mmq.cpp 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511
  1. #if defined(__GNUC__)
  2. #pragma GCC diagnostic ignored "-Wpedantic"
  3. #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
  4. #endif
  5. #include "amx.h"
  6. #include "mmq.h"
  7. #include "ggml-impl.h"
  8. #include "ggml-cpu-impl.h"
  9. #include "ggml-cpu-quants.h"
  10. #include "ggml-quants.h"
  11. #include <algorithm>
  12. #include <type_traits>
  13. #if defined(__gnu_linux__)
  14. #include <sys/syscall.h>
  15. #include <unistd.h>
  16. #endif
  17. #if (defined(_WIN32) || defined(_WIN64))
  18. #define RESTRICT __restrict
  19. #else
  20. #define RESTRICT __restrict__
  21. #endif
  22. #if (defined(_WIN32) || defined(_WIN64))
  23. #define ALWAYS_INLINE __forceinline
  24. #elif __has_attribute(always_inline) || defined(__GNUC__)
  25. #define ALWAYS_INLINE __attribute__((__always_inline__)) inline
  26. #else
  27. #define ALWAYS_INLINE inline
  28. #endif
  29. #if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
  30. namespace {
  31. // Forced unrolling
  32. template <int n>
  33. struct Unroll {
  34. template <typename Func, typename... Args>
  35. ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
  36. Unroll<n - 1>{}(f, args...);
  37. f(std::integral_constant<int, n - 1>{}, args...);
  38. }
  39. };
  40. template <>
  41. struct Unroll<1> {
  42. template <typename Func, typename... Args>
  43. ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
  44. f(std::integral_constant<int, 0>{}, args...);
  45. }
  46. };
  47. // type traits
  48. template <typename T> struct PackedTypes {};
  49. template <> struct PackedTypes<block_q4_0> { using type = int8_t; };
  50. template <> struct PackedTypes<block_q4_1> { using type = uint8_t; };
  51. template <> struct PackedTypes<block_q8_0> { using type = int8_t; };
  52. template <typename T> using packed_B_type = typename PackedTypes<T>::type;
  53. template <typename T>
  54. struct do_compensate : std::integral_constant<bool,
  55. std::is_same<T, block_q8_0>::value> {};
  56. template <typename T>
  57. struct do_unpack : std::integral_constant<bool,
  58. std::is_same<T, block_q4_0>::value ||
  59. std::is_same<T, block_q4_1>::value> {};
  60. template <typename T>
  61. struct is_type_qkk : std::integral_constant<bool,
  62. std::is_same<T, block_q4_K>::value ||
  63. std::is_same<T, block_q5_K>::value ||
  64. std::is_same<T, block_q6_K>::value ||
  65. std::is_same<T, block_iq4_xs>::value> {};
  66. #define GGML_DISPATCH_FLOATING_TYPES(TYPE, ...) \
  67. [&] { \
  68. switch (TYPE) { \
  69. case GGML_TYPE_F16: { \
  70. using type = ggml_fp16_t; \
  71. constexpr int blck_size = 16; \
  72. return __VA_ARGS__(); \
  73. } \
  74. case GGML_TYPE_BF16: { \
  75. using type = ggml_bf16_t; \
  76. constexpr int blck_size = 32; \
  77. return __VA_ARGS__(); \
  78. } \
  79. default: \
  80. fprintf(stderr, "Unsupported floating data type\n"); \
  81. } \
  82. }()
  83. #define GGML_DISPATCH_QTYPES(QT, ...) \
  84. [&] { \
  85. switch (QT) { \
  86. case GGML_TYPE_Q4_0: { \
  87. using type = block_q4_0; \
  88. using vec_dot_type = block_q8_0; \
  89. constexpr int blck_size = QK4_0; \
  90. return __VA_ARGS__(); \
  91. } \
  92. case GGML_TYPE_Q4_1: { \
  93. using type = block_q4_1; \
  94. using vec_dot_type = block_q8_1; \
  95. constexpr int blck_size = QK4_1; \
  96. return __VA_ARGS__(); \
  97. } \
  98. case GGML_TYPE_Q8_0: { \
  99. using type = block_q8_0; \
  100. using vec_dot_type = block_q8_0; \
  101. constexpr int blck_size = QK8_0; \
  102. return __VA_ARGS__(); \
  103. } \
  104. case GGML_TYPE_Q4_K: { \
  105. using type = block_q4_K; \
  106. using vec_dot_type = block_q8_K; \
  107. constexpr int blck_size = QK_K; \
  108. return __VA_ARGS__(); \
  109. } \
  110. case GGML_TYPE_Q5_K: { \
  111. using type = block_q5_K; \
  112. using vec_dot_type = block_q8_K; \
  113. constexpr int blck_size = QK_K; \
  114. return __VA_ARGS__(); \
  115. } \
  116. case GGML_TYPE_Q6_K: { \
  117. using type = block_q6_K; \
  118. using vec_dot_type = block_q8_K; \
  119. constexpr int blck_size = QK_K; \
  120. return __VA_ARGS__(); \
  121. } \
  122. case GGML_TYPE_IQ4_XS: { \
  123. using type = block_iq4_xs; \
  124. using vec_dot_type = block_q8_K; \
  125. constexpr int blck_size = QK_K; \
  126. return __VA_ARGS__(); \
  127. } \
  128. default: \
  129. fprintf(stderr, "Unsupported quantized data type: %d\n", int(TYPE)); \
  130. } \
  131. }()
  132. #define GGML_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \
  133. [&] { \
  134. if (BOOL_V) { \
  135. constexpr bool BOOL_NAME = true; \
  136. return __VA_ARGS__(); \
  137. } else { \
  138. constexpr bool BOOL_NAME = false; \
  139. return __VA_ARGS__(); \
  140. } \
  141. }()
  142. // define amx tile config data structure
  143. struct tile_config_t{
  144. uint8_t palette_id = 0;
  145. uint8_t start_row = 0;
  146. uint8_t reserved_0[14] = {0};
  147. uint16_t colsb[16] = {0};
  148. uint8_t rows[16] = {0};
  149. };
  150. // Notes: amx tile config
  151. //
  152. // Typically, TMUL calculates A and B of size 16 x 64 containing INT8 values,
  153. // and accumulate the result to a 16 x 16 matrix C containing INT32 values,
  154. //
  155. // As many GGUF quantized types as `block_size` of 32, so a 16-16-32 config is used
  156. // instead of the normally used 16-16-64 config.
  157. //
  158. // Block A: {16, 32}, dtype = int8_t
  159. // Block B: {16, 32}, dtype = uint8_t/int8_t
  160. // Block C: {16, 16}, dtype = int32_t
  161. //
  162. // Block B needs to be prepacked to vnni format before feeding into TMUL:
  163. // packed_B: from {n, k} to {k/vnni_blk, n, vnni_blck}, viewed in 2d, we get {8, 64}
  164. //
  165. // Therefore, we get tileconfig:
  166. // A B C
  167. // rows 16 8 16
  168. // colsb 32 64 16
  169. //
  170. // For tile distribution, follow a 2-2-4 pattern, e.g. A used TMM2-TMM3, B used TMM0-TMM1,
  171. // C used TMM4-TMM7:
  172. // B TMM0 B TMM1
  173. // A TMM2 C TMM4 C TMM6
  174. // A TMM3 C TMM5 C TMM7
  175. //
  176. // Each `amx` kernel handles 4 blocks at a time: 2MB * 2NB, when m < 2 * BLOCK_M, unpack A
  177. // will be needed.
  178. //
  179. // Here another commonly used pattern 1-3-3 is skipped, as it is mostly used when m <=16;
  180. // and the sinlge batch gemm (m=1) has a special fast path with `avx512-vnni`.
  181. //
  182. // ref: https://www.intel.com/content/www/us/en/developer/articles/code-sample/
  183. // advanced-matrix-extensions-intrinsics-functions.html
  184. //
  185. #define TC_CONFIG_TILE(i, r, cb) tc.rows[i] = r; tc.colsb[i] = cb
  186. void ggml_tile_config_init(void) {
  187. static thread_local bool is_first_time = true;
  188. if (!is_first_time) {
  189. return;
  190. }
  191. static thread_local tile_config_t tc;
  192. tile_config_t current_tc;
  193. _tile_storeconfig(&current_tc);
  194. // load only when config changes
  195. if (tc.palette_id == 0 || (memcmp(&current_tc.colsb, &tc.colsb, sizeof(uint16_t) * 8) != 0 &&
  196. memcmp(&current_tc.rows, &tc.rows, sizeof(uint8_t) * 8) != 0)) {
  197. tc.palette_id = 1;
  198. tc.start_row = 0;
  199. TC_CONFIG_TILE(TMM0, 8, 64);
  200. TC_CONFIG_TILE(TMM1, 8, 64);
  201. TC_CONFIG_TILE(TMM2, 16, 32);
  202. TC_CONFIG_TILE(TMM3, 16, 32);
  203. TC_CONFIG_TILE(TMM4, 16, 64);
  204. TC_CONFIG_TILE(TMM5, 16, 64);
  205. TC_CONFIG_TILE(TMM6, 16, 64);
  206. TC_CONFIG_TILE(TMM7, 16, 64);
  207. _tile_loadconfig(&tc);
  208. }
  209. is_first_time = false;
  210. }
  211. // we need an extra 16 * 4B (TILE_N * int32_t) for each NB/KB block for compensation.
  212. // See the notes `s8s8 igemm compensation in avx512-vnni` for detail.
