llama-model.cpp 522 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <sstream>
  18. #include <stdexcept>
  19. const char * llm_type_name(llm_type type) {
  20. switch (type) {
  21. case LLM_TYPE_14M: return "14M";
  22. case LLM_TYPE_17M: return "17M";
  23. case LLM_TYPE_22M: return "22M";
  24. case LLM_TYPE_33M: return "33M";
  25. case LLM_TYPE_60M: return "60M";
  26. case LLM_TYPE_70M: return "70M";
  27. case LLM_TYPE_80M: return "80M";
  28. case LLM_TYPE_109M: return "109M";
  29. case LLM_TYPE_137M: return "137M";
  30. case LLM_TYPE_160M: return "160M";
  31. case LLM_TYPE_190M: return "190M";
  32. case LLM_TYPE_220M: return "220M";
  33. case LLM_TYPE_250M: return "250M";
  34. case LLM_TYPE_270M: return "270M";
  35. case LLM_TYPE_335M: return "335M";
  36. case LLM_TYPE_410M: return "410M";
  37. case LLM_TYPE_450M: return "450M";
  38. case LLM_TYPE_770M: return "770M";
  39. case LLM_TYPE_780M: return "780M";
  40. case LLM_TYPE_0_5B: return "0.5B";
  41. case LLM_TYPE_1B: return "1B";
  42. case LLM_TYPE_1_3B: return "1.3B";
  43. case LLM_TYPE_1_4B: return "1.4B";
  44. case LLM_TYPE_1_5B: return "1.5B";
  45. case LLM_TYPE_1_6B: return "1.6B";
  46. case LLM_TYPE_2B: return "2B";
  47. case LLM_TYPE_2_8B: return "2.8B";
  48. case LLM_TYPE_2_9B: return "2.9B";
  49. case LLM_TYPE_3B: return "3B";
  50. case LLM_TYPE_4B: return "4B";
  51. case LLM_TYPE_6B: return "6B";
  52. case LLM_TYPE_6_9B: return "6.9B";
  53. case LLM_TYPE_7B: return "7B";
  54. case LLM_TYPE_8B: return "8B";
  55. case LLM_TYPE_9B: return "9B";
  56. case LLM_TYPE_11B: return "11B";
  57. case LLM_TYPE_12B: return "12B";
  58. case LLM_TYPE_13B: return "13B";
  59. case LLM_TYPE_14B: return "14B";
  60. case LLM_TYPE_15B: return "15B";
  61. case LLM_TYPE_16B: return "16B";
  62. case LLM_TYPE_20B: return "20B";
  63. case LLM_TYPE_30B: return "30B";
  64. case LLM_TYPE_32B: return "32B";
  65. case LLM_TYPE_34B: return "34B";
  66. case LLM_TYPE_35B: return "35B";
  67. case LLM_TYPE_40B: return "40B";
  68. case LLM_TYPE_65B: return "65B";
  69. case LLM_TYPE_70B: return "70B";
  70. case LLM_TYPE_236B: return "236B";
  71. case LLM_TYPE_314B: return "314B";
  72. case LLM_TYPE_671B: return "671B";
  73. case LLM_TYPE_SMALL: return "0.1B";
  74. case LLM_TYPE_MEDIUM: return "0.4B";
  75. case LLM_TYPE_LARGE: return "0.8B";
  76. case LLM_TYPE_XL: return "1.5B";
  77. case LLM_TYPE_A1_7B: return "A1.7B";
  78. case LLM_TYPE_A2_7B: return "A2.7B";
  79. case LLM_TYPE_8x7B: return "8x7B";
  80. case LLM_TYPE_8x22B: return "8x22B";
  81. case LLM_TYPE_16x12B: return "16x12B";
  82. case LLM_TYPE_16x3_8B: return "16x3.8B";
  83. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  84. case LLM_TYPE_57B_A14B: return "57B.A14B";
  85. case LLM_TYPE_27B: return "27B";
  86. default: return "?B";
  87. }
  88. }
  89. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  90. switch (type) {
  91. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  92. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  93. default: return "unknown";
  94. }
  95. }
  96. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  97. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  98. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  99. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  100. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  101. };
  102. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  103. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  104. if (kv.second == name) {
  105. return (llama_rope_scaling_type) kv.first;
  106. }
  107. }
  108. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  109. }
  110. // checks if the weight tensor can be used with the specified buffer type and device
  111. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  112. GGML_ASSERT(w != nullptr);
  113. if (op == GGML_OP_NONE) {
  114. return true;
  115. }
  116. ggml_init_params params = {
  117. /*.mem_size =*/ ggml_tensor_overhead()*8,
  118. /*.mem_buffer =*/ NULL,
  119. /*.no_alloc =*/ true,
  120. };
  121. ggml_context_ptr ctx_ptr { ggml_init(params) };
  122. if (!ctx_ptr) {
  123. throw std::runtime_error(format("failed to create ggml context"));
  124. }
  125. ggml_context * ctx = ctx_ptr.get();
  126. ggml_tensor * op_tensor = nullptr;
  127. switch (op) {
  128. case GGML_OP_GET_ROWS:
  129. {
  130. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  131. op_tensor = ggml_get_rows(ctx, w, b);
  132. } break;
  133. case GGML_OP_MUL_MAT:
  134. {
  135. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  136. op_tensor = ggml_mul_mat(ctx, w, b);
  137. } break;
  138. case GGML_OP_MUL_MAT_ID:
  139. {
  140. int n_expert_used = hparams.n_expert_used;
  141. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  142. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  143. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  144. } break;
  145. case GGML_OP_ADD:
  146. {
  147. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  148. op_tensor = ggml_add(ctx, a, w);
  149. } break;
  150. case GGML_OP_MUL:
  151. {
  152. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  153. op_tensor = ggml_mul(ctx, a, w);
  154. } break;
  155. case GGML_OP_DIV:
  156. {
  157. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  158. op_tensor = ggml_div(ctx, a, w);
  159. } break;
  160. case GGML_OP_ROPE:
  161. {
  162. int n_embd_head = hparams.n_embd_head_v;
  163. int n_head = hparams.n_head();
  164. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  165. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  166. op_tensor = ggml_rope_ext(
  167. ctx, a, b, w,
  168. 0, 0, 0, 0, 0,
  169. 0, 0, 0, 0
  170. );
  171. } break;
  172. case GGML_OP_SSM_CONV:
  173. {
  174. // FIXME
  175. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  176. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  177. } break;
  178. case GGML_OP_SSM_SCAN:
  179. {
  180. // FIXME
  181. const int64_t d_state = w->ne[0];
  182. const int64_t d_inner = w->ne[1];
  183. const int64_t n_seq_tokens = 512;
  184. const int64_t n_seqs = 1;
  185. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  186. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  187. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  188. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  189. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  190. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  191. } break;
  192. case GGML_OP_RWKV_WKV6:
  193. {
  194. // FIXME
  195. const int64_t S = 123;
  196. const int64_t H = 123;
  197. const int64_t n_tokens = 123;
  198. const int64_t n_seqs = 123;
  199. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  200. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  201. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  202. ggml_tensor * tf = w;
  203. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  204. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  205. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  206. } break;
  207. case GGML_OP_IM2COL:
  208. {
  209. const int n_embd = hparams.n_embd;
  210. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  211. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  212. } break;
  213. default:
  214. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  215. }
  216. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  217. GGML_ASSERT(w->buffer == nullptr);
  218. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  219. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  220. ggml_backend_buffer_free(w->buffer);
  221. w->buffer = nullptr;
  222. return op_supported;
  223. }
  224. // lists of buffer types used for each layer
  225. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  226. // find the first buffer type in the list that can use the tensor
  227. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  228. GGML_ASSERT(!buft_list.empty());
  229. for (const auto & cur : buft_list) {
  230. ggml_backend_dev_t cur_dev = cur.first;
  231. ggml_backend_buffer_type_t cur_buft = cur.second;
  232. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  233. return cur_buft;
  234. }
  235. }
  236. return nullptr;
  237. }
  238. // CPU: ACCEL -> CPU extra -> GPU host -> CPU
  239. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  240. buft_list_t buft_list;
  241. // add ACCEL buffer types
  242. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  243. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  244. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  245. auto * buft = ggml_backend_dev_buffer_type(dev);
  246. // skip
  247. if (buft != ggml_backend_cpu_buffer_type()) {
  248. buft_list.emplace_back(dev, buft);
  249. }
  250. }
  251. }
  252. bool has_gpu_device = false;
  253. for (auto * dev : devices) {
  254. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
  255. has_gpu_device = true;
  256. break;
  257. }
  258. }
  259. // add extra buffer types, only if no GPU device is present
  260. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  261. if (!has_gpu_device) {
  262. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  263. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  264. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  265. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  266. if (ggml_backend_dev_get_extra_bufts_fn) {
  267. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  268. while (extra_bufts && *extra_bufts) {
  269. buft_list.emplace_back(cpu_dev, *extra_bufts);
  270. ++extra_bufts;
  271. }
  272. }
  273. } else {
  274. LLAMA_LOG_WARN("%s: disabling extra buffer types (i.e. repacking) since a GPU device is available\n", __func__);
  275. }
  276. // add a host buffer type
  277. // storing the tensors in a host buffer is useful when the processing of large batches
  278. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  279. // generally, this will be done using the first device in the list
  280. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  281. // function of the device to determine if it would benefit from being stored in a host buffer
  282. for (auto * dev : devices) {
  283. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  284. if (buft) {
  285. buft_list.emplace_back(dev, buft);
  286. break;
  287. }
  288. }
  289. // add the CPU buffer type
  290. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  291. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  292. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  293. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  294. }
  295. }
  296. return buft_list;
  297. }
  298. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  299. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  300. buft_list_t buft_list;
  301. // add the device split buffer type if requested and available
  302. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  303. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  304. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  305. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  306. if (ggml_backend_split_buffer_type_fn) {
  307. size_t dev_index = [&]() {
  308. auto * reg = ggml_backend_dev_backend_reg(dev);
  309. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  310. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  311. return i;
  312. }
  313. }
  314. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  315. }();
  316. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  317. if (buft != nullptr) {
  318. buft_list.emplace_back(dev, buft);
  319. }
  320. }
  321. }
  322. // add the device default buffer type
  323. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  324. return buft_list;
  325. }
  326. struct llama_model::impl {
  327. impl() {}
  328. ~impl() {}
  329. uint64_t n_elements = 0;
  330. size_t n_bytes = 0;
  331. std::string desc_str;
  332. // model memory mapped files
  333. llama_mmaps mappings;
  334. // objects representing data potentially being locked in memory
  335. llama_mlocks mlock_bufs;
  336. llama_mlocks mlock_mmaps;
  337. // contexts where the model tensors metadata is stored
  338. std::vector<ggml_context_ptr> ctxs;
  339. // the model memory buffers for the tensor data
  340. std::vector<ggml_backend_buffer_ptr> bufs;
  341. buft_list_t cpu_buft_list;
  342. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  343. struct layer_dev {
  344. ggml_backend_dev_t dev;
  345. buft_list_t * buft_list;
  346. };
  347. layer_dev dev_input = {};
  348. layer_dev dev_output = {};
  349. std::vector<layer_dev> dev_layer;
  350. };
  351. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  352. }
  353. llama_model::~llama_model() {}
  354. void llama_model::load_stats(llama_model_loader & ml) {
  355. pimpl->n_elements = ml.n_elements;
  356. pimpl->n_bytes = ml.n_bytes;
  357. }
  358. void llama_model::load_arch(llama_model_loader & ml) {
  359. arch = ml.get_arch();
  360. if (arch == LLM_ARCH_UNKNOWN) {
  361. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  362. }
  363. }
  364. void llama_model::load_hparams(llama_model_loader & ml) {
  365. const gguf_context * ctx = ml.meta.get();
  366. // get metadata as string
  367. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  368. gguf_type type = gguf_get_kv_type(ctx, i);
  369. if (type == GGUF_TYPE_ARRAY) {
  370. continue;
  371. }
  372. const char * name = gguf_get_key(ctx, i);
  373. const std::string value = gguf_kv_to_str(ctx, i);
  374. gguf_kv.emplace(name, value);
  375. }
  376. // get general kv
  377. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  378. // everything past this point is not vocab-related
  379. if (hparams.vocab_only) {
  380. return;
  381. }
  382. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  383. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  384. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  385. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  386. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  387. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  388. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  389. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  390. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  391. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  392. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  393. }
  394. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  395. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  396. if (hparams.n_expert > 0) {
  397. GGML_ASSERT(hparams.n_expert_used > 0);
  398. } else {
  399. GGML_ASSERT(hparams.n_expert_used == 0);
  400. }
  401. // zero-out the array hparams
  402. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  403. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  404. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  405. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  406. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  407. // n_head_kv is optional, default to n_head
  408. hparams.n_head_kv_arr = hparams.n_head_arr;
  409. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  410. bool rope_finetuned = false;
  411. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  412. hparams.rope_finetuned = rope_finetuned;
  413. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  414. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  415. // rope_freq_base (optional)
  416. hparams.rope_freq_base_train = 10000.0f;
  417. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  418. std::string rope_scaling("linear");
  419. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  420. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  421. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  422. // rope_freq_scale (inverse of the kv) is optional
  423. float ropescale = 0.0f;
  424. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  425. // try the old key name
  426. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  427. }
  428. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  429. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  430. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  431. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  432. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  433. // non-transformer models do not have attention heads
  434. if (hparams.n_head() > 0) {
  435. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  436. // gpt-j n_rot = rotary_dim
  437. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  438. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  439. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  440. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  441. // sanity check for n_rot (optional)
  442. hparams.n_rot = hparams.n_embd_head_k;
  443. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  444. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  445. if (hparams.n_rot != hparams.n_embd_head_k) {
  446. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  447. }
  448. }
  449. } else {
  450. hparams.n_rot = 0;
  451. hparams.n_embd_head_k = 0;
  452. hparams.n_embd_head_v = 0;
  453. }
  454. // for differentiating model types
  455. uint32_t n_vocab = 0;
  456. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  457. // arch-specific KVs
  458. switch (arch) {
  459. case LLM_ARCH_LLAMA:
  460. {
  461. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  462. if (hparams.n_expert == 8) {
  463. switch (hparams.n_layer) {
  464. case 32: type = LLM_TYPE_8x7B; break;
  465. case 56: type = LLM_TYPE_8x22B; break;
  466. default: type = LLM_TYPE_UNKNOWN;
  467. }
  468. } else {
  469. switch (hparams.n_layer) {
  470. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  471. case 22: type = LLM_TYPE_1B; break;
  472. case 26: type = LLM_TYPE_3B; break;
  473. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  474. // granite uses a vocab with len 49152
  475. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  476. case 36: type = LLM_TYPE_8B; break; // granite
  477. case 40: type = LLM_TYPE_13B; break;
  478. case 48: type = LLM_TYPE_34B; break;
  479. case 60: type = LLM_TYPE_30B; break;
  480. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  481. default: type = LLM_TYPE_UNKNOWN;
  482. }
  483. }
  484. } break;
  485. case LLM_ARCH_DECI:
  486. {
  487. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  488. switch (hparams.n_layer) {
  489. case 32: type = LLM_TYPE_7B; break;
  490. case 80: type = LLM_TYPE_70B; break;
  491. default: type = LLM_TYPE_UNKNOWN;
  492. }
  493. } break;
  494. case LLM_ARCH_MINICPM:
  495. {
  496. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  497. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  498. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  499. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  500. switch (hparams.n_layer) {
  501. case 52: type = LLM_TYPE_1B; break;
  502. case 40: type = LLM_TYPE_2B; break;
  503. default: type = LLM_TYPE_UNKNOWN;
  504. }
  505. } break;
  506. case LLM_ARCH_MINICPM3:
  507. {
  508. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  509. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  510. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  511. switch (hparams.n_layer) {
  512. case 62: type = LLM_TYPE_4B; break;
  513. default: type = LLM_TYPE_UNKNOWN;
  514. }
  515. } break;
  516. case LLM_ARCH_GROK:
  517. {
  518. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  519. switch (hparams.n_layer) {
  520. case 64: type = LLM_TYPE_314B; break;
  521. default: type = LLM_TYPE_UNKNOWN;
  522. }
  523. } break;
  524. case LLM_ARCH_FALCON:
  525. {
  526. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  527. switch (hparams.n_layer) {
  528. case 32: type = LLM_TYPE_7B; break;
  529. case 60: type = LLM_TYPE_40B; break;
  530. default: type = LLM_TYPE_UNKNOWN;
  531. }
  532. } break;
  533. case LLM_ARCH_BAICHUAN:
  534. {
  535. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  536. switch (hparams.n_layer) {
  537. case 32: type = LLM_TYPE_7B; break;
  538. case 40: type = LLM_TYPE_13B; break;
  539. default: type = LLM_TYPE_UNKNOWN;
  540. }
  541. if (type == LLM_TYPE_13B) {
  542. // TODO: become GGUF KV parameter
  543. hparams.f_max_alibi_bias = 8.0f;
  544. }
  545. } break;
  546. case LLM_ARCH_STARCODER:
  547. {
  548. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  549. switch (hparams.n_layer) {
  550. case 24: type = LLM_TYPE_1B; break;
  551. case 36: type = LLM_TYPE_3B; break;
  552. case 42: type = LLM_TYPE_7B; break;
  553. case 40: type = LLM_TYPE_15B; break;
  554. default: type = LLM_TYPE_UNKNOWN;
  555. }
  556. } break;
  557. case LLM_ARCH_REFACT:
  558. {
  559. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  560. switch (hparams.n_layer) {
  561. case 32: type = LLM_TYPE_1B; break;
  562. default: type = LLM_TYPE_UNKNOWN;
  563. }
  564. // TODO: become GGUF KV parameter
  565. hparams.f_max_alibi_bias = 8.0f;
  566. } break;
  567. case LLM_ARCH_BERT:
  568. {
  569. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  570. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  571. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  572. switch (hparams.n_layer) {
  573. case 3:
  574. type = LLM_TYPE_17M; break; // bge-micro
  575. case 6:
  576. type = LLM_TYPE_22M; break; // MiniLM-L6
  577. case 12:
  578. switch (hparams.n_embd) {
  579. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  580. case 768: type = LLM_TYPE_109M; break; // bge-base
  581. default: type = LLM_TYPE_UNKNOWN;
  582. } break;
  583. case 24:
  584. type = LLM_TYPE_335M; break; // bge-large
  585. default: type = LLM_TYPE_UNKNOWN;
  586. }
  587. } break;
  588. case LLM_ARCH_JINA_BERT_V2:
  589. {
  590. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  591. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  592. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  593. hparams.f_max_alibi_bias = 8.0f;
  594. switch (hparams.n_layer) {
  595. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  596. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  597. default: type = LLM_TYPE_UNKNOWN;
  598. }
  599. } break;
  600. case LLM_ARCH_NOMIC_BERT:
  601. {
  602. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  603. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  604. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  605. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  606. type = LLM_TYPE_137M;
  607. }
  608. } break;
  609. case LLM_ARCH_BLOOM:
  610. {
  611. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  612. switch (hparams.n_layer) {
  613. case 24: type = LLM_TYPE_1B; break;
  614. case 30:
  615. switch (hparams.n_embd) {
  616. case 2560: type = LLM_TYPE_3B; break;
  617. case 4096: type = LLM_TYPE_7B; break;
  618. default: type = LLM_TYPE_UNKNOWN;
  619. } break;
  620. default: type = LLM_TYPE_UNKNOWN;
  621. }
  622. // TODO: become GGUF KV parameter
  623. hparams.f_max_alibi_bias = 8.0f;
  624. } break;
  625. case LLM_ARCH_MPT:
  626. {
  627. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  628. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  629. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  630. switch (hparams.n_layer) {
  631. case 32: type = LLM_TYPE_7B; break;
  632. case 48: type = LLM_TYPE_30B; break;
  633. default: type = LLM_TYPE_UNKNOWN;
  634. }
  635. } break;
  636. case LLM_ARCH_STABLELM:
  637. {
  638. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  639. switch (hparams.n_layer) {
  640. case 24: type = LLM_TYPE_1B; break;
  641. case 32: type = LLM_TYPE_3B; break;
  642. case 40: type = LLM_TYPE_12B; break;
  643. default: type = LLM_TYPE_UNKNOWN;
  644. }
  645. } break;
  646. case LLM_ARCH_QWEN:
  647. {
  648. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  649. switch (hparams.n_layer) {
  650. case 32: type = LLM_TYPE_7B; break;
  651. case 40: type = LLM_TYPE_13B; break;
  652. default: type = LLM_TYPE_UNKNOWN;
  653. }
  654. } break;
  655. case LLM_ARCH_QWEN2VL:
  656. {
  657. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  658. }
  659. // fall through
  660. case LLM_ARCH_QWEN2:
  661. {
  662. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  663. switch (hparams.n_layer) {
  664. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  665. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  666. case 32: type = LLM_TYPE_7B; break;
  667. case 36: type = LLM_TYPE_3B; break;
  668. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  669. case 48: type = LLM_TYPE_14B; break;
  670. case 64: type = LLM_TYPE_32B; break;
  671. case 80: type = LLM_TYPE_70B; break;
  672. default: type = LLM_TYPE_UNKNOWN;
  673. }
  674. } break;
  675. case LLM_ARCH_QWEN2MOE:
  676. {
  677. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  678. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  679. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  680. switch (hparams.n_layer) {
  681. case 24: type = LLM_TYPE_A2_7B; break;
  682. case 28: type = LLM_TYPE_57B_A14B; break;
  683. default: type = LLM_TYPE_UNKNOWN;
  684. }
  685. } break;
  686. case LLM_ARCH_PHI2:
  687. {
  688. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  689. switch (hparams.n_layer) {
  690. case 24: type = LLM_TYPE_1B; break;
  691. case 32: type = LLM_TYPE_3B; break;
  692. default: type = LLM_TYPE_UNKNOWN;
  693. }
  694. } break;
  695. case LLM_ARCH_PHI3:
  696. {
  697. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  698. switch (hparams.n_layer) {
  699. case 24: type = LLM_TYPE_1B; break;
  700. case 32: type = LLM_TYPE_3B; break;
  701. case 40: type = LLM_TYPE_14B; break;
  702. default: type = LLM_TYPE_UNKNOWN;
  703. }
  704. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  705. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  706. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  707. hparams.n_swa = 2047;
  708. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  709. // default value for Phi-3-mini-128k-instruct
  710. // note: this seems incorrect because the window is bigger than the train context?
  711. hparams.n_swa = 262144;
  712. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  713. // default value for Phi-3-medium-128k-instruct
  714. // note: this seems incorrect because the window is equal to the train context?
  715. hparams.n_swa = 131072;
  716. }
  717. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  718. if (!found_swa && hparams.n_swa == 0) {
  719. throw std::runtime_error("invalid value for sliding_window");
  720. }
  721. } break;
  722. case LLM_ARCH_PHIMOE:
  723. {
  724. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  725. switch (hparams.n_layer) {
  726. case 32: type = LLM_TYPE_16x3_8B; break;
  727. default: type = LLM_TYPE_UNKNOWN;
  728. }
  729. } break;
  730. case LLM_ARCH_PLAMO:
  731. {
  732. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  733. switch (hparams.n_layer) {
  734. case 40: type = LLM_TYPE_13B; break;
  735. default: type = LLM_TYPE_UNKNOWN;
  736. }
  737. } break;
  738. case LLM_ARCH_GPT2:
  739. {
  740. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  741. switch (hparams.n_layer) {
  742. case 12: type = LLM_TYPE_SMALL; break;
  743. case 24: type = LLM_TYPE_MEDIUM; break;
  744. case 36: type = LLM_TYPE_LARGE; break;
  745. case 48: type = LLM_TYPE_XL; break;
  746. default: type = LLM_TYPE_UNKNOWN;
  747. }
  748. } break;
  749. case LLM_ARCH_CODESHELL:
  750. {
  751. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  752. switch (hparams.n_layer) {
  753. case 42: type = LLM_TYPE_7B; break;
  754. default: type = LLM_TYPE_UNKNOWN;
  755. }
  756. } break;
  757. case LLM_ARCH_ORION:
  758. {
  759. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  760. switch (hparams.n_layer) {
  761. case 40: type = LLM_TYPE_14B; break;
  762. default: type = LLM_TYPE_UNKNOWN;
  763. }
  764. } break;
  765. case LLM_ARCH_INTERNLM2:
  766. {
  767. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  768. switch (hparams.n_layer) {
  769. case 32: type = LLM_TYPE_7B; break;
  770. case 48: type = LLM_TYPE_20B; break;
  771. default: type = LLM_TYPE_UNKNOWN;
  772. }
  773. } break;
  774. case LLM_ARCH_GEMMA:
  775. {
  776. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  777. switch (hparams.n_layer) {
  778. case 18: type = LLM_TYPE_2B; break;
  779. case 28: type = LLM_TYPE_7B; break;
  780. default: type = LLM_TYPE_UNKNOWN;
  781. }
  782. } break;
  783. case LLM_ARCH_GEMMA2:
  784. {
  785. hparams.n_swa = 4096; // default value of gemma 2
  786. hparams.n_swa_pattern = 2;
  787. hparams.attn_soft_cap = true;
  788. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  789. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  790. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  791. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  792. switch (hparams.n_layer) {
  793. case 26: type = LLM_TYPE_2B; break;
  794. case 42: type = LLM_TYPE_9B; break;
  795. case 46: type = LLM_TYPE_27B; break;
  796. default: type = LLM_TYPE_UNKNOWN;
  797. }
  798. } break;
  799. case LLM_ARCH_GEMMA3:
  800. {
  801. hparams.n_swa_pattern = 6;
  802. hparams.rope_freq_base_train_swa = 10000.0f;
  803. hparams.rope_freq_scale_train_swa = 1.0f;
  804. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  805. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  806. switch (hparams.n_layer) {
  807. case 26: type = LLM_TYPE_1B; break;
  808. case 34: type = LLM_TYPE_4B; break;
  809. case 48: type = LLM_TYPE_12B; break;
  810. case 62: type = LLM_TYPE_27B; break;
  811. default: type = LLM_TYPE_UNKNOWN;
  812. }
  813. hparams.f_attention_scale = type == LLM_TYPE_27B
  814. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  815. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  816. } break;
  817. case LLM_ARCH_STARCODER2:
  818. {
  819. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  820. switch (hparams.n_layer) {
  821. case 30: type = LLM_TYPE_3B; break;
  822. case 32: type = LLM_TYPE_7B; break;
  823. case 40: type = LLM_TYPE_15B; break;
  824. case 52: type = LLM_TYPE_20B; break; // granite
  825. case 88: type = LLM_TYPE_34B; break; // granite
  826. default: type = LLM_TYPE_UNKNOWN;
  827. }
  828. } break;
  829. case LLM_ARCH_MAMBA:
  830. {
  831. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  832. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  833. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  834. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  835. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  836. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  837. switch (hparams.n_layer) {
  838. case 24:
  839. switch (hparams.n_embd) {
  840. case 768: type = LLM_TYPE_SMALL; break;
  841. default: type = LLM_TYPE_UNKNOWN;
  842. } break;
  843. case 48:
  844. switch (hparams.n_embd) {
  845. case 1024: type = LLM_TYPE_MEDIUM; break;
  846. case 1536: type = LLM_TYPE_LARGE; break;
  847. case 2048: type = LLM_TYPE_XL; break;
  848. default: type = LLM_TYPE_UNKNOWN;
  849. } break;
  850. case 64:
  851. switch (hparams.n_embd) {
  852. case 2560: type = LLM_TYPE_3B; break;
  853. default: type = LLM_TYPE_UNKNOWN;
  854. } break;
  855. default: type = LLM_TYPE_UNKNOWN;
  856. }
  857. } break;
  858. case LLM_ARCH_XVERSE:
  859. {
  860. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  861. switch (hparams.n_layer) {
  862. case 32: type = LLM_TYPE_7B; break;
  863. case 40: type = LLM_TYPE_13B; break;
  864. case 80: type = LLM_TYPE_65B; break;
  865. default: type = LLM_TYPE_UNKNOWN;
  866. }
  867. } break;
  868. case LLM_ARCH_COMMAND_R:
  869. {
  870. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  871. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  872. switch (hparams.n_layer) {
  873. case 40: type = LLM_TYPE_35B; break;
  874. default: type = LLM_TYPE_UNKNOWN;
  875. }
  876. } break;
  877. case LLM_ARCH_COHERE2:
  878. {
  879. hparams.n_swa_pattern = 4;
  880. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  881. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  882. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  883. switch (hparams.n_layer) {
  884. case 32: type = LLM_TYPE_8B; break;
  885. default: type = LLM_TYPE_UNKNOWN;
  886. }
  887. } break;
  888. case LLM_ARCH_DBRX:
  889. {
  890. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  891. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  892. switch (hparams.n_layer) {
  893. case 40: type = LLM_TYPE_16x12B; break;
  894. default: type = LLM_TYPE_UNKNOWN;
  895. }
  896. } break;
  897. case LLM_ARCH_OLMO:
  898. {
  899. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  900. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  901. switch (hparams.n_layer) {
  902. case 22: type = LLM_TYPE_1B; break;
  903. case 32: type = LLM_TYPE_7B; break;
  904. case 80: type = LLM_TYPE_70B; break;
  905. default: type = LLM_TYPE_UNKNOWN;
  906. }
  907. } break;
  908. case LLM_ARCH_OLMO2:
  909. {
  910. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  911. switch (hparams.n_layer) {
  912. case 16: type = LLM_TYPE_1B; break;
  913. case 32: type = LLM_TYPE_7B; break;
  914. case 40: type = LLM_TYPE_13B; break;
  915. case 64: type = LLM_TYPE_32B; break;
  916. default: type = LLM_TYPE_UNKNOWN;
  917. }
  918. } break;
  919. case LLM_ARCH_OLMOE:
  920. {
  921. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  922. switch (hparams.n_layer) {
  923. case 16: type = LLM_TYPE_A1_7B; break;
  924. default: type = LLM_TYPE_UNKNOWN;
  925. }
  926. } break;
  927. case LLM_ARCH_OPENELM:
  928. {
  929. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  930. switch (hparams.n_layer) {
  931. case 16: type = LLM_TYPE_270M; break;
  932. case 20: type = LLM_TYPE_450M; break;
  933. case 28: type = LLM_TYPE_1B; break;
  934. case 36: type = LLM_TYPE_3B; break;
  935. default: type = LLM_TYPE_UNKNOWN;
  936. }
  937. } break;
  938. case LLM_ARCH_GPTNEOX:
  939. {
  940. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  941. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  942. switch (hparams.n_layer) {
  943. case 6:
  944. switch (hparams.n_ff()) {
  945. case 512: type = LLM_TYPE_14M; break;
  946. case 2048: type = LLM_TYPE_70M; break;
  947. default: type = LLM_TYPE_UNKNOWN;
  948. } break;
  949. case 12:
  950. switch (hparams.n_ff()) {
  951. case 3072: type = LLM_TYPE_160M; break;
  952. default: type = LLM_TYPE_UNKNOWN;
  953. } break;
  954. case 16:
  955. switch (hparams.n_ff()) {
  956. case 8192: type = LLM_TYPE_1B; break;
  957. default: type = LLM_TYPE_UNKNOWN;
  958. } break;
  959. case 24:
  960. switch (hparams.n_ff()) {
  961. case 4096: type = LLM_TYPE_410M; break;
  962. case 8192: type = LLM_TYPE_1_4B; break;
  963. default: type = LLM_TYPE_UNKNOWN;
  964. } break;
  965. case 32:
  966. switch (hparams.n_ff()) {
  967. case 10240: type = LLM_TYPE_2_8B; break;
  968. case 16384: type = LLM_TYPE_6_9B; break;
  969. default: type = LLM_TYPE_UNKNOWN;
  970. } break;
  971. case 36:
  972. switch (hparams.n_ff()) {
  973. case 20480: type = LLM_TYPE_12B; break;
  974. default: type = LLM_TYPE_UNKNOWN;
  975. } break;
  976. case 44:
  977. switch (hparams.n_ff()) {
  978. case 24576: type = LLM_TYPE_20B; break;
  979. default: type = LLM_TYPE_UNKNOWN;
  980. } break;
  981. default: type = LLM_TYPE_UNKNOWN;
  982. }
  983. } break;
  984. case LLM_ARCH_ARCTIC:
  985. {
  986. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  987. if (hparams.n_expert == 128) {
  988. switch (hparams.n_layer) {
  989. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  990. default: type = LLM_TYPE_UNKNOWN;
  991. }
  992. } else {
  993. type = LLM_TYPE_UNKNOWN;
  994. }
  995. } break;
  996. case LLM_ARCH_DEEPSEEK:
  997. {
  998. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  999. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1000. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1001. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1002. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1003. switch (hparams.n_layer) {
  1004. case 28: type = LLM_TYPE_20B; break;
  1005. default: type = LLM_TYPE_UNKNOWN;
  1006. }
  1007. } break;
  1008. case LLM_ARCH_DEEPSEEK2:
  1009. {
  1010. bool is_lite = (hparams.n_layer == 27);
  1011. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1012. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1013. if (!is_lite) {
  1014. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1015. }
  1016. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1017. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1018. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1019. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1020. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1021. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1022. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1023. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1024. // that have no expert_gating_func model parameter set
  1025. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1026. }
  1027. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1028. switch (hparams.n_layer) {
  1029. case 27: type = LLM_TYPE_16B; break;
  1030. case 60: type = LLM_TYPE_236B; break;
  1031. case 61: type = LLM_TYPE_671B; break;
  1032. default: type = LLM_TYPE_UNKNOWN;
  1033. }
  1034. } break;
  1035. case LLM_ARCH_CHATGLM:
  1036. {
  1037. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1038. switch (hparams.n_layer) {
  1039. case 28: {
  1040. if (hparams.n_head(0) == 16) {
  1041. type = LLM_TYPE_1_5B;
  1042. } else {
  1043. type = LLM_TYPE_6B;
  1044. }
  1045. } break;
  1046. case 40: {
  1047. if (hparams.n_head(0) == 24) {
  1048. type = LLM_TYPE_4B;
  1049. } else {
  1050. type = LLM_TYPE_9B;
  1051. }
  1052. } break;
  1053. default: type = LLM_TYPE_UNKNOWN;
  1054. }
  1055. } break;
  1056. case LLM_ARCH_BITNET:
  1057. {
  1058. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1059. switch (hparams.n_layer) {
  1060. case 26: type = LLM_TYPE_3B; break;
  1061. default: type = LLM_TYPE_UNKNOWN;
  1062. }
  1063. } break;
  1064. case LLM_ARCH_T5:
  1065. {
  1066. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1067. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1068. uint32_t dec_start_token_id;
  1069. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1070. hparams.dec_start_token_id = dec_start_token_id;
  1071. }
  1072. switch (hparams.n_layer) {
  1073. case 6: type = LLM_TYPE_60M; break; // t5-small
  1074. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1075. case 12:
  1076. switch (hparams.n_ff()) {
  1077. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1078. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1079. default: type = LLM_TYPE_UNKNOWN;
  1080. } break;
  1081. case 24:
  1082. switch (hparams.n_ff()) {
  1083. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1084. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1085. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1086. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1087. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1088. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1089. default: type = LLM_TYPE_UNKNOWN;
  1090. } break;
  1091. default: type = LLM_TYPE_UNKNOWN;
  1092. }
  1093. } break;
  1094. case LLM_ARCH_T5ENCODER:
  1095. {
  1096. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1097. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1098. type = LLM_TYPE_UNKNOWN;
  1099. } break;
  1100. case LLM_ARCH_JAIS:
  1101. {
  1102. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1103. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1104. switch (hparams.n_layer) {
  1105. case 24: type = LLM_TYPE_1_3B; break;
  1106. case 40: type = LLM_TYPE_13B; break;
  1107. /* TODO: add variants */
  1108. default: type = LLM_TYPE_UNKNOWN;
  1109. }
  1110. } break;
  1111. case LLM_ARCH_NEMOTRON:
  1112. {
  1113. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1114. switch (hparams.n_layer) {
  1115. case 32: type = LLM_TYPE_4B; break;
  1116. default: type = LLM_TYPE_UNKNOWN;
  1117. }
  1118. } break;
  1119. case LLM_ARCH_EXAONE:
  1120. {
  1121. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1122. switch (hparams.n_layer) {
  1123. case 32: type = LLM_TYPE_8B; break;
  1124. default: type = LLM_TYPE_UNKNOWN;
  1125. }
  1126. } break;
  1127. case LLM_ARCH_RWKV6:
  1128. case LLM_ARCH_RWKV6QWEN2:
  1129. {
  1130. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1131. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1132. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1133. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1134. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1135. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1136. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1137. switch (hparams.n_layer) {
  1138. case 24: type = LLM_TYPE_1_6B; break;
  1139. case 32:
  1140. switch (hparams.n_embd) {
  1141. case 2560: type = LLM_TYPE_3B; break;
  1142. case 4096: type = LLM_TYPE_7B; break;
  1143. default: type = LLM_TYPE_UNKNOWN;
  1144. } break;
  1145. case 61: type = LLM_TYPE_14B; break;
  1146. case 64: type = LLM_TYPE_32B; break;
  1147. default: type = LLM_TYPE_UNKNOWN;
  1148. }
  1149. } break;
  1150. case LLM_ARCH_RWKV7:
  1151. case LLM_ARCH_ARWKV7:
  1152. {
  1153. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1154. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1155. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1156. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1157. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1158. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1159. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1160. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1161. switch (hparams.n_layer) {
  1162. case 12: type = LLM_TYPE_190M; break;
  1163. case 24:
  1164. switch (hparams.n_embd) {
  1165. case 1024: type = LLM_TYPE_450M; break;
  1166. case 2048: type = LLM_TYPE_1_5B; break;
  1167. default: type = LLM_TYPE_UNKNOWN;
  1168. } break;
  1169. case 28:
  1170. switch (hparams.n_embd) {
  1171. case 1536: type = LLM_TYPE_1_5B; break;
  1172. case 3584: type = LLM_TYPE_7B; break;
  1173. default: type = LLM_TYPE_UNKNOWN;
  1174. } break;
  1175. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1176. default: type = LLM_TYPE_UNKNOWN;
  1177. }
  1178. } break;
  1179. case LLM_ARCH_GRANITE:
  1180. case LLM_ARCH_GRANITE_MOE:
  1181. {
  1182. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1183. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1184. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1185. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1186. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1187. switch (hparams.n_layer) {
  1188. case 32: type = LLM_TYPE_3B; break;
  1189. case 40: type = LLM_TYPE_3B; break;
  1190. // Add additional layer/vocab/etc checks here for other model sizes
  1191. default: type = LLM_TYPE_UNKNOWN;
  1192. }
  1193. } break;
  1194. case LLM_ARCH_CHAMELEON:
  1195. {
  1196. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1197. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1198. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1199. switch (hparams.n_layer) {
  1200. case 32: type = LLM_TYPE_7B; break;
  1201. case 48: type = LLM_TYPE_34B; break;
  1202. default: type = LLM_TYPE_UNKNOWN;
  1203. }
  1204. } break;
  1205. case LLM_ARCH_WAVTOKENIZER_DEC:
  1206. {
  1207. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1208. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1209. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1210. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1211. } break;
  1212. default: throw std::runtime_error("unsupported model architecture");
  1213. }
  1214. pimpl->n_bytes = ml.n_bytes;
  1215. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1216. if (hparams.f_max_alibi_bias > 0.0f) {
  1217. hparams.use_alibi = true;
  1218. }
  1219. hparams.rope_type = llama_model_rope_type(this);
  1220. }
  1221. void llama_model::load_vocab(llama_model_loader & ml) {
  1222. const auto kv = LLM_KV(arch);
  1223. vocab.load(ml, kv);
  1224. }
  1225. bool llama_model::load_tensors(llama_model_loader & ml) {
  1226. const auto & split_mode = params.split_mode;
  1227. const auto & n_gpu_layers = params.n_gpu_layers;
  1228. const auto & use_mlock = params.use_mlock;
  1229. const auto & tensor_split = params.tensor_split;
  1230. const int n_layer = hparams.n_layer;
  1231. const bool use_mmap_buffer = true;
  1232. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1233. // build a list of buffer types for the CPU and GPU devices
  1234. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1235. for (auto * dev : devices) {
  1236. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1237. // add CPU buffer types as a fallback
  1238. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1239. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1240. }
  1241. // calculate the split points
  1242. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1243. std::vector<float> splits(n_devices());
  1244. if (all_zero) {
  1245. // default split, by free memory
  1246. for (size_t i = 0; i < n_devices(); ++i) {
  1247. ggml_backend_dev_t dev = devices[i];
  1248. size_t total;
  1249. size_t free;
  1250. ggml_backend_dev_memory(dev, &free, &total);
  1251. splits[i] = free;
  1252. }
  1253. } else {
  1254. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1255. }
  1256. // sum and normalize the splits to get the split points
  1257. float split_sum = 0.0f;
  1258. for (size_t i = 0; i < n_devices(); ++i) {
  1259. split_sum += splits[i];
  1260. splits[i] = split_sum;
  1261. }
  1262. for (size_t i = 0; i < n_devices(); ++i) {
  1263. splits[i] /= split_sum;
  1264. }
  1265. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1266. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1267. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1268. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1269. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1270. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1271. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1272. return {cpu_dev, &pimpl->cpu_buft_list};
  1273. }
  1274. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1275. auto * dev = devices.at(layer_gpu);
  1276. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1277. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1278. };
  1279. // assign the input layer
  1280. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1281. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1282. // assign the repeating layers to the devices according to the splits
  1283. pimpl->dev_layer.resize(n_layer);
  1284. for (int il = 0; il < n_layer; ++il) {
  1285. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1286. }
  1287. // assign the output layer
  1288. pimpl->dev_output = get_layer_buft_list(n_layer);
  1289. // one ggml context per buffer type
  1290. int max_n_tensors = ml.n_tensors;
  1291. max_n_tensors += 1; // duplicated output tensor
  1292. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1293. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1294. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1295. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1296. auto it = ctx_map.find(buft);
  1297. if (it == ctx_map.end()) {
  1298. ggml_init_params params = {
  1299. /*.mem_size =*/ ctx_size,
  1300. /*.mem_buffer =*/ NULL,
  1301. /*.no_alloc =*/ true,
  1302. };
  1303. ggml_context * ctx = ggml_init(params);
  1304. if (!ctx) {
  1305. throw std::runtime_error(format("failed to create ggml context"));
  1306. }
  1307. ctx_map[buft] = ctx;
  1308. pimpl->ctxs.emplace_back(ctx);
  1309. return ctx;
  1310. }
  1311. return it->second;
  1312. };
  1313. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1314. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1315. // create tensors for the weights
  1316. {
  1317. // note: cast to int64_t since we will use these for the tensor dimensions
  1318. const int64_t n_head = hparams.n_head();
  1319. const int64_t n_head_kv = hparams.n_head_kv();
  1320. const int64_t n_embd = hparams.n_embd;
  1321. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1322. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1323. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1324. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1325. const int64_t n_ff = hparams.n_ff();
  1326. const int64_t n_embd_gqa = n_embd_v_gqa;
  1327. const int64_t n_vocab = vocab.n_tokens();
  1328. const int64_t n_token_types = vocab.n_token_types();
  1329. const int64_t n_rot = hparams.n_rot;
  1330. const int64_t n_expert = hparams.n_expert;
  1331. const int64_t n_expert_used = hparams.n_expert_used;
  1332. const int64_t n_ctx_train = hparams.n_ctx_train;
  1333. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1334. throw std::runtime_error("model has expert layers but no expert layers are used");
  1335. }
  1336. int n_moved_tensors = 0;
  1337. ggml_tensor * first_moved_tensor = nullptr;
  1338. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1339. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1340. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1341. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1342. if (!t_meta) {
  1343. if (flags & TENSOR_NOT_REQUIRED) {
  1344. return nullptr;
  1345. }
  1346. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1347. }
  1348. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1349. // the tensor is duplicated
  1350. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1351. llm_tensor tn_tensor = tn.tensor;
  1352. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1353. tn_tensor = LLM_TENSOR_OUTPUT;
  1354. }
  1355. llm_tensor_info info;
  1356. try {
  1357. info = llm_tensor_info_for(tn_tensor);
  1358. } catch (const std::out_of_range & e) {
  1359. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1360. }
  1361. // skip unused tensors
  1362. if (info.op == GGML_OP_NONE) {
  1363. const size_t nbytes = ggml_nbytes(t_meta);
  1364. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1365. ml.size_data -= nbytes;
  1366. ml.n_created++;
  1367. return nullptr;
  1368. }
  1369. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1370. ggml_op op;
  1371. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1372. if (bias) {
  1373. op = GGML_OP_ADD;
  1374. } else {
  1375. op = info.op;
  1376. }
  1377. // sanity checks
  1378. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1379. if (tn.bid != -1) {
  1380. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1381. }
  1382. } else {
  1383. if (tn.bid == -1) {
  1384. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1385. }
  1386. }
  1387. // select the buffer type for this tensor
  1388. buft_list_t * buft_list;
  1389. switch (info.layer) {
  1390. case LLM_TENSOR_LAYER_INPUT:
  1391. buft_list = pimpl->dev_input.buft_list;
  1392. break;
  1393. case LLM_TENSOR_LAYER_OUTPUT:
  1394. buft_list = pimpl->dev_output.buft_list;
  1395. break;
  1396. case LLM_TENSOR_LAYER_REPEATING:
