tensor_mapping.py 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv
  27. ),
  28. # Token type embeddings
  29. MODEL_TENSOR.TOKEN_TYPES: (
  30. "embeddings.token_type_embeddings", # bert nomic-bert
  31. ),
  32. # Normalization of token embeddings
  33. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  34. "word_embeddings_layernorm", # bloom
  35. "embeddings.LayerNorm", # bert
  36. "emb_ln", # nomic-bert
  37. "transformer.norm", # openelm
  38. "rwkv.blocks.0.pre_ln", # rwkv
  39. ),
  40. # Position embeddings
  41. MODEL_TENSOR.POS_EMBD: (
  42. "transformer.wpe", # gpt2
  43. "embeddings.position_embeddings", # bert
  44. "wpe", # gpt2
  45. ),
  46. # Output
  47. MODEL_TENSOR.OUTPUT: (
  48. "embed_out", # gptneox
  49. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
  50. "output", # llama-pth bloom internlm2
  51. "word_embeddings_for_head", # persimmon
  52. "lm_head.linear", # phi2
  53. "output_layer", # chatglm
  54. "head", # rwkv
  55. ),
  56. # Output norm
  57. MODEL_TENSOR.OUTPUT_NORM: (
  58. "gpt_neox.final_layer_norm", # gptneox
  59. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  60. "model.norm", # llama-hf baichuan internlm2 olmoe
  61. "norm", # llama-pth
  62. "transformer.norm_f", # mpt dbrx
  63. "ln_f", # refact bloom qwen gpt2
  64. "language_model.encoder.final_layernorm", # persimmon
  65. "model.final_layernorm", # persimmon
  66. "lm_head.ln", # phi2
  67. "model.norm_f", # mamba-qbert
  68. "backbone.norm_f", # mamba
  69. "transformer.rms_norm", # Grok
  70. "encoder.final_layernorm", # chatglm
  71. "transformer.norm", # openelm
  72. "model.norm", # nemotron
  73. "rwkv.ln_out", # rwkv
  74. ),
  75. # Rope frequencies
  76. MODEL_TENSOR.ROPE_FREQS: (
  77. "rope.freqs", # llama-pth
  78. "rotary_pos_emb.inv_freq", # chatglm
  79. ),
  80. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  81. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  82. }
  83. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  84. # Attention norm
  85. MODEL_TENSOR.ATTN_NORM: (
  86. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  87. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  88. "transformer.blocks.{bid}.norm_1", # mpt
  89. "transformer.h.{bid}.input_layernorm", # falcon7b
  90. "h.{bid}.input_layernorm", # bloom
  91. "transformer.h.{bid}.ln_mlp", # falcon40b
  92. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
  93. "layers.{bid}.attention_norm", # llama-pth
  94. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  95. "model.layers.{bid}.ln1", # yi
  96. "h.{bid}.ln_1", # gpt2
  97. "transformer.h.{bid}.ln", # phi2
  98. "model.layers.layers.{bid}.norm", # plamo
  99. "model.layers.{bid}.attention_norm", # internlm2
  100. "model.layers.{bid}.norm", # mamba-qbert
  101. "backbone.layers.{bid}.norm", # mamba
  102. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  103. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  104. "encoder.layers.{bid}.input_layernorm", # chatglm
  105. "transformer.layers.{bid}.attn_norm", # openelm
  106. "rwkv.blocks.{bid}.ln1", # rwkv
  107. ),
  108. # Attention norm 2
  109. MODEL_TENSOR.ATTN_NORM_2: (
  110. "transformer.h.{bid}.ln_attn", # falcon40b
  111. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  112. "rwkv.blocks.{bid}.ln2", # rwkv
  113. ),
  114. # Attention query-key-value
  115. MODEL_TENSOR.ATTN_QKV: (
  116. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  117. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  118. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  119. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  120. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  121. "h.{bid}.self_attention.query_key_value", # bloom
  122. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  123. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  124. "h.{bid}.attn.c_attn", # gpt2
  125. "transformer.h.{bid}.mixer.Wqkv", # phi2
  126. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  127. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  128. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  129. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  130. ),
  131. # Attention query
  132. MODEL_TENSOR.ATTN_Q: (
  133. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe
  134. "layers.{bid}.attention.wq", # llama-pth
  135. "encoder.layer.{bid}.attention.self.query", # bert
  136. "transformer.h.{bid}.attn.q_proj", # gpt-j
  137. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  138. "model.layers.{bid}.attention.wq", # internlm2
  139. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  140. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  141. ),
  142. # Attention key
  143. MODEL_TENSOR.ATTN_K: (
  144. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe
  145. "layers.{bid}.attention.wk", # llama-pth
  146. "encoder.layer.{bid}.attention.self.key", # bert
  147. "transformer.h.{bid}.attn.k_proj", # gpt-j
  148. "transformer.h.{bid}.attn.k", # refact
  149. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  150. "model.layers.{bid}.attention.wk", # internlm2