  213. template <typename TB>
  214. int get_tile_size() {
  215. int tile_size = TILE_N * sizeof(TB);
  216. if (do_compensate<TB>::value) {
  217. tile_size += TILE_N * sizeof(int32_t);
  218. }
  219. if (std::is_same<TB, block_q4_K>::value ||
  220. std::is_same<TB, block_q5_K>::value) {
  221. tile_size += TILE_N * 4;
  222. }
  223. if (std::is_same<TB, block_iq4_xs>::value) {
  224. tile_size += TILE_N * 2;
  225. }
  226. return tile_size;
  227. }
  228. template <typename TB, int BLOCK_K>
  229. int get_row_size(int K) {
  230. int KB = K / BLOCK_K;
  231. int row_size = KB * sizeof(TB);
  232. if (do_compensate<TB>::value) {
  233. row_size += KB * sizeof(int32_t);
  234. }
  235. if (std::is_same<TB, block_q4_K>::value ||
  236. std::is_same<TB, block_q5_K>::value) {
  237. row_size += KB * 4;
  238. }
  239. if (std::is_same<TB, block_iq4_xs>::value) {
  240. row_size += KB * 2;
  241. }
  242. return row_size;
  243. }
  244. // vectorized dtype conversion
  245. inline float FP16_TO_FP32(ggml_half val) {
  246. __m256i v = _mm256_setr_epi16(
  247. val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
  248. __m512 o = _mm512_cvtph_ps(v);
  249. return _mm512_cvtss_f32(o);
  250. }
  251. inline __m512 FP16_TO_FP32_VEC(ggml_half val) {
  252. __m256i v = _mm256_set1_epi16(val);
  253. return _mm512_cvtph_ps(v);
  254. }
  255. // horizontal reduce
  256. inline float _mm512_reduce_max_ps(const __m512 x) {
  257. __m512 v = x;
  258. __m512 v1 = _mm512_shuffle_f32x4(v, v, 0x4E);
  259. v = _mm512_max_ps(v, v1);
  260. v1 = _mm512_shuffle_f32x4(v, v, 0xB1);
  261. v = _mm512_max_ps(v, v1);
  262. v1 = _mm512_shuffle_ps(v, v, 0x4E);
  263. v = _mm512_max_ps(v, v1);
  264. v1 = _mm512_shuffle_ps(v, v, 0xB1);
  265. v = _mm512_max_ps(v, v1);
  266. return _mm512_cvtss_f32(v);
  267. }
  268. // transpose utils
  269. #define SHUFFLE_EPI32(a, b, mask) \
  270. _mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b), mask))
  271. inline void transpose_8x8_32bit(__m256i * v, __m256i * v1) {
  272. // unpacking and 32-bit elements
  273. v1[0] = _mm256_unpacklo_epi32(v[0], v[1]);
  274. v1[1] = _mm256_unpackhi_epi32(v[0], v[1]);
  275. v1[2] = _mm256_unpacklo_epi32(v[2], v[3]);
  276. v1[3] = _mm256_unpackhi_epi32(v[2], v[3]);
  277. v1[4] = _mm256_unpacklo_epi32(v[4], v[5]);
  278. v1[5] = _mm256_unpackhi_epi32(v[4], v[5]);
  279. v1[6] = _mm256_unpacklo_epi32(v[6], v[7]);
  280. v1[7] = _mm256_unpackhi_epi32(v[6], v[7]);
  281. // shuffling the 32-bit elements
  282. v[0] = SHUFFLE_EPI32(v1[0], v1[2], 0x44);
  283. v[1] = SHUFFLE_EPI32(v1[0], v1[2], 0xee);
  284. v[2] = SHUFFLE_EPI32(v1[4], v1[6], 0x44);
  285. v[3] = SHUFFLE_EPI32(v1[4], v1[6], 0xee);
  286. v[4] = SHUFFLE_EPI32(v1[1], v1[3], 0x44);
  287. v[5] = SHUFFLE_EPI32(v1[1], v1[3], 0xee);
  288. v[6] = SHUFFLE_EPI32(v1[5], v1[7], 0x44);
  289. v[7] = SHUFFLE_EPI32(v1[5], v1[7], 0xee);
  290. // shuffling 128-bit elements
  291. v1[0] = _mm256_permute2f128_si256(v[2], v[0], 0x02);
  292. v1[1] = _mm256_permute2f128_si256(v[3], v[1], 0x02);
  293. v1[2] = _mm256_permute2f128_si256(v[6], v[4], 0x02);
  294. v1[3] = _mm256_permute2f128_si256(v[7], v[5], 0x02);
  295. v1[4] = _mm256_permute2f128_si256(v[2], v[0], 0x13);
  296. v1[5] = _mm256_permute2f128_si256(v[3], v[1], 0x13);
  297. v1[6] = _mm256_permute2f128_si256(v[6], v[4], 0x13);
  298. v1[7] = _mm256_permute2f128_si256(v[7], v[5], 0x13);
  299. }
  300. inline void transpose_16x4_32bit(__m512i * r, __m512i * d) {
  301. static const __m512i index1 = _mm512_set_epi32(
  302. 0x0f, 0x0b, 0x07, 0x03,
  303. 0x0e, 0x0a, 0x06, 0x02,
  304. 0x0d, 0x09, 0x05, 0x01,
  305. 0x0c, 0x08, 0x04, 0x00);
  306. d[0] = _mm512_permutexvar_epi32(index1, r[0]);
  307. d[1] = _mm512_permutexvar_epi32(index1, r[1]);
  308. d[2] = _mm512_permutexvar_epi32(index1, r[2]);
  309. d[3] = _mm512_permutexvar_epi32(index1, r[3]);
  310. r[0] = _mm512_shuffle_i32x4(d[0], d[1], 0x44);
  311. r[1] = _mm512_shuffle_i32x4(d[0], d[1], 0xee);
  312. r[2] = _mm512_shuffle_i32x4(d[2], d[3], 0x44);
  313. r[3] = _mm512_shuffle_i32x4(d[2], d[3], 0xee);
  314. d[0] = _mm512_shuffle_i32x4(r[0], r[2], 0x88);
  315. d[1] = _mm512_shuffle_i32x4(r[0], r[2], 0xdd);
  316. d[2] = _mm512_shuffle_i32x4(r[1], r[3], 0x88);
  317. d[3] = _mm512_shuffle_i32x4(r[1], r[3], 0xdd);
  318. }
  319. inline void transpose_16x16_32bit(__m512i * v) {
  320. __m512i v1[16];
  321. v1[0] = _mm512_unpacklo_epi32(v[0], v[1]);
  322. v1[1] = _mm512_unpackhi_epi32(v[0], v[1]);
  323. v1[2] = _mm512_unpacklo_epi32(v[2], v[3]);
  324. v1[3] = _mm512_unpackhi_epi32(v[2], v[3]);
  325. v1[4] = _mm512_unpacklo_epi32(v[4], v[5]);
  326. v1[5] = _mm512_unpackhi_epi32(v[4], v[5]);
  327. v1[6] = _mm512_unpacklo_epi32(v[6], v[7]);
  328. v1[7] = _mm512_unpackhi_epi32(v[6], v[7]);
  329. v1[8] = _mm512_unpacklo_epi32(v[8], v[9]);
  330. v1[9] = _mm512_unpackhi_epi32(v[8], v[9]);
  331. v1[10] = _mm512_unpacklo_epi32(v[10], v[11]);
  332. v1[11] = _mm512_unpackhi_epi32(v[10], v[11]);
  333. v1[12] = _mm512_unpacklo_epi32(v[12], v[13]);
  334. v1[13] = _mm512_unpackhi_epi32(v[12], v[13]);
  335. v1[14] = _mm512_unpacklo_epi32(v[14], v[15]);
  336. v1[15] = _mm512_unpackhi_epi32(v[14], v[15]);
  337. v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]);
  338. v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]);
  339. v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]);
  340. v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]);
  341. v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]);
  342. v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]);
  343. v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]);
  344. v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]);
  345. v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]);
  346. v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]);
  347. v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]);
  348. v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]);
  349. v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]);
  350. v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]);
  351. v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]);
  352. v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]);
  353. v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88);
  354. v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88);
  355. v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88);
  356. v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88);
  357. v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd);
  358. v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd);
  359. v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd);
  360. v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd);
  361. v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88);
  362. v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88);
  363. v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88);
  364. v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88);
  365. v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd);
  366. v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd);
  367. v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd);
  368. v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd);
  369. v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88);
  370. v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88);
  371. v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88);
  372. v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88);
  373. v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88);
  374. v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88);
  375. v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88);
  376. v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88);
  377. v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd);
  378. v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd);
  379. v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd);
  380. v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd);
  381. v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd);
  382. v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd);
  383. v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd);
  384. v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd);
  385. }
  386. void quantize_row_q8_K_vnni(const float * RESTRICT x, void * RESTRICT vy, int64_t k) {
  387. assert(k % QK_K == 0);
  388. const int KB = k / QK_K;
  389. constexpr int kVecs = QK_K / 16;
  390. block_q8_K * y = reinterpret_cast<block_q8_K *>(vy);
  391. // hold 16 float vecs from x
  392. __m512 v[kVecs];
  393. // hold the quants vecs
  394. __m512i vq[kVecs / 4];
  395. // hold the packed quants vecs
  396. __m512i vq_packed[kVecs / 4];
  397. const __m512 signBit = _mm512_set1_ps(-0.f);
  398. for (int i = 0; i < KB; ++i) {
  399. // Compute max(abs(e)) for the block
  400. __m512 vamax = _mm512_set1_ps(0.f);
  401. for (int j = 0; j < kVecs; ++j) {
  402. v[j] = _mm512_loadu_ps(x); x += 16;
  403. vamax = _mm512_max_ps(vamax, _mm512_andnot_ps(signBit, v[j]));
  404. }
  405. const float amax = _mm512_reduce_max_ps(vamax);
  406. // Quantize these floats
  407. const float iscale = 127.f / amax;
  408. y[i].d = GGML_FP32_TO_FP16(1 / iscale);
  409. const float id = ( amax != 0.0f ) ? iscale : 0.f;
  410. const __m512 vscale = _mm512_set1_ps(id);
  411. // Apply multiplier and round to nearest integer
  412. for (int j = 0; j < kVecs; ++j) {
  413. v[j] = _mm512_mul_ps(v[j], vscale);
  414. v[j] = _mm512_roundscale_ps(v[j], (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
  415. }
  416. // Pack to epi8 vecs
  417. for (int j = 0; j < kVecs / 4; ++j) {
  418. __m128i q8_0 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 0]));
  419. __m128i q8_1 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 1]));
  420. __m128i q8_2 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 2]));
  421. __m128i q8_3 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 3]));
  422. __m256i q8_01 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_0), (q8_1), 1);
  423. __m256i q8_23 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_2), (q8_3), 1);
  424. vq[j] = _mm512_inserti32x8(_mm512_castsi256_si512(q8_01), q8_23, 1);
  425. _mm512_storeu_si512((__m512i *)(y[i].qs + j * 64), vq[j]);
  426. }
  427. // Compute the bsums with vnni
  428. transpose_16x4_32bit(vq, vq_packed);
  429. const __m512i one = _mm512_set1_epi8(1);
  430. __m512i sum = _mm512_setzero_si512();
  431. for (int k = 0; k < 4; ++k) {
  432. sum = _mm512_dpbusd_epi32(sum, one, vq_packed[k]);
  433. }
  434. _mm256_storeu_si256((__m256i *)(y[i].bsums), _mm512_cvtepi32_epi16(sum));
  435. }
  436. }
  437. // quantize A from float to `vec_dot_type`
  438. template <typename T>
  439. inline void from_float(const float * x, char * vy, int64_t k);
  440. template <>
  441. inline void from_float<block_q8_0>(const float * x, char * vy, int64_t k) {
  442. quantize_row_q8_0(x, (block_q8_0 *)vy, k);
  443. }
  444. template <>
  445. inline void from_float<block_q8_1>(const float * x, char * vy, int64_t k) {
  446. quantize_row_q8_1(x, (block_q8_1 *)vy, k);
  447. }
  448. template <>
  449. inline void from_float<block_q8_K>(const float * x, char * vy, int64_t k) {
  450. #if 1
  451. // TODO: this is reference impl!