  1397. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1398. break;
  1399. default:
  1400. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1401. }
  1402. ggml_backend_buffer_type_t buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1403. if (!buft) {
  1404. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1405. }
  1406. // avoid using a host buffer when using mmap
  1407. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1408. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1409. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1410. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1411. }
  1412. if (buft != buft_list->front().second) {
  1413. n_moved_tensors++;
  1414. if (!first_moved_tensor) {
  1415. first_moved_tensor = t_meta;
  1416. first_moved_from_buft = buft_list->front().second;
  1417. first_moved_to_buft = buft;
  1418. }
  1419. }
  1420. ggml_context * ctx = ctx_for_buft(buft);
  1421. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1422. if (flags & TENSOR_DUPLICATED) {
  1423. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1424. if (t) {
  1425. return t;
  1426. }
  1427. }
  1428. return ml.create_tensor(ctx, tn, ne, flags);
  1429. };
  1430. layers.resize(n_layer);
  1431. // TODO: move to a separate function
  1432. const auto tn = LLM_TN(arch);
  1433. switch (arch) {
  1434. case LLM_ARCH_LLAMA:
  1435. case LLM_ARCH_REFACT:
  1436. case LLM_ARCH_MINICPM:
  1437. case LLM_ARCH_GRANITE:
  1438. case LLM_ARCH_GRANITE_MOE:
  1439. {
  1440. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1441. // output
  1442. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1443. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1444. // if output is NULL, init from the input tok embed
  1445. if (output == NULL) {
  1446. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1447. }
  1448. for (int i = 0; i < n_layer; ++i) {
  1449. auto & layer = layers[i];
  1450. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1451. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1452. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1453. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1454. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1455. // optional bias tensors
  1456. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1457. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1458. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1459. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1460. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1461. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1462. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1463. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1464. }
  1465. else {
  1466. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1467. }
  1468. if (n_expert == 0) {
  1469. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1470. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1471. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1472. // optional MLP bias
  1473. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1474. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1475. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1476. } else {
  1477. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1478. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1479. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1480. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1481. }
  1482. }
  1483. } break;
  1484. case LLM_ARCH_DECI:
  1485. {
  1486. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1487. // output
  1488. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1489. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1490. // if output is NULL, init from the input tok embed
  1491. if (output == NULL) {
  1492. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1493. }
  1494. for (int i = 0; i < n_layer; ++i) {
  1495. auto & layer = layers[i];
  1496. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1497. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1498. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1499. const int64_t n_ff = hparams.n_ff(i);
  1500. const int64_t n_head = hparams.n_head(i);
  1501. const int64_t n_head_kv = hparams.n_head_kv(i);
  1502. if (n_head_kv == 0 && n_head > 0) {
  1503. // linear attention for DeciLMCausalModel
  1504. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1505. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1506. }
  1507. else if (n_head_kv > 0) {
  1508. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1509. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1510. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1511. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1512. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1513. }
  1514. // optional bias tensors
  1515. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1516. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1517. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1518. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1519. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1520. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1521. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1522. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1523. }
  1524. else {
  1525. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1526. }
  1527. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1528. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1529. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1530. // optional MLP bias
  1531. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1532. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1533. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1534. }
  1535. } break;
  1536. case LLM_ARCH_MINICPM3:
  1537. {
  1538. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1539. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1540. const int64_t q_lora_rank = hparams.n_lora_q;
  1541. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1542. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1543. // output
  1544. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1545. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1546. // if output is NULL, init from the input tok embed
  1547. if (output == NULL) {
  1548. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1549. }
  1550. for (int i = 0; i < n_layer; ++i) {
  1551. auto & layer = layers[i];
  1552. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1553. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1554. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1555. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1556. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1557. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1558. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1559. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1560. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1561. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1562. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1563. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1564. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1565. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1566. }
  1567. } break;
  1568. case LLM_ARCH_GROK:
  1569. {
  1570. if (n_expert == 0) {
  1571. throw std::runtime_error("Grok model cannot have zero experts");
  1572. }
  1573. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1574. // output
  1575. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1576. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1577. // if output is NULL, init from the input tok embed
  1578. if (output == NULL) {
  1579. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1580. }
  1581. for (int i = 0; i < n_layer; ++i) {
  1582. auto & layer = layers[i];
  1583. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1584. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1585. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1586. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1587. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1588. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1589. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1590. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1591. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1592. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1593. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1594. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1595. }
  1596. } break;
  1597. case LLM_ARCH_DBRX:
  1598. {
  1599. if (n_expert == 0) {
  1600. throw std::runtime_error("DBRX model cannot have zero experts");
  1601. }
  1602. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1603. // output
  1604. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1605. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1606. for (int i = 0; i < n_layer; ++i) {
  1607. auto & layer = layers[i];
  1608. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1609. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1610. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1611. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1612. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1613. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1614. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1615. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1616. }
  1617. } break;
  1618. case LLM_ARCH_BAICHUAN:
  1619. {
  1620. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1621. {
  1622. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1623. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1624. }
  1625. for (int i = 0; i < n_layer; ++i) {
  1626. auto & layer = layers[i];
  1627. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1628. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1629. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1630. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1631. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1632. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1633. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1634. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1635. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1636. }
  1637. } break;
  1638. case LLM_ARCH_FALCON:
  1639. {
  1640. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1641. // output
  1642. {
  1643. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1644. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1645. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1646. if (!output) {
  1647. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1648. }
  1649. }
  1650. for (int i = 0; i < n_layer; ++i) {
  1651. auto & layer = layers[i];
  1652. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1653. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1654. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1655. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1656. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1657. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1658. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1659. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1660. }
  1661. } break;
  1662. case LLM_ARCH_STARCODER:
  1663. {
  1664. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1665. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1666. // output
  1667. {
  1668. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1669. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1670. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1671. if (!output) {
  1672. // needs to be on GPU
  1673. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1674. }
  1675. }
  1676. for (int i = 0; i < n_layer; ++i) {
  1677. auto & layer = layers[i];
  1678. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1679. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1680. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1681. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1682. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1683. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1684. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1685. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1686. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1687. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1688. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1689. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1690. }
  1691. } break;
  1692. case LLM_ARCH_BERT:
  1693. case LLM_ARCH_NOMIC_BERT:
  1694. {
  1695. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1696. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1697. if (arch == LLM_ARCH_BERT) {
  1698. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1699. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1700. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1701. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1702. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1703. }
  1704. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1705. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1706. for (int i = 0; i < n_layer; ++i) {
  1707. auto & layer = layers[i];
  1708. if (arch == LLM_ARCH_BERT) {
  1709. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1710. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1711. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1712. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1713. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1714. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1715. } else {
  1716. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1717. }
  1718. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1719. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1720. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1721. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1722. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1723. if (arch == LLM_ARCH_BERT) {
  1724. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1725. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1726. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1727. } else {
  1728. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1729. }
  1730. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1731. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1732. }
  1733. } break;
  1734. case LLM_ARCH_JINA_BERT_V2:
  1735. {
  1736. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1737. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1738. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1739. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1740. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1741. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1742. for (int i = 0; i < n_layer; ++i) {
  1743. auto & layer = layers[i]; // JinaBertLayer
  1744. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1745. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1746. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1747. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1748. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1749. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1750. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1751. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1752. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1753. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1754. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1755. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1756. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1757. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1758. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1759. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1760. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1761. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1762. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1763. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1764. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1765. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1766. }
  1767. } break;
  1768. case LLM_ARCH_BLOOM:
  1769. {
  1770. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1771. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1772. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1773. // output
  1774. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1775. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1776. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1777. // if output is NULL, init from the input tok embed
  1778. if (output == NULL) {
  1779. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1780. }
  1781. for (int i = 0; i < n_layer; ++i) {
  1782. auto & layer = layers[i];
  1783. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1784. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1785. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1786. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1787. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1788. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1789. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1790. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1791. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1792. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1793. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1794. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1795. }
  1796. } break;
  1797. case LLM_ARCH_MPT:
  1798. {
  1799. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1800. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1801. // output
  1802. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1803. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1804. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1805. if (!output) {
  1806. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1807. }
  1808. for (int i = 0; i < n_layer; ++i) {
  1809. auto & layer = layers[i];
  1810. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1811. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1812. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1813. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1814. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1815. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1816. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1817. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1818. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1819. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1820. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1821. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1822. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1823. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1824. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1825. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1826. // AWQ ScaleActivation layer
  1827. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1828. }
  1829. } break;
  1830. case LLM_ARCH_STABLELM:
  1831. {
  1832. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1833. // output
  1834. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1835. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1836. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1837. for (int i = 0; i < n_layer; ++i) {
  1838. auto & layer = layers[i];
  1839. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1840. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1841. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1842. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1843. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1844. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1845. // optional bias tensors, present in Stable LM 2 1.6B
  1846. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1847. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1848. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1849. // optional q and k layernorms, present in StableLM 2 12B
  1850. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  1851. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  1852. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  1853. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1854. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1855. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1856. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1857. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1858. }
  1859. } break;
  1860. case LLM_ARCH_QWEN:
  1861. {
  1862. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1863. // output
  1864. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1865. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1866. for (int i = 0; i < n_layer; ++i) {
  1867. auto & layer = layers[i];
  1868. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1869. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  1870. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  1871. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1872. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1873. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  1874. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  1875. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  1876. }
  1877. } break;
  1878. case LLM_ARCH_QWEN2:
  1879. case LLM_ARCH_QWEN2VL:
  1880. {
  1881. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1882. // output
  1883. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1884. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1885. // if output is NULL, init from the input tok embed
  1886. if (output == NULL) {
  1887. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1888. }
  1889. for (int i = 0; i < n_layer; ++i) {
  1890. auto & layer = layers[i];
  1891. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1892. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1893. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1894. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1895. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1896. // optional bias tensors
  1897. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1898. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1899. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1900. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1901. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1902. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1903. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1904. }
  1905. } break;
  1906. case LLM_ARCH_QWEN2MOE:
  1907. {
  1908. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1909. // output
  1910. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1911. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1912. for (int i = 0; i < n_layer; ++i) {
  1913. auto & layer = layers[i];
  1914. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1915. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1916. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1917. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1918. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1919. // optional bias tensors
  1920. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1921. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1922. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1923. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1924. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1925. if (n_expert == 0) {
  1926. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  1927. }
  1928. if (n_expert_used == 0) {
  1929. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  1930. }
  1931. // MoE branch
  1932. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  1933. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1934. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  1935. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1936. // Shared expert branch
  1937. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  1938. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  1939. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1940. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  1941. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1942. }
  1943. } break;
  1944. case LLM_ARCH_PHI2:
  1945. {
  1946. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1947. // output
  1948. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1949. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1950. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1951. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  1952. for (int i = 0; i < n_layer; ++i) {
  1953. auto & layer = layers[i];
  1954. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1955. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1956. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1957. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1958. if (layer.wqkv == nullptr) {
  1959. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1960. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1961. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1962. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1963. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1964. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1965. }
  1966. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1967. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1968. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1969. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1970. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1971. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1972. }
  1973. } break;
  1974. case LLM_ARCH_PHI3:
  1975. {
  1976. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  1977. // output
  1978. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  1979. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1980. // if output is NULL, init from the input tok embed
  1981. if (output == NULL) {
  1982. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1983. }
  1984. for (int i = 0; i < n_layer; ++i) {
  1985. auto & layer = layers[i];
  1986. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  1987. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  1988. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  1989. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  1990. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  1991. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  1992. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1993. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1994. }
  1995. } break;
  1996. case LLM_ARCH_PHIMOE:
  1997. {
  1998. const int64_t n_embd_head = n_embd / n_head;
  1999. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2000. // output
  2001. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2002. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2003. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2004. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2005. for (int i = 0; i < n_layer; ++i) {
  2006. auto & layer = layers[i];
  2007. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2008. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2009. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2010. if (layer.wqkv == nullptr) {
  2011. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2012. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2013. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2014. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2015. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2016. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2017. }
  2018. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2019. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2020. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2021. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2022. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2023. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2024. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2025. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2026. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2027. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2028. }
  2029. } break;
  2030. case LLM_ARCH_PLAMO:
  2031. {
  2032. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2033. // output
  2034. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2035. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2036. for (int i = 0; i < n_layer; ++i) {
  2037. auto & layer = layers[i];
  2038. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2039. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2040. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2041. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2042. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2043. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2044. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2045. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2046. }
  2047. } break;
  2048. case LLM_ARCH_GPT2:
  2049. {
  2050. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2051. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2052. // output
  2053. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2054. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2055. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2056. // if output is NULL, init from the input tok embed
  2057. if (output == NULL) {
  2058. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2059. }
  2060. for (int i = 0; i < n_layer; ++i) {
  2061. auto & layer = layers[i];
  2062. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2063. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2064. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2065. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2066. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2067. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2068. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2069. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2070. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2071. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2072. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2073. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2074. }
  2075. } break;
  2076. case LLM_ARCH_CODESHELL:
  2077. {
  2078. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2079. // if tok embd is NULL, init from output
  2080. if (tok_embd == NULL) {
  2081. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2082. }
  2083. // output
  2084. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2085. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2086. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2087. for (int i = 0; i < n_layer; ++i) {
  2088. auto & layer = layers[i];
  2089. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2090. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2091. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2092. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2093. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2094. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2095. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2096. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2097. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2098. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2099. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2100. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2101. }
  2102. } break;
  2103. case LLM_ARCH_ORION:
  2104. {
  2105. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2106. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2107. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2108. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2109. for (int i = 0; i < n_layer; ++i) {
  2110. auto & layer = layers[i];
  2111. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2112. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2113. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2114. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2115. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2116. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2117. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2118. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2119. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2120. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2121. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2122. }
  2123. } break;
  2124. case LLM_ARCH_INTERNLM2:
  2125. {
  2126. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2127. // output
  2128. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2129. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2130. for (int i = 0; i < n_layer; ++i) {
  2131. auto & layer = layers[i];
  2132. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2133. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2134. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2135. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2136. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2137. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2138. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2139. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2140. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2141. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2142. }
  2143. } break;
  2144. case LLM_ARCH_GEMMA:
  2145. {
  2146. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2147. // output
  2148. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2149. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2150. for (int i = 0; i < n_layer; ++i) {
  2151. auto & layer = layers[i];
  2152. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2153. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2154. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2155. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2156. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2157. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2158. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2159. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2160. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2161. }
  2162. } break;
  2163. case LLM_ARCH_GEMMA2:
  2164. {
  2165. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2166. // output
  2167. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2168. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2169. for (int i = 0; i < n_layer; ++i) {
  2170. auto & layer = layers[i];
  2171. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2172. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2173. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2174. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2175. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2176. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2177. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2178. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2179. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2180. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2181. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2182. }
  2183. } break;
  2184. case LLM_ARCH_GEMMA3:
  2185. {
  2186. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2187. // output
  2188. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2189. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2190. // if output is NULL, init from the input tok embed
  2191. if (output == NULL) {
  2192. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2193. }
  2194. for (int i = 0; i < n_layer; ++i) {
  2195. auto & layer = layers[i];
  2196. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2197. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2198. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2199. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2200. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2201. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2202. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2203. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2204. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2205. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2206. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2207. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2208. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2209. }
  2210. } break;
  2211. case LLM_ARCH_STARCODER2:
  2212. {
  2213. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2214. // output
  2215. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2216. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2217. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2218. // if output is NULL, init from the input tok embed
  2219. if (output == NULL) {
  2220. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2221. }
  2222. for (int i = 0; i < n_layer; ++i) {
  2223. auto & layer = layers[i];
  2224. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2225. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2226. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2227. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2228. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2229. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2230. // optional bias tensors
  2231. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2232. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2233. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2234. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2235. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2236. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2237. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2238. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2239. // optional bias tensors
  2240. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2241. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2242. }
  2243. } break;
  2244. case LLM_ARCH_MAMBA:
  2245. {
  2246. const int64_t d_conv = hparams.ssm_d_conv;
  2247. const int64_t d_inner = hparams.ssm_d_inner;
  2248. const int64_t d_state = hparams.ssm_d_state;
  2249. const int64_t dt_rank = hparams.ssm_dt_rank;
  2250. // only an expansion factor of 2 is supported for now
  2251. if (2 * n_embd != d_inner) {
  2252. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2253. }
  2254. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2255. // output
  2256. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2257. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2258. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2259. if (output == NULL) {
  2260. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2261. }
  2262. for (int i = 0; i < n_layer; ++i) {
  2263. auto & layer = layers[i];
  2264. // norm
  2265. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2266. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2267. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2268. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2269. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2270. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2271. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2272. // no "weight" suffix for these
  2273. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2274. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2275. // out_proj
  2276. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2277. }
  2278. } break;
  2279. case LLM_ARCH_XVERSE:
  2280. {
  2281. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2282. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2283. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2284. for (int i = 0; i < n_layer; ++i) {
  2285. auto & layer = layers[i];
  2286. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2287. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2288. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2289. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2290. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2291. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2292. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2293. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2294. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2295. }
  2296. } break;
  2297. case LLM_ARCH_COMMAND_R:
  2298. {
  2299. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2300. // output
  2301. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2302. // init output from the input tok embed
  2303. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2304. for (int i = 0; i < n_layer; ++i) {
  2305. auto & layer = layers[i];
  2306. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2307. if (n_layer >= 64){
  2308. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2309. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2310. }
  2311. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2312. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2313. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2314. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2315. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2316. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2317. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2318. }
  2319. } break;
  2320. case LLM_ARCH_COHERE2:
  2321. {
  2322. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2323. // output
  2324. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2325. // init output from the input tok embed
  2326. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2327. TENSOR_DUPLICATED);
  2328. for (int i = 0; i < n_layer; ++i) {
  2329. auto & layer = layers[i];
  2330. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2331. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2332. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2333. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2334. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2335. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2336. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2337. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2338. }
  2339. }
  2340. break;
  2341. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2342. {
  2343. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2344. // output
  2345. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2346. // if output is NULL, init from the input tok embed
  2347. if (output == NULL) {
  2348. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2349. }
  2350. for (int i = 0; i < n_layer; ++i) {
  2351. auto & layer = layers[i];
  2352. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2353. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2354. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2355. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2356. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2357. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2358. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2359. }
  2360. } break;
  2361. case LLM_ARCH_OLMO2:
  2362. {
  2363. const int64_t n_embd_head = n_embd / n_head;
  2364. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2365. // output
  2366. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2367. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2368. for (int i = 0; i < n_layer; ++i) {
  2369. auto & layer = layers[i];
  2370. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2371. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2372. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2373. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2374. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2375. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2376. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2377. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2378. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2379. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2380. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2381. }
  2382. } break;
  2383. case LLM_ARCH_OLMOE:
  2384. {
  2385. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2386. // output
  2387. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2388. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2389. for (int i = 0; i < n_layer; ++i) {
  2390. auto & layer = layers[i];
  2391. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2392. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2393. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2394. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2395. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2396. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2397. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2398. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2399. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2400. if (n_expert == 0) {
  2401. throw std::runtime_error("n_expert must be > 0");
  2402. }
  2403. if (n_expert_used == 0) {
  2404. throw std::runtime_error("n_expert_used must be > 0");
  2405. }
  2406. // MoE branch
  2407. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2408. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2409. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2410. }
  2411. } break;
  2412. case LLM_ARCH_OPENELM:
  2413. {
  2414. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2415. // output
  2416. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2417. // init output from the input tok embed
  2418. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2419. for (int i = 0; i < n_layer; ++i) {
  2420. const int64_t n_head = hparams.n_head(i);
  2421. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2422. const int64_t n_ff = hparams.n_ff(i);
  2423. auto & layer = layers[i];
  2424. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2425. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2426. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2427. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2428. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2429. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2430. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2431. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2432. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2433. }
  2434. } break;
  2435. case LLM_ARCH_GPTNEOX:
  2436. {
  2437. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2438. // output
  2439. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2440. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2441. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2442. for (int i = 0; i < n_layer; ++i) {
  2443. auto & layer = layers[i];
  2444. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2445. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2446. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2447. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2448. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2449. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2450. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2451. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2452. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2453. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2454. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2455. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2456. }
  2457. } break;
  2458. case LLM_ARCH_ARCTIC:
  2459. {
  2460. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2461. // output
  2462. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2463. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2464. // if output is NULL, init from the input tok embed
  2465. if (output == NULL) {
  2466. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2467. }
  2468. for (int i = 0; i < n_layer; ++i) {
  2469. auto & layer = layers[i];
  2470. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2471. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2472. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2473. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2474. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2475. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2476. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2477. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2478. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2479. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2480. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2481. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2482. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2483. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2484. }
  2485. } break;
  2486. case LLM_ARCH_DEEPSEEK:
  2487. {
  2488. const int64_t n_ff_exp = hparams.n_ff_exp;
  2489. const int64_t n_expert_shared = hparams.n_expert_shared;
  2490. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2491. // output
  2492. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2493. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2494. for (int i = 0; i < n_layer; ++i) {
  2495. auto & layer = layers[i];
  2496. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2497. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2498. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2499. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2500. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2501. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2502. if (i < (int) hparams.n_layer_dense_lead) {
  2503. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2504. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2505. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2506. } else {
  2507. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2508. if (n_expert == 0) {
  2509. throw std::runtime_error("n_expert must be > 0");
  2510. }
  2511. if (n_expert_used == 0) {
  2512. throw std::runtime_error("n_expert_used must be > 0");
  2513. }
  2514. // MoE branch
  2515. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2516. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2517. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2518. // Shared expert branch
  2519. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2520. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2521. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2522. }
  2523. }
  2524. } break;
  2525. case LLM_ARCH_DEEPSEEK2:
  2526. {
  2527. const bool is_lite = (hparams.n_layer == 27);
  2528. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2529. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2530. const int64_t q_lora_rank = hparams.n_lora_q;
  2531. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2532. const int64_t n_ff_exp = hparams.n_ff_exp;
  2533. const int64_t n_expert_shared = hparams.n_expert_shared;
  2534. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2535. // output
  2536. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2537. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2538. for (int i = 0; i < n_layer; ++i) {
