {
  630. [encoder endEncoding];
  631. encoder = nil;
  632. }
  633. [command_buffer commit];
  634. [command_buffer waitUntilCompleted];
  635. {
  636. const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
  637. UNUSED(time_elapsed);
  638. metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
  639. }
  640. }