  452. quantize_row_q8_K_ref(x, (block_q8_K *)vy, k);
  453. #else
  454. quantize_row_q8_K_vnni(x, vy, k);
  455. #endif
  456. }
  457. // load A from memory to array when nrows can not fill in whole tile
  458. void unpack_A(int8_t * RESTRICT tile, const block_q8_0 * RESTRICT A, int lda, int nr) {
  459. assert(nr != TILE_M);
  460. for (int m = 0; m < nr; ++m) {
  461. const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs));
  462. _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v);
  463. }
  464. }
  465. void unpack_A(int8_t * RESTRICT tile, const block_q8_1 * RESTRICT A, int lda, int nr) {
  466. assert(nr != TILE_M);
  467. for (int m = 0; m < nr; ++m) {
  468. const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs));
  469. _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v);
  470. }
  471. }
  472. template <typename TB>
  473. void unpack_A(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) {
  474. assert(nr <= TILE_M);
  475. for (int m = 0; m < nr; ++m) {
  476. const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs + k * 32));
  477. _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v);
  478. }
  479. }
  480. template <>
  481. void unpack_A<block_q6_K>(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) {
  482. assert(nr <= TILE_M);
  483. // zero padding k from 16 to 32, so that we don't have to re-config amx
  484. const __m128i zero = _mm_setzero_si128();
  485. for (int m = 0; m < nr; ++m) {
  486. const __m128i v = _mm_loadu_si128((const __m128i *)(A[m * lda].qs + k * 16));
  487. const __m256i r = _mm256_insertf128_si256(_mm256_castsi128_si256(v), zero, 1);
  488. _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), r);
  489. }
  490. }
  491. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  492. inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  493. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  494. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  495. const __m256i lowMask = _mm256_set1_epi8(0xF);
  496. return _mm256_and_si256(lowMask, bytes);
  497. }
  498. // used for block_q4_K
  499. inline __m512i bytes_from_nibbles_64(const uint8_t * rsi) {
  500. const __m256i tmp = _mm256_loadu_si256((const __m256i *)rsi);
  501. const __m256i lowMask = _mm256_set1_epi8(0xF);
  502. const __m256i q4l = _mm256_and_si256(tmp, lowMask);
  503. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(tmp, 4), lowMask);
  504. return _mm512_inserti32x8(_mm512_castsi256_si512(q4l), q4h, 1);
  505. }
  506. // used for block_q5_K
  507. inline __m512i bytes_from_nibbles_64(const uint8_t * qs, const uint8_t * qh, int k) {
  508. const __m256i lowMask = _mm256_set1_epi8(0xF);
  509. __m256i hmask = _mm256_set1_epi8(1);
  510. hmask = _mm256_slli_epi16(hmask, k);
  511. const __m256i q5bits = _mm256_loadu_si256((const __m256i *)qs);
  512. const __m256i hbits = _mm256_loadu_si256((const __m256i *)qh);
  513. const __m256i q5l_0 = _mm256_and_si256(q5bits, lowMask);
  514. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 0), 4);
  515. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  516. hmask = _mm256_slli_epi16(hmask, 1);
  517. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), lowMask);
  518. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 1), 4);
  519. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  520. return _mm512_inserti32x8(_mm512_castsi256_si512(q5_0), q5_1, 1);
  521. }
  522. // used for block_q6_K
  523. inline void bytes_from_nibbles_128(__m512i& r0, __m512i& r1, const uint8_t * qs, const uint8_t * qh) {
  524. const __m256i m4 = _mm256_set1_epi8(0xF);
  525. const __m256i m2 = _mm256_set1_epi8(0x3);
  526. const __m256i q6bits1 = _mm256_loadu_si256((const __m256i *)qs);
  527. const __m256i q6bits2 = _mm256_loadu_si256((const __m256i *)(qs + 32));
  528. const __m256i q6bitsH = _mm256_loadu_si256((const __m256i *)qh);
  529. const __m256i q6h_0 = _mm256_slli_epi16(_mm256_and_si256( q6bitsH, m2), 4);
  530. const __m256i q6h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 2), m2), 4);
  531. const __m256i q6h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 4), m2), 4);
  532. const __m256i q6h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 6), m2), 4);
  533. const __m256i q6_0 = _mm256_or_si256(_mm256_and_si256(q6bits1, m4), q6h_0);
  534. const __m256i q6_1 = _mm256_or_si256(_mm256_and_si256(q6bits2, m4), q6h_1);
  535. const __m256i q6_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits1, 4), m4), q6h_2);
  536. const __m256i q6_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits2, 4), m4), q6h_3);
  537. r0 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_0), q6_1, 1);
  538. r1 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_2), q6_3, 1);
  539. }
  540. inline __m512i packNibbles(__m512i r0, __m512i r1) {
  541. return _mm512_or_si512(r0, _mm512_slli_epi16(r1, 4));
  542. }
  543. template <typename TB>
  544. inline void pack_qs(void * RESTRICT packed_B, const TB * RESTRICT B, int KB) {
  545. int8_t tmp[8 * 64];
  546. __m256i v[8], v2[8];
  547. for (int n = 0; n < 8; ++n) {
  548. v[n] = bytes_from_nibbles_32(B[n * KB].qs);
  549. }
  550. transpose_8x8_32bit(v, v2);
  551. for (int n = 0; n < 8; ++n) {
  552. _mm256_storeu_si256((__m256i *)(tmp + n * 64), v2[n]);
  553. }
  554. for (int n = 0; n < 8; ++n) {
  555. v[n] = bytes_from_nibbles_32(B[(n + 8) * KB].qs);
  556. }
  557. transpose_8x8_32bit(v, v2);
  558. for (int n = 0; n < 8; ++n) {
  559. _mm256_storeu_si256((__m256i *)(tmp + n * 64 + 32), v2[n]);
  560. }
  561. // pack again with 128 to fully utilize vector length
  562. for (int n = 0; n < 8; n += 2) {
  563. __m512i r0 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64));
  564. __m512i r1 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64 + 64));
  565. __m512i r1r0 = packNibbles(r0, r1);
  566. _mm512_storeu_si512((__m512i *)((char *)packed_B + n * 32), r1r0);
  567. }
  568. }
  569. template <>
  570. inline void pack_qs<block_q8_0>(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) {
  571. __m256i v[8], v2[8];
  572. for (int n = 0; n < 8; ++n) {
  573. v[n] = _mm256_loadu_si256((const __m256i *)(B[n * KB].qs));
  574. }
  575. transpose_8x8_32bit(v, v2);
  576. for (int n = 0; n < 8; ++n) {
  577. _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64), v2[n]);
  578. }
  579. for (int n = 0; n < 8; ++n) {
  580. v[n] = _mm256_loadu_si256((const __m256i *)(B[(n + 8) * KB].qs));
  581. }
  582. transpose_8x8_32bit(v, v2);
  583. for (int n = 0; n < 8; ++n) {
  584. _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64 + 32), v2[n]);
  585. }
  586. }
  587. template <>
  588. inline void pack_qs<block_q4_K>(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) {
  589. __m512i v[16];
  590. // QK_K 256 with 8 groups, handle 2 groups at a time
  591. char * pb = (char *)packed_B;
  592. for (int k = 0; k < QK_K / 64; ++k) {
  593. // pack 2 groups { n, g, k} to {g, k/4, 4n}
  594. // e.g. {16, 2, 32} to {2, 8, 64}
  595. for (int n = 0; n < TILE_N; ++n) {
  596. v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32);
  597. }
  598. transpose_16x16_32bit(v);
  599. // pack again with 128 to fully utilize vector length
  600. for (int n = 0; n < TILE_N; n += 2) {
  601. _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1]));
  602. pb += 64;
  603. }
  604. }
  605. }
  606. template <>
  607. inline void pack_qs<block_q5_K>(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) {
  608. __m512i v[16];
  609. const __m512i lowMask = _mm512_set1_epi8(0xF);
  610. // QK_K 256 with 8 groups, handle 2 groups at a time
  611. char * pb = (char *)packed_B;
  612. char * ph = (char *)packed_B + (QK_K / 2) * TILE_N;
  613. for (int k = 0; k < QK_K / 64; ++k) {
  614. // pack 2 groups { n, g, k} to {g, k/4, 4n}
  615. // e.g. {16, 2, 32} to {2, 8, 64}
  616. for (int n = 0; n < TILE_N; ++n) {
  617. v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32, B[n * KB].qh, /* group */2 * k);
  618. }
  619. transpose_16x16_32bit(v);
  620. // 1. pack lower 4bits with 2 groups
  621. for (int n = 0; n < TILE_N; n += 2) {
  622. // get lower 4 bits
  623. const __m512i r0 = _mm512_and_si512(v[n], lowMask);
  624. const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask);
  625. _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64;
  626. }
  627. // 2. pack higher 1bit with 2 groups
  628. const __m512i hmask = _mm512_set1_epi8(0x10);
  629. for (int g = 0; g < 2; ++g) {
  630. __m512i hbits = _mm512_setzero_si512();
  631. hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 0], hmask), 4));
  632. hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 1], hmask), 3));
  633. hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 2], hmask), 2));
  634. hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 3], hmask), 1));
  635. hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 8 + 4], hmask) );
  636. hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 5], hmask), 1));
  637. hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 6], hmask), 2));
  638. hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 7], hmask), 3));
  639. _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64;
  640. }
  641. }
  642. }
  643. template <>
  644. inline void pack_qs<block_q6_K>(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) {
  645. __m512i v[32];
  646. const __m512i lowMask = _mm512_set1_epi8(0xF);
  647. // QK_K 256 with 8 groups, handle 4 groups at a time
  648. char * pb = (char *)packed_B;
  649. char * ph = (char *)packed_B + (QK_K / 2) * TILE_N;
  650. for (int k = 0; k < QK_K / 128; ++k) {
  651. for (int n = 0; n < TILE_N; ++n) {
  652. bytes_from_nibbles_128(v[n], v[n + 16], B[n * KB].ql + k * 64, B[n * KB].qh + k * 32);
  653. }
  654. // top half: group 0,1 or 4,5; bottom half: group 2,3 or 6,7
  655. transpose_16x16_32bit(v);
  656. transpose_16x16_32bit(v + 16);
  657. // 1. pack lower 4bits with 4 groups
  658. for (int n = 0; n < 32; n += 2) {
  659. const __m512i r0 = _mm512_and_si512(v[n], lowMask);
  660. const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask);
  661. _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64;
  662. }
  663. // 2. pack higher 2bit with 4 groups
  664. const __m512i hmask = _mm512_set1_epi8(0x30);
  665. for (int g = 0; g < 8; ++g) {
  666. __m512i hbits = _mm512_setzero_si512();
  667. hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 0], hmask), 4));
  668. hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 1], hmask), 2));
  669. hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 4 + 2], hmask) );
  670. hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 4 + 3], hmask), 2));
  671. _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64;
  672. }
  673. }
  674. }
  675. template <>
  676. inline void pack_qs<block_iq4_xs>(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) {
  677. __m512i v[16];
  678. char * pb = (char *)packed_B;
  679. for (int k = 0; k < QK_K / 64; ++k) {
  680. for (int n = 0; n < TILE_N; ++n) {
  681. __m256i r0 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 0);
  682. __m256i r1 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 16);
  683. v[n] = _mm512_inserti32x8(_mm512_castsi256_si512(r0), r1, 1);
  684. }
  685. transpose_16x16_32bit(v);
  686. // pack again with 128 to fully utilize vector length
  687. for (int n = 0; n < TILE_N; n += 2) {
  688. _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1]));
  689. pb += 64;
  690. }
  691. }
  692. }
  693. // pack B to vnni formats in 4bits or 8 bits
  694. void pack_B(void * RESTRICT packed_B, const block_q4_0 * RESTRICT B, int KB) {
  695. pack_qs(packed_B, B, KB);
  696. ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2);
  697. for (int n = 0; n < TILE_N; ++n) {
  698. d0[n] = B[n * KB].d;
  699. }
  700. }
  701. void pack_B(void * RESTRICT packed_B, const block_q4_1 * RESTRICT B, int KB) {
  702. pack_qs(packed_B, B, KB);
  703. ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2);
  704. ggml_half * m0 = d0 + TILE_N;
  705. for (int n = 0; n < TILE_N; ++n) {
  706. d0[n] = B[n * KB].d;
  707. m0[n] = B[n * KB].m;
  708. }
  709. }
  710. inline void s8s8_compensation(void * RESTRICT packed_B) {
  711. // packed_B layout:
  712. // quants {TILE_N, TILEK} int8_t
  713. // d0 {TILE_N} ggml_half
  714. // comp {TILE_N} int32_t
  715. const int offset = TILE_N * TILE_K + TILE_N * sizeof(ggml_half);
  716. __m512i vcomp = _mm512_setzero_si512();
  717. const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
  718. for (int k = 0; k < 8; ++k) {
  719. __m512i vb = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + k * 64));