  2539. auto & layer = layers[i];
  2540. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2541. if (!is_lite) {
  2542. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2543. }
  2544. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2545. if (!is_lite) {
  2546. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2547. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  2548. } else {
  2549. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2550. }
  2551. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2552. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2553. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2554. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2555. if (i < (int) hparams.n_layer_dense_lead) {
  2556. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2557. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2558. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2559. } else {
  2560. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2561. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2562. if (n_expert == 0) {
  2563. throw std::runtime_error("n_expert must be > 0");
  2564. }
  2565. if (n_expert_used == 0) {
  2566. throw std::runtime_error("n_expert_used must be > 0");
  2567. }
  2568. // MoE branch
  2569. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2570. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2571. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2572. // Shared expert branch
  2573. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2574. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2575. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2576. }
  2577. }
  2578. } break;
  2579. case LLM_ARCH_BITNET:
  2580. {
  2581. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2582. // output
  2583. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2584. for (int i = 0; i < n_layer; ++i) {
  2585. auto & layer = layers[i];
  2586. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2587. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2588. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2589. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2590. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2591. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2592. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2593. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2594. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2595. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2596. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2597. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2598. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2599. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2600. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2601. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2602. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2603. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2604. }
  2605. } break;
  2606. case LLM_ARCH_T5:
  2607. {
  2608. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2609. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2610. // output
  2611. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2612. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2613. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2614. // if output is NULL, init from the input tok embed
  2615. if (output == NULL) {
  2616. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2617. }
  2618. for (int i = 0; i < n_layer; ++i) {
  2619. auto & layer = layers[i];
  2620. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2621. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2622. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2623. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2624. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2625. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2626. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2627. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2628. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2629. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2630. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2631. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2632. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2633. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2634. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2635. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2636. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2637. // this tensor seems to be unused in HF transformers implementation
  2638. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2639. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2640. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2641. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2642. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2643. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2644. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2645. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2646. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2647. }
  2648. } break;
  2649. case LLM_ARCH_T5ENCODER:
  2650. {
  2651. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2652. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2653. // output
  2654. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2655. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2656. // if output is NULL, init from the input tok embed
  2657. if (output == NULL) {
  2658. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2659. }
  2660. for (int i = 0; i < n_layer; ++i) {
  2661. auto & layer = layers[i];
  2662. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2663. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2664. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2665. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2666. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2667. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2668. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2669. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2670. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2671. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2672. }
  2673. } break;
  2674. case LLM_ARCH_JAIS:
  2675. {
  2676. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2677. // output
  2678. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2679. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2680. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2681. for (int i = 0; i < n_layer; ++i) {
  2682. auto & layer = layers[i];
  2683. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2684. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2685. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2686. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2687. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2688. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2689. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2690. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2691. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2692. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2693. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2694. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2695. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2696. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2697. }
  2698. } break;
  2699. case LLM_ARCH_CHATGLM:
  2700. {
  2701. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2702. // output
  2703. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2704. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2705. for (int i = 0; i < n_layer; ++i) {
  2706. auto & layer = layers[i];
  2707. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2708. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2709. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2710. if (layer.wqkv == nullptr) {
  2711. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2712. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2713. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2714. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2715. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2716. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2717. }
  2718. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2719. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2720. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2721. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2722. }
  2723. } break;
  2724. case LLM_ARCH_NEMOTRON:
  2725. {
  2726. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2727. // output
  2728. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2729. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2730. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2731. for (int i = 0; i < n_layer; ++i) {
  2732. auto & layer = layers[i];
  2733. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2734. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2735. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2736. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2737. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2738. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2739. // optional bias tensors
  2740. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2741. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2742. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2743. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2744. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2745. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2746. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2747. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2748. // optional MLP bias
  2749. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2750. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2751. }
  2752. } break;
  2753. case LLM_ARCH_EXAONE:
  2754. {
  2755. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2756. // output
  2757. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2758. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2759. // if output is NULL, init from the input tok embed
  2760. if (output == NULL) {
  2761. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2762. }
  2763. for (int i = 0; i < n_layer; ++i) {
  2764. auto & layer = layers[i];
  2765. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2766. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2767. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2768. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2769. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2770. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2771. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2772. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2773. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2774. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2775. }
  2776. } break;
  2777. case LLM_ARCH_RWKV6:
  2778. {
  2779. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2780. // Block 0, LN0
  2781. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2782. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2783. // output
  2784. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2785. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2786. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2787. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2788. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2789. const int head_size = hparams.wkv_head_size;
  2790. const int attn_hidden_size = n_embd;
  2791. const int ffn_size = hparams.n_ff_arr[0];
  2792. for (int i = 0; i < n_layer; ++i) {
  2793. auto & layer = layers[i];
  2794. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2795. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2796. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  2797. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  2798. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2799. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2800. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2801. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2802. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2803. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2804. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2805. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2806. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  2807. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  2808. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  2809. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2810. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2811. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2812. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2813. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2814. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2815. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2816. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  2817. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  2818. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2819. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  2820. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  2821. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  2822. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  2823. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  2824. }
  2825. } break;
  2826. case LLM_ARCH_RWKV6QWEN2:
  2827. {
  2828. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2829. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2830. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2831. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2832. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2833. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2834. const int head_size = hparams.wkv_head_size;
  2835. const int attn_hidden_size = n_embd;
  2836. const int n_head_kv = hparams.n_head_kv();
  2837. int attn_key_value_size;
  2838. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  2839. attn_key_value_size = attn_hidden_size;
  2840. } else {
  2841. attn_key_value_size = n_head_kv * head_size;
  2842. }
  2843. for (int i = 0; i < n_layer; ++i) {
  2844. auto & layer = layers[i];
  2845. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2846. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2847. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2848. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2849. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  2850. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  2851. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2852. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2853. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2854. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  2855. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  2856. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2857. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2858. // optional bias tensors
  2859. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  2860. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  2861. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  2862. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2863. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2864. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2865. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2866. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2867. }
  2868. } break;
  2869. case LLM_ARCH_RWKV7:
  2870. {
  2871. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2872. // Block 0, LN0
  2873. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2874. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2875. // output
  2876. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2877. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2878. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2879. const int n_lora_decay = hparams.n_lora_decay;
  2880. const int n_lora_iclr = hparams.n_lora_iclr;
  2881. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  2882. const int n_lora_gate = hparams.n_lora_gate;
  2883. const int attn_hidden_size = n_embd;
  2884. const int ffn_size = hparams.n_ff_arr[0];
  2885. for (int i = 0; i < n_layer; ++i) {
  2886. auto & layer = layers[i];
  2887. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2888. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2889. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  2890. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  2891. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  2892. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  2893. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  2894. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  2895. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2896. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2897. if (i == 0) {
  2898. // actually not used
  2899. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2900. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2901. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2902. } else {
  2903. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2904. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  2905. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  2906. }
  2907. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  2908. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  2909. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  2910. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  2911. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  2912. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  2913. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2914. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2915. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2916. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  2917. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  2918. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2919. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  2920. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  2921. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  2922. }
  2923. } break;
  2924. case LLM_ARCH_ARWKV7:
  2925. {
  2926. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2927. // output
  2928. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2929. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2930. const int n_lora_decay = hparams.n_lora_decay;
  2931. const int n_lora_iclr = hparams.n_lora_iclr;
  2932. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  2933. const int n_lora_gate = hparams.n_lora_gate;
  2934. const int attn_hidden_size = n_embd;
  2935. for (int i = 0; i < n_layer; ++i) {
  2936. auto & layer = layers[i];
  2937. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2938. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  2939. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  2940. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  2941. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  2942. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2943. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2944. if (i == 0) {
  2945. // actually not used
  2946. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2947. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2948. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2949. } else {
  2950. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2951. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  2952. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  2953. }
  2954. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  2955. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  2956. try {
  2957. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  2958. } catch(std::runtime_error & e) {
  2959. // ARWKV models may not have gate tensors
  2960. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  2961. }
  2962. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  2963. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  2964. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  2965. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2966. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2967. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2968. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2969. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2970. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2971. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2972. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2973. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2974. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2975. }
  2976. } break;
  2977. case LLM_ARCH_CHAMELEON:
  2978. {
  2979. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2980. // output
  2981. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2982. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2983. // if output is NULL, init from the input tok embed
  2984. if (output == NULL) {
  2985. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2986. }
  2987. for (int i = 0; i < n_layer; ++i) {
  2988. auto & layer = layers[i];
  2989. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2990. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2991. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2992. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2993. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2994. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2995. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2996. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2997. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2998. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2999. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3000. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3001. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3002. }
  3003. } break;
  3004. case LLM_ARCH_WAVTOKENIZER_DEC:
  3005. {
  3006. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3007. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3008. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3009. // posnet
  3010. {
  3011. const int64_t n_embd = hparams.posnet.n_embd;
  3012. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3013. auto & layer = layers[i].posnet;
  3014. // posnet:
  3015. //
  3016. // - resnet
  3017. // - resnet
  3018. // - attn
  3019. // - resnet
  3020. // - resnet
  3021. // - norm
  3022. //
  3023. switch (i) {
  3024. case 0:
  3025. case 1:
  3026. case 3:
  3027. case 4:
  3028. {
  3029. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3030. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3031. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3032. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3033. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3034. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3035. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3036. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3037. } break;
  3038. case 2:
  3039. {
  3040. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3041. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3042. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3043. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3044. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3045. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3046. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3047. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3048. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3049. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3050. } break;
  3051. case 5:
  3052. {
  3053. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3054. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3055. } break;
  3056. default: GGML_ABORT("unknown posnet layer");
  3057. };
  3058. }
  3059. }
  3060. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3061. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3062. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3063. // convnext
  3064. {
  3065. const int64_t n_embd = hparams.convnext.n_embd;
  3066. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3067. auto & layer = layers[i].convnext;
  3068. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3069. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3070. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3071. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3072. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3073. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3074. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3075. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3076. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3077. }
  3078. // output
  3079. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3080. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3081. }
  3082. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3083. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3084. } break;
  3085. default:
  3086. throw std::runtime_error("unknown architecture");
  3087. }
  3088. if (n_moved_tensors > 0) {
  3089. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3090. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3091. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3092. }
  3093. }
  3094. ml.done_getting_tensors();
  3095. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3096. pimpl->mappings.reserve(ml.mappings.size());
  3097. // create the backend buffers
  3098. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3099. ctx_bufs.reserve(ctx_map.size());
  3100. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3101. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3102. pimpl->bufs.reserve(n_max_backend_buffer);
  3103. for (auto & it : ctx_map) {
  3104. ggml_backend_buffer_type_t buft = it.first;
  3105. ggml_context * ctx = it.second;
  3106. // skip contexts without tensors
  3107. if (ggml_get_first_tensor(ctx) == nullptr) {
  3108. continue;
  3109. }
  3110. llama_buf_map buf_map;
  3111. buf_map.reserve(n_max_backend_buffer);
  3112. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3113. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3114. if (!dev) {
  3115. // FIXME: workaround for CPU backend buft having a NULL device
  3116. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3117. }
  3118. ggml_backend_dev_props props;
  3119. ggml_backend_dev_get_props(dev, &props);
  3120. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3121. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3122. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3123. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3124. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3125. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3126. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3127. void * addr = nullptr;
  3128. size_t first, last; // NOLINT
  3129. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3130. if (first >= last) {
  3131. continue;
  3132. }
  3133. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3134. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3135. if (buf == nullptr) {
  3136. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3137. }
  3138. pimpl->bufs.emplace_back(buf);
  3139. buf_map.emplace(idx, buf);
  3140. }
  3141. }
  3142. else {
  3143. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3144. if (buf == nullptr) {
  3145. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3146. }
  3147. pimpl->bufs.emplace_back(buf);
  3148. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3149. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3150. auto & mlock_buf = pimpl->mlock_bufs.back();
  3151. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3152. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3153. }
  3154. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3155. buf_map.emplace(idx, buf);
  3156. }
  3157. }
  3158. if (pimpl->bufs.empty()) {
  3159. throw std::runtime_error("failed to allocate buffer");
  3160. }
  3161. for (auto & buf : buf_map) {
  3162. // indicate that this buffer contains weights
  3163. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3164. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3165. }
  3166. ctx_bufs.emplace_back(ctx, buf_map);
  3167. }
  3168. if (llama_supports_gpu_offload()) {
  3169. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3170. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3171. if (n_gpu_layers > (int) hparams.n_layer) {
  3172. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3173. }
  3174. const int max_backend_supported_layers = hparams.n_layer + 1;
  3175. const int max_offloadable_layers = hparams.n_layer + 1;
  3176. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3177. }
  3178. // print memory requirements per buffer type
  3179. for (auto & buf : pimpl->bufs) {
  3180. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3181. }
  3182. // populate tensors_by_name
  3183. for (auto & ctx : pimpl->ctxs) {
  3184. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3185. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3186. }
  3187. }
  3188. // load tensor data
  3189. for (auto & it : ctx_bufs) {
  3190. ggml_context * ctx = it.first;
  3191. auto & bufs = it.second;
  3192. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3193. return false;
  3194. }
  3195. }
  3196. if (use_mmap_buffer) {
  3197. for (auto & mapping : ml.mappings) {
  3198. pimpl->mappings.emplace_back(std::move(mapping));
  3199. }
  3200. }
  3201. return true;
  3202. }
  3203. std::string llama_model::arch_name() const {
  3204. return llm_arch_name(arch);
  3205. }
  3206. std::string llama_model::type_name() const {
  3207. return llm_type_name(type);
  3208. }
  3209. std::string llama_model::desc() const {
  3210. return pimpl->desc_str;
  3211. }
  3212. size_t llama_model::size() const {
  3213. return pimpl->n_bytes;
  3214. }
  3215. size_t llama_model::n_tensors() const {
  3216. return tensors_by_name.size();
  3217. }
  3218. size_t llama_model::n_devices() const {
  3219. return devices.size();
  3220. }
  3221. uint64_t llama_model::n_elements() const {
  3222. return pimpl->n_elements;
  3223. }
  3224. void llama_model::print_info() const {
  3225. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3226. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3227. bool is_var = false;
  3228. std::vector<uint32_t> v;
  3229. for (uint32_t i = 0; i < n; ++i) {
  3230. v.push_back(f(i));
  3231. if (v[i] != v[0]) {
  3232. is_var = true;
  3233. }
  3234. }
  3235. std::stringstream ss;
  3236. if (is_var) {
  3237. ss << "[";
  3238. for (uint32_t i = 0; i < n; ++i) {
  3239. ss << v[i];
  3240. if (i < n - 1) {
  3241. ss << ", ";
  3242. }
  3243. }
  3244. ss << "]";
  3245. } else {
  3246. ss << v[0];
  3247. }
  3248. return ss.str();
  3249. };
  3250. // hparams
  3251. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3252. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3253. if (!hparams.vocab_only) {
  3254. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3255. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3256. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3257. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3258. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3259. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3260. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3261. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3262. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3263. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3264. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3265. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3266. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3267. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3268. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3269. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3270. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3271. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3272. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3273. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3274. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3275. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3276. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3277. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3278. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3279. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3280. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3281. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3282. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3283. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3284. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3285. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3286. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3287. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3288. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3289. }
  3290. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3291. if (pimpl->n_elements >= 1e12) {
  3292. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3293. } else if (pimpl->n_elements >= 1e9) {
  3294. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3295. } else if (pimpl->n_elements >= 1e6) {
  3296. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3297. } else {
  3298. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3299. }
  3300. // general kv
  3301. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3302. if (arch == LLM_ARCH_DEEPSEEK) {
  3303. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3304. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3305. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3306. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3307. }
  3308. if (arch == LLM_ARCH_DEEPSEEK2) {
  3309. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3310. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3311. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3312. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3313. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3314. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3315. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3316. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3317. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3318. }
  3319. if (arch == LLM_ARCH_QWEN2MOE) {
  3320. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3321. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3322. }
  3323. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3324. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3325. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3326. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3327. }
  3328. vocab.print_info();
  3329. }
  3330. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3331. return pimpl->dev_layer.at(il).dev;
  3332. }
  3333. ggml_backend_dev_t llama_model::dev_output() const {
  3334. return pimpl->dev_output.dev;
  3335. }
  3336. template<typename F>
  3337. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3338. ggml_init_params params = {
  3339. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3340. /*.mem_buffer =*/ NULL,
  3341. /*.no_alloc =*/ true,
  3342. };
  3343. ggml_context_ptr ctx { ggml_init(params) };
  3344. if (!ctx) {
  3345. throw std::runtime_error(format("failed to create ggml context"));
  3346. }
  3347. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3348. ggml_tensor * op_tensor = fn(ctx.get());
  3349. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3350. if (op_tensor->src[i] != nullptr) {
  3351. assert(op_tensor->src[i]->buffer == nullptr);
  3352. op_tensor->src[i]->buffer = buf.get();
  3353. }
  3354. }
  3355. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3356. return op_supported;
  3357. }
  3358. template<typename F>
  3359. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3360. for (const auto & cur : buft_list) {
  3361. ggml_backend_dev_t cur_dev = cur.first;
  3362. ggml_backend_buffer_type_t cur_buft = cur.second;
  3363. if (buft_supported(cur_buft, cur_dev, fn)) {
  3364. return cur_buft;
  3365. }
  3366. }
  3367. throw std::runtime_error(format("no suitable buffer type found"));
  3368. }
  3369. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3370. return ::select_buft(
  3371. *pimpl->dev_layer.at(il).buft_list,
  3372. [&](ggml_context * ctx) {
  3373. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3374. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3375. return ggml_add(ctx, cur, layer_dir);
  3376. });
  3377. }
  3378. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3379. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3380. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3381. return it.first == name;
  3382. });
  3383. if (it == tensors_by_name.end()) {
  3384. return nullptr;
  3385. }
  3386. return it->second;
  3387. }
  3388. struct llm_build_llama : public llm_graph_context {
  3389. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3390. const int64_t n_embd_head = hparams.n_embd_head_v;
  3391. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3392. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3393. ggml_tensor * cur;
  3394. ggml_tensor * inpL;
  3395. inpL = build_inp_embd(model.tok_embd);
  3396. // inp_pos - contains the positions
  3397. ggml_tensor * inp_pos = build_inp_pos();
  3398. auto * inp_attn = build_attn_inp_kv_unified();
  3399. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3400. for (int il = 0; il < n_layer; ++il) {
  3401. ggml_tensor * inpSA = inpL;
  3402. // norm
  3403. cur = build_norm(inpL,
  3404. model.layers[il].attn_norm, NULL,
  3405. LLM_NORM_RMS, il);
  3406. cb(cur, "attn_norm", il);
  3407. // self-attention
  3408. {
  3409. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3410. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3411. // compute Q and K and RoPE them
  3412. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3413. cb(Qcur, "Qcur", il);
  3414. if (model.layers[il].bq) {
  3415. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3416. cb(Qcur, "Qcur", il);
  3417. }
  3418. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3419. cb(Kcur, "Kcur", il);
  3420. if (model.layers[il].bk) {
  3421. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3422. cb(Kcur, "Kcur", il);
  3423. }
  3424. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3425. cb(Vcur, "Vcur", il);
  3426. if (model.layers[il].bv) {
  3427. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3428. cb(Vcur, "Vcur", il);
  3429. }
  3430. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3431. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3432. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3433. Qcur = ggml_rope_ext(
  3434. ctx0, Qcur, inp_pos, rope_factors,
  3435. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3436. ext_factor, attn_factor, beta_fast, beta_slow
  3437. );
  3438. Kcur = ggml_rope_ext(
  3439. ctx0, Kcur, inp_pos, rope_factors,
  3440. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3441. ext_factor, attn_factor, beta_fast, beta_slow
  3442. );
  3443. cb(Qcur, "Qcur", il);
  3444. cb(Kcur, "Kcur", il);
  3445. cb(Vcur, "Vcur", il);
  3446. cur = build_attn(inp_attn, gf,
  3447. model.layers[il].wo, model.layers[il].bo,
  3448. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  3449. }
  3450. if (il == n_layer - 1) {
  3451. // skip computing output for unused tokens
  3452. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3453. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3454. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3455. }
  3456. // For Granite architecture
  3457. if (hparams.f_residual_scale) {
  3458. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3459. }
  3460. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3461. cb(ffn_inp, "ffn_inp", il);
  3462. // feed-forward network
  3463. if (model.layers[il].ffn_gate_inp == nullptr) {
  3464. cur = build_norm(ffn_inp,
  3465. model.layers[il].ffn_norm, NULL,
  3466. LLM_NORM_RMS, il);
  3467. cb(cur, "ffn_norm", il);
  3468. cur = build_ffn(cur,
  3469. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3470. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3471. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3472. NULL,
  3473. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3474. cb(cur, "ffn_out", il);
  3475. } else {
  3476. // MoE branch
  3477. cur = build_norm(ffn_inp,
  3478. model.layers[il].ffn_norm, NULL,
  3479. LLM_NORM_RMS, il);
  3480. cb(cur, "ffn_norm", il);
  3481. cur = build_moe_ffn(cur,
  3482. model.layers[il].ffn_gate_inp,
  3483. model.layers[il].ffn_up_exps,
  3484. model.layers[il].ffn_gate_exps,
  3485. model.layers[il].ffn_down_exps,
  3486. nullptr,
  3487. n_expert, n_expert_used,
  3488. LLM_FFN_SILU, true,
  3489. false, 0.0,
  3490. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3491. il);
  3492. cb(cur, "ffn_moe_out", il);
  3493. }
  3494. // For Granite architecture
  3495. if (hparams.f_residual_scale) {
  3496. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3497. }
  3498. cur = ggml_add(ctx0, cur, ffn_inp);
  3499. cb(cur, "ffn_out", il);
  3500. cur = build_cvec(cur, il);
  3501. cb(cur, "l_out", il);
  3502. // input for next layer
  3503. inpL = cur;
  3504. }
  3505. cur = inpL;
  3506. cur = build_norm(cur,
  3507. model.output_norm, NULL,
  3508. LLM_NORM_RMS, -1);
  3509. cb(cur, "result_norm", -1);
  3510. res->t_embd = cur;
  3511. // lm_head
  3512. cur = build_lora_mm(model.output, cur);
  3513. // For Granite architecture
  3514. if (hparams.f_logit_scale) {
  3515. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3516. }
  3517. cb(cur, "result_output", -1);
  3518. res->t_logits = cur;
  3519. ggml_build_forward_expand(gf, cur);
  3520. }
  3521. };
  3522. struct llm_build_deci : public llm_graph_context {
  3523. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3524. const int64_t n_embd_head = hparams.n_embd_head_v;
  3525. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3526. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3527. ggml_tensor * cur;
  3528. ggml_tensor * inpL;
  3529. inpL = build_inp_embd(model.tok_embd);
  3530. // inp_pos - contains the positions
  3531. ggml_tensor * inp_pos = build_inp_pos();
  3532. auto * inp_attn = build_attn_inp_kv_unified();
  3533. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3534. for (int il = 0; il < n_layer; ++il) {
  3535. ggml_tensor * inpSA = inpL;
  3536. const int64_t n_head_kv = hparams.n_head_kv(il);
  3537. const int64_t n_head = hparams.n_head(il);
  3538. if (n_head == 0) {
  3539. // attention-free layer of Llama-3_1-Nemotron-51B
  3540. cur = inpL;
  3541. } else {
  3542. // norm
  3543. cur = build_norm(inpL,
  3544. model.layers[il].attn_norm, NULL,
  3545. LLM_NORM_RMS, il);
  3546. cb(cur, "attn_norm", il);
  3547. }
  3548. if (n_head > 0 && n_head_kv == 0) {
  3549. // "linear attention" of Llama-3_1-Nemotron-51B
  3550. cur = build_lora_mm(model.layers[il].wo, cur);
  3551. cb(cur, "wo", il);
  3552. } else if (n_head > 0) {
  3553. // self-attention
  3554. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3555. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3556. // compute Q and K and RoPE them
  3557. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3558. cb(Qcur, "Qcur", il);
  3559. if (model.layers[il].bq) {
  3560. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3561. cb(Qcur, "Qcur", il);
  3562. }
  3563. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3564. cb(Kcur, "Kcur", il);
  3565. if (model.layers[il].bk) {
  3566. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3567. cb(Kcur, "Kcur", il);
  3568. }
  3569. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3570. cb(Vcur, "Vcur", il);
  3571. if (model.layers[il].bv) {
  3572. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3573. cb(Vcur, "Vcur", il);
  3574. }
  3575. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3576. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3577. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3578. Qcur = ggml_rope_ext(
  3579. ctx0, Qcur, inp_pos, rope_factors,
  3580. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3581. ext_factor, attn_factor, beta_fast, beta_slow
  3582. );
  3583. Kcur = ggml_rope_ext(
  3584. ctx0, Kcur, inp_pos, rope_factors,
  3585. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3586. ext_factor, attn_factor, beta_fast, beta_slow
  3587. );
  3588. cb(Qcur, "Qcur", il);
  3589. cb(Kcur, "Kcur", il);
  3590. cb(Vcur, "Vcur", il);
  3591. cur = build_attn(inp_attn, gf,
  3592. model.layers[il].wo, model.layers[il].bo,
  3593. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  3594. }
  3595. if (il == n_layer - 1) {
  3596. // skip computing output for unused tokens
  3597. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3598. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3599. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3600. }
  3601. // For Granite architecture
  3602. if (hparams.f_residual_scale) {
  3603. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3604. }
  3605. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  3606. ggml_tensor * ffn_inp = cur;
  3607. if (n_head > 0) {
  3608. ffn_inp = ggml_add(ctx0, cur, inpSA);
  3609. cb(ffn_inp, "ffn_inp", il);
  3610. }
  3611. // feed-forward network
  3612. if (model.layers[il].ffn_gate_inp == nullptr) {
  3613. cur = build_norm(ffn_inp,
  3614. model.layers[il].ffn_norm, NULL,
  3615. LLM_NORM_RMS, il);
  3616. cb(cur, "ffn_norm", il);
  3617. cur = build_ffn(cur,
  3618. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3619. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3620. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3621. NULL,
  3622. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3623. cb(cur, "ffn_out", il);
  3624. }
  3625. // For Granite architecture
  3626. if (hparams.f_residual_scale) {
  3627. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3628. }
  3629. cur = ggml_add(ctx0, cur, ffn_inp);
  3630. cb(cur, "ffn_out", il);
  3631. cur = build_cvec(cur, il);
  3632. cb(cur, "l_out", il);
  3633. // input for next layer
  3634. inpL = cur;
  3635. }
  3636. cur = inpL;
  3637. cur = build_norm(cur,
  3638. model.output_norm, NULL,
  3639. LLM_NORM_RMS, -1);
  3640. cb(cur, "result_norm", -1);
  3641. res->t_embd = cur;
  3642. // lm_head
  3643. cur = build_lora_mm(model.output, cur);
  3644. // For Granite architecture
  3645. if (hparams.f_logit_scale) {
  3646. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3647. }
  3648. cb(cur, "result_output", -1);
  3649. res->t_logits = cur;
  3650. ggml_build_forward_expand(gf, cur);
  3651. }
  3652. };
  3653. struct llm_build_baichuan : public llm_graph_context {
  3654. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3655. const int64_t n_embd_head = hparams.n_embd_head_v;
  3656. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3657. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3658. ggml_tensor * cur;
  3659. ggml_tensor * inpL;
  3660. inpL = build_inp_embd(model.tok_embd);
  3661. // inp_pos - contains the positions
  3662. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  3663. auto * inp_attn = build_attn_inp_kv_unified();
  3664. for (int il = 0; il < n_layer; ++il) {
  3665. ggml_tensor * inpSA = inpL;
  3666. cur = build_norm(inpL,
  3667. model.layers[il].attn_norm, NULL,
  3668. LLM_NORM_RMS, il);
  3669. cb(cur, "attn_norm", il);
  3670. // self-attention
  3671. {
  3672. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3673. cb(Qcur, "Qcur", il);
  3674. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3675. cb(Kcur, "Kcur", il);
  3676. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3677. cb(Vcur, "Vcur", il);
  3678. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3679. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3680. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3681. switch (model.type) {
  3682. case LLM_TYPE_7B:
  3683. Qcur = ggml_rope_ext(
  3684. ctx0, Qcur, inp_pos, nullptr,
  3685. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3686. ext_factor, attn_factor, beta_fast, beta_slow
  3687. );
  3688. Kcur = ggml_rope_ext(
  3689. ctx0, Kcur, inp_pos, nullptr,
  3690. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3691. ext_factor, attn_factor, beta_fast, beta_slow
  3692. );
  3693. break;
  3694. case LLM_TYPE_13B:
  3695. break;
  3696. default:
  3697. GGML_ABORT("fatal error");
  3698. }
  3699. cb(Qcur, "Qcur", il);
  3700. cb(Kcur, "Kcur", il);
  3701. cb(Vcur, "Vcur", il);
  3702. cur = build_attn(inp_attn, gf,
  3703. model.layers[il].wo, NULL,
  3704. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3705. }
  3706. if (il == n_layer - 1) {
  3707. // skip computing output for unused tokens
  3708. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3709. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3710. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3711. }
  3712. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3713. cb(ffn_inp, "ffn_inp", il);
  3714. // feed-forward network
  3715. {
  3716. cur = build_norm(ffn_inp,
  3717. model.layers[il].ffn_norm, NULL,
  3718. LLM_NORM_RMS, il);
  3719. cb(cur, "ffn_norm", il);
  3720. cur = build_ffn(cur,
  3721. model.layers[il].ffn_up, NULL, NULL,
  3722. model.layers[il].ffn_gate, NULL, NULL,
  3723. model.layers[il].ffn_down, NULL, NULL,
  3724. NULL,
  3725. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3726. cb(cur, "ffn_out", il);
  3727. }
  3728. cur = ggml_add(ctx0, cur, ffn_inp);
  3729. cur = build_cvec(cur, il);
  3730. cb(cur, "l_out", il);
  3731. // input for next layer
  3732. inpL = cur;
  3733. }
  3734. cur = inpL;
  3735. cur = build_norm(cur,
  3736. model.output_norm, NULL,
  3737. LLM_NORM_RMS, -1);
  3738. cb(cur, "result_norm", -1);
  3739. res->t_embd = cur;
  3740. // lm_head
  3741. cur = build_lora_mm(model.output, cur);
  3742. cb(cur, "result_output", -1);
  3743. res->t_logits = cur;
  3744. ggml_build_forward_expand(gf, cur);
  3745. }
  3746. };
  3747. struct llm_build_xverse : public llm_graph_context {
  3748. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3749. const int64_t n_embd_head = hparams.n_embd_head_v;
  3750. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3751. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3752. ggml_tensor * cur;
  3753. ggml_tensor * inpL;
  3754. inpL = build_inp_embd(model.tok_embd);
  3755. // inp_pos - contains the positions
  3756. ggml_tensor * inp_pos = build_inp_pos();
  3757. auto * inp_attn = build_attn_inp_kv_unified();
  3758. for (int il = 0; il < n_layer; ++il) {
  3759. ggml_tensor * inpSA = inpL;
  3760. cur = build_norm(inpL,
  3761. model.layers[il].attn_norm, NULL,
  3762. LLM_NORM_RMS, il);
