convert_hf_to_gguf.py 481 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: set[str] = set(ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors"))
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = set(ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin"))
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. part_names |= set(weight_map.values())
  173. else:
  174. weight_map = {}
  175. else:
  176. weight_map = {}
  177. for part_name in part_names:
  178. logger.info(f"gguf: indexing model part '{part_name}'")
  179. ctx: ContextManager[Any]
  180. if is_safetensors:
  181. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. data: gguf.utility.LocalTensor = model_part[name]
  189. if self.lazy:
  190. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  191. else:
  192. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  193. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  194. else:
  195. data_torch: Tensor = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data_torch: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  231. scale = scale.float()
  232. if block_size is not None:
  233. for i, size in enumerate(block_size):
  234. scale = scale.repeat_interleave(size, i)
  235. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  236. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  237. return weight.float() * scale
  238. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  239. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  240. bits = quant_config["bits"]
  241. assert bits in (2, 3, 4, 8)
  242. assert qweight.dtype == qzeros.dtype
  243. maxq = (2 ** bits) - 1
  244. weight = None
  245. zeros = None
  246. pack_dtype_bits = qweight.dtype.itemsize * 8
  247. if bits in [2, 4, 8]:
  248. pack_factor = pack_dtype_bits // bits
  249. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  250. if self.lazy:
  251. wf = LazyTorchTensor.from_eager(wf)
  252. zeros = torch.bitwise_right_shift(
  253. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  254. wf.unsqueeze(0)
  255. ).to(torch.int16 if bits == 8 else torch.int8)
  256. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  257. weight = torch.bitwise_and(
  258. torch.bitwise_right_shift(
  259. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  260. wf.unsqueeze(-1)
  261. ).to(torch.int16 if bits == 8 else torch.int8),
  262. maxq
  263. )
  264. elif bits == 3:
  265. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  266. assert weight is not None
  267. assert zeros is not None
  268. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  269. # gptq_v2 doesn't need to offset zeros
  270. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  271. zeros += 1
  272. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  273. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  274. assert w.dtype == torch.int32
  275. shape = tuple(shape_tensor.tolist())
  276. assert len(shape) == 2
  277. mask = (1 << num_bits) - 1
  278. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  279. if self.lazy:
  280. shifts = LazyTorchTensor.from_eager(shifts)
  281. if zero_point is None:
  282. offset = 1 << (num_bits - 1)
  283. else:
  284. assert len(zero_point.shape) == 2
  285. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  286. offset = offset.reshape(-1, zero_point.shape[1])
  287. # trim padding, and prepare for broadcast
  288. # NOTE: the zero-point is packed along dim 0
  289. offset = offset[:shape[0], :].unsqueeze(-1)
  290. # extract values
  291. # NOTE: the weights are packed along dim 1
  292. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  293. unpacked = unpacked.reshape(shape[0], -1)
  294. # trim padding
  295. unpacked = unpacked[:, :shape[1]]
  296. # prepare for broadcast of the scale
  297. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  298. unpacked = unpacked - offset
  299. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  300. if quant_method == "bitnet":
  301. for name in self.model_tensors.keys():
  302. if name.endswith(".weight_scale"):
  303. weight_name = name.removesuffix("_scale")
  304. w = self.model_tensors[weight_name]
  305. s = self.model_tensors[name]
  306. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  307. tensors_to_remove.append(name)
  308. elif quant_method == "fp8":
  309. block_size = quant_config.get("weight_block_size")
  310. for name in self.model_tensors.keys():
  311. if name.endswith(".weight_scale_inv"):
  312. weight_name = name.removesuffix("_scale_inv")
  313. w = self.model_tensors[weight_name]
  314. s = self.model_tensors[name]
  315. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  316. tensors_to_remove.append(name)
  317. elif quant_method == "gptq":
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".qweight"):
  320. base_name = name.removesuffix(".qweight")
  321. g_idx = self.model_tensors[base_name + ".g_idx"]
  322. qweight = self.model_tensors[base_name + ".qweight"]
  323. qzeros = self.model_tensors[base_name + ".qzeros"]
  324. scales = self.model_tensors[base_name + ".scales"]
  325. new_tensors[base_name + ".weight"] = (
  326. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  327. g(), w(), z(), s()
  328. )
  329. )
  330. tensors_to_remove += [
  331. base_name + n
  332. for n in (
  333. ".g_idx",
  334. ".qzeros",
  335. ".qweight",
  336. ".scales",
  337. )
  338. ]
  339. elif quant_method == "compressed-tensors":
  340. quant_format = quant_config["format"]
  341. groups = quant_config["config_groups"]
  342. if len(groups) > 1:
  343. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  344. weight_config = tuple(groups.values())[0]["weights"]
  345. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  346. block_size = weight_config.get("block_structure", None)
  347. strategy = weight_config.get("strategy")
  348. assert strategy == "channel" or strategy == "block"
  349. assert weight_config.get("group_size") is None # didn't find a model using this yet
  350. for name in self.model_tensors.keys():
  351. if name.endswith(".weight_scale"):
  352. weight_name = name.removesuffix("_scale")
  353. w = self.model_tensors[weight_name]
  354. s = self.model_tensors[name]
  355. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  356. tensors_to_remove.append(name)
  357. elif quant_format == "pack-quantized":
  358. assert weight_config.get("strategy") == "group"
  359. assert weight_config.get("type", "int") == "int"
  360. num_bits = weight_config.get("num_bits")
  361. group_size = weight_config.get("group_size")
  362. assert isinstance(num_bits, int)
  363. assert isinstance(group_size, int)
  364. for name in self.model_tensors.keys():
  365. if name.endswith(".weight_packed"):
  366. base_name = name.removesuffix("_packed")
  367. w = self.model_tensors[name]
  368. scale = self.model_tensors[base_name + "_scale"]
  369. shape = self.model_tensors[base_name + "_shape"]
  370. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  371. new_tensors[base_name] = (
  372. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  373. w(), scale(), shape(), zero_point(), num_bits, group_size,
  374. )
  375. )
  376. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  377. if (base_name + "_zero_point") in self.model_tensors:
  378. tensors_to_remove.append(base_name + "_zero_point")
  379. else:
  380. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  381. else:
  382. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  383. for name in tensors_to_remove:
  384. if name in self.model_tensors:
  385. del self.model_tensors[name]
  386. for name, value in new_tensors.items():
  387. self.model_tensors[name] = value
  388. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  389. for name, gen in self.model_tensors.items():
  390. yield name, gen()
  391. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  392. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  393. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  394. name: str = gguf.TENSOR_NAMES[key]
  395. if "{bid}" in name:
  396. assert bid is not None
  397. name = name.format(bid=bid)
  398. return name + suffix
  399. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  400. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  401. return False
  402. key_name: str = gguf.TENSOR_NAMES[key]
  403. if "{bid}" in key_name:
  404. if bid is None:
  405. return False
  406. key_name = key_name.format(bid=bid)
  407. else:
  408. if bid is not None:
  409. return False
  410. return name == (key_name + suffix)
  411. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  412. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  413. if new_name is None:
  414. raise ValueError(f"Can not map tensor {name!r}")
  415. return new_name
  416. def set_gguf_parameters(self):
  417. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  418. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  419. del bid # unused
  420. return [(self.map_tensor_name(name), data_torch)]
  421. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  422. del name, new_name, bid, n_dims # unused
  423. return False
  424. # some models need extra generated tensors (like rope_freqs)
  425. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  426. return ()
  427. def prepare_tensors(self):
  428. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  429. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  430. # we don't need these
  431. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  432. continue
  433. old_dtype = data_torch.dtype
  434. # convert any unsupported data types to float32
  435. if data_torch.dtype not in (torch.float16, torch.float32):
  436. data_torch = data_torch.to(torch.float32)
  437. # use the first number-like part of the tensor name as the block id
  438. bid = None
  439. for part in name.split("."):
  440. if part.isdecimal():
  441. bid = int(part)
  442. break
  443. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  444. # TODO: why do we squeeze here?
  445. # data = data_torch.squeeze().numpy()
  446. data = data_torch.numpy()
  447. n_dims = len(data.shape)
  448. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  449. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  450. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  451. data_qtype = gguf.GGMLQuantizationType.F32
  452. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  453. # Some tensor types are always in float32
  454. if data_qtype is False and (
  455. any(
  456. self.match_model_tensor_name(new_name, key, bid)
  457. for key in (
  458. gguf.MODEL_TENSOR.FFN_GATE_INP,
  459. gguf.MODEL_TENSOR.POS_EMBD,
  460. gguf.MODEL_TENSOR.TOKEN_TYPES,
  461. gguf.MODEL_TENSOR.SSM_CONV1D,
  462. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  463. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  464. gguf.MODEL_TENSOR.TIME_MIX_W1,
  465. gguf.MODEL_TENSOR.TIME_MIX_W2,
  466. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  467. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  468. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  469. gguf.MODEL_TENSOR.POSNET_NORM1,
  470. gguf.MODEL_TENSOR.POSNET_NORM2,
  471. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  472. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  473. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  474. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  475. )
  476. )
  477. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  478. ):
  479. data_qtype = gguf.GGMLQuantizationType.F32
  480. if data_qtype is False and any(
  481. self.match_model_tensor_name(new_name, key, bid)
  482. for key in (
  483. gguf.MODEL_TENSOR.TOKEN_EMBD,
  484. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  485. gguf.MODEL_TENSOR.OUTPUT,
  486. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  487. gguf.MODEL_TENSOR.LAUREL_L,
  488. gguf.MODEL_TENSOR.LAUREL_R,
  489. )
  490. ):
  491. if self.ftype in (
  492. gguf.LlamaFileType.MOSTLY_TQ1_0,
  493. gguf.LlamaFileType.MOSTLY_TQ2_0,
  494. ):
  495. # TODO: use Q4_K and Q6_K
  496. data_qtype = gguf.GGMLQuantizationType.F16
  497. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  498. if isinstance(data_qtype, bool):
  499. if self.ftype == gguf.LlamaFileType.ALL_F32:
  500. data_qtype = gguf.GGMLQuantizationType.F32
  501. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  502. data_qtype = gguf.GGMLQuantizationType.F16
  503. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  504. data_qtype = gguf.GGMLQuantizationType.BF16
  505. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  506. data_qtype = gguf.GGMLQuantizationType.Q8_0
  507. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  508. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  509. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  510. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  511. else:
  512. raise ValueError(f"Unknown file type: {self.ftype.name}")
  513. try:
  514. data = gguf.quants.quantize(data, data_qtype)
  515. except gguf.QuantError as e:
  516. logger.warning("%s, %s", e, "falling back to F16")
  517. data_qtype = gguf.GGMLQuantizationType.F16
  518. data = gguf.quants.quantize(data, data_qtype)
  519. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  520. # reverse shape to make it similar to the internal ggml dimension order
  521. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  522. # n_dims is implicit in the shape
  523. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  524. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  525. def set_type(self):
  526. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  527. def prepare_metadata(self, vocab_only: bool):
  528. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  529. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  530. # If we are using HF model id, set the metadata name to the model id
  531. if self.remote_hf_model_id:
  532. self.metadata.name = self.remote_hf_model_id
  533. # Fallback to model directory name if metadata name is still missing
  534. if self.metadata.name is None:
  535. self.metadata.name = self.dir_model.name
  536. # Generate parameter weight class (useful for leader boards) if not yet determined
  537. if self.metadata.size_label is None and total_params > 0:
  538. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  539. self.set_type()
  540. logger.info("Set meta model")
  541. self.metadata.set_gguf_meta_model(self.gguf_writer)
  542. logger.info("Set model parameters")
  543. self.set_gguf_parameters()
  544. logger.info("Set model quantization version")
  545. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  546. def write_vocab(self):
  547. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  548. def write(self):
  549. self.prepare_tensors()
  550. self.prepare_metadata(vocab_only=False)
  551. self.gguf_writer.write_header_to_file(path=self.fname_out)
  552. self.gguf_writer.write_kv_data_to_file()
  553. self.gguf_writer.write_tensors_to_file(progress=True)
  554. self.gguf_writer.close()
  555. @staticmethod
  556. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  557. part_names: list[str] = []
  558. for filename in os.listdir(dir_model):
  559. if filename.startswith(prefix) and filename.endswith(suffix):
  560. part_names.append(filename)
  561. part_names.sort()
  562. return part_names
  563. @staticmethod
  564. def load_hparams(dir_model: Path, is_mistral_format: bool):
  565. if is_mistral_format:
  566. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  567. config = json.load(f)
  568. return config
  569. try:
  570. # for security reason, we don't allow loading remote code by default
  571. # if a model need remote code, we will fallback to config.json
  572. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  573. except Exception as e:
  574. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  575. logger.warning("Trying to load config.json instead")
  576. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  577. config = json.load(f)
  578. if "llm_config" in config:
  579. # rename for InternVL
  580. config["text_config"] = config["llm_config"]
  581. if "thinker_config" in config:
  582. # rename for Qwen2.5-Omni
  583. config["text_config"] = config["thinker_config"]["text_config"]
  584. return config
  585. @classmethod
  586. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  587. assert names
  588. def func(modelcls: AnyModel) -> AnyModel:
  589. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  590. for name in names:
  591. cls._model_classes[model_type][name] = modelcls
  592. return modelcls
  593. return func
  594. @classmethod
  595. def print_registered_models(cls):
  596. for model_type, model_classes in cls._model_classes.items():
  597. logger.error(f"{model_type.name} models:")
  598. for name in sorted(model_classes.keys()):
  599. logger.error(f" - {name}")
  600. @classmethod
  601. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  602. try:
  603. return cls._model_classes[model_type][arch]
  604. except KeyError:
  605. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  606. class TextModel(ModelBase):
  607. model_type = ModelType.TEXT
  608. hf_arch: str
  609. def __init__(self, *args, **kwargs):
  610. super().__init__(*args, **kwargs)
  611. if not self.is_mistral_format:
  612. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  613. else:
  614. self.hf_arch = ""
  615. if "text_config" in self.hparams:
  616. # move the text_config to the root level
  617. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  618. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  619. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  620. @classmethod
  621. def __init_subclass__(cls):
  622. # can't use an abstract property, because overriding it without type errors
  623. # would require using decorated functions instead of simply defining the property
  624. if "model_arch" not in cls.__dict__:
  625. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  626. def set_vocab(self):
  627. self._set_vocab_gpt2()
  628. def prepare_metadata(self, vocab_only: bool):
  629. super().prepare_metadata(vocab_only=vocab_only)
  630. total_params = self.gguf_writer.get_total_parameter_count()[0]
  631. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  632. output_type: str = self.ftype.name.partition("_")[2]
  633. # Filename Output
  634. if self.fname_out.is_dir():
  635. # Generate default filename based on model specification and available metadata
  636. if not vocab_only:
  637. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  638. else:
  639. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  640. # Use the default filename
  641. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  642. else:
  643. # Output path is a custom defined templated filename
  644. # Note: `not is_dir()` is used because `.is_file()` will not detect
  645. # file template strings as it doesn't actually exist as a file
  646. # Process templated file name with the output ftype, useful with the "auto" ftype
  647. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  648. logger.info("Set model tokenizer")
  649. self.set_vocab()
  650. def set_gguf_parameters(self):
  651. self.gguf_writer.add_block_count(self.block_count)
  652. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  653. self.gguf_writer.add_context_length(n_ctx)
  654. logger.info(f"gguf: context length = {n_ctx}")
  655. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  656. self.gguf_writer.add_embedding_length(n_embd)
  657. logger.info(f"gguf: embedding length = {n_embd}")
  658. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  659. self.gguf_writer.add_feed_forward_length(n_ff)
  660. logger.info(f"gguf: feed forward length = {n_ff}")
  661. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  662. self.gguf_writer.add_head_count(n_head)
  663. logger.info(f"gguf: head count = {n_head}")
  664. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  665. self.gguf_writer.add_head_count_kv(n_head_kv)
  666. logger.info(f"gguf: key-value head count = {n_head_kv}")
  667. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  668. self.gguf_writer.add_rope_freq_base(rope_theta)
  669. logger.info(f"gguf: rope theta = {rope_theta}")
  670. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  671. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  672. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  673. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  674. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  675. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  676. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  677. self.gguf_writer.add_expert_count(n_experts)
  678. logger.info(f"gguf: expert count = {n_experts}")
  679. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  680. self.gguf_writer.add_expert_used_count(n_experts_used)
  681. logger.info(f"gguf: experts used count = {n_experts_used}")
  682. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  683. self.gguf_writer.add_expert_group_count(n_expert_groups)
  684. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  685. if (n_group_used := self.hparams.get("topk_group")) is not None:
  686. self.gguf_writer.add_expert_group_used_count(n_group_used)
  687. logger.info(f"gguf: expert groups used count = {n_group_used}")
  688. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  689. if score_func == "sigmoid":
  690. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  691. elif score_func == "softmax":
  692. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  693. else:
  694. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  695. logger.info(f"gguf: expert score gating function = {score_func}")
  696. if (head_dim := self.hparams.get("head_dim")) is not None:
  697. self.gguf_writer.add_key_length(head_dim)
  698. self.gguf_writer.add_value_length(head_dim)
  699. self.gguf_writer.add_file_type(self.ftype)
  700. logger.info(f"gguf: file type = {self.ftype}")
  701. def write_vocab(self):
  702. if len(self.gguf_writer.tensors) != 1:
  703. raise ValueError('Splitting the vocabulary is not supported')
  704. self.prepare_metadata(vocab_only=True)
  705. self.gguf_writer.write_header_to_file(path=self.fname_out)
  706. self.gguf_writer.write_kv_data_to_file()
  707. self.gguf_writer.close()
  708. def does_token_look_special(self, token: str | bytes) -> bool:
  709. if isinstance(token, (bytes, bytearray)):
  710. token_text = token.decode(encoding="utf-8")
  711. elif isinstance(token, memoryview):
  712. token_text = token.tobytes().decode(encoding="utf-8")
  713. else:
  714. token_text = token
  715. # Some models mark some added tokens which ought to be control tokens as not special.
  716. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  717. seems_special = token_text in (
  718. "<pad>", # deepseek-coder
  719. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  720. )
  721. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  722. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  723. # TODO: should these be marked as UNUSED instead? (maybe not)
  724. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  725. return seems_special
  726. # used for GPT-2 BPE and WordPiece vocabs
  727. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  728. tokens: list[str] = []
  729. toktypes: list[int] = []
  730. from transformers import AutoTokenizer
  731. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  732. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  733. assert max(tokenizer.vocab.values()) < vocab_size
  734. tokpre = self.get_vocab_base_pre(tokenizer)
  735. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  736. added_vocab = tokenizer.get_added_vocab()
  737. added_tokens_decoder = tokenizer.added_tokens_decoder
  738. for i in range(vocab_size):
  739. if i not in reverse_vocab:
  740. tokens.append(f"[PAD{i}]")
  741. toktypes.append(gguf.TokenType.UNUSED)
  742. else:
  743. token: str = reverse_vocab[i]
  744. if token in added_vocab:
  745. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  746. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  747. if not added_tokens_decoder[i].normalized:
  748. previous_token = token
  749. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  750. if previous_token != token:
  751. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  752. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  753. toktypes.append(gguf.TokenType.CONTROL)
  754. else:
  755. # NOTE: this was added for Gemma.
  756. # Encoding and decoding the tokens above isn't sufficient for this case.
  757. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  758. toktypes.append(gguf.TokenType.USER_DEFINED)
  759. else:
  760. toktypes.append(gguf.TokenType.NORMAL)
  761. tokens.append(token)
  762. return tokens, toktypes, tokpre
  763. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  764. # do not modify it manually!
  765. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  766. # Marker: Start get_vocab_base_pre
  767. def get_vocab_base_pre(self, tokenizer) -> str:
  768. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  769. # is specific for the BPE pre-tokenizer used by the model
  770. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  771. # use in llama.cpp to implement the same pre-tokenizer
  772. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  773. chktok = tokenizer.encode(chktxt)
  774. chkhsh = sha256(str(chktok).encode()).hexdigest()
  775. logger.debug(f"chktok: {chktok}")
  776. logger.debug(f"chkhsh: {chkhsh}")
  777. res = None
  778. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  779. # or pull the latest version of the model from Huggingface
  780. # don't edit the hashes manually!
  781. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  782. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  783. res = "chatglm-bpe"
  784. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  785. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  786. res = "chatglm-bpe"
  787. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  788. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  789. res = "glm4"
  790. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  791. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  792. res = "glm4"
  793. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  794. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  795. res = "minerva-7b"
  796. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  797. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  798. res = "hunyuan"
  799. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  800. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  801. res = "hunyuan-dense"
  802. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  803. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  804. res = "falcon-h1"
  805. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  806. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  807. res = "falcon-h1"
  808. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  809. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  810. res = "falcon-h1"
  811. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  812. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  813. res = "falcon-h1"
  814. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  815. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  816. res = "kimi-k2"
  817. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  818. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  819. res = "qwen2"
  820. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  821. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  822. res = "grok-2"
  823. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  824. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  825. res = "llama-bpe"
  826. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  827. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  828. res = "deepseek-llm"
  829. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  830. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  831. res = "deepseek-coder"
  832. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  833. # ref: https://huggingface.co/tiiuae/falcon-7b
  834. res = "falcon"
  835. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  836. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  837. res = "bert-bge"
  838. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  839. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  840. res = "falcon3"
  841. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  842. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  843. res = "bert-bge-large"
  844. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  845. # ref: https://huggingface.co/mosaicml/mpt-7b
  846. res = "mpt"
  847. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  848. # ref: https://huggingface.co/bigcode/starcoder2-3b
  849. res = "starcoder"
  850. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  851. # ref: https://huggingface.co/openai-community/gpt2
  852. res = "gpt-2"
  853. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  854. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  855. res = "stablelm2"
  856. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  857. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  858. res = "refact"
  859. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  860. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  861. res = "command-r"
  862. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  863. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  864. res = "qwen2"
  865. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  866. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  867. res = "olmo"
  868. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  869. # ref: https://huggingface.co/databricks/dbrx-base
  870. res = "dbrx"
  871. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  872. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  873. res = "jina-v1-en"
  874. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  875. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  876. res = "jina-v2-en"
  877. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  878. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  879. res = "jina-v2-es"
  880. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  881. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  882. res = "jina-v2-de"
  883. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  884. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  885. res = "smaug-bpe"
  886. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  887. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  888. res = "poro-chat"
  889. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  890. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  891. res = "jina-v2-code"
  892. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  893. # ref: https://huggingface.co/LumiOpen/Viking-7B
  894. res = "viking"
  895. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  896. # ref: https://huggingface.co/core42/jais-13b
  897. res = "jais"
  898. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  899. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  900. res = "codeshell"
  901. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  902. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  903. res = "tekken"
  904. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  905. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  906. res = "smollm"
  907. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  908. # ref: https://huggingface.co/bigscience/bloom
  909. res = "bloom"
  910. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  911. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  912. res = "gpt3-finnish"
  913. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  914. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  915. res = "exaone"
  916. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  917. # ref: https://huggingface.co/microsoft/phi-2
  918. res = "phi-2"
  919. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  920. # ref: https://huggingface.co/facebook/chameleon-7b
  921. res = "chameleon"
  922. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  923. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  924. res = "roberta-bpe"
  925. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  926. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  927. res = "gigachat"
  928. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  929. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  930. res = "megrez"
  931. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  932. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  933. res = "deepseek-v3"
  934. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  935. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  936. res = "deepseek-r1-qwen"
  937. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  938. # ref: https://huggingface.co/Xenova/gpt-4o
  939. res = "gpt-4o"
  940. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  941. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  942. res = "superbpe"
  943. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  944. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  945. res = "trillion"
  946. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  947. # ref: https://huggingface.co/inclusionAI/Ling-lite
  948. res = "bailingmoe"
  949. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  950. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  951. res = "llama4"
  952. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  953. # ref: https://huggingface.co/mistral-community/pixtral-12b
  954. res = "pixtral"
  955. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  956. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  957. res = "seed-coder"
  958. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  959. # ref: https://huggingface.co/skt/A.X-4.0
  960. res = "a.x-4.0"
  961. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  962. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  963. res = "midm-2.0"
  964. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  965. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  966. res = "lfm2"
  967. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  968. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  969. res = "exaone4"
  970. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  971. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  972. res = "mellum"
  973. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  974. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  975. res = "afmoe"
  976. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  977. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  978. res = "bailingmoe2"
  979. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  980. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  981. res = "granite-docling"
  982. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  983. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  984. res = "minimax-m2"
  985. if res is None:
  986. logger.warning("\n")
  987. logger.warning("**************************************************************************************")
  988. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  989. logger.warning("** There are 2 possible reasons for this:")
  990. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  991. logger.warning("** - the pre-tokenization config has changed upstream")
  992. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  993. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  994. logger.warning("**")
  995. logger.warning(f"** chkhsh: {chkhsh}")
  996. logger.warning("**************************************************************************************")
  997. logger.warning("\n")
  998. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  999. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1000. logger.debug(f"chkhsh: {chkhsh}")
  1001. return res
  1002. # Marker: End get_vocab_base_pre
  1003. def _set_vocab_none(self) -> None:
  1004. self.gguf_writer.add_tokenizer_model("none")
  1005. def _set_vocab_gpt2(self) -> None:
  1006. tokens, toktypes, tokpre = self.get_vocab_base()
  1007. self.gguf_writer.add_tokenizer_model("gpt2")
  1008. self.gguf_writer.add_tokenizer_pre(tokpre)
  1009. self.gguf_writer.add_token_list(tokens)
  1010. self.gguf_writer.add_token_types(toktypes)
  1011. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1012. special_vocab.add_to_gguf(self.gguf_writer)
  1013. def _set_vocab_qwen(self):
  1014. dir_model = self.dir_model
  1015. hparams = self.hparams
  1016. tokens: list[str] = []
  1017. toktypes: list[int] = []
  1018. from transformers import AutoTokenizer
  1019. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1020. vocab_size = hparams["vocab_size"]
  1021. assert max(tokenizer.get_vocab().values()) < vocab_size
  1022. tokpre = self.get_vocab_base_pre(tokenizer)
  1023. merges = []
  1024. vocab = {}
  1025. mergeable_ranks = tokenizer.mergeable_ranks
  1026. for token, rank in mergeable_ranks.items():
  1027. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1028. if len(token) == 1:
  1029. continue
  1030. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1031. assert len(merged) == 2
  1032. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1033. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1034. added_vocab = tokenizer.special_tokens
  1035. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1036. for i in range(vocab_size):
  1037. if i not in reverse_vocab:
  1038. tokens.append(f"[PAD{i}]")
  1039. toktypes.append(gguf.TokenType.UNUSED)
  1040. elif reverse_vocab[i] in added_vocab:
  1041. tokens.append(reverse_vocab[i])
  1042. toktypes.append(gguf.TokenType.CONTROL)
  1043. else:
  1044. tokens.append(reverse_vocab[i])
  1045. toktypes.append(gguf.TokenType.NORMAL)
  1046. self.gguf_writer.add_tokenizer_model("gpt2")
  1047. self.gguf_writer.add_tokenizer_pre(tokpre)
  1048. self.gguf_writer.add_token_list(tokens)
  1049. self.gguf_writer.add_token_types(toktypes)
  1050. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1051. special_vocab.merges = merges
  1052. # only add special tokens when they were not already loaded from config.json
  1053. if len(special_vocab.special_token_ids) == 0:
  1054. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1055. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1056. # this one is usually not in config.json anyway
  1057. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1058. special_vocab.add_to_gguf(self.gguf_writer)
  1059. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1060. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1061. self.gguf_writer.add_tokenizer_model("llama")
  1062. self.gguf_writer.add_tokenizer_pre("default")
  1063. self.gguf_writer.add_token_list(tokens)
  1064. self.gguf_writer.add_token_scores(scores)
  1065. self.gguf_writer.add_token_types(toktypes)
  1066. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1067. special_vocab.add_to_gguf(self.gguf_writer)
  1068. def _create_vocab_sentencepiece(self):
  1069. from sentencepiece import SentencePieceProcessor
  1070. tokenizer_path = self.dir_model / 'tokenizer.model'
  1071. if not tokenizer_path.is_file():
  1072. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1073. tokenizer = SentencePieceProcessor()
  1074. tokenizer.LoadFromFile(str(tokenizer_path))
  1075. vocab_size = self.find_hparam([
  1076. "vocab_size_per_layer_input", # gemma3n
  1077. "vocab_size",
  1078. ], optional=True) or tokenizer.vocab_size()
  1079. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1080. scores: list[float] = [-10000.0] * vocab_size
  1081. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1082. for token_id in range(tokenizer.vocab_size()):
  1083. if token_id >= vocab_size:
  1084. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1085. break
  1086. piece = tokenizer.IdToPiece(token_id)
  1087. text = piece.encode("utf-8")
  1088. score = tokenizer.GetScore(token_id)
  1089. toktype = SentencePieceTokenTypes.NORMAL
  1090. if tokenizer.IsUnknown(token_id):
  1091. toktype = SentencePieceTokenTypes.UNKNOWN
  1092. elif tokenizer.IsControl(token_id):
  1093. toktype = SentencePieceTokenTypes.CONTROL
  1094. elif tokenizer.IsUnused(token_id):
  1095. toktype = SentencePieceTokenTypes.UNUSED
  1096. elif tokenizer.IsByte(token_id):
  1097. toktype = SentencePieceTokenTypes.BYTE
  1098. tokens[token_id] = text
  1099. scores[token_id] = score
  1100. toktypes[token_id] = toktype
  1101. added_tokens_file = self.dir_model / 'added_tokens.json'
  1102. if added_tokens_file.is_file():
  1103. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1104. added_tokens_json = json.load(f)
  1105. for key in added_tokens_json:
  1106. token_id = added_tokens_json[key]
  1107. if token_id >= vocab_size:
  1108. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1109. continue
  1110. tokens[token_id] = key.encode("utf-8")
  1111. scores[token_id] = -1000.0
  1112. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1113. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1114. if tokenizer_config_file.is_file():
  1115. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1116. tokenizer_config_json = json.load(f)
  1117. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1118. for token_id, token_data in added_tokens_decoder.items():
  1119. token_id = int(token_id)
  1120. token: str = token_data["content"]
  1121. if token_id >= vocab_size:
  1122. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1123. continue
  1124. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1125. if tokens[token_id] != token.encode("utf-8"):
  1126. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1127. if token_data.get("special") or self.does_token_look_special(token):
  1128. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1129. else:
  1130. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1131. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1132. scores[token_id] = -1000.0
  1133. tokens[token_id] = token.encode("utf-8")
  1134. if vocab_size > len(tokens):
  1135. pad_count = vocab_size - len(tokens)
  1136. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1137. for i in range(1, pad_count + 1):
  1138. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1139. scores.append(-1000.0)
  1140. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1141. return tokens, scores, toktypes
  1142. def _set_vocab_llama_hf(self):
  1143. vocab = gguf.LlamaHfVocab(self.dir_model)
  1144. tokens = []
  1145. scores = []
  1146. toktypes = []
  1147. for text, score, toktype in vocab.all_tokens():
  1148. tokens.append(text)
  1149. scores.append(score)
  1150. toktypes.append(toktype)
  1151. assert len(tokens) == vocab.vocab_size
  1152. self.gguf_writer.add_tokenizer_model("llama")
  1153. self.gguf_writer.add_tokenizer_pre("default")
  1154. self.gguf_writer.add_token_list(tokens)
  1155. self.gguf_writer.add_token_scores(scores)
  1156. self.gguf_writer.add_token_types(toktypes)
  1157. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1158. special_vocab.add_to_gguf(self.gguf_writer)
  1159. def _set_vocab_rwkv_world(self):
  1160. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1161. vocab_size = self.hparams.get("vocab_size", 65536)
  1162. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1163. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1164. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1165. lines = f.readlines()
  1166. for line in lines:
  1167. parts = line.split(' ')
  1168. assert len(parts) >= 3
  1169. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1170. token = token.encode("utf-8") if isinstance(token, str) else token
  1171. assert isinstance(token, bytes)
  1172. assert len(token) == token_len
  1173. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1174. tokens.append(token_text.encode("utf-8"))
  1175. toktypes.append(gguf.TokenType.NORMAL)
  1176. remainder = vocab_size - len(tokens)
  1177. assert remainder >= 0
  1178. for i in range(len(tokens), vocab_size):
  1179. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1180. toktypes.append(gguf.TokenType.UNUSED)
  1181. self.gguf_writer.add_tokenizer_model("rwkv")
  1182. self.gguf_writer.add_token_list(tokens)
  1183. self.gguf_writer.add_token_types(toktypes)
  1184. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1185. if special_vocab.chat_template is None:
  1186. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1187. if template_path.is_file():
  1188. with open(template_path, "r", encoding="utf-8") as f:
  1189. template = f.read()
  1190. else:
  1191. template = "rwkv-world"
  1192. special_vocab.chat_template = template
  1193. # hack: Add '\n\n' as the EOT token to make it chat normally
  1194. special_vocab._set_special_token("eot", 261)
  1195. # hack: Override these as they have already been set (incorrectly)
  1196. special_vocab.special_token_ids["bos"] = 0
  1197. special_vocab.special_token_ids["eos"] = 0
  1198. special_vocab.add_to_gguf(self.gguf_writer)
  1199. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1200. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1201. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1202. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1203. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1204. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1205. assert field # tokenizer model
  1206. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1207. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1208. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1209. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1210. assert field # token list
  1211. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1212. if model_name == "llama-spm":
  1213. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1214. assert field # token scores
  1215. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1216. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1217. assert field # token types
  1218. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1219. if model_name != "llama-spm":
  1220. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1221. assert field # token merges
  1222. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1223. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1224. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1225. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1226. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1227. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1228. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1229. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1230. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1231. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1232. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1233. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1234. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1235. def _try_set_pooling_type(self) -> None:
  1236. # get pooling path
  1237. pooling_path = None
  1238. module_path = self.dir_model / "modules.json"
  1239. if module_path.is_file():
  1240. with open(module_path, encoding="utf-8") as f:
  1241. modules = json.load(f)
  1242. for mod in modules:
  1243. if mod["type"] == "sentence_transformers.models.Pooling":
  1244. pooling_path = mod["path"]
  1245. break
  1246. # get pooling type
  1247. if pooling_path is not None:
  1248. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1249. pooling = json.load(f)
  1250. if pooling["pooling_mode_mean_tokens"]:
  1251. pooling_type = gguf.PoolingType.MEAN
  1252. elif pooling["pooling_mode_cls_token"]:
  1253. pooling_type = gguf.PoolingType.CLS
  1254. elif pooling["pooling_mode_lasttoken"]:
  1255. pooling_type = gguf.PoolingType.LAST
  1256. else:
  1257. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1258. self.gguf_writer.add_pooling_type(pooling_type)
  1259. def _set_vocab_interns1(self):
  1260. tokens: list[str] = []
  1261. toktypes: list[int] = []
  1262. from transformers import AutoTokenizer
  1263. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1264. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1265. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1266. assert max(vocab.values()) < vocab_size
  1267. tokpre = self.get_vocab_base_pre(tokenizer)
  1268. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1269. added_vocab = tokenizer.get_added_vocab()
  1270. added_tokens_decoder = tokenizer.added_tokens_decoder
  1271. for i in range(vocab_size):
  1272. if i not in reverse_vocab:
  1273. tokens.append(f"[PAD{i}]")
  1274. toktypes.append(gguf.TokenType.UNUSED)
  1275. else:
  1276. token: str = reverse_vocab[i]
  1277. if token in added_vocab:
  1278. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1279. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1280. if not added_tokens_decoder[i].normalized:
  1281. previous_token = token
  1282. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1283. if previous_token != token:
  1284. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1285. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1286. toktypes.append(gguf.TokenType.CONTROL)
  1287. else:
  1288. toktypes.append(gguf.TokenType.USER_DEFINED)
  1289. else:
  1290. toktypes.append(gguf.TokenType.NORMAL)
  1291. tokens.append(token)
  1292. self.gguf_writer.add_tokenizer_model("gpt2")
  1293. self.gguf_writer.add_tokenizer_pre(tokpre)
  1294. self.gguf_writer.add_token_list(tokens)
  1295. self.gguf_writer.add_token_types(toktypes)
  1296. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1297. special_vocab._set_special_token("bos", 151643)
  1298. special_vocab.add_to_gguf(self.gguf_writer)
  1299. class MmprojModel(ModelBase):
  1300. model_type = ModelType.MMPROJ
  1301. model_arch = gguf.MODEL_ARCH.MMPROJ
  1302. preprocessor_config: dict[str, Any]
  1303. global_config: dict[str, Any]
  1304. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1305. has_vision_encoder: bool = True # by default
  1306. has_audio_encoder: bool = False
  1307. # for models having multiple encoders, we need to separate their hparams
  1308. hparams_vision: dict[str, Any] | None = None
  1309. hparams_audio: dict[str, Any] | None = None
  1310. def __init__(self, *args, **kwargs):
  1311. super().__init__(*args, **kwargs)
  1312. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1313. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1314. # get n_embd of the text model
  1315. if not self.is_mistral_format:
  1316. if "text_config" not in self.hparams:
  1317. self.hparams["text_config"] = {}
  1318. if "audio_config" not in self.hparams:
  1319. self.hparams["audio_config"] = {}
  1320. text_config = {**self.hparams, **self.hparams["text_config"]}
  1321. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1322. else:
  1323. text_config = {
  1324. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1325. }
  1326. self.n_embd_text = text_config.get("hidden_dim", 0)
  1327. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1328. # move vision config to the top level, while preserving the original hparams in global_config
  1329. import copy
  1330. self.global_config = copy.deepcopy(self.hparams)
  1331. self.hparams_vision = self.get_vision_config()
  1332. self.hparams_audio = self.get_audio_config()
  1333. if self.hparams_vision is None and self.hparams_audio is None:
  1334. raise ValueError("vision_config / audio_config not found in hparams")
  1335. # for compat with vision-only models
  1336. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1337. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1338. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1339. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1340. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1341. # load preprocessor config
  1342. self.preprocessor_config = {}
  1343. # prefer preprocessor_config.json if possible
  1344. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1345. if preprocessor_config_path.is_file():
  1346. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1347. self.preprocessor_config = json.load(f)
  1348. # prefer processor_config.json if possible
  1349. processor_config_path = self.dir_model / "processor_config.json"
  1350. if processor_config_path.is_file():
  1351. with open(processor_config_path, "r", encoding="utf-8") as f:
  1352. cfg = json.load(f)
  1353. # move image_processor to root level for compat
  1354. if "image_processor" in cfg:
  1355. cfg = {
  1356. **cfg,
  1357. **cfg["image_processor"],
  1358. }
  1359. # merge configs
  1360. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1361. def get_vision_config(self) -> dict[str, Any] | None:
  1362. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1363. return self.global_config.get(config_name)
  1364. def get_audio_config(self) -> dict[str, Any] | None:
  1365. return self.global_config.get("audio_config")
  1366. def set_type(self):
  1367. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1368. def prepare_metadata(self, vocab_only: bool):
  1369. super().prepare_metadata(vocab_only=vocab_only)
  1370. output_type: str = self.ftype.name.partition("_")[2]
  1371. if self.fname_out.is_dir():
  1372. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1373. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1374. else:
  1375. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1376. def set_gguf_parameters(self):
  1377. self.gguf_writer.add_file_type(self.ftype)
  1378. if self.has_vision_encoder:
  1379. self.gguf_writer.add_clip_has_vision_encoder(True)
  1380. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1381. # vision config
  1382. self.image_size = self.find_vparam(["image_size"])
  1383. self.gguf_writer.add_vision_image_size(self.image_size)
  1384. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1385. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1386. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1387. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1388. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1389. # preprocessor config
  1390. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1391. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1392. self.gguf_writer.add_vision_image_mean(image_mean)
  1393. self.gguf_writer.add_vision_image_std(image_std)
  1394. if self.has_audio_encoder:
  1395. self.gguf_writer.add_clip_has_audio_encoder(True)
  1396. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1397. # audio config
  1398. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1399. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1400. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1401. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1402. if not self.has_vision_encoder and not self.has_audio_encoder:
  1403. raise ValueError("MmprojModel must have either vision or audio encoder")
  1404. def write_vocab(self):
  1405. raise ValueError("MmprojModel does not support vocab writing")
  1406. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1407. assert self.hparams_vision is not None
  1408. return self._find_param(self.hparams_vision, keys, optional)
  1409. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1410. assert self.hparams_audio is not None
  1411. return self._find_param(self.hparams_audio, keys, optional)
  1412. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1413. key = next((k for k in keys if k in obj), None)
  1414. if key is not None:
  1415. return obj[key]
  1416. if optional:
  1417. return None
  1418. raise KeyError(f"could not find any of: {keys}")
  1419. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1420. del bid, name, n_dims # unused
  1421. if ".patch_embd.weight" in new_name:
  1422. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1423. return False
  1424. @ModelBase.register("GPTNeoXForCausalLM")
  1425. class GPTNeoXModel(TextModel):
  1426. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1427. def set_gguf_parameters(self):
  1428. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1429. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1430. self.gguf_writer.add_block_count(self.block_count)
  1431. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1432. self.gguf_writer.add_rope_dimension_count(
  1433. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1434. )
  1435. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1436. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1437. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1439. del bid # unused
  1440. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1441. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1442. tensors: list[tuple[str, Tensor]] = []
  1443. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1444. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1445. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1446. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1447. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1448. data_torch = torch.cat(
  1449. (
  1450. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1451. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1452. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1453. ),
  1454. dim=0,
  1455. )
  1456. logger.info("re-format attention.linear_qkv.weight")
  1457. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1458. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1459. data_torch = torch.cat(
  1460. (
  1461. qkv_bias[:, 0, :].reshape((n_embed,)),
  1462. qkv_bias[:, 1, :].reshape((n_embed,)),
  1463. qkv_bias[:, 2, :].reshape((n_embed,)),
  1464. ),
  1465. dim=0,
  1466. )
  1467. logger.info("re-format attention.linear_qkv.bias")
  1468. tensors.append((self.map_tensor_name(name), data_torch))
  1469. return tensors
  1470. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1471. class BloomModel(TextModel):
  1472. model_arch = gguf.MODEL_ARCH.BLOOM
  1473. def set_gguf_parameters(self):
  1474. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1475. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1476. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1477. self.gguf_writer.add_embedding_length(n_embed)
  1478. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1479. self.gguf_writer.add_block_count(self.block_count)
  1480. self.gguf_writer.add_head_count(n_head)
  1481. self.gguf_writer.add_head_count_kv(n_head)
  1482. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1483. self.gguf_writer.add_file_type(self.ftype)
  1484. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1485. del bid # unused
  1486. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1487. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1488. name = re.sub(r'transformer\.', '', name)
  1489. tensors: list[tuple[str, Tensor]] = []
  1490. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1491. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1492. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1493. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1494. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1495. data_torch = torch.cat(
  1496. (
  1497. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1498. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1499. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1500. ),
  1501. dim=0,
  1502. )
  1503. logger.info("re-format attention.linear_qkv.weight")
  1504. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1505. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1506. data_torch = torch.cat(
  1507. (
  1508. qkv_bias[:, 0, :].reshape((n_embed,)),
  1509. qkv_bias[:, 1, :].reshape((n_embed,)),
  1510. qkv_bias[:, 2, :].reshape((n_embed,)),
  1511. ),
  1512. dim=0,
  1513. )
  1514. logger.info("re-format attention.linear_qkv.bias")
  1515. tensors.append((self.map_tensor_name(name), data_torch))
  1516. return tensors
  1517. @ModelBase.register("MPTForCausalLM")
  1518. class MPTModel(TextModel):
  1519. model_arch = gguf.MODEL_ARCH.MPT
  1520. def set_vocab(self):
  1521. try:
  1522. self._set_vocab_gpt2()
  1523. except Exception:
  1524. # Fallback for SEA-LION model
  1525. self._set_vocab_sentencepiece()
  1526. self.gguf_writer.add_add_bos_token(False)
  1527. self.gguf_writer.add_pad_token_id(3)
  1528. self.gguf_writer.add_eos_token_id(1)
  1529. self.gguf_writer.add_unk_token_id(0)
  1530. def set_gguf_parameters(self):
  1531. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1532. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1533. self.gguf_writer.add_block_count(self.block_count)
  1534. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1535. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1536. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1537. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1538. self.gguf_writer.add_layer_norm_eps(1e-5)
  1539. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1540. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1541. if self.hparams["attn_config"]["alibi"]:
  1542. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1543. else:
  1544. self.gguf_writer.add_max_alibi_bias(0.0)
  1545. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1546. del bid # unused
  1547. if "scales" in name:
  1548. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1549. new_name = new_name.replace("scales", "act.scales")
  1550. else:
  1551. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1552. return [(new_name, data_torch)]
  1553. @ModelBase.register("OrionForCausalLM")
  1554. class OrionModel(TextModel):
  1555. model_arch = gguf.MODEL_ARCH.ORION
  1556. def set_vocab(self):
  1557. self._set_vocab_sentencepiece()
  1558. def set_gguf_parameters(self):
  1559. head_count = self.hparams["num_attention_heads"]
  1560. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1561. ctx_length = 0
  1562. if "max_sequence_length" in self.hparams:
  1563. ctx_length = self.hparams["max_sequence_length"]
  1564. elif "max_position_embeddings" in self.hparams:
  1565. ctx_length = self.hparams["max_position_embeddings"]
  1566. elif "model_max_length" in self.hparams:
  1567. ctx_length = self.hparams["model_max_length"]
  1568. else:
  1569. raise ValueError("gguf: can not find ctx length parameter.")