  720. vcomp = _mm512_dpbusd_epi32(vcomp, off, vb);
  721. }
  722. _mm512_storeu_si512((__m512i *)((char *)(packed_B) + offset), vcomp);
  723. }
  724. void pack_B(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) {
  725. pack_qs(packed_B, B, KB);
  726. ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K);
  727. for (int n = 0; n < TILE_N; ++n) {
  728. d0[n] = B[n * KB].d;
  729. }
  730. s8s8_compensation(packed_B);
  731. }
  732. // convert 8 * {min, scale} from int6 to int8
  733. inline void unpack_mins_and_scales(const uint8_t * scales, uint32_t * utmp) {
  734. const uint32_t kmask1 = 0x3f3f3f3f;
  735. const uint32_t kmask2 = 0x0f0f0f0f;
  736. const uint32_t kmask3 = 0x03030303;
  737. memcpy(utmp, scales, 12);
  738. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  739. const uint32_t uaux = utmp[1] & kmask1;
  740. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  741. utmp[2] = uaux;
  742. utmp[0] &= kmask1;
  743. }
  744. // packed_B layout:
  745. // quants {8, TILE_N, 16} uint8
  746. // scales {8, TILE_N} uint8
  747. // mins {8, TILE_N} uint8
  748. // d {TILE_N} ggml_half
  749. // dmin {TILE_N} ggml_half
  750. void pack_B(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) {
  751. pack_qs(packed_B, B, KB);
  752. uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N);
  753. uint8_t * mins = scales + 8 * TILE_N;
  754. ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N);
  755. ggml_half * dmin = d + TILE_N;
  756. union {
  757. uint32_t u32[4];
  758. uint8_t u8[16];
  759. } s;
  760. for (int n = 0; n < TILE_N; ++n) {
  761. unpack_mins_and_scales(B[n * KB].scales, s.u32);
  762. for (int k = 0; k < 8; ++k) {
  763. scales[k * TILE_N + n] = s.u8[k];
  764. mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8];
  765. }
  766. d[n] = B[n * KB].d;
  767. dmin[n] = B[n * KB].dmin;
  768. }
  769. }
  770. // packed_B layout:
  771. // quants {8, TILE_N, 16} uint8
  772. // qh {8, TILE_N, 4} uint8
  773. // scales {8, TILE_N} uint8
  774. // mins {8, TILE_N} uint8
  775. // d {TILE_N} ggml_half
  776. // dmin {TILE_N} ggml_half
  777. void pack_B(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) {
  778. pack_qs(packed_B, B, KB);
  779. uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N);
  780. uint8_t * mins = scales + 8 * TILE_N;
  781. ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N);
  782. ggml_half * dmin = d + TILE_N;
  783. union {
  784. uint32_t u32[4];
  785. uint8_t u8[16];
  786. } s;
  787. for (int n = 0; n < TILE_N; ++n) {
  788. unpack_mins_and_scales(B[n * KB].scales, s.u32);
  789. for (int k = 0; k < 8; ++k) {
  790. scales[k * TILE_N + n] = s.u8[k];
  791. mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8];
  792. }
  793. d[n] = B[n * KB].d;
  794. dmin[n] = B[n * KB].dmin;
  795. }
  796. }
  797. // packed_B layout:
  798. // quants {16, TILE_N, 8} uint8
  799. // qh {16, TILE_N, 4} uint8
  800. // scales {16, TILE_N} uint8
  801. // d {TILE_N} ggml_half
  802. void pack_B(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) {
  803. pack_qs(packed_B, B, KB);
  804. uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N);
  805. ggml_half * d = reinterpret_cast<ggml_half *>(scales + 16 * TILE_N);
  806. for (int n = 0; n < TILE_N; ++n) {
  807. const int8_t * ps = B[n * KB].scales;
  808. for (int k = 0; k < 16; ++k) {
  809. scales[k * TILE_N + n] = ps[k];
  810. }
  811. d[n] = B[n * KB].d;
  812. }
  813. }
  814. // packed_B layout:
  815. // quants {8, TILE_N, 16} uint8
  816. // scales {8, TILE_N} int8
  817. // d {TILE_N} ggml_half
  818. void pack_B(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) {
  819. pack_qs(packed_B, B, KB);
  820. int8_t * scales = reinterpret_cast<int8_t *>((char *)packed_B + (QK_K / 2) * TILE_N);
  821. ggml_half * d = reinterpret_cast<ggml_half *>(scales + 8 * TILE_N);
  822. // pack the scales
  823. for (int n = 0; n < TILE_N; ++n) {
  824. uint16_t sh = B[n * KB].scales_h;
  825. for (int k = 0; k < 8; k += 2) {
  826. const int16_t ls1 = ((B[n * KB].scales_l[k / 2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  827. const int16_t ls2 = ((B[n * KB].scales_l[k / 2] >> 4) | ((sh << 2) & 0x30)) - 32;
  828. scales[(k + 0) * TILE_N + n] = ls1;
  829. scales[(k + 1) * TILE_N + n] = ls2;
  830. sh >>= 4;
  831. }
  832. d[n] = B[n * KB].d;
  833. }
  834. }
  835. template<typename TB, typename packed_B_t = packed_B_type<TB>>
  836. void unpack_B(packed_B_t * RESTRICT tile, const void * RESTRICT packed_B) {
  837. GGML_UNUSED(tile);
  838. GGML_UNUSED(packed_B);
  839. }
  840. template <>
  841. void unpack_B<block_q4_0>(int8_t * RESTRICT tile, const void * RESTRICT packed_B) {
  842. const __m512i off = _mm512_set1_epi8(8);
  843. const __m512i lowMask = _mm512_set1_epi8(0xF);
  844. for (int n = 0; n < 8; n += 2) {
  845. __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32));
  846. const __m512i r0 = _mm512_sub_epi8(_mm512_and_si512(bytes, lowMask), off);
  847. const __m512i r1 = _mm512_sub_epi8(_mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask), off);
  848. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
  849. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
  850. }
  851. }
  852. template <>
  853. void unpack_B<block_q4_1>(uint8_t * RESTRICT tile, const void * RESTRICT packed_B) {
  854. const __m512i lowMask = _mm512_set1_epi8(0xF);
  855. for (int n = 0; n < 8; n += 2) {
  856. __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32));
  857. const __m512i r0 = _mm512_and_si512(bytes, lowMask);
  858. const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  859. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
  860. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
  861. }
  862. }
  863. // packed_B_t for QKK is int8_t
  864. template <typename TB>
  865. void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
  866. const int packed_B_group_size = QK_K / 2 * TILE_N / 8;
  867. const char * packed_B_group = (const char *)packed_B + k * packed_B_group_size;
  868. const __m512i lowMask = _mm512_set1_epi8(0xF);
  869. for (int n = 0; n < 8; n += 2) {
  870. __m512i bytes = _mm512_loadu_si512(packed_B_group + n * 32);
  871. const __m512i r0 = _mm512_and_si512(bytes, lowMask);
  872. const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  873. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
  874. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
  875. }
  876. }
  877. template <>
  878. void unpack_B<block_q5_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
  879. // lower 4bits, stride 256 bytes
  880. const int packed_l4_group_size = QK_K / 2 * TILE_N / 8;
  881. const char * pb = (const char *)packed_B + k * packed_l4_group_size;
  882. // higher 1bit, stride 64 bytes
  883. const int packed_h1_group_size = QK_K / 8 * TILE_N / 8;
  884. const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h1_group_size;
  885. const __m512i hbits = _mm512_loadu_si512(ph);
  886. const __m512i lowMask = _mm512_set1_epi8(0xF);
  887. __m512i hmask0 = _mm512_set1_epi8(0x1);
  888. __m512i hmask1 = _mm512_set1_epi8(0x2);
  889. for (int n = 0; n < 8; n += 2) {
  890. __m512i bytes = _mm512_loadu_si512(pb + n * 32);
  891. __m512i r0 = _mm512_and_si512(bytes, lowMask);
  892. __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  893. __m512i h0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), n), 4);
  894. __m512i h1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), n + 1), 4);
  895. hmask0 = _mm512_slli_epi16(hmask0, 2);
  896. hmask1 = _mm512_slli_epi16(hmask1, 2);
  897. r0 = _mm512_add_epi8(r0, h0);
  898. r1 = _mm512_add_epi8(r1, h1);
  899. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
  900. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
  901. }
  902. }
  903. template <>
  904. void unpack_B<block_q6_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
  905. // lower 4bits, stride 128 bytes
  906. const int packed_l4_group_size = QK_K / 2 * TILE_N / 16;
  907. const char * pb = (const char *)packed_B + k * packed_l4_group_size;
  908. // higher 2bits, stride 64 bytes
  909. const int packed_h2_group_size = QK_K / 4 * TILE_N / 16;
  910. const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h2_group_size;
  911. const __m512i hbits = _mm512_loadu_si512(ph);
  912. const __m512i off = _mm512_set1_epi8(32);
  913. const __m512i lowMask = _mm512_set1_epi8(0xF);
  914. __m512i hmask0 = _mm512_set1_epi8(0x3); // 0011
  915. __m512i hmask1 = _mm512_set1_epi8(0xC); // 1100
  916. // notes: skip zero padding from row4 to row7 as we have done so in `unpack_A`
  917. __m512i bytes = _mm512_loadu_si512(pb);
  918. __m512i r0 = _mm512_and_si512(bytes, lowMask);
  919. __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  920. __m512i h0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask0), 4);
  921. __m512i h1 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask1), 2);
  922. _mm512_storeu_si512((__m512i *)(tile + 0), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off));
  923. _mm512_storeu_si512((__m512i *)(tile + 64), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off));
  924. hmask0 = _mm512_slli_epi16(hmask0, 4);
  925. hmask1 = _mm512_slli_epi16(hmask1, 4);
  926. bytes = _mm512_loadu_si512(pb + 64);
  927. r0 = _mm512_and_si512(bytes, lowMask);
  928. r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  929. h0 = _mm512_and_si512(hbits, hmask0);
  930. h1 = _mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), 2);
  931. _mm512_storeu_si512((__m512i *)(tile + 128), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off));
  932. _mm512_storeu_si512((__m512i *)(tile + 192), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off));
  933. }
  934. template <>
  935. void unpack_B<block_iq4_xs>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) {
  936. static const __m512i values128 = _mm512_set_epi8(
  937. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
  938. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
  939. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
  940. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127
  941. );
  942. const int packed_B_group_size = QK_K / 2 * TILE_N / 8;
  943. const char * pb = (const char *)packed_B + k * packed_B_group_size;
  944. const __m512i lowMask = _mm512_set1_epi8(0xF);
  945. for (int n = 0; n < 8; n += 2) {
  946. __m512i bytes = _mm512_loadu_si512(pb + n * 32);
  947. const __m512i r0 = _mm512_shuffle_epi8(values128, _mm512_and_si512(bytes, lowMask));
  948. const __m512i r1 = _mm512_shuffle_epi8(values128, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask));
  949. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0);
  950. _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1);
  951. }
  952. }
  953. template <typename TA, typename TB, bool is_acc>
  954. struct acc_C {};
  955. template <bool is_acc>
  956. struct acc_C<block_q8_0, block_q4_0, is_acc> {
  957. static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) {
  958. const int offset = TILE_N * TILE_K / 2;
  959. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
  960. for (int m = 0; m < nr; ++m) {
  961. const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
  962. const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
  963. __m512 vsum;
  964. if (is_acc) {
  965. vsum = _mm512_loadu_ps(C + m * ldc);
  966. } else {
  967. vsum = _mm512_set1_ps(0.f);
  968. }
  969. vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum);
  970. _mm512_storeu_ps(C + m * ldc, vsum);
  971. }
  972. }
  973. };
  974. template <bool is_acc>
  975. struct acc_C<block_q8_1, block_q4_1, is_acc> {
  976. static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_1 * A, int lda, const void * packed_B, int nr) {
  977. const int offset = TILE_N * TILE_K / 2;
  978. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
  979. const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset + TILE_N * sizeof(ggml_half))));
  980. for (int m = 0; m < nr; ++m) {
  981. const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
  982. const __m512 vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].s));
  983. const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
  984. __m512 vsum;
  985. if (is_acc) {
  986. vsum = _mm512_loadu_ps(C + m * ldc);
  987. } else {
  988. vsum = _mm512_set1_ps(0.f);
  989. }
  990. vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum);
  991. vsum = _mm512_fmadd_ps(vm0, vs1, vsum);
  992. _mm512_storeu_ps(C + m * ldc, vsum);
  993. }
  994. }
  995. };
  996. template <bool is_acc>