  151. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  152. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  153. ),
  154. # Attention value
  155. MODEL_TENSOR.ATTN_V: (
  156. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe
  157. "layers.{bid}.attention.wv", # llama-pth
  158. "encoder.layer.{bid}.attention.self.value", # bert
  159. "transformer.h.{bid}.attn.v_proj", # gpt-j
  160. "transformer.h.{bid}.attn.v", # refact
  161. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  162. "model.layers.{bid}.attention.wv", # internlm2
  163. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  164. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  165. ),
  166. # Attention output
  167. MODEL_TENSOR.ATTN_OUT: (
  168. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  169. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  170. "transformer.blocks.{bid}.attn.out_proj", # mpt
  171. "transformer.h.{bid}.self_attention.dense", # falcon
  172. "h.{bid}.self_attention.dense", # bloom
  173. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe
  174. "layers.{bid}.attention.wo", # llama-pth
  175. "encoder.layer.{bid}.attention.output.dense", # bert
  176. "transformer.h.{bid}.attn.out_proj", # gpt-j
  177. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  178. "model.layers.{bid}.self_attn.dense", # persimmon
  179. "h.{bid}.attn.c_proj", # gpt2
  180. "transformer.h.{bid}.mixer.out_proj", # phi2
  181. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  182. "model.layers.{bid}.attention.wo", # internlm2
  183. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  184. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  185. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  186. "encoder.layers.{bid}.self_attention.dense", # chatglm
  187. "transformer.layers.{bid}.attn.out_proj", # openelm
  188. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  189. ),
  190. # Attention output norm
  191. MODEL_TENSOR.ATTN_OUT_NORM: (
  192. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  193. "encoder.layers.{bid}.norm1", # nomic-bert
  194. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  195. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  196. ),
  197. MODEL_TENSOR.ATTN_POST_NORM: (
  198. "model.layers.{bid}.post_attention_layernorm", # gemma2
  199. ),
  200. # Rotary embeddings
  201. MODEL_TENSOR.ATTN_ROT_EMBD: (
  202. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  203. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  204. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  205. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  206. ),
  207. # Feed-forward norm
  208. MODEL_TENSOR.FFN_NORM: (
  209. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  210. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  211. "h.{bid}.post_attention_layernorm", # bloom
  212. "transformer.blocks.{bid}.norm_2", # mpt
  213. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
  214. "layers.{bid}.ffn_norm", # llama-pth
  215. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  216. "model.layers.{bid}.ln2", # yi
  217. "h.{bid}.ln_2", # gpt2
  218. "model.layers.{bid}.ffn_norm", # internlm2
  219. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  220. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  221. "transformer.layers.{bid}.ffn_norm", # openelm
  222. ),
  223. # Post feed-forward norm
  224. MODEL_TENSOR.FFN_PRE_NORM: (
  225. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  226. ),
  227. # Post feed-forward norm
  228. MODEL_TENSOR.FFN_POST_NORM: (
  229. "model.layers.{bid}.post_feedforward_layernorm", # gemma2
  230. ),
  231. MODEL_TENSOR.FFN_GATE_INP: (
  232. "layers.{bid}.feed_forward.gate", # mixtral
  233. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  234. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  235. "transformer.decoder_layer.{bid}.router", # Grok
  236. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  237. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  238. ),
  239. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  240. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  241. ),
  242. # Feed-forward up
  243. MODEL_TENSOR.FFN_UP: (
  244. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  245. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  246. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  247. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  248. "h.{bid}.mlp.dense_h_to_4h", # bloom
  249. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron
  250. "layers.{bid}.feed_forward.w3", # llama-pth
  251. "encoder.layer.{bid}.intermediate.dense", # bert
  252. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  253. "transformer.h.{bid}.mlp.linear_3", # refact
  254. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  255. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  256. "transformer.h.{bid}.mlp.w1", # qwen
  257. "h.{bid}.mlp.c_fc", # gpt2
  258. "transformer.h.{bid}.mlp.fc1", # phi2
  259. "model.layers.{bid}.mlp.fc1", # phi2