  3763. cb(cur, "attn_norm", il);
  3764. // self-attention
  3765. {
  3766. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3767. cb(Qcur, "Qcur", il);
  3768. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3769. cb(Kcur, "Kcur", il);
  3770. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3771. cb(Vcur, "Vcur", il);
  3772. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3773. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3774. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3775. Qcur = ggml_rope_ext(
  3776. ctx0, Qcur, inp_pos, nullptr,
  3777. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3778. ext_factor, attn_factor, beta_fast, beta_slow
  3779. );
  3780. Kcur = ggml_rope_ext(
  3781. ctx0, Kcur, inp_pos, nullptr,
  3782. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3783. ext_factor, attn_factor, beta_fast, beta_slow
  3784. );
  3785. cb(Qcur, "Qcur", il);
  3786. cb(Kcur, "Kcur", il);
  3787. cb(Vcur, "Vcur", il);
  3788. cur = build_attn(inp_attn, gf,
  3789. model.layers[il].wo, NULL,
  3790. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3791. }
  3792. if (il == n_layer - 1) {
  3793. // skip computing output for unused tokens
  3794. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3795. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3796. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3797. }
  3798. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3799. cb(ffn_inp, "ffn_inp", il);
  3800. // feed-forward network
  3801. {
  3802. cur = build_norm(ffn_inp,
  3803. model.layers[il].ffn_norm, NULL,
  3804. LLM_NORM_RMS, il);
  3805. cb(cur, "ffn_norm", il);
  3806. cur = build_ffn(cur,
  3807. model.layers[il].ffn_up, NULL, NULL,
  3808. model.layers[il].ffn_gate, NULL, NULL,
  3809. model.layers[il].ffn_down, NULL, NULL,
  3810. NULL,
  3811. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3812. cb(cur, "ffn_out", il);
  3813. }
  3814. cur = ggml_add(ctx0, cur, ffn_inp);
  3815. cur = build_cvec(cur, il);
  3816. cb(cur, "l_out", il);
  3817. // input for next layer
  3818. inpL = cur;
  3819. }
  3820. cur = inpL;
  3821. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  3822. cb(cur, "result_norm", -1);
  3823. res->t_embd = cur;
  3824. // lm_head
  3825. cur = build_lora_mm(model.output, cur);
  3826. cb(cur, "result_output", -1);
  3827. res->t_logits = cur;
  3828. ggml_build_forward_expand(gf, cur);
  3829. }
  3830. };
  3831. struct llm_build_falcon : public llm_graph_context {
  3832. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3833. const int64_t n_embd_head = hparams.n_embd_head_v;
  3834. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  3835. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3836. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3837. ggml_tensor * cur;
  3838. ggml_tensor * inpL;
  3839. inpL = build_inp_embd(model.tok_embd);
  3840. // inp_pos - contains the positions
  3841. ggml_tensor * inp_pos = build_inp_pos();
  3842. auto * inp_attn = build_attn_inp_kv_unified();
  3843. for (int il = 0; il < n_layer; ++il) {
  3844. ggml_tensor * attn_norm;
  3845. attn_norm = build_norm(inpL,
  3846. model.layers[il].attn_norm,
  3847. model.layers[il].attn_norm_b,
  3848. LLM_NORM, il);
  3849. cb(attn_norm, "attn_norm", il);
  3850. // self-attention
  3851. {
  3852. if (model.layers[il].attn_norm_2) {
  3853. // Falcon-40B
  3854. cur = build_norm(inpL,
  3855. model.layers[il].attn_norm_2,
  3856. model.layers[il].attn_norm_2_b,
  3857. LLM_NORM, il);
  3858. cb(cur, "attn_norm_2", il);
  3859. } else {
  3860. cur = attn_norm;
  3861. }
  3862. cur = build_lora_mm(model.layers[il].wqkv, cur);
  3863. cb(cur, "wqkv", il);
  3864. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3865. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3866. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3867. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3868. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3869. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3870. // using mode = 2 for neox mode
  3871. Qcur = ggml_rope_ext(
  3872. ctx0, Qcur, inp_pos, nullptr,
  3873. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3874. ext_factor, attn_factor, beta_fast, beta_slow
  3875. );
  3876. Kcur = ggml_rope_ext(
  3877. ctx0, Kcur, inp_pos, nullptr,
  3878. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3879. ext_factor, attn_factor, beta_fast, beta_slow
  3880. );
  3881. cb(Qcur, "Qcur", il);
  3882. cb(Kcur, "Kcur", il);
  3883. cb(Vcur, "Vcur", il);
  3884. cur = build_attn(inp_attn, gf,
  3885. model.layers[il].wo, NULL,
  3886. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3887. }
  3888. if (il == n_layer - 1) {
  3889. // skip computing output for unused tokens
  3890. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3891. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3892. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  3893. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  3894. }
  3895. ggml_tensor * ffn_inp = cur;
  3896. // feed forward
  3897. {
  3898. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  3899. model.layers[il].ffn_up, NULL, NULL,
  3900. NULL, NULL, NULL,
  3901. model.layers[il].ffn_down, NULL, NULL,
  3902. NULL,
  3903. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  3904. cb(cur, "ffn_out", il);
  3905. }
  3906. cur = ggml_add(ctx0, cur, ffn_inp);
  3907. cur = ggml_add(ctx0, cur, inpL);
  3908. cur = build_cvec(cur, il);
  3909. cb(cur, "l_out", il);
  3910. // input for next layer
  3911. inpL = cur;
  3912. }
  3913. cur = inpL;
  3914. // norm
  3915. cur = build_norm(cur,
  3916. model.output_norm,
  3917. model.output_norm_b,
  3918. LLM_NORM, -1);
  3919. cb(cur, "result_norm", -1);
  3920. res->t_embd = cur;
  3921. cur = build_lora_mm(model.output, cur);
  3922. cb(cur, "result_output", -1);
  3923. res->t_logits = cur;
  3924. ggml_build_forward_expand(gf, cur);
  3925. }
  3926. };
  3927. struct llm_build_grok : public llm_graph_context {
  3928. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3929. const int64_t n_embd_head = hparams.n_embd_head_v;
  3930. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3931. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3932. ggml_tensor * cur;
  3933. ggml_tensor * inpL;
  3934. inpL = build_inp_embd(model.tok_embd);
  3935. // multiply by embedding_multiplier_scale of 78.38367176906169
  3936. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  3937. // inp_pos - contains the positions
  3938. ggml_tensor * inp_pos = build_inp_pos();
  3939. auto * inp_attn = build_attn_inp_kv_unified();
  3940. for (int il = 0; il < n_layer; ++il) {
  3941. ggml_tensor * inpSA = inpL;
  3942. // norm
  3943. cur = build_norm(inpL,
  3944. model.layers[il].attn_norm, NULL,
  3945. LLM_NORM_RMS, il);
  3946. cb(cur, "attn_norm", il);
  3947. // self-attention
  3948. {
  3949. // compute Q and K and RoPE them
  3950. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3951. cb(Qcur, "Qcur", il);
  3952. if (model.layers[il].bq) {
  3953. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3954. cb(Qcur, "Qcur", il);
  3955. }
  3956. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3957. cb(Kcur, "Kcur", il);
  3958. if (model.layers[il].bk) {
  3959. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3960. cb(Kcur, "Kcur", il);
  3961. }
  3962. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3963. cb(Vcur, "Vcur", il);
  3964. if (model.layers[il].bv) {
  3965. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3966. cb(Vcur, "Vcur", il);
  3967. }
  3968. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3969. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3970. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3971. Qcur = ggml_rope_ext(
  3972. ctx0, Qcur, inp_pos, nullptr,
  3973. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3974. ext_factor, attn_factor, beta_fast, beta_slow
  3975. );
  3976. Kcur = ggml_rope_ext(
  3977. ctx0, Kcur, inp_pos, nullptr,
  3978. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3979. ext_factor, attn_factor, beta_fast, beta_slow
  3980. );
  3981. cb(Qcur, "Qcur", il);
  3982. cb(Kcur, "Kcur", il);
  3983. cb(Vcur, "Vcur", il);
  3984. cur = build_attn(inp_attn, gf,
  3985. model.layers[il].wo, model.layers[il].bo,
  3986. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  3987. }
  3988. if (il == n_layer - 1) {
  3989. // skip computing output for unused tokens
  3990. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3991. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3992. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3993. }
  3994. // Grok
  3995. // if attn_out_norm is present then apply it before adding the input
  3996. if (model.layers[il].attn_out_norm) {
  3997. cur = build_norm(cur,
  3998. model.layers[il].attn_out_norm, NULL,
  3999. LLM_NORM_RMS, il);
  4000. cb(cur, "attn_out_norm", il);
  4001. }
  4002. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4003. cb(ffn_inp, "ffn_inp", il);
  4004. // feed-forward network
  4005. // MoE branch
  4006. cur = build_norm(ffn_inp,
  4007. model.layers[il].ffn_norm, NULL,
  4008. LLM_NORM_RMS, il);
  4009. cb(cur, "ffn_norm", il);
  4010. cur = build_moe_ffn(cur,
  4011. model.layers[il].ffn_gate_inp,
  4012. model.layers[il].ffn_up_exps,
  4013. model.layers[il].ffn_gate_exps,
  4014. model.layers[il].ffn_down_exps,
  4015. nullptr,
  4016. n_expert, n_expert_used,
  4017. LLM_FFN_GELU, true,
  4018. false, 0.0,
  4019. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4020. il);
  4021. cb(cur, "ffn_moe_out", il);
  4022. // Grok
  4023. // if layer_out_norm is present then apply it before adding the input
  4024. // Idea: maybe ffn_out_norm is a better name
  4025. if (model.layers[il].layer_out_norm) {
  4026. cur = build_norm(cur,
  4027. model.layers[il].layer_out_norm, NULL,
  4028. LLM_NORM_RMS, il);
  4029. cb(cur, "layer_out_norm", il);
  4030. }
  4031. cur = ggml_add(ctx0, cur, ffn_inp);
  4032. cb(cur, "ffn_out", il);
  4033. cur = build_cvec(cur, il);
  4034. cb(cur, "l_out", il);
  4035. // input for next layer
  4036. inpL = cur;
  4037. }
  4038. cur = inpL;
  4039. cur = build_norm(cur,
  4040. model.output_norm, NULL,
  4041. LLM_NORM_RMS, -1);
  4042. cb(cur, "result_norm", -1);
  4043. res->t_embd = cur;
  4044. // lm_head
  4045. cur = build_lora_mm(model.output, cur);
  4046. // Grok
  4047. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4048. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4049. cb(cur, "result_output", -1);
  4050. res->t_logits = cur;
  4051. ggml_build_forward_expand(gf, cur);
  4052. }
  4053. };
  4054. struct llm_build_dbrx : public llm_graph_context {
  4055. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4056. const int64_t n_embd_head = hparams.n_embd_head_v;
  4057. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4058. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4059. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4060. ggml_tensor * cur;
  4061. ggml_tensor * inpL;
  4062. inpL = build_inp_embd(model.tok_embd);
  4063. // inp_pos - contains the positions
  4064. ggml_tensor * inp_pos = build_inp_pos();
  4065. auto * inp_attn = build_attn_inp_kv_unified();
  4066. for (int il = 0; il < n_layer; ++il) {
  4067. ggml_tensor * inpSA = inpL;
  4068. // norm
  4069. cur = build_norm(inpL,
  4070. model.layers[il].attn_norm, NULL,
  4071. LLM_NORM, il);
  4072. cb(cur, "attn_norm", il);
  4073. // self-attention
  4074. {
  4075. ggml_tensor * Qcur = nullptr;
  4076. ggml_tensor * Kcur = nullptr;
  4077. ggml_tensor * Vcur = nullptr;
  4078. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4079. cb(cur, "wqkv", il);
  4080. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4081. cb(cur, "wqkv_clamped", il);
  4082. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4083. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4084. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4085. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4086. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4087. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4088. Qcur = ggml_rope_ext(
  4089. ctx0, Qcur, inp_pos, nullptr,
  4090. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4091. ext_factor, attn_factor, beta_fast, beta_slow
  4092. );
  4093. Kcur = ggml_rope_ext(
  4094. ctx0, Kcur, inp_pos, nullptr,
  4095. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4096. ext_factor, attn_factor, beta_fast, beta_slow
  4097. );
  4098. cb(Qcur, "Qcur", il);
  4099. cb(Kcur, "Kcur", il);
  4100. cb(Vcur, "Vcur", il);
  4101. cur = build_attn(inp_attn, gf,
  4102. model.layers[il].wo, NULL,
  4103. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4104. }
  4105. if (il == n_layer - 1) {
  4106. // skip computing output for unused tokens
  4107. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4108. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4109. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4110. }
  4111. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4112. cb(ffn_inp, "ffn_inp", il);
  4113. // feed-forward network
  4114. // MoE branch
  4115. cur = build_norm(ffn_inp,
  4116. model.layers[il].attn_out_norm, NULL,
  4117. LLM_NORM, il);
  4118. cb(cur, "attn_out_norm", il);
  4119. cur = build_moe_ffn(cur,
  4120. model.layers[il].ffn_gate_inp,
  4121. model.layers[il].ffn_up_exps,
  4122. model.layers[il].ffn_gate_exps,
  4123. model.layers[il].ffn_down_exps,
  4124. nullptr,
  4125. n_expert, n_expert_used,
  4126. LLM_FFN_SILU, true,
  4127. false, 0.0,
  4128. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4129. il);
  4130. cb(cur, "ffn_moe_out", il);
  4131. cur = ggml_add(ctx0, cur, ffn_inp);
  4132. cb(cur, "ffn_out", il);
  4133. cur = build_cvec(cur, il);
  4134. cb(cur, "l_out", il);
  4135. // input for next layer
  4136. inpL = cur;
  4137. }
  4138. cur = inpL;
  4139. cur = build_norm(cur,
  4140. model.output_norm, NULL,
  4141. LLM_NORM, -1);
  4142. cb(cur, "result_norm", -1);
  4143. res->t_embd = cur;
  4144. // lm_head
  4145. cur = build_lora_mm(model.output, cur);
  4146. cb(cur, "result_output", -1);
  4147. res->t_logits = cur;
  4148. ggml_build_forward_expand(gf, cur);
  4149. }
  4150. };
  4151. struct llm_build_starcoder : public llm_graph_context {
  4152. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4153. const int64_t n_embd_head = hparams.n_embd_head_v;
  4154. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4155. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4156. ggml_tensor * cur;
  4157. ggml_tensor * inpL;
  4158. inpL = build_inp_embd(model.tok_embd);
  4159. // inp_pos - contains the positions
  4160. ggml_tensor * inp_pos = build_inp_pos();
  4161. auto * inp_attn = build_attn_inp_kv_unified();
  4162. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4163. cb(pos, "pos_embd", -1);
  4164. inpL = ggml_add(ctx0, inpL, pos);
  4165. cb(inpL, "inpL", -1);
  4166. for (int il = 0; il < n_layer; ++il) {
  4167. cur = build_norm(inpL,
  4168. model.layers[il].attn_norm,
  4169. model.layers[il].attn_norm_b,
  4170. LLM_NORM, il);
  4171. cb(cur, "attn_norm", il);
  4172. // self-attention
  4173. {
  4174. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4175. cb(cur, "wqkv", il);
  4176. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4177. cb(cur, "bqkv", il);
  4178. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4179. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4180. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4181. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4182. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4183. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4184. cb(Qcur, "Qcur", il);
  4185. cb(Kcur, "Kcur", il);
  4186. cb(Vcur, "Vcur", il);
  4187. cur = build_attn(inp_attn, gf,
  4188. model.layers[il].wo, model.layers[il].bo,
  4189. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4190. }
  4191. if (il == n_layer - 1) {
  4192. // skip computing output for unused tokens
  4193. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4194. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4195. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4196. }
  4197. // add the input
  4198. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4199. cb(ffn_inp, "ffn_inp", il);
  4200. // FF
  4201. {
  4202. cur = build_norm(ffn_inp,
  4203. model.layers[il].ffn_norm,
  4204. model.layers[il].ffn_norm_b,
  4205. LLM_NORM, il);
  4206. cb(cur, "ffn_norm", il);
  4207. cur = build_ffn(cur,
  4208. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4209. NULL, NULL, NULL,
  4210. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4211. NULL,
  4212. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4213. cb(cur, "ffn_out", il);
  4214. }
  4215. cur = ggml_add(ctx0, cur, ffn_inp);
  4216. cur = build_cvec(cur, il);
  4217. cb(cur, "l_out", il);
  4218. // input for next layer
  4219. inpL = cur;
  4220. }
  4221. cur = build_norm(inpL,
  4222. model.output_norm,
  4223. model.output_norm_b,
  4224. LLM_NORM, -1);
  4225. cb(cur, "result_norm", -1);
  4226. res->t_embd = cur;
  4227. cur = build_lora_mm(model.output, cur);
  4228. cb(cur, "result_output", -1);
  4229. res->t_logits = cur;
  4230. ggml_build_forward_expand(gf, cur);
  4231. }
  4232. };
  4233. struct llm_build_refact : public llm_graph_context {
  4234. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4235. const int64_t n_embd_head = hparams.n_embd_head_v;
  4236. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4237. ggml_tensor * cur;
  4238. ggml_tensor * inpL;
  4239. inpL = build_inp_embd(model.tok_embd);
  4240. auto * inp_attn = build_attn_inp_kv_unified();
  4241. for (int il = 0; il < n_layer; ++il) {
  4242. ggml_tensor * inpSA = inpL;
  4243. cur = build_norm(inpL,
  4244. model.layers[il].attn_norm, NULL,
  4245. LLM_NORM_RMS, il);
  4246. cb(cur, "attn_norm", il);
  4247. // self-attention
  4248. {
  4249. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4250. cb(Qcur, "Qcur", il);
  4251. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4252. cb(Kcur, "Kcur", il);
  4253. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4254. cb(Vcur, "Vcur", il);
  4255. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4256. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4257. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4258. cb(Qcur, "Qcur", il);
  4259. cb(Kcur, "Kcur", il);
  4260. cb(Vcur, "Vcur", il);
  4261. cur = build_attn(inp_attn, gf,
  4262. model.layers[il].wo, NULL,
  4263. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4264. }
  4265. if (il == n_layer - 1) {
  4266. // skip computing output for unused tokens
  4267. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4268. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4269. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4270. }
  4271. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4272. cb(ffn_inp, "ffn_inp", il);
  4273. // feed-forward network
  4274. {
  4275. cur = build_norm(ffn_inp,
  4276. model.layers[il].ffn_norm, NULL,
  4277. LLM_NORM_RMS, il);
  4278. cb(cur, "ffn_norm", il);
  4279. cur = build_ffn(cur,
  4280. model.layers[il].ffn_up, NULL, NULL,
  4281. model.layers[il].ffn_gate, NULL, NULL,
  4282. model.layers[il].ffn_down, NULL, NULL,
  4283. NULL,
  4284. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4285. cb(cur, "ffn_out", il);
  4286. }
  4287. cur = ggml_add(ctx0, cur, ffn_inp);
  4288. cur = build_cvec(cur, il);
  4289. cb(cur, "l_out", il);
  4290. // input for next layer
  4291. inpL = cur;
  4292. }
  4293. cur = inpL;
  4294. cur = build_norm(cur,
  4295. model.output_norm, NULL,
  4296. LLM_NORM_RMS, -1);
  4297. cb(cur, "result_norm", -1);
  4298. res->t_embd = cur;
  4299. // lm_head
  4300. cur = build_lora_mm(model.output, cur);
  4301. cb(cur, "result_output", -1);
  4302. res->t_logits = cur;
  4303. ggml_build_forward_expand(gf, cur);
  4304. }
  4305. };
  4306. struct llm_build_bert : public llm_graph_context {
  4307. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4308. const int64_t n_embd_head = hparams.n_embd_head_v;
  4309. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4310. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4311. ggml_tensor * cur;
  4312. ggml_tensor * inpL;
  4313. ggml_tensor * inp_pos = nullptr;
  4314. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4315. inp_pos = build_inp_pos();
  4316. }
  4317. // construct input embeddings (token, type, position)
  4318. inpL = build_inp_embd(model.tok_embd);
  4319. // token types are hardcoded to zero ("Sentence A")
  4320. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4321. inpL = ggml_add(ctx0, inpL, type_row0);
  4322. if (model.arch == LLM_ARCH_BERT) {
  4323. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4324. }
  4325. cb(inpL, "inp_embd", -1);
  4326. // embed layer norm
  4327. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4328. cb(inpL, "inp_norm", -1);
  4329. auto * inp_attn = build_attn_inp_no_cache();
  4330. // iterate layers
  4331. for (int il = 0; il < n_layer; ++il) {
  4332. ggml_tensor * cur = inpL;
  4333. ggml_tensor * Qcur;
  4334. ggml_tensor * Kcur;
  4335. ggml_tensor * Vcur;
  4336. // self-attention
  4337. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4338. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4339. if (model.layers[il].attn_q_norm) {
  4340. Qcur = build_norm(Qcur,
  4341. model.layers[il].attn_q_norm,
  4342. model.layers[il].attn_q_norm_b,
  4343. LLM_NORM, il);
  4344. }
  4345. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4346. if (model.layers[il].attn_k_norm) {
  4347. Kcur = build_norm(Kcur,
  4348. model.layers[il].attn_k_norm,
  4349. model.layers[il].attn_k_norm_b,
  4350. LLM_NORM, il);
  4351. }
  4352. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4353. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4354. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4355. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4356. } else {
  4357. // compute Q and K and RoPE them
  4358. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4359. cb(cur, "wqkv", il);
  4360. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4361. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4362. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4363. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4364. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4365. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4366. Qcur = ggml_rope_ext(
  4367. ctx0, Qcur, inp_pos, nullptr,
  4368. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4369. ext_factor, attn_factor, beta_fast, beta_slow
  4370. );
  4371. Kcur = ggml_rope_ext(
  4372. ctx0, Kcur, inp_pos, nullptr,
  4373. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4374. ext_factor, attn_factor, beta_fast, beta_slow
  4375. );
  4376. }
  4377. cb(Qcur, "Qcur", il);
  4378. cb(Kcur, "Kcur", il);
  4379. cb(Vcur, "Vcur", il);
  4380. cur = build_attn(inp_attn, gf,
  4381. model.layers[il].wo, model.layers[il].bo,
  4382. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4383. cb(cur, "kqv_out", il);
  4384. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4385. // skip computing output for unused tokens
  4386. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4387. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4388. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4389. }
  4390. // re-add the layer input
  4391. cur = ggml_add(ctx0, cur, inpL);
  4392. // attention layer norm
  4393. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4394. if (model.layers[il].attn_norm_2 != nullptr) {
  4395. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4396. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4397. }
  4398. ggml_tensor * ffn_inp = cur;
  4399. cb(ffn_inp, "ffn_inp", il);
  4400. // feed-forward network
  4401. if (model.arch == LLM_ARCH_BERT) {
  4402. cur = build_ffn(cur,
  4403. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4404. NULL, NULL, NULL,
  4405. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4406. NULL,
  4407. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4408. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4409. cur = build_ffn(cur,
  4410. model.layers[il].ffn_up, NULL, NULL,
  4411. model.layers[il].ffn_gate, NULL, NULL,
  4412. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4413. NULL,
  4414. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4415. } else {
  4416. cur = build_ffn(cur,
  4417. model.layers[il].ffn_up, NULL, NULL,
  4418. model.layers[il].ffn_gate, NULL, NULL,
  4419. model.layers[il].ffn_down, NULL, NULL,
  4420. NULL,
  4421. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4422. }
  4423. cb(cur, "ffn_out", il);
  4424. // attentions bypass the intermediate layer
  4425. cur = ggml_add(ctx0, cur, ffn_inp);
  4426. // output layer norm
  4427. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4428. // input for next layer
  4429. inpL = cur;
  4430. }
  4431. cur = inpL;
  4432. cb(cur, "result_embd", -1);
  4433. res->t_embd = cur;
  4434. ggml_build_forward_expand(gf, cur);
  4435. }
  4436. };
  4437. struct llm_build_bloom : public llm_graph_context {
  4438. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4439. const int64_t n_embd_head = hparams.n_embd_head_v;
  4440. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4441. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4442. ggml_tensor * cur;
  4443. ggml_tensor * inpL;
  4444. inpL = build_inp_embd(model.tok_embd);
  4445. auto * inp_attn = build_attn_inp_kv_unified();
  4446. inpL = build_norm(inpL,
  4447. model.tok_norm,
  4448. model.tok_norm_b,
  4449. LLM_NORM, -1);
  4450. cb(inpL, "inp_norm", -1);
  4451. for (int il = 0; il < n_layer; ++il) {
  4452. cur = build_norm(inpL,
  4453. model.layers[il].attn_norm,
  4454. model.layers[il].attn_norm_b,
  4455. LLM_NORM, il);
  4456. cb(cur, "attn_norm", il);
  4457. // self-attention
  4458. {
  4459. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4460. cb(cur, "wqkv", il);
  4461. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4462. cb(cur, "bqkv", il);
  4463. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4464. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4465. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4466. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4467. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4468. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4469. cb(Qcur, "Qcur", il);
  4470. cb(Kcur, "Kcur", il);
  4471. cb(Vcur, "Vcur", il);
  4472. cur = build_attn(inp_attn, gf,
  4473. model.layers[il].wo, model.layers[il].bo,
  4474. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4475. }
  4476. if (il == n_layer - 1) {
  4477. // skip computing output for unused tokens
  4478. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4479. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4480. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4481. }
  4482. // Add the input
  4483. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4484. cb(ffn_inp, "ffn_inp", il);
  4485. // FF
  4486. {
  4487. cur = build_norm(ffn_inp,
  4488. model.layers[il].ffn_norm,
  4489. model.layers[il].ffn_norm_b,
  4490. LLM_NORM, il);
  4491. cb(cur, "ffn_norm", il);
  4492. cur = build_ffn(cur,
  4493. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4494. NULL, NULL, NULL,
  4495. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4496. NULL,
  4497. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4498. cb(cur, "ffn_out", il);
  4499. }
  4500. cur = ggml_add(ctx0, cur, ffn_inp);
  4501. cur = build_cvec(cur, il);
  4502. cb(cur, "l_out", il);
  4503. // input for next layer
  4504. inpL = cur;
  4505. }
  4506. cur = build_norm(inpL,
  4507. model.output_norm,
  4508. model.output_norm_b,
  4509. LLM_NORM, -1);
  4510. cb(cur, "result_norm", -1);
  4511. res->t_embd = cur;
  4512. cur = build_lora_mm(model.output, cur);
  4513. cb(cur, "result_output", -1);
  4514. res->t_logits = cur;
  4515. ggml_build_forward_expand(gf, cur);
  4516. }
  4517. };
  4518. struct llm_build_mpt : public llm_graph_context {
  4519. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4520. const int64_t n_embd_head = hparams.n_embd_head_v;
  4521. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4522. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4523. ggml_tensor * cur;
  4524. ggml_tensor * pos;
  4525. ggml_tensor * inpL;
  4526. inpL = build_inp_embd(model.tok_embd);
  4527. auto * inp_attn = build_attn_inp_kv_unified();
  4528. if (model.pos_embd) {
  4529. // inp_pos - contains the positions
  4530. ggml_tensor * inp_pos = build_inp_pos();
  4531. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4532. cb(pos, "pos_embd", -1);
  4533. inpL = ggml_add(ctx0, inpL, pos);
  4534. cb(inpL, "inpL", -1);
  4535. }
  4536. for (int il = 0; il < n_layer; ++il) {
  4537. ggml_tensor * attn_norm;
  4538. attn_norm = build_norm(inpL,
  4539. model.layers[il].attn_norm,
  4540. model.layers[il].attn_norm_b,
  4541. LLM_NORM, il);
  4542. cb(attn_norm, "attn_norm", il);
  4543. // self-attention
  4544. {
  4545. cur = attn_norm;
  4546. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4547. cb(cur, "wqkv", il);
  4548. if (model.layers[il].bqkv){
  4549. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4550. cb(cur, "bqkv", il);
  4551. }
  4552. if (hparams.f_clamp_kqv > 0.0f) {
  4553. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4554. cb(cur, "wqkv_clamped", il);
  4555. }
  4556. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4557. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4558. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4559. cb(Qcur, "Qcur", il);
  4560. cb(Kcur, "Kcur", il);
  4561. cb(Vcur, "Vcur", il);
  4562. // Q/K Layernorm
  4563. if (model.layers[il].attn_q_norm) {
  4564. Qcur = build_norm(Qcur,
  4565. model.layers[il].attn_q_norm,
  4566. model.layers[il].attn_q_norm_b,
  4567. LLM_NORM, il);
  4568. cb(Qcur, "Qcur", il);
  4569. Kcur = build_norm(Kcur,
  4570. model.layers[il].attn_k_norm,
  4571. model.layers[il].attn_k_norm_b,
  4572. LLM_NORM, il);
  4573. cb(Kcur, "Kcur", il);
  4574. }
  4575. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4576. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4577. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4578. cb(Qcur, "Qcur", il);
  4579. cb(Kcur, "Kcur", il);
  4580. cb(Vcur, "Vcur", il);
  4581. cur = build_attn(inp_attn, gf,
  4582. model.layers[il].wo, model.layers[il].bo,
  4583. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4584. }
  4585. if (il == n_layer - 1) {
  4586. // skip computing output for unused tokens
  4587. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4588. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4589. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4590. }
  4591. // Add the input
  4592. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4593. cb(ffn_inp, "ffn_inp", il);
  4594. // feed forward
  4595. {
  4596. cur = build_norm(ffn_inp,
  4597. model.layers[il].ffn_norm,
  4598. model.layers[il].ffn_norm_b,
  4599. LLM_NORM, il);
  4600. cb(cur, "ffn_norm", il);
  4601. cur = build_ffn(cur,
  4602. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4603. NULL, NULL, NULL,
  4604. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4605. model.layers[il].ffn_act,
  4606. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4607. cb(cur, "ffn_out", il);
  4608. }
  4609. cur = ggml_add(ctx0, cur, ffn_inp);
  4610. cur = build_cvec(cur, il);
  4611. cb(cur, "l_out", il);
  4612. // input for next layer
  4613. inpL = cur;
  4614. }
  4615. cur = inpL;
  4616. cur = build_norm(cur,
  4617. model.output_norm,
  4618. model.output_norm_b,
  4619. LLM_NORM, -1);
  4620. cb(cur, "result_norm", -1);
  4621. res->t_embd = cur;
  4622. cur = build_lora_mm(model.output, cur);
  4623. cb(cur, "result_output", -1);
  4624. res->t_logits = cur;
  4625. ggml_build_forward_expand(gf, cur);
  4626. }
  4627. };
  4628. struct llm_build_stablelm : public llm_graph_context {
  4629. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4630. const int64_t n_embd_head = hparams.n_embd_head_v;
  4631. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4632. ggml_tensor * cur;
  4633. ggml_tensor * inpL;
  4634. inpL = build_inp_embd(model.tok_embd);
  4635. // inp_pos - contains the positions
  4636. ggml_tensor * inp_pos = build_inp_pos();
  4637. auto * inp_attn = build_attn_inp_kv_unified();
  4638. for (int il = 0; il < n_layer; ++il) {
  4639. // norm
  4640. cur = build_norm(inpL,
  4641. model.layers[il].attn_norm,
  4642. model.layers[il].attn_norm_b,
  4643. LLM_NORM, il);
  4644. cb(cur, "attn_norm", il);
  4645. ggml_tensor * inpSA = cur;
  4646. // self-attention
  4647. {
  4648. // compute Q and K and RoPE them
  4649. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4650. cb(Qcur, "Qcur", il);
  4651. if (model.layers[il].bq) {
  4652. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4653. cb(Qcur, "Qcur", il);
  4654. }
  4655. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4656. cb(Kcur, "Kcur", il);
  4657. if (model.layers[il].bk) {
  4658. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4659. cb(Kcur, "Kcur", il);
  4660. }
  4661. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4662. cb(Vcur, "Vcur", il);
  4663. if (model.layers[il].bv) {
  4664. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4665. cb(Vcur, "Vcur", il);
  4666. }
  4667. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4668. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4669. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4670. if (model.layers[il].attn_q_norm) {
  4671. Qcur = build_norm(Qcur,
  4672. model.layers[il].attn_q_norm,
  4673. NULL,
  4674. LLM_NORM, il);
  4675. cb(Qcur, "Qcur", il);
  4676. }
  4677. if (model.layers[il].attn_k_norm) {
  4678. Kcur = build_norm(Kcur,
  4679. model.layers[il].attn_k_norm,
  4680. NULL,
  4681. LLM_NORM, il);
  4682. cb(Kcur, "Kcur", il);
  4683. }
  4684. Qcur = ggml_rope_ext(
  4685. ctx0, Qcur, inp_pos, nullptr,
  4686. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4687. ext_factor, attn_factor, beta_fast, beta_slow
  4688. );
  4689. Kcur = ggml_rope_ext(
  4690. ctx0, Kcur, inp_pos, nullptr,
  4691. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4692. ext_factor, attn_factor, beta_fast, beta_slow
  4693. );
  4694. cb(Qcur, "Qcur", il);
  4695. cb(Kcur, "Kcur", il);
  4696. cb(Vcur, "Vcur", il);
  4697. cur = build_attn(inp_attn, gf,
  4698. model.layers[il].wo, NULL,
  4699. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4700. }
  4701. if (il == n_layer - 1) {
  4702. // skip computing output for unused tokens
  4703. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4704. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4705. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4706. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4707. }
  4708. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4709. cb(ffn_inp, "ffn_inp", il);
  4710. // feed-forward network
  4711. {
  4712. if (model.layers[il].ffn_norm) {
  4713. cur = build_norm(ffn_inp,
  4714. model.layers[il].ffn_norm,
  4715. model.layers[il].ffn_norm_b,
  4716. LLM_NORM, il);
  4717. cb(cur, "ffn_norm", il);
  4718. } else {
  4719. // parallel residual
  4720. cur = inpSA;
  4721. }
  4722. cur = build_ffn(cur,
  4723. model.layers[il].ffn_up, NULL, NULL,
  4724. model.layers[il].ffn_gate, NULL, NULL,
  4725. model.layers[il].ffn_down, NULL, NULL,
  4726. NULL,
  4727. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4728. cb(cur, "ffn_out", il);
  4729. }
  4730. cur = ggml_add(ctx0, cur, ffn_inp);
  4731. cur = build_cvec(cur, il);
  4732. cb(cur, "l_out", il);
  4733. // input for next layer
  4734. inpL = cur;
  4735. }
  4736. cur = inpL;
  4737. cur = build_norm(cur,
  4738. model.output_norm,
  4739. model.output_norm_b,
  4740. LLM_NORM, -1);
  4741. cb(cur, "result_norm", -1);
  4742. res->t_embd = cur;
  4743. // lm_head
  4744. cur = build_lora_mm(model.output, cur);
  4745. cb(cur, "result_output", -1);
  4746. res->t_logits = cur;
  4747. ggml_build_forward_expand(gf, cur);
  4748. }
  4749. };
  4750. struct llm_build_qwen : public llm_graph_context {
  4751. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4752. const int64_t n_embd_head = hparams.n_embd_head_v;
  4753. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4754. ggml_tensor * cur;
  4755. ggml_tensor * inpL;
  4756. inpL = build_inp_embd(model.tok_embd);
  4757. // inp_pos - contains the positions
  4758. ggml_tensor * inp_pos = build_inp_pos();
  4759. auto * inp_attn = build_attn_inp_kv_unified();
  4760. for (int il = 0; il < n_layer; ++il) {
  4761. ggml_tensor * inpSA = inpL;
  4762. cur = build_norm(inpL,
  4763. model.layers[il].attn_norm, NULL,
  4764. LLM_NORM_RMS, il);
  4765. cb(cur, "attn_norm", il);
  4766. // self-attention
  4767. {
  4768. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4769. cb(cur, "wqkv", il);
  4770. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4771. cb(cur, "bqkv", il);
  4772. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4773. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4774. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  4775. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4776. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4777. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4778. // using mode = 2 for neox mode
  4779. Qcur = ggml_rope_ext(
  4780. ctx0, Qcur, inp_pos, nullptr,
  4781. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4782. ext_factor, attn_factor, beta_fast, beta_slow
  4783. );
  4784. Kcur = ggml_rope_ext(
  4785. ctx0, Kcur, inp_pos, nullptr,
  4786. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4787. ext_factor, attn_factor, beta_fast, beta_slow
  4788. );
  4789. cb(Qcur, "Qcur", il);
  4790. cb(Kcur, "Kcur", il);
  4791. cb(Vcur, "Vcur", il);
  4792. cur = build_attn(inp_attn, gf,
  4793. model.layers[il].wo, NULL,
  4794. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4795. }
  4796. if (il == n_layer - 1) {
  4797. // skip computing output for unused tokens
  4798. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4799. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4800. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4801. }
  4802. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4803. cb(ffn_inp, "ffn_inp", il);
  4804. // feed-forward forward
  4805. {
  4806. cur = build_norm(ffn_inp,
  4807. model.layers[il].ffn_norm, NULL,
  4808. LLM_NORM_RMS, il);
  4809. cb(cur, "ffn_norm", il);
  4810. cur = build_ffn(cur,
  4811. model.layers[il].ffn_up, NULL, NULL,
  4812. model.layers[il].ffn_gate, NULL, NULL,
  4813. model.layers[il].ffn_down, NULL, NULL,
  4814. NULL,
  4815. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4816. cb(cur, "ffn_out", il);
  4817. }
  4818. cur = ggml_add(ctx0, cur, ffn_inp);
  4819. cur = build_cvec(cur, il);
  4820. cb(cur, "l_out", il);
  4821. // input for next layer
  4822. inpL = cur;
  4823. }
  4824. cur = inpL;
  4825. cur = build_norm(cur,
  4826. model.output_norm, NULL,
  4827. LLM_NORM_RMS, -1);
  4828. cb(cur, "result_norm", -1);
  4829. res->t_embd = cur;
  4830. // lm_head
  4831. cur = build_lora_mm(model.output, cur);
  4832. cb(cur, "result_output", -1);
  4833. res->t_logits = cur;
  4834. ggml_build_forward_expand(gf, cur);
  4835. }
  4836. };
  4837. struct llm_build_qwen2 : public llm_graph_context {
  4838. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4839. const int64_t n_embd_head = hparams.n_embd_head_v;
  4840. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4841. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4842. ggml_tensor * cur;
  4843. ggml_tensor * inpL;
  4844. inpL = build_inp_embd(model.tok_embd);
  4845. // inp_pos - contains the positions
  4846. ggml_tensor * inp_pos = build_inp_pos();
  4847. auto * inp_attn = build_attn_inp_kv_unified();
  4848. for (int il = 0; il < n_layer; ++il) {
  4849. ggml_tensor * inpSA = inpL;
  4850. // norm
  4851. cur = build_norm(inpL,
  4852. model.layers[il].attn_norm, NULL,
  4853. LLM_NORM_RMS, il);
  4854. cb(cur, "attn_norm", il);
  4855. // self-attention
  4856. {
  4857. // compute Q and K and RoPE them
  4858. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4859. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4860. cb(Qcur, "Qcur", il);
  4861. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4862. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4863. cb(Kcur, "Kcur", il);
  4864. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4865. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4866. cb(Vcur, "Vcur", il);
  4867. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4868. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4869. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4870. Qcur = ggml_rope_ext(
  4871. ctx0, Qcur, inp_pos, nullptr,
  4872. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4873. ext_factor, attn_factor, beta_fast, beta_slow
  4874. );
  4875. Kcur = ggml_rope_ext(
  4876. ctx0, Kcur, inp_pos, nullptr,
  4877. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4878. ext_factor, attn_factor, beta_fast, beta_slow
  4879. );
  4880. cb(Qcur, "Qcur", il);
  4881. cb(Kcur, "Kcur", il);
  4882. cb(Vcur, "Vcur", il);
  4883. cur = build_attn(inp_attn, gf,
  4884. model.layers[il].wo, model.layers[il].bo,
  4885. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4886. }
  4887. if (il == n_layer - 1) {
  4888. // skip computing output for unused tokens
  4889. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4890. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4891. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4892. }
  4893. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4894. cb(ffn_inp, "ffn_inp", il);
  4895. // feed-forward network
  4896. cur = build_norm(ffn_inp,
  4897. model.layers[il].ffn_norm, NULL,
  4898. LLM_NORM_RMS, il);
  4899. cb(cur, "ffn_norm", il);
  4900. cur = build_ffn(cur,
  4901. model.layers[il].ffn_up, NULL, NULL,
  4902. model.layers[il].ffn_gate, NULL, NULL,
  4903. model.layers[il].ffn_down, NULL, NULL,
  4904. NULL,
  4905. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4906. cb(cur, "ffn_out", il);
  4907. cur = ggml_add(ctx0, cur, ffn_inp);
  4908. cur = build_cvec(cur, il);
  4909. cb(cur, "l_out", il);
  4910. // input for next layer
  4911. inpL = cur;
  4912. }
  4913. cur = inpL;
  4914. cur = build_norm(cur,
  4915. model.output_norm, NULL,
  4916. LLM_NORM_RMS, -1);
  4917. cb(cur, "result_norm", -1);
  4918. res->t_embd = cur;
  4919. // lm_head
  4920. cur = build_lora_mm(model.output, cur);
  4921. cb(cur, "result_output", -1);
  4922. res->t_logits = cur;
  4923. ggml_build_forward_expand(gf, cur);
  4924. }
  4925. };
  4926. struct llm_build_qwen2vl : public llm_graph_context {
  4927. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4928. const int64_t n_embd_head = hparams.n_embd_head_v;
  4929. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4930. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4931. ggml_tensor * cur;
  4932. ggml_tensor * inpL;
  4933. inpL = build_inp_embd(model.tok_embd);
  4934. // inp_pos - contains the positions
  4935. ggml_tensor * inp_pos = build_inp_pos();
  4936. auto * inp_attn = build_attn_inp_kv_unified();
  4937. int sections[4];
  4938. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  4939. for (int il = 0; il < n_layer; ++il) {
  4940. ggml_tensor * inpSA = inpL;
  4941. // norm
  4942. cur = build_norm(inpL,
  4943. model.layers[il].attn_norm, NULL,
  4944. LLM_NORM_RMS, il);
  4945. cb(cur, "attn_norm", il);
  4946. // self-attention
  4947. {
  4948. // compute Q and K and RoPE them
  4949. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4950. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4951. cb(Qcur, "Qcur", il);
  4952. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4953. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4954. cb(Kcur, "Kcur", il);
  4955. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4956. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4957. cb(Vcur, "Vcur", il);
  4958. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4959. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4960. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4961. Qcur = ggml_rope_multi(
  4962. ctx0, Qcur, inp_pos, nullptr,
  4963. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  4964. ext_factor, attn_factor, beta_fast, beta_slow
  4965. );
  4966. Kcur = ggml_rope_multi(
  4967. ctx0, Kcur, inp_pos, nullptr,
  4968. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  4969. ext_factor, attn_factor, beta_fast, beta_slow
  4970. );
  4971. cb(Qcur, "Qcur", il);
  4972. cb(Kcur, "Kcur", il);
  4973. cb(Vcur, "Vcur", il);
  4974. cur = build_attn(inp_attn, gf,
  4975. model.layers[il].wo, model.layers[il].bo,
  4976. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4977. }
  4978. if (il == n_layer - 1) {
  4979. // skip computing output for unused tokens
  4980. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4981. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4982. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4983. }
  4984. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4985. cb(ffn_inp, "ffn_inp", il);
  4986. // feed-forward network
  4987. cur = build_norm(ffn_inp,
  4988. model.layers[il].ffn_norm, NULL,
  4989. LLM_NORM_RMS, il);
  4990. cb(cur, "ffn_norm", il);
  4991. cur = build_ffn(cur,
  4992. model.layers[il].ffn_up, NULL, NULL,
  4993. model.layers[il].ffn_gate, NULL, NULL,
  4994. model.layers[il].ffn_down, NULL, NULL,
  4995. NULL,
  4996. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4997. cb(cur, "ffn_out", il);
  4998. cur = ggml_add(ctx0, cur, ffn_inp);
  4999. cur = build_cvec(cur, il);
  5000. cb(cur, "l_out", il);
  5001. // input for next layer
  5002. inpL = cur;
  5003. }
  5004. cur = inpL;
  5005. cur = build_norm(cur,
  5006. model.output_norm, NULL,
  5007. LLM_NORM_RMS, -1);
  5008. cb(cur, "result_norm", -1);
  5009. res->t_embd = cur;
  5010. // lm_head
  5011. cur = build_lora_mm(model.output, cur);
  5012. cb(cur, "result_output", -1);
  5013. res->t_logits = cur;
  5014. ggml_build_forward_expand(gf, cur);
  5015. }
  5016. };
  5017. struct llm_build_qwen2moe : public llm_graph_context {
  5018. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5019. const int64_t n_embd_head = hparams.n_embd_head_v;
  5020. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5021. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5022. ggml_tensor * cur;
  5023. ggml_tensor * inpL;
  5024. inpL = build_inp_embd(model.tok_embd);
  5025. // inp_pos - contains the positions
  5026. ggml_tensor * inp_pos = build_inp_pos();
  5027. auto * inp_attn = build_attn_inp_kv_unified();
  5028. for (int il = 0; il < n_layer; ++il) {
  5029. ggml_tensor * inpSA = inpL;
  5030. // norm
  5031. cur = build_norm(inpL,
  5032. model.layers[il].attn_norm, NULL,
  5033. LLM_NORM_RMS, il);
  5034. cb(cur, "attn_norm", il);
  5035. // self_attention
  5036. {
  5037. // compute Q and K and RoPE them
  5038. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5039. cb(Qcur, "Qcur", il);
  5040. if (model.layers[il].bq) {
  5041. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5042. cb(Qcur, "Qcur", il);
  5043. }
  5044. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5045. cb(Kcur, "Kcur", il);
  5046. if (model.layers[il].bk) {
  5047. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5048. cb(Kcur, "Kcur", il);
  5049. }
  5050. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5051. cb(Vcur, "Vcur", il);
  5052. if (model.layers[il].bv) {
  5053. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5054. cb(Vcur, "Vcur", il);
  5055. }
  5056. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5057. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5058. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5059. Qcur = ggml_rope_ext(
  5060. ctx0, Qcur, inp_pos, nullptr,
  5061. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5062. ext_factor, attn_factor, beta_fast, beta_slow
  5063. );
  5064. Kcur = ggml_rope_ext(
  5065. ctx0, Kcur, inp_pos, nullptr,
  5066. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5067. ext_factor, attn_factor, beta_fast, beta_slow
  5068. );
  5069. cb(Qcur, "Qcur", il);
  5070. cb(Kcur, "Kcur", il);
  5071. cb(Vcur, "Vcur", il);
  5072. cur = build_attn(inp_attn, gf,
  5073. model.layers[il].wo, model.layers[il].bo,
  5074. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5075. }
  5076. if (il == n_layer - 1) {
  5077. // skip computing output for unused tokens
  5078. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5079. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5080. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5081. }
  5082. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5083. cb(ffn_inp, "ffn_inp", il);
  5084. // MoE branch
  5085. cur = build_norm(ffn_inp,
  5086. model.layers[il].ffn_norm, NULL,
  5087. LLM_NORM_RMS, il);
  5088. cb(cur, "ffn_norm", il);
  5089. ggml_tensor * moe_out =
  5090. build_moe_ffn(cur,
  5091. model.layers[il].ffn_gate_inp,
  5092. model.layers[il].ffn_up_exps,
  5093. model.layers[il].ffn_gate_exps,
  5094. model.layers[il].ffn_down_exps,
  5095. nullptr,
  5096. n_expert, n_expert_used,
  5097. LLM_FFN_SILU, false,
  5098. false, 0.0,
  5099. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5100. il);
  5101. cb(cur, "ffn_moe_out", il);
  5102. // FFN shared expert
  5103. {
  5104. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5105. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5106. // sigmoid
  5107. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5108. cb(cur_gate, "ffn_shexp_gate", il);
  5109. ggml_tensor * cur_ffn = build_ffn(cur,
  5110. model.layers[il].ffn_up_shexp, NULL, NULL,
  5111. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5112. model.layers[il].ffn_down_shexp, NULL, NULL,
  5113. NULL,
  5114. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5115. cb(cur_ffn, "ffn_shexp", il);
  5116. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5117. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5118. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5119. cb(moe_out, "ffn_out", il);
  5120. cur = moe_out;
  5121. }
  5122. cur = ggml_add(ctx0, cur, ffn_inp);
  5123. cur = build_cvec(cur, il);
  5124. cb(cur, "l_out", il);
  5125. // input for next layer
  5126. inpL = cur;
  5127. }
  5128. cur = inpL;
  5129. cur = build_norm(cur,
  5130. model.output_norm, NULL,
  5131. LLM_NORM_RMS, -1);
  5132. cb(cur, "result_norm", -1);
  5133. res->t_embd = cur;
  5134. // lm_head
  5135. cur = build_lora_mm(model.output, cur);
  5136. cb(cur, "result_output", -1);
  5137. res->t_logits = cur;
  5138. ggml_build_forward_expand(gf, cur);
  5139. }
  5140. };
  5141. struct llm_build_phi2 : public llm_graph_context {
  5142. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5143. const int64_t n_embd_head = hparams.n_embd_head_v;
  5144. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5145. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5146. ggml_tensor * cur;