  1570. self.gguf_writer.add_file_type(self.ftype)
  1571. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1572. self.gguf_writer.add_context_length(ctx_length)
  1573. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1574. self.gguf_writer.add_block_count(self.block_count)
  1575. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1576. self.gguf_writer.add_head_count(head_count)
  1577. self.gguf_writer.add_head_count_kv(head_count_kv)
  1578. # note: config provides rms norm but it is actually layer norm
  1579. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1580. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1581. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1582. class BaichuanModel(TextModel):
  1583. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1584. def set_vocab(self):
  1585. self._set_vocab_sentencepiece()
  1586. def set_gguf_parameters(self):
  1587. head_count = self.hparams["num_attention_heads"]
  1588. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1589. ctx_length = 0
  1590. if "max_sequence_length" in self.hparams:
  1591. ctx_length = self.hparams["max_sequence_length"]
  1592. elif "max_position_embeddings" in self.hparams:
  1593. ctx_length = self.hparams["max_position_embeddings"]
  1594. elif "model_max_length" in self.hparams:
  1595. ctx_length = self.hparams["model_max_length"]
  1596. else:
  1597. raise ValueError("gguf: can not find ctx length parameter.")
  1598. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1599. self.gguf_writer.add_context_length(ctx_length)
  1600. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1601. self.gguf_writer.add_block_count(self.block_count)
  1602. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1603. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1604. self.gguf_writer.add_head_count(head_count)
  1605. self.gguf_writer.add_head_count_kv(head_count_kv)
  1606. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1607. self.gguf_writer.add_file_type(self.ftype)
  1608. rope_scaling = self.hparams.get("rope_scaling") or {}
  1609. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1610. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1611. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1612. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1613. head_count = self.hparams["num_attention_heads"]
  1614. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1615. tensors: list[tuple[str, Tensor]] = []
  1616. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1617. logger.info(f"Unpacking and permuting layer {bid}")
  1618. tensors = [
  1619. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1620. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1621. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1622. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1623. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1624. self._reverse_hf_part(data_torch, 2)),
  1625. ]
  1626. else:
  1627. tensors = [(self.map_tensor_name(name), data_torch)]
  1628. return tensors
  1629. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1630. if n_kv_head is not None and n_head != n_kv_head:
  1631. n_head //= n_kv_head
  1632. return (
  1633. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1634. .swapaxes(1, 2)
  1635. .reshape(weights.shape)
  1636. )
  1637. def _reverse_hf_permute_part(
  1638. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1639. ) -> Tensor:
  1640. r = weights.shape[0] // 3
  1641. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1642. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1643. r = weights.shape[0] // 3
  1644. return weights[r * n_part:r * n_part + r, ...]
  1645. @ModelBase.register("XverseForCausalLM")
  1646. class XverseModel(TextModel):
  1647. model_arch = gguf.MODEL_ARCH.XVERSE
  1648. def set_vocab(self):
  1649. assert (self.dir_model / "tokenizer.json").is_file()
  1650. dir_model = self.dir_model
  1651. hparams = self.hparams
  1652. tokens: list[bytes] = []
  1653. toktypes: list[int] = []
  1654. from transformers import AutoTokenizer
  1655. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1656. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1657. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1658. # because vocab_size is the count of items, and indexes start at 0.
  1659. max_vocab_index = max(tokenizer.get_vocab().values())
  1660. if max_vocab_index >= vocab_size:
  1661. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1662. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1663. added_vocab = tokenizer.get_added_vocab()
  1664. for token_id in range(vocab_size):
  1665. token_text = reverse_vocab[token_id].encode('utf-8')
  1666. # replace "\x00" to string with length > 0
  1667. if token_text == b"\x00":
  1668. toktype = gguf.TokenType.BYTE # special
  1669. token_text = f"<{token_text}>".encode('utf-8')
  1670. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1671. toktype = gguf.TokenType.BYTE # special
  1672. elif reverse_vocab[token_id] in added_vocab:
  1673. if tokenizer.added_tokens_decoder[token_id].special:
  1674. toktype = gguf.TokenType.CONTROL
  1675. else:
  1676. toktype = gguf.TokenType.USER_DEFINED
  1677. else:
  1678. toktype = gguf.TokenType.NORMAL
  1679. tokens.append(token_text)
  1680. toktypes.append(toktype)
  1681. self.gguf_writer.add_tokenizer_model("llama")
  1682. self.gguf_writer.add_tokenizer_pre("default")
  1683. self.gguf_writer.add_token_list(tokens)
  1684. self.gguf_writer.add_token_types(toktypes)
  1685. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1686. special_vocab.add_to_gguf(self.gguf_writer)
  1687. def set_gguf_parameters(self):
  1688. head_count = self.hparams["num_attention_heads"]
  1689. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1690. ctx_length = 0
  1691. if "max_sequence_length" in self.hparams:
  1692. ctx_length = self.hparams["max_sequence_length"]
  1693. elif "max_position_embeddings" in self.hparams:
  1694. ctx_length = self.hparams["max_position_embeddings"]
  1695. elif "model_max_length" in self.hparams:
  1696. ctx_length = self.hparams["model_max_length"]
  1697. else:
  1698. raise ValueError("gguf: can not find ctx length parameter.")
  1699. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1700. self.gguf_writer.add_context_length(ctx_length)
  1701. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1702. self.gguf_writer.add_block_count(self.block_count)
  1703. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1704. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1705. self.gguf_writer.add_head_count(head_count)
  1706. self.gguf_writer.add_head_count_kv(head_count_kv)
  1707. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1708. self.gguf_writer.add_file_type(self.ftype)
  1709. rope_scaling = self.hparams.get("rope_scaling") or {}
  1710. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1711. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1712. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1714. del bid # unused
  1715. head_count = self.hparams["num_attention_heads"]
  1716. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1717. # HF models permute some of the tensors, so we need to undo that
  1718. if name.endswith("q_proj.weight"):
  1719. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1720. if name.endswith("k_proj.weight"):
  1721. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1722. return [(self.map_tensor_name(name), data_torch)]
  1723. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1724. if n_kv_head is not None and n_head != n_kv_head:
  1725. n_head //= n_kv_head
  1726. return (
  1727. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1728. .swapaxes(1, 2)
  1729. .reshape(weights.shape)
  1730. )
  1731. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1732. class FalconModel(TextModel):
  1733. model_arch = gguf.MODEL_ARCH.FALCON
  1734. def set_gguf_parameters(self):
  1735. n_head = self.hparams.get("num_attention_heads")
  1736. if n_head is None:
  1737. n_head = self.hparams["n_head"] # old name
  1738. n_head_kv = self.hparams.get("num_kv_heads")
  1739. if n_head_kv is None:
  1740. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1741. self.gguf_writer.add_context_length(2048) # not in config.json
  1742. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1743. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1744. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1745. self.gguf_writer.add_block_count(self.block_count)
  1746. self.gguf_writer.add_head_count(n_head)
  1747. self.gguf_writer.add_head_count_kv(n_head_kv)
  1748. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1749. self.gguf_writer.add_file_type(self.ftype)
  1750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1751. del bid # unused
  1752. # QKV tensor transform
  1753. # The original query_key_value tensor contains n_head_kv "kv groups",
  1754. # each consisting of n_head/n_head_kv query weights followed by one key
  1755. # and one value weight (shared by all query heads in the kv group).
  1756. # This layout makes it a big pain to work with in GGML.
  1757. # So we rearrange them here,, so that we have n_head query weights
  1758. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1759. # in contiguous fashion.
  1760. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1761. if "query_key_value" in name:
  1762. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1763. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1764. head_dim = self.hparams["hidden_size"] // n_head
  1765. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1766. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1767. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1768. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1769. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1770. return [(self.map_tensor_name(name), data_torch)]
  1771. @ModelBase.register("GPTBigCodeForCausalLM")
  1772. class StarCoderModel(TextModel):
  1773. model_arch = gguf.MODEL_ARCH.STARCODER
  1774. def set_gguf_parameters(self):
  1775. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1776. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1777. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1778. self.gguf_writer.add_block_count(self.block_count)
  1779. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1780. self.gguf_writer.add_head_count_kv(1)
  1781. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1782. self.gguf_writer.add_file_type(self.ftype)
  1783. @ModelBase.register("GPTRefactForCausalLM")
  1784. class RefactModel(TextModel):
  1785. model_arch = gguf.MODEL_ARCH.REFACT
  1786. def set_vocab(self):
  1787. super().set_vocab()
  1788. # TODO: how to determine special FIM tokens automatically?
  1789. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1790. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1791. special_vocab._set_special_token("prefix", 1)
  1792. special_vocab._set_special_token("suffix", 3)
  1793. special_vocab._set_special_token("middle", 2)
  1794. special_vocab.chat_template = None # do not add it twice
  1795. special_vocab.add_to_gguf(self.gguf_writer)
  1796. def set_gguf_parameters(self):
  1797. hidden_dim = self.hparams["n_embd"]
  1798. inner_dim = 4 * hidden_dim
  1799. hidden_dim = int(2 * inner_dim / 3)
  1800. multiple_of = 256
  1801. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1802. # refact uses Alibi. So this is from config.json which might be used by training.
  1803. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1804. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1805. self.gguf_writer.add_feed_forward_length(ff_dim)
  1806. self.gguf_writer.add_block_count(self.block_count)
  1807. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1808. self.gguf_writer.add_head_count_kv(1)
  1809. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1810. self.gguf_writer.add_file_type(self.ftype)
  1811. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1812. hidden_dim = self.hparams["n_embd"]
  1813. inner_dim = 4 * hidden_dim
  1814. hidden_dim = int(2 * inner_dim / 3)
  1815. multiple_of = 256
  1816. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1817. n_head = self.hparams["n_head"]
  1818. n_head_kv = 1
  1819. head_dim = self.hparams["n_embd"] // n_head
  1820. tensors: list[tuple[str, Tensor]] = []
  1821. if bid is not None:
  1822. if name == f"transformer.h.{bid}.attn.kv.weight":
  1823. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1824. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1825. elif name == f"transformer.h.{bid}.attn.q.weight":
  1826. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1827. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1828. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1829. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1830. if len(tensors) == 0:
  1831. tensors.append((self.map_tensor_name(name), data_torch))
  1832. return tensors
  1833. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1834. class StableLMModel(TextModel):
  1835. model_arch = gguf.MODEL_ARCH.STABLELM
  1836. def set_vocab(self):
  1837. if (self.dir_model / "tokenizer.json").is_file():
  1838. self._set_vocab_gpt2()
  1839. else:
  1840. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1841. self._set_vocab_qwen()
  1842. def set_gguf_parameters(self):
  1843. hparams = self.hparams
  1844. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1845. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1846. self.gguf_writer.add_block_count(self.block_count)
  1847. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1848. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1849. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1850. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1851. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1852. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1853. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1854. self.gguf_writer.add_file_type(self.ftype)
  1855. _q_norms: list[dict[str, Tensor]] | None = None
  1856. _k_norms: list[dict[str, Tensor]] | None = None
  1857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1858. n_head = self.hparams["num_attention_heads"]
  1859. n_kv_head = self.hparams["num_key_value_heads"]
  1860. if name.find("q_layernorm.norms") != -1:
  1861. assert bid is not None
  1862. if self._q_norms is None:
  1863. self._q_norms = [{} for _ in range(self.block_count)]
  1864. self._q_norms[bid][name] = data_torch
  1865. if len(self._q_norms[bid]) >= n_head:
  1866. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1867. else:
  1868. return []
  1869. if name.find("k_layernorm.norms") != -1:
  1870. assert bid is not None
  1871. if self._k_norms is None:
  1872. self._k_norms = [{} for _ in range(self.block_count)]
  1873. self._k_norms[bid][name] = data_torch
  1874. if len(self._k_norms[bid]) >= n_kv_head:
  1875. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1876. else:
  1877. return []
  1878. return [(self.map_tensor_name(name), data_torch)]
  1879. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1880. datas: list[Tensor] = []
  1881. # extract the norms in order
  1882. for xid in range(n_head):
  1883. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1884. datas.append(norms[ename])
  1885. del norms[ename]
  1886. data_torch = torch.stack(datas, dim=0)
  1887. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1888. new_name = self.map_tensor_name(merged_name)
  1889. return [(new_name, data_torch)]
  1890. def prepare_tensors(self):
  1891. super().prepare_tensors()
  1892. if self._q_norms is not None or self._k_norms is not None:
  1893. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1894. norms = (
  1895. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1896. ) + (
  1897. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1898. )
  1899. if len(norms) > 0:
  1900. raise ValueError(f"Unprocessed norms: {norms}")
  1901. @ModelBase.register(
  1902. "LLaMAForCausalLM",
  1903. "LlamaForCausalLM",
  1904. "MistralForCausalLM",
  1905. "MixtralForCausalLM",
  1906. "VLlama3ForCausalLM",
  1907. "LlavaForConditionalGeneration",
  1908. "VoxtralForConditionalGeneration",
  1909. "LlamaModel")
  1910. class LlamaModel(TextModel):
  1911. model_arch = gguf.MODEL_ARCH.LLAMA
  1912. undo_permute = True
  1913. def __init__(self, *args, **kwargs):
  1914. super().__init__(*args, **kwargs)
  1915. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1916. if self.hf_arch == "VLlama3ForCausalLM":
  1917. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1918. def _set_vocab_mistral(self):
  1919. if not _mistral_common_installed:
  1920. raise ImportError(_mistral_import_error_msg)
  1921. vocab = MistralVocab(self.dir_model)
  1922. logger.info(
  1923. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1924. )
  1925. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1926. tokens = []
  1927. scores = []
  1928. toktypes = []
  1929. for text, score, toktype in vocab.all_tokens():
  1930. tokens.append(text)
  1931. scores.append(score)
  1932. toktypes.append(toktype)
  1933. assert len(tokens) == vocab.vocab_size, (
  1934. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1935. )
  1936. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1937. self.gguf_writer.add_tokenizer_pre("tekken")
  1938. self.gguf_writer.add_token_merges(
  1939. vocab.extract_vocab_merges_from_model()
  1940. )
  1941. logger.info(
  1942. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1943. )
  1944. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1945. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1946. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1947. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1948. self.gguf_writer.add_token_list(tokens)
  1949. self.gguf_writer.add_token_scores(scores)
  1950. self.gguf_writer.add_token_types(toktypes)
  1951. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1952. self.gguf_writer.add_add_bos_token(True)
  1953. self.gguf_writer.add_add_eos_token(False)
  1954. template_dir = Path(__file__).parent / "models/templates/"
  1955. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1956. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1957. if self.is_mistral_format:
  1958. logger.info(
  1959. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1960. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1961. )
  1962. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1963. self.gguf_writer.add_chat_template(template)
  1964. else:
  1965. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1966. def set_vocab(self):
  1967. if self.is_mistral_format:
  1968. return self._set_vocab_mistral()
  1969. path_tekken_json = self.dir_model / "tekken.json"
  1970. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1971. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1972. self._set_vocab_mistral()
  1973. try:
  1974. self._set_vocab_sentencepiece()
  1975. except FileNotFoundError:
  1976. try:
  1977. self._set_vocab_llama_hf()
  1978. except (FileNotFoundError, TypeError):
  1979. # Llama 3
  1980. self._set_vocab_gpt2()
  1981. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1982. if self.hparams.get("vocab_size", 32000) == 32016:
  1983. special_vocab = gguf.SpecialVocab(
  1984. self.dir_model, load_merges=False,
  1985. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1986. )
  1987. special_vocab._set_special_token("prefix", 32007)
  1988. special_vocab._set_special_token("suffix", 32008)
  1989. special_vocab._set_special_token("middle", 32009)
  1990. special_vocab._set_special_token("eot", 32010)
  1991. special_vocab.add_to_gguf(self.gguf_writer)
  1992. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1993. if tokenizer_config_file.is_file():
  1994. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1995. tokenizer_config_json = json.load(f)
  1996. if "add_prefix_space" in tokenizer_config_json:
  1997. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1998. # Apply to granite small models only
  1999. if self.hparams.get("vocab_size", 32000) == 49152:
  2000. self.gguf_writer.add_add_bos_token(False)
  2001. def set_gguf_parameters(self):
  2002. super().set_gguf_parameters()
  2003. hparams = self.hparams
  2004. if not self.is_mistral_format:
  2005. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2006. if (rope_dim := hparams.get("head_dim")) is None:
  2007. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2008. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2009. rope_scaling = self.hparams.get("rope_scaling") or {}
  2010. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2011. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2012. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2013. @staticmethod
  2014. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2015. if n_head_kv is not None and n_head != n_head_kv:
  2016. n_head = n_head_kv
  2017. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2018. .swapaxes(1, 2)
  2019. .reshape(weights.shape))
  2020. _experts: list[dict[str, Tensor]] | None = None
  2021. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2022. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2023. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2024. vision_prefixes = [
  2025. "vision_encoder.",
  2026. "vision_language_adapter.",
  2027. "patch_merger.",
  2028. "pre_mm_projector_norm",
  2029. ]
  2030. is_multimodal_tensor = "vision_tower" in name \
  2031. or "vision_model" in name \
  2032. or "audio_tower" in name \
  2033. or "model.connector" in name \
  2034. or "multi_modal_projector" in name \
  2035. or any(
  2036. name.startswith(prefix)
  2037. for prefix in vision_prefixes
  2038. )
  2039. if is_multimodal_tensor:
  2040. return [] # skip vision tensors
  2041. elif self.hf_arch == "LlamaModel":
  2042. name = "model." + name
  2043. elif name.startswith("model.text_model"):
  2044. name = name.replace("text_model.", "") # for SmolVLM
  2045. elif name.startswith("language_model."):
  2046. name = name.replace("language_model.", "") # for the rest
  2047. if self.undo_permute:
  2048. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2049. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2050. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2051. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2052. # process the experts separately
  2053. if name.find("block_sparse_moe.experts") != -1:
  2054. n_experts = self.hparams["num_local_experts"]
  2055. assert bid is not None
  2056. if self._experts is None:
  2057. self._experts = [{} for _ in range(self.block_count)]
  2058. self._experts[bid][name] = data_torch
  2059. if len(self._experts[bid]) >= n_experts * 3:
  2060. tensors: list[tuple[str, Tensor]] = []
  2061. # merge the experts into a single 3d tensor
  2062. for wid in ["w1", "w2", "w3"]:
  2063. datas: list[Tensor] = []
  2064. for xid in range(n_experts):
  2065. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2066. datas.append(self._experts[bid][ename])
  2067. del self._experts[bid][ename]
  2068. data_torch = torch.stack(datas, dim=0)
  2069. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2070. new_name = self.map_tensor_name(merged_name)
  2071. tensors.append((new_name, data_torch))
  2072. return tensors
  2073. else:
  2074. return []
  2075. return [(self.map_tensor_name(name), data_torch)]
  2076. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2077. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2078. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2079. base = self.hparams.get("rope_theta", 10000.0)
  2080. if (dim := self.hparams.get("head_dim")) is None:
  2081. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2082. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2083. factor = rope_scaling.get("factor", 8.0)
  2084. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2085. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2086. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2087. low_freq_wavelen = old_context_len / low_freq_factor
  2088. high_freq_wavelen = old_context_len / high_freq_factor
  2089. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2090. rope_factors = []
  2091. for freq in freqs:
  2092. wavelen = 2 * math.pi / freq
  2093. if wavelen < high_freq_wavelen:
  2094. rope_factors.append(1)
  2095. elif wavelen > low_freq_wavelen:
  2096. rope_factors.append(factor)
  2097. else:
  2098. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2099. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2100. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2101. def prepare_tensors(self):
  2102. super().prepare_tensors()
  2103. if self._experts is not None:
  2104. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2105. experts = [k for d in self._experts for k in d.keys()]
  2106. if len(experts) > 0:
  2107. raise ValueError(f"Unprocessed experts: {experts}")
  2108. @ModelBase.register("ArceeForCausalLM")
  2109. class ArceeModel(LlamaModel):
  2110. model_arch = gguf.MODEL_ARCH.ARCEE
  2111. def set_gguf_parameters(self):
  2112. super().set_gguf_parameters()
  2113. self._try_set_pooling_type()
  2114. rope_scaling = self.hparams.get("rope_scaling") or {}
  2115. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2116. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2117. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2118. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2119. @ModelBase.register("AfmoeForCausalLM")
  2120. class AfmoeModel(LlamaModel):
  2121. model_arch = gguf.MODEL_ARCH.AFMOE
  2122. def set_gguf_parameters(self):
  2123. super().set_gguf_parameters()
  2124. # MoE parameters
  2125. if (n_experts := self.hparams.get("num_experts")) is not None:
  2126. self.gguf_writer.add_expert_count(n_experts)
  2127. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2128. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2129. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2130. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2131. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2132. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2133. # Route normalization and scaling
  2134. if (route_norm := self.hparams.get("route_norm")) is not None:
  2135. self.gguf_writer.add_expert_weights_norm(route_norm)
  2136. if (route_scale := self.hparams.get("route_scale")) is not None:
  2137. self.gguf_writer.add_expert_weights_scale(route_scale)
  2138. # Sliding window attention
  2139. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2140. self.gguf_writer.add_sliding_window(sliding_window)
  2141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2142. # Handle expert weights - they're already merged in the HF format
  2143. # process the experts separately
  2144. if name.find("mlp.experts") != -1:
  2145. n_experts = self.hparams["num_experts"]
  2146. assert bid is not None
  2147. if self._experts is None:
  2148. self._experts = [{} for _ in range(self.block_count)]
  2149. self._experts[bid][name] = data_torch
  2150. if len(self._experts[bid]) >= n_experts * 3:
  2151. tensors: list[tuple[str, Tensor]] = []
  2152. # merge the experts into a single 3d tensor
  2153. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2154. datas: list[Tensor] = []
  2155. for xid in range(n_experts):
  2156. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2157. datas.append(self._experts[bid][ename_to_retrieve])
  2158. del self._experts[bid][ename_to_retrieve]
  2159. data_torch = torch.stack(datas, dim=0)
  2160. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2161. new_name = self.map_tensor_name(merged_name)
  2162. tensors.append((new_name, data_torch))
  2163. return tensors
  2164. else:
  2165. return []
  2166. if name.endswith(".expert_bias"):
  2167. name = name.replace(".expert_bias", ".expert_bias.bias")
  2168. return [(self.map_tensor_name(name), data_torch)]
  2169. @ModelBase.register(
  2170. "LlavaForConditionalGeneration", # pixtral
  2171. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2172. )
  2173. class LlavaVisionModel(MmprojModel):
  2174. img_break_tok_id = -1
  2175. use_break_tok = True
  2176. def __init__(self, *args, **kwargs):
  2177. super().__init__(*args, **kwargs)
  2178. if self.hparams.get("model_type") == "pixtral":
  2179. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2180. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2181. if self.use_break_tok:
  2182. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2183. elif self.is_mistral_format:
  2184. # hparams is already vision config here so norm_eps is only defined in global_config.