  260. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  261. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  262. "model.layers.{bid}.feed_forward.w3", # internlm2
  263. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  264. "model.layers.{bid}.mlp.c_fc", # starcoder2
  265. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  266. "model.layers.{bid}.residual_mlp.w3", # arctic
  267. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  268. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  269. ),
  270. MODEL_TENSOR.FFN_UP_EXP: (
  271. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  272. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  273. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  274. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  275. ),
  276. MODEL_TENSOR.FFN_UP_SHEXP: (
  277. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  278. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
  279. ),
  280. # AWQ-activation gate
  281. MODEL_TENSOR.FFN_ACT: (
  282. "transformer.blocks.{bid}.ffn.act", # mpt
  283. ),
  284. # Feed-forward gate
  285. MODEL_TENSOR.FFN_GATE: (
  286. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  287. "layers.{bid}.feed_forward.w1", # llama-pth
  288. "transformer.h.{bid}.mlp.w2", # qwen
  289. "transformer.h.{bid}.mlp.c_fc2", # jais
  290. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  291. "model.layers.{bid}.feed_forward.w1", # internlm2
  292. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  293. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  294. "transformer.h.{bid}.mlp.linear_1", # refact
  295. "model.layers.{bid}.residual_mlp.w1", # arctic
  296. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  297. ),
  298. MODEL_TENSOR.FFN_GATE_EXP: (
  299. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  300. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  301. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  302. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  303. ),
  304. MODEL_TENSOR.FFN_GATE_SHEXP: (
  305. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  306. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
  307. ),
  308. # Feed-forward down
  309. MODEL_TENSOR.FFN_DOWN: (
  310. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  311. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  312. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  313. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  314. "h.{bid}.mlp.dense_4h_to_h", # bloom
  315. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron
  316. "layers.{bid}.feed_forward.w2", # llama-pth
  317. "encoder.layer.{bid}.output.dense", # bert
  318. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  319. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  320. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  321. "h.{bid}.mlp.c_proj", # gpt2
  322. "transformer.h.{bid}.mlp.fc2", # phi2
  323. "model.layers.{bid}.mlp.fc2", # phi2
  324. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  325. "model.layers.{bid}.feed_forward.w2", # internlm2
  326. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  327. "model.layers.{bid}.mlp.c_proj", # starcoder2
  328. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  329. "transformer.layers.{bid}.ffn.proj_2", # openelm
  330. "model.layers.{bid}.residual_mlp.w2", # arctic
  331. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  332. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  333. "model.layers.h.{bid}.mlp.c_proj", # exaone
  334. ),
  335. MODEL_TENSOR.FFN_DOWN_EXP: (
  336. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  337. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  338. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  339. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  340. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  341. ),
  342. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  343. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  344. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
  345. ),
  346. MODEL_TENSOR.ATTN_Q_NORM: (
  347. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  348. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  349. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon
  350. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  351. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  352. "transformer.layers.{bid}.attn.q_norm", # openelm
  353. ),
  354. MODEL_TENSOR.ATTN_K_NORM: (
  355. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  356. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  357. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon
  358. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  359. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  360. "transformer.layers.{bid}.attn.k_norm", # openelm
  361. ),
  362. MODEL_TENSOR.ROPE_FREQS: (
  363. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  364. ),
  365. MODEL_TENSOR.LAYER_OUT_NORM: (
  366. "encoder.layer.{bid}.output.LayerNorm", # bert