  5147. ggml_tensor * attn_norm_output;
  5148. ggml_tensor * ffn_output;
  5149. ggml_tensor * inpL;
  5150. inpL = build_inp_embd(model.tok_embd);
  5151. // inp_pos - contains the positions
  5152. ggml_tensor * inp_pos = build_inp_pos();
  5153. auto * inp_attn = build_attn_inp_kv_unified();
  5154. for (int il = 0; il < n_layer; ++il) {
  5155. attn_norm_output = build_norm(inpL,
  5156. model.layers[il].attn_norm,
  5157. model.layers[il].attn_norm_b,
  5158. LLM_NORM, il);
  5159. cb(attn_norm_output, "attn_norm", il);
  5160. // self-attention
  5161. {
  5162. ggml_tensor * Qcur = nullptr;
  5163. ggml_tensor * Kcur = nullptr;
  5164. ggml_tensor * Vcur = nullptr;
  5165. if (model.layers[il].wqkv) {
  5166. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5167. cb(cur, "wqkv", il);
  5168. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5169. cb(cur, "bqkv", il);
  5170. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5171. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5172. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5173. } else {
  5174. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5175. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5176. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5177. }
  5178. cb(Qcur, "Qcur", il);
  5179. cb(Kcur, "Kcur", il);
  5180. cb(Vcur, "Vcur", il);
  5181. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5182. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5183. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5184. Qcur = ggml_rope_ext(
  5185. ctx0, Qcur, inp_pos, nullptr,
  5186. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5187. ext_factor, attn_factor, beta_fast, beta_slow
  5188. );
  5189. Kcur = ggml_rope_ext(
  5190. ctx0, Kcur, inp_pos, nullptr,
  5191. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5192. ext_factor, attn_factor, beta_fast, beta_slow
  5193. );
  5194. cb(Qcur, "Qcur", il);
  5195. cb(Kcur, "Kcur", il);
  5196. cb(Vcur, "Vcur", il);
  5197. // with phi2, we scale the Q to avoid precision issues
  5198. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5199. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5200. cur = build_attn(inp_attn, gf,
  5201. model.layers[il].wo, model.layers[il].bo,
  5202. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  5203. }
  5204. if (il == n_layer - 1) {
  5205. // skip computing output for unused tokens
  5206. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5207. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5208. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5209. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5210. }
  5211. // FF
  5212. {
  5213. ffn_output = build_ffn(attn_norm_output,
  5214. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5215. NULL, NULL, NULL,
  5216. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5217. NULL,
  5218. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5219. cb(ffn_output, "ffn_out", il);
  5220. }
  5221. cur = ggml_add(ctx0, cur, ffn_output);
  5222. cur = ggml_add(ctx0, cur, inpL);
  5223. cur = build_cvec(cur, il);
  5224. cb(cur, "l_out", il);
  5225. // input for next layer
  5226. inpL = cur;
  5227. }
  5228. cur = build_norm(inpL,
  5229. model.output_norm,
  5230. model.output_norm_b,
  5231. LLM_NORM, -1);
  5232. cb(cur, "result_norm", -1);
  5233. res->t_embd = cur;
  5234. cur = build_lora_mm(model.output, cur);
  5235. cb(cur, "result_output_no_bias", -1);
  5236. cur = ggml_add(ctx0, cur, model.output_b);
  5237. cb(cur, "result_output", -1);
  5238. res->t_logits = cur;
  5239. ggml_build_forward_expand(gf, cur);
  5240. }
  5241. };
  5242. struct llm_build_phi3 : public llm_graph_context {
  5243. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5244. const int64_t n_embd_head = hparams.n_embd_head_v;
  5245. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5246. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5247. ggml_tensor * cur;
  5248. ggml_tensor * inpL;
  5249. inpL = build_inp_embd(model.tok_embd);
  5250. // inp_pos - contains the positions
  5251. ggml_tensor * inp_pos = build_inp_pos();
  5252. auto * inp_attn = build_attn_inp_kv_unified();
  5253. for (int il = 0; il < n_layer; ++il) {
  5254. auto * residual = inpL;
  5255. // self-attention
  5256. {
  5257. // rope freq factors for 128k context
  5258. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  5259. ggml_tensor* attn_norm_output = build_norm(inpL,
  5260. model.layers[il].attn_norm,
  5261. model.layers[il].attn_norm_b,
  5262. LLM_NORM_RMS, il);
  5263. cb(attn_norm_output, "attn_norm", il);
  5264. ggml_tensor * Qcur = nullptr;
  5265. ggml_tensor * Kcur = nullptr;
  5266. ggml_tensor * Vcur = nullptr;
  5267. if (model.layers[il].wqkv) {
  5268. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5269. cb(cur, "wqkv", il);
  5270. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5271. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5272. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5273. } else {
  5274. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5275. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5276. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5277. }
  5278. cb(Qcur, "Qcur", il);
  5279. cb(Kcur, "Kcur", il);
  5280. cb(Vcur, "Vcur", il);
  5281. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5282. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5283. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5284. Qcur = ggml_rope_ext(
  5285. ctx0, Qcur, inp_pos, rope_factors,
  5286. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5287. ext_factor, attn_factor, beta_fast, beta_slow
  5288. );
  5289. Kcur = ggml_rope_ext(
  5290. ctx0, Kcur, inp_pos, rope_factors,
  5291. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5292. ext_factor, attn_factor, beta_fast, beta_slow
  5293. );
  5294. cb(Qcur, "Qcur", il);
  5295. cb(Kcur, "Kcur", il);
  5296. cb(Vcur, "Vcur", il);
  5297. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5298. cb(Qcur, "Qcur", il);
  5299. cur = build_attn(inp_attn, gf,
  5300. model.layers[il].wo, model.layers[il].bo,
  5301. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  5302. }
  5303. if (il == n_layer - 1) {
  5304. // skip computing output for unused tokens
  5305. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5306. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5307. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5308. }
  5309. cur = ggml_add(ctx0, cur, residual);
  5310. residual = cur;
  5311. cur = build_norm(cur,
  5312. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5313. LLM_NORM_RMS, il);
  5314. cb(cur, "ffn_norm", il);
  5315. // feed-forward network
  5316. if (model.layers[il].ffn_gate_inp == nullptr) {
  5317. cur = build_ffn(cur,
  5318. model.layers[il].ffn_up, NULL, NULL,
  5319. NULL, NULL, NULL,
  5320. model.layers[il].ffn_down, NULL, NULL,
  5321. NULL,
  5322. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5323. cb(cur, "ffn_out", il);
  5324. } else {
  5325. // MoE branch
  5326. cur = build_moe_ffn(cur,
  5327. model.layers[il].ffn_gate_inp,
  5328. model.layers[il].ffn_up_exps,
  5329. model.layers[il].ffn_gate_exps,
  5330. model.layers[il].ffn_down_exps,
  5331. nullptr,
  5332. n_expert, n_expert_used,
  5333. LLM_FFN_SILU, true,
  5334. false, 0.0,
  5335. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5336. il);
  5337. cb(cur, "ffn_moe_out", il);
  5338. }
  5339. cur = ggml_add(ctx0, residual, cur);
  5340. cur = build_cvec(cur, il);
  5341. cb(cur, "l_out", il);
  5342. // input for next layer
  5343. inpL = cur;
  5344. }
  5345. cur = build_norm(inpL,
  5346. model.output_norm,
  5347. model.output_norm_b,
  5348. LLM_NORM_RMS, -1);
  5349. cb(cur, "result_norm", -1);
  5350. res->t_embd = cur;
  5351. cur = build_lora_mm(model.output, cur);
  5352. if (model.output_b != nullptr) {
  5353. cb(cur, "result_output_no_bias", -1);
  5354. cur = ggml_add(ctx0, cur, model.output_b);
  5355. }
  5356. cb(cur, "result_output", -1);
  5357. res->t_logits = cur;
  5358. ggml_build_forward_expand(gf, cur);
  5359. }
  5360. };
  5361. struct llm_build_plamo : public llm_graph_context {
  5362. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5363. const int64_t n_embd_head = hparams.n_embd_head_v;
  5364. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5365. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5366. ggml_tensor * cur;
  5367. ggml_tensor * inpL;
  5368. inpL = build_inp_embd(model.tok_embd);
  5369. // inp_pos - contains the positions
  5370. ggml_tensor * inp_pos = build_inp_pos();
  5371. auto * inp_attn = build_attn_inp_kv_unified();
  5372. for (int il = 0; il < n_layer; ++il) {
  5373. // norm
  5374. cur = build_norm(inpL,
  5375. model.layers[il].attn_norm, NULL,
  5376. LLM_NORM_RMS, il);
  5377. cb(cur, "attn_norm", il);
  5378. ggml_tensor * attention_norm = cur;
  5379. // self-attention
  5380. {
  5381. // compute Q and K and RoPE them
  5382. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5383. cb(Qcur, "Qcur", il);
  5384. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5385. cb(Kcur, "Kcur", il);
  5386. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5387. cb(Vcur, "Vcur", il);
  5388. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5389. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5390. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5391. Qcur = ggml_rope_ext(
  5392. ctx0, Qcur, inp_pos, nullptr,
  5393. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5394. ext_factor, attn_factor, beta_fast, beta_slow
  5395. );
  5396. Kcur = ggml_rope_ext(
  5397. ctx0, Kcur, inp_pos, nullptr,
  5398. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5399. ext_factor, attn_factor, beta_fast, beta_slow
  5400. );
  5401. cb(Qcur, "Qcur", il);
  5402. cb(Kcur, "Kcur", il);
  5403. cb(Vcur, "Vcur", il);
  5404. cur = build_attn(inp_attn, gf,
  5405. model.layers[il].wo, NULL,
  5406. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5407. }
  5408. ggml_tensor * sa_out = cur;
  5409. cur = attention_norm;
  5410. if (il == n_layer - 1) {
  5411. // skip computing output for unused tokens
  5412. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5413. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5414. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  5415. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5416. }
  5417. // feed-forward network
  5418. {
  5419. cur = build_ffn(cur,
  5420. model.layers[il].ffn_up, NULL, NULL,
  5421. model.layers[il].ffn_gate, NULL, NULL,
  5422. model.layers[il].ffn_down, NULL, NULL,
  5423. NULL,
  5424. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5425. cb(cur, "ffn_out", il);
  5426. }
  5427. cur = ggml_add(ctx0, cur, sa_out);
  5428. cur = ggml_add(ctx0, cur, inpL);
  5429. cur = build_cvec(cur, il);
  5430. cb(cur, "l_out", il);
  5431. // input for next layer
  5432. inpL = cur;
  5433. }
  5434. cur = inpL;
  5435. cur = build_norm(cur,
  5436. model.output_norm, NULL,
  5437. LLM_NORM_RMS, -1);
  5438. cb(cur, "result_norm", -1);
  5439. res->t_embd = cur;
  5440. // lm_head
  5441. cur = build_lora_mm(model.output, cur);
  5442. cb(cur, "result_output", -1);
  5443. res->t_logits = cur;
  5444. ggml_build_forward_expand(gf, cur);
  5445. }
  5446. };
  5447. struct llm_build_gpt2 : public llm_graph_context {
  5448. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5449. const int64_t n_embd_head = hparams.n_embd_head_v;
  5450. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5451. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5452. ggml_tensor * cur;
  5453. ggml_tensor * pos;
  5454. ggml_tensor * inpL;
  5455. inpL = build_inp_embd(model.tok_embd);
  5456. // inp_pos - contains the positions
  5457. ggml_tensor * inp_pos = build_inp_pos();
  5458. auto * inp_attn = build_attn_inp_kv_unified();
  5459. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5460. cb(pos, "pos_embd", -1);
  5461. inpL = ggml_add(ctx0, inpL, pos);
  5462. cb(inpL, "inpL", -1);
  5463. for (int il = 0; il < n_layer; ++il) {
  5464. cur = build_norm(inpL,
  5465. model.layers[il].attn_norm,
  5466. model.layers[il].attn_norm_b,
  5467. LLM_NORM, il);
  5468. cb(cur, "attn_norm", il);
  5469. // self-attention
  5470. {
  5471. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5472. cb(cur, "wqkv", il);
  5473. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5474. cb(cur, "bqkv", il);
  5475. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5476. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5477. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5478. cb(Qcur, "Qcur", il);
  5479. cb(Kcur, "Kcur", il);
  5480. cb(Vcur, "Vcur", il);
  5481. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5482. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5483. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5484. cur = build_attn(inp_attn, gf,
  5485. model.layers[il].wo, model.layers[il].bo,
  5486. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5487. }
  5488. if (il == n_layer - 1) {
  5489. // skip computing output for unused tokens
  5490. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5491. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5492. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5493. }
  5494. // add the input
  5495. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5496. cb(ffn_inp, "ffn_inp", il);
  5497. // FF
  5498. {
  5499. cur = build_norm(ffn_inp,
  5500. model.layers[il].ffn_norm,
  5501. model.layers[il].ffn_norm_b,
  5502. LLM_NORM, il);
  5503. cb(cur, "ffn_norm", il);
  5504. cur = build_ffn(cur,
  5505. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5506. NULL, NULL, NULL,
  5507. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5508. NULL,
  5509. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5510. cb(cur, "ffn_out", il);
  5511. }
  5512. cur = ggml_add(ctx0, cur, ffn_inp);
  5513. cur = build_cvec(cur, il);
  5514. cb(cur, "l_out", il);
  5515. // input for next layer
  5516. inpL = cur;
  5517. }
  5518. cur = build_norm(inpL,
  5519. model.output_norm,
  5520. model.output_norm_b,
  5521. LLM_NORM, -1);
  5522. cb(cur, "result_norm", -1);
  5523. res->t_embd = cur;
  5524. cur = build_lora_mm(model.output, cur);
  5525. cb(cur, "result_output", -1);
  5526. res->t_logits = cur;
  5527. ggml_build_forward_expand(gf, cur);
  5528. }
  5529. };
  5530. struct llm_build_codeshell : public llm_graph_context {
  5531. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5532. const int64_t n_embd_head = hparams.n_embd_head_v;
  5533. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5534. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5535. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5536. ggml_tensor * cur;
  5537. ggml_tensor * inpL;
  5538. inpL = build_inp_embd(model.tok_embd);
  5539. // inp_pos - contains the positions
  5540. ggml_tensor * inp_pos = build_inp_pos();
  5541. auto * inp_attn = build_attn_inp_kv_unified();
  5542. for (int il = 0; il < n_layer; ++il) {
  5543. cur = build_norm(inpL,
  5544. model.layers[il].attn_norm,
  5545. model.layers[il].attn_norm_b,
  5546. LLM_NORM, il);
  5547. cb(cur, "attn_norm", il);
  5548. // self-attention
  5549. {
  5550. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5551. cb(cur, "wqkv", il);
  5552. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5553. cb(cur, "bqkv", il);
  5554. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5555. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5556. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5557. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5558. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5559. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5560. Qcur = ggml_rope_ext(
  5561. ctx0, Qcur, inp_pos, nullptr,
  5562. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5563. ext_factor, attn_factor, beta_fast, beta_slow
  5564. );
  5565. Kcur = ggml_rope_ext(
  5566. ctx0, Kcur, inp_pos, nullptr,
  5567. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5568. ext_factor, attn_factor, beta_fast, beta_slow
  5569. );
  5570. cb(Qcur, "Qcur", il);
  5571. cb(Kcur, "Kcur", il);
  5572. cb(Vcur, "Vcur", il);
  5573. cur = build_attn(inp_attn, gf,
  5574. model.layers[il].wo, model.layers[il].bo,
  5575. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5576. }
  5577. if (il == n_layer - 1) {
  5578. // skip computing output for unused tokens
  5579. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5580. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5581. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5582. }
  5583. // add the input
  5584. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5585. cb(ffn_inp, "ffn_inp", il);
  5586. // FF
  5587. {
  5588. cur = build_norm(ffn_inp,
  5589. model.layers[il].ffn_norm,
  5590. model.layers[il].ffn_norm_b,
  5591. LLM_NORM, il);
  5592. cb(cur, "ffn_norm", il);
  5593. cur = build_ffn(cur,
  5594. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5595. NULL, NULL, NULL,
  5596. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5597. NULL,
  5598. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5599. cb(cur, "ffn_out", il);
  5600. }
  5601. cur = ggml_add(ctx0, cur, ffn_inp);
  5602. cur = build_cvec(cur, il);
  5603. cb(cur, "l_out", il);
  5604. // input for next layer
  5605. inpL = cur;
  5606. }
  5607. cur = build_norm(inpL,
  5608. model.output_norm,
  5609. model.output_norm_b,
  5610. LLM_NORM, -1);
  5611. cb(cur, "result_norm", -1);
  5612. res->t_embd = cur;
  5613. cur = build_lora_mm(model.output, cur);
  5614. cb(cur, "result_output", -1);
  5615. res->t_logits = cur;
  5616. ggml_build_forward_expand(gf, cur);
  5617. }
  5618. };
  5619. struct llm_build_orion : public llm_graph_context {
  5620. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5621. const int64_t n_embd_head = hparams.n_embd_head_v;
  5622. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5623. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5624. ggml_tensor * cur;
  5625. ggml_tensor * inpL;
  5626. inpL = build_inp_embd(model.tok_embd);
  5627. // inp_pos - contains the positions
  5628. ggml_tensor * inp_pos = build_inp_pos();
  5629. auto * inp_attn = build_attn_inp_kv_unified();
  5630. for (int il = 0; il < n_layer; ++il) {
  5631. ggml_tensor * inpSA = inpL;
  5632. // norm
  5633. cur = build_norm(inpL,
  5634. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  5635. LLM_NORM, il);
  5636. cb(cur, "attn_norm", il);
  5637. // self-attention
  5638. {
  5639. // compute Q and K and RoPE them
  5640. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5641. cb(Qcur, "Qcur", il);
  5642. // if (model.layers[il].bq) {
  5643. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5644. // cb(Qcur, "Qcur", il);
  5645. // }
  5646. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5647. cb(Kcur, "Kcur", il);
  5648. // if (model.layers[il].bk) {
  5649. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5650. // cb(Kcur, "Kcur", il);
  5651. // }
  5652. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5653. cb(Vcur, "Vcur", il);
  5654. // if (model.layers[il].bv) {
  5655. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5656. // cb(Vcur, "Vcur", il);
  5657. // }
  5658. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5659. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5660. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5661. Qcur = ggml_rope_ext(
  5662. ctx0, Qcur, inp_pos, nullptr,
  5663. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5664. ext_factor, attn_factor, beta_fast, beta_slow
  5665. );
  5666. Kcur = ggml_rope_ext(
  5667. ctx0, Kcur, inp_pos, nullptr,
  5668. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5669. ext_factor, attn_factor, beta_fast, beta_slow
  5670. );
  5671. cb(Qcur, "Qcur", il);
  5672. cb(Kcur, "Kcur", il);
  5673. cb(Vcur, "Vcur", il);
  5674. cur = build_attn(inp_attn, gf,
  5675. model.layers[il].wo, NULL,
  5676. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5677. }
  5678. if (il == n_layer - 1) {
  5679. // skip computing output for unused tokens
  5680. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5681. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5682. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5683. }
  5684. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5685. cb(ffn_inp, "ffn_inp", il);
  5686. // feed-forward network
  5687. cur = build_norm(ffn_inp,
  5688. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5689. LLM_NORM, il);
  5690. cb(cur, "ffn_norm", il);
  5691. cur = build_ffn(cur,
  5692. model.layers[il].ffn_up, NULL, NULL,
  5693. model.layers[il].ffn_gate, NULL, NULL,
  5694. model.layers[il].ffn_down, NULL, NULL,
  5695. NULL,
  5696. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5697. cb(cur, "ffn_out", il);
  5698. cur = ggml_add(ctx0, cur, ffn_inp);
  5699. cur = build_cvec(cur, il);
  5700. cb(cur, "l_out", il);
  5701. // input for next layer
  5702. inpL = cur;
  5703. }
  5704. cur = inpL;
  5705. cur = build_norm(cur,
  5706. model.output_norm, model.output_norm_b,
  5707. LLM_NORM, -1);
  5708. cb(cur, "result_norm", -1);
  5709. res->t_embd = cur;
  5710. // lm_head
  5711. cur = build_lora_mm(model.output, cur);
  5712. cb(cur, "result_output", -1);
  5713. res->t_logits = cur;
  5714. ggml_build_forward_expand(gf, cur);
  5715. }
  5716. };
  5717. struct llm_build_internlm2 : public llm_graph_context {
  5718. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5719. const int64_t n_embd_head = hparams.n_embd_head_v;
  5720. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5721. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5722. ggml_tensor * cur;
  5723. ggml_tensor * inpL;
  5724. inpL = build_inp_embd(model.tok_embd);
  5725. // inp_pos - contains the positions
  5726. ggml_tensor * inp_pos = build_inp_pos();
  5727. auto * inp_attn = build_attn_inp_kv_unified();
  5728. for (int il = 0; il < n_layer; ++il) {
  5729. ggml_tensor * inpSA = inpL;
  5730. // norm
  5731. cur = build_norm(inpL,
  5732. model.layers[il].attn_norm, NULL,
  5733. LLM_NORM_RMS, il);
  5734. cb(cur, "attn_norm", il);
  5735. // self-attention
  5736. {
  5737. // compute Q and K and RoPE them
  5738. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5739. cb(Qcur, "Qcur", il);
  5740. if (model.layers[il].bq) {
  5741. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5742. cb(Qcur, "Qcur", il);
  5743. }
  5744. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5745. cb(Kcur, "Kcur", il);
  5746. if (model.layers[il].bk) {
  5747. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5748. cb(Kcur, "Kcur", il);
  5749. }
  5750. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5751. cb(Vcur, "Vcur", il);
  5752. if (model.layers[il].bv) {
  5753. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5754. cb(Vcur, "Vcur", il);
  5755. }
  5756. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5757. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5758. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5759. Qcur = ggml_rope_ext(
  5760. ctx0, Qcur, inp_pos, nullptr,
  5761. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5762. ext_factor, attn_factor, beta_fast, beta_slow
  5763. );
  5764. Kcur = ggml_rope_ext(
  5765. ctx0, Kcur, inp_pos, nullptr,
  5766. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5767. ext_factor, attn_factor, beta_fast, beta_slow
  5768. );
  5769. cb(Qcur, "Qcur", il);
  5770. cb(Kcur, "Kcur", il);
  5771. cb(Vcur, "Vcur", il);
  5772. cur = build_attn(inp_attn, gf,
  5773. model.layers[il].wo, model.layers[il].bo,
  5774. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5775. }
  5776. if (il == n_layer - 1) {
  5777. // skip computing output for unused tokens
  5778. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5779. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5780. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5781. }
  5782. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5783. cb(ffn_inp, "ffn_inp", il);
  5784. // feed-forward network
  5785. cur = build_norm(ffn_inp,
  5786. model.layers[il].ffn_norm, NULL,
  5787. LLM_NORM_RMS, il);
  5788. cb(cur, "ffn_norm", il);
  5789. cur = build_ffn(cur,
  5790. model.layers[il].ffn_up, NULL, NULL,
  5791. model.layers[il].ffn_gate, NULL, NULL,
  5792. model.layers[il].ffn_down, NULL, NULL,
  5793. NULL,
  5794. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5795. cb(cur, "ffn_out", il);
  5796. cur = ggml_add(ctx0, cur, ffn_inp);
  5797. cur = build_cvec(cur, il);
  5798. cb(cur, "l_out", il);
  5799. // input for next layer
  5800. inpL = cur;
  5801. }
  5802. cur = inpL;
  5803. cur = build_norm(cur,
  5804. model.output_norm, NULL,
  5805. LLM_NORM_RMS, -1);
  5806. cb(cur, "result_norm", -1);
  5807. res->t_embd = cur;
  5808. // lm_head
  5809. cur = build_lora_mm(model.output, cur);
  5810. cb(cur, "result_output", -1);
  5811. res->t_logits = cur;
  5812. ggml_build_forward_expand(gf, cur);
  5813. }
  5814. };
  5815. struct llm_build_minicpm3 : public llm_graph_context {
  5816. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5817. //TODO: if the model varies, these parameters need to be read from the model
  5818. const int64_t n_embd_base = 256;
  5819. const float scale_embd = 12.0f;
  5820. const float scale_depth = 1.4f;
  5821. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  5822. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5823. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5824. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5825. ggml_tensor * cur;
  5826. ggml_tensor * inpL;
  5827. inpL = build_inp_embd(model.tok_embd);
  5828. // scale the input embeddings
  5829. inpL = ggml_scale(ctx0, inpL, scale_embd);
  5830. cb(inpL, "inp_scaled", -1);
  5831. // inp_pos - contains the positions
  5832. ggml_tensor * inp_pos = build_inp_pos();
  5833. auto * inp_attn = build_attn_inp_kv_unified();
  5834. for (int il = 0; il < n_layer; ++il) {
  5835. ggml_tensor * inpSA = inpL;
  5836. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  5837. // norm
  5838. cur = build_norm(inpL,
  5839. model.layers[il].attn_norm, NULL,
  5840. LLM_NORM_RMS, il);
  5841. cb(cur, "attn_norm", il);
  5842. // self_attention
  5843. {
  5844. ggml_tensor * q = NULL;
  5845. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  5846. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  5847. cb(q, "q", il);
  5848. q = build_norm(q,
  5849. model.layers[il].attn_q_a_norm, NULL,
  5850. LLM_NORM_RMS, il);
  5851. cb(q, "q", il);
  5852. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  5853. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  5854. cb(q, "q", il);
  5855. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  5856. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  5857. ggml_row_size(q->type, hparams.n_embd_head_k),
  5858. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  5859. 0);
  5860. cb(q_nope, "q_nope", il);
  5861. // and {n_head * n_embd_head_qk_rope, n_tokens}
  5862. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  5863. ggml_row_size(q->type, hparams.n_embd_head_k),
  5864. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  5865. ggml_row_size(q->type, n_embd_head_qk_nope));
  5866. cb(q_pe, "q_pe", il);
  5867. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  5868. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  5869. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  5870. // split into {kv_lora_rank, n_tokens}
  5871. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  5872. kv_pe_compresseed->nb[1],
  5873. 0);
  5874. cb(kv_compressed, "kv_compressed", il);
  5875. // and {n_embd_head_qk_rope, n_tokens}
  5876. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  5877. kv_pe_compresseed->nb[1],
  5878. kv_pe_compresseed->nb[1],
  5879. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  5880. cb(k_pe, "k_pe", il);
  5881. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  5882. kv_compressed = ggml_cont(ctx0, kv_compressed);
  5883. kv_compressed = build_norm(kv_compressed,
  5884. model.layers[il].attn_kv_a_norm, NULL,
  5885. LLM_NORM_RMS, il);
  5886. cb(kv_compressed, "kv_compressed", il);
  5887. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  5888. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  5889. cb(kv, "kv", il);
  5890. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  5891. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  5892. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  5893. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  5894. 0);
  5895. cb(k_nope, "k_nope", il);
  5896. // and {n_head * n_embd_head_v, n_tokens}
  5897. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  5898. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  5899. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  5900. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  5901. cb(v_states, "v_states", il);
  5902. v_states = ggml_cont(ctx0, v_states);
  5903. cb(v_states, "v_states", il);
  5904. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  5905. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  5906. 0);
  5907. cb(v_states, "v_states", il);
  5908. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  5909. q_pe = ggml_rope_ext(
  5910. ctx0, q_pe, inp_pos, rope_factors,
  5911. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5912. ext_factor, attn_factor, beta_fast, beta_slow
  5913. );
  5914. cb(q_pe, "q_pe", il);
  5915. // shared RoPE key
  5916. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  5917. k_pe = ggml_rope_ext(
  5918. ctx0, k_pe, inp_pos, rope_factors,
  5919. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5920. ext_factor, attn_factor, beta_fast, beta_slow
  5921. );
  5922. cb(k_pe, "k_pe", il);
  5923. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  5924. cb(q_states, "q_states", il);
  5925. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  5926. cb(k_states, "k_states", il);
  5927. cur = build_attn(inp_attn, gf,
  5928. model.layers[il].wo, NULL,
  5929. q_states, k_states, v_states, nullptr, kq_scale, il);
  5930. }
  5931. if (il == n_layer - 1) {
  5932. // skip computing output for unused tokens
  5933. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5934. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5935. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5936. }
  5937. // scale_res - scale the hidden states for residual connection
  5938. const float scale_res = scale_depth/sqrtf(float(n_layer));
  5939. cur = ggml_scale(ctx0, cur, scale_res);
  5940. cb(cur, "hidden_scaled", il);
  5941. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5942. cb(ffn_inp, "ffn_inp", il);
  5943. // feed-forward network
  5944. {
  5945. cur = build_norm(ffn_inp,
  5946. model.layers[il].ffn_norm, NULL,
  5947. LLM_NORM_RMS, il);
  5948. cb(cur, "ffn_norm", il);
  5949. cur = build_ffn(cur,
  5950. model.layers[il].ffn_up, NULL, NULL,
  5951. model.layers[il].ffn_gate, NULL, NULL,
  5952. model.layers[il].ffn_down, NULL, NULL,
  5953. NULL,
  5954. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5955. cb(cur, "ffn_out", il);
  5956. }
  5957. // scale the hidden states for residual connection
  5958. cur = ggml_scale(ctx0, cur, scale_res);
  5959. cb(cur, "hidden_scaled_ffn", il);
  5960. cur = ggml_add(ctx0, cur, ffn_inp);
  5961. cur = build_cvec(cur, il);
  5962. cb(cur, "l_out", il);
  5963. // input for next layer
  5964. inpL = cur;
  5965. }
  5966. cur = inpL;
  5967. cur = build_norm(cur,
  5968. model.output_norm, NULL,
  5969. LLM_NORM_RMS, -1);
  5970. cb(cur, "result_norm", -1);
  5971. res->t_embd = cur;
  5972. // lm_head scaling
  5973. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  5974. cur = ggml_scale(ctx0, cur, scale_lmhead);
  5975. cb(cur, "lmhead_scaling", -1);
  5976. // lm_head
  5977. cur = build_lora_mm(model.output, cur);
  5978. cb(cur, "result_output", -1);
  5979. res->t_logits = cur;
  5980. ggml_build_forward_expand(gf, cur);
  5981. }
  5982. };
  5983. struct llm_build_gemma : public llm_graph_context {
  5984. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5985. const int64_t n_embd_head = hparams.n_embd_head_v;
  5986. ggml_tensor * cur;
  5987. ggml_tensor * inpL;
  5988. inpL = build_inp_embd(model.tok_embd);
  5989. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  5990. cb(inpL, "inp_scaled", -1);
  5991. // inp_pos - contains the positions
  5992. ggml_tensor * inp_pos = build_inp_pos();
  5993. auto * inp_attn = build_attn_inp_kv_unified();
  5994. for (int il = 0; il < n_layer; ++il) {
  5995. // norm
  5996. cur = build_norm(inpL,
  5997. model.layers[il].attn_norm, NULL,
  5998. LLM_NORM_RMS, il);
  5999. cb(cur, "attn_norm", il);
  6000. // self-attention
  6001. {
  6002. // compute Q and K and RoPE them
  6003. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6004. cb(Qcur, "Qcur", il);
  6005. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6006. cb(Kcur, "Kcur", il);
  6007. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6008. cb(Vcur, "Vcur", il);
  6009. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6010. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6011. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6012. Qcur = ggml_rope_ext(
  6013. ctx0, Qcur, inp_pos, nullptr,
  6014. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6015. ext_factor, attn_factor, beta_fast, beta_slow);
  6016. Kcur = ggml_rope_ext(
  6017. ctx0, Kcur, inp_pos, nullptr,
  6018. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6019. ext_factor, attn_factor, beta_fast, beta_slow);
  6020. cb(Qcur, "Qcur", il);
  6021. cb(Kcur, "Kcur", il);
  6022. cb(Vcur, "Vcur", il);
  6023. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6024. cb(Qcur, "Qcur_scaled", il);
  6025. cur = build_attn(inp_attn, gf,
  6026. model.layers[il].wo, NULL,
  6027. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  6028. }
  6029. if (il == n_layer - 1) {
  6030. // skip computing output for unused tokens
  6031. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6032. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6033. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6034. }
  6035. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6036. cb(sa_out, "sa_out", il);
  6037. cur = build_norm(sa_out,
  6038. model.layers[il].ffn_norm, NULL,
  6039. LLM_NORM_RMS, il);
  6040. cb(cur, "ffn_norm", il);
  6041. // feed-forward network
  6042. {
  6043. cur = build_ffn(cur,
  6044. model.layers[il].ffn_up, NULL, NULL,
  6045. model.layers[il].ffn_gate, NULL, NULL,
  6046. model.layers[il].ffn_down, NULL, NULL,
  6047. NULL,
  6048. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6049. cb(cur, "ffn_out", il);
  6050. }
  6051. cur = ggml_add(ctx0, cur, sa_out);
  6052. cur = build_cvec(cur, il);
  6053. cb(cur, "l_out", il);
  6054. // input for next layer
  6055. inpL = cur;
  6056. }
  6057. cur = inpL;
  6058. cur = build_norm(cur,
  6059. model.output_norm, NULL,
  6060. LLM_NORM_RMS, -1);
  6061. cb(cur, "result_norm", -1);
  6062. res->t_embd = cur;
  6063. // lm_head
  6064. cur = build_lora_mm(model.output, cur);
  6065. cb(cur, "result_output", -1);
  6066. res->t_logits = cur;
  6067. ggml_build_forward_expand(gf, cur);
  6068. }
  6069. };
  6070. struct llm_build_gemma2 : public llm_graph_context {
  6071. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6072. const int64_t n_embd_head = hparams.n_embd_head_k;
  6073. ggml_tensor * cur;
  6074. ggml_tensor * inpL;
  6075. inpL = build_inp_embd(model.tok_embd);
  6076. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6077. cb(inpL, "inp_scaled", -1);
  6078. // inp_pos - contains the positions
  6079. ggml_tensor * inp_pos = build_inp_pos();
  6080. auto * inp_attn = build_attn_inp_kv_unified();
  6081. for (int il = 0; il < n_layer; ++il) {
  6082. // norm
  6083. cur = build_norm(inpL,
  6084. model.layers[il].attn_norm, NULL,
  6085. LLM_NORM_RMS, il);
  6086. cb(cur, "attn_norm", il);
  6087. // self-attention
  6088. {
  6089. // compute Q and K and RoPE them
  6090. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6091. cb(Qcur, "Qcur", il);
  6092. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6093. cb(Kcur, "Kcur", il);
  6094. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6095. cb(Vcur, "Vcur", il);
  6096. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6097. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6098. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6099. Qcur = ggml_rope_ext(
  6100. ctx0, Qcur, inp_pos, nullptr,
  6101. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6102. ext_factor, attn_factor, beta_fast, beta_slow);
  6103. Kcur = ggml_rope_ext(
  6104. ctx0, Kcur, inp_pos, nullptr,
  6105. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6106. ext_factor, attn_factor, beta_fast, beta_slow);
  6107. cb(Qcur, "Qcur", il);
  6108. cb(Kcur, "Kcur", il);
  6109. cb(Vcur, "Vcur", il);
  6110. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6111. switch (model.type) {
  6112. case LLM_TYPE_2B:
  6113. case LLM_TYPE_9B:
  6114. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6115. default: GGML_ABORT("fatal error");
  6116. };
  6117. cb(Qcur, "Qcur_scaled", il);
  6118. cur = build_attn(inp_attn, gf,
  6119. model.layers[il].wo, NULL,
  6120. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  6121. }
  6122. cur = build_norm(cur,
  6123. model.layers[il].attn_post_norm, NULL,
  6124. LLM_NORM_RMS, il);
  6125. cb(cur, "attn_post_norm", il);
  6126. if (il == n_layer - 1) {
  6127. // skip computing output for unused tokens
  6128. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6129. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6130. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6131. }
  6132. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6133. cb(sa_out, "sa_out", il);
  6134. cur = build_norm(sa_out,
  6135. model.layers[il].ffn_norm, NULL,
  6136. LLM_NORM_RMS, il);
  6137. cb(cur, "ffn_norm", il);
  6138. // feed-forward network
  6139. {
  6140. cur = build_ffn(cur,
  6141. model.layers[il].ffn_up, NULL, NULL,
  6142. model.layers[il].ffn_gate, NULL, NULL,
  6143. model.layers[il].ffn_down, NULL, NULL,
  6144. NULL,
  6145. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6146. cb(cur, "ffn_out", il);
  6147. }
  6148. cur = build_norm(cur,
  6149. model.layers[il].ffn_post_norm, NULL,
  6150. LLM_NORM_RMS, -1);
  6151. cb(cur, "ffn_post_norm", -1);
  6152. cur = ggml_add(ctx0, cur, sa_out);
  6153. cur = build_cvec(cur, il);
  6154. cb(cur, "l_out", il);
  6155. // input for next layer
  6156. inpL = cur;
  6157. }
  6158. cur = inpL;
  6159. cur = build_norm(cur,
  6160. model.output_norm, NULL,
  6161. LLM_NORM_RMS, -1);
  6162. cb(cur, "result_norm", -1);
  6163. res->t_embd = cur;
  6164. // lm_head
  6165. cur = build_lora_mm(model.output, cur);
  6166. // final logit soft-capping
  6167. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6168. cur = ggml_tanh(ctx0, cur);
  6169. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6170. cb(cur, "result_output", -1);
  6171. res->t_logits = cur;
  6172. ggml_build_forward_expand(gf, cur);
  6173. }
  6174. };
  6175. struct llm_build_gemma3 : public llm_graph_context {
  6176. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6177. const int64_t n_embd_head = hparams.n_embd_head_k;
  6178. ggml_tensor * cur;
  6179. ggml_tensor * inpL;
  6180. inpL = build_inp_embd(model.tok_embd);
  6181. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6182. if (ubatch.token) {
  6183. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6184. cb(inpL, "inp_scaled", -1);
  6185. }
  6186. // inp_pos - contains the positions
  6187. ggml_tensor * inp_pos = build_inp_pos();
  6188. // TODO: is causal == true correct? might need some changes
  6189. auto * inp_attn = build_attn_inp_kv_unified();
  6190. for (int il = 0; il < n_layer; ++il) {
  6191. const bool is_swa = hparams.is_swa(il);
  6192. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6193. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6194. // norm
  6195. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6196. cb(cur, "attn_norm", il);
  6197. // self-attention
  6198. {
  6199. // compute Q and K and RoPE them
  6200. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6201. cb(Qcur, "Qcur", il);
  6202. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6203. cb(Kcur, "Kcur", il);
  6204. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6205. cb(Vcur, "Vcur", il);
  6206. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6207. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6208. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6209. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6210. cb(Qcur, "Qcur_normed", il);
  6211. Qcur = ggml_rope_ext(
  6212. ctx0, Qcur, inp_pos, nullptr,
  6213. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6214. ext_factor, attn_factor, beta_fast, beta_slow);
  6215. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6216. cb(Kcur, "Kcur_normed", il);
  6217. Kcur = ggml_rope_ext(
  6218. ctx0, Kcur, inp_pos, nullptr,
  6219. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6220. ext_factor, attn_factor, beta_fast, beta_slow);
  6221. cb(Qcur, "Qcur", il);
  6222. cb(Kcur, "Kcur", il);
  6223. cb(Vcur, "Vcur", il);
  6224. cur = build_attn(inp_attn, gf,
  6225. model.layers[il].wo, NULL,
  6226. Qcur, Kcur, Vcur, nullptr, hparams.f_attention_scale, il);
  6227. }
  6228. cur = build_norm(cur,
  6229. model.layers[il].attn_post_norm, NULL,
  6230. LLM_NORM_RMS, il);
  6231. cb(cur, "attn_post_norm", il);
  6232. if (il == n_layer - 1) {
  6233. // skip computing output for unused tokens
  6234. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6235. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6236. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6237. }
  6238. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6239. cb(sa_out, "sa_out", il);
  6240. cur = build_norm(sa_out,
  6241. model.layers[il].ffn_norm, NULL,
  6242. LLM_NORM_RMS, il);
  6243. cb(cur, "ffn_norm", il);
  6244. // feed-forward network
  6245. {
  6246. cur = build_ffn(cur,
  6247. model.layers[il].ffn_up, NULL, NULL,
  6248. model.layers[il].ffn_gate, NULL, NULL,
  6249. model.layers[il].ffn_down, NULL, NULL,
  6250. NULL,
  6251. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6252. cb(cur, "ffn_out", il);
  6253. }
  6254. cur = build_norm(cur,
  6255. model.layers[il].ffn_post_norm, NULL,
  6256. LLM_NORM_RMS, -1);
  6257. cb(cur, "ffn_post_norm", -1);
  6258. cur = ggml_add(ctx0, cur, sa_out);
  6259. cur = build_cvec(cur, il);
  6260. cb(cur, "l_out", il);
  6261. // input for next layer
  6262. inpL = cur;
  6263. }
  6264. cur = inpL;
  6265. cur = build_norm(cur,
  6266. model.output_norm, NULL,
  6267. LLM_NORM_RMS, -1);
  6268. cb(cur, "result_norm", -1);
  6269. res->t_embd = cur;
  6270. // lm_head
  6271. cur = build_lora_mm(model.output, cur);
  6272. cb(cur, "result_output", -1);
  6273. res->t_logits = cur;
  6274. ggml_build_forward_expand(gf, cur);
  6275. }
  6276. };
  6277. // TODO: move up next to build_starcoder
  6278. struct llm_build_starcoder2 : public llm_graph_context {
  6279. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6280. const int64_t n_embd_head = hparams.n_embd_head_v;
  6281. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6282. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6283. ggml_tensor * cur;
  6284. ggml_tensor * inpL;
  6285. inpL = build_inp_embd(model.tok_embd);
  6286. // inp_pos - contains the positions
  6287. ggml_tensor * inp_pos = build_inp_pos();
  6288. auto * inp_attn = build_attn_inp_kv_unified();
  6289. for (int il = 0; il < n_layer; ++il) {
  6290. ggml_tensor * inpSA = inpL;
  6291. // norm
  6292. cur = build_norm(inpL,
  6293. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6294. LLM_NORM, il);
  6295. cb(cur, "attn_norm", il);
  6296. // self-attention
  6297. {
  6298. // compute Q and K and RoPE them
  6299. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6300. cb(Qcur, "Qcur", il);
  6301. if (model.layers[il].bq) {
  6302. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6303. cb(Qcur, "Qcur", il);
  6304. }
  6305. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6306. cb(Kcur, "Kcur", il);
  6307. if (model.layers[il].bk) {
  6308. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6309. cb(Kcur, "Kcur", il);
  6310. }
  6311. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6312. cb(Vcur, "Vcur", il);
  6313. if (model.layers[il].bv) {
  6314. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6315. cb(Vcur, "Vcur", il);
  6316. }
  6317. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6318. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6319. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6320. Qcur = ggml_rope_ext(
  6321. ctx0, Qcur, inp_pos, nullptr,
  6322. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6323. ext_factor, attn_factor, beta_fast, beta_slow
  6324. );
  6325. Kcur = ggml_rope_ext(
  6326. ctx0, Kcur, inp_pos, nullptr,
  6327. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6328. ext_factor, attn_factor, beta_fast, beta_slow
  6329. );
  6330. cb(Qcur, "Qcur", il);
  6331. cb(Kcur, "Kcur", il);
  6332. cb(Vcur, "Vcur", il);
  6333. cur = build_attn(inp_attn, gf,
  6334. model.layers[il].wo, model.layers[il].bo,
  6335. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6336. }
  6337. if (il == n_layer - 1) {
  6338. // skip computing output for unused tokens
  6339. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6340. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6341. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6342. }
  6343. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6344. cb(ffn_inp, "ffn_inp", il);
  6345. // feed-forward network
  6346. cur = build_norm(ffn_inp,
  6347. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6348. LLM_NORM, il);
  6349. cb(cur, "ffn_norm", il);
  6350. cur = build_ffn(cur,
  6351. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6352. NULL, NULL, NULL,
  6353. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6354. NULL,
  6355. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6356. cb(cur, "ffn_out", il);
  6357. cur = ggml_add(ctx0, cur, ffn_inp);
  6358. cur = build_cvec(cur, il);
  6359. cb(cur, "l_out", il);
  6360. // input for next layer
  6361. inpL = cur;
  6362. }
  6363. cur = inpL;
  6364. cur = build_norm(cur,
  6365. model.output_norm, model.output_norm_b,
  6366. LLM_NORM, -1);
  6367. cb(cur, "result_norm", -1);
  6368. res->t_embd = cur;
  6369. // lm_head
  6370. cur = build_lora_mm(model.output, cur);
  6371. cb(cur, "result_output", -1);
  6372. res->t_logits = cur;
  6373. ggml_build_forward_expand(gf, cur);
  6374. }
  6375. };
  6376. struct llm_build_mamba : public llm_graph_context {
  6377. const llama_model & model;
  6378. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6379. ggml_tensor * cur;
  6380. ggml_tensor * inpL;
  6381. // {n_embd, n_tokens}
  6382. inpL = build_inp_embd(model.tok_embd);
  6383. ggml_tensor * state_copy = build_inp_s_copy();
  6384. ggml_tensor * state_mask = build_inp_s_mask();
  6385. for (int il = 0; il < n_layer; ++il) {
  6386. // norm
  6387. cur = build_norm(inpL,
  6388. model.layers[il].attn_norm, NULL,
  6389. LLM_NORM_RMS, il);
  6390. cb(cur, "attn_norm", il);
  6391. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6392. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6393. if (il == n_layer - 1) {
  6394. // skip computing output for unused tokens
  6395. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6396. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6397. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6398. }
  6399. // residual
  6400. cur = ggml_add(ctx0, cur, inpL);
  6401. cur = build_cvec(cur, il);
  6402. cb(cur, "l_out", il);
  6403. // input for next layer
  6404. inpL = cur;
  6405. }
  6406. // final rmsnorm
  6407. cur = build_norm(inpL,
  6408. model.output_norm, NULL,
  6409. LLM_NORM_RMS, -1);
  6410. cb(cur, "result_norm", -1);
  6411. res->t_embd = cur;
  6412. // lm_head
  6413. cur = build_lora_mm(model.output, cur);
  6414. cb(cur, "result_output", -1);
  6415. res->t_logits = cur;
  6416. ggml_build_forward_expand(gf, cur);
  6417. }
  6418. // TODO: split
  6419. ggml_tensor * build_mamba_layer(
  6420. ggml_cgraph * gf,
  6421. ggml_tensor * cur,
  6422. ggml_tensor * state_copy,
  6423. ggml_tensor * state_mask,
  6424. const llama_ubatch & ubatch,
  6425. int il) const {
  6426. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  6427. const auto kv_head = kv_self->head;
  6428. const int64_t d_conv = hparams.ssm_d_conv;
  6429. const int64_t d_inner = hparams.ssm_d_inner;
  6430. const int64_t d_state = hparams.ssm_d_state;
  6431. const int64_t dt_rank = hparams.ssm_dt_rank;
  6432. const int64_t n_seqs = ubatch.n_seqs;
  6433. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  6434. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  6435. // Use the same RMS norm as the final layer norm
  6436. const float norm_rms_eps = hparams.f_norm_rms_eps;
  6437. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  6438. GGML_ASSERT(n_seqs != 0);
  6439. GGML_ASSERT(ubatch.equal_seqs);
  6440. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  6441. ggml_tensor * conv_states_all = kv_self->k_l[il];
  6442. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  6443. // (ab)using the KV cache to store the states
  6444. ggml_tensor * conv = build_copy_mask_state(
  6445. gf, conv_states_all, state_copy, state_mask,
  6446. hparams.n_embd_k_s(), n_seqs);
  6447. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  6448. ggml_tensor * ssm = build_copy_mask_state(
  6449. gf, ssm_states_all, state_copy, state_mask,
  6450. hparams.n_embd_v_s(), n_seqs);
  6451. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  6452. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  6453. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  6454. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  6455. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  6456. // split the above in two
  6457. // => {d_inner, n_seq_tokens, n_seqs}
  6458. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  6459. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  6460. // conv
  6461. {
  6462. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  6463. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  6464. // copy last (d_conv - 1) columns back into the state cache
  6465. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  6466. ggml_build_forward_expand(gf,
  6467. ggml_cpy(ctx0, last_conv,
  6468. ggml_view_1d(ctx0, conv_states_all,
  6469. (d_conv - 1)*(d_inner)*(n_seqs),
  6470. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  6471. // 1D convolution
  6472. // The equivalent is to make a self-overlapping view of conv_x
  6473. // over d_conv columns at each stride in the 3rd dimension,
  6474. // then element-wise multiply that with the conv1d weight,
  6475. // then sum the elements of each row,
  6476. // (the last two steps are a dot product over rows (also doable with mul_mat))
  6477. // then permute away the ne[0] dimension,
  6478. // and then you're left with the resulting x tensor.