  997. struct acc_C<block_q8_0, block_q8_0, is_acc> {
  998. static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) {
  999. const int offset = TILE_N * TILE_K;
  1000. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
  1001. for (int m = 0; m < nr; ++m) {
  1002. const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
  1003. const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
  1004. __m512 vsum;
  1005. if (is_acc) {
  1006. vsum = _mm512_loadu_ps(C + m * ldc);
  1007. } else {
  1008. vsum = _mm512_set1_ps(0.f);
  1009. }
  1010. vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum);
  1011. _mm512_storeu_ps(C + m * ldc, vsum);
  1012. }
  1013. }
  1014. };
  1015. template <bool is_acc>
  1016. struct acc_C<block_q8_K, block_q4_K, is_acc> {
  1017. static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
  1018. const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N);
  1019. const uint8_t * mins = scales + 8 * TILE_N;
  1020. const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N);
  1021. const ggml_half * dmin = d0 + TILE_N;
  1022. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
  1023. const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin));
  1024. for (int m = 0; m < nr; ++m) {
  1025. const float d1 = A[m * lda].d;
  1026. const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
  1027. const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin);
  1028. const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
  1029. __m512 vsum;
  1030. if (is_acc) {
  1031. vsum = _mm512_loadu_ps(C + m * ldc);
  1032. } else {
  1033. vsum = _mm512_set1_ps(0.f);
  1034. }
  1035. const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums);
  1036. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  1037. __m512i acc_m = _mm512_setzero_si512();
  1038. for (int k = 0; k < 4; ++k) {
  1039. __m512i vmask = _mm512_set1_epi32(k);
  1040. __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s));
  1041. __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32)));
  1042. acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
  1043. }
  1044. vsum = _mm512_fmadd_ps(vtile, vd, vsum);
  1045. vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum);
  1046. _mm512_storeu_ps(C + m * ldc, vsum);
  1047. }
  1048. }
  1049. };
  1050. template <bool is_acc>
  1051. struct acc_C<block_q8_K, block_q5_K, is_acc> {
  1052. static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
  1053. const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N);
  1054. const uint8_t * mins = scales + 8 * TILE_N;
  1055. const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N);
  1056. const ggml_half * dmin = d0 + TILE_N;
  1057. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
  1058. const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin));
  1059. for (int m = 0; m < nr; ++m) {
  1060. const float d1 = A[m * lda].d;
  1061. const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
  1062. const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin);
  1063. const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
  1064. __m512 vsum;
  1065. if (is_acc) {
  1066. vsum = _mm512_loadu_ps(C + m * ldc);
  1067. } else {
  1068. vsum = _mm512_set1_ps(0.f);
  1069. }
  1070. const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums);
  1071. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  1072. __m512i acc_m = _mm512_setzero_si512();
  1073. for (int k = 0; k < 4; ++k) {
  1074. __m512i vmask = _mm512_set1_epi32(k);
  1075. __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s));
  1076. __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32)));
  1077. acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
  1078. }
  1079. vsum = _mm512_fmadd_ps(vtile, vd, vsum);
  1080. vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum);
  1081. _mm512_storeu_ps(C + m * ldc, vsum);
  1082. }
  1083. }
  1084. };
  1085. template <bool is_acc>
  1086. struct acc_C<block_q8_K, block_q6_K, is_acc> {
  1087. static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
  1088. const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N);
  1089. const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 16 * TILE_N);
  1090. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
  1091. for (int m = 0; m < nr; ++m) {
  1092. const float d1 = A[m * lda].d;
  1093. const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
  1094. const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
  1095. __m512 vsum;
  1096. if (is_acc) {
  1097. vsum = _mm512_loadu_ps(C + m * ldc);
  1098. } else {
  1099. vsum = _mm512_set1_ps(0.f);
  1100. }
  1101. vsum = _mm512_fmadd_ps(vtile, vd, vsum);
  1102. _mm512_storeu_ps(C + m * ldc, vsum);
  1103. }
  1104. }
  1105. };
  1106. template <bool is_acc>
  1107. struct acc_C<block_q8_K, block_iq4_xs, is_acc> {
  1108. static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) {
  1109. const int8_t * scales = reinterpret_cast<const int8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N);
  1110. const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 8 * TILE_N);
  1111. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0));
  1112. for (int m = 0; m < nr; ++m) {
  1113. const float d1 = A[m * lda].d;
  1114. const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0);
  1115. const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
  1116. __m512 vsum;
  1117. if (is_acc) {
  1118. vsum = _mm512_loadu_ps(C + m * ldc);
  1119. } else {
  1120. vsum = _mm512_set1_ps(0.f);
  1121. }
  1122. vsum = _mm512_fmadd_ps(vtile, vd, vsum);
  1123. _mm512_storeu_ps(C + m * ldc, vsum);
  1124. }
  1125. }
  1126. };
  1127. template <typename TB> constexpr int get_quants_size();
  1128. template <> constexpr int get_quants_size<block_q4_K>() { return (QK_K / 2) * TILE_N; }
  1129. template <> constexpr int get_quants_size<block_q5_K>() { return (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; }
  1130. template <> constexpr int get_quants_size<block_q6_K>() { return (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; }
  1131. template <> constexpr int get_quants_size<block_iq4_xs>() { return (QK_K / 2) * TILE_N; }
  1132. // used for QKK format
  1133. template <typename TB, bool is_acc,
  1134. typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0>
  1135. inline void scale_C(const int32_t * RESTRICT tile, int32_t * RESTRICT sumi, const void * packed_B, int k, int nr) {
  1136. const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + get_quants_size<TB>());
  1137. const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(scales + k * TILE_N)));
  1138. for (int m = 0; m < nr; ++m) {
  1139. __m512i vsumi;
  1140. if (is_acc) {
  1141. vsumi = _mm512_loadu_si512(sumi + m * TILE_N);
  1142. } else {
  1143. vsumi = _mm512_setzero_si512();
  1144. }
  1145. __m512i vtile = _mm512_loadu_si512(tile + m * TILE_N);
  1146. vsumi = _mm512_add_epi32(vsumi, _mm512_mullo_epi32(vtile, vscale));
  1147. _mm512_storeu_si512((__m512i *)(sumi + m * TILE_N), vsumi);
  1148. }
  1149. }
  1150. template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1151. struct tinygemm_kernel_avx {
  1152. static void apply(int K, const TA * RESTRICT A, const TB * RESTRICT B, TC * RESTRICT C, int ldc) {
  1153. GGML_UNUSED(K);
  1154. GGML_UNUSED(A);
  1155. GGML_UNUSED(B);
  1156. GGML_UNUSED(C);
  1157. GGML_UNUSED(ldc);
  1158. }
  1159. };
  1160. template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1161. struct tinygemm_kernel_avx<float, ggml_fp16_t, float, BLOCK_M, BLOCK_N, BLOCK_K> {
  1162. static void apply(int K, const float * RESTRICT A, const ggml_fp16_t * RESTRICT B, float * RESTRICT C, int ldc) {
  1163. constexpr int ROWS = BLOCK_M;
  1164. constexpr int COLS = BLOCK_N;
  1165. assert(BLOCK_K == 16);
  1166. __m512 va;
  1167. __m512 vb[COLS];
  1168. __m512 vc[ROWS * COLS];
  1169. auto loadc = [&](auto idx) {
  1170. vc[idx] = _mm512_setzero_ps();
  1171. };
  1172. Unroll<ROWS * COLS>{}(loadc);
  1173. auto compute = [&](auto idx, auto k) {
  1174. constexpr int row = idx / COLS;
  1175. constexpr int col = idx % COLS;
  1176. if constexpr (col == 0) {
  1177. va = _mm512_loadu_ps(A + row * K + k);
  1178. }
  1179. if constexpr (row == 0) {
  1180. vb[col] = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(B + col * K + k)));
  1181. }
  1182. vc[idx] = _mm512_fmadd_ps(va, vb[col], vc[idx]);
  1183. };
  1184. for (int k = 0; k < K; k += 16) {
  1185. Unroll<ROWS * COLS>{}(compute, k);
  1186. }
  1187. auto storec = [&](auto idx) {
  1188. constexpr int row = idx / COLS;
  1189. constexpr int col = idx % COLS;
  1190. C[row * ldc + col] = _mm512_reduce_add_ps(vc[idx]);
  1191. };
  1192. Unroll<ROWS * COLS>{}(storec);
  1193. }
  1194. };
  1195. #define LAUNCH_TINYGEMM_KERNEL_AVX(MB_SIZE, NB_SIZE) \
  1196. tinygemm_kernel_avx<float, type, float, MB_SIZE, NB_SIZE, blck_size>::apply( \
  1197. K, (const float *)src1->data + mb_start * K, \
  1198. (const type *)src0->data + nb_start * K, \
  1199. (float *)dst->data + mb_start * ldc + nb_start, ldc);
  1200. // re-organize in the format {NB, KB, TILE_SIZE}:
  1201. #define PACKED_INDEX(n, k, KB, tile_size) (n * KB + k) * tile_size
  1202. template<typename TB, int BLOCK_K>
  1203. void convert_B_packed_format(void * RESTRICT packed_B, const TB * RESTRICT B, int N, int K) {
  1204. const int NB = N / TILE_N;
  1205. const int KB = K / BLOCK_K;
  1206. const int TILE_SIZE = get_tile_size<TB>();
  1207. // parallel on NB should be enough
  1208. parallel_for(NB, [&](int begin, int end) {
  1209. for (int n = begin; n < end; ++n) {
  1210. for (int k = 0; k < KB; ++k) {
  1211. int n0 = n * TILE_N;
  1212. pack_B((char *)packed_B + PACKED_INDEX(n, k, KB, TILE_SIZE), &B[n0 * KB + k], KB);
  1213. }
  1214. }
  1215. });
  1216. }
  1217. template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1218. struct tinygemm_kernel_vnni {};
  1219. template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1220. struct tinygemm_kernel_vnni<block_q8_0, block_q4_0, float, BLOCK_M, BLOCK_N, BLOCK_K> {
  1221. static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1222. constexpr int COLS = BLOCK_N / 16;
  1223. const int TILE_SIZE = TILE_N * sizeof(block_q4_0);
  1224. const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A);
  1225. const char * RESTRICT B = static_cast<const char *>(_B);
  1226. __m512i va[8];
  1227. __m512 vc[COLS];
  1228. __m512 vd1;
  1229. // sum of offsets, shared across COLS
  1230. //
  1231. // avx512-vnni does not have `_mm512_dpbssd_epi32`,
  1232. // need to transfrom ss to us:
  1233. // a * (b - 8) is equavilent to b * a - 8 * a
  1234. // s u u u s u s
  1235. //
  1236. __m512i vcomp;
  1237. const __m512i off = _mm512_set1_epi8(8);
  1238. const __m512i lowMask = _mm512_set1_epi8(0xF);
  1239. auto loadc = [&](auto col) {
  1240. vc[col] = _mm512_setzero_ps();
  1241. };
  1242. Unroll<COLS>{}(loadc);
  1243. auto compute = [&](auto col, auto i) {
  1244. // load a and compute compensation
  1245. if constexpr (col == 0) {
  1246. const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs);
  1247. vcomp = _mm512_setzero_si512();
  1248. for (int k = 0; k < 8; ++k) {
  1249. va[k] = _mm512_set1_epi32(a_ptr[k]);
  1250. vcomp = _mm512_dpbusd_epi32(vcomp, off, va[k]);
  1251. }
  1252. vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
  1253. }
  1254. // load b
  1255. __m512i vsum = _mm512_setzero_si512();
  1256. const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
  1257. for (int k = 0; k < 8; k += 2) {
  1258. __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32));
  1259. __m512i vb0 = _mm512_and_si512(bytes, lowMask);
  1260. vsum = _mm512_dpbusd_epi32(vsum, vb0, va[k + 0]);
  1261. __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  1262. vsum = _mm512_dpbusd_epi32(vsum, vb1, va[k + 1]);
  1263. }
  1264. const int offset = TILE_N * TILE_K / 2;
  1265. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset)));
  1266. vsum = _mm512_sub_epi32(vsum, vcomp);
  1267. vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]);
  1268. };
  1269. for (int i = 0; i < KB; ++i) {
  1270. Unroll<COLS>{}(compute, i);
  1271. }
  1272. //store to C
  1273. auto storec = [&](auto col) {
  1274. _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
  1275. };
  1276. Unroll<COLS>{}(storec);
  1277. }
  1278. };
  1279. template <int BLOCK_N, int BLOCK_K>
  1280. struct tinygemm_kernel_vnni<block_q8_1, block_q4_1, float, 1, BLOCK_N, BLOCK_K> {
  1281. static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1282. constexpr int COLS = BLOCK_N / 16;
  1283. const int TILE_SIZE = TILE_N * sizeof(block_q4_1);