  367. "encoder.layers.{bid}.norm2", # nomic-bert
  368. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  369. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  370. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  371. ),
  372. MODEL_TENSOR.SSM_IN: (
  373. "model.layers.{bid}.in_proj",
  374. "backbone.layers.{bid}.mixer.in_proj",
  375. ),
  376. MODEL_TENSOR.SSM_CONV1D: (
  377. "model.layers.{bid}.conv1d",
  378. "backbone.layers.{bid}.mixer.conv1d",
  379. ),
  380. MODEL_TENSOR.SSM_X: (
  381. "model.layers.{bid}.x_proj",
  382. "backbone.layers.{bid}.mixer.x_proj",
  383. ),
  384. MODEL_TENSOR.SSM_DT: (
  385. "model.layers.{bid}.dt_proj",
  386. "backbone.layers.{bid}.mixer.dt_proj",
  387. ),
  388. MODEL_TENSOR.SSM_A: (
  389. "model.layers.{bid}.A_log",
  390. "backbone.layers.{bid}.mixer.A_log",
  391. ),
  392. MODEL_TENSOR.SSM_D: (
  393. "model.layers.{bid}.D",
  394. "backbone.layers.{bid}.mixer.D",
  395. ),
  396. MODEL_TENSOR.SSM_OUT: (
  397. "model.layers.{bid}.out_proj",
  398. "backbone.layers.{bid}.mixer.out_proj",
  399. ),
  400. MODEL_TENSOR.TIME_MIX_W1: (
  401. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
  402. ),
  403. MODEL_TENSOR.TIME_MIX_W2: (
  404. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
  405. ),
  406. MODEL_TENSOR.TIME_MIX_LERP_X: (
  407. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
  408. ),
  409. MODEL_TENSOR.TIME_MIX_LERP_K: (
  410. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
  411. ),
  412. MODEL_TENSOR.TIME_MIX_LERP_V: (
  413. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
  414. ),
  415. MODEL_TENSOR.TIME_MIX_LERP_R: (
  416. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
  417. ),
  418. MODEL_TENSOR.TIME_MIX_LERP_G: (
  419. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
  420. ),
  421. MODEL_TENSOR.TIME_MIX_LERP_W: (
  422. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
  423. ),
  424. MODEL_TENSOR.TIME_MIX_FIRST: (
  425. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
  426. ),
  427. MODEL_TENSOR.TIME_MIX_DECAY: (
  428. "rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
  429. ),
  430. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  431. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
  432. ),
  433. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  434. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
  435. ),
  436. MODEL_TENSOR.TIME_MIX_KEY: (
  437. "rwkv.blocks.{bid}.attention.key", # rwkv
  438. ),
  439. MODEL_TENSOR.TIME_MIX_VALUE: (
  440. "rwkv.blocks.{bid}.attention.value", # rwkv
  441. ),
  442. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  443. "rwkv.blocks.{bid}.attention.receptance", # rwkv
  444. ),
  445. MODEL_TENSOR.TIME_MIX_GATE: (
  446. "rwkv.blocks.{bid}.attention.gate", # rwkv
  447. ),
  448. MODEL_TENSOR.TIME_MIX_LN: (
  449. "rwkv.blocks.{bid}.attention.ln_x", # rwkv
  450. ),
  451. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  452. "rwkv.blocks.{bid}.attention.output", # rwkv
  453. ),
  454. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  455. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
  456. ),
  457. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  458. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
  459. ),
  460. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  461. "rwkv.blocks.{bid}.feed_forward.key", # rwkv
  462. ),
  463. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  464. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
  465. ),
  466. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  467. "rwkv.blocks.{bid}.feed_forward.value", # rwkv
  468. ),
  469. MODEL_TENSOR.ATTN_Q_A: (
  470. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  471. ),
  472. MODEL_TENSOR.ATTN_Q_B: (
  473. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  474. ),
  475. MODEL_TENSOR.ATTN_KV_A_MQA: (
  476. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  477. ),
  478. MODEL_TENSOR.ATTN_KV_B: (
  479. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  480. ),
  481. MODEL_TENSOR.ATTN_Q_A_NORM: (
  482. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  483. ),
  484. MODEL_TENSOR.ATTN_KV_A_NORM: (
  485. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  486. ),
  487. MODEL_TENSOR.ATTN_SUB_NORM: (
  488. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  489. ),
  490. MODEL_TENSOR.FFN_SUB_NORM: (
  491. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  492. ),
  493. MODEL_TENSOR.DEC_ATTN_NORM: (
  494. "decoder.block.{bid}.layer.0.layer_norm", # t5
  495. ),
  496. MODEL_TENSOR.DEC_ATTN_Q: (
  497. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  498. ),
  499. MODEL_TENSOR.DEC_ATTN_K: (
  500. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  501. ),
  502. MODEL_TENSOR.DEC_ATTN_V: (
  503. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  504. ),
  505. MODEL_TENSOR.DEC_ATTN_OUT: (
  506. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  507. ),
  508. MODEL_TENSOR.DEC_ATTN_REL_B: (
  509. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  510. ),