  6479. // For simultaneous sequences, all sequences need to have the same length.
  6480. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  6481. // bias
  6482. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  6483. x = ggml_silu(ctx0, x);
  6484. }
  6485. // ssm
  6486. {
  6487. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  6488. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  6489. // split
  6490. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  6491. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  6492. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  6493. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  6494. if (ssm_dt_b_c_rms) {
  6495. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  6496. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  6497. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  6498. }
  6499. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  6500. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  6501. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  6502. // Custom operator to optimize the parallel associative scan
  6503. // as described in the Annex D of the Mamba paper.
  6504. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  6505. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  6506. // store last states
  6507. ggml_build_forward_expand(gf,
  6508. ggml_cpy(ctx0,
  6509. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  6510. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  6511. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  6512. // TODO: skip computing output earlier for unused tokens
  6513. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  6514. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  6515. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  6516. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  6517. cur = build_lora_mm(model.layers[il].ssm_out, y);
  6518. }
  6519. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  6520. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  6521. //cb(cur, "mamba_out", il);
  6522. return cur;
  6523. }
  6524. };
  6525. struct llm_build_command_r : public llm_graph_context {
  6526. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6527. const int64_t n_embd_head = hparams.n_embd_head_v;
  6528. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6529. const float f_logit_scale = hparams.f_logit_scale;
  6530. ggml_tensor * cur;
  6531. ggml_tensor * inpL;
  6532. inpL = build_inp_embd(model.tok_embd);
  6533. // inp_pos - contains the positions
  6534. ggml_tensor * inp_pos = build_inp_pos();
  6535. auto * inp_attn = build_attn_inp_kv_unified();
  6536. for (int il = 0; il < n_layer; ++il) {
  6537. // norm
  6538. cur = build_norm(inpL,
  6539. model.layers[il].attn_norm, NULL,
  6540. LLM_NORM, il);
  6541. cb(cur, "attn_norm", il);
  6542. ggml_tensor * ffn_inp = cur;
  6543. // self-attention
  6544. {
  6545. // compute Q and K and RoPE them
  6546. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6547. cb(Qcur, "Qcur", il);
  6548. if (model.layers[il].bq) {
  6549. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6550. cb(Qcur, "Qcur", il);
  6551. }
  6552. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6553. cb(Kcur, "Kcur", il);
  6554. if (model.layers[il].bk) {
  6555. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6556. cb(Kcur, "Kcur", il);
  6557. }
  6558. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6559. cb(Vcur, "Vcur", il);
  6560. if (model.layers[il].bv) {
  6561. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6562. cb(Vcur, "Vcur", il);
  6563. }
  6564. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6565. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6566. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6567. if (model.layers[il].attn_q_norm) {
  6568. Qcur = build_norm(Qcur,
  6569. model.layers[il].attn_q_norm,
  6570. NULL,
  6571. LLM_NORM, il);
  6572. cb(Qcur, "Qcur", il);
  6573. }
  6574. Qcur = ggml_rope_ext(
  6575. ctx0, Qcur, inp_pos, nullptr,
  6576. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6577. ext_factor, attn_factor, beta_fast, beta_slow
  6578. );
  6579. if (model.layers[il].attn_k_norm) {
  6580. Kcur = build_norm(Kcur,
  6581. model.layers[il].attn_k_norm,
  6582. NULL,
  6583. LLM_NORM, il);
  6584. cb(Kcur, "Kcur", il);
  6585. }
  6586. Kcur = ggml_rope_ext(
  6587. ctx0, Kcur, inp_pos, nullptr,
  6588. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6589. ext_factor, attn_factor, beta_fast, beta_slow
  6590. );
  6591. cb(Qcur, "Qcur", il);
  6592. cb(Kcur, "Kcur", il);
  6593. cb(Vcur, "Vcur", il);
  6594. cur = build_attn(inp_attn, gf,
  6595. model.layers[il].wo, model.layers[il].bo,
  6596. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6597. }
  6598. if (il == n_layer - 1) {
  6599. // skip computing output for unused tokens
  6600. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6601. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6602. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6603. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  6604. }
  6605. ggml_tensor * attn_out = cur;
  6606. // feed-forward network
  6607. {
  6608. cur = build_ffn(ffn_inp,
  6609. model.layers[il].ffn_up, NULL, NULL,
  6610. model.layers[il].ffn_gate, NULL, NULL,
  6611. model.layers[il].ffn_down, NULL, NULL,
  6612. NULL,
  6613. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6614. cb(cur, "ffn_out", il);
  6615. }
  6616. // add together residual + FFN + self-attention
  6617. cur = ggml_add(ctx0, cur, inpL);
  6618. cur = ggml_add(ctx0, cur, attn_out);
  6619. cur = build_cvec(cur, il);
  6620. cb(cur, "l_out", il);
  6621. // input for next layer
  6622. inpL = cur;
  6623. }
  6624. cur = inpL;
  6625. cur = build_norm(cur,
  6626. model.output_norm, NULL,
  6627. LLM_NORM, -1);
  6628. cb(cur, "result_norm", -1);
  6629. res->t_embd = cur;
  6630. // lm_head
  6631. cur = build_lora_mm(model.output, cur);
  6632. if (f_logit_scale) {
  6633. cur = ggml_scale(ctx0, cur, f_logit_scale);
  6634. }
  6635. cb(cur, "result_output", -1);
  6636. res->t_logits = cur;
  6637. ggml_build_forward_expand(gf, cur);
  6638. }
  6639. };
  6640. struct llm_build_cohere2 : public llm_graph_context {
  6641. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6642. const int64_t n_embd_head = hparams.n_embd_head_v;
  6643. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6644. const float f_logit_scale = hparams.f_logit_scale;
  6645. ggml_tensor * cur;
  6646. ggml_tensor * inpL;
  6647. inpL = build_inp_embd(model.tok_embd);
  6648. // inp_pos - contains the positions
  6649. ggml_tensor * inp_pos = build_inp_pos();
  6650. auto * inp_attn = build_attn_inp_kv_unified();
  6651. for (int il = 0; il < n_layer; ++il) {
  6652. const bool is_swa = hparams.is_swa(il);
  6653. // norm
  6654. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  6655. cb(cur, "attn_norm", il);
  6656. ggml_tensor * ffn_inp = cur;
  6657. // self-attention
  6658. {
  6659. // rope freq factors for 128k context
  6660. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  6661. // compute Q and K and RoPE them
  6662. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6663. cb(Qcur, "Qcur", il);
  6664. if (model.layers[il].bq) {
  6665. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6666. cb(Qcur, "Qcur", il);
  6667. }
  6668. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6669. cb(Kcur, "Kcur", il);
  6670. if (model.layers[il].bk) {
  6671. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6672. cb(Kcur, "Kcur", il);
  6673. }
  6674. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6675. cb(Vcur, "Vcur", il);
  6676. if (model.layers[il].bv) {
  6677. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6678. cb(Vcur, "Vcur", il);
  6679. }
  6680. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6681. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6682. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6683. if (is_swa) {
  6684. Qcur = ggml_rope_ext(
  6685. ctx0, Qcur, inp_pos, rope_factors,
  6686. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6687. ext_factor, attn_factor, beta_fast, beta_slow
  6688. );
  6689. Kcur = ggml_rope_ext(
  6690. ctx0, Kcur, inp_pos, rope_factors,
  6691. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6692. ext_factor, attn_factor, beta_fast, beta_slow
  6693. );
  6694. }
  6695. cb(Qcur, "Qcur", il);
  6696. cb(Kcur, "Kcur", il);
  6697. cb(Vcur, "Vcur", il);
  6698. cur = build_attn(inp_attn, gf,
  6699. model.layers[il].wo, model.layers[il].bo,
  6700. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6701. }
  6702. if (il == n_layer - 1) {
  6703. // skip computing output for unused tokens
  6704. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6705. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6706. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6707. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  6708. }
  6709. ggml_tensor * attn_out = cur;
  6710. // feed-forward network
  6711. {
  6712. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  6713. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  6714. il);
  6715. cb(cur, "ffn_out", il);
  6716. }
  6717. // add together residual + FFN + self-attention
  6718. cur = ggml_add(ctx0, cur, inpL);
  6719. cur = ggml_add(ctx0, cur, attn_out);
  6720. cur = build_cvec(cur, il);
  6721. cb(cur, "l_out", il);
  6722. // input for next layer
  6723. inpL = cur;
  6724. }
  6725. cur = inpL;
  6726. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  6727. cb(cur, "result_norm", -1);
  6728. res->t_embd = cur;
  6729. // lm_head
  6730. cur = build_lora_mm(model.output, cur);
  6731. if (f_logit_scale) {
  6732. cur = ggml_scale(ctx0, cur, f_logit_scale);
  6733. }
  6734. cb(cur, "result_output", -1);
  6735. res->t_logits = cur;
  6736. ggml_build_forward_expand(gf, cur);
  6737. }
  6738. };
  6739. // ref: https://allenai.org/olmo
  6740. // based on the original build_llama() function, changes:
  6741. // * non-parametric layer norm
  6742. // * clamp qkv
  6743. // * removed bias
  6744. // * removed MoE
  6745. struct llm_build_olmo : public llm_graph_context {
  6746. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6747. const int64_t n_embd_head = hparams.n_embd_head_v;
  6748. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6749. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6750. ggml_tensor * cur;
  6751. ggml_tensor * inpL;
  6752. inpL = build_inp_embd(model.tok_embd);
  6753. // inp_pos - contains the positions
  6754. ggml_tensor * inp_pos = build_inp_pos();
  6755. auto * inp_attn = build_attn_inp_kv_unified();
  6756. for (int il = 0; il < n_layer; ++il) {
  6757. ggml_tensor * inpSA = inpL;
  6758. // norm
  6759. cur = build_norm(inpL,
  6760. NULL, NULL,
  6761. LLM_NORM, il);
  6762. cb(cur, "attn_norm", il);
  6763. // self-attention
  6764. {
  6765. // compute Q and K and RoPE them
  6766. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6767. cb(Qcur, "Qcur", il);
  6768. if (hparams.f_clamp_kqv > 0.0f) {
  6769. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6770. cb(Qcur, "Qcur", il);
  6771. }
  6772. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6773. cb(Kcur, "Kcur", il);
  6774. if (hparams.f_clamp_kqv > 0.0f) {
  6775. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6776. cb(Kcur, "Kcur", il);
  6777. }
  6778. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6779. cb(Vcur, "Vcur", il);
  6780. if (hparams.f_clamp_kqv > 0.0f) {
  6781. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6782. cb(Vcur, "Vcur", il);
  6783. }
  6784. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6785. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6786. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6787. Qcur = ggml_rope_ext(
  6788. ctx0, Qcur, inp_pos, nullptr,
  6789. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6790. ext_factor, attn_factor, beta_fast, beta_slow
  6791. );
  6792. Kcur = ggml_rope_ext(
  6793. ctx0, Kcur, inp_pos, nullptr,
  6794. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6795. ext_factor, attn_factor, beta_fast, beta_slow
  6796. );
  6797. cb(Qcur, "Qcur", il);
  6798. cb(Kcur, "Kcur", il);
  6799. cb(Vcur, "Vcur", il);
  6800. cur = build_attn(inp_attn, gf,
  6801. model.layers[il].wo, nullptr,
  6802. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6803. }
  6804. if (il == n_layer - 1) {
  6805. // skip computing output for unused tokens
  6806. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6807. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6808. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6809. }
  6810. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6811. cb(ffn_inp, "ffn_inp", il);
  6812. // feed-forward network
  6813. cur = build_norm(ffn_inp,
  6814. NULL, NULL,
  6815. LLM_NORM, il);
  6816. cb(cur, "ffn_norm", il);
  6817. cur = build_ffn(cur,
  6818. model.layers[il].ffn_up, NULL, NULL,
  6819. model.layers[il].ffn_gate, NULL, NULL,
  6820. model.layers[il].ffn_down, NULL, NULL,
  6821. NULL,
  6822. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6823. cb(cur, "ffn_out", il);
  6824. cur = ggml_add(ctx0, cur, ffn_inp);
  6825. cb(cur, "ffn_out", il);
  6826. cur = build_cvec(cur, il);
  6827. cb(cur, "l_out", il);
  6828. // input for next layer
  6829. inpL = cur;
  6830. }
  6831. cur = inpL;
  6832. cur = build_norm(cur,
  6833. NULL, NULL,
  6834. LLM_NORM, -1);
  6835. cb(cur, "result_norm", -1);
  6836. res->t_embd = cur;
  6837. // lm_head
  6838. cur = build_lora_mm(model.output, cur);
  6839. cb(cur, "result_output", -1);
  6840. res->t_logits = cur;
  6841. ggml_build_forward_expand(gf, cur);
  6842. }
  6843. };
  6844. struct llm_build_olmo2 : public llm_graph_context {
  6845. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6846. const int64_t n_embd_head = hparams.n_embd_head_v;
  6847. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6848. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6849. ggml_tensor * cur;
  6850. ggml_tensor * inpL;
  6851. inpL = build_inp_embd(model.tok_embd);
  6852. // inp_pos - contains the positions
  6853. ggml_tensor * inp_pos = build_inp_pos();
  6854. auto * inp_attn = build_attn_inp_kv_unified();
  6855. for (int il = 0; il < n_layer; ++il) {
  6856. ggml_tensor * inpSA = inpL;
  6857. cur = inpL;
  6858. // self_attention
  6859. {
  6860. // compute Q and K and RoPE them
  6861. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6862. cb(Qcur, "Qcur", il);
  6863. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6864. cb(Kcur, "Kcur", il);
  6865. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6866. cb(Vcur, "Vcur", il);
  6867. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  6868. LLM_NORM_RMS, il);
  6869. cb(Qcur, "Qcur_normed", il);
  6870. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  6871. LLM_NORM_RMS, il);
  6872. cb(Kcur, "Kcur_normed", il);
  6873. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6874. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6875. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6876. Qcur = ggml_rope_ext(
  6877. ctx0, Qcur, inp_pos, nullptr,
  6878. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6879. ext_factor, attn_factor, beta_fast, beta_slow
  6880. );
  6881. Kcur = ggml_rope_ext(
  6882. ctx0, Kcur, inp_pos, nullptr,
  6883. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6884. ext_factor, attn_factor, beta_fast, beta_slow
  6885. );
  6886. cb(Qcur, "Qcur", il);
  6887. cb(Kcur, "Kcur", il);
  6888. cb(Vcur, "Vcur", il);
  6889. cur = build_attn(inp_attn, gf,
  6890. model.layers[il].wo, NULL,
  6891. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6892. }
  6893. cur = build_norm(cur,
  6894. model.layers[il].attn_post_norm, NULL,
  6895. LLM_NORM_RMS, il);
  6896. cb(cur, "attn_post_norm", il);
  6897. if (il == n_layer - 1) {
  6898. // skip computing output for unused tokens
  6899. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6900. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6901. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6902. }
  6903. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6904. cb(ffn_inp, "ffn_inp", il);
  6905. // feed-forward network
  6906. cur = build_ffn(ffn_inp,
  6907. model.layers[il].ffn_up, NULL, NULL,
  6908. model.layers[il].ffn_gate, NULL, NULL,
  6909. model.layers[il].ffn_down, NULL, NULL,
  6910. NULL,
  6911. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6912. cb(cur, "ffn_out", il);
  6913. cur = build_norm(cur,
  6914. model.layers[il].ffn_post_norm, NULL,
  6915. LLM_NORM_RMS, -1);
  6916. cb(cur, "ffn_post_norm", -1);
  6917. cur = ggml_add(ctx0, cur, ffn_inp);
  6918. cb(cur, "ffn_out", il);
  6919. cur = build_cvec(cur, il);
  6920. cb(cur, "l_out", il);
  6921. // input for next layer
  6922. inpL = cur;
  6923. }
  6924. cur = inpL;
  6925. cur = build_norm(cur,
  6926. model.output_norm, NULL,
  6927. LLM_NORM_RMS, -1);
  6928. cb(cur, "result_norm", -1);
  6929. res->t_embd = cur;
  6930. // lm_head
  6931. cur = build_lora_mm(model.output, cur);
  6932. cb(cur, "result_output", -1);
  6933. res->t_logits = cur;
  6934. ggml_build_forward_expand(gf, cur);
  6935. }
  6936. };
  6937. // based on the build_qwen2moe() function, changes:
  6938. // * removed shared experts
  6939. // * removed bias
  6940. // * added q, k norm
  6941. struct llm_build_olmoe : public llm_graph_context {
  6942. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6943. const int64_t n_embd_head = hparams.n_embd_head_v;
  6944. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6945. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6946. ggml_tensor * cur;
  6947. ggml_tensor * inpL;
  6948. inpL = build_inp_embd(model.tok_embd);
  6949. // inp_pos - contains the positions
  6950. ggml_tensor * inp_pos = build_inp_pos();
  6951. auto * inp_attn = build_attn_inp_kv_unified();
  6952. for (int il = 0; il < n_layer; ++il) {
  6953. ggml_tensor * inpSA = inpL;
  6954. // norm
  6955. cur = build_norm(inpL,
  6956. model.layers[il].attn_norm, NULL,
  6957. LLM_NORM_RMS, il);
  6958. cb(cur, "attn_norm", il);
  6959. // self_attention
  6960. {
  6961. // compute Q and K and RoPE them
  6962. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6963. cb(Qcur, "Qcur", il);
  6964. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6965. cb(Kcur, "Kcur", il);
  6966. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6967. cb(Vcur, "Vcur", il);
  6968. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  6969. LLM_NORM_RMS, il);
  6970. cb(Qcur, "Qcur_normed", il);
  6971. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  6972. LLM_NORM_RMS, il);
  6973. cb(Kcur, "Kcur_normed", il);
  6974. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6975. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6976. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6977. Qcur = ggml_rope_ext(
  6978. ctx0, Qcur, inp_pos, nullptr,
  6979. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6980. ext_factor, attn_factor, beta_fast, beta_slow
  6981. );
  6982. Kcur = ggml_rope_ext(
  6983. ctx0, Kcur, inp_pos, nullptr,
  6984. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6985. ext_factor, attn_factor, beta_fast, beta_slow
  6986. );
  6987. cb(Qcur, "Qcur", il);
  6988. cb(Kcur, "Kcur", il);
  6989. cb(Vcur, "Vcur", il);
  6990. cur = build_attn(inp_attn, gf,
  6991. model.layers[il].wo, NULL,
  6992. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6993. }
  6994. if (il == n_layer - 1) {
  6995. // skip computing output for unused tokens
  6996. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6997. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6998. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6999. }
  7000. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7001. cb(ffn_inp, "ffn_inp", il);
  7002. // MoE branch
  7003. cur = build_norm(ffn_inp,
  7004. model.layers[il].ffn_norm, NULL,
  7005. LLM_NORM_RMS, il);
  7006. cb(cur, "ffn_norm", il);
  7007. cur = build_moe_ffn(cur,
  7008. model.layers[il].ffn_gate_inp,
  7009. model.layers[il].ffn_up_exps,
  7010. model.layers[il].ffn_gate_exps,
  7011. model.layers[il].ffn_down_exps,
  7012. nullptr,
  7013. n_expert, n_expert_used,
  7014. LLM_FFN_SILU, false,
  7015. false, 0.0,
  7016. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7017. il);
  7018. cb(cur, "ffn_moe_out", il);
  7019. cur = ggml_add(ctx0, cur, ffn_inp);
  7020. cur = build_cvec(cur, il);
  7021. cb(cur, "l_out", il);
  7022. // input for next layer
  7023. inpL = cur;
  7024. }
  7025. cur = inpL;
  7026. cur = build_norm(cur,
  7027. model.output_norm, NULL,
  7028. LLM_NORM_RMS, -1);
  7029. cb(cur, "result_norm", -1);
  7030. res->t_embd = cur;
  7031. // lm_head
  7032. cur = build_lora_mm(model.output, cur);
  7033. cb(cur, "result_output", -1);
  7034. res->t_logits = cur;
  7035. ggml_build_forward_expand(gf, cur);
  7036. }
  7037. };
  7038. struct llm_build_openelm : public llm_graph_context {
  7039. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7040. const int64_t n_embd_head = hparams.n_embd_head_v;
  7041. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7042. ggml_tensor * cur;
  7043. ggml_tensor * inpL;
  7044. inpL = build_inp_embd(model.tok_embd);
  7045. // inp_pos - contains the positions
  7046. ggml_tensor * inp_pos = build_inp_pos();
  7047. auto * inp_attn = build_attn_inp_kv_unified();
  7048. for (int il = 0; il < n_layer; ++il) {
  7049. const int64_t n_head = hparams.n_head(il);
  7050. const int64_t n_head_kv = hparams.n_head_kv(il);
  7051. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7052. cur = inpL;
  7053. ggml_tensor * residual = cur;
  7054. // norm
  7055. cur = build_norm(inpL,
  7056. model.layers[il].attn_norm, NULL,
  7057. LLM_NORM_RMS, il);
  7058. cb(cur, "attn_norm", il);
  7059. // self-attention
  7060. {
  7061. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7062. cb(cur, "wqkv", il);
  7063. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7064. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7065. cb(Qcur, "Qcur", il);
  7066. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7067. cb(Kcur, "Kcur", il);
  7068. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7069. cb(Vcur, "Vcur", il);
  7070. Qcur = build_norm(Qcur,
  7071. model.layers[il].attn_q_norm, NULL,
  7072. LLM_NORM_RMS, il);
  7073. cb(Qcur, "Qcur", il);
  7074. Kcur = build_norm(Kcur,
  7075. model.layers[il].attn_k_norm, NULL,
  7076. LLM_NORM_RMS, il);
  7077. cb(Kcur, "Kcur", il);
  7078. Qcur = ggml_rope_ext(
  7079. ctx0, Qcur, inp_pos, NULL,
  7080. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7081. ext_factor, attn_factor, beta_fast, beta_slow
  7082. );
  7083. Kcur = ggml_rope_ext(
  7084. ctx0, Kcur, inp_pos, NULL,
  7085. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7086. ext_factor, attn_factor, beta_fast, beta_slow
  7087. );
  7088. cb(Qcur, "Qcur", il);
  7089. cb(Kcur, "Kcur", il);
  7090. cb(Qcur, "Vcur", il);
  7091. cur = build_attn(inp_attn, gf,
  7092. model.layers[il].wo, NULL,
  7093. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7094. }
  7095. if (il == n_layer - 1) {
  7096. // skip computing output for unused tokens
  7097. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7098. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7099. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7100. }
  7101. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7102. cb(ffn_inp, "ffn_inp", il);
  7103. // feed-forward network
  7104. {
  7105. cur = build_norm(ffn_inp,
  7106. model.layers[il].ffn_norm, NULL,
  7107. LLM_NORM_RMS, il);
  7108. cb(cur, "ffn_norm", il);
  7109. cur = build_ffn(cur,
  7110. model.layers[il].ffn_up, NULL, NULL,
  7111. model.layers[il].ffn_gate, NULL, NULL,
  7112. model.layers[il].ffn_down, NULL, NULL,
  7113. NULL,
  7114. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7115. cb(cur, "ffn_out", il);
  7116. }
  7117. cur = ggml_add(ctx0, cur, ffn_inp);
  7118. cur = build_cvec(cur, il);
  7119. cb(cur, "l_out", il);
  7120. inpL = cur;
  7121. }
  7122. cur = inpL;
  7123. // norm
  7124. cur = build_norm(cur,
  7125. model.output_norm, NULL,
  7126. LLM_NORM_RMS, -1);
  7127. cb(cur, "result_norm", -1);
  7128. res->t_embd = cur;
  7129. cur = build_lora_mm(model.output, cur);
  7130. cb(cur, "result_output", -1);
  7131. res->t_logits = cur;
  7132. ggml_build_forward_expand(gf, cur);
  7133. }
  7134. };
  7135. struct llm_build_gptneox : public llm_graph_context {
  7136. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7137. const int64_t n_embd_head = hparams.n_embd_head_v;
  7138. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7139. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7140. ggml_tensor * cur;
  7141. ggml_tensor * inpL;
  7142. inpL = build_inp_embd(model.tok_embd);
  7143. // inp_pos - contains the positions
  7144. ggml_tensor * inp_pos = build_inp_pos();
  7145. auto * inp_attn = build_attn_inp_kv_unified();
  7146. for (int il = 0; il < n_layer; ++il) {
  7147. cur = build_norm(inpL,
  7148. model.layers[il].attn_norm,
  7149. model.layers[il].attn_norm_b,
  7150. LLM_NORM, il);
  7151. cb(cur, "attn_norm", il);
  7152. // self-attention
  7153. {
  7154. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7155. cb(cur, "wqkv", il);
  7156. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7157. cb(cur, "bqkv", il);
  7158. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7159. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7160. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7161. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7162. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7163. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7164. Qcur = ggml_rope_ext(
  7165. ctx0, Qcur, inp_pos, nullptr,
  7166. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7167. ext_factor, attn_factor, beta_fast, beta_slow
  7168. );
  7169. Kcur = ggml_rope_ext(
  7170. ctx0, Kcur, inp_pos, nullptr,
  7171. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7172. ext_factor, attn_factor, beta_fast, beta_slow
  7173. );
  7174. cb(Qcur, "Qcur", il);
  7175. cb(Kcur, "Kcur", il);
  7176. cb(Vcur, "Vcur", il);
  7177. cur = build_attn(inp_attn, gf,
  7178. model.layers[il].wo, model.layers[il].bo,
  7179. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7180. }
  7181. if (il == n_layer - 1) {
  7182. // skip computing output for unused tokens
  7183. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7184. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7185. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7186. }
  7187. // ffn
  7188. if (hparams.use_par_res) {
  7189. // attention and ffn are computed in parallel
  7190. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7191. ggml_tensor * attn_out = cur;
  7192. cur = build_norm(inpL,
  7193. model.layers[il].ffn_norm,
  7194. model.layers[il].ffn_norm_b,
  7195. LLM_NORM, il);
  7196. cb(cur, "ffn_norm", il);
  7197. cur = build_ffn(cur,
  7198. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7199. NULL, NULL, NULL,
  7200. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7201. NULL,
  7202. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7203. cb(cur, "ffn_out", il);
  7204. cur = ggml_add(ctx0, cur, inpL);
  7205. cb(cur, "ffn_out", il);
  7206. cur = ggml_add(ctx0, cur, attn_out);
  7207. cur = build_cvec(cur, il);
  7208. cb(cur, "l_out", il);
  7209. // input for next layer
  7210. inpL = cur;
  7211. } else {
  7212. // attention and ffn are computed sequentially
  7213. // x = x + attn(ln1(x))
  7214. // x = x + ffn(ln2(x))
  7215. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7216. cb(ffn_inp, "ffn_inp", il);
  7217. cur = build_norm(ffn_inp,
  7218. model.layers[il].ffn_norm,
  7219. model.layers[il].ffn_norm_b,
  7220. LLM_NORM, il);
  7221. cb(cur, "ffn_norm", il);
  7222. cur = build_ffn(cur,
  7223. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7224. NULL, NULL, NULL,
  7225. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7226. NULL,
  7227. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7228. cb(cur, "ffn_out", il);
  7229. cur = ggml_add(ctx0, cur, ffn_inp);
  7230. cur = build_cvec(cur, il);
  7231. cb(cur, "l_out", il);
  7232. // input for next layer
  7233. inpL = cur;
  7234. }
  7235. }
  7236. cur = build_norm(inpL,
  7237. model.output_norm,
  7238. model.output_norm_b,
  7239. LLM_NORM, -1);
  7240. cb(cur, "result_norm", -1);
  7241. res->t_embd = cur;
  7242. cur = build_lora_mm(model.output, cur);
  7243. cb(cur, "result_output", -1);
  7244. res->t_logits = cur;
  7245. ggml_build_forward_expand(gf, cur);
  7246. }
  7247. };
  7248. struct llm_build_arctic : public llm_graph_context {
  7249. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7250. const int64_t n_embd_head = hparams.n_embd_head_v;
  7251. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7252. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7253. ggml_tensor * cur;
  7254. ggml_tensor * inpL;
  7255. inpL = build_inp_embd(model.tok_embd);
  7256. // inp_pos - contains the positions
  7257. ggml_tensor * inp_pos = build_inp_pos();
  7258. auto * inp_attn = build_attn_inp_kv_unified();
  7259. for (int il = 0; il < n_layer; ++il) {
  7260. ggml_tensor * inpSA = inpL;
  7261. // norm
  7262. cur = build_norm(inpL,
  7263. model.layers[il].attn_norm, NULL,
  7264. LLM_NORM_RMS, il);
  7265. cb(cur, "attn_norm", il);
  7266. // self-attention
  7267. {
  7268. // compute Q and K and RoPE them
  7269. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7270. cb(Qcur, "Qcur", il);
  7271. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7272. cb(Kcur, "Kcur", il);
  7273. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7274. cb(Vcur, "Vcur", il);
  7275. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7276. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7277. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7278. Qcur = ggml_rope_ext(
  7279. ctx0, Qcur, inp_pos, nullptr,
  7280. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7281. ext_factor, attn_factor, beta_fast, beta_slow
  7282. );
  7283. Kcur = ggml_rope_ext(
  7284. ctx0, Kcur, inp_pos, nullptr,
  7285. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7286. ext_factor, attn_factor, beta_fast, beta_slow
  7287. );
  7288. cb(Qcur, "Qcur", il);
  7289. cb(Kcur, "Kcur", il);
  7290. cb(Vcur, "Vcur", il);
  7291. cur = build_attn(inp_attn, gf,
  7292. model.layers[il].wo, NULL,
  7293. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7294. }
  7295. if (il == n_layer - 1) {
  7296. // skip computing output for unused tokens
  7297. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7298. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7299. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7300. }
  7301. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7302. cb(ffn_inp, "ffn_inp", il);
  7303. // feed-forward network
  7304. cur = build_norm(ffn_inp,
  7305. model.layers[il].ffn_norm, NULL,
  7306. LLM_NORM_RMS, il);
  7307. cb(cur, "ffn_norm", il);
  7308. cur = build_ffn(cur,
  7309. model.layers[il].ffn_up, NULL, NULL,
  7310. model.layers[il].ffn_gate, NULL, NULL,
  7311. model.layers[il].ffn_down, NULL, NULL,
  7312. NULL,
  7313. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7314. cb(cur, "ffn_out", il);
  7315. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7316. cb(ffn_out, "ffn_out", il);
  7317. // MoE
  7318. cur = build_norm(inpSA,
  7319. model.layers[il].ffn_norm_exps, NULL,
  7320. LLM_NORM_RMS, il);
  7321. cb(cur, "ffn_norm_exps", il);
  7322. cur = build_moe_ffn(cur,
  7323. model.layers[il].ffn_gate_inp,
  7324. model.layers[il].ffn_up_exps,
  7325. model.layers[il].ffn_gate_exps,
  7326. model.layers[il].ffn_down_exps,
  7327. nullptr,
  7328. n_expert, n_expert_used,
  7329. LLM_FFN_SILU, true,
  7330. false, 0.0,
  7331. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7332. il);
  7333. cb(cur, "ffn_moe_out", il);
  7334. cur = ggml_add(ctx0, cur, ffn_out);
  7335. cb(cur, "ffn_out", il);
  7336. cur = build_cvec(cur, il);
  7337. cb(cur, "l_out", il);
  7338. // input for next layer
  7339. inpL = cur;
  7340. }
  7341. cur = inpL;
  7342. cur = build_norm(cur,
  7343. model.output_norm, NULL,
  7344. LLM_NORM_RMS, -1);
  7345. cb(cur, "result_norm", -1);
  7346. res->t_embd = cur;
  7347. // lm_head
  7348. cur = build_lora_mm(model.output, cur);
  7349. cb(cur, "result_output", -1);
  7350. res->t_logits = cur;
  7351. ggml_build_forward_expand(gf, cur);
  7352. }
  7353. };
  7354. struct llm_build_deepseek : public llm_graph_context {
  7355. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7356. const int64_t n_embd_head = hparams.n_embd_head_v;
  7357. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7358. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7359. ggml_tensor * cur;
  7360. ggml_tensor * inpL;
  7361. inpL = build_inp_embd(model.tok_embd);
  7362. // inp_pos - contains the positions
  7363. ggml_tensor * inp_pos = build_inp_pos();
  7364. auto * inp_attn = build_attn_inp_kv_unified();
  7365. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7366. for (int il = 0; il < n_layer; ++il) {
  7367. ggml_tensor * inpSA = inpL;
  7368. // norm
  7369. cur = build_norm(inpL,
  7370. model.layers[il].attn_norm, NULL,
  7371. LLM_NORM_RMS, il);
  7372. cb(cur, "attn_norm", il);
  7373. // self-attention
  7374. {
  7375. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7376. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  7377. // compute Q and K and RoPE them
  7378. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7379. cb(Qcur, "Qcur", il);
  7380. if (model.layers[il].bq) {
  7381. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7382. cb(Qcur, "Qcur", il);
  7383. }
  7384. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7385. cb(Kcur, "Kcur", il);
  7386. if (model.layers[il].bk) {
  7387. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7388. cb(Kcur, "Kcur", il);
  7389. }
  7390. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7391. cb(Vcur, "Vcur", il);
  7392. if (model.layers[il].bv) {
  7393. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7394. cb(Vcur, "Vcur", il);
  7395. }
  7396. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7397. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7398. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7399. Qcur = ggml_rope_ext(
  7400. ctx0, Qcur, inp_pos, rope_factors,
  7401. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7402. ext_factor, attn_factor, beta_fast, beta_slow
  7403. );
  7404. Kcur = ggml_rope_ext(
  7405. ctx0, Kcur, inp_pos, rope_factors,
  7406. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7407. ext_factor, attn_factor, beta_fast, beta_slow
  7408. );
  7409. cb(Qcur, "Qcur", il);
  7410. cb(Kcur, "Kcur", il);
  7411. cb(Vcur, "Vcur", il);
  7412. cur = build_attn(inp_attn, gf,
  7413. model.layers[il].wo, model.layers[il].bo,
  7414. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  7415. }
  7416. if (il == n_layer - 1) {
  7417. // skip computing output for unused tokens
  7418. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7419. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7420. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7421. }
  7422. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7423. cb(ffn_inp, "ffn_inp", il);
  7424. cur = build_norm(ffn_inp,
  7425. model.layers[il].ffn_norm, NULL,
  7426. LLM_NORM_RMS, il);
  7427. cb(cur, "ffn_norm", il);
  7428. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  7429. cur = build_ffn(cur,
  7430. model.layers[il].ffn_up, NULL, NULL,
  7431. model.layers[il].ffn_gate, NULL, NULL,
  7432. model.layers[il].ffn_down, NULL, NULL,
  7433. NULL,
  7434. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7435. cb(cur, "ffn_out", il);
  7436. } else {
  7437. // MoE branch
  7438. ggml_tensor * moe_out =
  7439. build_moe_ffn(cur,
  7440. model.layers[il].ffn_gate_inp,
  7441. model.layers[il].ffn_up_exps,
  7442. model.layers[il].ffn_gate_exps,
  7443. model.layers[il].ffn_down_exps,
  7444. nullptr,
  7445. n_expert, n_expert_used,
  7446. LLM_FFN_SILU, false,
  7447. false, hparams.expert_weights_scale,
  7448. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7449. il);
  7450. cb(moe_out, "ffn_moe_out", il);
  7451. // FFN shared expert
  7452. {
  7453. ggml_tensor * ffn_shexp = build_ffn(cur,
  7454. model.layers[il].ffn_up_shexp, NULL, NULL,
  7455. model.layers[il].ffn_gate_shexp, NULL, NULL,
  7456. model.layers[il].ffn_down_shexp, NULL, NULL,
  7457. NULL,
  7458. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7459. cb(ffn_shexp, "ffn_shexp", il);
  7460. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  7461. cb(cur, "ffn_out", il);
  7462. }
  7463. }
  7464. cur = ggml_add(ctx0, cur, ffn_inp);
  7465. cur = build_cvec(cur, il);
  7466. cb(cur, "l_out", il);
  7467. // input for next layer
  7468. inpL = cur;
  7469. }
  7470. cur = inpL;
  7471. cur = build_norm(cur,
  7472. model.output_norm, NULL,
  7473. LLM_NORM_RMS, -1);
  7474. cb(cur, "result_norm", -1);
  7475. res->t_embd = cur;
  7476. // lm_head
  7477. cur = build_lora_mm(model.output, cur);
  7478. cb(cur, "result_output", -1);
  7479. res->t_logits = cur;
  7480. ggml_build_forward_expand(gf, cur);
  7481. }
  7482. };
  7483. struct llm_build_deepseek2 : public llm_graph_context {
  7484. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7485. bool is_lite = (hparams.n_layer == 27);
  7486. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  7487. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  7488. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  7489. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  7490. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  7491. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  7492. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  7493. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  7494. ggml_tensor * cur;
  7495. ggml_tensor * inpL;
  7496. // {n_embd, n_tokens}
  7497. inpL = build_inp_embd(model.tok_embd);
  7498. // inp_pos - contains the positions
  7499. ggml_tensor * inp_pos = build_inp_pos();
  7500. auto * inp_attn = build_attn_inp_kv_unified();
  7501. for (int il = 0; il < n_layer; ++il) {
  7502. ggml_tensor * inpSA = inpL;
  7503. // norm
  7504. cur = build_norm(inpL,
  7505. model.layers[il].attn_norm, NULL,
  7506. LLM_NORM_RMS, il);
  7507. cb(cur, "attn_norm", il);
  7508. // self_attention
  7509. {
  7510. ggml_tensor * q = NULL;
  7511. if (!is_lite) {
  7512. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  7513. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  7514. cb(q, "q", il);
  7515. q = build_norm(q,
  7516. model.layers[il].attn_q_a_norm, NULL,
  7517. LLM_NORM_RMS, il);
  7518. cb(q, "q", il);
  7519. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  7520. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  7521. cb(q, "q", il);
  7522. } else {