  1284. const block_q8_1 * RESTRICT A = static_cast<const block_q8_1 *>(_A);
  1285. const char * RESTRICT B = static_cast<const char *>(_B);
  1286. __m512i va[8];
  1287. __m512i vb[8];
  1288. __m512 vc[COLS];
  1289. __m512 vd1, vs1;
  1290. const __m512i lowMask = _mm512_set1_epi8(0xF);
  1291. auto loadc = [&](auto col) {
  1292. vc[col] = _mm512_setzero_ps();
  1293. };
  1294. Unroll<COLS>{}(loadc);
  1295. auto compute = [&](auto col, auto i) {
  1296. // load a
  1297. if constexpr (col == 0) {
  1298. const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs);
  1299. for (int k = 0; k < 8; ++k) {
  1300. va[k] = _mm512_set1_epi32(a_ptr[k]);
  1301. }
  1302. vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
  1303. vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].s));
  1304. }
  1305. // load b
  1306. const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
  1307. for (int k = 0; k < 8; k += 2) {
  1308. __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32));
  1309. vb[k + 0] = _mm512_and_si512(bytes, lowMask);
  1310. vb[k + 1] = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  1311. }
  1312. const int offset = TILE_N * TILE_K / 2;
  1313. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset)));
  1314. const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset + TILE_N * sizeof(ggml_half))));
  1315. __m512i vsum = _mm512_setzero_si512();
  1316. for (int k = 0; k < 8; ++k) {
  1317. vsum = _mm512_dpbusd_epi32(vsum, vb[k], va[k]);
  1318. }
  1319. vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]);
  1320. vc[col] = _mm512_fmadd_ps(vm0, vs1, vc[col]);
  1321. };
  1322. for (int i = 0; i < KB; ++i) {
  1323. Unroll<COLS>{}(compute, i);
  1324. }
  1325. //store to C
  1326. auto storec = [&](auto col) {
  1327. _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
  1328. };
  1329. Unroll<COLS>{}(storec);
  1330. }
  1331. };
  1332. template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1333. struct tinygemm_kernel_vnni<block_q8_0, block_q8_0, float, BLOCK_M, BLOCK_N, BLOCK_K> {
  1334. static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1335. constexpr int COLS = BLOCK_N / 16;
  1336. const int TILE_SIZE = TILE_N * sizeof(block_q8_0) + TILE_N * sizeof(int32_t);
  1337. const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A);
  1338. const char * RESTRICT B = static_cast<const char *>(_B);
  1339. __m512i va[8];
  1340. __m512i vb[8];
  1341. __m512 vc[COLS];
  1342. __m512 vd1;
  1343. // Notes: s8s8 igemm compensation in avx512-vnni
  1344. // change s8s8 to u8s8 with compensate
  1345. // a * b = (a + 128) * b - 128 * b
  1346. // s s u s u s
  1347. //
  1348. // (128 * b is pre-computed when packing B to vnni formats)
  1349. //
  1350. const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
  1351. auto loadc = [&](auto col) {
  1352. vc[col] = _mm512_setzero_ps();
  1353. };
  1354. Unroll<COLS>{}(loadc);
  1355. auto compute = [&](auto col, auto i) {
  1356. // load a and add offset 128
  1357. if constexpr (col == 0) {
  1358. const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs);
  1359. for (int k = 0; k < 8; ++k) {
  1360. va[k] = _mm512_set1_epi32(a_ptr[k]);
  1361. va[k] = _mm512_add_epi8(va[k], off);
  1362. }
  1363. vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
  1364. }
  1365. // load b
  1366. const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
  1367. for (int k = 0; k < 8; ++k) {
  1368. vb[k] = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 64));
  1369. }
  1370. const int offset = TILE_N * TILE_K;
  1371. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset)));
  1372. const int offset2 = TILE_N * TILE_K + TILE_N * sizeof(ggml_half);
  1373. const __m512i vcomp = _mm512_loadu_si512((const __m512i *)(b_ptr + offset2));
  1374. __m512i vsum = _mm512_setzero_si512();
  1375. for (int k = 0; k < 8; ++k) {
  1376. vsum = _mm512_dpbusd_epi32(vsum, va[k], vb[k]);
  1377. }
  1378. vsum = _mm512_sub_epi32(vsum, vcomp);
  1379. vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]);
  1380. };
  1381. for (int i = 0; i < KB; ++i) {
  1382. Unroll<COLS>{}(compute, i);
  1383. }
  1384. //store to C
  1385. auto storec = [&](auto col) {
  1386. _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
  1387. };
  1388. Unroll<COLS>{}(storec);
  1389. }
  1390. };
  1391. template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1392. struct tinygemm_kernel_vnni<block_q8_K, block_q4_K, float, BLOCK_M, BLOCK_N, BLOCK_K> {
  1393. static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1394. constexpr int COLS = BLOCK_N / 16;
  1395. const int TILE_SIZE = TILE_N * sizeof(block_q4_K) + TILE_N * 4;
  1396. const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
  1397. const char * RESTRICT B = static_cast<const char *>(_B);
  1398. // a.qs: 8 groups, 32 bytes each group (m256i)
  1399. __m512i va[8];
  1400. // a.bsum: 8 groups, 2 bytes each group (m128i)
  1401. __m512i va_bsum;
  1402. __m512 vc[COLS];
  1403. __m512 vd1;
  1404. // packed_B:
  1405. const int offset_scales = (QK_K / 2) * TILE_N;
  1406. const int offset_mins = (QK_K / 2) * TILE_N + 8 * TILE_N;
  1407. const int offset_d0 = (QK_K / 2) * TILE_N + 16 * TILE_N;
  1408. const int offset_dmin = (QK_K / 2) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half);
  1409. const __m512i lowMask = _mm512_set1_epi8(0xF);
  1410. auto loadc = [&](auto col) {
  1411. vc[col] = _mm512_setzero_ps();
  1412. };
  1413. Unroll<COLS>{}(loadc);
  1414. // Notes: vnni formats in QK_K
  1415. // a) quants vnni format
  1416. // int8 {k/4, n, 4}, viewed as 2d {k/4, 4n}, k = 32
  1417. // from {16, 32} to {8, 64}
  1418. //
  1419. // b) min vnni format
  1420. // int16 {k/2, n, 2}, viewed as 2d {k/2, 2n}, k = 8
  1421. // from {16, 8} to {4, 32}
  1422. //
  1423. auto compute = [&](auto col, auto i) {
  1424. // load a
  1425. if constexpr (col == 0) {
  1426. for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
  1427. va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32)));
  1428. }
  1429. const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
  1430. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  1431. va_bsum = _mm512_castsi128_si512(q8s);
  1432. vd1 = _mm512_set1_ps(A[0 * KB + i].d);
  1433. }
  1434. // step 1: accumultate the quants
  1435. __m512i acc = _mm512_setzero_si512();
  1436. const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
  1437. const char * b_qs = b_ptr;
  1438. for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
  1439. __m512i vsum = _mm512_setzero_si512();
  1440. for (int k = 0; k < 8; k += 2) {
  1441. __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]);
  1442. __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]);
  1443. __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs);
  1444. __m512i vb0 = _mm512_and_si512(bytes, lowMask);
  1445. vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
  1446. __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  1447. vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
  1448. b_qs += 64;
  1449. }
  1450. // vacc += scale * (q8 @ q4)
  1451. const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
  1452. acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
  1453. }
  1454. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
  1455. vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
  1456. // step 2: accumulate the mins
  1457. __m512i acc_m = _mm512_setzero_si512();
  1458. for (int k = 0; k < 4; ++k) {
  1459. __m512i vmask = _mm512_set1_epi32(k);
  1460. __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum);
  1461. __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32)));
  1462. acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
  1463. }
  1464. const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin)));
  1465. vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]);
  1466. };
  1467. for (int i = 0; i < KB; ++i) {
  1468. Unroll<COLS>{}(compute, i);
  1469. }
  1470. //store to C
  1471. auto storec = [&](auto col) {
  1472. _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
  1473. };
  1474. Unroll<COLS>{}(storec);
  1475. }
  1476. };
  1477. template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1478. struct tinygemm_kernel_vnni<block_q8_K, block_q5_K, float, BLOCK_M, BLOCK_N, BLOCK_K> {
  1479. static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1480. constexpr int COLS = BLOCK_N / 16;
  1481. const int TILE_SIZE = TILE_N * sizeof(block_q5_K) + TILE_N * 4;
  1482. const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
  1483. const char * RESTRICT B = static_cast<const char *>(_B);
  1484. // a.qs: 8 groups, 32 bytes each group (m256i)
  1485. __m512i va[8];
  1486. // a.bsum: 8 groups, 2 bytes each group (m128i)
  1487. __m512i va_bsum;
  1488. __m512 vc[COLS];
  1489. __m512 vd1;
  1490. // packed_B:
  1491. const int offset_qh = (QK_K / 2) * TILE_N;
  1492. const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N;
  1493. const int offset_mins = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 8 * TILE_N;
  1494. const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N;
  1495. const int offset_dmin = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half);
  1496. const __m512i lowMask = _mm512_set1_epi8(0xF);
  1497. auto loadc = [&](auto col) {
  1498. vc[col] = _mm512_setzero_ps();
  1499. };
  1500. Unroll<COLS>{}(loadc);
  1501. // Q5_K and Q4_K shares the same vnni formats, refer to notes above.
  1502. auto compute = [&](auto col, auto i) {
  1503. // load a
  1504. if constexpr (col == 0) {
  1505. for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
  1506. va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32)));
  1507. }
  1508. const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
  1509. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  1510. va_bsum = _mm512_castsi128_si512(q8s);
  1511. vd1 = _mm512_set1_ps(A[0 * KB + i].d);
  1512. }
  1513. // step 1: accumultate the quants
  1514. __m512i acc = _mm512_setzero_si512();
  1515. const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
  1516. const char * b_qs = b_ptr;
  1517. const char * b_qh = b_ptr + offset_qh;
  1518. for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
  1519. __m512i vsum = _mm512_setzero_si512();
  1520. __m512i hmask0 = _mm512_set1_epi8(0x1);
  1521. __m512i hmask1 = _mm512_set1_epi8(0x2);
  1522. __m512i hbits = _mm512_loadu_si512((const __m512i *)(b_qh + k_group * 64));
  1523. for (int k = 0; k < 8; k += 2) {
  1524. __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]);
  1525. __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]);
  1526. __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs);
  1527. __m512i vb0 = _mm512_and_si512(bytes, lowMask);
  1528. __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  1529. __m512i vh0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), k), 4);
  1530. __m512i vh1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), k + 1), 4);
  1531. hmask0 = _mm512_slli_epi16(hmask0, 2);
  1532. hmask1 = _mm512_slli_epi16(hmask1, 2);
  1533. vb0 = _mm512_add_epi8(vb0, vh0);
  1534. vb1 = _mm512_add_epi8(vb1, vh1);
  1535. vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
  1536. vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
  1537. b_qs += 64;
  1538. }
  1539. // vacc += scale * (q8 @ q5)
  1540. const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
  1541. acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
  1542. }
  1543. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
  1544. vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
  1545. // step 2: accumulate the mins
  1546. __m512i acc_m = _mm512_setzero_si512();
  1547. for (int k = 0; k < 4; ++k) {
  1548. __m512i vmask = _mm512_set1_epi32(k);
  1549. __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum);
  1550. __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32)));
  1551. acc_m = _mm512_dpwssds_epi32(acc_m, va, vb);
  1552. }
  1553. const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin)));
  1554. vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]);
  1555. };
  1556. for (int i = 0; i < KB; ++i) {
  1557. Unroll<COLS>{}(compute, i);
  1558. }
  1559. //store to C
  1560. auto storec = [&](auto col) {
  1561. _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
  1562. };
  1563. Unroll<COLS>{}(storec);
  1564. }
  1565. };
  1566. template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1567. struct tinygemm_kernel_vnni<block_q8_K, block_q6_K, float, BLOCK_M, BLOCK_N, BLOCK_K> {