  511. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  512. "decoder.block.{bid}.layer.1.layer_norm", # t5
  513. ),
  514. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  515. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  516. ),
  517. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  518. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  519. ),
  520. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  521. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  522. ),
  523. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  524. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  525. ),
  526. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  527. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  528. ),
  529. MODEL_TENSOR.DEC_FFN_NORM: (
  530. "decoder.block.{bid}.layer.2.layer_norm", # t5
  531. ),
  532. MODEL_TENSOR.DEC_FFN_GATE: (
  533. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  534. ),
  535. MODEL_TENSOR.DEC_FFN_UP: (
  536. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  537. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  538. ),
  539. MODEL_TENSOR.DEC_FFN_DOWN: (
  540. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  541. ),
  542. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  543. "decoder.final_layer_norm", # t5
  544. ),
  545. MODEL_TENSOR.ENC_ATTN_NORM: (
  546. "encoder.block.{bid}.layer.0.layer_norm", # t5
  547. ),
  548. MODEL_TENSOR.ENC_ATTN_Q: (
  549. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  550. ),
  551. MODEL_TENSOR.ENC_ATTN_K: (
  552. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  553. ),
  554. MODEL_TENSOR.ENC_ATTN_V: (
  555. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  556. ),
  557. MODEL_TENSOR.ENC_ATTN_OUT: (
  558. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  559. ),
  560. MODEL_TENSOR.ENC_ATTN_REL_B: (
  561. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  562. ),
  563. MODEL_TENSOR.ENC_FFN_NORM: (
  564. "encoder.block.{bid}.layer.1.layer_norm", # t5
  565. ),
  566. MODEL_TENSOR.ENC_FFN_GATE: (
  567. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  568. ),
  569. MODEL_TENSOR.ENC_FFN_UP: (
  570. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  571. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  572. ),
  573. MODEL_TENSOR.ENC_FFN_DOWN: (
  574. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  575. ),
  576. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  577. "encoder.final_layer_norm", # t5
  578. ),
  579. MODEL_TENSOR.CLS: (
  580. "classifier", # jina
  581. "classifier.dense", # roberta
  582. ),
  583. MODEL_TENSOR.CLS_OUT: (
  584. "classifier.out_proj", # roberta
  585. ),
  586. }
  587. # architecture-specific block mappings
  588. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  589. MODEL_ARCH.ARCTIC: {
  590. MODEL_TENSOR.FFN_NORM: (
  591. "model.layers.{bid}.residual_layernorm",
  592. ),
  593. MODEL_TENSOR.FFN_NORM_EXP: (
  594. "model.layers.{bid}.post_attention_layernorm",
  595. ),
  596. },
  597. }
  598. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  599. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  600. self.mapping = {}
  601. for tensor, keys in self.mappings_cfg.items():
  602. if tensor not in MODEL_TENSORS[arch]:
  603. continue
  604. tensor_name = TENSOR_NAMES[tensor]
  605. self.mapping[tensor_name] = (tensor, tensor_name)
  606. for key in keys:
  607. self.mapping[key] = (tensor, tensor_name)
  608. if arch in self.arch_block_mappings_cfg:
  609. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  610. for bid in range(n_blocks):
  611. for tensor, keys in self.block_mappings_cfg.items():
  612. if tensor not in MODEL_TENSORS[arch]:
  613. continue
  614. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  615. self.mapping[tensor_name] = (tensor, tensor_name)
  616. for key in keys:
  617. key = key.format(bid = bid)
  618. self.mapping[key] = (tensor, tensor_name)
  619. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  620. result = self.mapping.get(key)
  621. if result is not None:
  622. return result
  623. for suffix in try_suffixes:
  624. if key.endswith(suffix):
  625. result = self.mapping.get(key[:-len(suffix)])
  626. if result is not None:
  627. return result[0], result[1] + suffix
  628. return None
  629. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  630. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  631. if result is None:
  632. return None
  633. return result[1]
  634. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  635. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  636. if result is None:
  637. return None
  638. return result[0]
  639. def __getitem__(self, key: str) -> str:
  640. try:
  641. return self.mapping[key][1]
  642. except KeyError:
  643. raise KeyError(key)
  644. def __contains__(self, key: str) -> bool:
  645. return key in self.mapping
  646. def __repr__(self) -> str:
  647. return repr(self.mapping)
  648. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  649. return TensorNameMap(arch, n_blocks)