  7523. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7524. cb(q, "q", il);
  7525. }
  7526. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  7527. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  7528. ggml_row_size(q->type, hparams.n_embd_head_k),
  7529. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  7530. 0);
  7531. cb(q_nope, "q_nope", il);
  7532. // and {n_head * n_embd_head_qk_rope, n_tokens}
  7533. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  7534. ggml_row_size(q->type, hparams.n_embd_head_k),
  7535. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  7536. ggml_row_size(q->type, n_embd_head_qk_nope));
  7537. cb(q_pe, "q_pe", il);
  7538. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  7539. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  7540. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  7541. // split into {kv_lora_rank, n_tokens}
  7542. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  7543. kv_pe_compresseed->nb[1],
  7544. 0);
  7545. cb(kv_compressed, "kv_compressed", il);
  7546. // and {n_embd_head_qk_rope, n_tokens}
  7547. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  7548. kv_pe_compresseed->nb[1],
  7549. kv_pe_compresseed->nb[1],
  7550. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  7551. cb(k_pe, "k_pe", il);
  7552. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  7553. kv_compressed = ggml_cont(ctx0, kv_compressed);
  7554. kv_compressed = build_norm(kv_compressed,
  7555. model.layers[il].attn_kv_a_norm, NULL,
  7556. LLM_NORM_RMS, il);
  7557. cb(kv_compressed, "kv_compressed", il);
  7558. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  7559. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  7560. cb(kv, "kv", il);
  7561. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  7562. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  7563. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  7564. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  7565. 0);
  7566. cb(k_nope, "k_nope", il);
  7567. // and {n_head * n_embd_head_v, n_tokens}
  7568. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  7569. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  7570. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  7571. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  7572. cb(v_states, "v_states", il);
  7573. v_states = ggml_cont(ctx0, v_states);
  7574. cb(v_states, "v_states", il);
  7575. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  7576. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  7577. 0);
  7578. cb(v_states, "v_states", il);
  7579. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  7580. q_pe = ggml_rope_ext(
  7581. ctx0, q_pe, inp_pos, nullptr,
  7582. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7583. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  7584. );
  7585. cb(q_pe, "q_pe", il);
  7586. // shared RoPE key
  7587. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  7588. k_pe = ggml_rope_ext(
  7589. ctx0, k_pe, inp_pos, nullptr,
  7590. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7591. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  7592. );
  7593. cb(k_pe, "k_pe", il);
  7594. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  7595. cb(q_states, "q_states", il);
  7596. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  7597. cb(k_states, "k_states", il);
  7598. cur = build_attn(inp_attn, gf,
  7599. model.layers[il].wo, NULL,
  7600. q_states, k_states, v_states, nullptr, kq_scale, il);
  7601. }
  7602. if (il == n_layer - 1) {
  7603. // skip computing output for unused tokens
  7604. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7605. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7606. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7607. }
  7608. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7609. cb(ffn_inp, "ffn_inp", il);
  7610. cur = build_norm(ffn_inp,
  7611. model.layers[il].ffn_norm, NULL,
  7612. LLM_NORM_RMS, il);
  7613. cb(cur, "ffn_norm", il);
  7614. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  7615. cur = build_ffn(cur,
  7616. model.layers[il].ffn_up, NULL, NULL,
  7617. model.layers[il].ffn_gate, NULL, NULL,
  7618. model.layers[il].ffn_down, NULL, NULL,
  7619. NULL,
  7620. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7621. cb(cur, "ffn_out", il);
  7622. } else {
  7623. // MoE branch
  7624. ggml_tensor * moe_out =
  7625. build_moe_ffn(cur,
  7626. model.layers[il].ffn_gate_inp,
  7627. model.layers[il].ffn_up_exps,
  7628. model.layers[il].ffn_gate_exps,
  7629. model.layers[il].ffn_down_exps,
  7630. model.layers[il].ffn_exp_probs_b,
  7631. n_expert, n_expert_used,
  7632. LLM_FFN_SILU, hparams.expert_weights_norm,
  7633. true, hparams.expert_weights_scale,
  7634. (llama_expert_gating_func_type) hparams.expert_gating_func,
  7635. il);
  7636. cb(moe_out, "ffn_moe_out", il);
  7637. // FFN shared expert
  7638. {
  7639. ggml_tensor * ffn_shexp = build_ffn(cur,
  7640. model.layers[il].ffn_up_shexp, NULL, NULL,
  7641. model.layers[il].ffn_gate_shexp, NULL, NULL,
  7642. model.layers[il].ffn_down_shexp, NULL, NULL,
  7643. NULL,
  7644. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7645. cb(ffn_shexp, "ffn_shexp", il);
  7646. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  7647. cb(cur, "ffn_out", il);
  7648. }
  7649. }
  7650. cur = ggml_add(ctx0, cur, ffn_inp);
  7651. cur = build_cvec(cur, il);
  7652. cb(cur, "l_out", il);
  7653. // input for next layer
  7654. inpL = cur;
  7655. }
  7656. cur = inpL;
  7657. cur = build_norm(cur,
  7658. model.output_norm, NULL,
  7659. LLM_NORM_RMS, -1);
  7660. cb(cur, "result_norm", -1);
  7661. res->t_embd = cur;
  7662. // lm_head
  7663. cur = ggml_mul_mat(ctx0, model.output, cur);
  7664. cb(cur, "result_output", -1);
  7665. res->t_logits = cur;
  7666. ggml_build_forward_expand(gf, cur);
  7667. }
  7668. };
  7669. struct llm_build_bitnet : public llm_graph_context {
  7670. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7671. const int64_t n_embd_head = hparams.n_embd_head_v;
  7672. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7673. ggml_tensor * cur;
  7674. ggml_tensor * inpL;
  7675. inpL = build_inp_embd(model.tok_embd);
  7676. // inp_pos - contains the positions
  7677. ggml_tensor * inp_pos = build_inp_pos();
  7678. auto * inp_attn = build_attn_inp_kv_unified();
  7679. for (int il = 0; il < n_layer; ++il) {
  7680. ggml_tensor * inpSA = inpL;
  7681. cur = build_norm(inpL,
  7682. model.layers[il].attn_norm, NULL,
  7683. LLM_NORM_RMS, il);
  7684. cb(cur, "attn_norm", il);
  7685. // self-attention
  7686. {
  7687. // compute Q and K and RoPE them
  7688. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7689. if (model.layers[il].wq_scale) {
  7690. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  7691. }
  7692. cb(Qcur, "Qcur", il);
  7693. if (model.layers[il].bq) {
  7694. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7695. cb(Qcur, "Qcur", il);
  7696. }
  7697. // B1.K
  7698. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7699. if (model.layers[il].wk_scale) {
  7700. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  7701. }
  7702. cb(Kcur, "Kcur", il);
  7703. if (model.layers[il].bk) {
  7704. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7705. cb(Kcur, "Kcur", il);
  7706. }
  7707. // B1.V
  7708. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7709. if (model.layers[il].wv_scale) {
  7710. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  7711. }
  7712. cb(Vcur, "Vcur", il);
  7713. if (model.layers[il].bv) {
  7714. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7715. cb(Vcur, "Vcur", il);
  7716. }
  7717. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7718. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7719. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7720. Qcur = ggml_rope_ext(
  7721. ctx0, Qcur, inp_pos, nullptr,
  7722. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7723. ext_factor, attn_factor, beta_fast, beta_slow
  7724. );
  7725. Kcur = ggml_rope_ext(
  7726. ctx0, Kcur, inp_pos, nullptr,
  7727. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7728. ext_factor, attn_factor, beta_fast, beta_slow
  7729. );
  7730. cb(Qcur, "Qcur", il);
  7731. cb(Kcur, "Kcur", il);
  7732. cb(Vcur, "Vcur", il);
  7733. cur = build_attn(inp_attn, gf,
  7734. NULL, NULL,
  7735. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7736. cur = build_norm(cur,
  7737. model.layers[il].attn_sub_norm, NULL,
  7738. LLM_NORM_RMS, il);
  7739. cb(cur, "attn_sub_norm", il);
  7740. cur = build_lora_mm(model.layers[il].wo, cur);
  7741. if (model.layers[il].wo_scale) {
  7742. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  7743. }
  7744. if (model.layers[il].bo) {
  7745. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7746. }
  7747. cb(cur, "attn_o_out", il);
  7748. }
  7749. if (il == n_layer - 1) {
  7750. // skip computing output for unused tokens
  7751. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7752. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7753. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7754. }
  7755. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7756. cb(ffn_inp, "ffn_inp", il);
  7757. // feed-forward forward
  7758. cur = build_norm(ffn_inp,
  7759. model.layers[il].ffn_norm, NULL,
  7760. LLM_NORM_RMS, il);
  7761. cb(cur, "ffn_norm", il);
  7762. cur = build_ffn(cur,
  7763. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  7764. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  7765. NULL, NULL, NULL,
  7766. NULL,
  7767. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7768. cb(cur, "ffn_sub_out", il);
  7769. cur = build_norm(cur,
  7770. model.layers[il].ffn_sub_norm, NULL,
  7771. LLM_NORM_RMS, il);
  7772. cb(cur, "ffn_sub_norm", il);
  7773. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  7774. if (model.layers[il].ffn_down_scale) {
  7775. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  7776. }
  7777. cb(cur, "ffn_down", il);
  7778. cur = ggml_add(ctx0, cur, ffn_inp);
  7779. cb(cur, "l_out", il);
  7780. // input for next layer
  7781. inpL = cur;
  7782. }
  7783. cur = inpL;
  7784. cur = build_norm(cur,
  7785. model.output_norm, NULL,
  7786. LLM_NORM_RMS, -1);
  7787. cb(cur, "result_norm", -1);
  7788. res->t_embd = cur;
  7789. // lm_head
  7790. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  7791. cur = build_lora_mm(model.tok_embd, cur);
  7792. cb(cur, "result_output", -1);
  7793. res->t_logits = cur;
  7794. ggml_build_forward_expand(gf, cur);
  7795. }
  7796. };
  7797. struct llm_build_t5_enc : public llm_graph_context {
  7798. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7799. const int64_t n_embd_head = hparams.n_embd_head_v;
  7800. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7801. ggml_tensor * cur;
  7802. ggml_tensor * inpL;
  7803. inpL = build_inp_embd(model.tok_embd);
  7804. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  7805. auto * inp_attn = build_attn_inp_no_cache();
  7806. for (int il = 0; il < n_layer; ++il) {
  7807. ggml_tensor * inpSA = inpL;
  7808. // norm
  7809. cur = build_norm(inpL,
  7810. model.layers[il].attn_norm_enc, NULL,
  7811. LLM_NORM_RMS, il);
  7812. cb(cur, "attn_norm", il);
  7813. // self-attention
  7814. {
  7815. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  7816. cb(Qcur, "Qcur", il);
  7817. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  7818. cb(Kcur, "Kcur", il);
  7819. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  7820. cb(Vcur, "Vcur", il);
  7821. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7822. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7823. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7824. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  7825. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  7826. cur = build_attn(inp_attn, gf,
  7827. model.layers[il].wo_enc, nullptr,
  7828. Qcur, Kcur, Vcur, kq_b, 1.0f, il);
  7829. cb(cur, "kqv_out", il);
  7830. }
  7831. if (il == n_layer - 1) {
  7832. // skip computing output for unused tokens
  7833. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7834. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7835. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7836. }
  7837. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7838. cb(ffn_inp, "ffn_inp", il);
  7839. // feed-forward network
  7840. {
  7841. cur = build_norm(ffn_inp,
  7842. model.layers[il].ffn_norm_enc, NULL,
  7843. LLM_NORM_RMS, il);
  7844. cb(cur, "ffn_norm", il);
  7845. // T5 uses relu, flan-T5 uses gelu-gated
  7846. cur = build_ffn(cur,
  7847. model.layers[il].ffn_up_enc, NULL, NULL,
  7848. model.layers[il].ffn_gate_enc, NULL, NULL,
  7849. model.layers[il].ffn_down_enc, NULL, NULL,
  7850. NULL,
  7851. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  7852. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  7853. il);
  7854. cb(cur, "ffn_out", il);
  7855. }
  7856. cur = ggml_add(ctx0, cur, ffn_inp);
  7857. cb(cur, "ffn_out", il);
  7858. cur = build_cvec(cur, il);
  7859. cb(cur, "l_out", il);
  7860. // input for next layer
  7861. inpL = cur;
  7862. }
  7863. cur = inpL;
  7864. cb(cur, "result_embd", -1);
  7865. cur = build_norm(cur,
  7866. model.output_norm_enc, NULL,
  7867. LLM_NORM_RMS, -1);
  7868. cb(cur, "result_norm", -1);
  7869. res->t_embd = cur;
  7870. ggml_build_forward_expand(gf, cur);
  7871. }
  7872. };
  7873. struct llm_build_t5_dec : public llm_graph_context {
  7874. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7875. const int64_t n_embd_head = hparams.n_embd_head_v;
  7876. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7877. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7878. ggml_tensor * cur;
  7879. ggml_tensor * inpL;
  7880. inpL = build_inp_embd(model.tok_embd);
  7881. ggml_tensor * embd_enc = build_inp_cross_embd();
  7882. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  7883. const int64_t n_outputs_enc = embd_enc->ne[1];
  7884. auto * inp_attn_self = build_attn_inp_kv_unified();
  7885. auto * inp_attn_cross = build_attn_inp_cross();
  7886. for (int il = 0; il < n_layer; ++il) {
  7887. ggml_tensor * inpSA = inpL;
  7888. // norm
  7889. cur = build_norm(inpL,
  7890. model.layers[il].attn_norm, NULL,
  7891. LLM_NORM_RMS, il);
  7892. cb(cur, "attn_norm", il);
  7893. // self-attention
  7894. {
  7895. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7896. cb(Qcur, "Qcur", il);
  7897. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7898. cb(Kcur, "Kcur", il);
  7899. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7900. cb(Vcur, "Vcur", il);
  7901. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7902. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7903. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7904. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  7905. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  7906. cur = build_attn(inp_attn_self, gf,
  7907. model.layers[il].wo, model.layers[il].bo,
  7908. Qcur, Kcur, Vcur, kq_b, 1.0f, il);
  7909. cb(cur, "kqv_out", il);
  7910. }
  7911. cur = ggml_add(ctx0, cur, inpSA);
  7912. cb(cur, "cross_inp", il);
  7913. ggml_tensor * inpCA = cur;
  7914. // norm
  7915. cur = build_norm(cur,
  7916. model.layers[il].attn_norm_cross, NULL,
  7917. LLM_NORM_RMS, il);
  7918. cb(cur, "attn_norm_cross", il);
  7919. // cross-attention
  7920. {
  7921. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  7922. cb(Qcur, "Qcur", il);
  7923. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  7924. cb(Kcur, "Kcur", il);
  7925. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  7926. cb(Vcur, "Vcur", il);
  7927. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7928. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  7929. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  7930. cur = build_attn(inp_attn_cross, gf,
  7931. model.layers[il].wo_cross, nullptr,
  7932. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  7933. cb(cur, "kqv_out", il);
  7934. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7935. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7936. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7937. //cb(kq, "kq", il);
  7938. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  7939. //cb(kq, "kq_soft_max_ext", il);
  7940. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  7941. //cb(v, "v", il);
  7942. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  7943. //cb(kqv, "kqv", il);
  7944. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7945. //cb(kqv_merged, "kqv_merged", il);
  7946. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7947. //cb(cur, "kqv_merged_cont", il);
  7948. //ggml_build_forward_expand(gf, cur);
  7949. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  7950. //cb(cur, "kqv_out", il);
  7951. }
  7952. if (il == n_layer - 1) {
  7953. // skip computing output for unused tokens
  7954. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7955. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7956. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7957. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  7958. }
  7959. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  7960. cb(ffn_inp, "ffn_inp", il);
  7961. // feed-forward network
  7962. {
  7963. cur = build_norm(ffn_inp,
  7964. model.layers[il].ffn_norm, NULL,
  7965. LLM_NORM_RMS, il);
  7966. cb(cur, "ffn_norm", il);
  7967. // T5 uses relu, flan-T5 uses gelu-gated
  7968. cur = build_ffn(cur,
  7969. model.layers[il].ffn_up, NULL, NULL,
  7970. model.layers[il].ffn_gate, NULL, NULL,
  7971. model.layers[il].ffn_down, NULL, NULL,
  7972. NULL,
  7973. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  7974. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  7975. il);
  7976. cb(cur, "ffn_out", il);
  7977. }
  7978. cur = ggml_add(ctx0, cur, ffn_inp);
  7979. cb(cur, "ffn_out", il);
  7980. cur = build_cvec(cur, il);
  7981. cb(cur, "l_out", il);
  7982. // input for next layer
  7983. inpL = cur;
  7984. }
  7985. cur = inpL;
  7986. cb(cur, "result_embd", -1);
  7987. cur = build_norm(cur,
  7988. model.output_norm, NULL,
  7989. LLM_NORM_RMS, -1);
  7990. cb(cur, "result_norm", -1);
  7991. res->t_embd = cur;
  7992. // lm_head
  7993. cur = build_lora_mm(model.output, cur);
  7994. cb(cur, "result_output", -1);
  7995. res->t_logits = cur;
  7996. ggml_build_forward_expand(gf, cur);
  7997. }
  7998. };
  7999. struct llm_build_jais : public llm_graph_context {
  8000. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8001. const int64_t n_embd_head = hparams.n_embd_head_v;
  8002. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8003. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8004. ggml_tensor * cur;
  8005. ggml_tensor * inpL;
  8006. inpL = build_inp_embd(model.tok_embd);
  8007. auto * inp_attn = build_attn_inp_kv_unified();
  8008. for (int il = 0; il < n_layer; ++il) {
  8009. cur = build_norm(inpL,
  8010. model.layers[il].attn_norm,
  8011. model.layers[il].attn_norm_b,
  8012. LLM_NORM, il);
  8013. cb(cur, "attn_norm", il);
  8014. // self-attention
  8015. {
  8016. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8017. cb(cur, "wqkv", il);
  8018. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8019. cb(cur, "bqkv", il);
  8020. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8021. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8022. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8023. cb(Qcur, "Qcur", il);
  8024. cb(Kcur, "Kcur", il);
  8025. cb(Vcur, "Vcur", il);
  8026. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8027. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8028. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8029. cur = build_attn(inp_attn, gf,
  8030. model.layers[il].wo, model.layers[il].bo,
  8031. Qcur, Kcur, Vcur, nullptr, 1.0f/float(n_embd_head), il);
  8032. }
  8033. if (il == n_layer - 1) {
  8034. // skip computing output for unused tokens
  8035. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8036. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8037. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8038. }
  8039. // add the input
  8040. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8041. cb(ffn_inp, "ffn_inp", il);
  8042. // FF
  8043. {
  8044. cur = build_norm(ffn_inp,
  8045. model.layers[il].ffn_norm,
  8046. model.layers[il].ffn_norm_b,
  8047. LLM_NORM, il);
  8048. cb(cur, "ffn_norm", il);
  8049. cur = build_ffn(cur,
  8050. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8051. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8052. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8053. NULL,
  8054. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8055. cb(cur, "ffn_out", il);
  8056. }
  8057. inpL = ggml_add(ctx0, cur, ffn_inp);
  8058. cb(inpL, "l_out", il);
  8059. }
  8060. cur = build_norm(inpL,
  8061. model.output_norm,
  8062. model.output_norm_b,
  8063. LLM_NORM, -1);
  8064. cb(cur, "result_norm", -1);
  8065. res->t_embd = cur;
  8066. cur = build_lora_mm(model.output, cur);
  8067. cb(cur, "result_output", -1);
  8068. res->t_logits = cur;
  8069. ggml_build_forward_expand(gf, cur);
  8070. }
  8071. };
  8072. struct llm_build_chatglm : public llm_graph_context {
  8073. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8074. const int64_t n_embd_head = hparams.n_embd_head_v;
  8075. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8076. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8077. ggml_tensor * cur;
  8078. ggml_tensor * inpL;
  8079. inpL = build_inp_embd(model.tok_embd);
  8080. // inp_pos - contains the positions
  8081. ggml_tensor * inp_pos = build_inp_pos();
  8082. auto * inp_attn = build_attn_inp_kv_unified();
  8083. for (int il = 0; il < n_layer; ++il) {
  8084. ggml_tensor * inpSA = inpL;
  8085. cur = build_norm(inpL,
  8086. model.layers[il].attn_norm,
  8087. NULL,
  8088. LLM_NORM_RMS, il);
  8089. cb(cur, "attn_norm", il);
  8090. // self-attention
  8091. {
  8092. ggml_tensor * Qcur = nullptr;
  8093. ggml_tensor * Kcur = nullptr;
  8094. ggml_tensor * Vcur = nullptr;
  8095. if (model.layers[il].wqkv == nullptr) {
  8096. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8097. if (model.layers[il].bq) {
  8098. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8099. }
  8100. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8101. if (model.layers[il].bk) {
  8102. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8103. }
  8104. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8105. if (model.layers[il].bv) {
  8106. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8107. }
  8108. } else {
  8109. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8110. cb(cur, "wqkv", il);
  8111. if (model.layers[il].bqkv) {
  8112. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8113. cb(cur, "bqkv", il);
  8114. }
  8115. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8116. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8117. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8118. }
  8119. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8120. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8121. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8122. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8123. Qcur = ggml_rope_ext(
  8124. ctx0, Qcur, inp_pos, nullptr,
  8125. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8126. ext_factor, attn_factor, beta_fast, beta_slow
  8127. );
  8128. Kcur = ggml_rope_ext(
  8129. ctx0, Kcur, inp_pos, nullptr,
  8130. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8131. ext_factor, attn_factor, beta_fast, beta_slow
  8132. );
  8133. cb(Qcur, "Qcur", il);
  8134. cb(Kcur, "Kcur", il);
  8135. cb(Vcur, "Vcur", il);
  8136. cur = build_attn(inp_attn, gf,
  8137. model.layers[il].wo, NULL,
  8138. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8139. }
  8140. if (il == n_layer - 1) {
  8141. // skip computing output for unused tokens
  8142. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8143. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8144. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8145. }
  8146. // Add the input
  8147. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8148. cb(ffn_inp, "ffn_inp", il);
  8149. // FF
  8150. {
  8151. cur = build_norm(ffn_inp,
  8152. model.layers[il].ffn_norm,
  8153. NULL,
  8154. LLM_NORM_RMS, il);
  8155. cb(cur, "ffn_norm", il);
  8156. cur = build_ffn(cur,
  8157. model.layers[il].ffn_up, NULL, NULL,
  8158. NULL, NULL, NULL,
  8159. model.layers[il].ffn_down, NULL, NULL,
  8160. NULL,
  8161. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8162. cb(cur, "ffn_out", il);
  8163. }
  8164. inpL = ggml_add(ctx0, cur, ffn_inp);
  8165. cb(inpL, "l_out", il);
  8166. }
  8167. cur = build_norm(inpL,
  8168. model.output_norm,
  8169. NULL,
  8170. LLM_NORM_RMS, -1);
  8171. cb(cur, "result_norm", -1);
  8172. res->t_embd = cur;
  8173. cur = build_lora_mm(model.output, cur);
  8174. cb(cur, "result_output", -1);
  8175. res->t_logits = cur;
  8176. ggml_build_forward_expand(gf, cur);
  8177. }
  8178. };
  8179. struct llm_build_nemotron : public llm_graph_context {
  8180. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8181. const int64_t n_embd_head = hparams.n_embd_head_v;
  8182. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8183. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8184. ggml_tensor * cur;
  8185. ggml_tensor * inpL;
  8186. inpL = build_inp_embd(model.tok_embd);
  8187. // inp_pos - contains the positions
  8188. ggml_tensor * inp_pos = build_inp_pos();
  8189. auto * inp_attn = build_attn_inp_kv_unified();
  8190. for (int il = 0; il < n_layer; ++il) {
  8191. ggml_tensor * inpSA = inpL;
  8192. // norm
  8193. cur = build_norm(inpL,
  8194. model.layers[il].attn_norm,
  8195. model.layers[il].attn_norm_b,
  8196. LLM_NORM, il);
  8197. cb(cur, "attn_norm", il);
  8198. // self-attention
  8199. {
  8200. // compute Q and K and RoPE them
  8201. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8202. cb(Qcur, "Qcur", il);
  8203. if (model.layers[il].bq) {
  8204. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8205. cb(Qcur, "Qcur", il);
  8206. }
  8207. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8208. cb(Kcur, "Kcur", il);
  8209. if (model.layers[il].bk) {
  8210. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8211. cb(Kcur, "Kcur", il);
  8212. }
  8213. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8214. cb(Vcur, "Vcur", il);
  8215. if (model.layers[il].bv) {
  8216. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8217. cb(Vcur, "Vcur", il);
  8218. }
  8219. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8220. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8221. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8222. Qcur = ggml_rope_ext(
  8223. ctx0, Qcur, inp_pos, nullptr,
  8224. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8225. ext_factor, attn_factor, beta_fast, beta_slow
  8226. );
  8227. Kcur = ggml_rope_ext(
  8228. ctx0, Kcur, inp_pos, nullptr,
  8229. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8230. ext_factor, attn_factor, beta_fast, beta_slow
  8231. );
  8232. cb(Qcur, "Qcur", il);
  8233. cb(Kcur, "Kcur", il);
  8234. cb(Vcur, "Vcur", il);
  8235. cur = build_attn(inp_attn, gf,
  8236. model.layers[il].wo, model.layers[il].bo,
  8237. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8238. }
  8239. if (il == n_layer - 1) {
  8240. // skip computing output for unused tokens
  8241. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8242. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8243. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8244. }
  8245. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8246. cb(ffn_inp, "ffn_inp", il);
  8247. // feed-forward network
  8248. cur = build_norm(ffn_inp,
  8249. model.layers[il].ffn_norm,
  8250. model.layers[il].ffn_norm_b,
  8251. LLM_NORM, il);
  8252. cb(cur, "ffn_norm", il);
  8253. cur = build_ffn(cur,
  8254. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8255. NULL, NULL, NULL,
  8256. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8257. NULL,
  8258. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  8259. cur = ggml_add(ctx0, cur, ffn_inp);
  8260. cb(cur, "ffn_out", il);
  8261. cur = build_cvec(cur, il);
  8262. cb(cur, "l_out", il);
  8263. // input for next layer
  8264. inpL = cur;
  8265. }
  8266. cur = inpL;
  8267. cur = build_norm(cur,
  8268. model.output_norm, model.output_norm_b,
  8269. LLM_NORM, -1);
  8270. cb(cur, "result_norm", -1);
  8271. res->t_embd = cur;
  8272. // lm_head
  8273. cur = build_lora_mm(model.output, cur);
  8274. cb(cur, "result_output", -1);
  8275. res->t_logits = cur;
  8276. ggml_build_forward_expand(gf, cur);
  8277. }
  8278. };
  8279. struct llm_build_exaone : public llm_graph_context {
  8280. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8281. const int64_t n_embd_head = hparams.n_embd_head_v;
  8282. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8283. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8284. ggml_tensor * cur;
  8285. ggml_tensor * inpL;
  8286. inpL = build_inp_embd(model.tok_embd);
  8287. // inp_pos - contains the positions
  8288. ggml_tensor * inp_pos = build_inp_pos();
  8289. auto * inp_attn = build_attn_inp_kv_unified();
  8290. for (int il = 0; il < n_layer; ++il) {
  8291. ggml_tensor * inpSA = inpL;
  8292. // norm
  8293. cur = build_norm(inpL,
  8294. model.layers[il].attn_norm, NULL,
  8295. LLM_NORM_RMS, il);
  8296. cb(cur, "attn_norm", il);
  8297. // self-attention
  8298. {
  8299. // rope freq factors for llama3; may return nullptr for llama2 and other models
  8300. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  8301. // compute Q and K and RoPE them
  8302. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8303. cb(Qcur, "Qcur", il);
  8304. if (model.layers[il].bq) {
  8305. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8306. cb(Qcur, "Qcur", il);
  8307. }
  8308. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8309. cb(Kcur, "Kcur", il);
  8310. if (model.layers[il].bk) {
  8311. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8312. cb(Kcur, "Kcur", il);
  8313. }
  8314. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8315. cb(Vcur, "Vcur", il);
  8316. if (model.layers[il].bv) {
  8317. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8318. cb(Vcur, "Vcur", il);
  8319. }
  8320. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8321. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8322. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8323. Qcur = ggml_rope_ext(
  8324. ctx0, Qcur, inp_pos, rope_factors,
  8325. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8326. ext_factor, attn_factor, beta_fast, beta_slow
  8327. );
  8328. Kcur = ggml_rope_ext(
  8329. ctx0, Kcur, inp_pos, rope_factors,
  8330. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8331. ext_factor, attn_factor, beta_fast, beta_slow
  8332. );
  8333. cb(Qcur, "Qcur", il);
  8334. cb(Kcur, "Kcur", il);
  8335. cb(Vcur, "Vcur", il);
  8336. cur = build_attn(inp_attn, gf,
  8337. model.layers[il].wo, model.layers[il].bo,
  8338. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8339. }
  8340. if (il == n_layer - 1) {
  8341. // skip computing output for unused tokens
  8342. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8343. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8344. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8345. }
  8346. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8347. cb(ffn_inp, "ffn_inp", il);
  8348. // feed-forward network
  8349. cur = build_norm(ffn_inp,
  8350. model.layers[il].ffn_norm, NULL,
  8351. LLM_NORM_RMS, il);
  8352. cb(cur, "ffn_norm", il);
  8353. cur = build_ffn(cur,
  8354. model.layers[il].ffn_up, NULL, NULL,
  8355. model.layers[il].ffn_gate, NULL, NULL,
  8356. model.layers[il].ffn_down, NULL, NULL,
  8357. NULL,
  8358. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8359. cb(cur, "ffn_out", il);
  8360. cur = ggml_add(ctx0, cur, ffn_inp);
  8361. cb(cur, "ffn_out", il);
  8362. cur = build_cvec(cur, il);
  8363. cb(cur, "l_out", il);
  8364. // input for next layer
  8365. inpL = cur;
  8366. }
  8367. cur = inpL;
  8368. cur = build_norm(cur,
  8369. model.output_norm, NULL,
  8370. LLM_NORM_RMS, -1);
  8371. cb(cur, "result_norm", -1);
  8372. res->t_embd = cur;
  8373. // lm_head
  8374. cur = build_lora_mm(model.output, cur);
  8375. cb(cur, "result_output", -1);
  8376. res->t_logits = cur;
  8377. ggml_build_forward_expand(gf, cur);
  8378. }
  8379. };
  8380. struct llm_build_rwkv6_base : public llm_graph_context {
  8381. const llama_model & model;
  8382. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  8383. }
  8384. ggml_tensor * build_rwkv6_channel_mix(
  8385. const llama_layer * layer,
  8386. ggml_tensor * cur,
  8387. ggml_tensor * x_prev,
  8388. llm_arch arch) const {
  8389. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8390. switch (arch) {
  8391. case LLM_ARCH_RWKV6:
  8392. {
  8393. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  8394. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  8395. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  8396. ggml_tensor * k = ggml_sqr(
  8397. ctx0,
  8398. ggml_relu(
  8399. ctx0,
  8400. build_lora_mm(layer->channel_mix_key, xk)
  8401. )
  8402. );
  8403. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  8404. } break;
  8405. default:
  8406. GGML_ABORT("fatal error");
  8407. }
  8408. return cur;
  8409. }
  8410. ggml_tensor * build_rwkv6_time_mix(
  8411. ggml_cgraph * gf,
  8412. ggml_tensor * cur,
  8413. ggml_tensor * x_prev,
  8414. ggml_tensor * state_copy,
  8415. ggml_tensor * state_mask,
  8416. const llama_ubatch & ubatch,
  8417. int il) const {
  8418. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  8419. const auto n_tokens = ubatch.n_tokens;
  8420. const auto n_seqs = ubatch.n_seqs;
  8421. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8422. const auto n_embd = hparams.n_embd;
  8423. const auto head_size = hparams.wkv_head_size;
  8424. const auto n_head = n_embd / head_size;
  8425. const auto n_head_kv = hparams.n_head_kv(il);
  8426. const auto kv_head = kv_self->head;
  8427. const auto & layer = model.layers[il];
  8428. bool is_qrwkv = layer.time_mix_first == nullptr;
  8429. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8430. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  8431. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8432. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  8433. xxx = ggml_reshape_4d(
  8434. ctx0,
  8435. ggml_tanh(
  8436. ctx0,
  8437. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  8438. ),
  8439. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  8440. );
  8441. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  8442. xxx = ggml_mul_mat(
  8443. ctx0,
  8444. ggml_reshape_4d(
  8445. ctx0,
  8446. layer.time_mix_w2,
  8447. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  8448. ),
  8449. xxx
  8450. );
  8451. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  8452. if (layer.time_mix_lerp_fused) {
  8453. // fusing these weights makes some performance improvement
  8454. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  8455. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  8456. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  8457. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8458. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8459. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8460. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8461. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8462. } else {
  8463. // for backward compatibility
  8464. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8465. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8466. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8467. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8468. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8469. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  8470. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  8471. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  8472. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  8473. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  8474. }
  8475. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  8476. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  8477. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  8478. if (layer.time_mix_receptance_b) {
  8479. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  8480. }
  8481. if (layer.time_mix_key_b) {
  8482. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  8483. }
  8484. if (layer.time_mix_value_b) {
  8485. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  8486. }
  8487. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  8488. if (is_qrwkv) {
  8489. g = ggml_sigmoid(ctx0, g);
  8490. } else {
  8491. g = ggml_silu(ctx0, g);
  8492. }
  8493. if (n_head_kv != 0 && n_head_kv != n_head) {
  8494. GGML_ASSERT(n_head % n_head_kv == 0);
  8495. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  8496. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  8497. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  8498. k = ggml_repeat(ctx0, k, tmp);
  8499. v = ggml_repeat(ctx0, v, tmp);
  8500. }
  8501. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  8502. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  8503. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  8504. ggml_tensor * w = ggml_mul_mat(
  8505. ctx0,
  8506. layer.time_mix_decay_w2,
  8507. ggml_tanh(
  8508. ctx0,
  8509. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  8510. )
  8511. );
  8512. w = ggml_add(ctx0, w, layer.time_mix_decay);
  8513. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  8514. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  8515. if (is_qrwkv) {
  8516. // k = k * (1 - w)
  8517. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  8518. }
  8519. ggml_tensor * wkv_state = build_copy_mask_state(
  8520. gf, kv_self->v_l[il], state_copy, state_mask,
  8521. hparams.n_embd_v_s(), n_seqs);
  8522. ggml_tensor * wkv_output;
  8523. if (is_qrwkv) {
  8524. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  8525. } else {
  8526. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  8527. }
  8528. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  8529. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  8530. ggml_build_forward_expand(
  8531. gf,
  8532. ggml_cpy(
  8533. ctx0,
  8534. wkv_state,
  8535. ggml_view_1d(
  8536. ctx0,
  8537. kv_self->v_l[il],
  8538. hparams.n_embd_v_s() * n_seqs,
  8539. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  8540. )
  8541. )
  8542. );
  8543. if (!is_qrwkv) {
  8544. // group norm with head_count groups
  8545. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  8546. cur = ggml_norm(ctx0, cur, 64e-5f);
  8547. // Convert back to regular vectors.