  1568. static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1569. constexpr int COLS = BLOCK_N / 16;
  1570. const int TILE_SIZE = TILE_N * sizeof(block_q6_K);
  1571. const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
  1572. const char * RESTRICT B = static_cast<const char *>(_B);
  1573. // load the 256 bytes from A to 4 avx512 vectors
  1574. __m512i va[4];
  1575. __m512 vc[COLS];
  1576. __m512 vd1;
  1577. // packed_B:
  1578. const int offset_qh = (QK_K / 2) * TILE_N;
  1579. const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N;
  1580. const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N + 16 * TILE_N;
  1581. // compensation
  1582. __m512i vcomp;
  1583. const __m512i m32s = _mm512_set1_epi32(32);
  1584. const __m512i lowMask = _mm512_set1_epi8(0xF);
  1585. auto loadc = [&](auto col) {
  1586. vc[col] = _mm512_setzero_ps();
  1587. };
  1588. Unroll<COLS>{}(loadc);
  1589. auto compute = [&](auto col, auto i) {
  1590. if constexpr (col == 0) {
  1591. // load a
  1592. va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0));
  1593. va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64));
  1594. va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128));
  1595. va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192));
  1596. const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
  1597. vcomp = _mm512_mullo_epi32(_mm512_cvtepi16_epi32(q8sums), m32s);
  1598. vd1 = _mm512_set1_ps(A[0 * KB + i].d);
  1599. }
  1600. // accmulate the quants
  1601. __m512i acc = _mm512_setzero_si512();
  1602. const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
  1603. const char * b_qs = b_ptr;
  1604. const char * b_qh = b_ptr + offset_qh;
  1605. int mask = 0;
  1606. for (int k_group = 0; k_group < QK_K / 16; ++k_group) {
  1607. int r = k_group >> 2;
  1608. __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
  1609. __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
  1610. __m512i vsum = _mm512_setzero_si512();
  1611. __m512i hmask = _mm512_set1_epi8(0x3);
  1612. __m512i bytes = _mm512_loadu_si512(b_qs);
  1613. __m512i hbits = _mm512_loadu_si512(b_qh);
  1614. __m512i vb0 = _mm512_and_si512(bytes, lowMask);
  1615. __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  1616. __m512i vh0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask), 4);
  1617. __m512i vh1 = _mm512_slli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 2)), 2);
  1618. vb0 = _mm512_add_epi8(vb0, vh0);
  1619. vb1 = _mm512_add_epi8(vb1, vh1);
  1620. vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
  1621. vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
  1622. b_qs += 64;
  1623. va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
  1624. va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
  1625. bytes = _mm512_loadu_si512(b_qs);
  1626. vb0 = _mm512_and_si512(bytes, lowMask);
  1627. vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask);
  1628. vh0 = _mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 4));
  1629. vh1 = _mm512_srli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 6)), 2);
  1630. vb0 = _mm512_add_epi8(vb0, vh0);
  1631. vb1 = _mm512_add_epi8(vb1, vh1);
  1632. vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
  1633. vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
  1634. b_qs += 64;
  1635. b_qh += 64;
  1636. // B * A - 32 * A
  1637. __m512i vmask = _mm512_set1_epi32(k_group);
  1638. vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp));
  1639. // vacc += scale * (q8 @ q6)
  1640. const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
  1641. acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
  1642. }
  1643. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
  1644. vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
  1645. };
  1646. for (int i = 0; i < KB; ++i) {
  1647. Unroll<COLS>{}(compute, i);
  1648. }
  1649. //store to C
  1650. auto storec = [&](int col) {
  1651. _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
  1652. };
  1653. Unroll<COLS>{}(storec);
  1654. }
  1655. };
  1656. template <int BLOCK_M, int BLOCK_N, int BLOCK_K>
  1657. struct tinygemm_kernel_vnni<block_q8_K, block_iq4_xs, float, BLOCK_M, BLOCK_N, BLOCK_K> {
  1658. static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1659. constexpr int COLS = BLOCK_N / 16;
  1660. const int TILE_SIZE = TILE_N * sizeof(block_iq4_xs) + TILE_N * 2;
  1661. const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A);
  1662. const char * RESTRICT B = static_cast<const char *>(_B);
  1663. // load the 256 bytes from A to 4 avx512 vectors
  1664. __m512i va[4];
  1665. __m512 vc[COLS];
  1666. __m512 vd1;
  1667. // packed_B:
  1668. const int offset_scales = (QK_K / 2) * TILE_N ;
  1669. const int offset_d0 = (QK_K / 2) * TILE_N + 8 * TILE_N;
  1670. // compensation
  1671. __m512i vcomp;
  1672. const __m256i m128s = _mm256_set1_epi16(128);
  1673. const __m512i lowMask = _mm512_set1_epi8(0xF);
  1674. const __m512i values128 = _mm512_set_epi8(
  1675. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
  1676. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
  1677. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127,
  1678. 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127
  1679. );
  1680. const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
  1681. const __m512i values256 = _mm512_add_epi8(values128, off);
  1682. auto loadc = [&](auto col) {
  1683. vc[col] = _mm512_setzero_ps();
  1684. };
  1685. Unroll<COLS>{}(loadc);
  1686. auto compute = [&](auto col, auto i) {
  1687. if constexpr (col == 0) {
  1688. // load a
  1689. va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0));
  1690. va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64));
  1691. va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128));
  1692. va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192));
  1693. // compensation: 128 * A
  1694. const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums);
  1695. vcomp = _mm512_castsi256_si512(_mm256_madd_epi16(q8sums, m128s));
  1696. vd1 = _mm512_set1_ps(A[0 * KB + i].d);
  1697. }
  1698. // accmulate the quants
  1699. __m512i acc = _mm512_setzero_si512();
  1700. const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE);
  1701. const char * b_qs = b_ptr;
  1702. int mask = 0;
  1703. for (int k_group = 0; k_group < QK_K / 32; ++k_group) {
  1704. int r = k_group >> 1;
  1705. __m512i vmask = _mm512_set1_epi32(k_group);
  1706. __m512i vsum = _mm512_setzero_si512();
  1707. for (int k = 0; k < 8; k += 2) {
  1708. __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
  1709. __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]);
  1710. __m512i bytes = _mm512_loadu_si512(b_qs);
  1711. __m512i vb0 = _mm512_shuffle_epi8(values256, _mm512_and_si512(bytes, lowMask));
  1712. __m512i vb1 = _mm512_shuffle_epi8(values256, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask));
  1713. vsum = _mm512_dpbusd_epi32(vsum, vb0, va0);
  1714. vsum = _mm512_dpbusd_epi32(vsum, vb1, va1);
  1715. b_qs += 64;
  1716. }
  1717. // (B + 128) * A - 128 * A
  1718. vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp));
  1719. // vacc += scale * (q8 @ q4)
  1720. const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N)));
  1721. acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale));
  1722. }
  1723. const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0)));
  1724. vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]);
  1725. };
  1726. for (int i = 0; i < KB; ++i) {
  1727. Unroll<COLS>{}(compute, i);
  1728. }
  1729. //store to C
  1730. auto storec = [&](auto col) {
  1731. _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]);
  1732. };
  1733. Unroll<COLS>{}(storec);
  1734. }
  1735. };
  1736. #define LAUNCH_TINYGEMM_KERNEL_VNNI(NB_SIZE) \
  1737. tinygemm_kernel_vnni<vec_dot_type, type, float, 1, NB_SIZE, blck_size>::apply( \
  1738. KB, (const char *)wdata + 0 * row_size_A, \
  1739. (const char *)src0->data + PACKED_INDEX(nb * kTilesN, 0, KB, TILE_SIZE), \
  1740. (float *) dst->data + 0 * N + nb_start, ldc)
  1741. template <typename TA, typename TB, typename TC, int BLOCK_K,
  1742. typename std::enable_if<!is_type_qkk<TB>::value, int>::type = 0>
  1743. void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, TC * RESTRICT C, int ldc) {
  1744. using packed_B_t = packed_B_type<TB>;
  1745. const int TILE_SIZE = get_tile_size<TB>();
  1746. const bool need_unpack = do_unpack<TB>::value;
  1747. GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N);
  1748. const TA * RESTRICT A = static_cast<const TA *>(_A);
  1749. const char * RESTRICT B = static_cast<const char *>(_B);
  1750. const int m0 = std::min(M, TILE_M);
  1751. const int m1 = std::max(M - TILE_M, 0);
  1752. const int lda = KB * sizeof(TA);
  1753. //const int ldb = KB * sizeof(TB);
  1754. static thread_local packed_B_t Tile0[TILE_N * TILE_K];
  1755. static thread_local packed_B_t Tile1[TILE_N * TILE_K];
  1756. static thread_local int8_t Tile23[TILE_M * TILE_K];
  1757. static thread_local int32_t TileC0[TILE_M * TILE_N * 4];
  1758. static thread_local int32_t TileC1[TILE_M * TILE_N * 4];
  1759. // double buffering C to interleave avx512 and amx
  1760. int32_t * C_cur = TileC0;
  1761. int32_t * C_pre = TileC1;
  1762. auto Tile4 = [&](int32_t * base) { return base; };
  1763. auto Tile5 = [&](int32_t * base) { return base + TILE_M * TILE_N; };
  1764. auto Tile6 = [&](int32_t * base) { return base + 2 * TILE_M * TILE_N; };
  1765. auto Tile7 = [&](int32_t * base) { return base + 3 * TILE_M * TILE_N; };
  1766. if (M == 2 * TILE_M) {
  1767. // i = 0
  1768. const char * B_blk0 = B + PACKED_INDEX(0, 0, KB, TILE_SIZE);
  1769. const char * B_blk1 = B + PACKED_INDEX(1, 0, KB, TILE_SIZE);
  1770. if (need_unpack) {
  1771. unpack_B<TB>(Tile0, B_blk0);
  1772. _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
  1773. } else {
  1774. _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK);
  1775. }
  1776. _tile_zero(TMM4);
  1777. _tile_loadd(TMM2, A[0].qs, lda);
  1778. _tile_dpbssd(TMM4, TMM2, TMM0);
  1779. _tile_stored(TMM4, Tile4(C_pre), TILE_N * sizeof(int32_t));
  1780. _tile_zero(TMM5);
  1781. _tile_loadd(TMM3, A[TILE_M * KB + 0].qs, lda);
  1782. _tile_dpbssd(TMM5, TMM3, TMM0);
  1783. _tile_stored(TMM5, Tile5(C_pre), TILE_N * sizeof(int32_t));
  1784. if (need_unpack) {
  1785. unpack_B<TB>(Tile1, B_blk0);
  1786. _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
  1787. } else {
  1788. _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK);
  1789. }
  1790. _tile_zero(TMM6);
  1791. _tile_dpbssd(TMM6, TMM2, TMM1);
  1792. _tile_stored(TMM6, Tile6(C_pre), TILE_N * sizeof(int32_t));
  1793. _tile_zero(TMM7);
  1794. _tile_dpbssd(TMM7, TMM3, TMM1);
  1795. _tile_stored(TMM7, Tile7(C_pre), TILE_N * sizeof(int32_t));
  1796. for (int i = 1; i < KB; ++i) {
  1797. // index of previous iter
  1798. const int ii = i - 1;
  1799. const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE);
  1800. const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE);
  1801. GGML_DISPATCH_BOOL(ii > 0, is_acc, [&] {
  1802. if (need_unpack) {
  1803. unpack_B<TB>(Tile0, B_blk0);
  1804. _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
  1805. } else {
  1806. _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK);
  1807. }
  1808. _tile_zero(TMM4);
  1809. _tile_loadd(TMM2, A[i].qs, lda);
  1810. acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
  1811. _tile_dpbssd(TMM4, TMM2, TMM0);
  1812. _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t));
  1813. _tile_zero(TMM5);
  1814. _tile_loadd(TMM3, A[TILE_M * KB + i].qs, lda);
  1815. acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
  1816. _tile_dpbssd(TMM5, TMM3, TMM0);
  1817. _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t));
  1818. if (need_unpack) {
  1819. unpack_B<TB>(Tile1, B_blk1);
  1820. _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
  1821. } else {
  1822. _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK);
  1823. }
  1824. _tile_zero(TMM6);
  1825. acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
  1826. _tile_dpbssd(TMM6, TMM2, TMM1);
  1827. _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t));
  1828. _tile_zero(TMM7);
  1829. acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
  1830. _tile_dpbssd(TMM7, TMM3, TMM1);
  1831. _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t));
  1832. std::swap(C_cur, C_pre);
  1833. });
  1834. }
  1835. // final accumulation
  1836. {
  1837. int ii = KB - 1;
  1838. acc_C<TA, TB, true>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