  2185. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2186. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2187. if self.use_break_tok:
  2188. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2189. else:
  2190. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2191. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2192. def get_token_id(self, token: str) -> int:
  2193. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2194. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2195. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2196. for id_, token_data in added_tokens_decoder.items():
  2197. if token_data["content"] == token:
  2198. return int(id_)
  2199. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2200. def set_gguf_parameters(self):
  2201. super().set_gguf_parameters()
  2202. hparams = self.hparams
  2203. if hparams.get("model_type") == "pixtral":
  2204. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2205. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2206. # hidden_act
  2207. if hparams["hidden_act"] == "silu":
  2208. self.gguf_writer.add_vision_use_silu(True)
  2209. elif hparams["hidden_act"] == "gelu":
  2210. self.gguf_writer.add_vision_use_gelu(True)
  2211. else:
  2212. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2213. # spatial_merge_size
  2214. if "spatial_merge_size" in self.global_config:
  2215. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2216. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2217. del bid # unused
  2218. n_head = (
  2219. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2220. )
  2221. n_kv_head = n_head
  2222. valid_prefixes = (
  2223. "multi_modal_projector.",
  2224. "vision_tower.",
  2225. "vision_encoder.",
  2226. "vision_language_adapter.",
  2227. "patch_merger.",
  2228. "pre_mm_projector_norm",
  2229. )
  2230. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2231. # process vision tensors
  2232. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2233. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2234. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2235. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2236. return [(self.map_tensor_name(name), data_torch)]
  2237. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2238. if self.img_break_tok_id > 0 and embed_key in name:
  2239. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2240. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2241. img_break_embd = data_torch[self.img_break_tok_id]
  2242. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2243. return [(self.map_tensor_name(name), img_break_embd)]
  2244. return [] # skip other tensors
  2245. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2246. class SmolVLMModel(MmprojModel):
  2247. def __init__(self, *args, **kwargs):
  2248. super().__init__(*args, **kwargs)
  2249. if self.hparams["model_type"] == "smolvlm_vision":
  2250. # fix for SmolVLM2, missing some keys in config.json
  2251. # default values are taken from transformers code
  2252. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2253. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2254. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2255. def set_gguf_parameters(self):
  2256. super().set_gguf_parameters()
  2257. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2258. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2259. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2260. self.gguf_writer.add_vision_use_gelu(True)
  2261. # Add the preprocessor longest edge size
  2262. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2263. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2264. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2265. if ".embeddings." in name:
  2266. return gguf.GGMLQuantizationType.F32
  2267. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2269. del bid # unused
  2270. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2271. if is_vision_tensor:
  2272. return [(self.map_tensor_name(name), data_torch)]
  2273. return [] # skip other tensors
  2274. @ModelBase.register(
  2275. "Llama4ForConditionalGeneration",
  2276. "Llama4ForCausalLM",
  2277. )
  2278. class Llama4Model(LlamaModel):
  2279. model_arch = gguf.MODEL_ARCH.LLAMA4
  2280. undo_permute = False
  2281. def __init__(self, *args, **kwargs):
  2282. super().__init__(*args, **kwargs)
  2283. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2284. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2285. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2286. def set_vocab(self):
  2287. self._set_vocab_gpt2()
  2288. def set_gguf_parameters(self):
  2289. super().set_gguf_parameters()
  2290. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2291. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2292. if "layer_types" in self.hparams:
  2293. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2294. # all layers are full attention (for MobileLLM), disable swa
  2295. self.gguf_writer.add_sliding_window(0)
  2296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2297. if name.startswith("language_model."):
  2298. name = name.replace("language_model.", "")
  2299. # split the gate_up into gate and up
  2300. if "gate_up_proj" in name:
  2301. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2302. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2303. dim_half = data_torch.shape[-1] // 2
  2304. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2305. return [
  2306. (self.map_tensor_name(name_gate), gate_proj_weight),
  2307. (self.map_tensor_name(name_up), up_proj_weight)
  2308. ]
  2309. if name.endswith("down_proj"):
  2310. name += ".weight"
  2311. data_torch = data_torch.transpose(-1, -2)
  2312. if "multi_modal_projector" in name or "vision_model" in name:
  2313. return []
  2314. return super().modify_tensors(data_torch, name, bid)
  2315. @ModelBase.register("Llama4ForConditionalGeneration")
  2316. class Llama4VisionModel(MmprojModel):
  2317. def set_gguf_parameters(self):
  2318. super().set_gguf_parameters()
  2319. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2320. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2321. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2322. assert self.hparams["hidden_act"] == "gelu"
  2323. self.gguf_writer.add_vision_use_gelu(True)
  2324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2325. del bid # unused
  2326. if "multi_modal_projector" in name or "vision_model" in name:
  2327. # process vision tensors
  2328. if "positional_embedding_vlm" in name and ".weight" not in name:
  2329. name += ".weight"
  2330. if "multi_modal_projector.linear_1" in name:
  2331. # despite the name with number postfix, this is a single fully connected layer
  2332. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2333. return [(self.map_tensor_name(name), data_torch)]
  2334. return []
  2335. @ModelBase.register("Mistral3ForConditionalGeneration")
  2336. class Mistral3Model(LlamaModel):
  2337. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2338. def __init__(self, *args, **kwargs):
  2339. super().__init__(*args, **kwargs)
  2340. # for compatibility, we use LLAMA arch for older models
  2341. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2342. if self.hparams.get("model_type") != "ministral3":
  2343. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2344. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2345. self.gguf_writer.add_architecture()
  2346. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2347. def set_gguf_parameters(self):
  2348. super().set_gguf_parameters()
  2349. rope_params = self.hparams.get("rope_parameters")
  2350. if self.hparams.get("model_type") == "ministral3":
  2351. assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
  2352. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2353. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2354. self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
  2355. self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
  2356. self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
  2357. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2358. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  2359. self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
  2360. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2361. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2362. # TODO: probably not worth supporting quantized weight, as official BF16 is also available
  2363. if name.endswith("weight_scale_inv"):
  2364. raise ValueError("This is a quantized weight, please use BF16 weight instead")
  2365. name = name.replace("language_model.", "")
  2366. if "multi_modal_projector" in name or "vision_tower" in name:
  2367. return []
  2368. return super().modify_tensors(data_torch, name, bid)
  2369. @ModelBase.register("DeciLMForCausalLM")
  2370. class DeciModel(TextModel):
  2371. model_arch = gguf.MODEL_ARCH.DECI
  2372. @staticmethod
  2373. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2374. # DeciLM-specific code
  2375. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2376. return DeciModel._find_multiple(intermediate_size, 256)
  2377. @staticmethod
  2378. def _find_multiple(n: int, k: int) -> int:
  2379. # DeciLM-specific code
  2380. if n % k == 0:
  2381. return n
  2382. return n + k - (n % k)
  2383. def __init__(self, *args, **kwargs):
  2384. super().__init__(*args, **kwargs)
  2385. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2386. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2387. assert self.block_count == len(_block_configs)
  2388. self._num_kv_heads = list()
  2389. self._num_heads = list()
  2390. _ffn_multipliers = list()
  2391. # ***linear attention layer***
  2392. # if n_heads_in_group is None and replace_with_linear is True
  2393. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2394. # ***attention-free layer***
  2395. # if n_heads_in_group is None and replace_with_linear is False
  2396. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2397. # ***normal attention-layer***
  2398. # if n_heads_in_group is not None, then
  2399. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2400. # _num_heads[il] is num_attention_head
  2401. # ***dummy layer*** for nemotron 253B
  2402. # if n_heads_in_group is None and ffn_mult is None
  2403. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2404. for il in range(len(_block_configs)):
  2405. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2406. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2407. self._num_kv_heads.append(0)
  2408. self._num_heads.append(self.hparams["num_attention_heads"])
  2409. else:
  2410. self._num_kv_heads.append(0)
  2411. self._num_heads.append(0)
  2412. else:
  2413. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2414. self._num_heads.append(self.hparams["num_attention_heads"])
  2415. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2416. _ffn_multipliers.append(0.0)
  2417. else:
  2418. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2419. assert self.block_count == len(self._num_kv_heads)
  2420. assert self.block_count == len(self._num_heads)
  2421. assert self.block_count == len(_ffn_multipliers)
  2422. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2423. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2424. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2425. self._ffn_dims: list[int] = [
  2426. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2427. for multiplier in _ffn_multipliers
  2428. ]
  2429. def set_vocab(self):
  2430. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2431. # eos_token from '|eot_id|' to '|end_of_text|'
  2432. if self.hparams.get("vocab_size", 128256) == 128256:
  2433. tokens, toktypes, tokpre = self.get_vocab_base()
  2434. self.gguf_writer.add_tokenizer_model("gpt2")
  2435. self.gguf_writer.add_tokenizer_pre(tokpre)
  2436. self.gguf_writer.add_token_list(tokens)
  2437. self.gguf_writer.add_token_types(toktypes)
  2438. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2439. special_vocab.add_to_gguf(self.gguf_writer)
  2440. else:
  2441. # DeciLM-7B
  2442. self._set_vocab_llama_hf()
  2443. def set_gguf_parameters(self):
  2444. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2445. assert self.block_count == len(self._num_kv_heads)
  2446. assert self.block_count == len(self._num_heads)
  2447. assert self.block_count == len(self._ffn_dims)
  2448. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2449. self.gguf_writer.add_rope_freq_base(rope_theta)
  2450. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2451. self.gguf_writer.add_head_count(self._num_heads)
  2452. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2453. self.gguf_writer.add_block_count(self.block_count)
  2454. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2455. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2456. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2457. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2458. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2459. self.gguf_writer.add_file_type(self.ftype)
  2460. else: # DeciLM-7B
  2461. super().set_gguf_parameters()
  2462. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2463. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2464. assert self.block_count == len(self._num_kv_heads)
  2465. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2466. hparams = self.hparams
  2467. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2468. if (rope_dim := hparams.get("head_dim")) is None:
  2469. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2470. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2471. rope_scaling = self.hparams.get("rope_scaling") or {}
  2472. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2473. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2474. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2475. @staticmethod
  2476. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2477. if n_head_kv is not None and n_head != n_head_kv:
  2478. n_head = n_head_kv
  2479. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2480. .swapaxes(1, 2)
  2481. .reshape(weights.shape))
  2482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2483. n_head = self.hparams["num_attention_heads"]
  2484. if bid is not None:
  2485. if "num_key_value_heads_per_layer" in self.hparams:
  2486. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2487. elif "block_configs" in self.hparams:
  2488. n_kv_head = self._num_kv_heads[bid]
  2489. n_head = self._num_heads[bid]
  2490. else:
  2491. n_kv_head = self.hparams.get("num_key_value_heads")
  2492. else:
  2493. n_kv_head = self.hparams.get("num_key_value_heads")
  2494. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2495. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2496. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2497. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2498. return [(self.map_tensor_name(name), data_torch)]
  2499. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2500. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2501. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2502. base = self.hparams.get("rope_theta", 10000.0)
  2503. if (dim := self.hparams.get("head_dim")) is None:
  2504. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2505. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2506. factor = rope_scaling.get("factor", 8.0)
  2507. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2508. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2509. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2510. low_freq_wavelen = old_context_len / low_freq_factor
  2511. high_freq_wavelen = old_context_len / high_freq_factor
  2512. assert low_freq_wavelen != high_freq_wavelen
  2513. rope_factors = []
  2514. for freq in freqs:
  2515. wavelen = 2 * math.pi / freq
  2516. if wavelen < high_freq_wavelen:
  2517. rope_factors.append(1)
  2518. elif wavelen > low_freq_wavelen:
  2519. rope_factors.append(factor)
  2520. else:
  2521. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2522. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2523. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2524. def prepare_tensors(self):
  2525. super().prepare_tensors()
  2526. @ModelBase.register("BitnetForCausalLM")
  2527. class BitnetModel(TextModel):
  2528. model_arch = gguf.MODEL_ARCH.BITNET
  2529. def set_vocab(self):
  2530. self._set_vocab_sentencepiece()
  2531. def set_gguf_parameters(self):
  2532. super().set_gguf_parameters()
  2533. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2534. self.gguf_writer.add_rope_scaling_factor(1.0)
  2535. def weight_quant(self, weight: Tensor) -> Tensor:
  2536. dtype = weight.dtype
  2537. weight = weight.float()
  2538. scale = weight.abs().mean().clamp(min=1e-5)
  2539. iscale = 1 / scale
  2540. # TODO: multiply by the scale directly instead of inverting it twice
  2541. # (this is also unnecessarily doubly inverted upstream)
  2542. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2543. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2544. return result.type(dtype)
  2545. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2546. new_name = self.map_tensor_name(name)
  2547. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2548. gguf.MODEL_TENSOR.ATTN_Q,
  2549. gguf.MODEL_TENSOR.ATTN_K,
  2550. gguf.MODEL_TENSOR.ATTN_V,
  2551. gguf.MODEL_TENSOR.ATTN_OUT,
  2552. gguf.MODEL_TENSOR.FFN_UP,
  2553. gguf.MODEL_TENSOR.FFN_DOWN,
  2554. gguf.MODEL_TENSOR.FFN_GATE,
  2555. ]):
  2556. # transform weight into 1/0/-1 (in fp32)
  2557. data_torch = self.weight_quant(data_torch)
  2558. yield (new_name, data_torch)
  2559. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2560. class GrokModel(TextModel):
  2561. model_arch = gguf.MODEL_ARCH.GROK
  2562. def set_vocab(self):
  2563. if (self.dir_model / 'tokenizer.model').is_file():
  2564. self._set_vocab_sentencepiece()
  2565. return
  2566. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2567. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2568. sys.exit(1)
  2569. self._set_vocab_gpt2()
  2570. def __init__(self, *args, **kwargs):
  2571. super().__init__(*args, **kwargs)
  2572. def set_gguf_parameters(self):
  2573. super().set_gguf_parameters()
  2574. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2575. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2576. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2577. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2578. if (rope_dim := self.hparams.get("head_dim")) is None:
  2579. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2580. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2581. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2582. # Treat "original" as "yarn", seems to have been a mistake
  2583. if self.hparams.get("rope_type") in ("yarn", "original"):
  2584. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2585. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2586. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2587. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2588. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2589. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2590. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2591. if temp_len := self.hparams.get("attn_temperature_len"):
  2592. self.gguf_writer.add_attn_temperature_length(temp_len)
  2593. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2594. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2595. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2596. _experts: list[dict[str, list[Tensor]]] | None = None
  2597. _cur_expert = ""
  2598. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2599. tensors: list[tuple[str, Tensor]] = []
  2600. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2601. if not is_expert:
  2602. tensors.append((self.map_tensor_name(name), data_torch))
  2603. # process the experts separately
  2604. if is_expert or self._cur_expert:
  2605. n_experts = self.hparams["num_local_experts"]
  2606. assert bid is not None
  2607. if self._experts is None:
  2608. self._experts = [{} for _ in range(self.block_count)]
  2609. # concatenate split tensors
  2610. if name in self._experts[bid]:
  2611. self._cur_expert = name
  2612. self._experts[bid][name].append(data_torch)
  2613. return []
  2614. elif is_expert:
  2615. self._cur_expert = name
  2616. self._experts[bid][name] = [data_torch]
  2617. return []
  2618. else:
  2619. self._cur_expert = ""
  2620. for bid in range(self.block_count):
  2621. if len(self._experts[bid]) >= n_experts * 3:
  2622. # merge the experts into a single 3d tensor
  2623. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2624. datas: list[Tensor] = []
  2625. for xid in range(n_experts):
  2626. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2627. if ename not in self._experts[bid]:
  2628. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2629. tensor_list = self._experts[bid][ename]
  2630. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2631. del self._experts[bid][ename]
  2632. data_torch = torch.stack(datas, dim=0)
  2633. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2634. new_name = self.map_tensor_name(merged_name)
  2635. yield (new_name, data_torch)
  2636. yield from tensors
  2637. @ModelBase.register("DbrxForCausalLM")
  2638. class DbrxModel(TextModel):
  2639. model_arch = gguf.MODEL_ARCH.DBRX
  2640. def set_gguf_parameters(self):
  2641. ffn_config = self.hparams["ffn_config"]
  2642. attn_config = self.hparams["attn_config"]
  2643. self.gguf_writer.add_block_count(self.block_count)
  2644. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2645. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2646. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2647. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2648. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2649. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2650. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2651. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2652. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2653. self.gguf_writer.add_layer_norm_eps(1e-5)
  2654. self.gguf_writer.add_file_type(self.ftype)
  2655. logger.info(f"gguf: file type = {self.ftype}")
  2656. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2657. del bid # unused
  2658. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2659. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2660. n_embd = self.hparams["d_model"]
  2661. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2662. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2663. # But llama.cpp moe graph works differently
  2664. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2665. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2666. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2667. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2668. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2669. experts = False
  2670. for exp_tensor_name in exp_tensor_names.keys():
  2671. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2672. experts = True
  2673. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2674. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2675. data_torch = data_torch.permute(*permute_tensor)
  2676. break
  2677. # map tensor names
  2678. # In MoE models the ffn tensors are typically most of the model weights,
  2679. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2680. # Every other model has the weight names ending in .weight,
  2681. # let's assume that is the convention which is not the case for dbrx:
  2682. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2683. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2684. return [(new_name, data_torch)]
  2685. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2686. del name, new_name, bid # unused
  2687. return n_dims > 1
  2688. @ModelBase.register("MiniCPMForCausalLM")
  2689. class MiniCPMModel(TextModel):
  2690. model_arch = gguf.MODEL_ARCH.MINICPM
  2691. def set_gguf_parameters(self):
  2692. super().set_gguf_parameters()
  2693. embedding_scale = float(self.hparams["scale_emb"])
  2694. self.gguf_writer.add_embedding_scale(embedding_scale)
  2695. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2696. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2697. self.gguf_writer.add_residual_scale(residual_scale)
  2698. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2699. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2700. self.gguf_writer.add_logit_scale(logit_scale)
  2701. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2702. rope_scaling = self.hparams.get("rope_scaling") or {}
  2703. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2704. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2705. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2706. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2707. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2708. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2709. if rope_scaling is not None:
  2710. long_factors = rope_scaling.get('long_factor', None)
  2711. short_factors = rope_scaling.get('short_factor', None)
  2712. if long_factors is None or short_factors is None:
  2713. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2714. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2715. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2716. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2717. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2718. def set_vocab(self):
  2719. self._set_vocab_sentencepiece()
  2720. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2721. del bid # unused
  2722. n_head = self.hparams["num_attention_heads"]
  2723. n_kv_head = self.hparams.get("num_key_value_heads")
  2724. # HF models permute some of the tensors, so we need to undo that
  2725. if name.endswith(("q_proj.weight")):
  2726. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2727. if name.endswith(("k_proj.weight")):
  2728. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2729. return [(self.map_tensor_name(name), data_torch)]
  2730. @ModelBase.register("MiniCPM3ForCausalLM")
  2731. class MiniCPM3Model(TextModel):
  2732. model_arch = gguf.MODEL_ARCH.MINICPM3
  2733. def set_gguf_parameters(self):
  2734. hparams = self.hparams
  2735. self.gguf_writer.add_file_type(self.ftype)
  2736. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2737. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2738. self.gguf_writer.add_block_count(self.block_count)
  2739. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2740. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2741. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2742. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2743. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2744. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2745. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2746. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2747. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2748. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2749. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2750. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2751. if rope_scaling is not None:
  2752. rope_dims = self.hparams["qk_rope_head_dim"]
  2753. long_factors = rope_scaling.get('long_factor', None)
  2754. short_factors = rope_scaling.get('short_factor', None)
  2755. if long_factors is None or short_factors is None:
  2756. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2757. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2758. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2759. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2760. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2761. def set_vocab(self):
  2762. self._set_vocab_sentencepiece()
  2763. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2764. if n_kv_head is not None and n_head != n_kv_head:
  2765. n_head //= n_kv_head
  2766. return (
  2767. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2768. .swapaxes(1, 2)
  2769. .reshape(weights.shape)
  2770. )
  2771. @ModelBase.register("QWenLMHeadModel")
  2772. class QwenModel(TextModel):
  2773. model_arch = gguf.MODEL_ARCH.QWEN
  2774. @staticmethod
  2775. def token_bytes_to_string(b):
  2776. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2777. byte_encoder = bytes_to_unicode()
  2778. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2779. @staticmethod
  2780. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2781. parts = [bytes([b]) for b in token]
  2782. while True:
  2783. min_idx = None
  2784. min_rank = None
  2785. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2786. rank = mergeable_ranks.get(pair[0] + pair[1])
  2787. if rank is not None and (min_rank is None or rank < min_rank):
  2788. min_idx = i
  2789. min_rank = rank
  2790. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2791. break
  2792. assert min_idx is not None
  2793. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2794. return parts
  2795. def set_vocab(self):
  2796. self._set_vocab_qwen()
  2797. def set_gguf_parameters(self):
  2798. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2799. self.gguf_writer.add_block_count(self.block_count)
  2800. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2801. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2802. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2803. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2804. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2805. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2806. self.gguf_writer.add_file_type(self.ftype)
  2807. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2808. class Qwen2Model(TextModel):
  2809. model_arch = gguf.MODEL_ARCH.QWEN2
  2810. def set_vocab(self):
  2811. try:
  2812. self._set_vocab_sentencepiece()
  2813. except FileNotFoundError:
  2814. self._set_vocab_gpt2()
  2815. def set_gguf_parameters(self):
  2816. super().set_gguf_parameters()
  2817. self._try_set_pooling_type()
  2818. rope_scaling = self.hparams.get("rope_scaling") or {}
  2819. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2820. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2821. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2822. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2823. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2824. if self.hf_arch == "Qwen2Model":
  2825. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2826. if "language_model." in name:
  2827. name = name.replace("language_model.", "") # for InternVL
  2828. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2829. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2830. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2831. # skip vision and audio tensors
  2832. return []
  2833. yield from super().modify_tensors(data_torch, name, bid)
  2834. @ModelBase.register("DreamModel")
  2835. class DreamModel(TextModel):
  2836. model_arch = gguf.MODEL_ARCH.DREAM
  2837. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2838. tokens: list[str] = []
  2839. toktypes: list[int] = []
  2840. from transformers import AutoTokenizer
  2841. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2842. vocab_dict = tokenizer.get_vocab()
  2843. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2844. assert max(vocab_dict.values()) < vocab_size
  2845. tokpre = self.get_vocab_base_pre(tokenizer)
  2846. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2847. added_vocab = tokenizer.get_added_vocab()
  2848. for i in range(vocab_size):
  2849. if i not in reverse_vocab:
  2850. tokens.append(f"[PAD{i}]")
  2851. toktypes.append(gguf.TokenType.UNUSED)
  2852. elif reverse_vocab[i] in added_vocab:
  2853. tokens.append(reverse_vocab[i])
  2854. # Check if it's a special token - treat special tokens as CONTROL tokens
  2855. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2856. if tokenizer.added_tokens_decoder[i].special:
  2857. toktypes.append(gguf.TokenType.CONTROL)
  2858. else:
  2859. toktypes.append(gguf.TokenType.USER_DEFINED)
  2860. else:
  2861. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2862. toktypes.append(gguf.TokenType.CONTROL)
  2863. else:
  2864. tokens.append(reverse_vocab[i])
  2865. toktypes.append(gguf.TokenType.NORMAL)
  2866. return tokens, toktypes, tokpre
  2867. def set_vocab(self):
  2868. try:
  2869. self._set_vocab_sentencepiece()
  2870. except FileNotFoundError:
  2871. self._set_vocab_gpt2()
  2872. def set_gguf_parameters(self):
  2873. super().set_gguf_parameters()
  2874. self._try_set_pooling_type()
  2875. # Dream models use non-causal attention for diffusion
  2876. self.gguf_writer.add_causal_attention(False)
  2877. # Handle RoPE scaling similar to Qwen2
  2878. rope_scaling = self.hparams.get("rope_scaling") or {}
  2879. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2880. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2881. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2882. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2883. # Add Dream-specific parameters
  2884. mask_token_id = self.hparams.get("mask_token_id")
  2885. if mask_token_id is not None:
  2886. self.gguf_writer.add_mask_token_id(mask_token_id)
  2887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2888. # Dream model tensors should be mapped directly since it's the base model
  2889. yield from super().modify_tensors(data_torch, name, bid)
  2890. @ModelBase.register("LLaDAModelLM")
  2891. class LLaDAModel(TextModel):
  2892. model_arch = gguf.MODEL_ARCH.LLADA
  2893. undo_permute = True
  2894. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2895. tokens: list[str] = []
  2896. toktypes: list[int] = []
  2897. from transformers import AutoTokenizer
  2898. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2899. vocab_dict = tokenizer.get_vocab()
  2900. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2901. assert max(vocab_dict.values()) < vocab_size
  2902. tokpre = self.get_vocab_base_pre(tokenizer)
  2903. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2904. added_vocab = tokenizer.get_added_vocab()
  2905. for i in range(vocab_size):
  2906. if i not in reverse_vocab:
  2907. tokens.append(f"[PAD{i}]")
  2908. toktypes.append(gguf.TokenType.UNUSED)
  2909. elif reverse_vocab[i] in added_vocab:
  2910. tokens.append(reverse_vocab[i])
  2911. # Check if it's a special token - treat special tokens as CONTROL tokens
  2912. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2913. if tokenizer.added_tokens_decoder[i].special:
  2914. toktypes.append(gguf.TokenType.CONTROL)
  2915. else:
  2916. toktypes.append(gguf.TokenType.USER_DEFINED)
  2917. else:
  2918. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2919. toktypes.append(gguf.TokenType.CONTROL)
  2920. else:
  2921. tokens.append(reverse_vocab[i])
  2922. toktypes.append(gguf.TokenType.NORMAL)
  2923. return tokens, toktypes, tokpre
  2924. def set_vocab(self):
  2925. self._set_vocab_gpt2()
  2926. # LLaDA specific parameters
  2927. self.gguf_writer.add_add_bos_token(True)
  2928. def set_gguf_parameters(self):
  2929. super().set_gguf_parameters()
  2930. self._try_set_pooling_type()
  2931. # Add parameters similar to LlamaModel
  2932. hparams = self.hparams
  2933. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2934. if (rope_dim := hparams.get("head_dim")) is None:
  2935. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2936. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2937. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2938. # Set context length for LLaDA
  2939. context_length = self.hparams.get("max_sequence_length", 4096)
  2940. self.gguf_writer.add_context_length(context_length)
  2941. # Set embedding length (dimension size)
  2942. embedding_length = self.hparams.get("d_model", 4096)
  2943. self.gguf_writer.add_embedding_length(embedding_length)
  2944. # Set feed forward length (MLP hidden size)
  2945. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2946. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2947. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2948. self.gguf_writer.add_causal_attention(False)
  2949. # LLaDA models don't shift their logits
  2950. self.gguf_writer.add_diffusion_shift_logits(False)
  2951. @staticmethod
  2952. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2953. if n_head_kv is not None and n_head != n_head_kv:
  2954. n_head = n_head_kv
  2955. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2956. .swapaxes(1, 2)
  2957. .reshape(weights.shape))
  2958. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2959. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2960. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2961. if self.undo_permute:
  2962. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2963. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2964. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2965. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2966. # LLaDA model tensors should be mapped directly since it's the base model
  2967. yield from super().modify_tensors(data_torch, name, bid)
  2968. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2969. class Ernie4_5Model(TextModel):
  2970. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2971. def set_vocab(self):
  2972. self._set_vocab_sentencepiece()
  2973. def set_gguf_parameters(self):
  2974. super().set_gguf_parameters()
  2975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2976. num_heads = self.hparams["num_attention_heads"]
  2977. num_kv_heads = self.hparams["num_key_value_heads"]
  2978. if (head_dim := self.hparams.get("head_dim")) is None:
  2979. head_dim = self.hparams["hidden_size"] // num_heads
  2980. if "ernie." in name:
  2981. name = name.replace("ernie.", "model.")
  2982. # split the qkv weights
  2983. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2984. if "qkv_proj" in name:
  2985. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2986. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2987. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2988. total_q_dim = num_heads * head_dim
  2989. total_k_dim = num_kv_heads * head_dim
  2990. total_v_dim = num_kv_heads * head_dim
  2991. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2992. return [
  2993. (self.map_tensor_name(name_q), q_proj_weight),
  2994. (self.map_tensor_name(name_k), k_proj_weight),
  2995. (self.map_tensor_name(name_v), v_proj_weight)
  2996. ]
  2997. # split the up_gate_proj into gate and up
  2998. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2999. if "up_gate_proj" in name:
  3000. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3001. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3002. dim_half = data_torch.shape[0] // 2
  3003. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3004. return [
  3005. (self.map_tensor_name(name_gate), gate_proj_weight),
  3006. (self.map_tensor_name(name_up), up_proj_weight)
  3007. ]
  3008. return [(self.map_tensor_name(name), data_torch)]
  3009. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3010. class Ernie4_5MoeModel(Ernie4_5Model):
  3011. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3012. _experts: list[dict[str, Tensor]] | None = None
  3013. def __init__(self, *args, **kwargs):
  3014. super().__init__(*args, **kwargs)
  3015. self._experts = [{} for _ in range(self.block_count)]
  3016. def set_gguf_parameters(self):
  3017. super().set_gguf_parameters()
  3018. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3019. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3020. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3021. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3022. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3023. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3024. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3025. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3026. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3027. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3028. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3029. # Modify correction bias name as in DeepseekV2
  3030. if name.endswith("e_score_correction_bias"):
  3031. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3032. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3033. match = re.match(r"model.mtp_block.(\d+)", name)
  3034. if match:
  3035. return []
  3036. # skip all other MTP tensors for now
  3037. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3038. if match:
  3039. return []
  3040. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3041. if match:
  3042. return []
  3043. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3044. if match:
  3045. return []
  3046. # process the experts separately
  3047. if name.find("mlp.experts") != -1:
  3048. n_experts = self.hparams["moe_num_experts"]
  3049. assert bid is not None
  3050. if self._experts is None:
  3051. self._experts = [{} for _ in range(self.block_count)]
  3052. self._experts[bid][name] = data_torch
  3053. if len(self._experts[bid]) >= n_experts * 3:
  3054. tensors: list[tuple[str, Tensor]] = []
  3055. # merge the experts into a single 3d tensor
  3056. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3057. datas: list[Tensor] = []
  3058. for xid in range(n_experts):
  3059. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3060. datas.append(self._experts[bid][ename_to_retrieve])
  3061. del self._experts[bid][ename_to_retrieve]
  3062. data_torch = torch.stack(datas, dim=0)
  3063. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3064. new_name = self.map_tensor_name(merged_name)
  3065. tensors.append((new_name, data_torch))
  3066. return tensors
  3067. else:
  3068. return []
  3069. return [(self.map_tensor_name(name), data_torch)]
  3070. def prepare_tensors(self):
  3071. super().prepare_tensors()
  3072. if self._experts is not None:
  3073. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3074. experts = [k for d in self._experts for k in d.keys()]
  3075. if len(experts) > 0:
  3076. raise ValueError(f"Unprocessed experts: {experts}")
  3077. @ModelBase.register(
  3078. "Qwen2VLModel",
  3079. "Qwen2VLForConditionalGeneration",
  3080. "Qwen2_5_VLForConditionalGeneration",
  3081. "Qwen2_5OmniModel",
  3082. )
  3083. class Qwen2VLModel(TextModel):
  3084. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3085. def set_gguf_parameters(self):
  3086. super().set_gguf_parameters()
  3087. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  3088. mrope_section += [0] * max(0, 4 - len(mrope_section))
  3089. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  3090. def set_vocab(self):
  3091. try:
  3092. self._set_vocab_sentencepiece()
  3093. except FileNotFoundError:
  3094. self._set_vocab_gpt2()
  3095. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3096. del bid # unused
  3097. if name.startswith("thinker."):
  3098. name = name.replace("thinker.", "")
  3099. if name.startswith("visual") or name.startswith("audio") or \
  3100. name.startswith("talker") or name.startswith("token2wav"):
  3101. # skip multimodal tensors
  3102. return []
  3103. return [(self.map_tensor_name(name), data_torch)]
  3104. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3105. class Qwen2VLVisionModel(MmprojModel):
  3106. def __init__(self, *args, **kwargs):
  3107. super().__init__(*args, **kwargs)
  3108. assert self.hparams_vision is not None
  3109. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3110. # rename config.json values
  3111. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3112. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3113. if "embed_dim" in self.hparams_vision: # qwen2vl
  3114. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3115. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3116. def set_gguf_parameters(self):
  3117. super().set_gguf_parameters()
  3118. assert self.hparams_vision is not None
  3119. hparams = self.hparams_vision
  3120. model_type = self.global_config['model_type']
  3121. if model_type == 'qwen2_vl':
  3122. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3123. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3124. if model_type == 'qwen2_5_omni':
  3125. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3126. else:
  3127. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3128. self.gguf_writer.add_vision_use_silu(True)
  3129. # find n_wa_pattern (window attention pattern)
  3130. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3131. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3132. n_wa_pattern = fullatt_block_indexes[0] + 1
  3133. # validate n_wa_pattern
  3134. for i in range(1, len(fullatt_block_indexes)):
  3135. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3136. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3137. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3138. else:
  3139. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3140. # default values below are taken from HF tranformers code
  3141. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3142. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3143. if ".position_embd." in new_name:
  3144. return gguf.GGMLQuantizationType.F32
  3145. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3147. del bid # unused
  3148. if name.startswith("visual."):
  3149. # process visual tensors
  3150. # split QKV tensors if needed
  3151. if ".qkv." in name:
  3152. if data_torch.ndim == 2: # weight
  3153. c3, _ = data_torch.shape
  3154. else: # bias
  3155. c3 = data_torch.shape[0]
  3156. assert c3 % 3 == 0
  3157. c = c3 // 3
  3158. wq = data_torch[:c]
  3159. wk = data_torch[c: c * 2]
  3160. wv = data_torch[c * 2:]
  3161. return [
  3162. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3163. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3164. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3165. ]
  3166. elif 'patch_embed.proj.weight' in name:
  3167. # split Conv3D into Conv2Ds
  3168. c1, c2, kt, kh, kw = data_torch.shape
  3169. del c1, c2, kh, kw # unused
  3170. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3171. return [
  3172. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3173. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3174. ]
  3175. else:
  3176. return [(self.map_tensor_name(name), data_torch)]
  3177. return [] # skip other tensors
  3178. @ModelBase.register("Qwen2_5OmniModel")
  3179. class Qwen25OmniModel(Qwen2VLVisionModel):
  3180. has_vision_encoder = True
  3181. has_audio_encoder = True
  3182. def __init__(self, *args, **kwargs):
  3183. super().__init__(*args, **kwargs)
  3184. assert self.hparams_audio is not None
  3185. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3186. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3187. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3188. def set_gguf_parameters(self):
  3189. super().set_gguf_parameters()
  3190. assert self.hparams_audio is not None
  3191. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3192. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3193. def get_vision_config(self) -> dict[str, Any] | None:
  3194. return self.global_config["thinker_config"].get("vision_config")
  3195. def get_audio_config(self) -> dict[str, Any] | None:
  3196. return self.global_config["thinker_config"].get("audio_config")
  3197. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3198. # SinusoidsPositionEmbedding
  3199. assert self.hparams_audio is not None
  3200. max_timescale = 10000
  3201. length = 1500
  3202. channels = self.hparams_audio["hidden_size"]
  3203. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3204. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3205. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3206. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3207. yield ("audio_tower.embed_positions.weight", pos_embd)
  3208. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3209. if ".conv" in name and ".weight" in name:
  3210. return gguf.GGMLQuantizationType.F16
  3211. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3213. if name.startswith("thinker."):
  3214. name = name.replace("thinker.", "")
  3215. if name.startswith("audio_tower"):
  3216. # process audio tensors
  3217. if "conv1.bias" in name or "conv2.bias" in name:
  3218. # transpose conv1 and conv2 bias
  3219. data_torch = data_torch.unsqueeze(-1)
  3220. if "audio_bos_eos_token" in name:
  3221. # this tensor is left unused in transformers code
  3222. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3223. return []
  3224. return [(self.map_tensor_name(name), data_torch)]
  3225. return super().modify_tensors(data_torch, name, bid)
  3226. @ModelBase.register("InternVisionModel")
  3227. class InternVisionModel(MmprojModel):
  3228. def set_gguf_parameters(self):
  3229. assert self.hparams_vision is not None
  3230. if isinstance(self.hparams_vision['image_size'], list):
  3231. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3232. if isinstance(self.hparams_vision['patch_size'], list):
  3233. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3234. super().set_gguf_parameters()
  3235. hparams = self.hparams
  3236. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3237. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3238. # hidden_act
  3239. if hparams["hidden_act"] == "silu":
  3240. self.gguf_writer.add_vision_use_silu(True)
  3241. elif hparams["hidden_act"] == "gelu":
  3242. self.gguf_writer.add_vision_use_gelu(True)
  3243. else:
  3244. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3245. # downsample_ratio
  3246. downsample_ratio = self.global_config.get("downsample_ratio")
  3247. assert downsample_ratio is not None
  3248. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3249. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3250. if ".position_embd." in new_name:
  3251. return gguf.GGMLQuantizationType.F32
  3252. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3253. def _mapping_interns1_name(self, name):
  3254. names_map = {
  3255. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3256. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3257. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3258. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3259. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3260. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3261. }
  3262. if name in names_map:
  3263. name = names_map[name]
  3264. return name
  3265. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3266. del bid # unused
  3267. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3268. # deal with intern-s1 special case
  3269. name = self._mapping_interns1_name(name)
  3270. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3271. # process visual tensors
  3272. # correct name
  3273. if name.startswith("vision_model"):
  3274. name = "vision_tower." + name
  3275. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3276. name += ".weight"
  3277. # split QKV tensors if needed
  3278. if ".qkv." in name:
  3279. if data_torch.ndim == 2: # weight
  3280. c3, _ = data_torch.shape
  3281. else: # bias
  3282. c3 = data_torch.shape[0]
  3283. assert c3 % 3 == 0
  3284. c = c3 // 3
  3285. wq = data_torch[:c]
  3286. wk = data_torch[c: c * 2]
  3287. wv = data_torch[c * 2:]
  3288. return [
  3289. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3290. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3291. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3292. ]
  3293. return [(self.map_tensor_name(name), data_torch)]
  3294. return [] # skip other tensors
  3295. @ModelBase.register("WavTokenizerDec")
  3296. class WavTokenizerDecModel(TextModel):
  3297. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3298. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3299. del bid # unused
  3300. if \
  3301. name.endswith("codebook.cluster_size") or \
  3302. name.endswith("codebook.embed_avg") or \
  3303. name.endswith("codebook.inited"):
  3304. logger.debug(f"Skipping {name!r}")
  3305. return []
  3306. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3307. return [(self.map_tensor_name(name), data_torch)]
  3308. def set_vocab(self):
  3309. self._set_vocab_none()
  3310. def set_gguf_parameters(self):
  3311. super().set_gguf_parameters()
  3312. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3313. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3314. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3315. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3316. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3317. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3318. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3319. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3320. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3321. self.gguf_writer.add_causal_attention(False)
  3322. @ModelBase.register("Qwen2MoeForCausalLM")
  3323. class Qwen2MoeModel(TextModel):
  3324. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3325. def set_gguf_parameters(self):
  3326. super().set_gguf_parameters()
  3327. if (n_experts := self.hparams.get("num_experts")) is not None:
  3328. self.gguf_writer.add_expert_count(n_experts)
  3329. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3330. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3331. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3332. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3333. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3334. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3335. # YaRN is not enabled by default
  3336. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3337. rope_scaling = self.hparams.get("rope_scaling") or {}
  3338. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3339. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3340. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3341. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3342. _experts: list[dict[str, Tensor]] | None = None
  3343. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3344. # process the experts separately
  3345. name = name.replace("language_model.", "") # InternVL
  3346. # handle aggregated expert tensors
  3347. # GGUF stores dimensions reversed from PyTorch, so:
  3348. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3349. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3350. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3351. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3352. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3353. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3354. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3355. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3356. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3357. permuted = data_torch.permute(0, 2, 1).contiguous()
  3358. return [(self.map_tensor_name(mapped), permuted)]
  3359. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3360. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3361. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3362. split_dim = data_torch.shape[-1] // 2
  3363. gate = data_torch[..., :split_dim].contiguous()
  3364. up = data_torch[..., split_dim:].contiguous()
  3365. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3366. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3367. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3368. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3369. base_name = name.removesuffix(".weight")
  3370. base = base_name.rsplit('.', 1)[0]
  3371. mapped_gate = f"{base}.gate_proj.weight"
  3372. mapped_up = f"{base}.up_proj.weight"
  3373. perm_gate = gate.permute(0, 2, 1).contiguous()
  3374. perm_up = up.permute(0, 2, 1).contiguous()
  3375. return [
  3376. (self.map_tensor_name(mapped_gate), perm_gate),
  3377. (self.map_tensor_name(mapped_up), perm_up),
  3378. ]
  3379. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3380. # skip visual tensors
  3381. return []
  3382. if name.find("experts") != -1:
  3383. n_experts = self.hparams["num_experts"]
  3384. assert bid is not None
  3385. if self._experts is None:
  3386. self._experts = [{} for _ in range(self.block_count)]
  3387. self._experts[bid][name] = data_torch
  3388. if len(self._experts[bid]) >= n_experts * 3:
  3389. tensors: list[tuple[str, Tensor]] = []
  3390. # merge the experts into a single 3d tensor
  3391. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3392. datas: list[Tensor] = []
  3393. for xid in range(n_experts):
  3394. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3395. datas.append(self._experts[bid][ename])
  3396. del self._experts[bid][ename]
  3397. data_torch = torch.stack(datas, dim=0)
  3398. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3399. new_name = self.map_tensor_name(merged_name)
  3400. tensors.append((new_name, data_torch))
  3401. return tensors
  3402. else:
  3403. return []
  3404. return [(self.map_tensor_name(name), data_torch)]
  3405. def prepare_tensors(self):
  3406. super().prepare_tensors()
  3407. if self._experts is not None:
  3408. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3409. experts = [k for d in self._experts for k in d.keys()]
  3410. if len(experts) > 0:
  3411. raise ValueError(f"Unprocessed experts: {experts}")
  3412. @ModelBase.register("Qwen3ForCausalLM")
  3413. class Qwen3Model(Qwen2Model):
  3414. model_arch = gguf.MODEL_ARCH.QWEN3
  3415. # extra logic for rerank models
  3416. is_rerank: bool = False
  3417. is_tied_embeddings: bool = False
  3418. token_false_id: int | None = None
  3419. token_true_id: int | None = None
  3420. def __init__(self, *args, **kwargs):
  3421. super().__init__(*args, **kwargs)
  3422. # track for intern-s1-mini
  3423. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3424. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3425. # a bit hacky, but currently the only way to detect if this is a rerank model
  3426. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3427. readme_path = self.dir_model / "README.md"
  3428. readme_text = ""
  3429. if readme_path.exists():
  3430. with readme_path.open("r", encoding="utf-8") as f:
  3431. readme_text = f.read()
  3432. if "# Qwen3-Reranker" in readme_text:
  3433. self._find_rerank_config()
  3434. def set_vocab(self):
  3435. # deal with intern-s1-mini
  3436. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3437. self._set_vocab_interns1()
  3438. return
  3439. super().set_vocab()
  3440. def _find_rerank_config(self):
  3441. from transformers import AutoTokenizer
  3442. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3443. self.is_rerank = True
  3444. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3445. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3446. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3447. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3448. assert self.token_false_id is not None and self.token_true_id is not None
  3449. def set_gguf_parameters(self):
  3450. super().set_gguf_parameters()
  3451. if self.is_rerank:
  3452. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3453. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3454. self.gguf_writer.add_chat_template([{
  3455. "name": "rerank",
  3456. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3457. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3458. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3459. }])
  3460. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3461. # extract "yes" and "no" tokens from the output lm_head tensor
  3462. false_row = data_torch[self.token_false_id]
  3463. true_row = data_torch[self.token_true_id]
  3464. return torch.stack([true_row, false_row], dim=0)
  3465. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3466. if "model.vision_" in name:
  3467. # skip multimodal tensors
  3468. return []
  3469. if self.is_rerank:
  3470. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3471. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3472. if is_tied_head or is_real_head:
  3473. cls_out_head = (
  3474. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3475. self._get_cls_out_tensor(data_torch),
  3476. )
  3477. if is_tied_head:
  3478. embed = (self.map_tensor_name(name), data_torch)
  3479. return [cls_out_head, embed]
  3480. if is_real_head:
  3481. return [cls_out_head]
  3482. return super().modify_tensors(data_torch, name, bid)
  3483. @ModelBase.register("Qwen3MoeForCausalLM")
  3484. class Qwen3MoeModel(Qwen2MoeModel):
  3485. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3486. def __init__(self, *args, **kwargs):
  3487. super().__init__(*args, **kwargs)
  3488. hparams = ModelBase.load_hparams(self.dir_model, False)
  3489. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3490. def set_vocab(self):
  3491. # deal with intern-s1
  3492. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3493. self._set_vocab_interns1()
  3494. return
  3495. super().set_vocab()
  3496. @ModelBase.register("Qwen3NextForCausalLM")
  3497. class Qwen3NextModel(Qwen2MoeModel):
  3498. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3499. def set_gguf_parameters(self):
  3500. super().set_gguf_parameters()
  3501. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3502. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3503. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3504. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3505. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3506. if (rope_dim := self.hparams.get("head_dim")) is None:
  3507. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3508. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3509. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3510. if name.startswith("mtp"):
  3511. return [] # ignore MTP layers for now
  3512. if name.endswith(".A_log"):
  3513. data_torch = -torch.exp(data_torch)
  3514. elif name.endswith(".dt_bias"):
  3515. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3516. elif "conv1d" in name:
  3517. data_torch = data_torch.squeeze()
  3518. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3519. data_torch = data_torch + 1
  3520. yield from super().modify_tensors(data_torch, name, bid)
  3521. @ModelBase.register("RND1")
  3522. class RND1Model(Qwen2MoeModel):
  3523. model_arch = gguf.MODEL_ARCH.RND1
  3524. def set_gguf_parameters(self):
  3525. super().set_gguf_parameters()
  3526. # RND1 specific parameters
  3527. # RND1 uses bidirectional attention
  3528. self.gguf_writer.add_causal_attention(False)
  3529. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3530. self.gguf_writer.add_mask_token_id(mask_token_id)
  3531. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3532. class Qwen3VLVisionModel(MmprojModel):
  3533. def __init__(self, *args, **kwargs):
  3534. super().__init__(*args, **kwargs)
  3535. assert self.hparams_vision is not None
  3536. # Compute image_size if not present
  3537. if "image_size" not in self.hparams_vision:
  3538. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3539. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3540. patch_size = self.hparams_vision.get("patch_size", 16)
  3541. # num_position_embeddings = (image_size / patch_size) ** 2
  3542. # So image_size = sqrt(num_position_embeddings) * patch_size
  3543. image_size = int(num_pos**0.5 * patch_size)
  3544. self.hparams_vision["image_size"] = image_size
  3545. # Rename config values for compatibility
  3546. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3547. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3548. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3549. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3550. self.is_deepstack_layers[idx] = True
  3551. def set_gguf_parameters(self):
  3552. super().set_gguf_parameters()
  3553. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3554. self.gguf_writer.add_vision_use_gelu(True)
  3555. if self.hparams_vision is not None:
  3556. merge_size = self.hparams_vision.get("spatial_merge_size")
  3557. if merge_size is not None:
  3558. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3559. # Use text config's rms_norm_eps for vision attention layernorm eps
  3560. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3561. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3562. if self.is_deepstack_layers:
  3563. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3565. assert self.hparams_vision is not None
  3566. # Skip text model tensors - they go in the text model file
  3567. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3568. return []
  3569. if name.startswith("model.visual."):
  3570. name = name.replace("model.visual.", "visual.", 1)
  3571. if name.startswith("visual.deepstack_merger_list."):
  3572. prefix, rest = name.split(".", maxsplit=3)[2:]
  3573. # prefix is the layer index, convert to absolute clip layer index!