  8548. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8549. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  8550. } else {
  8551. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8552. }
  8553. cur = ggml_mul(ctx0, cur, g);
  8554. cur = build_lora_mm(layer.time_mix_output, cur);
  8555. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  8556. }
  8557. };
  8558. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  8559. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  8560. GGML_ASSERT(hparams.token_shift_count == 2);
  8561. ggml_tensor * cur;
  8562. ggml_tensor * inpL;
  8563. inpL = build_inp_embd(model.tok_embd);
  8564. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  8565. ggml_tensor * state_copy = build_inp_s_copy();
  8566. ggml_tensor * state_mask = build_inp_s_mask();
  8567. const auto n_embd = hparams.n_embd;
  8568. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8569. const auto n_seqs = ubatch.n_seqs;
  8570. for (int il = 0; il < n_layer; ++il) {
  8571. const llama_layer * layer = &model.layers[il];
  8572. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8573. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8574. gf, state_copy, state_mask, ubatch, il
  8575. );
  8576. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  8577. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  8578. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  8579. cb(att_norm, "attn_norm", il);
  8580. ggml_tensor * x_prev = ggml_concat(
  8581. ctx0,
  8582. att_shift,
  8583. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8584. 1
  8585. );
  8586. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  8587. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8588. cb(ffn_inp, "ffn_inp", il);
  8589. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  8590. cb(ffn_norm, "ffn_norm", il);
  8591. x_prev = ggml_concat(
  8592. ctx0,
  8593. ffn_shift,
  8594. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  8595. 1
  8596. );
  8597. token_shift = ggml_concat(ctx0,
  8598. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  8599. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  8600. 1
  8601. );
  8602. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8603. if (il == n_layer - 1) {
  8604. // skip computing output for unused tokens
  8605. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8606. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8607. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  8608. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  8609. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8610. }
  8611. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  8612. cur = ggml_add(ctx0, cur, ffn_inp);
  8613. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  8614. cur = ggml_scale(ctx0, cur, 0.5F);
  8615. }
  8616. cur = build_cvec(cur, il);
  8617. cb(cur, "l_out", il);
  8618. // input for next layer
  8619. inpL = cur;
  8620. }
  8621. cur = inpL;
  8622. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  8623. cb(cur, "result_norm", -1);
  8624. res->t_embd = cur;
  8625. cur = build_lora_mm(model.output, cur);
  8626. cb(cur, "result_output", -1);
  8627. res->t_logits = cur;
  8628. ggml_build_forward_expand(gf, cur);
  8629. }
  8630. };
  8631. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  8632. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  8633. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  8634. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  8635. ggml_tensor * cur;
  8636. ggml_tensor * inpL;
  8637. inpL = build_inp_embd(model.tok_embd);
  8638. ggml_tensor * state_copy = build_inp_s_copy();
  8639. ggml_tensor * state_mask = build_inp_s_mask();
  8640. const auto n_embd = hparams.n_embd;
  8641. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8642. const auto n_seqs = ubatch.n_seqs;
  8643. for (int il = 0; il < n_layer; ++il) {
  8644. const llama_layer * layer = &model.layers[il];
  8645. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8646. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8647. gf, state_copy, state_mask, ubatch, il
  8648. );
  8649. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  8650. cb(att_norm, "attn_norm", il);
  8651. ggml_tensor * x_prev = ggml_concat(
  8652. ctx0,
  8653. token_shift,
  8654. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8655. 1
  8656. );
  8657. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  8658. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  8659. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8660. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8661. cb(ffn_inp, "ffn_inp", il);
  8662. if (il == n_layer - 1) {
  8663. // skip computing output for unused tokens
  8664. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8665. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8666. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8667. }
  8668. // feed-forward network
  8669. cur = build_norm(ffn_inp,
  8670. model.layers[il].ffn_norm, NULL,
  8671. LLM_NORM_RMS, il);
  8672. cb(cur, "ffn_norm", il);
  8673. cur = build_ffn(cur,
  8674. model.layers[il].ffn_up, NULL, NULL,
  8675. model.layers[il].ffn_gate, NULL, NULL,
  8676. model.layers[il].ffn_down, NULL, NULL,
  8677. NULL,
  8678. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8679. cb(cur, "ffn_out", il);
  8680. cur = ggml_add(ctx0, cur, ffn_inp);
  8681. cur = build_cvec(cur, il);
  8682. cb(cur, "l_out", il);
  8683. // input for next layer
  8684. inpL = cur;
  8685. }
  8686. cur = inpL;
  8687. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  8688. cb(cur, "result_norm", -1);
  8689. res->t_embd = cur;
  8690. cur = build_lora_mm(model.output, cur);
  8691. cb(cur, "result_output", -1);
  8692. res->t_logits = cur;
  8693. ggml_build_forward_expand(gf, cur);
  8694. }
  8695. };
  8696. struct llm_build_rwkv7_base : public llm_graph_context {
  8697. const llama_model & model;
  8698. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  8699. }
  8700. ggml_tensor * build_rwkv7_channel_mix(
  8701. const llama_layer * layer,
  8702. ggml_tensor * cur,
  8703. ggml_tensor * x_prev,
  8704. llm_arch arch) const {
  8705. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8706. switch (arch) {
  8707. case LLM_ARCH_RWKV7:
  8708. {
  8709. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  8710. ggml_tensor * k = ggml_sqr(
  8711. ctx0,
  8712. ggml_relu(
  8713. ctx0,
  8714. build_lora_mm(layer->channel_mix_key, xk)
  8715. )
  8716. );
  8717. cur = build_lora_mm(layer->channel_mix_value, k);
  8718. } break;
  8719. default:
  8720. GGML_ABORT("fatal error");
  8721. }
  8722. return cur;
  8723. }
  8724. ggml_tensor * build_rwkv7_time_mix(
  8725. ggml_cgraph * gf,
  8726. ggml_tensor * cur,
  8727. ggml_tensor * x_prev,
  8728. ggml_tensor * state_copy,
  8729. ggml_tensor * state_mask,
  8730. ggml_tensor *& first_layer_value,
  8731. const llama_ubatch & ubatch,
  8732. int il) const {
  8733. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  8734. const auto n_tokens = ubatch.n_tokens;
  8735. const auto n_seqs = ubatch.n_seqs;
  8736. const auto n_embd = hparams.n_embd;
  8737. const auto head_size = hparams.wkv_head_size;
  8738. const auto head_count = n_embd / head_size;
  8739. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8740. const auto kv_head = kv_self->head;
  8741. const auto & layer = model.layers[il];
  8742. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  8743. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8744. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  8745. sx = ggml_repeat(ctx0, sx, dummy);
  8746. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  8747. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8748. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8749. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8750. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8751. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8752. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  8753. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  8754. ggml_tensor * w = ggml_add(
  8755. ctx0,
  8756. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  8757. layer.time_mix_w0
  8758. );
  8759. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  8760. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  8761. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  8762. if (first_layer_value == nullptr) {
  8763. first_layer_value = v;
  8764. } else {
  8765. // Add the first layer value as a residual connection.
  8766. v = ggml_add(ctx0, v,
  8767. ggml_mul(ctx0,
  8768. ggml_sub(ctx0, first_layer_value, v),
  8769. ggml_sigmoid(ctx0, ggml_add(ctx0,
  8770. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  8771. layer.time_mix_v0
  8772. )
  8773. )
  8774. )
  8775. );
  8776. }
  8777. ggml_tensor * g = nullptr;
  8778. if (layer.time_mix_g1 && layer.time_mix_g2) {
  8779. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  8780. }
  8781. ggml_tensor * a = ggml_sigmoid(ctx0,
  8782. ggml_add(
  8783. ctx0,
  8784. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  8785. layer.time_mix_a0
  8786. )
  8787. );
  8788. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  8789. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  8790. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  8791. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  8792. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  8793. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  8794. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  8795. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  8796. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  8797. ggml_tensor * wkv_state = build_copy_mask_state(
  8798. gf, kv_self->v_l[il], state_copy, state_mask,
  8799. hparams.n_embd_v_s(), n_seqs);
  8800. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  8801. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  8802. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  8803. ggml_build_forward_expand(
  8804. gf,
  8805. ggml_cpy(
  8806. ctx0,
  8807. wkv_state,
  8808. ggml_view_1d(
  8809. ctx0,
  8810. kv_self->v_l[il],
  8811. hparams.n_embd_v_s() * n_seqs,
  8812. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  8813. )
  8814. )
  8815. );
  8816. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  8817. // group norm with head_count groups
  8818. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  8819. cur = ggml_norm(ctx0, cur, 64e-5f);
  8820. // Convert back to regular vectors.
  8821. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8822. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  8823. } else {
  8824. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8825. }
  8826. ggml_tensor * rk = ggml_sum_rows(ctx0,
  8827. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  8828. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  8829. if (has_gating) {
  8830. cur = ggml_mul(ctx0, cur, g);
  8831. }
  8832. cur = build_lora_mm(layer.time_mix_output, cur);
  8833. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  8834. }
  8835. };
  8836. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  8837. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  8838. GGML_ASSERT(hparams.token_shift_count == 2);
  8839. ggml_tensor * cur;
  8840. ggml_tensor * inpL;
  8841. ggml_tensor * v_first = nullptr;
  8842. inpL = build_inp_embd(model.tok_embd);
  8843. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  8844. ggml_tensor * state_copy = build_inp_s_copy();
  8845. ggml_tensor * state_mask = build_inp_s_mask();
  8846. const auto n_embd = hparams.n_embd;
  8847. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8848. const auto n_seqs = ubatch.n_seqs;
  8849. for (int il = 0; il < n_layer; ++il) {
  8850. const llama_layer * layer = &model.layers[il];
  8851. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8852. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8853. gf, state_copy, state_mask, ubatch, il
  8854. );
  8855. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  8856. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  8857. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  8858. cb(att_norm, "attn_norm", il);
  8859. ggml_tensor * x_prev = ggml_concat(
  8860. ctx0,
  8861. att_shift,
  8862. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8863. 1
  8864. );
  8865. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  8866. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8867. cb(ffn_inp, "ffn_inp", il);
  8868. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  8869. cb(ffn_norm, "ffn_norm", il);
  8870. x_prev = ggml_concat(
  8871. ctx0,
  8872. ffn_shift,
  8873. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  8874. 1
  8875. );
  8876. token_shift = ggml_concat(ctx0,
  8877. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  8878. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  8879. 1
  8880. );
  8881. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8882. if (il == n_layer - 1) {
  8883. // skip computing output for unused tokens
  8884. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8885. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8886. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  8887. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  8888. }
  8889. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  8890. cur = ggml_add(ctx0, cur, ffn_inp);
  8891. cur = build_cvec(cur, il);
  8892. cb(cur, "l_out", il);
  8893. // input for next layer
  8894. inpL = cur;
  8895. }
  8896. cur = inpL;
  8897. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  8898. cb(cur, "result_norm", -1);
  8899. res->t_embd = cur;
  8900. cur = build_lora_mm(model.output, cur);
  8901. cb(cur, "result_output", -1);
  8902. res->t_logits = cur;
  8903. ggml_build_forward_expand(gf, cur);
  8904. }
  8905. };
  8906. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  8907. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  8908. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  8909. ggml_tensor * cur;
  8910. ggml_tensor * inpL;
  8911. ggml_tensor * v_first = nullptr;
  8912. inpL = build_inp_embd(model.tok_embd);
  8913. ggml_tensor * state_copy = build_inp_s_copy();
  8914. ggml_tensor * state_mask = build_inp_s_mask();
  8915. const auto n_embd = hparams.n_embd;
  8916. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8917. const auto n_seqs = ubatch.n_seqs;
  8918. for (int il = 0; il < n_layer; ++il) {
  8919. const llama_layer * layer = &model.layers[il];
  8920. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8921. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8922. gf, state_copy, state_mask, ubatch, il
  8923. );
  8924. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  8925. cb(att_norm, "attn_norm", il);
  8926. ggml_tensor * x_prev = ggml_concat(
  8927. ctx0,
  8928. token_shift,
  8929. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8930. 1
  8931. );
  8932. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  8933. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  8934. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8935. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8936. cb(ffn_inp, "ffn_inp", il);
  8937. if (il == n_layer - 1) {
  8938. // skip computing output for unused tokens
  8939. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8940. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8941. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8942. }
  8943. // feed-forward network
  8944. cur = build_norm(ffn_inp,
  8945. model.layers[il].ffn_norm, NULL,
  8946. LLM_NORM_RMS, il);
  8947. cb(cur, "ffn_norm", il);
  8948. cur = build_ffn(cur,
  8949. model.layers[il].ffn_up, NULL, NULL,
  8950. model.layers[il].ffn_gate, NULL, NULL,
  8951. model.layers[il].ffn_down, NULL, NULL,
  8952. NULL,
  8953. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8954. cb(cur, "ffn_out", il);
  8955. cur = ggml_add(ctx0, cur, ffn_inp);
  8956. cur = build_cvec(cur, il);
  8957. cb(cur, "l_out", il);
  8958. // input for next layer
  8959. inpL = cur;
  8960. }
  8961. cur = inpL;
  8962. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  8963. cb(cur, "result_norm", -1);
  8964. res->t_embd = cur;
  8965. cur = build_lora_mm(model.output, cur);
  8966. cb(cur, "result_output", -1);
  8967. res->t_logits = cur;
  8968. ggml_build_forward_expand(gf, cur);
  8969. }
  8970. };
  8971. // ref: https://github.com/facebookresearch/chameleon
  8972. // based on the original build_llama() function, changes:
  8973. // * qk-norm
  8974. // * swin-norm
  8975. // * removed bias
  8976. // * removed MoE
  8977. struct llm_build_chameleon : public llm_graph_context {
  8978. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8979. const int64_t n_embd_head = hparams.n_embd_head_v;
  8980. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8981. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8982. ggml_tensor * cur;
  8983. ggml_tensor * inpL;
  8984. inpL = build_inp_embd(model.tok_embd);
  8985. // inp_pos - contains the positions
  8986. ggml_tensor * inp_pos = build_inp_pos();
  8987. auto * inp_attn = build_attn_inp_kv_unified();
  8988. for (int il = 0; il < n_layer; ++il) {
  8989. ggml_tensor * inpSA = inpL;
  8990. // norm
  8991. if (hparams.swin_norm) {
  8992. cur = inpL;
  8993. } else {
  8994. cur = build_norm(inpL,
  8995. model.layers[il].attn_norm, NULL,
  8996. LLM_NORM_RMS, il);
  8997. cb(cur, "attn_norm", il);
  8998. }
  8999. // self-attention
  9000. {
  9001. // compute Q and K and RoPE them
  9002. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9003. cb(Qcur, "Qcur", il);
  9004. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9005. cb(Kcur, "Kcur", il);
  9006. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9007. cb(Vcur, "Vcur", il);
  9008. if (model.layers[il].attn_q_norm) {
  9009. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9010. ggml_element_size(Qcur) * n_embd_head,
  9011. ggml_element_size(Qcur) * n_embd_head * n_head,
  9012. 0);
  9013. cb(Qcur, "Qcur", il);
  9014. Qcur = build_norm(Qcur,
  9015. model.layers[il].attn_q_norm,
  9016. model.layers[il].attn_q_norm_b,
  9017. LLM_NORM, il);
  9018. cb(Qcur, "Qcur", il);
  9019. }
  9020. if (model.layers[il].attn_k_norm) {
  9021. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9022. ggml_element_size(Kcur) * n_embd_head,
  9023. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9024. 0);
  9025. cb(Kcur, "Kcur", il);
  9026. Kcur = build_norm(Kcur,
  9027. model.layers[il].attn_k_norm,
  9028. model.layers[il].attn_k_norm_b,
  9029. LLM_NORM, il);
  9030. cb(Kcur, "Kcur", il);
  9031. }
  9032. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9033. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9034. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9035. Qcur = ggml_rope_ext(
  9036. ctx0, Qcur, inp_pos, nullptr,
  9037. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9038. ext_factor, attn_factor, beta_fast, beta_slow
  9039. );
  9040. Kcur = ggml_rope_ext(
  9041. ctx0, Kcur, inp_pos, nullptr,
  9042. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9043. ext_factor, attn_factor, beta_fast, beta_slow
  9044. );
  9045. cb(Qcur, "Qcur", il);
  9046. cb(Kcur, "Kcur", il);
  9047. cb(Vcur, "Vcur", il);
  9048. cur = build_attn(inp_attn, gf,
  9049. model.layers[il].wo, nullptr,
  9050. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9051. if (hparams.swin_norm) {
  9052. cur = build_norm(cur,
  9053. model.layers[il].attn_norm, NULL,
  9054. LLM_NORM_RMS, il);
  9055. }
  9056. }
  9057. if (il == n_layer - 1) {
  9058. // skip computing output for unused tokens
  9059. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9060. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9061. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9062. }
  9063. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9064. cb(ffn_inp, "ffn_inp", il);
  9065. // feed-forward network
  9066. if (!hparams.swin_norm) {
  9067. cur = build_norm(ffn_inp,
  9068. model.layers[il].ffn_norm, NULL,
  9069. LLM_NORM_RMS, il);
  9070. cb(cur, "ffn_norm", il);
  9071. }
  9072. cur = build_ffn(cur,
  9073. model.layers[il].ffn_up, NULL, NULL,
  9074. model.layers[il].ffn_gate, NULL, NULL,
  9075. model.layers[il].ffn_down, NULL, NULL,
  9076. NULL,
  9077. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9078. cb(cur, "ffn_out", il);
  9079. if (hparams.swin_norm) {
  9080. cur = build_norm(cur,
  9081. model.layers[il].ffn_norm, NULL,
  9082. LLM_NORM_RMS, il);
  9083. cb(cur, "ffn_norm", il);
  9084. }
  9085. cur = ggml_add(ctx0, cur, ffn_inp);
  9086. cb(cur, "ffn_out", il);
  9087. cur = build_cvec(cur, il);
  9088. cb(cur, "l_out", il);
  9089. // input for next layer
  9090. inpL = cur;
  9091. }
  9092. cur = inpL;
  9093. cur = build_norm(cur,
  9094. model.output_norm, NULL,
  9095. LLM_NORM_RMS, -1);
  9096. cb(cur, "result_norm", -1);
  9097. res->t_embd = cur;
  9098. // lm_head
  9099. cur = build_lora_mm(model.output, cur);
  9100. cb(cur, "result_output_with_img_logits", -1);
  9101. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9102. // Needs to be removed once image outputs are supported.
  9103. int img_token_end_idx = 8196;
  9104. int img_token_start_idx = 4;
  9105. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  9106. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  9107. // which ensures that text token values are always at least larger than image token values
  9108. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  9109. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  9110. cb(img_logits, "img_logits", -1);
  9111. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  9112. cb(cur, "result_output", -1);
  9113. res->t_logits = cur;
  9114. ggml_build_forward_expand(gf, cur);
  9115. }
  9116. };
  9117. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  9118. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9119. ggml_tensor * cur;
  9120. ggml_tensor * inpL;
  9121. inpL = build_inp_embd(model.tok_embd);
  9122. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  9123. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  9124. cur = ggml_add(ctx0, cur, model.conv1d_b);
  9125. // posnet
  9126. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  9127. const auto & layer = model.layers[il].posnet;
  9128. inpL = cur;
  9129. switch (il) {
  9130. case 0:
  9131. case 1:
  9132. case 3:
  9133. case 4:
  9134. {
  9135. cur = build_norm(cur,
  9136. layer.norm1,
  9137. layer.norm1_b,
  9138. LLM_NORM_GROUP, 0);
  9139. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9140. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  9141. cur = ggml_add(ctx0, cur, layer.conv1_b);
  9142. cur = build_norm(cur,
  9143. layer.norm2,
  9144. layer.norm2_b,
  9145. LLM_NORM_GROUP, 0);
  9146. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9147. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  9148. cur = ggml_add(ctx0, cur, layer.conv2_b);
  9149. cur = ggml_add(ctx0, cur, inpL);
  9150. } break;
  9151. case 2:
  9152. {
  9153. cur = build_norm(cur,
  9154. layer.attn_norm,
  9155. layer.attn_norm_b,
  9156. LLM_NORM_GROUP, 0);
  9157. ggml_tensor * q;
  9158. ggml_tensor * k;
  9159. ggml_tensor * v;
  9160. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  9161. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  9162. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  9163. q = ggml_add(ctx0, q, layer.attn_q_b);
  9164. k = ggml_add(ctx0, k, layer.attn_k_b);
  9165. v = ggml_add(ctx0, v, layer.attn_v_b);
  9166. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  9167. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  9168. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9169. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  9170. cur = ggml_mul_mat(ctx0, kq, v);
  9171. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  9172. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  9173. cur = ggml_add(ctx0, cur, inpL);
  9174. } break;
  9175. case 5:
  9176. {
  9177. cur = build_norm(cur,
  9178. layer.norm,
  9179. layer.norm_b,
  9180. LLM_NORM_GROUP, 0);
  9181. } break;
  9182. default: GGML_ABORT("unknown posnet layer");
  9183. };
  9184. }
  9185. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9186. cur = build_norm(cur,
  9187. model.tok_norm,
  9188. model.tok_norm_b,
  9189. LLM_NORM, -1);
  9190. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9191. inpL = cur;
  9192. // convnext
  9193. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  9194. const auto & layer = model.layers[il].convnext;
  9195. cur = inpL;
  9196. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  9197. cur = ggml_add(ctx0, cur, layer.dw_b);
  9198. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9199. cur = build_norm(cur,
  9200. layer.norm,
  9201. layer.norm_b,
  9202. LLM_NORM, -1);
  9203. cur = build_ffn(cur,
  9204. layer.pw1, layer.pw1_b, NULL,
  9205. NULL, NULL, NULL,
  9206. layer.pw2, layer.pw2_b, NULL,
  9207. NULL,
  9208. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9209. cur = ggml_mul(ctx0, cur, layer.gamma);
  9210. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9211. inpL = ggml_add(ctx0, cur, inpL);
  9212. }
  9213. cur = inpL;
  9214. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9215. cur = build_norm(cur,
  9216. model.output_norm,
  9217. model.output_norm_b,
  9218. LLM_NORM, -1);
  9219. // lm_head
  9220. cur = build_lora_mm(model.output, cur);
  9221. cur = ggml_add(ctx0, cur, model.output_b);
  9222. cb(cur, "result_embd", -1);
  9223. res->t_embd = cur;
  9224. ggml_build_forward_expand(gf, cur);
  9225. }
  9226. };
  9227. llama_memory_i * llama_model::create_memory() const {
  9228. llama_memory_i * res;
  9229. switch (arch) {
  9230. case LLM_ARCH_MAMBA:
  9231. case LLM_ARCH_RWKV6:
  9232. case LLM_ARCH_RWKV6QWEN2:
  9233. case LLM_ARCH_RWKV7:
  9234. case LLM_ARCH_ARWKV7:
  9235. {
  9236. res = new llama_kv_cache_unified(hparams, {
  9237. /*.get_rope_factors =*/ nullptr
  9238. });
  9239. } break;
  9240. default:
  9241. {
  9242. res = new llama_kv_cache_unified(hparams, {
  9243. /*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
  9244. // choose long/short freq factors based on the context size
  9245. if (layers[il].rope_freqs != nullptr) {
  9246. return layers[il].rope_freqs;
  9247. }
  9248. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  9249. return layers[il].rope_long;
  9250. }
  9251. return layers[il].rope_short;
  9252. }
  9253. });
  9254. }
  9255. }
  9256. return res;
  9257. }
  9258. llm_graph_result_ptr llama_model::build_graph(
  9259. const llm_graph_params & params,
  9260. ggml_cgraph * gf,
  9261. llm_graph_type type) const {
  9262. std::unique_ptr<llm_graph_context> llm;
  9263. switch (arch) {
  9264. case LLM_ARCH_LLAMA:
  9265. case LLM_ARCH_MINICPM:
  9266. case LLM_ARCH_GRANITE:
  9267. case LLM_ARCH_GRANITE_MOE:
  9268. {
  9269. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  9270. } break;
  9271. case LLM_ARCH_DECI:
  9272. {
  9273. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  9274. } break;
  9275. case LLM_ARCH_BAICHUAN:
  9276. {
  9277. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  9278. } break;
  9279. case LLM_ARCH_FALCON:
  9280. {
  9281. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  9282. } break;
  9283. case LLM_ARCH_GROK:
  9284. {
  9285. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  9286. } break;
  9287. case LLM_ARCH_STARCODER:
  9288. {
  9289. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  9290. } break;
  9291. case LLM_ARCH_REFACT:
  9292. {
  9293. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  9294. } break;
  9295. case LLM_ARCH_BERT:
  9296. case LLM_ARCH_JINA_BERT_V2:
  9297. case LLM_ARCH_NOMIC_BERT:
  9298. {
  9299. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  9300. } break;
  9301. case LLM_ARCH_BLOOM:
  9302. {
  9303. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  9304. } break;
  9305. case LLM_ARCH_MPT:
  9306. {
  9307. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  9308. } break;
  9309. case LLM_ARCH_STABLELM:
  9310. {
  9311. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  9312. } break;
  9313. case LLM_ARCH_QWEN:
  9314. {
  9315. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  9316. } break;
  9317. case LLM_ARCH_QWEN2:
  9318. {
  9319. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  9320. } break;
  9321. case LLM_ARCH_QWEN2VL:
  9322. {
  9323. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  9324. } break;
  9325. case LLM_ARCH_QWEN2MOE:
  9326. {
  9327. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  9328. } break;
  9329. case LLM_ARCH_PHI2:
  9330. {
  9331. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  9332. } break;
  9333. case LLM_ARCH_PHI3:
  9334. case LLM_ARCH_PHIMOE:
  9335. {
  9336. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  9337. } break;
  9338. case LLM_ARCH_PLAMO:
  9339. {
  9340. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  9341. } break;
  9342. case LLM_ARCH_GPT2:
  9343. {
  9344. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  9345. } break;
  9346. case LLM_ARCH_CODESHELL:
  9347. {
  9348. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  9349. } break;
  9350. case LLM_ARCH_ORION:
  9351. {
  9352. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  9353. } break;
  9354. case LLM_ARCH_INTERNLM2:
  9355. {
  9356. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  9357. } break;
  9358. case LLM_ARCH_MINICPM3:
  9359. {
  9360. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  9361. } break;
  9362. case LLM_ARCH_GEMMA:
  9363. {
  9364. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  9365. } break;
  9366. case LLM_ARCH_GEMMA2:
  9367. {
  9368. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  9369. } break;
  9370. case LLM_ARCH_GEMMA3:
  9371. {
  9372. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  9373. } break;
  9374. case LLM_ARCH_STARCODER2:
  9375. {
  9376. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  9377. } break;
  9378. case LLM_ARCH_MAMBA:
  9379. {
  9380. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  9381. } break;
  9382. case LLM_ARCH_XVERSE:
  9383. {
  9384. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  9385. } break;
  9386. case LLM_ARCH_COMMAND_R:
  9387. {
  9388. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  9389. } break;
  9390. case LLM_ARCH_COHERE2:
  9391. {
  9392. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  9393. } break;
  9394. case LLM_ARCH_DBRX:
  9395. {
  9396. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  9397. } break;
  9398. case LLM_ARCH_OLMO:
  9399. {
  9400. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  9401. } break;
  9402. case LLM_ARCH_OLMO2:
  9403. {
  9404. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  9405. } break;
  9406. case LLM_ARCH_OLMOE:
  9407. {
  9408. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  9409. } break;
  9410. case LLM_ARCH_OPENELM:
  9411. {
  9412. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  9413. } break;
  9414. case LLM_ARCH_GPTNEOX:
  9415. {
  9416. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  9417. } break;
  9418. case LLM_ARCH_ARCTIC:
  9419. {
  9420. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  9421. } break;
  9422. case LLM_ARCH_DEEPSEEK:
  9423. {
  9424. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  9425. } break;
  9426. case LLM_ARCH_DEEPSEEK2:
  9427. {
  9428. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  9429. } break;
  9430. case LLM_ARCH_CHATGLM:
  9431. {
  9432. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  9433. } break;
  9434. case LLM_ARCH_BITNET:
  9435. {
  9436. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  9437. } break;
  9438. case LLM_ARCH_T5:
  9439. {
  9440. switch (type) {
  9441. case LLM_GRAPH_TYPE_ENCODER:
  9442. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  9443. break;
  9444. case LLM_GRAPH_TYPE_DEFAULT:
  9445. case LLM_GRAPH_TYPE_DECODER:
  9446. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  9447. break;
  9448. default:
  9449. GGML_ABORT("invalid graph type");
  9450. };
  9451. } break;
  9452. //case LLM_ARCH_T5ENCODER:
  9453. // {
  9454. // llm.build_t5_enc(gf);
  9455. // } break;
  9456. case LLM_ARCH_JAIS:
  9457. {
  9458. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  9459. } break;
  9460. case LLM_ARCH_NEMOTRON:
  9461. {
  9462. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  9463. } break;
  9464. case LLM_ARCH_EXAONE:
  9465. {
  9466. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  9467. } break;
  9468. case LLM_ARCH_RWKV6:
  9469. {
  9470. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  9471. } break;
  9472. case LLM_ARCH_RWKV6QWEN2:
  9473. {
  9474. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  9475. } break;
  9476. case LLM_ARCH_RWKV7:
  9477. {
  9478. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  9479. } break;
  9480. case LLM_ARCH_ARWKV7:
  9481. {
  9482. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  9483. } break;
  9484. case LLM_ARCH_CHAMELEON:
  9485. {
  9486. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  9487. } break;
  9488. case LLM_ARCH_WAVTOKENIZER_DEC:
  9489. {
  9490. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  9491. } break;
  9492. default:
  9493. GGML_ABORT("fatal error");
  9494. }
  9495. // add on pooling layer
  9496. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  9497. return std::move(llm->res);
  9498. }
  9499. //
  9500. // interface implementation
  9501. //
  9502. llama_model_params llama_model_default_params() {
  9503. llama_model_params result = {
  9504. /*.devices =*/ nullptr,
  9505. /*.n_gpu_layers =*/ 0,
  9506. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  9507. /*.main_gpu =*/ 0,
  9508. /*.tensor_split =*/ nullptr,
  9509. /*.progress_callback =*/ nullptr,
  9510. /*.progress_callback_user_data =*/ nullptr,
  9511. /*.kv_overrides =*/ nullptr,
  9512. /*.vocab_only =*/ false,
  9513. /*.use_mmap =*/ true,
  9514. /*.use_mlock =*/ false,
  9515. /*.check_tensors =*/ false,
  9516. };
  9517. #ifdef GGML_USE_METAL
  9518. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  9519. result.n_gpu_layers = 999;
  9520. #endif
  9521. return result;
  9522. }
  9523. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  9524. return &model->vocab;
  9525. }
  9526. void llama_free_model(llama_model * model) {
  9527. llama_model_free(model);
  9528. }
  9529. void llama_model_free(llama_model * model) {
  9530. delete model;
  9531. }
  9532. int32_t llama_model_n_ctx_train(const llama_model * model) {
  9533. return model->hparams.n_ctx_train;
  9534. }
  9535. int32_t llama_model_n_embd(const llama_model * model) {
  9536. return model->hparams.n_embd;
  9537. }
  9538. int32_t llama_model_n_layer(const llama_model * model) {
  9539. return model->hparams.n_layer;
  9540. }
  9541. int32_t llama_model_n_head(const llama_model * model) {
  9542. return model->hparams.n_head();
  9543. }
  9544. int32_t llama_model_n_head_kv(const llama_model * model) {
  9545. return model->hparams.n_head_kv();
  9546. }
  9547. // deprecated
  9548. int32_t llama_n_ctx_train(const llama_model * model) {
  9549. return llama_model_n_ctx_train(model);
  9550. }
  9551. // deprecated
  9552. int32_t llama_n_embd(const llama_model * model) {
  9553. return llama_model_n_embd(model);
  9554. }
  9555. // deprecated
  9556. int32_t llama_n_layer(const llama_model * model) {
  9557. return llama_model_n_layer(model);
  9558. }
  9559. // deprecated
  9560. int32_t llama_n_head(const llama_model * model) {
  9561. return llama_model_n_head(model);
  9562. }
  9563. llama_rope_type llama_model_rope_type(const llama_model * model) {
  9564. switch (model->arch) {
  9565. // these models do not use RoPE
  9566. case LLM_ARCH_GPT2:
  9567. case LLM_ARCH_GPTJ:
  9568. case LLM_ARCH_MPT:
  9569. case LLM_ARCH_REFACT:
  9570. case LLM_ARCH_BLOOM:
  9571. case LLM_ARCH_MAMBA:
  9572. case LLM_ARCH_JINA_BERT_V2:
  9573. case LLM_ARCH_T5:
  9574. case LLM_ARCH_T5ENCODER:
  9575. case LLM_ARCH_JAIS:
  9576. case LLM_ARCH_RWKV6:
  9577. case LLM_ARCH_RWKV6QWEN2:
  9578. case LLM_ARCH_RWKV7:
  9579. case LLM_ARCH_ARWKV7:
  9580. case LLM_ARCH_WAVTOKENIZER_DEC:
  9581. return LLAMA_ROPE_TYPE_NONE;
  9582. // use what we call a normal RoPE, operating on pairs of consecutive head values
  9583. case LLM_ARCH_LLAMA:
  9584. case LLM_ARCH_DECI:
  9585. case LLM_ARCH_BAICHUAN:
  9586. case LLM_ARCH_STARCODER:
  9587. case LLM_ARCH_PLAMO:
  9588. case LLM_ARCH_ORION:
  9589. case LLM_ARCH_INTERNLM2:
  9590. case LLM_ARCH_MINICPM:
  9591. case LLM_ARCH_XVERSE:
  9592. case LLM_ARCH_COMMAND_R:
  9593. case LLM_ARCH_COHERE2:
  9594. case LLM_ARCH_OLMO:
  9595. case LLM_ARCH_ARCTIC:
  9596. case LLM_ARCH_DEEPSEEK:
  9597. case LLM_ARCH_DEEPSEEK2:
  9598. case LLM_ARCH_CHATGLM:
  9599. case LLM_ARCH_GRANITE:
  9600. case LLM_ARCH_GRANITE_MOE:
  9601. case LLM_ARCH_CHAMELEON:
  9602. return LLAMA_ROPE_TYPE_NORM;
  9603. // the pairs of head values are offset by n_rot/2
  9604. case LLM_ARCH_FALCON:
  9605. case LLM_ARCH_GROK:
  9606. case LLM_ARCH_DBRX:
  9607. case LLM_ARCH_BERT:
  9608. case LLM_ARCH_NOMIC_BERT:
  9609. case LLM_ARCH_STABLELM:
  9610. case LLM_ARCH_BITNET:
  9611. case LLM_ARCH_QWEN:
  9612. case LLM_ARCH_QWEN2:
  9613. case LLM_ARCH_QWEN2MOE:
  9614. case LLM_ARCH_OLMO2:
  9615. case LLM_ARCH_OLMOE:
  9616. case LLM_ARCH_PHI2:
  9617. case LLM_ARCH_PHI3:
  9618. case LLM_ARCH_PHIMOE:
  9619. case LLM_ARCH_GEMMA:
  9620. case LLM_ARCH_GEMMA2:
  9621. case LLM_ARCH_GEMMA3:
  9622. case LLM_ARCH_STARCODER2:
  9623. case LLM_ARCH_OPENELM:
  9624. case LLM_ARCH_GPTNEOX:
  9625. case LLM_ARCH_CODESHELL:
  9626. case LLM_ARCH_NEMOTRON:
  9627. case LLM_ARCH_EXAONE:
  9628. case LLM_ARCH_MINICPM3:
  9629. return LLAMA_ROPE_TYPE_NEOX;
  9630. case LLM_ARCH_QWEN2VL:
  9631. return LLAMA_ROPE_TYPE_MROPE;
  9632. // all model arches should be listed explicitly here
  9633. case LLM_ARCH_UNKNOWN:
  9634. GGML_ABORT("unknown architecture");
  9635. }
  9636. return LLAMA_ROPE_TYPE_NONE;
  9637. }
  9638. float llama_model_rope_freq_scale_train(const llama_model * model) {
  9639. return model->hparams.rope_freq_scale_train;
  9640. }
  9641. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  9642. const auto & it = model->gguf_kv.find(key);
  9643. if (it == model->gguf_kv.end()) {
  9644. if (buf_size > 0) {
  9645. buf[0] = '\0';
  9646. }
  9647. return -1;
  9648. }
  9649. return snprintf(buf, buf_size, "%s", it->second.c_str());
  9650. }
  9651. int32_t llama_model_meta_count(const llama_model * model) {
  9652. return (int)model->gguf_kv.size();
  9653. }
  9654. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  9655. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  9656. if (buf_size > 0) {
  9657. buf[0] = '\0';
  9658. }
  9659. return -1;
  9660. }
  9661. auto it = model->gguf_kv.begin();
  9662. std::advance(it, i);
  9663. return snprintf(buf, buf_size, "%s", it->first.c_str());
  9664. }
  9665. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  9666. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  9667. if (buf_size > 0) {
  9668. buf[0] = '\0';
  9669. }
  9670. return -1;
  9671. }
  9672. auto it = model->gguf_kv.begin();
  9673. std::advance(it, i);
  9674. return snprintf(buf, buf_size, "%s", it->second.c_str());
  9675. }
  9676. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  9677. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  9678. }
  9679. uint64_t llama_model_size(const llama_model * model) {
  9680. return model->size();
  9681. }
  9682. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  9683. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  9684. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  9685. const auto & it = model->gguf_kv.find(key);
  9686. if (it == model->gguf_kv.end()) {
  9687. return nullptr;
  9688. }
  9689. return it->second.c_str();
  9690. }
  9691. uint64_t llama_model_n_params(const llama_model * model) {
  9692. return model->n_elements();
  9693. }
  9694. bool llama_model_has_encoder(const llama_model * model) {
  9695. switch (model->arch) {
  9696. case LLM_ARCH_T5: return true;
  9697. case LLM_ARCH_T5ENCODER: return true;
  9698. default: return false;
  9699. }
  9700. }
  9701. bool llama_model_has_decoder(const llama_model * model) {
  9702. switch (model->arch) {
  9703. case LLM_ARCH_T5ENCODER: return false;
  9704. default: return true;
  9705. }
  9706. }
  9707. llama_token llama_model_decoder_start_token(const llama_model * model) {
  9708. return model->hparams.dec_start_token_id;
  9709. }
  9710. bool llama_model_is_recurrent(const llama_model * model) {
  9711. switch (model->arch) {
  9712. case LLM_ARCH_MAMBA: return true;
  9713. case LLM_ARCH_RWKV6: return true;
  9714. case LLM_ARCH_RWKV6QWEN2: return true;
  9715. case LLM_ARCH_RWKV7: return true;
  9716. case LLM_ARCH_ARWKV7: return true;
  9717. default: return false;
  9718. }
  9719. }
  9720. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  9721. return model->tensors_by_name;
  9722. }