  3574. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3575. target = rest
  3576. tensor_type: gguf.MODEL_TENSOR
  3577. if target.startswith("norm."):
  3578. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3579. suffix = target.split(".", 1)[1]
  3580. elif target.startswith("linear_fc1."):
  3581. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3582. suffix = target.split(".", 1)[1]
  3583. elif target.startswith("linear_fc2."):
  3584. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3585. suffix = target.split(".", 1)[1]
  3586. else:
  3587. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3588. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3589. return [(new_name, data_torch)]
  3590. if name.startswith("visual.merger."):
  3591. suffix = name.split(".", 2)[2]
  3592. if suffix.startswith("linear_fc"):
  3593. fc_idx_str, tail = suffix.split(".", 1)
  3594. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3595. # Qwen3VL has linear_fc1 and linear_fc2
  3596. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3597. if fc_num == 1:
  3598. fc_idx = 0
  3599. elif fc_num == 2:
  3600. fc_idx = 2
  3601. else:
  3602. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3603. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3604. elif suffix.startswith("norm."):
  3605. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3606. else:
  3607. raise ValueError(f"Unexpected merger tensor: {name}")
  3608. return [(new_name, data_torch)]
  3609. if name == "visual.patch_embed.proj.weight":
  3610. # split Conv3D into Conv2Ds along temporal dimension
  3611. c1, c2, kt, _, _ = data_torch.shape
  3612. del c1, c2
  3613. if kt != 2:
  3614. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3615. return [
  3616. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3617. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3618. ]
  3619. if name == "visual.patch_embed.proj.bias":
  3620. # Include the bias - it's used by the C++ code
  3621. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3622. if name.startswith("visual."):
  3623. return [(self.map_tensor_name(name), data_torch)]
  3624. # Fall back to parent class for other tensors
  3625. return super().modify_tensors(data_torch, name, bid)
  3626. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3627. class Qwen3VLTextModel(Qwen3Model):
  3628. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3629. def set_gguf_parameters(self):
  3630. super().set_gguf_parameters()
  3631. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3632. text_config = self.hparams.get("text_config", {})
  3633. # rope_scaling is deprecated in V5, use rope_parameters instead
  3634. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3635. if rope_scaling.get("mrope_section"):
  3636. # mrope_section contains [time, height, width] dimensions
  3637. mrope_section = rope_scaling["mrope_section"]
  3638. # Pad to 4 dimensions [time, height, width, extra]
  3639. while len(mrope_section) < 4:
  3640. mrope_section.append(0)
  3641. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3642. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3643. vision_config = self.hparams.get("vision_config", {})
  3644. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3645. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3647. # Skip vision tensors - they go in the mmproj file
  3648. if name.startswith("model.visual."):
  3649. return []
  3650. return super().modify_tensors(data_torch, name, bid)
  3651. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3652. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3653. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3654. def set_gguf_parameters(self):
  3655. super().set_gguf_parameters()
  3656. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3657. text_config = self.hparams.get("text_config", {})
  3658. # rope_scaling is deprecated in V5, use rope_parameters instead
  3659. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3660. if rope_scaling.get("mrope_section"):
  3661. # mrope_section contains [time, height, width] dimensions
  3662. mrope_section = rope_scaling["mrope_section"]
  3663. # Pad to 4 dimensions [time, height, width, extra]
  3664. while len(mrope_section) < 4:
  3665. mrope_section.append(0)
  3666. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3667. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3668. vision_config = self.hparams.get("vision_config", {})
  3669. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3670. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3672. # Skip vision tensors - they go in the mmproj file
  3673. if name.startswith("model.visual."):
  3674. return []
  3675. return super().modify_tensors(data_torch, name, bid)
  3676. @ModelBase.register("GPT2LMHeadModel")
  3677. class GPT2Model(TextModel):
  3678. model_arch = gguf.MODEL_ARCH.GPT2
  3679. def set_gguf_parameters(self):
  3680. self.gguf_writer.add_block_count(self.block_count)
  3681. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3682. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3683. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3684. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3685. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3686. self.gguf_writer.add_file_type(self.ftype)
  3687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3688. del bid # unused
  3689. tensors: list[tuple[str, Tensor]] = []
  3690. # we don't need these
  3691. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3692. return tensors
  3693. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3694. data_torch = data_torch.transpose(1, 0)
  3695. new_name = self.map_tensor_name(name)
  3696. tensors.append((new_name, data_torch))
  3697. return tensors
  3698. @ModelBase.register("PhiForCausalLM")
  3699. class Phi2Model(TextModel):
  3700. model_arch = gguf.MODEL_ARCH.PHI2
  3701. def set_gguf_parameters(self):
  3702. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3703. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3704. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3705. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3706. self.gguf_writer.add_embedding_length(n_embd)
  3707. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3708. self.gguf_writer.add_block_count(self.block_count)
  3709. self.gguf_writer.add_head_count(n_head)
  3710. self.gguf_writer.add_head_count_kv(n_head)
  3711. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3712. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3713. self.gguf_writer.add_file_type(self.ftype)
  3714. self.gguf_writer.add_add_bos_token(False)
  3715. @ModelBase.register("Phi3ForCausalLM")
  3716. class Phi3MiniModel(TextModel):
  3717. model_arch = gguf.MODEL_ARCH.PHI3
  3718. def set_vocab(self):
  3719. # Phi-4 model uses GPT2Tokenizer
  3720. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3721. if tokenizer_config_file.is_file():
  3722. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3723. tokenizer_config_json = json.load(f)
  3724. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3725. if tokenizer_class == 'GPT2Tokenizer':
  3726. return self._set_vocab_gpt2()
  3727. from sentencepiece import SentencePieceProcessor
  3728. tokenizer_path = self.dir_model / 'tokenizer.model'
  3729. if not tokenizer_path.is_file():
  3730. raise ValueError(f'Error: Missing {tokenizer_path}')
  3731. tokenizer = SentencePieceProcessor()
  3732. tokenizer.LoadFromFile(str(tokenizer_path))
  3733. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3734. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3735. scores: list[float] = [-10000.0] * vocab_size
  3736. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3737. for token_id in range(tokenizer.vocab_size()):
  3738. piece = tokenizer.IdToPiece(token_id)
  3739. text = piece.encode("utf-8")
  3740. score = tokenizer.GetScore(token_id)
  3741. toktype = SentencePieceTokenTypes.NORMAL
  3742. if tokenizer.IsUnknown(token_id):
  3743. toktype = SentencePieceTokenTypes.UNKNOWN
  3744. elif tokenizer.IsControl(token_id):
  3745. toktype = SentencePieceTokenTypes.CONTROL
  3746. elif tokenizer.IsUnused(token_id):
  3747. toktype = SentencePieceTokenTypes.UNUSED
  3748. elif tokenizer.IsByte(token_id):
  3749. toktype = SentencePieceTokenTypes.BYTE
  3750. tokens[token_id] = text
  3751. scores[token_id] = score
  3752. toktypes[token_id] = toktype
  3753. added_tokens_file = self.dir_model / 'added_tokens.json'
  3754. if added_tokens_file.is_file():
  3755. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3756. added_tokens_json = json.load(f)
  3757. for key in added_tokens_json:
  3758. token_id = added_tokens_json[key]
  3759. if token_id >= vocab_size:
  3760. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3761. continue
  3762. tokens[token_id] = key.encode("utf-8")
  3763. scores[token_id] = -1000.0
  3764. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3765. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3766. if tokenizer_config_file.is_file():
  3767. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3768. tokenizer_config_json = json.load(f)
  3769. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3770. for token_id, foken_data in added_tokens_decoder.items():
  3771. token_id = int(token_id)
  3772. token = foken_data["content"].encode("utf-8")
  3773. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3774. if tokens[token_id] != token:
  3775. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3776. tokens[token_id] = token
  3777. scores[token_id] = -1000.0
  3778. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3779. if foken_data.get("special"):
  3780. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3781. tokenizer_file = self.dir_model / 'tokenizer.json'
  3782. if tokenizer_file.is_file():
  3783. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3784. tokenizer_json = json.load(f)
  3785. added_tokens = tokenizer_json.get("added_tokens", [])
  3786. for foken_data in added_tokens:
  3787. token_id = int(foken_data["id"])
  3788. token = foken_data["content"].encode("utf-8")
  3789. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3790. if tokens[token_id] != token:
  3791. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3792. tokens[token_id] = token
  3793. scores[token_id] = -1000.0
  3794. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3795. if foken_data.get("special"):
  3796. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3797. self.gguf_writer.add_tokenizer_model("llama")
  3798. self.gguf_writer.add_tokenizer_pre("default")
  3799. self.gguf_writer.add_token_list(tokens)
  3800. self.gguf_writer.add_token_scores(scores)
  3801. self.gguf_writer.add_token_types(toktypes)
  3802. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3803. special_vocab.add_to_gguf(self.gguf_writer)
  3804. def set_gguf_parameters(self):
  3805. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3806. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3807. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3808. rms_eps = self.find_hparam(["rms_norm_eps"])
  3809. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3810. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3811. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3812. rope_dims = int(rot_pct * n_embd) // n_head
  3813. self.gguf_writer.add_context_length(max_pos_embds)
  3814. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3815. self.gguf_writer.add_embedding_length(n_embd)
  3816. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3817. self.gguf_writer.add_block_count(self.block_count)
  3818. self.gguf_writer.add_head_count(n_head)
  3819. self.gguf_writer.add_head_count_kv(n_head_kv)
  3820. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3821. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3822. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3823. self.gguf_writer.add_file_type(self.ftype)
  3824. sliding_window = self.hparams.get("sliding_window")
  3825. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3826. if sliding_window is None:
  3827. sliding_window = 0
  3828. self.gguf_writer.add_sliding_window(sliding_window)
  3829. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3830. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3831. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3832. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3833. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3834. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3835. rope_dims = int(rot_pct * n_embd) // n_head
  3836. # write rope scaling for long context (128k) model
  3837. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3838. if rope_scaling is None:
  3839. return
  3840. scale = max_pos_embds / orig_max_pos_embds
  3841. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3842. if len(rope_scaling_type) == 0:
  3843. raise KeyError('Missing the required key rope_scaling.type')
  3844. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3845. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3846. elif rope_scaling_type == 'yarn':
  3847. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3848. else:
  3849. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3850. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3851. long_factors = rope_scaling.get('long_factor', None)
  3852. short_factors = rope_scaling.get('short_factor', None)
  3853. if long_factors is None or short_factors is None:
  3854. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3855. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3856. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3857. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3858. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3859. @ModelBase.register("PhiMoEForCausalLM")
  3860. class PhiMoeModel(Phi3MiniModel):
  3861. model_arch = gguf.MODEL_ARCH.PHIMOE
  3862. _experts: list[dict[str, Tensor]] | None = None
  3863. def set_gguf_parameters(self):
  3864. super().set_gguf_parameters()
  3865. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3866. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3867. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3868. # process the experts separately
  3869. if name.find("block_sparse_moe.experts") != -1:
  3870. n_experts = self.hparams["num_local_experts"]
  3871. assert bid is not None
  3872. if self._experts is None:
  3873. self._experts = [{} for _ in range(self.block_count)]
  3874. self._experts[bid][name] = data_torch
  3875. if len(self._experts[bid]) >= n_experts * 3:
  3876. tensors: list[tuple[str, Tensor]] = []
  3877. # merge the experts into a single 3d tensor
  3878. for w_name in ["w1", "w2", "w3"]:
  3879. datas: list[Tensor] = []
  3880. for xid in range(n_experts):
  3881. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3882. datas.append(self._experts[bid][ename])
  3883. del self._experts[bid][ename]
  3884. data_torch = torch.stack(datas, dim=0)
  3885. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3886. new_name = self.map_tensor_name(merged_name)
  3887. tensors.append((new_name, data_torch))
  3888. return tensors
  3889. else:
  3890. return []
  3891. return [(self.map_tensor_name(name), data_torch)]
  3892. def prepare_tensors(self):
  3893. super().prepare_tensors()
  3894. if self._experts is not None:
  3895. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3896. experts = [k for d in self._experts for k in d.keys()]
  3897. if len(experts) > 0:
  3898. raise ValueError(f"Unprocessed experts: {experts}")
  3899. @ModelBase.register("PlamoForCausalLM")
  3900. class PlamoModel(TextModel):
  3901. model_arch = gguf.MODEL_ARCH.PLAMO
  3902. def set_vocab(self):
  3903. self._set_vocab_sentencepiece()
  3904. def set_gguf_parameters(self):
  3905. hparams = self.hparams
  3906. self.gguf_writer.add_context_length(4096) # not in config.json
  3907. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3908. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3909. self.gguf_writer.add_block_count(self.block_count)
  3910. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3911. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3912. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3913. self.gguf_writer.add_file_type(self.ftype)
  3914. def shuffle_attn_q_weight(self, data_torch):
  3915. assert data_torch.size() == (5120, 5120)
  3916. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3917. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3918. data_torch = torch.reshape(data_torch, (5120, 5120))
  3919. return data_torch
  3920. def shuffle_attn_output_weight(self, data_torch):
  3921. assert data_torch.size() == (5120, 5120)
  3922. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3923. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3924. data_torch = torch.reshape(data_torch, (5120, 5120))
  3925. return data_torch
  3926. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3927. del bid # unused
  3928. new_name = self.map_tensor_name(name)
  3929. # shuffle for broadcasting of gqa in ggml_mul_mat
  3930. if new_name.endswith("attn_q.weight"):
  3931. data_torch = self.shuffle_attn_q_weight(data_torch)
  3932. elif new_name.endswith("attn_output.weight"):
  3933. data_torch = self.shuffle_attn_output_weight(data_torch)
  3934. return [(new_name, data_torch)]
  3935. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3936. class Plamo2Model(TextModel):
  3937. model_arch = gguf.MODEL_ARCH.PLAMO2
  3938. def set_vocab(self):
  3939. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3940. # We need to handle this specially
  3941. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3942. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3943. if not tokenizer_jsonl_path.is_file():
  3944. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3945. # Load tokenizer config
  3946. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3947. tokenizer_config = json.load(f)
  3948. # Load tokens from JSONL file (actually a list format)
  3949. tokens = []
  3950. scores = []
  3951. toktypes = []
  3952. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3953. for line_num, line in enumerate(f):
  3954. if line.strip():
  3955. token_data = json.loads(line)
  3956. # Format: [token, score, type, ?, ?, ?, ?]
  3957. token = token_data[0].encode("utf-8")
  3958. score = float(token_data[1])
  3959. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3960. tokens.append(token)
  3961. scores.append(score)
  3962. # Map token type strings to GGUF token types
  3963. if token_type_str == "UNKNOWN":
  3964. toktypes.append(gguf.TokenType.UNKNOWN)
  3965. elif token_type_str == "CONTROL":
  3966. toktypes.append(gguf.TokenType.CONTROL)
  3967. elif token_type_str == "BYTE":
  3968. toktypes.append(gguf.TokenType.BYTE)
  3969. else:
  3970. # Check for PLaMo-2 special tokens
  3971. token_str = token_data[0]
  3972. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3973. toktypes.append(gguf.TokenType.CONTROL)
  3974. else:
  3975. toktypes.append(gguf.TokenType.NORMAL)
  3976. vocab_size = self.hparams["vocab_size"]
  3977. if vocab_size > len(tokens):
  3978. pad_count = vocab_size - len(tokens)
  3979. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3980. for i in range(1, pad_count + 1):
  3981. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3982. scores.append(-1000.0)
  3983. toktypes.append(gguf.TokenType.UNUSED)
  3984. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3985. self.gguf_writer.add_tokenizer_model("plamo2")
  3986. self.gguf_writer.add_tokenizer_pre("default")
  3987. self.gguf_writer.add_token_list(tokens)
  3988. self.gguf_writer.add_token_scores(scores)
  3989. self.gguf_writer.add_token_types(toktypes)
  3990. # Add special tokens from config
  3991. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3992. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3993. self.gguf_writer.add_bos_token_id(token_id)
  3994. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3995. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3996. self.gguf_writer.add_eos_token_id(token_id)
  3997. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3998. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3999. self.gguf_writer.add_pad_token_id(token_id)
  4000. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  4001. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  4002. self.gguf_writer.add_sep_token_id(token_id)
  4003. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  4004. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  4005. self.gguf_writer.add_unk_token_id(token_id)
  4006. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  4007. self.gguf_writer.add_eot_token_id(4)
  4008. self.gguf_writer.add_add_space_prefix(False)
  4009. def set_gguf_parameters(self):
  4010. hparams = self.hparams
  4011. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4012. # Which layers are Mamba layers
  4013. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4014. # This logic matches modeling_plamo.py's is_mamba function
  4015. mamba_step = hparams.get("mamba_step", 2)
  4016. mamba_enabled = hparams.get("mamba_enabled", True)
  4017. num_key_value_heads = []
  4018. num_attention_heads = []
  4019. if mamba_enabled:
  4020. for i in range(self.block_count):
  4021. if self.block_count <= (mamba_step // 2):
  4022. # use attention in last layer
  4023. is_mamba = (i != self.block_count - 1)
  4024. else:
  4025. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4026. if is_mamba:
  4027. num_key_value_heads.append(0)
  4028. num_attention_heads.append(0)
  4029. else:
  4030. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4031. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4032. if num_key_value_heads and num_attention_heads:
  4033. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4034. self.gguf_writer.add_head_count(num_attention_heads)
  4035. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4036. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4037. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4038. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4039. self.gguf_writer.add_block_count(self.block_count)
  4040. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4041. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  4042. # Mamba parameters
  4043. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4044. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4045. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4046. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4047. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4048. self.gguf_writer.add_ssm_group_count(0)
  4049. # MLP feed forward parameters (for attention layers)
  4050. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4051. self.gguf_writer.add_file_type(self.ftype)
  4052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4053. del bid # unused
  4054. if name.endswith(".A_log"):
  4055. data_torch = -torch.exp(data_torch)
  4056. elif name.endswith(".dt_bias"):
  4057. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4058. elif name.endswith(".dt_norm_weight"):
  4059. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4060. elif name.endswith(".B_norm_weight"):
  4061. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4062. elif name.endswith(".C_norm_weight"):
  4063. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4064. elif name.endswith(".k_weight"):
  4065. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4066. elif name.endswith(".q_weight"):
  4067. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4068. elif name.endswith(".conv1d.weight"):
  4069. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4070. assert data_torch.ndim == 2
  4071. elif name.endswith(".pre_mixer_norm.weight"):
  4072. data_torch += 1.0
  4073. elif name.endswith(".post_mixer_norm.weight"):
  4074. data_torch += 1.0 / 5
  4075. elif name.endswith(".pre_mlp_norm.weight"):
  4076. data_torch += 1.0
  4077. elif name.endswith(".post_mlp_norm.weight"):
  4078. data_torch += 1.0 / (5**1.5)
  4079. elif name.endswith(".norm.weight"):
  4080. data_torch += 1.0
  4081. new_name = self.map_tensor_name(name)
  4082. return [(new_name, data_torch)]
  4083. @ModelBase.register("CodeShellForCausalLM")
  4084. class CodeShellModel(TextModel):
  4085. model_arch = gguf.MODEL_ARCH.CODESHELL
  4086. def set_gguf_parameters(self):
  4087. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4088. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4089. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4090. self.gguf_writer.add_block_count(self.block_count)
  4091. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4092. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4093. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4094. self.gguf_writer.add_file_type(self.ftype)
  4095. self.gguf_writer.add_rope_freq_base(10000.0)
  4096. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4097. self.gguf_writer.add_rope_scaling_factor(1.0)
  4098. @ModelBase.register("InternLM2ForCausalLM")
  4099. class InternLM2Model(TextModel):
  4100. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4101. def set_vocab(self):
  4102. # (TODO): Is there a better way?
  4103. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4104. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4105. # recognized as an empty string in C++.
  4106. from sentencepiece import SentencePieceProcessor
  4107. from sentencepiece import sentencepiece_model_pb2 as model
  4108. tokenizer_path = self.dir_model / 'tokenizer.model'
  4109. tokens: list[bytes] = []
  4110. scores: list[float] = []
  4111. toktypes: list[int] = []
  4112. if not tokenizer_path.is_file():
  4113. logger.error(f'Error: Missing {tokenizer_path}')
  4114. sys.exit(1)
  4115. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4116. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4117. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4118. tokenizer = SentencePieceProcessor()
  4119. tokenizer.LoadFromFile(str(tokenizer_path))
  4120. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4121. for token_id in range(vocab_size):
  4122. piece = tokenizer.IdToPiece(token_id)
  4123. text = piece.encode("utf-8")
  4124. score = tokenizer.GetScore(token_id)
  4125. if text == b"\x00":
  4126. # (TODO): fixme
  4127. # Hack here and replace the \x00 characters.
  4128. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4129. text = "🐉".encode("utf-8")
  4130. toktype = SentencePieceTokenTypes.NORMAL
  4131. if tokenizer.IsUnknown(token_id):
  4132. toktype = SentencePieceTokenTypes.UNKNOWN
  4133. elif tokenizer.IsControl(token_id):
  4134. toktype = SentencePieceTokenTypes.CONTROL
  4135. elif tokenizer.IsUnused(token_id):
  4136. toktype = SentencePieceTokenTypes.UNUSED
  4137. elif tokenizer.IsByte(token_id):
  4138. toktype = SentencePieceTokenTypes.BYTE
  4139. # take care of ununsed raw token
  4140. if piece.startswith('[UNUSED'):
  4141. toktype = SentencePieceTokenTypes.UNUSED
  4142. tokens.append(text)
  4143. scores.append(score)
  4144. toktypes.append(toktype)
  4145. added_tokens_file = self.dir_model / 'added_tokens.json'
  4146. if added_tokens_file.is_file():
  4147. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4148. added_tokens_json = json.load(f)
  4149. for key in added_tokens_json:
  4150. tokens.append(key.encode("utf-8"))
  4151. scores.append(-1000.0)
  4152. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4153. chat_eos_token = '<|im_end|>'
  4154. chat_eos_token_id = None
  4155. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4156. if tokenizer_config_file.is_file():
  4157. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4158. tokenizer_config_json = json.load(f)
  4159. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4160. for token_id, foken_data in added_tokens_decoder.items():
  4161. token_id = int(token_id)
  4162. token = foken_data["content"]
  4163. if token == chat_eos_token:
  4164. chat_eos_token_id = token_id
  4165. token = token.encode("utf-8")
  4166. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4167. if tokens[token_id] != token:
  4168. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4169. tokens[token_id] = token
  4170. scores[token_id] = -1000.0
  4171. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4172. if foken_data.get("special"):
  4173. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4174. tokenizer_file = self.dir_model / 'tokenizer.json'
  4175. if tokenizer_file.is_file():
  4176. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4177. tokenizer_json = json.load(f)
  4178. added_tokens = tokenizer_json.get("added_tokens", [])
  4179. for foken_data in added_tokens:
  4180. token_id = int(foken_data["id"])
  4181. token = foken_data["content"]
  4182. if token == chat_eos_token:
  4183. chat_eos_token_id = token_id
  4184. token = token.encode("utf-8")
  4185. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4186. if tokens[token_id] != token:
  4187. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4188. tokens[token_id] = token
  4189. scores[token_id] = -1000.0
  4190. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4191. if foken_data.get("special"):
  4192. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4193. self.gguf_writer.add_tokenizer_model("llama")
  4194. self.gguf_writer.add_tokenizer_pre("default")
  4195. self.gguf_writer.add_token_list(tokens)
  4196. self.gguf_writer.add_token_scores(scores)
  4197. self.gguf_writer.add_token_types(toktypes)
  4198. self.gguf_writer.add_add_space_prefix(add_prefix)
  4199. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4200. old_eos = special_vocab.special_token_ids["eos"]
  4201. if chat_eos_token_id is not None:
  4202. # For the chat model, we replace the eos with '<|im_end|>'.
  4203. # TODO: this is a hack, should be fixed
  4204. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4205. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4206. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4207. " in chat mode so that the conversation can end normally.")
  4208. special_vocab.add_to_gguf(self.gguf_writer)
  4209. def set_gguf_parameters(self):
  4210. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  4211. self.gguf_writer.add_block_count(self.block_count)
  4212. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  4213. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4214. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  4215. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4216. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4217. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  4218. self.gguf_writer.add_file_type(self.ftype)
  4219. rope_scaling = self.hparams.get("rope_scaling") or {}
  4220. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4221. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4222. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4224. num_heads = self.hparams["num_attention_heads"]
  4225. num_kv_heads = self.hparams["num_key_value_heads"]
  4226. n_embd = self.hparams["hidden_size"]
  4227. q_per_kv = num_heads // num_kv_heads
  4228. head_dim = n_embd // num_heads
  4229. num_groups = num_heads // q_per_kv
  4230. name = name.replace("language_model.", "") # InternVL
  4231. if name.startswith("mlp") or name.startswith("vision_model"):
  4232. # skip visual tensors
  4233. return []
  4234. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4235. qkv = data_torch
  4236. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4237. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4238. # The model weights of q and k equire additional reshape.
  4239. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4240. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4241. v = v.reshape((-1, v.shape[-1]))
  4242. return [
  4243. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4244. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4245. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4246. ]
  4247. else:
  4248. return [(self.map_tensor_name(name), data_torch)]
  4249. @ModelBase.register("InternLM3ForCausalLM")
  4250. class InternLM3Model(TextModel):
  4251. model_arch = gguf.MODEL_ARCH.LLAMA
  4252. def set_vocab(self):
  4253. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4254. self.gguf_writer.add_tokenizer_model("llama")
  4255. self.gguf_writer.add_tokenizer_pre("default")
  4256. self.gguf_writer.add_token_list(tokens)
  4257. self.gguf_writer.add_token_scores(scores)
  4258. self.gguf_writer.add_token_types(toktypes)
  4259. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4260. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4261. if tokenizer_config_file.is_file():
  4262. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4263. tokenizer_config_json = json.load(f)
  4264. if "add_prefix_space" in tokenizer_config_json:
  4265. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4266. if "added_tokens_decoder" in tokenizer_config_json:
  4267. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4268. if token_data.get("special"):
  4269. token_id = int(token_id)
  4270. token = token_data["content"]
  4271. special_vocab._set_special_token(token, token_id)
  4272. # update eos token
  4273. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4274. special_vocab.special_token_ids["eos"] = token_id
  4275. special_vocab.add_to_gguf(self.gguf_writer)
  4276. def set_gguf_parameters(self):
  4277. super().set_gguf_parameters()
  4278. hparams = self.hparams
  4279. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4280. if (rope_dim := hparams.get("head_dim")) is None:
  4281. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4282. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4283. rope_scaling = self.hparams.get("rope_scaling") or {}
  4284. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4285. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4286. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4288. n_head = self.hparams["num_attention_heads"]
  4289. n_kv_head = self.hparams.get("num_key_value_heads")
  4290. name = name.replace("language_model.", "") # InternVL
  4291. if name.startswith("mlp") or name.startswith("vision_model"):
  4292. # skip visual tensors
  4293. return []
  4294. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4295. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4296. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4297. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4298. return [(self.map_tensor_name(name), data_torch)]
  4299. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4300. class BertModel(TextModel):
  4301. model_arch = gguf.MODEL_ARCH.BERT
  4302. def __init__(self, *args, **kwargs):
  4303. super().__init__(*args, **kwargs)
  4304. self.vocab_size = None
  4305. if cls_out_labels := self.hparams.get("id2label"):
  4306. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4307. # Remove dummy labels added by AutoConfig
  4308. cls_out_labels = None
  4309. self.cls_out_labels = cls_out_labels
  4310. def set_gguf_parameters(self):
  4311. super().set_gguf_parameters()
  4312. self.gguf_writer.add_causal_attention(False)
  4313. self._try_set_pooling_type()
  4314. if self.cls_out_labels:
  4315. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4316. def set_vocab(self):
  4317. tokens, toktypes, tokpre = self.get_vocab_base()
  4318. self.vocab_size = len(tokens)
  4319. # we need this to validate the size of the token_type embeddings
  4320. # though currently we are passing all zeros to the token_type embeddings
  4321. # "Sequence A" or "Sequence B"
  4322. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4323. # convert to phantom space vocab
  4324. def phantom(tok):
  4325. if tok.startswith("[") and tok.endswith("]"):
  4326. return tok
  4327. if tok.startswith("##"):
  4328. return tok[2:]
  4329. return "\u2581" + tok
  4330. tokens = list(map(phantom, tokens))
  4331. # add vocab to gguf
  4332. self.gguf_writer.add_tokenizer_model("bert")
  4333. self.gguf_writer.add_tokenizer_pre(tokpre)
  4334. self.gguf_writer.add_token_list(tokens)
  4335. self.gguf_writer.add_token_types(toktypes)
  4336. # handle special tokens
  4337. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4338. special_vocab.add_to_gguf(self.gguf_writer)
  4339. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4340. del bid # unused
  4341. if name.startswith("bert."):
  4342. name = name[5:]
  4343. if name.endswith(".gamma"):
  4344. name = name[:-6] + ".weight"
  4345. if name.endswith(".beta"):
  4346. name = name[:-5] + ".bias"
  4347. # we are only using BERT for embeddings so we don't need the pooling layer
  4348. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4349. return [] # we don't need these
  4350. if name.startswith("cls.predictions"):
  4351. return []
  4352. if name.startswith("cls.seq_relationship"):
  4353. return []
  4354. if self.cls_out_labels:
  4355. # For BertForSequenceClassification (direct projection layer)
  4356. if name == "classifier.weight":
  4357. name = "classifier.out_proj.weight"
  4358. if name == "classifier.bias":
  4359. name = "classifier.out_proj.bias"
  4360. return [(self.map_tensor_name(name), data_torch)]
  4361. def _xlmroberta_tokenizer_init(self) -> None:
  4362. # we need the pad_token_id to know how to chop down position_embd matrix
  4363. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4364. self._position_offset = 1 + pad_token_id
  4365. if "max_position_embeddings" in self.hparams:
  4366. self.hparams["max_position_embeddings"] -= self._position_offset
  4367. else:
  4368. self._position_offset = None
  4369. def _xlmroberta_set_vocab(self) -> None:
  4370. # to avoid TypeError: Descriptors cannot be created directly
  4371. # exception when importing sentencepiece_model_pb2
  4372. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4373. from sentencepiece import SentencePieceProcessor
  4374. from sentencepiece import sentencepiece_model_pb2 as model
  4375. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4376. tokenizer_json = {}
  4377. tokenizer_config_json = {}
  4378. if not tokenizer_path.is_file():
  4379. tokenizer_path = self.dir_model / 'tokenizer.json'
  4380. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4381. if not tokenizer_path.is_file():
  4382. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4383. from base64 import b64decode
  4384. from transformers import AutoTokenizer
  4385. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4386. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4387. tokenizer_json = json.load(fp)
  4388. if tokenizer_config_path.is_file():
  4389. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4390. tokenizer_config_json = json.load(fp)
  4391. add_prefix = tokenizer.add_prefix_space
  4392. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4393. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4394. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4395. else:
  4396. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4397. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4398. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4399. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4400. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4401. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4402. tokenizer = SentencePieceProcessor()
  4403. tokenizer.LoadFromFile(str(tokenizer_path))
  4404. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4405. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4406. scores: list[float] = [-10000.0] * vocab_size
  4407. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4408. if isinstance(tokenizer, SentencePieceProcessor):
  4409. for token_id in range(tokenizer.vocab_size()):
  4410. piece = tokenizer.IdToPiece(token_id)
  4411. text = piece.encode("utf-8")
  4412. score = tokenizer.GetScore(token_id)
  4413. toktype = SentencePieceTokenTypes.NORMAL
  4414. if tokenizer.IsUnknown(token_id):
  4415. toktype = SentencePieceTokenTypes.UNKNOWN
  4416. elif tokenizer.IsControl(token_id):
  4417. toktype = SentencePieceTokenTypes.CONTROL
  4418. elif tokenizer.IsUnused(token_id):
  4419. toktype = SentencePieceTokenTypes.UNUSED
  4420. elif tokenizer.IsByte(token_id):
  4421. toktype = SentencePieceTokenTypes.BYTE
  4422. tokens[token_id] = text
  4423. scores[token_id] = score
  4424. toktypes[token_id] = toktype
  4425. else:
  4426. added_vocab = tokenizer.get_added_vocab()
  4427. unk_token = tokenizer_config_json.get("unk_token")
  4428. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4429. for token_id in range(tokenizer.vocab_size):
  4430. piece = tokenizer._convert_id_to_token(token_id)
  4431. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4432. text = piece.encode("utf-8")
  4433. score = tokenizer_json["model"]["vocab"][token_id][1]
  4434. toktype = SentencePieceTokenTypes.NORMAL
  4435. if token_id == unk_token_id:
  4436. toktype = SentencePieceTokenTypes.UNKNOWN
  4437. elif token_id in tokenizer.all_special_ids:
  4438. toktype = SentencePieceTokenTypes.CONTROL
  4439. elif token_id in added_vocab.values():
  4440. toktype = SentencePieceTokenTypes.USER_DEFINED
  4441. # No reliable way to detect this, but jina doesn't have any
  4442. # elif tokenizer.IsByte(token_id):
  4443. # toktype = SentencePieceTokenTypes.BYTE
  4444. tokens[token_id] = text
  4445. scores[token_id] = score
  4446. toktypes[token_id] = toktype
  4447. if isinstance(tokenizer, SentencePieceProcessor):
  4448. # realign tokens (see HF tokenizer code)
  4449. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4450. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4451. toktypes = [
  4452. SentencePieceTokenTypes.CONTROL,
  4453. SentencePieceTokenTypes.CONTROL,
  4454. SentencePieceTokenTypes.CONTROL,
  4455. SentencePieceTokenTypes.UNKNOWN,
  4456. ] + toktypes[3:-1]
  4457. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4458. # Add mask token missing from sentencepiece.bpe.model
  4459. tokens[250001] = b'<mask>'
  4460. scores[250001] = 0.0
  4461. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4462. self.gguf_writer.add_tokenizer_model("t5")
  4463. self.gguf_writer.add_tokenizer_pre("default")
  4464. self.gguf_writer.add_token_list(tokens)
  4465. self.gguf_writer.add_token_scores(scores)
  4466. self.gguf_writer.add_token_types(toktypes)
  4467. self.gguf_writer.add_add_space_prefix(add_prefix)
  4468. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4469. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4470. if precompiled_charsmap:
  4471. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4472. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4473. special_vocab.add_to_gguf(self.gguf_writer)
  4474. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4475. class DistilBertModel(BertModel):
  4476. model_arch = gguf.MODEL_ARCH.BERT
  4477. def set_gguf_parameters(self):
  4478. self.gguf_writer.add_layer_norm_eps(1e-12)
  4479. logger.info("gguf: layer norm epsilon = 1e-12")
  4480. super().set_gguf_parameters()
  4481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4482. if name.startswith("distilbert."):
  4483. name = name[11:]
  4484. # These layers act as MLM head, so we don't need them
  4485. if name.startswith("vocab_"):
  4486. return []
  4487. return super().modify_tensors(data_torch, name, bid)
  4488. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4489. class RobertaModel(BertModel):
  4490. model_arch = gguf.MODEL_ARCH.BERT
  4491. def __init__(self, *args, **kwargs):
  4492. super().__init__(*args, **kwargs)
  4493. # we need the pad_token_id to know how to chop down position_embd matrix
  4494. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4495. self._position_offset = 1 + pad_token_id
  4496. if "max_position_embeddings" in self.hparams:
  4497. self.hparams["max_position_embeddings"] -= self._position_offset
  4498. else:
  4499. self._position_offset = None
  4500. def set_vocab(self):
  4501. """Support BPE tokenizers for roberta models"""
  4502. bpe_tok_path = self.dir_model / "tokenizer.json"
  4503. if bpe_tok_path.exists():
  4504. self._set_vocab_gpt2()
  4505. # we need this to validate the size of the token_type embeddings
  4506. # though currently we are passing all zeros to the token_type embeddings
  4507. # "Sequence A" or "Sequence B"
  4508. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4509. else:
  4510. return super().set_vocab()
  4511. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4512. # if name starts with "roberta.", remove the prefix
  4513. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4514. if name.startswith("roberta."):
  4515. name = name[8:]
  4516. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4517. if name == "embeddings.position_embeddings.weight":
  4518. if self._position_offset is not None:
  4519. data_torch = data_torch[self._position_offset:,:]
  4520. return super().modify_tensors(data_torch, name, bid)
  4521. @ModelBase.register("NomicBertModel")
  4522. class NomicBertModel(BertModel):
  4523. model_arch = gguf.MODEL_ARCH.BERT
  4524. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4525. hparams = kwargs.pop("hparams", None)
  4526. if hparams is None:
  4527. hparams = ModelBase.load_hparams(dir_model, False)
  4528. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4529. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4530. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4531. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4532. if self._tokenizer_is_xlmroberta:
  4533. self._xlmroberta_tokenizer_init()
  4534. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4535. if npos == 8192 and mtp == 2048:
  4536. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4537. elif npos == 2048 and mtp == 2048:
  4538. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4539. else:
  4540. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4541. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4542. # this doesn't do anything in the HF version
  4543. assert self.hparams["causal"] is False
  4544. # no bias tensors unless MoE
  4545. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4546. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4547. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4548. # norm at end of layer
  4549. assert self.hparams["prenorm"] is False
  4550. # standard RoPE
  4551. assert self.hparams["rotary_emb_fraction"] == 1.0
  4552. assert self.hparams["rotary_emb_interleaved"] is False
  4553. assert self.hparams["rotary_emb_scale_base"] is None
  4554. def set_vocab(self) -> None:
  4555. if self._tokenizer_is_xlmroberta:
  4556. return self._xlmroberta_set_vocab()
  4557. return super().set_vocab()
  4558. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4559. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4560. if "mlp.experts.bias" in name:
  4561. return [] # Explicitly return an empty list.
  4562. if "mlp.experts.mlp.w1" in name:
  4563. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4564. name += ".weight"
  4565. if "mlp.experts.mlp.w2" in name:
  4566. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4567. data_torch = data_torch.transpose(1, 2)
  4568. name += ".weight"
  4569. return [(self.map_tensor_name(name), data_torch)]
  4570. def set_gguf_parameters(self):
  4571. super().set_gguf_parameters()
  4572. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4573. if self.is_moe:
  4574. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4575. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4576. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4577. def _is_tokenizer_xlmroberta(self) -> bool:
  4578. with open(self.dir_model / "tokenizer.json") as f:
  4579. tokenizer_json = json.load(f)
  4580. toktyp = tokenizer_json["model"]["type"]
  4581. if toktyp == "Unigram":
  4582. return True
  4583. if toktyp == "WordPiece":
  4584. return False
  4585. raise ValueError(f"unknown tokenizer: {toktyp}")
  4586. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4587. class NeoBert(BertModel):
  4588. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4589. def set_gguf_parameters(self):
  4590. super().set_gguf_parameters()
  4591. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4592. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4593. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4594. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4595. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4596. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4597. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4598. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4599. def modify_tensors(self, data_torch, name, bid):
  4600. if name.startswith("decoder."):
  4601. return []
  4602. if name.startswith("model."):
  4603. name = name[6:]
  4604. return super().modify_tensors(data_torch, name, bid)
  4605. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4606. class XLMRobertaModel(BertModel):
  4607. model_arch = gguf.MODEL_ARCH.BERT
  4608. _lora_files = {}
  4609. _lora_names = []
  4610. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4611. hparams = kwargs.pop("hparams", None)
  4612. if hparams is None:
  4613. hparams = ModelBase.load_hparams(dir_model, False)
  4614. if lora_names := hparams.get("lora_adaptations"):
  4615. self._lora_names = lora_names
  4616. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4617. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4618. self._xlmroberta_tokenizer_init()
  4619. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4620. if self._lora_names:
  4621. for name in self._lora_names:
  4622. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4623. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4624. return super().generate_extra_tensors()
  4625. def set_type(self):
  4626. for lora_writer in self._lora_files.values():
  4627. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4628. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4629. super().set_type()
  4630. def set_vocab(self):
  4631. self._xlmroberta_set_vocab()
  4632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4633. # if name starts with "roberta.", remove the prefix
  4634. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4635. if name.startswith("roberta."):
  4636. name = name[8:]
  4637. # jina-embeddings-v3
  4638. if ".parametrizations." in name:
  4639. name = name.replace(".parametrizations.", ".")
  4640. if name.endswith(".original"):
  4641. name = name[:-9]
  4642. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4643. if name == "embeddings.position_embeddings.weight":
  4644. if self._position_offset is not None:
  4645. data_torch = data_torch[self._position_offset:,:]
  4646. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4647. if name.startswith("pooler.dense"):
  4648. return []
  4649. num_loras = data_torch.size(0)
  4650. assert num_loras == len(self._lora_names)
  4651. # Split out each LoRA in their own GGUF
  4652. for i, lora_writer in enumerate(self._lora_files.values()):
  4653. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4654. data = data_torch[i, :, :]
  4655. # Transpose/flip token_embd/types into correct shape
  4656. if new_name == "token_embd.weight.lora_b":
  4657. data = data.T
  4658. elif new_name.startswith("token_types.weight."):
  4659. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4660. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4661. return []
  4662. return super().modify_tensors(data_torch, name, bid)
  4663. def set_gguf_parameters(self):
  4664. super().set_gguf_parameters()
  4665. # jina-embeddings-v3
  4666. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4667. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4668. lora_alpha = self.hparams.get("lora_alpha")
  4669. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4670. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4671. for lora_name, lora_writer in self._lora_files.items():
  4672. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4673. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4674. if lora_prompt_prefixes:
  4675. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4676. def write(self):
  4677. super().write()
  4678. for lora_writer in self._lora_files.values():
  4679. lora_writer.write_header_to_file()
  4680. lora_writer.write_kv_data_to_file()
  4681. lora_writer.write_tensors_to_file(progress=True)
  4682. lora_writer.close()
  4683. @ModelBase.register("GemmaForCausalLM")
  4684. class GemmaModel(TextModel):
  4685. model_arch = gguf.MODEL_ARCH.GEMMA
  4686. def set_vocab(self):
  4687. self._set_vocab_sentencepiece()
  4688. # TODO: these special tokens should be exported only for the CodeGemma family
  4689. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4690. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4691. special_vocab._set_special_token("prefix", 67)
  4692. special_vocab._set_special_token("suffix", 69)
  4693. special_vocab._set_special_token("middle", 68)
  4694. special_vocab._set_special_token("fsep", 70)
  4695. special_vocab._set_special_token("eot", 107)
  4696. special_vocab.chat_template = None # do not add it twice
  4697. special_vocab.add_to_gguf(self.gguf_writer)
  4698. self.gguf_writer.add_add_space_prefix(False)
  4699. def set_gguf_parameters(self):
  4700. hparams = self.hparams
  4701. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4702. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4703. self.gguf_writer.add_block_count(self.block_count)
  4704. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4705. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4706. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4707. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4708. self.gguf_writer.add_key_length(hparams["head_dim"])
  4709. self.gguf_writer.add_value_length(hparams["head_dim"])
  4710. self.gguf_writer.add_file_type(self.ftype)
  4711. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4712. del bid # unused
  4713. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4714. # To prevent errors, skip loading lm_head.weight.
  4715. if name == "lm_head.weight":
  4716. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4717. return []
  4718. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4719. if name.endswith("norm.weight"):
  4720. data_torch = data_torch + 1
  4721. return [(self.map_tensor_name(name), data_torch)]
  4722. @ModelBase.register("Gemma2ForCausalLM")
  4723. class Gemma2Model(TextModel):
  4724. model_arch = gguf.MODEL_ARCH.GEMMA2
  4725. def set_vocab(self):
  4726. self._set_vocab_sentencepiece()
  4727. self.gguf_writer.add_add_space_prefix(False)
  4728. def set_gguf_parameters(self):
  4729. hparams = self.hparams
  4730. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4731. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4732. self.gguf_writer.add_block_count(self.block_count)
  4733. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4734. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4735. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4736. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4737. self.gguf_writer.add_key_length(hparams["head_dim"])
  4738. self.gguf_writer.add_value_length(hparams["head_dim"])
  4739. self.gguf_writer.add_file_type(self.ftype)
  4740. self.gguf_writer.add_attn_logit_softcapping(
  4741. self.hparams["attn_logit_softcapping"]
  4742. )
  4743. self.gguf_writer.add_final_logit_softcapping(
  4744. self.hparams["final_logit_softcapping"]
  4745. )
  4746. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4747. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4748. del bid # unused
  4749. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4750. # To prevent errors, skip loading lm_head.weight.
  4751. if name == "lm_head.weight":
  4752. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4753. return []
  4754. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4755. if name.endswith("norm.weight"):
  4756. data_torch = data_torch + 1
  4757. return [(self.map_tensor_name(name), data_torch)]
  4758. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4759. class Gemma3Model(TextModel):
  4760. model_arch = gguf.MODEL_ARCH.GEMMA3
  4761. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4762. def set_vocab(self):
  4763. self._set_vocab_sentencepiece()
  4764. self.gguf_writer.add_add_space_prefix(False)
  4765. def set_gguf_parameters(self):
  4766. hparams = self.hparams
  4767. # some default values are not specified in the hparams
  4768. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4769. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4770. self.gguf_writer.add_block_count(self.block_count)
  4771. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4772. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4773. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4774. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4775. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4776. self.gguf_writer.add_file_type(self.ftype)
  4777. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4778. # attn_logit_softcapping is removed in Gemma3
  4779. assert hparams.get("attn_logit_softcapping") is None
  4780. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4781. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4782. if hparams.get("rope_scaling") is not None:
  4783. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4784. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4785. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4786. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4787. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4788. del bid # unused
  4789. if "language_model." in name:
  4790. name = name.replace("language_model.", "")
  4791. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4792. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4793. return [] # skip vision tensors
  4794. # remove OOV (out-of-vocabulary) rows in token_embd
  4795. if "embed_tokens.weight" in name:
  4796. vocab = self._create_vocab_sentencepiece()
  4797. tokens = vocab[0]
  4798. data_torch = data_torch[:len(tokens)]
  4799. # ref code in Gemma3RMSNorm
  4800. # output = output * (1.0 + self.weight.float())
  4801. # note: this is not the case on gemma3n
  4802. if name.endswith("norm.weight"):
  4803. data_torch = data_torch + self.norm_shift
  4804. return [(self.map_tensor_name(name), data_torch)]
  4805. @ModelBase.register("Gemma3TextModel")
  4806. class EmbeddingGemma(Gemma3Model):
  4807. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4808. module_paths = []
  4809. dense_features_dims = {}
  4810. def __init__(self, *args, **kwargs):
  4811. super().__init__(*args, **kwargs)
  4812. if self.sentence_transformers_dense_modules:
  4813. # read modules.json to determine if model has Dense layers
  4814. modules_file = self.dir_model / "modules.json"
  4815. if modules_file.is_file():
  4816. with open(modules_file, encoding="utf-8") as modules_json_file:
  4817. mods = json.load(modules_json_file)
  4818. for mod in mods:
  4819. if mod["type"] == "sentence_transformers.models.Dense":
  4820. mod_path = mod["path"]
  4821. # check if model.safetensors file for Dense layer exists
  4822. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4823. if model_tensors_file.is_file():
  4824. self.module_paths.append(mod_path)
  4825. # read config.json of the Dense layer to get in/out features
  4826. mod_conf_file = self.dir_model / mod_path / "config.json"
  4827. if mod_conf_file.is_file():
  4828. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4829. mod_conf = json.load(mod_conf_json_file)
  4830. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4831. prefix = self._get_dense_prefix(mod_path)
  4832. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4833. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4834. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4835. from safetensors.torch import load_file
  4836. module_paths = list(self.module_paths)
  4837. for i, module_path in enumerate(module_paths):
  4838. tensors_file = self.dir_model / module_path / "model.safetensors"
  4839. local_tensors = load_file(tensors_file)
  4840. tensor_name = self._get_dense_prefix(module_path)
  4841. for name, local_tensor in local_tensors.items():
  4842. if not name.endswith(".weight"):
  4843. continue
  4844. orig_name = name.replace("linear", tensor_name)
  4845. name = self.map_tensor_name(orig_name)
  4846. yield name, local_tensor.clone()
  4847. @staticmethod
  4848. def _get_dense_prefix(module_path) -> str:
  4849. """Get the tensor name prefix for the Dense layer from module path."""
  4850. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4851. return tensor_name
  4852. def set_gguf_parameters(self):
  4853. super().set_gguf_parameters()
  4854. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4855. # constructor. We want to use the value from the original model's config.json.
  4856. # ref: https://github.com/huggingface/transformers/pull/40700
  4857. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4858. config = json.load(f)
  4859. orig_sliding_window = config.get("sliding_window")
  4860. if orig_sliding_window is None:
  4861. raise ValueError("sliding_window not found in model config - this is required for the model")
  4862. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4863. f"instead of {self.hparams['sliding_window']}")
  4864. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4865. if self.sentence_transformers_dense_modules:
  4866. for dense, dims in self.dense_features_dims.items():
  4867. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4868. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4869. self._try_set_pooling_type()
  4870. @ModelBase.register("Gemma3ForConditionalGeneration")
  4871. class Gemma3VisionModel(MmprojModel):
  4872. def set_gguf_parameters(self):
  4873. super().set_gguf_parameters()
  4874. hparams = self.hparams
  4875. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4876. # default values below are taken from HF tranformers code
  4877. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4878. self.gguf_writer.add_vision_use_gelu(True)
  4879. # calculate proj_scale_factor (used by tinygemma3 test model)
  4880. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4881. n_per_side = int(image_seq_length ** 0.5)
  4882. image_size = self.hparams["image_size"]
  4883. patch_size = self.hparams["patch_size"]
  4884. proj_scale_factor = (image_size // patch_size) // n_per_side
  4885. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4886. # we only need to write this if it's not the default value
  4887. # in this case, we are converting a test model
  4888. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4889. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4890. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4891. if "input_projection" in name:
  4892. return gguf.GGMLQuantizationType.F16
  4893. if ".embeddings." in name:
  4894. return gguf.GGMLQuantizationType.F32
  4895. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4896. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4897. del bid # unused
  4898. if "vision_model.head." in name:
  4899. return [] # skip redundant tensors for tinygemma3
  4900. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4901. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4902. # process vision tensors
  4903. name = name.replace("_weight", ".weight")
  4904. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4905. # the other norm values are part of SigLIP model, and they are already correct
  4906. # ref code: Gemma3RMSNorm
  4907. if "soft_emb_norm.weight" in name:
  4908. logger.info(f"Correcting norm value for '{name}'")
  4909. data_torch = data_torch + 1
  4910. return [(self.map_tensor_name(name), data_torch)]
  4911. return [] # skip other tensors
  4912. @ModelBase.register("Gemma3nForConditionalGeneration")
  4913. class Gemma3NModel(Gemma3Model):
  4914. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4915. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4916. _altup_proj: list[Tensor] = []
  4917. _altup_unembd: list[Tensor] = []
  4918. def __init__(self, *args, **kwargs):
  4919. super().__init__(*args, **kwargs)
  4920. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4921. self._altup_proj = [
  4922. torch.Tensor(), # to be replaced
  4923. torch.Tensor(), # to be replaced
  4924. torch.Tensor(), # to be replaced
  4925. ]
  4926. self._altup_unembd = [
  4927. torch.Tensor(), # to be replaced
  4928. torch.Tensor(), # to be replaced
  4929. torch.Tensor(), # to be replaced
  4930. ]
  4931. def set_vocab(self):
  4932. super().set_vocab()
  4933. def set_gguf_parameters(self):
  4934. super().set_gguf_parameters()
  4935. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4936. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4937. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4938. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4939. activation_sparsity_scale = []
  4940. for s in self.hparams["activation_sparsity_pattern"]:
  4941. normal_dist = torch.distributions.normal.Normal(0, 1)
  4942. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4943. activation_sparsity_scale.append(std_multiplier.item())
  4944. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4945. sliding_window_pattern = []
  4946. for t in self.hparams["layer_types"]:
  4947. sliding_window_pattern.append(t == "sliding_attention")
  4948. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4949. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4950. has_all = all(m.numel() > 0 for m in matrices)
  4951. if not has_all:
  4952. return None
  4953. else:
  4954. return torch.stack(matrices, dim=0)
  4955. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4956. if name.endswith("_scale"):
  4957. name = name + ".weight"
  4958. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4959. if "language_model." not in name:
  4960. return [] # skip non-language model tensors
  4961. if "altup_unembed_projections" in name:
  4962. data_torch = data_torch.to(device="cpu")
  4963. if ".0." in name:
  4964. self._altup_unembd[0] = data_torch
  4965. elif ".1." in name:
  4966. self._altup_unembd[1] = data_torch
  4967. elif ".2." in name:
  4968. self._altup_unembd[2] = data_torch
  4969. else:
  4970. raise ValueError(f"Unknown name: {name}")
  4971. out = self._stack_matrices(self._altup_unembd)
  4972. if out is not None:
  4973. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4974. else:
  4975. return []
  4976. if "altup_projections" in name:
  4977. data_torch = data_torch.to(device="cpu")
  4978. if ".0." in name:
  4979. self._altup_proj[0] = data_torch
  4980. elif ".1." in name:
  4981. self._altup_proj[1] = data_torch
  4982. elif ".2." in name:
  4983. self._altup_proj[2] = data_torch
  4984. else:
  4985. raise ValueError(f"Unknown name: {name}")
  4986. out = self._stack_matrices(self._altup_proj)
  4987. if out is not None:
  4988. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4989. else:
  4990. return []
  4991. return super().modify_tensors(data_torch, name, bid)
  4992. @ModelBase.register("Starcoder2ForCausalLM")
  4993. class StarCoder2Model(TextModel):
  4994. model_arch = gguf.MODEL_ARCH.STARCODER2
  4995. @ModelBase.register("Rwkv6ForCausalLM")
  4996. class Rwkv6Model(TextModel):
  4997. model_arch = gguf.MODEL_ARCH.RWKV6
  4998. def set_vocab(self):
  4999. self._set_vocab_rwkv_world()
  5000. def set_gguf_parameters(self):
  5001. head_size = self.hparams["head_size"]
  5002. hidden_size = self.hparams["hidden_size"]
  5003. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5004. rescale_every_n_layers = self.hparams["rescale_every"]
  5005. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5006. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5007. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5008. # RWKV isn't context limited
  5009. self.gguf_writer.add_context_length(1048576)
  5010. self.gguf_writer.add_embedding_length(hidden_size)
  5011. self.gguf_writer.add_block_count(self.block_count)
  5012. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5013. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5014. self.gguf_writer.add_wkv_head_size(head_size)
  5015. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5016. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5017. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5018. self.gguf_writer.add_file_type(self.ftype)
  5019. # required by llama.cpp, unused
  5020. self.gguf_writer.add_head_count(0)
  5021. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5022. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5023. new_name = self.map_tensor_name(name)
  5024. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5025. new_name += ".weight"
  5026. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5027. data_torch = data_torch.transpose(0, 1)
  5028. if new_name.endswith("time_mix_w2.weight"):
  5029. data_torch = data_torch.permute(0, 2, 1)
  5030. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5031. data_torch = data_torch.squeeze()
  5032. try:
  5033. rescale_every_n_layers = self.hparams["rescale_every"]
  5034. if rescale_every_n_layers > 0:
  5035. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5036. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5037. except KeyError:
  5038. pass
  5039. # concat time_mix_lerp weights to reduce some cpu overhead
  5040. # also reduces the number of tensors in the model
  5041. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5042. try:
  5043. self.lerp_weights[bid][new_name] = data_torch
  5044. except KeyError:
  5045. self.lerp_weights[bid] = {new_name: data_torch}
  5046. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5047. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5048. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5049. yield (new_name, data)
  5050. return
  5051. yield (new_name, data_torch)
  5052. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5053. class RWKV6Qwen2Model(Rwkv6Model):
  5054. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5055. def set_vocab(self):
  5056. try:
  5057. self._set_vocab_sentencepiece()
  5058. except FileNotFoundError:
  5059. self._set_vocab_gpt2()
  5060. def set_gguf_parameters(self):
  5061. num_attention_heads = self.hparams["num_attention_heads"]
  5062. num_key_value_heads = self.hparams["num_key_value_heads"]
  5063. hidden_size = self.hparams["hidden_size"]
  5064. head_size = hidden_size // num_attention_heads
  5065. rms_norm_eps = self.hparams["rms_norm_eps"]
  5066. intermediate_size = self.hparams["intermediate_size"]
  5067. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5068. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5069. # RWKV isn't context limited
  5070. self.gguf_writer.add_context_length(1048576)
  5071. self.gguf_writer.add_embedding_length(hidden_size)
  5072. self.gguf_writer.add_block_count(self.block_count)
  5073. self.gguf_writer.add_wkv_head_size(head_size)
  5074. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5075. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5076. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5077. self.gguf_writer.add_file_type(self.ftype)
  5078. # special parameters for time_mixing in RWKV6QWEN2
  5079. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5080. self.gguf_writer.add_token_shift_count(1)
  5081. # RWKV6QWEN2 use grouped key/value like GQA
  5082. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5083. # required by llama.cpp, unused
  5084. self.gguf_writer.add_head_count(0)
  5085. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5086. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5087. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5088. data = data.view(5, -1, data.shape[-1])
  5089. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5090. # permute them here to avoid code changes
  5091. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5092. if "w2" in new_name:
  5093. data = data.view(5, -1, data.shape[-1])
  5094. yield (new_name, data)
  5095. continue
  5096. yield (new_name, data)
  5097. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5098. class Rwkv7Model(TextModel):
  5099. model_arch = gguf.MODEL_ARCH.RWKV7
  5100. def set_vocab(self):
  5101. self._set_vocab_rwkv_world()
  5102. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5103. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5104. def set_gguf_parameters(self):
  5105. try:
  5106. head_size = self.hparams["head_size"]
  5107. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5108. except KeyError:
  5109. head_size = self.hparams["head_dim"]
  5110. layer_norm_eps = self.hparams["norm_eps"]
  5111. hidden_size = self.hparams["hidden_size"]
  5112. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5113. # ICLR: In-Context-Learning-Rate
  5114. try:
  5115. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5116. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5117. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5118. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5119. except KeyError:
  5120. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5121. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5122. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5123. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5124. # RWKV isn't context limited
  5125. self.gguf_writer.add_context_length(1048576)
  5126. self.gguf_writer.add_embedding_length(hidden_size)
  5127. self.gguf_writer.add_block_count(self.block_count)
  5128. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5129. self.gguf_writer.add_wkv_head_size(head_size)
  5130. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5131. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5132. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5133. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5134. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5135. self.gguf_writer.add_file_type(self.ftype)
  5136. # required by llama.cpp, unused
  5137. self.gguf_writer.add_head_count(0)
  5138. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5139. lora_needs_transpose: bool = True
  5140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5141. # unify tensor names here to make life easier
  5142. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5143. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5144. name = name.replace("time_mixer.", "")
  5145. # lora layer names in fla-hub's impl
  5146. if "_lora.lora" in name:
  5147. self.lora_needs_transpose = False
  5148. name = name.replace("_lora.lora.0.weight", "1.weight")
  5149. name = name.replace("_lora.lora.2.weight", "2.weight")
  5150. name = name.replace("_lora.lora.2.bias", "0.weight")
  5151. name = name.replace("feed_forward_norm", "ln2")
  5152. name = name.replace("g_norm", "ln_x")
  5153. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5154. # some models have dummy v0/v1/v2 on first layer while others don't
  5155. # ignore them all since they are not used
  5156. return
  5157. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5158. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5159. if bid is not None and "attention.x_" in name:
  5160. if "attention.x_x" in name:
  5161. # already concatenated
  5162. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5163. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5164. yield (new_name, data)
  5165. else:
  5166. try:
  5167. self.lerp_weights[bid][name] = data_torch
  5168. except KeyError:
  5169. self.lerp_weights[bid] = {name: data_torch}
  5170. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5171. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5172. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5173. yield (new_name, data)
  5174. return
  5175. else:
  5176. data_torch = data_torch.squeeze()
  5177. new_name = self.map_tensor_name(name)
  5178. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5179. new_name += ".weight"
  5180. if self.lora_needs_transpose and any(
  5181. new_name.endswith(t) for t in [
  5182. "time_mix_w1.weight", "time_mix_w2.weight",
  5183. "time_mix_a1.weight", "time_mix_a2.weight",
  5184. "time_mix_v1.weight", "time_mix_v2.weight",
  5185. "time_mix_g1.weight", "time_mix_g2.weight",
  5186. ]
  5187. ):
  5188. data_torch = data_torch.transpose(0, 1)
  5189. if 'r_k' in new_name:
  5190. data_torch = data_torch.flatten()
  5191. if bid == 0 and "time_mix_a" in new_name:
  5192. # dummy v0/v1/v2 on first layer
  5193. # easist way to make llama happy
  5194. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5195. yield (new_name, data_torch)
  5196. @ModelBase.register("RwkvHybridForCausalLM")
  5197. class ARwkv7Model(Rwkv7Model):
  5198. model_arch = gguf.MODEL_ARCH.ARWKV7
  5199. def set_vocab(self):
  5200. try:
  5201. self._set_vocab_sentencepiece()
  5202. except FileNotFoundError:
  5203. self._set_vocab_gpt2()
  5204. def set_gguf_parameters(self):
  5205. hidden_size = self.hparams["hidden_size"]
  5206. head_size = self.hparams["head_size"]
  5207. rms_norm_eps = self.hparams["rms_norm_eps"]
  5208. intermediate_size = self.hparams["intermediate_size"]
  5209. wkv_has_gate = self.hparams["wkv_has_gate"]
  5210. assert self.hparams["wkv_version"] == 7
  5211. # ICLR: In-Context-Learning-Rate
  5212. lora_rank_decay = 64
  5213. lora_rank_iclr = 64
  5214. lora_rank_value_residual_mix = 32
  5215. lora_rank_gate = 128 if wkv_has_gate else 0
  5216. # RWKV isn't context limited
  5217. self.gguf_writer.add_context_length(1048576)
  5218. self.gguf_writer.add_embedding_length(hidden_size)
  5219. self.gguf_writer.add_block_count(self.block_count)
  5220. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5221. self.gguf_writer.add_wkv_head_size(head_size)
  5222. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5223. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5224. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5225. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5226. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5227. self.gguf_writer.add_file_type(self.ftype)
  5228. self.gguf_writer.add_token_shift_count(1)
  5229. # required by llama.cpp, unused
  5230. self.gguf_writer.add_head_count(0)
  5231. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5232. class MambaModel(TextModel):
  5233. model_arch = gguf.MODEL_ARCH.MAMBA
  5234. def __init__(self, dir_model: Path, *args, **kwargs):
  5235. # Avoid using AutoConfig for hparams
  5236. hparams = kwargs.pop("hparams", None)
  5237. if hparams is None:
  5238. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5239. hparams = json.load(f)
  5240. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5241. def set_vocab(self):
  5242. vocab_size = self.hparams["vocab_size"]
  5243. # Round vocab size to next multiple of 8
  5244. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5245. # pad using ceiling division
  5246. # ref: https://stackoverflow.com/a/17511341/22827863
  5247. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5248. self.hparams["vocab_size"] = vocab_size
  5249. if (self.dir_model / "tokenizer.json").is_file():
  5250. self._set_vocab_gpt2()
  5251. elif (self.dir_model / "tokenizer.model").is_file():
  5252. self._set_vocab_sentencepiece()
  5253. else:
  5254. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5255. self._set_vocab_builtin("gpt-neox", vocab_size)
  5256. def set_gguf_parameters(self):
  5257. d_model = self.find_hparam(["hidden_size", "d_model"])
  5258. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5259. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5260. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5261. # ceiling division
  5262. # ref: https://stackoverflow.com/a/17511341/22827863
  5263. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5264. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5265. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5266. use_dt_b_c_norm = False
  5267. # For falconmamba we do apply RMS norm on B / DT and C layers
  5268. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5269. use_dt_b_c_norm = True
  5270. # Fail early for models which don't have a block expansion factor of 2
  5271. assert d_inner == 2 * d_model
  5272. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5273. self.gguf_writer.add_embedding_length(d_model)
  5274. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5275. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5276. self.gguf_writer.add_block_count(self.block_count)
  5277. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5278. self.gguf_writer.add_ssm_inner_size(d_inner)
  5279. self.gguf_writer.add_ssm_state_size(d_state)
  5280. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5281. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5282. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5283. self.gguf_writer.add_file_type(self.ftype)
  5284. _tok_embd = None
  5285. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5286. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5287. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5288. new_name = self.map_tensor_name(name)
  5289. if name.endswith(".A_log"):
  5290. logger.debug("A_log --> A ==> " + new_name)
  5291. data_torch = -torch.exp(data_torch)
  5292. # [4 1 8192 1] -> [4 8192 1 1]
  5293. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5294. data_torch = data_torch.squeeze()
  5295. # assuming token_embd.weight is seen before output.weight
  5296. if self._tok_embd is not None and new_name == output_name:
  5297. if torch.equal(self._tok_embd, data_torch):
  5298. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5299. return []
  5300. elif new_name == tok_embd_name:
  5301. self._tok_embd = data_torch
  5302. return [(new_name, data_torch)]
  5303. @ModelBase.register("Mamba2ForCausalLM")
  5304. class Mamba2Model(TextModel):
  5305. model_arch = gguf.MODEL_ARCH.MAMBA2
  5306. def __init__(self, dir_model: Path, *args, **kwargs):
  5307. # Avoid using AutoConfig for hparams
  5308. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5309. hparams = kwargs.pop("hparams", None)
  5310. if hparams is None:
  5311. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5312. hparams = json.load(f)
  5313. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5314. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5315. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5316. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5317. def set_vocab(self):
  5318. vocab_size = self.hparams["vocab_size"]
  5319. # Round vocab size to next multiple of 16
  5320. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5321. # pad using ceiling division
  5322. # ref: https://stackoverflow.com/a/17511341/22827863
  5323. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5324. self.hparams["vocab_size"] = vocab_size
  5325. if (self.dir_model / "tokenizer.model").is_file():
  5326. self._set_vocab_sentencepiece()
  5327. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5328. # mamba-codestral
  5329. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5330. elif (self.dir_model / "tokenizer.json").is_file():
  5331. self._set_vocab_gpt2()
  5332. else:
  5333. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5334. self._set_vocab_builtin("gpt-neox", vocab_size)
  5335. def set_gguf_parameters(self):
  5336. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5337. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5338. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5339. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5340. # Fail early for models which don't have a block expansion factor of 2
  5341. # TODO: does this really matter?
  5342. # skip the assertion for FalconH1 Model
  5343. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5344. assert self.d_inner == 2 * self.d_model
  5345. assert self.d_inner % head_dim == 0
  5346. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5347. self.gguf_writer.add_embedding_length(self.d_model)
  5348. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5349. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5350. self.gguf_writer.add_block_count(self.block_count)
  5351. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5352. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5353. self.gguf_writer.add_ssm_state_size(d_state)
  5354. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5355. self.gguf_writer.add_ssm_group_count(self.n_group)
  5356. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5357. self.gguf_writer.add_file_type(self.ftype)
  5358. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5359. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5360. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5361. name = name.removeprefix("model.")
  5362. if name.endswith(".dt_bias"):
  5363. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5364. new_name = self.map_tensor_name(name)
  5365. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5366. data_torch = data_torch.squeeze()
  5367. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5368. gguf.MODEL_TENSOR.SSM_A,
  5369. gguf.MODEL_TENSOR.SSM_D,
  5370. ]):
  5371. # unsqueeze A to use similar shape semantics as Mamba-1
  5372. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5373. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5374. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5375. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5376. if name.endswith(".A_log"):
  5377. logger.debug("A_log --> A ==> " + new_name)
  5378. data_torch = -torch.exp(data_torch)
  5379. yield (new_name, data_torch)
  5380. @ModelBase.register("JambaForCausalLM")
  5381. class JambaModel(TextModel):
  5382. model_arch = gguf.MODEL_ARCH.JAMBA
  5383. def set_vocab(self):
  5384. if (self.dir_model / "tokenizer.model").is_file():
  5385. self._set_vocab_sentencepiece()
  5386. else:
  5387. self._set_vocab_llama_hf()
  5388. self.gguf_writer.add_add_space_prefix(False)
  5389. def set_gguf_parameters(self):
  5390. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5391. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5392. d_inner = self.hparams["mamba_expand"] * d_model
  5393. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5394. # ceiling division
  5395. # ref: https://stackoverflow.com/a/17511341/22827863
  5396. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5397. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5398. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5399. n_kv_head = self.hparams["num_key_value_heads"]
  5400. attn_offset = self.hparams["attn_layer_offset"]
  5401. attn_period = self.hparams["attn_layer_period"]
  5402. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5403. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5404. ]
  5405. self.gguf_writer.add_block_count(self.block_count)
  5406. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5407. self.gguf_writer.add_embedding_length(d_model)
  5408. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5409. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5410. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5411. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5412. self.gguf_writer.add_ssm_inner_size(d_inner)
  5413. self.gguf_writer.add_ssm_state_size(d_state)
  5414. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5415. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5416. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5417. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5418. self.gguf_writer.add_file_type(self.ftype)
  5419. _experts: list[dict[str, Tensor]] | None = None
  5420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5421. # Mini-Jamba
  5422. name = name.replace(".moe.", ".feed_forward.")
  5423. if bid is not None:
  5424. moe_offset = self.hparams["expert_layer_offset"]
  5425. moe_period = self.hparams["expert_layer_period"]
  5426. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5427. name = name.replace(".experts.0.", ".")
  5428. # process the experts separately
  5429. if ".feed_forward.experts." in name:
  5430. n_experts = self.hparams["num_experts"]
  5431. assert bid is not None
  5432. if self._experts is None:
  5433. self._experts = [{} for _ in range(self.block_count)]
  5434. self._experts[bid][name] = data_torch
  5435. if len(self._experts[bid]) >= n_experts * 3:
  5436. # merge the experts into a single 3d tensor
  5437. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5438. datas: list[Tensor] = []
  5439. for xid in range(n_experts):
  5440. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5441. datas.append(self._experts[bid][ename])
  5442. del self._experts[bid][ename]
  5443. data_torch = torch.stack(datas, dim=0)
  5444. # using the same merged name as qwen2moe
  5445. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5446. new_name = self.map_tensor_name(merged_name)
  5447. yield new_name, data_torch
  5448. return
  5449. new_name = self.map_tensor_name(name)
  5450. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5451. data_torch = data_torch.squeeze()
  5452. if name.endswith(".A_log"):
  5453. logger.debug("A_log --> A ==> " + new_name)
  5454. data_torch = -torch.exp(data_torch)
  5455. yield (new_name, data_torch)
  5456. def prepare_tensors(self):
  5457. super().prepare_tensors()
  5458. if self._experts is not None:
  5459. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5460. experts = [k for d in self._experts for k in d.keys()]
  5461. if len(experts) > 0:
  5462. raise ValueError(f"Unprocessed experts: {experts}")
  5463. @ModelBase.register("CohereForCausalLM")
  5464. class CommandR2Model(TextModel):
  5465. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5466. def __init__(self, *args, **kwargs):
  5467. super().__init__(*args, **kwargs)
  5468. # max_position_embeddings = 8192 in config.json but model was actually
  5469. # trained on 128k context length
  5470. # aya-23 models don't have model_max_length specified
  5471. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5472. def set_gguf_parameters(self):
  5473. super().set_gguf_parameters()
  5474. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5475. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5476. @ModelBase.register("Cohere2ForCausalLM")
  5477. class Cohere2Model(TextModel):
  5478. model_arch = gguf.MODEL_ARCH.COHERE2
  5479. def set_gguf_parameters(self):
  5480. super().set_gguf_parameters()
  5481. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5482. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5483. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5484. rotary_pct = self.hparams["rotary_pct"]
  5485. hidden_size = self.hparams["hidden_size"]
  5486. num_attention_heads = self.hparams["num_attention_heads"]
  5487. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5488. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5489. @ModelBase.register("OlmoForCausalLM")
  5490. @ModelBase.register("OLMoForCausalLM")
  5491. class OlmoModel(TextModel):
  5492. model_arch = gguf.MODEL_ARCH.OLMO
  5493. def set_gguf_parameters(self):
  5494. super().set_gguf_parameters()
  5495. self.gguf_writer.add_layer_norm_eps(1e-5)
  5496. clip_qkv = self.hparams.get("clip_qkv")
  5497. if clip_qkv is not None:
  5498. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5499. # Same as super class, but permuting q_proj, k_proj
  5500. # Copied from: LlamaModel
  5501. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5502. del bid # unused
  5503. n_head = self.hparams["num_attention_heads"]
  5504. n_kv_head = self.hparams.get("num_key_value_heads")
  5505. if name.endswith("q_proj.weight"):
  5506. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5507. if name.endswith("k_proj.weight"):
  5508. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5509. return [(self.map_tensor_name(name), data_torch)]
  5510. @ModelBase.register("SeedOssForCausalLM")
  5511. class SeedOssModel(TextModel):
  5512. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5513. @ModelBase.register("Olmo2ForCausalLM")
  5514. @ModelBase.register("Olmo3ForCausalLM")
  5515. class Olmo2Model(TextModel):
  5516. model_arch = gguf.MODEL_ARCH.OLMO2
  5517. def set_gguf_parameters(self):
  5518. super().set_gguf_parameters()
  5519. rope_scaling = self.hparams.get("rope_scaling") or {}
  5520. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5521. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5522. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5523. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5524. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5525. if "sliding_window" in self.hparams:
  5526. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5527. sliding_window_pattern = []
  5528. if "layer_types" in self.hparams:
  5529. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5530. else:
  5531. # Olmo2 does not use sliding window attention.
  5532. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5533. for i in range(self.hparams["num_hidden_layers"]):
  5534. sliding_window_pattern.append((i + 1) % 4 != 0)
  5535. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5536. @ModelBase.register("OlmoeForCausalLM")
  5537. class OlmoeModel(TextModel):
  5538. model_arch = gguf.MODEL_ARCH.OLMOE
  5539. def set_gguf_parameters(self):
  5540. super().set_gguf_parameters()
  5541. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5542. if (n_experts := self.hparams.get("num_experts")) is not None:
  5543. self.gguf_writer.add_expert_count(n_experts)
  5544. _experts: list[dict[str, Tensor]] | None = None
  5545. # Copied from: Qwen2MoeModel
  5546. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5547. # process the experts separately
  5548. if name.find("experts") != -1:
  5549. n_experts = self.hparams["num_experts"]
  5550. assert bid is not None
  5551. if self._experts is None:
  5552. self._experts = [{} for _ in range(self.block_count)]
  5553. self._experts[bid][name] = data_torch
  5554. if len(self._experts[bid]) >= n_experts * 3:
  5555. tensors: list[tuple[str, Tensor]] = []
  5556. # merge the experts into a single 3d tensor
  5557. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5558. datas: list[Tensor] = []
  5559. for xid in range(n_experts):
  5560. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5561. datas.append(self._experts[bid][ename])
  5562. del self._experts[bid][ename]
  5563. data_torch = torch.stack(datas, dim=0)
  5564. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5565. new_name = self.map_tensor_name(merged_name)
  5566. tensors.append((new_name, data_torch))
  5567. return tensors
  5568. else:
  5569. return []
  5570. return [(self.map_tensor_name(name), data_torch)]
  5571. # Copied from: Qwen2MoeModel
  5572. def prepare_tensors(self):
  5573. super().prepare_tensors()
  5574. if self._experts is not None:
  5575. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5576. experts = [k for d in self._experts for k in d.keys()]
  5577. if len(experts) > 0:
  5578. raise ValueError(f"Unprocessed experts: {experts}")
  5579. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5580. class JinaBertV2Model(BertModel):
  5581. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5582. def set_vocab(self):
  5583. tokenizer_class = 'BertTokenizer'
  5584. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5585. tokenizer_class = json.load(f)['tokenizer_class']
  5586. if tokenizer_class == 'BertTokenizer':
  5587. super().set_vocab()
  5588. elif tokenizer_class == 'RobertaTokenizer':
  5589. self._set_vocab_gpt2()
  5590. self.gguf_writer.add_token_type_count(2)
  5591. else:
  5592. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5593. @ModelBase.register("OpenELMForCausalLM")
  5594. class OpenELMModel(TextModel):
  5595. model_arch = gguf.MODEL_ARCH.OPENELM
  5596. @staticmethod
  5597. def _make_divisible(v: float | int, divisor: int) -> int:
  5598. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5599. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5600. # Make sure that round down does not go down by more than 10%.
  5601. if new_v < 0.9 * v:
  5602. new_v += divisor
  5603. return new_v
  5604. def __init__(self, *args, **kwargs):
  5605. super().__init__(*args, **kwargs)
  5606. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5607. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5608. self._n_embd: int = self.hparams["model_dim"]
  5609. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5610. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5611. self._ffn_dims: list[int] = [
  5612. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5613. for multiplier in ffn_multipliers
  5614. ]
  5615. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5616. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5617. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5618. def set_vocab(self):
  5619. try:
  5620. self._set_vocab_sentencepiece()
  5621. except FileNotFoundError:
  5622. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5623. def set_gguf_parameters(self):
  5624. n_embd = self._n_embd
  5625. head_dim = self.hparams["head_dim"]
  5626. rot_pct = 1.0
  5627. assert self.block_count == len(self._num_kv_heads)
  5628. assert self.block_count == len(self._num_query_heads)
  5629. assert self.block_count == len(self._ffn_dims)
  5630. self.gguf_writer.add_block_count(self.block_count)
  5631. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5632. self.gguf_writer.add_embedding_length(n_embd)
  5633. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5634. self.gguf_writer.add_head_count(self._num_query_heads)
  5635. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5636. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5637. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5638. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5639. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5640. self.gguf_writer.add_key_length(head_dim)
  5641. self.gguf_writer.add_value_length(head_dim)
  5642. self.gguf_writer.add_file_type(self.ftype)
  5643. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5644. if "n_layers" in keys:
  5645. return self.hparams["num_transformer_layers"]
  5646. return super().find_hparam(keys, optional)
  5647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5648. # split ff
  5649. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5650. ff_dim = self._ffn_dims[bid]
  5651. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5652. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5653. return
  5654. yield (self.map_tensor_name(name), data_torch)
  5655. @ModelBase.register("ArcticForCausalLM")
  5656. class ArcticModel(TextModel):
  5657. model_arch = gguf.MODEL_ARCH.ARCTIC
  5658. def set_vocab(self):
  5659. # The reason for using a custom implementation here is that the
  5660. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5661. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5662. from sentencepiece import SentencePieceProcessor
  5663. tokenizer_path = self.dir_model / 'tokenizer.model'
  5664. if not tokenizer_path.is_file():
  5665. logger.error(f'Error: Missing {tokenizer_path}')
  5666. sys.exit(1)
  5667. # Read the whole vocabulary from the tokenizer.model file
  5668. tokenizer = SentencePieceProcessor()
  5669. tokenizer.LoadFromFile(str(tokenizer_path))
  5670. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5671. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5672. scores: list[float] = [-10000.0] * vocab_size
  5673. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5674. for token_id in range(tokenizer.vocab_size()):
  5675. piece = tokenizer.IdToPiece(token_id)
  5676. text = piece.encode("utf-8")
  5677. score = tokenizer.GetScore(token_id)
  5678. toktype = SentencePieceTokenTypes.NORMAL
  5679. if tokenizer.IsUnknown(token_id):
  5680. toktype = SentencePieceTokenTypes.UNKNOWN
  5681. elif tokenizer.IsControl(token_id):
  5682. toktype = SentencePieceTokenTypes.CONTROL
  5683. elif tokenizer.IsUnused(token_id):
  5684. toktype = SentencePieceTokenTypes.UNUSED
  5685. elif tokenizer.IsByte(token_id):
  5686. toktype = SentencePieceTokenTypes.BYTE
  5687. tokens[token_id] = text
  5688. scores[token_id] = score
  5689. toktypes[token_id] = toktype
  5690. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5691. # of information about added/redefined tokens and modify them accordingly.
  5692. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5693. if tokenizer_config_file.is_file():
  5694. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5695. tokenizer_config_json = json.load(f)
  5696. if "added_tokens_decoder" in tokenizer_config_json:
  5697. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5698. for token_id, token_json in added_tokens_decoder.items():
  5699. token_id = int(token_id)
  5700. if token_id >= vocab_size:
  5701. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5702. continue
  5703. token_content = token_json["content"]
  5704. token_type = SentencePieceTokenTypes.USER_DEFINED
  5705. token_score = -10000.0
  5706. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5707. # Set the score to 0.0 as in the original tokenizer.model
  5708. if ("special" in token_json) and token_json["special"]:
  5709. if token_content == tokenizer_config_json["unk_token"]:
  5710. token_type = SentencePieceTokenTypes.UNKNOWN
  5711. else:
  5712. token_type = SentencePieceTokenTypes.CONTROL
  5713. token_score = 0.0
  5714. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5715. tokens[token_id] = token_content.encode("utf-8")
  5716. toktypes[token_id] = token_type
  5717. scores[token_id] = token_score
  5718. self.gguf_writer.add_tokenizer_model("llama")
  5719. self.gguf_writer.add_tokenizer_pre("default")
  5720. self.gguf_writer.add_token_list(tokens)
  5721. self.gguf_writer.add_token_scores(scores)
  5722. self.gguf_writer.add_token_types(toktypes)
  5723. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5724. special_vocab.add_to_gguf(self.gguf_writer)
  5725. def set_gguf_parameters(self):
  5726. super().set_gguf_parameters()
  5727. hparams = self.hparams
  5728. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5729. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5730. _experts: list[dict[str, Tensor]] | None = None
  5731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5732. n_head = self.hparams["num_attention_heads"]
  5733. n_kv_head = self.hparams.get("num_key_value_heads")
  5734. if name.endswith("q_proj.weight"):
  5735. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5736. if name.endswith("k_proj.weight"):
  5737. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5738. # process the experts separately
  5739. if name.find("block_sparse_moe.experts") != -1:
  5740. n_experts = self.hparams["num_local_experts"]
  5741. assert bid is not None
  5742. if self._experts is None:
  5743. self._experts = [{} for _ in range(self.block_count)]
  5744. self._experts[bid][name] = data_torch
  5745. if len(self._experts[bid]) >= n_experts * 3:
  5746. tensors: list[tuple[str, Tensor]] = []
  5747. # merge the experts into a single 3d tensor
  5748. for wid in ["w1", "w2", "w3"]:
  5749. datas: list[Tensor] = []
  5750. for xid in range(n_experts):
  5751. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5752. datas.append(self._experts[bid][ename])
  5753. del self._experts[bid][ename]
  5754. data_torch = torch.stack(datas, dim=0)
  5755. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5756. new_name = self.map_tensor_name(merged_name)
  5757. tensors.append((new_name, data_torch))
  5758. return tensors
  5759. else:
  5760. return []
  5761. return [(self.map_tensor_name(name), data_torch)]
  5762. def prepare_tensors(self):
  5763. super().prepare_tensors()
  5764. if self._experts is not None:
  5765. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5766. experts = [k for d in self._experts for k in d.keys()]
  5767. if len(experts) > 0:
  5768. raise ValueError(f"Unprocessed experts: {experts}")
  5769. @ModelBase.register("DeepseekForCausalLM")
  5770. class DeepseekModel(TextModel):
  5771. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5772. def set_vocab(self):
  5773. try:
  5774. self._set_vocab_sentencepiece()
  5775. except FileNotFoundError:
  5776. self._set_vocab_gpt2()
  5777. def set_gguf_parameters(self):
  5778. super().set_gguf_parameters()
  5779. hparams = self.hparams
  5780. if (rope_dim := hparams.get("head_dim")) is None:
  5781. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5782. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5783. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5784. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5785. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5786. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5787. self.gguf_writer.add_expert_weights_scale(1.0)
  5788. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5789. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5790. _experts: list[dict[str, Tensor]] | None = None
  5791. @staticmethod
  5792. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5793. if n_head_kv is not None and n_head != n_head_kv:
  5794. n_head = n_head_kv
  5795. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5796. .swapaxes(1, 2)
  5797. .reshape(weights.shape))
  5798. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5799. n_head = self.hparams["num_attention_heads"]
  5800. n_kv_head = self.hparams.get("num_key_value_heads")
  5801. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5802. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5803. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5804. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5805. # process the experts separately
  5806. if name.find("mlp.experts") != -1:
  5807. n_experts = self.hparams["n_routed_experts"]
  5808. assert bid is not None
  5809. if self._experts is None:
  5810. self._experts = [{} for _ in range(self.block_count)]
  5811. self._experts[bid][name] = data_torch
  5812. if len(self._experts[bid]) >= n_experts * 3:
  5813. tensors: list[tuple[str, Tensor]] = []
  5814. # merge the experts into a single 3d tensor
  5815. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5816. datas: list[Tensor] = []
  5817. for xid in range(n_experts):
  5818. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5819. datas.append(self._experts[bid][ename])
  5820. del self._experts[bid][ename]
  5821. data_torch = torch.stack(datas, dim=0)
  5822. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5823. new_name = self.map_tensor_name(merged_name)
  5824. tensors.append((new_name, data_torch))
  5825. return tensors
  5826. else:
  5827. return []
  5828. return [(self.map_tensor_name(name), data_torch)]
  5829. def prepare_tensors(self):
  5830. super().prepare_tensors()
  5831. if self._experts is not None:
  5832. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5833. experts = [k for d in self._experts for k in d.keys()]
  5834. if len(experts) > 0:
  5835. raise ValueError(f"Unprocessed experts: {experts}")
  5836. @ModelBase.register(
  5837. "DeepseekV2ForCausalLM",
  5838. "DeepseekV3ForCausalLM",
  5839. "KimiVLForConditionalGeneration",
  5840. )
  5841. class DeepseekV2Model(TextModel):
  5842. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5843. def set_vocab(self):
  5844. try:
  5845. self._set_vocab_gpt2()
  5846. return
  5847. except Exception:
  5848. pass
  5849. from transformers import AutoTokenizer
  5850. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5851. tokpre = self.get_vocab_base_pre(tokenizer)
  5852. if tokpre == "kimi-k2":
  5853. # Build merges list using the approach similar to HunYuanMoE
  5854. merges = []
  5855. vocab = {}
  5856. mergeable_ranks = tokenizer.model._mergeable_ranks
  5857. for token, rank in mergeable_ranks.items():
  5858. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5859. if len(token) == 1:
  5860. continue
  5861. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5862. if len(merged) == 2:
  5863. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5864. # Build token list
  5865. vocab_size = self.hparams["vocab_size"]
  5866. special_tokens = tokenizer.special_tokens
  5867. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5868. tokens: list[str] = []
  5869. toktypes: list[int] = []
  5870. for i in range(vocab_size):
  5871. if i not in reverse_vocab:
  5872. tokens.append(f"[PAD{i}]")
  5873. toktypes.append(gguf.TokenType.UNUSED)
  5874. else:
  5875. token = reverse_vocab[i]
  5876. tokens.append(token)
  5877. if i in special_tokens.values():
  5878. toktypes.append(gguf.TokenType.CONTROL)
  5879. else:
  5880. toktypes.append(gguf.TokenType.NORMAL)
  5881. self.gguf_writer.add_tokenizer_model("gpt2")
  5882. self.gguf_writer.add_tokenizer_pre(tokpre)
  5883. self.gguf_writer.add_token_list(tokens)
  5884. self.gguf_writer.add_token_types(toktypes)
  5885. self.gguf_writer.add_token_merges(merges)
  5886. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5887. special_vocab.add_to_gguf(self.gguf_writer)
  5888. else:
  5889. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5890. def set_gguf_parameters(self):
  5891. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5892. self.hparams["num_key_value_heads"] = 1
  5893. super().set_gguf_parameters()
  5894. hparams = self.hparams
  5895. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5896. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5897. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5898. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5899. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5900. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5901. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5902. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5903. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5904. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5905. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5906. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5907. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5908. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5909. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5910. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5911. rope_scaling = self.hparams.get("rope_scaling") or {}
  5912. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5913. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5914. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5915. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5916. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5917. _experts: list[dict[str, Tensor]] | None = None
  5918. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5919. # skip vision tensors and remove "language_model." for Kimi-VL
  5920. if "vision_tower" in name or "multi_modal_projector" in name:
  5921. return []
  5922. if name.startswith("language_model."):
  5923. name = name.replace("language_model.", "")
  5924. # rename e_score_correction_bias tensors
  5925. if name.endswith("e_score_correction_bias"):
  5926. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5927. # skip Multi-Token Prediction (MTP) layers
  5928. block_count = self.hparams["num_hidden_layers"]
  5929. match = re.match(r"model.layers.(\d+)", name)
  5930. if match and int(match.group(1)) >= block_count:
  5931. return []
  5932. # process the experts separately
  5933. if name.find("mlp.experts") != -1:
  5934. n_experts = self.hparams["n_routed_experts"]
  5935. assert bid is not None
  5936. if self._experts is None:
  5937. self._experts = [{} for _ in range(self.block_count)]
  5938. self._experts[bid][name] = data_torch
  5939. if len(self._experts[bid]) >= n_experts * 3:
  5940. tensors: list[tuple[str, Tensor]] = []
  5941. # merge the experts into a single 3d tensor
  5942. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5943. datas: list[Tensor] = []
  5944. for xid in range(n_experts):
  5945. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5946. datas.append(self._experts[bid][ename])
  5947. del self._experts[bid][ename]
  5948. data_torch = torch.stack(datas, dim=0)
  5949. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5950. new_name = self.map_tensor_name(merged_name)
  5951. tensors.append((new_name, data_torch))
  5952. return tensors
  5953. else:
  5954. return []
  5955. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5956. if name.endswith("kv_b_proj.weight"):
  5957. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5958. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5959. n_head_kv = self.hparams["num_key_value_heads"]
  5960. v_head_dim = self.hparams["v_head_dim"]
  5961. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5962. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5963. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5964. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5965. k_b = k_b.transpose(1, 2)
  5966. return [
  5967. (self.map_tensor_name(name_kb), k_b),
  5968. (self.map_tensor_name(name_vb), v_b)
  5969. ]
  5970. return [(self.map_tensor_name(name), data_torch)]
  5971. def prepare_tensors(self):
  5972. super().prepare_tensors()
  5973. if self._experts is not None:
  5974. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5975. experts = [k for d in self._experts for k in d.keys()]
  5976. if len(experts) > 0:
  5977. raise ValueError(f"Unprocessed experts: {experts}")
  5978. @ModelBase.register("MiniMaxM2ForCausalLM")
  5979. class MiniMaxM2Model(TextModel):
  5980. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5981. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5982. def __init__(self, *args, **kwargs):
  5983. super().__init__(*args, **kwargs)
  5984. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5985. def set_gguf_parameters(self):
  5986. super().set_gguf_parameters()
  5987. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5988. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5989. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5990. if name.endswith("e_score_correction_bias"):
  5991. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5992. # merge expert weights
  5993. if 'experts' in name:
  5994. n_experts = self.hparams["num_experts"]
  5995. assert bid is not None
  5996. expert_cache = self._experts_cache.setdefault(bid, {})
  5997. expert_cache[name] = data_torch
  5998. expert_weights = ["w1", "w2", "w3"]
  5999. # not enough expert weights to merge
  6000. if len(expert_cache) < n_experts * len(expert_weights):
  6001. return []
  6002. tensors: list[tuple[str, Tensor]] = []
  6003. for w_name in expert_weights:
  6004. datas: list[Tensor] = []
  6005. for xid in range(n_experts):
  6006. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6007. datas.append(expert_cache[ename])
  6008. del expert_cache[ename]
  6009. data_torch = torch.stack(datas, dim=0)
  6010. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6011. new_name = self.map_tensor_name(merged_name)
  6012. tensors.append((new_name, data_torch))
  6013. del self._experts_cache[bid]
  6014. return tensors
  6015. return super().modify_tensors(data_torch, name, bid)
  6016. @ModelBase.register("PanguEmbeddedForCausalLM")
  6017. class PanguEmbeddedModel(TextModel):
  6018. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6019. def set_vocab(self):
  6020. self._set_vocab_sentencepiece()
  6021. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6022. if tokenizer_config_file.is_file():
  6023. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6024. tokenizer_config_json = json.load(f)
  6025. if "add_prefix_space" in tokenizer_config_json:
  6026. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6027. def set_gguf_parameters(self):
  6028. super().set_gguf_parameters()
  6029. hparams = self.hparams
  6030. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6031. # PanguEmbedded's hparam loaded from config.json without head_dim
  6032. if (rope_dim := hparams.get("head_dim")) is None:
  6033. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6034. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6035. if hparams.get("head_dim") is None:
  6036. self.gguf_writer.add_key_length(rope_dim)
  6037. self.gguf_writer.add_value_length(rope_dim)
  6038. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6039. if name == "lm_head.weight":
  6040. if self.hparams.get("tie_word_embeddings", False):
  6041. logger.info("Skipping tied output layer 'lm_head.weight'")
  6042. return []
  6043. return [(self.map_tensor_name(name), data_torch)]
  6044. @ModelBase.register("Dots1ForCausalLM")
  6045. class Dots1Model(Qwen2MoeModel):
  6046. model_arch = gguf.MODEL_ARCH.DOTS1
  6047. def __init__(self, *args, **kwargs):
  6048. super().__init__(*args, **kwargs)
  6049. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6050. def set_gguf_parameters(self):
  6051. super().set_gguf_parameters()
  6052. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6053. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6054. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6055. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6056. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6057. if name.endswith("e_score_correction_bias"):
  6058. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6059. if "shared_experts" in name:
  6060. return [(self.map_tensor_name(name), data_torch)]
  6061. return super().modify_tensors(data_torch, name, bid)
  6062. @ModelBase.register("PLMForCausalLM")
  6063. class PLMModel(TextModel):
  6064. model_arch = gguf.MODEL_ARCH.PLM
  6065. def set_vocab(self):
  6066. self._set_vocab_gpt2()
  6067. def set_gguf_parameters(self):
  6068. super().set_gguf_parameters()
  6069. hparams = self.hparams
  6070. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6071. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6072. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6073. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6074. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6075. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6076. return [(self.map_tensor_name(name), data_torch)]
  6077. def prepare_tensors(self):
  6078. super().prepare_tensors()
  6079. @ModelBase.register("T5WithLMHeadModel")
  6080. @ModelBase.register("T5ForConditionalGeneration")
  6081. @ModelBase.register("MT5ForConditionalGeneration")
  6082. @ModelBase.register("UMT5ForConditionalGeneration")
  6083. @ModelBase.register("UMT5Model")
  6084. class T5Model(TextModel):
  6085. model_arch = gguf.MODEL_ARCH.T5
  6086. def __init__(self, *args, **kwargs):
  6087. super().__init__(*args, **kwargs)
  6088. self.shared_token_embeddings_found = False
  6089. def set_vocab(self):
  6090. # to avoid TypeError: Descriptors cannot be created directly
  6091. # exception when importing sentencepiece_model_pb2
  6092. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6093. from sentencepiece import SentencePieceProcessor
  6094. from sentencepiece import sentencepiece_model_pb2 as model
  6095. tokenizer_path = self.dir_model / 'tokenizer.model'
  6096. # many older models use spiece.model tokenizer model filename
  6097. if not tokenizer_path.is_file():
  6098. tokenizer_path = self.dir_model / 'spiece.model'
  6099. if not tokenizer_path.is_file():
  6100. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6101. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6102. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6103. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6104. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6105. # assure the tokenizer model file name is correct
  6106. assert tokenizer_path.name == 'tokenizer.model'
  6107. return self._set_vocab_sentencepiece()
  6108. else:
  6109. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6110. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6111. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6112. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6113. tokenizer = SentencePieceProcessor()
  6114. tokenizer.LoadFromFile(str(tokenizer_path))
  6115. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6116. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6117. scores: list[float] = [-10000.0] * vocab_size
  6118. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6119. for token_id in range(tokenizer.vocab_size()):
  6120. piece = tokenizer.IdToPiece(token_id)
  6121. text = piece.encode("utf-8")
  6122. score = tokenizer.GetScore(token_id)
  6123. toktype = SentencePieceTokenTypes.NORMAL
  6124. if tokenizer.IsUnknown(token_id):
  6125. toktype = SentencePieceTokenTypes.UNKNOWN
  6126. elif tokenizer.IsControl(token_id):
  6127. toktype = SentencePieceTokenTypes.CONTROL
  6128. elif tokenizer.IsUnused(token_id):
  6129. toktype = SentencePieceTokenTypes.UNUSED
  6130. elif tokenizer.IsByte(token_id):
  6131. toktype = SentencePieceTokenTypes.BYTE
  6132. tokens[token_id] = text
  6133. scores[token_id] = score
  6134. toktypes[token_id] = toktype
  6135. added_tokens_file = self.dir_model / 'added_tokens.json'
  6136. if added_tokens_file.is_file():
  6137. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6138. added_tokens_json = json.load(f)
  6139. for key in added_tokens_json:
  6140. token_id = added_tokens_json[key]
  6141. if token_id >= vocab_size:
  6142. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6143. continue
  6144. tokens[token_id] = key.encode("utf-8")
  6145. scores[token_id] = -1000.0
  6146. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6147. if vocab_size > len(tokens):
  6148. pad_count = vocab_size - len(tokens)
  6149. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6150. for i in range(1, pad_count + 1):
  6151. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6152. scores.append(-1000.0)
  6153. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6154. self.gguf_writer.add_tokenizer_model("t5")
  6155. self.gguf_writer.add_tokenizer_pre("default")
  6156. self.gguf_writer.add_token_list(tokens)
  6157. self.gguf_writer.add_token_scores(scores)
  6158. self.gguf_writer.add_token_types(toktypes)
  6159. self.gguf_writer.add_add_space_prefix(add_prefix)
  6160. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6161. if precompiled_charsmap:
  6162. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6163. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6164. special_vocab.add_to_gguf(self.gguf_writer)
  6165. def set_gguf_parameters(self):
  6166. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6167. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6168. n_ctx = 512
  6169. self.gguf_writer.add_context_length(n_ctx)
  6170. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6171. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6172. self.gguf_writer.add_block_count(self.block_count)
  6173. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6174. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6175. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6176. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6177. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6178. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6179. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6180. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6181. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6182. self.gguf_writer.add_file_type(self.ftype)
  6183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6184. del bid # unused
  6185. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6186. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6187. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6188. # and decoder and ignore the remaining ones.
  6189. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6190. if not self.shared_token_embeddings_found:
  6191. name = "shared.weight"
  6192. self.shared_token_embeddings_found = True
  6193. else:
  6194. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6195. return []
  6196. return [(self.map_tensor_name(name), data_torch)]
  6197. @ModelBase.register("T5EncoderModel")
  6198. class T5EncoderModel(TextModel):
  6199. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6200. def __init__(self, *args, **kwargs):
  6201. super().__init__(*args, **kwargs)
  6202. self.shared_token_embeddings_found = False
  6203. def set_vocab(self):
  6204. # to avoid TypeError: Descriptors cannot be created directly
  6205. # exception when importing sentencepiece_model_pb2
  6206. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6207. from sentencepiece import SentencePieceProcessor
  6208. from sentencepiece import sentencepiece_model_pb2 as model
  6209. tokenizer_path = self.dir_model / 'tokenizer.model'
  6210. # many older models use spiece.model tokenizer model filename
  6211. if not tokenizer_path.is_file():
  6212. tokenizer_path = self.dir_model / 'spiece.model'
  6213. if not tokenizer_path.is_file():
  6214. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6215. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6216. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6217. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6218. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6219. # assure the tokenizer model file name is correct
  6220. assert tokenizer_path.name == 'tokenizer.model'
  6221. return self._set_vocab_sentencepiece()
  6222. else:
  6223. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6224. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6225. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6226. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6227. tokenizer = SentencePieceProcessor()
  6228. tokenizer.LoadFromFile(str(tokenizer_path))
  6229. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6230. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6231. scores: list[float] = [-10000.0] * vocab_size
  6232. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6233. for token_id in range(tokenizer.vocab_size()):
  6234. piece = tokenizer.IdToPiece(token_id)
  6235. text = piece.encode("utf-8")
  6236. score = tokenizer.GetScore(token_id)
  6237. toktype = SentencePieceTokenTypes.NORMAL
  6238. if tokenizer.IsUnknown(token_id):
  6239. toktype = SentencePieceTokenTypes.UNKNOWN
  6240. elif tokenizer.IsControl(token_id):
  6241. toktype = SentencePieceTokenTypes.CONTROL
  6242. elif tokenizer.IsUnused(token_id):
  6243. toktype = SentencePieceTokenTypes.UNUSED
  6244. elif tokenizer.IsByte(token_id):
  6245. toktype = SentencePieceTokenTypes.BYTE
  6246. tokens[token_id] = text
  6247. scores[token_id] = score
  6248. toktypes[token_id] = toktype
  6249. added_tokens_file = self.dir_model / 'added_tokens.json'
  6250. if added_tokens_file.is_file():
  6251. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6252. added_tokens_json = json.load(f)
  6253. for key in added_tokens_json:
  6254. token_id = added_tokens_json[key]
  6255. if token_id >= vocab_size:
  6256. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6257. continue
  6258. tokens[token_id] = key.encode("utf-8")
  6259. scores[token_id] = -1000.0
  6260. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6261. if vocab_size > len(tokens):
  6262. pad_count = vocab_size - len(tokens)
  6263. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6264. for i in range(1, pad_count + 1):
  6265. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6266. scores.append(-1000.0)
  6267. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6268. self.gguf_writer.add_tokenizer_model("t5")
  6269. self.gguf_writer.add_tokenizer_pre("default")
  6270. self.gguf_writer.add_token_list(tokens)
  6271. self.gguf_writer.add_token_scores(scores)
  6272. self.gguf_writer.add_token_types(toktypes)
  6273. self.gguf_writer.add_add_space_prefix(add_prefix)
  6274. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6275. if precompiled_charsmap:
  6276. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6277. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6278. special_vocab.add_to_gguf(self.gguf_writer)
  6279. def set_gguf_parameters(self):
  6280. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6281. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6282. n_ctx = 512
  6283. self.gguf_writer.add_context_length(n_ctx)
  6284. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6285. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6286. self.gguf_writer.add_block_count(self.block_count)
  6287. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6288. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6289. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6290. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6291. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6292. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6293. self.gguf_writer.add_file_type(self.ftype)
  6294. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6295. del bid # unused
  6296. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6297. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6298. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6299. # and decoder and ignore the remaining ones.
  6300. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6301. if not self.shared_token_embeddings_found:
  6302. name = "shared.weight"
  6303. self.shared_token_embeddings_found = True
  6304. else:
  6305. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6306. return []
  6307. return [(self.map_tensor_name(name), data_torch)]
  6308. @ModelBase.register("JAISLMHeadModel")
  6309. class JaisModel(TextModel):
  6310. model_arch = gguf.MODEL_ARCH.JAIS
  6311. def __init__(self, *args, **kwargs):
  6312. super().__init__(*args, **kwargs)
  6313. # SwigLU activation
  6314. assert self.hparams["activation_function"] == "swiglu"
  6315. # ALiBi position embedding
  6316. assert self.hparams["position_embedding_type"] == "alibi"
  6317. # Embeddings scale
  6318. self.embeddings_scale = 1.0
  6319. if 'mup_embeddings_scale' in self.hparams:
  6320. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6321. elif 'embeddings_scale' in self.hparams:
  6322. self.embeddings_scale = self.hparams['embeddings_scale']
  6323. else:
  6324. assert False
  6325. self.width_scale = 1.0
  6326. if 'mup_output_alpha' in self.hparams:
  6327. assert 'mup_width_scale' in self.hparams
  6328. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6329. elif 'width_scale' in self.hparams:
  6330. self.width_scale = self.hparams['width_scale']
  6331. else:
  6332. assert False
  6333. self.max_alibi_bias = 8.0
  6334. def set_vocab(self):
  6335. self._set_vocab_gpt2()
  6336. def set_gguf_parameters(self):
  6337. self.gguf_writer.add_block_count(self.block_count)
  6338. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6339. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6340. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6341. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6342. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6343. self.gguf_writer.add_file_type(self.ftype)
  6344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6345. del bid # unused
  6346. tensors: list[tuple[str, Tensor]] = []
  6347. # we don't need these
  6348. if name.endswith((".attn.bias")):
  6349. return tensors
  6350. if name.endswith(("relative_pe.slopes")):
  6351. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6352. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6353. # but Jais's PyTorch model simply precalculates the slope values and places them
  6354. # in relative_pes.slopes
  6355. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6356. first_val = float(data_torch[0].item())
  6357. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6358. return tensors
  6359. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6360. data_torch = data_torch.transpose(1, 0)
  6361. new_name = self.map_tensor_name(name)
  6362. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6363. tensors.append((new_name, data_torch * self.embeddings_scale))
  6364. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6365. tensors.append((new_name, data_torch * self.width_scale))
  6366. else:
  6367. tensors.append((new_name, data_torch))
  6368. return tensors
  6369. def prepare_tensors(self):
  6370. super().prepare_tensors()
  6371. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6372. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6373. class Glm4Model(TextModel):
  6374. model_arch = gguf.MODEL_ARCH.GLM4
  6375. def set_vocab(self):
  6376. from transformers import AutoTokenizer
  6377. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6378. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6379. tokens, toktypes, tokpre = self.get_vocab_base()
  6380. self.gguf_writer.add_tokenizer_model("gpt2")
  6381. self.gguf_writer.add_tokenizer_pre(tokpre)
  6382. self.gguf_writer.add_token_list(tokens)
  6383. self.gguf_writer.add_token_types(toktypes)
  6384. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6385. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6386. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6387. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6388. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6389. special_vocab.add_to_gguf(self.gguf_writer)
  6390. def set_gguf_parameters(self):
  6391. super().set_gguf_parameters()
  6392. if (rope_dim := self.hparams.get("head_dim")) is None:
  6393. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6394. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6395. rope_scaling = self.hparams.get("rope_scaling") or {}
  6396. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6397. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6398. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6399. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6400. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6401. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6402. return []
  6403. elif name.startswith("model.language_model."):
  6404. name = name.replace("language_model.", "") # for Glm4v
  6405. return super().modify_tensors(data_torch, name, bid)
  6406. @ModelBase.register("Glm4MoeForCausalLM")
  6407. class Glm4MoeModel(TextModel):
  6408. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6409. def __init__(self, *args, **kwargs):
  6410. super().__init__(*args, **kwargs)
  6411. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6412. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6413. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6414. def set_vocab(self):
  6415. from transformers import AutoTokenizer
  6416. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6417. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6418. tokens, toktypes, tokpre = self.get_vocab_base()
  6419. self.gguf_writer.add_tokenizer_model("gpt2")
  6420. self.gguf_writer.add_tokenizer_pre(tokpre)
  6421. self.gguf_writer.add_token_list(tokens)
  6422. self.gguf_writer.add_token_types(toktypes)
  6423. # Special tokens
  6424. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6425. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6426. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6427. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6428. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6429. special_vocab.add_to_gguf(self.gguf_writer)
  6430. def set_gguf_parameters(self):
  6431. super().set_gguf_parameters()
  6432. if (rope_dim := self.hparams.get("head_dim")) is None:
  6433. rope_dim = (
  6434. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6435. )
  6436. self.gguf_writer.add_rope_dimension_count(
  6437. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6438. )
  6439. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6440. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6441. self.gguf_writer.add_expert_count(n_routed_experts)
  6442. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6443. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6444. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6445. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6446. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6447. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6448. # Expert gating function (sigmoid for GLM4_MOE)
  6449. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6450. # Routed scaling factor
  6451. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6452. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6453. # Normalise topk probabilities
  6454. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6455. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6456. # NextN/MTP prediction layers
  6457. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6458. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6459. _experts: list[dict[str, Tensor]] | None = None
  6460. def modify_tensors(
  6461. self, data_torch: Tensor, name: str, bid: int | None
  6462. ) -> Iterable[tuple[str, Tensor]]:
  6463. if name.startswith("model.visual."): # ignore visual part
  6464. return []
  6465. elif name.startswith("model.language_model."):
  6466. name = name.replace("language_model.", "") # for multimodal variants
  6467. # Handle main token embedding (but not layer-specific NextN embeddings)
  6468. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6469. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6470. # Handle routed experts
  6471. if name.find("mlp.experts") != -1:
  6472. n_experts = self.hparams["n_routed_experts"]
  6473. assert bid is not None
  6474. if self._experts is None:
  6475. self._experts = [{} for _ in range(self.block_count)]
  6476. self._experts[bid][name] = data_torch
  6477. if len(self._experts[bid]) >= n_experts * 3:
  6478. tensors: list[tuple[str, Tensor]] = []
  6479. # merge the experts into a single 3d tensor
  6480. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6481. datas: list[Tensor] = []
  6482. for xid in range(n_experts):
  6483. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6484. datas.append(self._experts[bid][ename])
  6485. del self._experts[bid][ename]
  6486. data_torch = torch.stack(datas, dim=0)
  6487. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6488. new_name = self.map_tensor_name(merged_name)
  6489. tensors.append((new_name, data_torch))
  6490. return tensors
  6491. else:
  6492. return []
  6493. if name.endswith("e_score_correction_bias"):
  6494. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6495. new_name = self.map_tensor_name(name)
  6496. return [(new_name, data_torch)]
  6497. def prepare_tensors(self):
  6498. super().prepare_tensors()
  6499. if self._experts is not None:
  6500. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6501. experts = [k for d in self._experts for k in d.keys()]
  6502. if len(experts) > 0:
  6503. raise ValueError(f"Unprocessed experts: {experts}")
  6504. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6505. class ChatGLMModel(TextModel):
  6506. model_arch = gguf.MODEL_ARCH.CHATGLM
  6507. def set_vocab_chatglm3(self):
  6508. dir_model = self.dir_model
  6509. hparams = self.hparams
  6510. tokens: list[bytes] = []
  6511. toktypes: list[int] = []
  6512. scores: list[float] = []
  6513. from transformers import AutoTokenizer
  6514. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6515. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6516. assert max(tokenizer.get_vocab().values()) < vocab_size
  6517. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6518. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6519. for token_id in range(vocab_size):
  6520. piece = tokenizer._convert_id_to_token(token_id)
  6521. if token_id == 0:
  6522. piece = "<unk>"
  6523. elif token_id == 1:
  6524. piece = "<bos>"
  6525. elif token_id == 2:
  6526. piece = "<eos>"
  6527. text = piece.encode("utf-8")
  6528. score = 0.0
  6529. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6530. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6531. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6532. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6533. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6534. if piece in special_tokens:
  6535. toktype = SentencePieceTokenTypes.CONTROL
  6536. elif len(piece) == 0:
  6537. text = f"[PAD{token_id}]".encode("utf-8")
  6538. toktype = SentencePieceTokenTypes.UNUSED
  6539. else:
  6540. toktype = SentencePieceTokenTypes.USER_DEFINED
  6541. tokens.append(text)
  6542. scores.append(score)
  6543. toktypes.append(toktype)
  6544. continue
  6545. toktype = SentencePieceTokenTypes.NORMAL
  6546. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6547. toktype = SentencePieceTokenTypes.UNKNOWN
  6548. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6549. toktype = SentencePieceTokenTypes.CONTROL
  6550. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6551. toktype = SentencePieceTokenTypes.UNUSED
  6552. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6553. toktype = SentencePieceTokenTypes.BYTE
  6554. tokens.append(text)
  6555. scores.append(score)
  6556. toktypes.append(toktype)
  6557. self.gguf_writer.add_tokenizer_model("llama")
  6558. # glm3 needs prefix and suffix formatted as:
  6559. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6560. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6561. self.gguf_writer.add_token_list(tokens)
  6562. self.gguf_writer.add_token_scores(scores)
  6563. self.gguf_writer.add_token_types(toktypes)
  6564. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6565. special_vocab.add_to_gguf(self.gguf_writer)
  6566. @staticmethod
  6567. def token_bytes_to_string(b):
  6568. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6569. byte_encoder = bytes_to_unicode()
  6570. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6571. @staticmethod
  6572. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6573. parts = [bytes([b]) for b in token]
  6574. while True:
  6575. min_idx = None
  6576. min_rank = None
  6577. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6578. rank = mergeable_ranks.get(pair[0] + pair[1])
  6579. if rank is not None and (min_rank is None or rank < min_rank):
  6580. min_idx = i
  6581. min_rank = rank
  6582. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6583. break
  6584. assert min_idx is not None
  6585. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6586. return parts
  6587. def set_vocab(self):
  6588. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6589. self.set_vocab_chatglm3()
  6590. return
  6591. dir_model = self.dir_model
  6592. hparams = self.hparams
  6593. tokens: list[str] = []
  6594. toktypes: list[int] = []
  6595. from transformers import AutoTokenizer
  6596. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6597. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6598. assert max(tokenizer.get_vocab().values()) < vocab_size
  6599. tokens, toktypes, tokpre = self.get_vocab_base()
  6600. self.gguf_writer.add_tokenizer_model("gpt2")
  6601. self.gguf_writer.add_tokenizer_pre(tokpre)
  6602. self.gguf_writer.add_token_list(tokens)
  6603. self.gguf_writer.add_token_types(toktypes)
  6604. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6605. # only add special tokens when they were not already loaded from config.json
  6606. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6607. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6608. # this one is usually not in config.json anyway
  6609. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6610. special_vocab.add_to_gguf(self.gguf_writer)
  6611. def set_gguf_parameters(self):
  6612. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6613. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6614. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6615. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6616. self.gguf_writer.add_embedding_length(n_embed)
  6617. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6618. self.gguf_writer.add_block_count(self.block_count)
  6619. self.gguf_writer.add_head_count(n_head)
  6620. self.gguf_writer.add_head_count_kv(n_head_kv)
  6621. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6622. self.gguf_writer.add_file_type(self.ftype)
  6623. if "attention_dim" in self.hparams:
  6624. rope_dim = self.hparams["attention_dim"]
  6625. else:
  6626. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6627. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6628. self.gguf_writer.add_add_bos_token(False)
  6629. rope_freq = 10000
  6630. if "rope_ratio" in self.hparams:
  6631. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6632. self.gguf_writer.add_rope_freq_base(rope_freq)
  6633. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6634. del bid # unused
  6635. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6636. return []
  6637. name = name.removeprefix("transformer.")
  6638. return [(self.map_tensor_name(name), data_torch)]
  6639. @ModelBase.register("NemotronForCausalLM")
  6640. class NemotronModel(TextModel):
  6641. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6642. def set_vocab(self):
  6643. self._set_vocab_sentencepiece()
  6644. self.gguf_writer.add_pad_token_id(0)
  6645. self.gguf_writer.add_unk_token_id(1)
  6646. def set_gguf_parameters(self):
  6647. super().set_gguf_parameters()
  6648. hparams = self.hparams
  6649. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6650. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6651. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6652. # * Partial RoPE
  6653. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6654. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6655. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6656. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6657. # * RopeScaling for Nemotron
  6658. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6659. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6660. else:
  6661. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6662. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6664. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6665. # model.layers.{l}.input_layernorm.weight
  6666. # model.layers.{l}.post_attention_layernorm.weight
  6667. # model.norm.weight
  6668. if name.endswith("norm.weight"):
  6669. data_torch = data_torch + 1
  6670. return [(self.map_tensor_name(name), data_torch)]
  6671. @ModelBase.register("ExaoneForCausalLM")
  6672. class ExaoneModel(TextModel):
  6673. model_arch = gguf.MODEL_ARCH.EXAONE
  6674. def set_gguf_parameters(self):
  6675. hparams = self.hparams
  6676. assert (hparams["activation_function"] == "silu")
  6677. max_position_embeddings = hparams["max_position_embeddings"]
  6678. embed_dim = hparams["hidden_size"]
  6679. num_heads = hparams["num_attention_heads"]
  6680. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6681. layer_norm_eps = hparams["layer_norm_epsilon"]
  6682. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6683. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6684. # attention_dropout_rate = hparams["attention_dropout"]
  6685. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6686. # embed_dropout_rate = hparams["embed_dropout"]
  6687. self.gguf_writer.add_embedding_length(embed_dim)
  6688. self.gguf_writer.add_head_count(num_heads)
  6689. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6690. self.gguf_writer.add_context_length(max_position_embeddings)
  6691. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6692. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6693. self.gguf_writer.add_block_count(self.block_count)
  6694. self.gguf_writer.add_file_type(self.ftype)
  6695. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6696. self.gguf_writer.add_rope_freq_base(rope_theta)
  6697. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6698. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6699. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6700. rope_scaling = self.hparams.get("rope_scaling") or {}
  6701. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6702. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6703. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6704. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6705. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6706. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6707. base = self.hparams.get("rope_theta", 10000.0)
  6708. if (dim := self.hparams.get("head_dim")) is None:
  6709. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6710. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6711. factor = rope_scaling.get("factor", 8.0)
  6712. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6713. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6714. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6715. low_freq_wavelen = old_context_len / low_freq_factor
  6716. high_freq_wavelen = old_context_len / high_freq_factor
  6717. assert low_freq_wavelen != high_freq_wavelen
  6718. rope_factors = []
  6719. for freq in freqs:
  6720. wavelen = 2 * math.pi / freq
  6721. if wavelen < high_freq_wavelen:
  6722. rope_factors.append(1)
  6723. elif wavelen > low_freq_wavelen:
  6724. rope_factors.append(factor)
  6725. else:
  6726. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6727. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6728. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6729. @ModelBase.register("Exaone4ForCausalLM")
  6730. class Exaone4Model(TextModel):
  6731. model_arch = gguf.MODEL_ARCH.EXAONE4
  6732. def set_vocab(self):
  6733. tokens, toktypes, tokpre = self.get_vocab_base()
  6734. self.gguf_writer.add_tokenizer_model("gpt2")
  6735. self.gguf_writer.add_tokenizer_pre(tokpre)
  6736. self.gguf_writer.add_token_list(tokens)
  6737. self.gguf_writer.add_token_types(toktypes)
  6738. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6739. special_vocab.add_to_gguf(self.gguf_writer)
  6740. def set_gguf_parameters(self):
  6741. super().set_gguf_parameters()
  6742. hparams = self.hparams
  6743. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6744. if hparams.get("sliding_window") is not None:
  6745. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6746. if "layer_types" in hparams:
  6747. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6748. elif "sliding_window_pattern" in hparams:
  6749. sliding_window_pattern = []
  6750. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6751. for i in range(hparams["num_hidden_layers"]):
  6752. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6753. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6754. for i in range(hparams["num_hidden_layers"]):
  6755. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6756. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6757. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6758. rope_scaling = self.hparams.get("rope_scaling") or {}
  6759. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6760. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6761. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6762. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6763. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6764. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6765. base = self.hparams.get("rope_theta", 10_000.0)
  6766. if (dim := self.hparams.get("head_dim")) is None:
  6767. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6768. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6769. factor = rope_scaling.get("factor", 16.0)
  6770. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6771. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6772. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6773. low_freq_wavelen = old_context_len / low_freq_factor
  6774. high_freq_wavelen = old_context_len / high_freq_factor
  6775. rope_factors = []
  6776. for freq in freqs:
  6777. wavelen = 2 * math.pi / freq
  6778. if wavelen < high_freq_wavelen:
  6779. rope_factors.append(1)
  6780. elif wavelen > low_freq_wavelen:
  6781. rope_factors.append(factor)
  6782. else:
  6783. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6784. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6785. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6786. @ModelBase.register("GraniteForCausalLM")
  6787. class GraniteModel(LlamaModel):
  6788. """Conversion for IBM's GraniteForCausalLM"""
  6789. model_arch = gguf.MODEL_ARCH.GRANITE
  6790. def set_gguf_parameters(self):
  6791. """Granite uses standard llama parameters with the following differences:
  6792. - No head_dim support
  6793. - New multiplier params:
  6794. - attention_scale
  6795. - embedding_scale
  6796. - residual_scale
  6797. - logits_scaling
  6798. """
  6799. if head_dim := self.hparams.pop("head_dim", None):
  6800. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6801. super().set_gguf_parameters()
  6802. # NOTE: Convert _multiplier params to _scale params for naming
  6803. # consistency
  6804. if attention_scale := self.hparams.get("attention_multiplier"):
  6805. self.gguf_writer.add_attention_scale(attention_scale)
  6806. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6807. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6808. self.gguf_writer.add_embedding_scale(embedding_scale)
  6809. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6810. if residual_scale := self.hparams.get("residual_multiplier"):
  6811. self.gguf_writer.add_residual_scale(residual_scale)
  6812. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6813. if logits_scale := self.hparams.get("logits_scaling"):
  6814. self.gguf_writer.add_logit_scale(logits_scale)
  6815. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6816. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6817. class GraniteMoeModel(GraniteModel):
  6818. """Conversion for IBM's GraniteMoeForCausalLM"""
  6819. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6820. def set_gguf_parameters(self):
  6821. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6822. - shared_intermediate_size
  6823. """
  6824. super().set_gguf_parameters()
  6825. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6826. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6827. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6828. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6829. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6830. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6831. the hidden size that is then split during forward. To keep compatibility
  6832. with existing mixtral support, we pull them apart here.
  6833. """
  6834. if name.endswith("block_sparse_moe.input_linear.weight"):
  6835. ffn_dim = self.hparams["intermediate_size"]
  6836. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6837. gate, up = data_torch.split(ffn_dim, dim=-2)
  6838. return [
  6839. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6840. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6841. ]
  6842. has_experts = bool(self.hparams.get('num_local_experts'))
  6843. if name.endswith("shared_mlp.input_linear.weight"):
  6844. ffn_dim = self.hparams["shared_intermediate_size"]
  6845. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6846. gate, up = data_torch.split(ffn_dim, dim=-2)
  6847. if has_experts:
  6848. return [
  6849. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6850. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6851. ]
  6852. return [
  6853. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6854. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6855. ]
  6856. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6857. return [
  6858. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6859. ]
  6860. return super().modify_tensors(data_torch, name, bid)
  6861. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6862. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6863. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6864. layers and optionally uses MoE w/ a shared expert"""
  6865. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6866. undo_permute = True
  6867. def __init__(self, *args, **kwargs):
  6868. # Hybrid mamba models use a prefix for the mamba-specific params.
  6869. # TODO: Extend this if the prefix(es) need to be configurable
  6870. self.hparam_prefixes = ["mamba"]
  6871. super().__init__(*args, **kwargs)
  6872. # Lists of which layers use ssm vs attention
  6873. self._attn_layers = self.get_attn_layers()
  6874. self._ssm_layers = [
  6875. i for i in range(self.block_count)
  6876. if i not in self._attn_layers
  6877. ]
  6878. # There are some models in this family that are non-hybrid, but keep the
  6879. # same parent class by setting all layers to "attention." If this is the
  6880. # case, the model architecture needs to be updated to a standard
  6881. # "granite" or "granitemoe" model
  6882. if not self._ssm_layers:
  6883. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6884. new_arch = (
  6885. gguf.MODEL_ARCH.GRANITE_MOE
  6886. if has_experts else
  6887. gguf.MODEL_ARCH.GRANITE
  6888. )
  6889. self.model_arch = new_arch
  6890. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6891. self.gguf_writer.add_architecture()
  6892. # n_group and d_inner are used during reshape_tensors for mamba2
  6893. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6894. # disambiguate with top-level head_dim
  6895. # NOTE 2: If needed for future models, this can be isolated in a method
  6896. # to separate the prefix setting and teh keys used
  6897. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6898. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6899. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6900. def get_attn_layers(self):
  6901. # Explicit list of layer type names
  6902. if layer_types := self.hparams.get("layer_types"):
  6903. return [
  6904. i for i, typ in enumerate(layer_types)
  6905. if typ == "attention"
  6906. ]
  6907. # Layer types indicated by index or period
  6908. attn_layers = self.hparams.get("attn_layer_indices", [])
  6909. if not attn_layers:
  6910. attn_period = self.hparams.get("attn_layer_period")
  6911. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6912. attn_offset = self.hparams.get("attn_layer_offset")
  6913. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6914. attn_layers = [
  6915. i for i in range(self.block_count)
  6916. if i % attn_period == attn_offset
  6917. ]
  6918. return attn_layers
  6919. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6920. prefixed = []
  6921. for pfx in self.hparam_prefixes:
  6922. prefixed.extend(
  6923. "_".join([pfx, k])
  6924. for k in keys
  6925. )
  6926. keys = list(keys) + prefixed
  6927. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6928. def modify_tensors(
  6929. self, data_torch: Tensor, name: str, bid: int | None
  6930. ) -> Iterable[tuple[str, Tensor]]:
  6931. if (
  6932. name.endswith("block_sparse_moe.input_linear.weight")
  6933. or "shared_mlp" in name
  6934. ):
  6935. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6936. # Determine whether this is a mamba layer or an attention layer
  6937. if bid in self._ssm_layers:
  6938. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6939. elif bid in self._attn_layers:
  6940. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6941. return [(self.map_tensor_name(name), data_torch)]
  6942. def set_gguf_parameters(self):
  6943. """This method merges params from both parents and some that are
  6944. specific to this model. The result is some duplication of how the params
  6945. get set. The following warnings are expected during conversion:
  6946. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6947. WARNING:Duplicated key name 'granitehybrid.context_length'
  6948. """
  6949. GraniteMoeModel.set_gguf_parameters(self)
  6950. ## Mamba mixer params ##
  6951. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6952. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6953. self.gguf_writer.add_ssm_group_count(self.n_group)
  6954. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6955. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6956. # in llama.cpp
  6957. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6958. ## Attention params ##
  6959. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6960. head_count_kv_vec = [
  6961. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6962. ]
  6963. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6964. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6965. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6966. ## If Bamba or non-hybrid, use rope, otherwise don't
  6967. use_rope = (
  6968. "BambaForCausalLM" in self.hparams["architectures"]
  6969. or not self._ssm_layers
  6970. )
  6971. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6972. if not use_rope:
  6973. self.gguf_writer.add_context_length(2**20)
  6974. ## Validation ##
  6975. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6976. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6977. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6978. def set_vocab(self):
  6979. self.hparams["pad_vocab_size_multiple"] = 8
  6980. Mamba2Model.set_vocab(self)
  6981. @ModelBase.register("NemotronHForCausalLM")
  6982. class NemotronHModel(GraniteHybridModel):
  6983. """Hybrid mamba2/attention model from NVIDIA"""
  6984. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6985. def __init__(self, *args, **kwargs):
  6986. super().__init__(*args, **kwargs)
  6987. # Save the top-level head_dim for later
  6988. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6989. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6990. # Don't use expand to calculate d_inner
  6991. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6992. # Update the ssm / attn / mlp layers
  6993. # M: Mamba2, *: Attention, -: MLP
  6994. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6995. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6996. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6997. def get_attn_layers(self):
  6998. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6999. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7000. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7001. def set_gguf_parameters(self):
  7002. super().set_gguf_parameters()
  7003. self.gguf_writer.add_key_length(self.head_dim)
  7004. self.gguf_writer.add_value_length(self.head_dim)
  7005. # Set feed_forward_length
  7006. # NOTE: This will trigger an override warning. This is preferrable to
  7007. # duplicating all the parent logic
  7008. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7009. self.gguf_writer.add_feed_forward_length([
  7010. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7011. ])
  7012. def set_vocab(self):
  7013. super().set_vocab()
  7014. # The tokenizer _does_ add a BOS token (via post_processor type
  7015. # TemplateProcessing) but does not set add_bos_token to true in the
  7016. # config, so we need to explicitly override it here.
  7017. self.gguf_writer.add_add_bos_token(True)
  7018. @ModelBase.register("BailingMoeForCausalLM")
  7019. class BailingMoeModel(TextModel):
  7020. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7021. def set_vocab(self):
  7022. self._set_vocab_gpt2()
  7023. def set_gguf_parameters(self):
  7024. super().set_gguf_parameters()
  7025. hparams = self.hparams
  7026. if (rope_dim := hparams.get("head_dim")) is None:
  7027. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7028. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7029. rope_scaling = self.hparams.get("rope_scaling") or {}
  7030. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7032. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7033. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7034. else:
  7035. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7036. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7037. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7038. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7039. self.gguf_writer.add_expert_weights_scale(1.0)
  7040. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7041. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7042. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7043. _experts: list[dict[str, Tensor]] | None = None
  7044. @staticmethod
  7045. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7046. if n_head_kv is not None and n_head != n_head_kv:
  7047. n_head = n_head_kv
  7048. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7049. .swapaxes(1, 2)
  7050. .reshape(weights.shape))
  7051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7052. n_head = self.hparams["num_attention_heads"]
  7053. n_kv_head = self.hparams.get("num_key_value_heads")
  7054. n_embd = self.hparams["hidden_size"]
  7055. if (head_dim := self.hparams.get("head_dim")) is None:
  7056. head_dim = n_embd // n_head
  7057. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7058. if name.endswith("attention.dense.weight"):
  7059. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7060. elif name.endswith("query_key_value.weight"):
  7061. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7062. return [
  7063. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7064. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7065. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7066. ]
  7067. elif name.find("mlp.experts") != -1:
  7068. n_experts = self.hparams["num_experts"]
  7069. assert bid is not None
  7070. tensors: list[tuple[str, Tensor]] = []
  7071. if self._experts is None:
  7072. self._experts = [{} for _ in range(self.block_count)]
  7073. self._experts[bid][name] = data_torch
  7074. if len(self._experts[bid]) >= n_experts * 3:
  7075. # merge the experts into a single 3d tensor
  7076. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7077. datas: list[Tensor] = []
  7078. for xid in range(n_experts):
  7079. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7080. datas.append(self._experts[bid][ename])
  7081. del self._experts[bid][ename]
  7082. data_torch = torch.stack(datas, dim=0)
  7083. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7084. new_name = self.map_tensor_name(merged_name)
  7085. tensors.append((new_name, data_torch))
  7086. return tensors
  7087. new_name = self.map_tensor_name(name)
  7088. if new_name == output_name and self.hparams.get("norm_head"):
  7089. data_torch = data_torch.float()
  7090. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7091. return [(new_name, data_torch)]
  7092. def prepare_tensors(self):
  7093. super().prepare_tensors()
  7094. if self._experts is not None:
  7095. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7096. experts = [k for d in self._experts for k in d.keys()]
  7097. if len(experts) > 0:
  7098. raise ValueError(f"Unprocessed experts: {experts}")
  7099. @ModelBase.register("BailingMoeV2ForCausalLM")
  7100. class BailingMoeV2Model(TextModel):
  7101. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7102. def __init__(self, *args, **kwargs):
  7103. super().__init__(*args, **kwargs)
  7104. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7105. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7106. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7107. def set_vocab(self):
  7108. self._set_vocab_gpt2()
  7109. def set_gguf_parameters(self):
  7110. super().set_gguf_parameters()
  7111. hparams = self.hparams
  7112. if (rope_dim := hparams.get("head_dim")) is None:
  7113. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7114. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7115. rope_scaling = self.hparams.get("rope_scaling") or {}
  7116. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7117. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7118. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7119. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7120. else:
  7121. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7122. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7123. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7124. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7125. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7126. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7127. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7128. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7129. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7130. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7131. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7132. _experts: list[dict[str, Tensor]] | None = None
  7133. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7134. if "mlp.experts" in name:
  7135. n_experts = self.hparams["num_experts"]
  7136. assert bid is not None
  7137. tensors: list[tuple[str, Tensor]] = []
  7138. if self._experts is None:
  7139. self._experts = [{} for _ in range(self.block_count)]
  7140. self._experts[bid][name] = data_torch
  7141. if len(self._experts[bid]) >= n_experts * 3:
  7142. # merge the experts into a single 3d tensor
  7143. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7144. datas: list[Tensor] = []
  7145. for xid in range(n_experts):
  7146. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7147. datas.append(self._experts[bid][ename])
  7148. del self._experts[bid][ename]
  7149. data_torch = torch.stack(datas, dim=0)
  7150. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7151. new_name = self.map_tensor_name(merged_name)
  7152. tensors.append((new_name, data_torch))
  7153. return tensors
  7154. if name.endswith(".expert_bias"):
  7155. name = name.replace(".expert_bias", ".expert_bias.bias")
  7156. return [(self.map_tensor_name(name), data_torch)]
  7157. def prepare_tensors(self):
  7158. super().prepare_tensors()
  7159. if self._experts is not None:
  7160. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7161. experts = [k for d in self._experts for k in d.keys()]
  7162. if len(experts) > 0:
  7163. raise ValueError(f"Unprocessed experts: {experts}")
  7164. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7165. class GroveMoeModel(TextModel):
  7166. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7167. def set_gguf_parameters(self):
  7168. super().set_gguf_parameters()
  7169. if (n_experts := self.hparams.get("num_experts")) is not None:
  7170. self.gguf_writer.add_expert_count(n_experts)
  7171. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7172. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7173. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7174. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7175. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7176. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7177. self.gguf_writer.add_experts_per_group(2)
  7178. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7179. self.gguf_writer.add_expert_group_scale(0.05)
  7180. # YaRN is not enabled by default
  7181. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7182. rope_scaling = self.hparams.get("rope_scaling") or {}
  7183. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7184. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7185. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7186. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7187. _experts: list[dict[str, Tensor]] | None = None
  7188. _chunk_experts: list[dict[str, Tensor]] | None = None
  7189. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7190. if name.endswith(".expert_bias"):
  7191. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7192. return []
  7193. # process the experts separately
  7194. if name.find("chunk_experts") != -1:
  7195. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7196. assert bid is not None
  7197. if self._chunk_experts is None:
  7198. self._chunk_experts = [{} for _ in range(self.block_count)]
  7199. self._chunk_experts[bid][name] = data_torch
  7200. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7201. tensors: list[tuple[str, Tensor]] = []
  7202. # merge the experts into a single 3d tensor
  7203. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7204. datas: list[Tensor] = []
  7205. for xid in range(n_experts):
  7206. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7207. datas.append(self._chunk_experts[bid][ename])
  7208. del self._chunk_experts[bid][ename]
  7209. data_torch = torch.stack(datas, dim=0)
  7210. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7211. new_name = self.map_tensor_name(merged_name)
  7212. tensors.append((new_name, data_torch))
  7213. return tensors
  7214. else:
  7215. return []
  7216. elif name.find("experts") != -1:
  7217. n_experts = self.hparams["num_experts"]
  7218. assert bid is not None
  7219. if self._experts is None:
  7220. self._experts = [{} for _ in range(self.block_count)]
  7221. self._experts[bid][name] = data_torch
  7222. if len(self._experts[bid]) >= n_experts * 3:
  7223. tensors: list[tuple[str, Tensor]] = []
  7224. # merge the experts into a single 3d tensor
  7225. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7226. datas: list[Tensor] = []
  7227. for xid in range(n_experts):
  7228. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7229. datas.append(self._experts[bid][ename])
  7230. del self._experts[bid][ename]
  7231. data_torch = torch.stack(datas, dim=0)
  7232. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7233. new_name = self.map_tensor_name(merged_name)
  7234. tensors.append((new_name, data_torch))
  7235. return tensors
  7236. else:
  7237. return []
  7238. return [(self.map_tensor_name(name), data_torch)]
  7239. def prepare_tensors(self):
  7240. super().prepare_tensors()
  7241. if self._chunk_experts is not None:
  7242. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7243. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7244. if len(chunk_experts) > 0:
  7245. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7246. if self._experts is not None:
  7247. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7248. experts = [k for d in self._experts for k in d.keys()]
  7249. if len(experts) > 0:
  7250. raise ValueError(f"Unprocessed experts: {experts}")
  7251. @ModelBase.register("ChameleonForConditionalGeneration")
  7252. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7253. class ChameleonModel(TextModel):
  7254. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7255. def set_gguf_parameters(self):
  7256. super().set_gguf_parameters()
  7257. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7258. def set_vocab(self):
  7259. self._set_vocab_gpt2()
  7260. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7261. # ignore image tokenizer for now
  7262. # TODO: remove this once image support is implemented for Chameleon
  7263. if name.startswith("model.vqmodel"):
  7264. return []
  7265. n_head = self.hparams["num_attention_heads"]
  7266. n_kv_head = self.hparams.get("num_key_value_heads")
  7267. hidden_dim = self.hparams.get("hidden_size")
  7268. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7269. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7270. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7271. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7272. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7273. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7274. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7275. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7276. return [(self.map_tensor_name(name), data_torch)]
  7277. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7278. @staticmethod
  7279. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7280. head_dim = hidden_dim // n_heads
  7281. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7282. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7283. return data_torch
  7284. @ModelBase.register("UltravoxModel")
  7285. class UltravoxModel(TextModel):
  7286. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7287. def __init__(self, *args, **kwargs):
  7288. super().__init__(*args, **kwargs)
  7289. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7290. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7291. class WhisperEncoderModel(MmprojModel):
  7292. has_vision_encoder = False # no vision encoder
  7293. has_audio_encoder = True
  7294. def __init__(self, *args, **kwargs):
  7295. super().__init__(*args, **kwargs)
  7296. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7297. self.hparams["hidden_size"] = self.hparams["d_model"]
  7298. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7299. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7300. def set_gguf_parameters(self):
  7301. super().set_gguf_parameters()
  7302. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7303. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7304. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7305. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7306. if ".conv" in name and ".weight" in name:
  7307. return gguf.GGMLQuantizationType.F16
  7308. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7309. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7310. del bid # unused
  7311. if name.startswith("language_model."):
  7312. # skip language model tensors
  7313. return []
  7314. # prevent clash naming with vision tensors
  7315. if name.startswith("multi_modal_projector"):
  7316. name = "audio." + name
  7317. if "conv1.bias" in name or "conv2.bias" in name:
  7318. # transpose conv1 and conv2 bias
  7319. data_torch = data_torch.unsqueeze(-1)
  7320. return [(self.map_tensor_name(name), data_torch)]
  7321. @ModelBase.register("UltravoxModel")
  7322. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7323. has_vision_encoder = False # no vision encoder
  7324. has_audio_encoder = True
  7325. def set_gguf_parameters(self):
  7326. super().set_gguf_parameters()
  7327. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7328. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7329. @ModelBase.register("VoxtralForConditionalGeneration")
  7330. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7331. has_vision_encoder = False # no vision encoder
  7332. has_audio_encoder = True
  7333. def set_gguf_parameters(self):
  7334. super().set_gguf_parameters()
  7335. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7336. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7337. @ModelBase.register("FalconH1ForCausalLM")
  7338. class FalconH1Model(Mamba2Model):
  7339. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7340. def __init__(self, *args, **kwargs):
  7341. # Set the hparam prefixes for Falcon Mamba2
  7342. self.hparam_prefixes = ["mamba"]
  7343. # Initialize the base Mamba2Model
  7344. super().__init__(*args, **kwargs)
  7345. # Use Llama conversion for attention
  7346. self._transformer_model_class = LlamaModel
  7347. # n_group and d_inner are used during reshape_tensors for mamba2
  7348. self.n_group = self.find_hparam(["n_groups"])
  7349. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7350. self.d_head = self.find_hparam(["d_head"])
  7351. # Initialize any Falcon Mamba2 specific attributes
  7352. self.has_attention = True # Falcon Mamba2 has attention components
  7353. # Load Falcon-H1 multipliers from hyperparameters
  7354. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7355. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7356. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7357. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7358. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7359. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7360. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7361. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7362. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7363. prefixed = []
  7364. for pfx in self.hparam_prefixes:
  7365. prefixed.extend(
  7366. "_".join([pfx, k])
  7367. for k in keys
  7368. )
  7369. keys = list(keys) + prefixed
  7370. return super().find_hparam(keys, *args, **kwargs)
  7371. def set_vocab(self):
  7372. self._set_vocab_gpt2()
  7373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7374. tensors = list(super().modify_tensors(data_torch, name, bid))
  7375. tensor = tensors[0][1]
  7376. if "down_proj" in name:
  7377. tensor = tensor * self.mlp_multipliers[1]
  7378. elif "gate_proj" in name:
  7379. tensor = tensor * self.mlp_multipliers[0]
  7380. elif "k_proj" in name:
  7381. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7382. elif "q_proj" in name:
  7383. tensor = tensor * self.attention_in_multiplier
  7384. elif "v_proj" in name:
  7385. tensor = tensor * self.attention_in_multiplier
  7386. elif "o_proj" in name:
  7387. tensor = tensor * self.attention_out_multiplier
  7388. elif "out_proj" in name:
  7389. tensor = tensor * self.ssm_out_multiplier
  7390. elif "in_proj" in name:
  7391. tensor = tensor * self.ssm_in_multiplier
  7392. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7393. intermediate_size = self.hparams["mamba_d_ssm"]
  7394. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7395. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7396. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7397. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7398. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7399. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7400. elif "lm_head" in name:
  7401. tensor = tensor * self.hparams["lm_head_multiplier"]
  7402. elif "embed_tokens" in name:
  7403. tensor = tensor * self.hparams["embedding_multiplier"]
  7404. elif "mamba.norm" in name:
  7405. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7406. tensors = [(tensors[0][0], tensor)]
  7407. return tensors
  7408. def set_gguf_parameters(self):
  7409. super().set_gguf_parameters()
  7410. ## General Params ##
  7411. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7412. # Override some Mamba2 defaults
  7413. self.gguf_writer.add_block_count(self.block_count)
  7414. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7415. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7416. ## Attention params ##
  7417. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7418. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7419. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7420. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7421. ## Validation ##
  7422. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7423. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7424. # Add any other Falcon Mamba2 specific configuration
  7425. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7426. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7427. class HunYuanMoEModel(TextModel):
  7428. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7429. def set_vocab(self):
  7430. from transformers import AutoTokenizer
  7431. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7432. # 1. Get the pre-tokenizer identifier hash
  7433. tokpre = self.get_vocab_base_pre(tokenizer)
  7434. # 2. Reverse-engineer the merges list from mergeable_ranks
  7435. merges = []
  7436. vocab = {}
  7437. mergeable_ranks = tokenizer.mergeable_ranks
  7438. for token, rank in mergeable_ranks.items():
  7439. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7440. if len(token) == 1:
  7441. continue
  7442. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7443. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7444. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7445. # 3. Generate the tokens and toktypes lists
  7446. vocab_size = self.hparams["vocab_size"]
  7447. assert tokenizer.vocab_size == vocab_size
  7448. special_tokens = tokenizer.special_tokens
  7449. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7450. tokens: list[str] = []
  7451. toktypes: list[int] = []
  7452. for i in range(vocab_size):
  7453. if i not in reverse_vocab:
  7454. tokens.append(f"[PAD{i}]")
  7455. toktypes.append(gguf.TokenType.UNUSED)
  7456. else:
  7457. token = reverse_vocab[i]
  7458. tokens.append(token)
  7459. if i in special_tokens.values():
  7460. toktypes.append(gguf.TokenType.CONTROL)
  7461. else:
  7462. toktypes.append(gguf.TokenType.NORMAL)
  7463. # 4. Write all vocab-related fields to the GGUF writer
  7464. self.gguf_writer.add_tokenizer_model("gpt2")
  7465. self.gguf_writer.add_tokenizer_pre(tokpre)
  7466. self.gguf_writer.add_token_list(tokens)
  7467. self.gguf_writer.add_token_types(toktypes)
  7468. self.gguf_writer.add_token_merges(merges)
  7469. # 5. Add special tokens and chat templates
  7470. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7471. special_vocab.add_to_gguf(self.gguf_writer)
  7472. # FIX for BOS token: Overwrite incorrect id read from config.json
  7473. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7474. def set_gguf_parameters(self):
  7475. super().set_gguf_parameters()
  7476. hparams = self.hparams
  7477. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7478. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7479. moe_intermediate_size = hparams["moe_intermediate_size"]
  7480. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7481. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7482. moe_topk = hparams["moe_topk"]
  7483. assert all(topk == moe_topk[0] for topk in moe_topk)
  7484. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7485. moe_shared_expert = hparams["num_shared_expert"]
  7486. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7487. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7488. # Rope
  7489. rope_scaling = hparams.get("rope_scaling", {})
  7490. if rope_scaling.get("type") == "dynamic":
  7491. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7492. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7493. alpha = rope_scaling.get("alpha", 1000)
  7494. base = hparams.get("rope_theta", 10000.0)
  7495. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7496. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7497. self.gguf_writer.add_rope_freq_base(scaled_base)
  7498. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7499. self.gguf_writer.add_rope_scaling_factor(1)
  7500. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7501. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7502. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7503. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7504. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7505. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7506. _experts: list[dict[str, Tensor]] | None = None
  7507. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7508. if name == "lm_head.weight":
  7509. if self.hparams.get("tie_word_embeddings", False):
  7510. logger.info("Skipping tied output layer 'lm_head.weight'")
  7511. return []
  7512. if name.find("mlp.experts") != -1:
  7513. n_experts = self.hparams["num_experts"]
  7514. assert bid is not None
  7515. if self._experts is None:
  7516. self._experts = [{} for _ in range(self.block_count)]
  7517. self._experts[bid][name] = data_torch
  7518. if len(self._experts[bid]) >= n_experts * 3:
  7519. # merge the experts into a single 3d tensor
  7520. tensors: list[tuple[str, Tensor]] = []
  7521. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7522. datas: list[Tensor] = []
  7523. for xid in range(n_experts):
  7524. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7525. datas.append(self._experts[bid][ename])
  7526. del self._experts[bid][ename]
  7527. data_torch = torch.stack(datas, dim=0)
  7528. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7529. new_name = self.map_tensor_name(merged_name)
  7530. tensors.append((new_name, data_torch))
  7531. return tensors
  7532. else:
  7533. return []
  7534. return [(self.map_tensor_name(name), data_torch)]
  7535. def prepare_tensors(self):
  7536. super().prepare_tensors()
  7537. if self._experts is not None:
  7538. experts = [k for d in self._experts for k in d.keys()]
  7539. if len(experts) > 0:
  7540. raise ValueError(f"Unprocessed experts: {experts}")
  7541. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7542. class LLaDAMoEModel(TextModel):
  7543. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7544. def set_gguf_parameters(self):
  7545. super().set_gguf_parameters()
  7546. if (n_experts := self.hparams.get("num_experts")) is not None:
  7547. self.gguf_writer.add_expert_count(n_experts)
  7548. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7549. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7550. # number of experts used per token (top-k)
  7551. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7552. self.gguf_writer.add_expert_used_count(n_experts_used)
  7553. self.gguf_writer.add_mask_token_id(156895)
  7554. self.gguf_writer.add_causal_attention(False)
  7555. self.gguf_writer.add_diffusion_shift_logits(False)
  7556. _experts: list[dict[str, Tensor]] | None = None
  7557. # Copied from: Qwen2MoeModel
  7558. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7559. # process the experts separately
  7560. if name.find("experts") != -1:
  7561. n_experts = self.hparams["num_experts"]
  7562. assert bid is not None
  7563. if self._experts is None:
  7564. self._experts = [{} for _ in range(self.block_count)]
  7565. self._experts[bid][name] = data_torch
  7566. if len(self._experts[bid]) >= n_experts * 3:
  7567. tensors: list[tuple[str, Tensor]] = []
  7568. # merge the experts into a single 3d tensor
  7569. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7570. datas: list[Tensor] = []
  7571. for xid in range(n_experts):
  7572. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7573. datas.append(self._experts[bid][ename])
  7574. del self._experts[bid][ename]
  7575. data_torch = torch.stack(datas, dim=0)
  7576. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7577. new_name = self.map_tensor_name(merged_name)
  7578. tensors.append((new_name, data_torch))
  7579. return tensors
  7580. else:
  7581. return []
  7582. return [(self.map_tensor_name(name), data_torch)]
  7583. # Copied from: Qwen2MoeModel
  7584. def prepare_tensors(self):
  7585. super().prepare_tensors()
  7586. if self._experts is not None:
  7587. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7588. experts = [k for d in self._experts for k in d.keys()]
  7589. if len(experts) > 0:
  7590. raise ValueError(f"Unprocessed experts: {experts}")
  7591. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7592. class HunYuanModel(TextModel):
  7593. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7594. def set_vocab(self):
  7595. if (self.dir_model / "tokenizer.json").is_file():
  7596. self._set_vocab_gpt2()
  7597. else:
  7598. from transformers import AutoTokenizer
  7599. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7600. # 1. Get the pre-tokenizer identifier hash
  7601. tokpre = self.get_vocab_base_pre(tokenizer)
  7602. # 2. Reverse-engineer the merges list from mergeable_ranks
  7603. merges = []
  7604. vocab = {}
  7605. mergeable_ranks = tokenizer.mergeable_ranks
  7606. for token, rank in mergeable_ranks.items():
  7607. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7608. if len(token) == 1:
  7609. continue
  7610. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7611. if len(merged) == 2:
  7612. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7613. # 3. Generate the tokens and toktypes lists
  7614. vocab_size = self.hparams["vocab_size"]
  7615. assert tokenizer.vocab_size == vocab_size
  7616. special_tokens = tokenizer.special_tokens
  7617. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7618. tokens: list[str] = []
  7619. toktypes: list[int] = []
  7620. for i in range(vocab_size):
  7621. if i not in reverse_vocab:
  7622. tokens.append(f"[PAD{i}]")
  7623. toktypes.append(gguf.TokenType.UNUSED)
  7624. else:
  7625. token = reverse_vocab[i]
  7626. tokens.append(token)
  7627. if i in special_tokens.values():
  7628. toktypes.append(gguf.TokenType.CONTROL)
  7629. else:
  7630. toktypes.append(gguf.TokenType.NORMAL)
  7631. # 4. Write all vocab-related fields to the GGUF writer
  7632. self.gguf_writer.add_tokenizer_model("gpt2")
  7633. self.gguf_writer.add_tokenizer_pre(tokpre)
  7634. self.gguf_writer.add_token_list(tokens)
  7635. self.gguf_writer.add_token_types(toktypes)
  7636. self.gguf_writer.add_token_merges(merges)
  7637. # 5. Add special tokens and chat templates
  7638. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7639. special_vocab.add_to_gguf(self.gguf_writer)
  7640. # FIX for BOS token: Overwrite incorrect id read from config.json
  7641. if self.hparams['hidden_size'] == 4096:
  7642. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7643. def set_gguf_parameters(self):
  7644. super().set_gguf_parameters()
  7645. hparams = self.hparams
  7646. # Rope
  7647. rope_scaling = hparams.get("rope_scaling", {})
  7648. if rope_scaling.get("type") == "dynamic":
  7649. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7650. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7651. alpha = rope_scaling.get("alpha", 50)
  7652. base = hparams.get("rope_theta", 10000.0)
  7653. dim = hparams["head_dim"]
  7654. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7655. self.gguf_writer.add_rope_freq_base(scaled_base)
  7656. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7657. self.gguf_writer.add_rope_scaling_factor(1)
  7658. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7659. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7660. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7661. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7662. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7663. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7665. if name == "lm_head.weight":
  7666. if self.hparams.get("tie_word_embeddings", False):
  7667. logger.info("Skipping tied output layer 'lm_head.weight'")
  7668. return []
  7669. return [(self.map_tensor_name(name), data_torch)]
  7670. @ModelBase.register("SmolLM3ForCausalLM")
  7671. class SmolLM3Model(LlamaModel):
  7672. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7673. @ModelBase.register("GptOssForCausalLM")
  7674. class GptOssModel(TextModel):
  7675. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7676. # TODO: remove once MXFP4 is supported more generally
  7677. def dequant_model(self):
  7678. quant_config = self.hparams.get("quantization_config")
  7679. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7680. return
  7681. return super().dequant_model()
  7682. def transform_nibble_layout(self, tensor):
  7683. assert tensor.dtype == torch.uint8
  7684. assert tensor.shape[-1] == 16
  7685. # swap nibbles
  7686. t_lo = tensor & 0x0F
  7687. t_hi = tensor & 0xF0
  7688. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7689. tensor = t_swapped
  7690. # transform aaaa...bbbb... to abababab...
  7691. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7692. # get a_
  7693. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7694. blk_a1 = (blk_a << 4).view(-1, 1)
  7695. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7696. # get _b
  7697. blk_b0 = (blk_b >> 4).view(-1, 1)
  7698. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7699. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7700. # swap once more
  7701. out = blk_a | blk_b
  7702. out_h = out & 0xF0
  7703. out_l = out & 0x0F
  7704. out = (out_h >> 4) | (out_l << 4)
  7705. return out
  7706. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7707. assert blocks.dtype == torch.uint8
  7708. assert scales.dtype == torch.uint8
  7709. scales = scales.unsqueeze(-1)
  7710. assert len(blocks.shape) == 4
  7711. assert len(scales.shape) == 4
  7712. blocks = self.transform_nibble_layout(blocks)
  7713. new_data = torch.concat((scales, blocks), dim=-1)
  7714. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7715. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7716. # flatten last dim
  7717. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7718. new_data = new_data.numpy()
  7719. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7720. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7721. blocks0: Tensor = torch.zeros(1)
  7722. blocks1: Tensor = torch.zeros(1)
  7723. # we assume that tensors are loaded in the correct order
  7724. for name, data_torch in self.get_tensors():
  7725. if "mlp.experts.down_proj_blocks" in name:
  7726. blocks0 = data_torch
  7727. elif "mlp.experts.down_proj_scales" in name:
  7728. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7729. self.repack_mxfp4(new_name, blocks0, data_torch)
  7730. elif "mlp.experts.gate_up_proj_blocks" in name:
  7731. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7732. elif "mlp.experts.gate_up_proj_scales" in name:
  7733. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7734. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7735. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7736. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7737. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7738. return []
  7739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7740. del bid # unused
  7741. if "sinks" in name:
  7742. name += ".weight"
  7743. # correct naming for down_proj
  7744. if "down_proj" in name:
  7745. if name.endswith("_bias"):
  7746. name = name.replace("down_proj_bias", "down_proj.bias")
  7747. elif "_blocks" not in name and "_scales" not in name:
  7748. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7749. name = name.replace("down_proj", "down_proj.weight")
  7750. data_torch = data_torch.transpose(-1, -2)
  7751. else:
  7752. # otherwise, it should already be repacked to ggml MXFP4 format
  7753. return []
  7754. # split the gate_up into gate and up
  7755. if "gate_up_proj" in name:
  7756. if name.endswith("_bias"):
  7757. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7758. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7759. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7760. return [
  7761. (self.map_tensor_name(name_gate), gate_proj_bias),
  7762. (self.map_tensor_name(name_up), up_proj_bias)
  7763. ]
  7764. elif "_blocks" not in name and "_scales" not in name:
  7765. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7766. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7767. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7768. data_torch = data_torch.transpose(-1, -2)
  7769. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7770. return [
  7771. (self.map_tensor_name(name_gate), gate_proj_weight),
  7772. (self.map_tensor_name(name_up), up_proj_weight)
  7773. ]
  7774. else:
  7775. # otherwise, it should already be repacked to ggml MXFP4 format
  7776. return []
  7777. return [(self.map_tensor_name(name), data_torch)]
  7778. def set_vocab(self):
  7779. self._set_vocab_gpt2()
  7780. def set_gguf_parameters(self):
  7781. super().set_gguf_parameters()
  7782. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7783. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7784. rope_scaling = self.hparams.get("rope_scaling") or {}
  7785. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7786. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7787. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7788. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7789. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7790. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7791. class LFM2Model(TextModel):
  7792. model_arch = gguf.MODEL_ARCH.LFM2
  7793. def _add_feed_forward_length(self):
  7794. ff_dim = self.hparams["block_ff_dim"]
  7795. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7796. ff_dim = self.hparams["block_ff_dim"]
  7797. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7798. multiple_of = self.hparams["block_multiple_of"]
  7799. if auto_adjust_ff_dim:
  7800. ff_dim = int(2 * ff_dim / 3)
  7801. # custom dim factor multiplier
  7802. if ffn_dim_multiplier is not None:
  7803. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7804. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7805. self.gguf_writer.add_feed_forward_length(ff_dim)
  7806. def set_gguf_parameters(self):
  7807. # set num_key_value_heads only for attention layers
  7808. self.hparams["num_key_value_heads"] = [
  7809. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7810. for layer_type in self.hparams["layer_types"]
  7811. ]
  7812. super().set_gguf_parameters()
  7813. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7814. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7815. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7816. self._add_feed_forward_length()
  7817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7818. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7819. if is_vision_tensor:
  7820. # skip vision tensors
  7821. return []
  7822. name = name.replace("language_model.", "")
  7823. # conv op requires 2d tensor
  7824. if 'conv.conv' in name:
  7825. data_torch = data_torch.squeeze(1)
  7826. return [(self.map_tensor_name(name), data_torch)]
  7827. @ModelBase.register("Lfm2MoeForCausalLM")
  7828. class LFM2MoeModel(TextModel):
  7829. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7830. def set_gguf_parameters(self):
  7831. # set num_key_value_heads only for attention layers
  7832. self.hparams["num_key_value_heads"] = [
  7833. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7834. for layer_type in self.hparams["layer_types"]
  7835. ]
  7836. super().set_gguf_parameters()
  7837. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7838. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7839. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7840. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7841. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7842. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7843. # cache for experts weights for merging
  7844. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7845. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7846. # conv op requires 2d tensor
  7847. if 'conv.conv' in name:
  7848. data_torch = data_torch.squeeze(1)
  7849. if name.endswith(".expert_bias"):
  7850. name = name.replace(".expert_bias", ".expert_bias.bias")
  7851. # merge expert weights
  7852. if 'experts' in name:
  7853. n_experts = self.hparams["num_experts"]
  7854. assert bid is not None
  7855. expert_cache = self._experts_cache.setdefault(bid, {})
  7856. expert_cache[name] = data_torch
  7857. expert_weights = ["w1", "w2", "w3"]
  7858. # not enough expert weights to merge
  7859. if len(expert_cache) < n_experts * len(expert_weights):
  7860. return []
  7861. tensors: list[tuple[str, Tensor]] = []
  7862. for w_name in expert_weights:
  7863. datas: list[Tensor] = []
  7864. for xid in range(n_experts):
  7865. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7866. datas.append(expert_cache[ename])
  7867. del expert_cache[ename]
  7868. data_torch = torch.stack(datas, dim=0)
  7869. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7870. new_name = self.map_tensor_name(merged_name)
  7871. tensors.append((new_name, data_torch))
  7872. del self._experts_cache[bid]
  7873. return tensors
  7874. return [(self.map_tensor_name(name), data_torch)]
  7875. def prepare_tensors(self):
  7876. super().prepare_tensors()
  7877. assert not self._experts_cache
  7878. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7879. class LFM2VLModel(MmprojModel):
  7880. def __init__(self, *args, **kwargs):
  7881. super().__init__(*args, **kwargs)
  7882. assert self.hparams_vision is not None
  7883. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7884. self.hparams_vision["image_size"] = 256
  7885. def set_gguf_parameters(self):
  7886. super().set_gguf_parameters()
  7887. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7888. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7889. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7890. self.gguf_writer.add_vision_use_gelu(True)
  7891. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7892. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7893. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7894. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7895. del bid # unused
  7896. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7897. if is_vision_tensor:
  7898. # remove "model." prefix
  7899. name = name.replace("model.vision_tower.", "vision_tower.")
  7900. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7901. if "patch_embedding.weight" in name:
  7902. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7903. return [(self.map_tensor_name(name), data_torch)]
  7904. return [] # skip other tensors
  7905. @ModelBase.register("SmallThinkerForCausalLM")
  7906. class SmallThinkerModel(TextModel):
  7907. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7908. def set_gguf_parameters(self):
  7909. super().set_gguf_parameters()
  7910. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7911. self.gguf_writer.add_expert_count(n_experts)
  7912. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7913. self.gguf_writer.add_expert_used_count(n_experts_used)
  7914. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7915. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7916. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7917. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7918. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7919. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7920. else:
  7921. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7922. # YaRN is not enabled by default
  7923. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7924. rope_scaling = self.hparams.get("rope_scaling") or {}
  7925. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7926. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7927. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7928. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7929. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7930. if sliding_window_layout:
  7931. for i in sliding_window_layout:
  7932. if i != 0:
  7933. sliding_window = self.hparams.get("sliding_window_size")
  7934. if sliding_window:
  7935. self.gguf_writer.add_sliding_window(sliding_window)
  7936. break
  7937. _experts: list[dict[str, Tensor]] | None = None
  7938. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7939. # process the experts separately
  7940. if name.find("experts") != -1:
  7941. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7942. assert bid is not None
  7943. if self._experts is None:
  7944. self._experts = [{} for _ in range(self.block_count)]
  7945. self._experts[bid][name] = data_torch
  7946. if len(self._experts[bid]) >= n_experts * 3:
  7947. tensors: list[tuple[str, Tensor]] = []
  7948. # merge the experts into a single 3d tensor
  7949. for w_name in ["down", "gate", "up"]:
  7950. datas: list[Tensor] = []
  7951. for xid in range(n_experts):
  7952. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7953. datas.append(self._experts[bid][ename])
  7954. del self._experts[bid][ename]
  7955. data_torch = torch.stack(datas, dim=0)
  7956. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7957. new_name = self.map_tensor_name(merged_name)
  7958. tensors.append((new_name, data_torch))
  7959. return tensors
  7960. else:
  7961. return []
  7962. return [(self.map_tensor_name(name), data_torch)]
  7963. def prepare_tensors(self):
  7964. super().prepare_tensors()
  7965. if self._experts is not None:
  7966. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7967. experts = [k for d in self._experts for k in d.keys()]
  7968. if len(experts) > 0:
  7969. raise ValueError(f"Unprocessed experts: {experts}")
  7970. @ModelBase.register("ApertusForCausalLM")
  7971. class ApertusModel(LlamaModel):
  7972. model_arch = gguf.MODEL_ARCH.APERTUS
  7973. undo_permute = False
  7974. _alpha_n = {}
  7975. _alpha_p = {}
  7976. _beta = {}
  7977. _eps = {}
  7978. def modify_tensors(self, data_torch, name, bid):
  7979. # Handle xIELU activation parameters
  7980. n_layers = self.hparams["num_hidden_layers"]
  7981. if name.endswith(".act_fn.alpha_n"):
  7982. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7983. if (len(self._alpha_n) == n_layers):
  7984. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7985. return []
  7986. if name.endswith(".act_fn.alpha_p"):
  7987. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7988. if (len(self._alpha_p) == n_layers):
  7989. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7990. return []
  7991. if name.endswith(".act_fn.beta"):
  7992. self._beta[bid] = data_torch.to("cpu").float().item()
  7993. if (len(self._beta) == n_layers):
  7994. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7995. return []
  7996. if name.endswith(".act_fn.eps"):
  7997. self._eps[bid] = data_torch.to("cpu").float().item()
  7998. if (len(self._eps) == n_layers):
  7999. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8000. return []
  8001. return super().modify_tensors(data_torch, name, bid)
  8002. class MistralModel(LlamaModel):
  8003. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8004. model_name = "Mistral"
  8005. hf_arch = ""
  8006. is_mistral_format = True
  8007. undo_permute = False
  8008. def __init__(self, *args, **kwargs):
  8009. super().__init__(*args, **kwargs)
  8010. # for compatibility, we use LLAMA arch for older models
  8011. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8012. if "llama_4_scaling" not in self.hparams:
  8013. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8014. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8015. self.gguf_writer.add_architecture()
  8016. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8017. @staticmethod
  8018. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8019. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8020. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8021. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8022. )
  8023. if vocab.tokenizer.version == TokenizerVersion.v1:
  8024. return "mistral-v1"
  8025. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8026. return "mistral-v3"
  8027. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8028. return "mistral-v3-tekken"
  8029. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8030. return "mistral-v7"
  8031. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8032. return "mistral-v7-tekken"
  8033. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8034. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8035. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8036. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8037. else:
  8038. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8039. if is_mistral_format:
  8040. err_message += (
  8041. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8042. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8043. )
  8044. raise ValueError(err_message)
  8045. template_path = templates_dir / template_file
  8046. if not template_path.exists():
  8047. raise FileNotFoundError(f"Template file not found: {template_path}")
  8048. with open(template_path, "r", encoding="utf-8") as f:
  8049. template = f.read()
  8050. return template
  8051. def set_gguf_parameters(self):
  8052. super().set_gguf_parameters()
  8053. if "yarn" in self.hparams:
  8054. yarn_params = self.hparams["yarn"]
  8055. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8056. self.gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8057. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8058. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8059. self.gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8060. self.gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8061. if "llama_4_scaling" in self.hparams:
  8062. self.gguf_writer.add_attn_temperature_scale(self.hparams["llama_4_scaling"]["beta"])
  8063. class PixtralModel(LlavaVisionModel):
  8064. model_name = "Pixtral"
  8065. hf_arch = ""
  8066. is_mistral_format = True
  8067. def set_gguf_parameters(self):
  8068. super().set_gguf_parameters()
  8069. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8070. self.gguf_writer.add_vision_attention_layernorm_eps(
  8071. self.find_hparam(["norm_eps"])
  8072. )
  8073. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8074. self.gguf_writer.add_vision_use_silu(True)
  8075. # spatial_merge_size
  8076. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8077. self.gguf_writer.add_vision_spatial_merge_size(
  8078. self.find_vparam(["spatial_merge_size"])
  8079. )
  8080. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8081. if name == "vision_language_adapter.w_in.weight":
  8082. return "mm.1.weight"
  8083. elif name == "vision_language_adapter.w_out.weight":
  8084. return "mm.2.weight"
  8085. return super().map_tensor_name(name, try_suffixes)
  8086. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8087. class LightOnOCRVisionModel(LlavaVisionModel):
  8088. is_mistral_format = False
  8089. use_break_tok = False
  8090. def set_gguf_parameters(self):
  8091. super().set_gguf_parameters()
  8092. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8093. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8094. name = name.replace("model.vision_encoder.", "vision_tower.")
  8095. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8096. return super().modify_tensors(data_torch, name, bid)
  8097. @ModelBase.register("KimiVLForConditionalGeneration")
  8098. class KimiVLModel(MmprojModel):
  8099. def __init__(self, *args, **kwargs):
  8100. super().__init__(*args, **kwargs)
  8101. assert self.hparams_vision is not None
  8102. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8103. def set_gguf_parameters(self):
  8104. super().set_gguf_parameters()
  8105. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8106. self.gguf_writer.add_vision_use_gelu(True)
  8107. self.gguf_writer.add_vision_projector_scale_factor(2)
  8108. # eps is the same as pytorch's default value
  8109. assert self.hparams_vision is not None
  8110. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8111. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8112. del bid # unused
  8113. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8114. if is_vision_tensor:
  8115. if "pos_emb.weight" in name:
  8116. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8117. elif "wqkv" in name:
  8118. split_dim = 0 if "weight" in name else -1
  8119. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8120. return [
  8121. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8122. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8123. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8124. ]
  8125. return [(self.map_tensor_name(name), data_torch)]
  8126. return [] # skip other tensors
  8127. @ModelBase.register("CogVLMForCausalLM")
  8128. class CogVLMVisionModel(MmprojModel):
  8129. def set_gguf_parameters(self):
  8130. super().set_gguf_parameters()
  8131. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8132. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8133. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8134. del bid # unused
  8135. if not name.startswith("model.vision."):
  8136. return []
  8137. return [(self.map_tensor_name(name), data_torch)]
  8138. @ModelBase.register("CogVLMForCausalLM")
  8139. class CogVLMModel(LlamaModel):
  8140. model_arch = gguf.MODEL_ARCH.COGVLM
  8141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8142. del bid # unused
  8143. # block vision tensors
  8144. if name.startswith("model.vision."):
  8145. return []
  8146. return [(self.map_tensor_name(name), data_torch)]
  8147. @ModelBase.register("JanusForConditionalGeneration")
  8148. class JanusProModel(LlamaModel):
  8149. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8151. # Skip vision, aligner, and generation tensors
  8152. skip_prefixes = (
  8153. 'model.vision_model.',
  8154. 'model.aligner.',
  8155. 'model.vqmodel.',
  8156. 'model.generation_embeddings.',
  8157. 'model.generation_aligner.',
  8158. 'model.generation_head.',
  8159. )
  8160. if name.startswith(skip_prefixes):
  8161. return []
  8162. if name.startswith('model.language_model.'):
  8163. name = name.replace('model.language_model.', 'model.')
  8164. elif name.startswith('language_model.'):
  8165. name = name.replace('language_model.', '')
  8166. return super().modify_tensors(data_torch, name, bid)
  8167. @ModelBase.register("JanusForConditionalGeneration")
  8168. class JanusProVisionModel(MmprojModel):
  8169. def __init__(self, *args, **kwargs):
  8170. super().__init__(*args, **kwargs)
  8171. assert self.hparams_vision is not None
  8172. if "intermediate_size" not in self.hparams_vision:
  8173. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8174. hidden_size = self.hparams_vision.get("hidden_size")
  8175. if mlp_ratio is not None and hidden_size is not None:
  8176. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8177. def set_gguf_parameters(self):
  8178. super().set_gguf_parameters()
  8179. assert self.hparams_vision is not None
  8180. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8181. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8182. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8183. if hidden_act == "gelu":
  8184. self.gguf_writer.add_vision_use_gelu(True)
  8185. elif hidden_act == "silu":
  8186. self.gguf_writer.add_vision_use_silu(True)
  8187. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8188. """Map aligner tensors to projector format"""
  8189. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8190. if name.startswith("model.aligner."):
  8191. local_name = name[len("model.aligner."):]
  8192. elif name.startswith("aligner."):
  8193. local_name = name[len("aligner."):]
  8194. else:
  8195. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8196. if local_name.startswith("fc1."):
  8197. mm_index = 0
  8198. elif local_name.startswith("hidden_layers."):
  8199. parts = local_name.split(".", 2)
  8200. if len(parts) < 3:
  8201. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8202. mm_index = int(parts[1]) + 1
  8203. else:
  8204. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8205. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8206. return [(tensor_name, data_torch)]
  8207. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8208. del bid # unused
  8209. # Skip language model tensors as they will be handled by `JanusProModel`
  8210. if name.startswith(('model.language_model.', 'language_model.')):
  8211. return []
  8212. # Skip generation-related components
  8213. skip_generation_prefixes = (
  8214. 'model.vqmodel.',
  8215. 'vqmodel.',
  8216. 'model.generation_embeddings.',
  8217. 'generation_embeddings.',
  8218. 'model.generation_aligner.',
  8219. 'generation_aligner.',
  8220. 'model.generation_head.',
  8221. 'generation_head.',
  8222. )
  8223. if name.startswith(skip_generation_prefixes):
  8224. return []
  8225. # Handle aligner tensors
  8226. if name.startswith(('model.aligner.', 'aligner.')):
  8227. return list(self._map_aligner_tensor(data_torch, name))
  8228. # Handle vision tensors
  8229. if name.startswith(('model.vision_model.', 'vision_model.')):
  8230. return [(self.map_tensor_name(name), data_torch)]
  8231. return []
  8232. ###### CONVERSION LOGIC ######
  8233. # tree of lazy tensors
  8234. class LazyTorchTensor(gguf.LazyBase):
  8235. _tensor_type = torch.Tensor
  8236. # to keep the type-checker happy
  8237. dtype: torch.dtype
  8238. shape: torch.Size
  8239. # only used when converting a torch.Tensor to a np.ndarray
  8240. _dtype_map: dict[torch.dtype, type] = {
  8241. torch.float16: np.float16,
  8242. torch.float32: np.float32,
  8243. torch.uint8: np.uint8,
  8244. }
  8245. # only used when byteswapping data. Only correct size is needed
  8246. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8247. torch.float64: np.float64,
  8248. torch.float32: np.float32,
  8249. torch.bfloat16: np.float16,
  8250. torch.float16: np.float16,
  8251. torch.int64: np.int64,
  8252. torch.uint64: np.uint64,
  8253. torch.int32: np.int32,
  8254. torch.uint32: np.uint32,
  8255. torch.int16: np.int16,
  8256. torch.uint16: np.uint16,
  8257. torch.int8: np.int8,
  8258. torch.uint8: np.uint8,
  8259. torch.bool: np.uint8,
  8260. torch.float8_e4m3fn: np.uint8,
  8261. torch.float8_e5m2: np.uint8,
  8262. }
  8263. # used for safetensors slices
  8264. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8265. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8266. _dtype_str_map: dict[str, torch.dtype] = {
  8267. "F64": torch.float64,
  8268. "F32": torch.float32,
  8269. "BF16": torch.bfloat16,
  8270. "F16": torch.float16,
  8271. # "U64": torch.uint64,
  8272. "I64": torch.int64,
  8273. # "U32": torch.uint32,
  8274. "I32": torch.int32,
  8275. # "U16": torch.uint16,
  8276. "I16": torch.int16,
  8277. "U8": torch.uint8,
  8278. "I8": torch.int8,
  8279. "BOOL": torch.bool,
  8280. "F8_E4M3": torch.float8_e4m3fn,
  8281. "F8_E5M2": torch.float8_e5m2,
  8282. }
  8283. def numpy(self) -> gguf.LazyNumpyTensor:
  8284. dtype = self._dtype_map[self.dtype]
  8285. return gguf.LazyNumpyTensor(
  8286. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8287. args=(self,),
  8288. func=(lambda s: s.numpy())
  8289. )
  8290. @classmethod
  8291. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8292. return torch.empty(size=shape, dtype=dtype, device="meta")
  8293. @classmethod
  8294. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8295. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8296. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8297. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8298. return cast(torch.Tensor, lazy)
  8299. @classmethod
  8300. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8301. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8302. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8303. if sys.byteorder == 'big':
  8304. # switch data back to big endian
  8305. tensor = tensor.view(dtype).byteswap(inplace=False)
  8306. return tensor
  8307. dtype = cls._dtype_str_map[tensor.dtype]
  8308. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8309. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8310. dtype = cls._dtype_str_map[t.dtype]
  8311. shape = t.shape
  8312. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8313. return cast(torch.Tensor, lazy)
  8314. @classmethod
  8315. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8316. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8317. if sys.byteorder == 'big':
  8318. # switch data back to big endian
  8319. tensor = tensor.view(dtype).byteswap(inplace=False)
  8320. return tensor
  8321. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8322. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8323. shape = remote_tensor.shape
  8324. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8325. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8326. return cast(torch.Tensor, lazy)
  8327. @classmethod
  8328. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8329. del types # unused
  8330. if kwargs is None:
  8331. kwargs = {}
  8332. if func is torch.Tensor.numpy:
  8333. return args[0].numpy()
  8334. return cls._wrap_fn(func)(*args, **kwargs)
  8335. def parse_args() -> argparse.Namespace:
  8336. parser = argparse.ArgumentParser(
  8337. description="Convert a huggingface model to a GGML compatible file")
  8338. parser.add_argument(
  8339. "--vocab-only", action="store_true",
  8340. help="extract only the vocab",
  8341. )
  8342. parser.add_argument(
  8343. "--outfile", type=Path,
  8344. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8345. )
  8346. parser.add_argument(
  8347. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8348. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8349. )
  8350. parser.add_argument(
  8351. "--bigendian", action="store_true",
  8352. help="model is executed on big endian machine",
  8353. )
  8354. parser.add_argument(
  8355. "model", type=str,
  8356. help="directory containing model file or huggingface repository ID (if --remote)",
  8357. nargs="?",
  8358. )
  8359. parser.add_argument(
  8360. "--use-temp-file", action="store_true",
  8361. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8362. )
  8363. parser.add_argument(
  8364. "--no-lazy", action="store_true",
  8365. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8366. )
  8367. parser.add_argument(
  8368. "--model-name", type=str, default=None,
  8369. help="name of the model",
  8370. )
  8371. parser.add_argument(
  8372. "--verbose", action="store_true",
  8373. help="increase output verbosity",
  8374. )
  8375. parser.add_argument(
  8376. "--split-max-tensors", type=int, default=0,
  8377. help="max tensors in each split",
  8378. )
  8379. parser.add_argument(
  8380. "--split-max-size", type=str, default="0",
  8381. help="max size per split N(M|G)",
  8382. )
  8383. parser.add_argument(
  8384. "--dry-run", action="store_true",
  8385. help="only print out a split plan and exit, without writing any new files",
  8386. )
  8387. parser.add_argument(
  8388. "--no-tensor-first-split", action="store_true",
  8389. help="do not add tensors to the first split (disabled by default)"
  8390. )
  8391. parser.add_argument(
  8392. "--metadata", type=Path,
  8393. help="Specify the path for an authorship metadata override file"
  8394. )
  8395. parser.add_argument(
  8396. "--print-supported-models", action="store_true",
  8397. help="Print the supported models"
  8398. )
  8399. parser.add_argument(
  8400. "--remote", action="store_true",
  8401. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8402. )
  8403. parser.add_argument(
  8404. "--mmproj", action="store_true",
  8405. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8406. )
  8407. parser.add_argument(
  8408. "--mistral-format", action="store_true",
  8409. help="Whether the model is stored following the Mistral format.",
  8410. )
  8411. parser.add_argument(
  8412. "--disable-mistral-community-chat-template", action="store_true",
  8413. help=(
  8414. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8415. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8416. )
  8417. )
  8418. parser.add_argument(
  8419. "--sentence-transformers-dense-modules", action="store_true",
  8420. help=("Whether to include sentence-transformers dense modules."
  8421. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8422. "Default these modules are not included.")
  8423. )
  8424. args = parser.parse_args()
  8425. if not args.print_supported_models and args.model is None:
  8426. parser.error("the following arguments are required: model")
  8427. return args
  8428. def split_str_to_n_bytes(split_str: str) -> int:
  8429. if split_str.endswith("K"):
  8430. n = int(split_str[:-1]) * 1000
  8431. elif split_str.endswith("M"):
  8432. n = int(split_str[:-1]) * 1000 * 1000
  8433. elif split_str.endswith("G"):
  8434. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8435. elif split_str.isnumeric():
  8436. n = int(split_str)
  8437. else:
  8438. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8439. if n < 0:
  8440. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8441. return n
  8442. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8443. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8444. # maybe we should fallback to text model's arch in that case, since not many models have both
  8445. text_config = hparams.get("text_config", {})
  8446. vision_config = hparams.get("vision_config", {})
  8447. arch = None
  8448. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8449. arch = arches[0]
  8450. elif "ssm_cfg" in hparams:
  8451. # For non-hf Mamba and Mamba2 models
  8452. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8453. # if "architectures" is found in the sub-config, use that instead
  8454. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8455. arch = text_config["architectures"][0]
  8456. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8457. arch = vision_config["architectures"][0]
  8458. if arch is None:
  8459. raise ValueError("Failed to detect model architecture")
  8460. return arch
  8461. def main() -> None:
  8462. args = parse_args()
  8463. if args.print_supported_models:
  8464. logger.error("Supported models:")
  8465. ModelBase.print_registered_models()
  8466. sys.exit(0)
  8467. if args.verbose:
  8468. logging.basicConfig(level=logging.DEBUG)
  8469. else:
  8470. logging.basicConfig(level=logging.INFO)
  8471. if args.remote:
  8472. hf_repo_id = args.model
  8473. from huggingface_hub import snapshot_download
  8474. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8475. if args.sentence_transformers_dense_modules:
  8476. # include sentence-transformers dense modules safetensors files
  8477. allowed_patterns.append("*.safetensors")
  8478. local_dir = snapshot_download(
  8479. repo_id=hf_repo_id,
  8480. allow_patterns=allowed_patterns)
  8481. dir_model = Path(local_dir)
  8482. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8483. else:
  8484. hf_repo_id = None
  8485. dir_model = Path(args.model)
  8486. if not dir_model.is_dir():
  8487. logger.error(f'Error: {dir_model} is not a directory')
  8488. sys.exit(1)
  8489. ftype_map: dict[str, gguf.LlamaFileType] = {
  8490. "f32": gguf.LlamaFileType.ALL_F32,
  8491. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8492. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8493. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8494. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8495. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8496. "auto": gguf.LlamaFileType.GUESSED,
  8497. }
  8498. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8499. if args.use_temp_file and is_split:
  8500. logger.error("Error: Cannot use temp file when splitting")
  8501. sys.exit(1)
  8502. if args.outfile is not None:
  8503. fname_out = args.outfile
  8504. elif hf_repo_id:
  8505. # if remote, use the model ID as the output file name
  8506. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8507. else:
  8508. fname_out = dir_model
  8509. logger.info(f"Loading model: {dir_model.name}")
  8510. is_mistral_format = args.mistral_format
  8511. if is_mistral_format and not _mistral_common_installed:
  8512. raise ImportError(_mistral_import_error_msg)
  8513. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8514. with torch.inference_mode():
  8515. output_type = ftype_map[args.outtype]
  8516. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8517. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8518. if not is_mistral_format:
  8519. model_architecture = get_model_architecture(hparams, model_type)
  8520. logger.info(f"Model architecture: {model_architecture}")
  8521. try:
  8522. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8523. except NotImplementedError:
  8524. logger.error(f"Model {model_architecture} is not supported")
  8525. sys.exit(1)
  8526. elif args.mmproj:
  8527. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8528. model_class = PixtralModel
  8529. else:
  8530. model_class = MistralModel
  8531. model_instance = model_class(dir_model, output_type, fname_out,
  8532. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8533. eager=args.no_lazy,
  8534. metadata_override=args.metadata, model_name=args.model_name,
  8535. split_max_tensors=args.split_max_tensors,
  8536. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8537. small_first_shard=args.no_tensor_first_split,
  8538. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8539. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8540. )
  8541. if args.vocab_only:
  8542. logger.info("Exporting model vocab...")
  8543. model_instance.write_vocab()
  8544. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8545. else:
  8546. logger.info("Exporting model...")
  8547. model_instance.write()
  8548. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8549. logger.info(f"Model successfully exported to {out_path}")
  8550. if __name__ == '__main__':
  8551. main()