  1839. acc_C<TA, TB, true>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M);
  1840. acc_C<TA, TB, true>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
  1841. acc_C<TA, TB, true>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M);
  1842. }
  1843. } else {
  1844. for (int i = 0; i < KB; ++i) {
  1845. _tile_zero(TMM4);
  1846. _tile_zero(TMM6);
  1847. if (m1 != 0) {
  1848. _tile_zero(TMM5);
  1849. _tile_zero(TMM7);
  1850. }
  1851. const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE);
  1852. const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE);
  1853. if (need_unpack) {
  1854. unpack_B<TB>(Tile0, B_blk0);
  1855. _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
  1856. } else {
  1857. _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK);
  1858. }
  1859. if (need_unpack) {
  1860. unpack_B<TB>(Tile1, B_blk1);
  1861. _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
  1862. } else {
  1863. _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK);
  1864. }
  1865. if (m0 == TILE_M) {
  1866. _tile_loadd(TMM2, A[i].qs, lda);
  1867. } else {
  1868. unpack_A(Tile23, &A[i], KB, m0);
  1869. _tile_loadd(TMM2, Tile23, TILE_K);
  1870. }
  1871. _tile_dpbssd(TMM4, TMM2, TMM0);
  1872. _tile_dpbssd(TMM6, TMM2, TMM1);
  1873. _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t));
  1874. _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t));
  1875. GGML_DISPATCH_BOOL(i > 0, is_acc, [&] {
  1876. acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_cur), &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0);
  1877. acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_cur), &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0);
  1878. });
  1879. if (m1 != 0) {
  1880. unpack_A(Tile23, &A[TILE_M * KB + i], KB, m1);
  1881. _tile_loadd(TMM3, Tile23, TILE_K);
  1882. _tile_dpbssd(TMM5, TMM3, TMM0);
  1883. _tile_dpbssd(TMM7, TMM3, TMM1);
  1884. _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t));
  1885. _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t));
  1886. GGML_DISPATCH_BOOL(i > 0, is_acc, [&] {
  1887. acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1);
  1888. acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1);
  1889. });
  1890. }
  1891. }
  1892. }
  1893. return;
  1894. }
  1895. template <typename TA, typename TB, typename TC, int BLOCK_K,
  1896. typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0>
  1897. void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) {
  1898. static_assert(std::is_same<TA, block_q8_K>::value);
  1899. const int TILE_SIZE = get_tile_size<TB>();
  1900. GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N);
  1901. const TA * RESTRICT A = static_cast<const TA *>(_A);
  1902. const char * RESTRICT B = static_cast<const char *>(_B);
  1903. const int m0 = std::min(M, TILE_M);
  1904. const int m1 = std::max(M - TILE_M, 0);
  1905. //const int lda = KB * sizeof(TA);
  1906. static thread_local int8_t Tile0[TILE_N * TILE_K];
  1907. static thread_local int8_t Tile1[TILE_N * TILE_K];
  1908. static thread_local int8_t Tile23[TILE_M * TILE_K];
  1909. // mat mul result for each group
  1910. static thread_local int32_t Tile4[TILE_M * TILE_N];
  1911. static thread_local int32_t Tile5[TILE_M * TILE_N];
  1912. static thread_local int32_t Tile6[TILE_M * TILE_N];
  1913. static thread_local int32_t Tile7[TILE_M * TILE_N];
  1914. // sum of each QK_K block, contains 8 groups, int32
  1915. static thread_local int32_t Sumi4[TILE_M * TILE_N];
  1916. static thread_local int32_t Sumi5[TILE_M * TILE_N];
  1917. static thread_local int32_t Sumi6[TILE_M * TILE_N];
  1918. static thread_local int32_t Sumi7[TILE_M * TILE_N];
  1919. const int k_group_size = std::is_same<TB, block_q6_K>::value ? 16 : 32;
  1920. for (int i = 0; i < KB; ++i) {
  1921. // step 1: accumulate the quants across 8 groups, each group with 32
  1922. for (int k = 0; k < QK_K / k_group_size; ++k) {
  1923. GGML_DISPATCH_BOOL(k > 0, is_acc, [&] {
  1924. _tile_zero(TMM4);
  1925. _tile_zero(TMM6);
  1926. unpack_B<TB>(Tile0, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k);
  1927. _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK);
  1928. unpack_B<TB>(Tile1, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k);
  1929. _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK);
  1930. unpack_A<TB>(Tile23, &A[i], KB, k, m0);
  1931. _tile_loadd(TMM2, Tile23, TILE_K);
  1932. _tile_dpbssd(TMM4, TMM2, TMM0);
  1933. _tile_dpbssd(TMM6, TMM2, TMM1);
  1934. _tile_stored(TMM4, Tile4, TILE_N * sizeof(int32_t));
  1935. _tile_stored(TMM6, Tile6, TILE_N * sizeof(int32_t));
  1936. scale_C<TB, is_acc>(Tile4, Sumi4, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m0);
  1937. scale_C<TB, is_acc>(Tile6, Sumi6, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m0);
  1938. if (m1 != 0) {
  1939. _tile_zero(TMM5);
  1940. _tile_zero(TMM7);
  1941. unpack_A<TB>(Tile23, &A[TILE_M * KB + i], KB, k, m1);
  1942. _tile_loadd(TMM3, Tile23, TILE_K);
  1943. _tile_dpbssd(TMM5, TMM3, TMM0);
  1944. _tile_dpbssd(TMM7, TMM3, TMM1);
  1945. _tile_stored(TMM5, Tile5, TILE_N * sizeof(int32_t));
  1946. _tile_stored(TMM7, Tile7, TILE_N * sizeof(int32_t));
  1947. scale_C<TB, is_acc>(Tile5, Sumi5, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m1);
  1948. scale_C<TB, is_acc>(Tile7, Sumi7, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m1);
  1949. }
  1950. });
  1951. }
  1952. // step 2: accmulate the mins
  1953. GGML_DISPATCH_BOOL(i > 0, is_acc, [&] {
  1954. acc_C<TA, TB, is_acc>::apply(C, ldc, Sumi4, &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0);
  1955. acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Sumi6, &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0);
  1956. if (m1 != 0) {
  1957. acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Sumi5, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1);
  1958. acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Sumi7, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1);
  1959. }
  1960. });
  1961. }
  1962. return;
  1963. }
  1964. } // anonymous namespace
  1965. // get the packed tensor size for quantized weights
  1966. size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor) {
  1967. const enum ggml_type TYPE = tensor->type;
  1968. const int K = tensor->ne[0]; // ne0: in_features
  1969. const int N = tensor->ne[1]; // ne1: out_features
  1970. auto get_tensor_size = [&] {
  1971. size_t row_size_B{0};
  1972. GGML_DISPATCH_QTYPES(TYPE, [&] {
  1973. row_size_B = get_row_size<type, blck_size>(K);
  1974. });
  1975. return N * row_size_B;
  1976. };
  1977. if (qtype_has_amx_kernels(TYPE)) {
  1978. return get_tensor_size();
  1979. } else {
  1980. // for f16, bf16 we don't do packing
  1981. return ggml_nbytes(tensor);
  1982. }
  1983. }
  1984. // pack weight to vnni format
  1985. void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1986. GGML_ASSERT(offset == 0 && size == ggml_nbytes(tensor)); // only full tensor conversion is supported for now
  1987. const enum ggml_type TYPE = tensor->type;
  1988. const int K = tensor->ne[0]; // ne0: in_features
  1989. const int N = tensor->ne[1]; // ne1: out_features
  1990. GGML_DISPATCH_QTYPES(TYPE, [&] {
  1991. convert_B_packed_format<type, blck_size>((void *)((char *)tensor->data + offset), (const type *)data, N, K);
  1992. });
  1993. }
  1994. size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst) {
  1995. struct ggml_tensor * src0 = dst->src[0];
  1996. const enum ggml_type TYPE = src0->type;
  1997. const bool is_floating_type = TYPE == GGML_TYPE_F16;
  1998. if (is_floating_type) {
  1999. return 0;
  2000. }
  2001. const int M = dst->ne[1];
  2002. const int K = src0->ne[0];
  2003. size_t desired_wsize = 0;
  2004. GGML_DISPATCH_QTYPES(TYPE, [&] {
  2005. const size_t row_size_A = K / blck_size * sizeof(vec_dot_type);
  2006. desired_wsize = M * row_size_A;
  2007. });
  2008. return desired_wsize;
  2009. }
  2010. // NB: mixed dtype gemm with Advanced Matrix Extensions (Intel AMX)
  2011. //
  2012. // src0: weight in shape of {N, K}, quantized
  2013. // src1: input in shape of {M, K}, float32
  2014. // dst: output in shape of {M, N}, float32
  2015. //
  2016. // the function performs: dst = src1 @ src0.T
  2017. //
  2018. void ggml_backend_amx_mul_mat(const ggml_compute_params * params, struct ggml_tensor * dst) {
  2019. struct ggml_tensor * src0 = dst->src[0];
  2020. struct ggml_tensor * src1 = dst->src[1];
  2021. const enum ggml_type TYPE = src0->type;
  2022. // f16 only has avx512 kernels for now,
  2023. // amx kernels will be added once 6th gen xeon is released.
  2024. const bool is_floating_type = TYPE == GGML_TYPE_F16;
  2025. const int M = dst->ne[1];
  2026. const int N = dst->ne[0];
  2027. const int K = src0->ne[0];
  2028. const int ldc = dst->nb[1] / dst->nb[0];
  2029. if (is_floating_type) {
  2030. constexpr int BLOCK_M = 4;
  2031. constexpr int BLOCK_N = 6;
  2032. const int MB = div_up(M, BLOCK_M);
  2033. const int NB = div_up(N, BLOCK_N);
  2034. parallel_for_ggml(params, MB * NB, [&](int begin, int end) {
  2035. GGML_DISPATCH_FLOATING_TYPES(TYPE, [&] {
  2036. for (int i = begin; i < end; ++i) {
  2037. int mb = i / NB;
  2038. int nb = i % NB;
  2039. int mb_start = mb * BLOCK_M;
  2040. int mb_size = std::min(BLOCK_M, M - mb_start);
  2041. int nb_start = nb * BLOCK_N;
  2042. int nb_size = std::min(BLOCK_N, N - nb_start);
  2043. switch (mb_size << 4 | nb_size) {
  2044. case 0x12: LAUNCH_TINYGEMM_KERNEL_AVX(1, 2); break;
  2045. case 0x14: LAUNCH_TINYGEMM_KERNEL_AVX(1, 4); break;
  2046. case 0x16: LAUNCH_TINYGEMM_KERNEL_AVX(1, 6); break;
  2047. case 0x22: LAUNCH_TINYGEMM_KERNEL_AVX(2, 2); break;
  2048. case 0x24: LAUNCH_TINYGEMM_KERNEL_AVX(2, 4); break;
  2049. case 0x26: LAUNCH_TINYGEMM_KERNEL_AVX(2, 6); break;
  2050. case 0x32: LAUNCH_TINYGEMM_KERNEL_AVX(3, 2); break;
  2051. case 0x34: LAUNCH_TINYGEMM_KERNEL_AVX(3, 4); break;
  2052. case 0x36: LAUNCH_TINYGEMM_KERNEL_AVX(3, 6); break;
  2053. case 0x42: LAUNCH_TINYGEMM_KERNEL_AVX(4, 2); break;
  2054. case 0x44: LAUNCH_TINYGEMM_KERNEL_AVX(4, 4); break;
  2055. case 0x46: LAUNCH_TINYGEMM_KERNEL_AVX(4, 6); break;
  2056. default: fprintf(stderr, "Unexpected block size!\n");
  2057. }
  2058. }
  2059. });
  2060. });
  2061. return;
  2062. }
  2063. // pointer to work space, used convert A from float to quantized type
  2064. void * wdata = params->wdata;
  2065. //TODO: performance improvement: merge quant A
  2066. if (params->ith == 0) {
  2067. GGML_DISPATCH_QTYPES(TYPE, [&] {
  2068. const size_t row_size_A = K / blck_size * sizeof(vec_dot_type);
  2069. const size_t desired_wsize = M * row_size_A;
  2070. if (params->wsize < desired_wsize) {
  2071. GGML_ABORT("insufficient work space size");
  2072. }
  2073. // Q4_0, Q4_1, Q8_0 handles 1 TILE_K per blck_size
  2074. // Q4_K, Q5_K, Q6_K, IQ4_XS handles 8 TILE_K per blck_size
  2075. GGML_ASSERT(TILE_K == blck_size || TILE_K * 8 == blck_size);
  2076. const float * A_data = static_cast<const float *>(src1->data);
  2077. for (int m = 0; m < M; ++m) {
  2078. from_float<vec_dot_type>(A_data + m * K, (char *)wdata + m * row_size_A, K);
  2079. }
  2080. });
  2081. }
  2082. ggml_barrier(params->threadpool);
  2083. if (M == 1) {
  2084. // MB = 1 and handle 8 tiles in each block
  2085. constexpr int kTilesN = 4;
  2086. constexpr int BLOCK_N = TILE_N * kTilesN;
  2087. const int NB = div_up(N, BLOCK_N);
  2088. parallel_for_ggml(params, NB, [&](int begin, int end) {
  2089. GGML_DISPATCH_QTYPES(TYPE, [&] {
  2090. const int KB = K / blck_size;
  2091. const int TILE_SIZE = get_tile_size<type>();
  2092. const int row_size_A = KB * sizeof(vec_dot_type);
  2093. for (int i = begin; i < end; ++i) {
  2094. int nb = i;
  2095. int nb_start = nb * BLOCK_N;
  2096. int nb_size = std::min(BLOCK_N, N - nb_start); // 32, 64, 96
  2097. switch (nb_size) {
  2098. //case 160: LAUNCH_TINYGEMM_KERNEL_VNNI(160); break;
  2099. case 128: LAUNCH_TINYGEMM_KERNEL_VNNI(128); break;
  2100. case 96: LAUNCH_TINYGEMM_KERNEL_VNNI(96); break;
  2101. case 64: LAUNCH_TINYGEMM_KERNEL_VNNI(64); break;
  2102. case 32: LAUNCH_TINYGEMM_KERNEL_VNNI(32); break;
  2103. default: fprintf(stderr, "Unexpected n block size!\n");
  2104. }
  2105. }
  2106. });
  2107. });
  2108. return;
  2109. }
  2110. // handle 4 tiles at a tile
  2111. constexpr int BLOCK_M = TILE_M * 2;
  2112. constexpr int BLOCK_N = TILE_N * 2;
  2113. const int MB = div_up(M, BLOCK_M);
  2114. const int NB = div_up(N, BLOCK_N);
  2115. parallel_for_ggml(params, MB * NB, [&](int begin, int end) {
  2116. // init tile config for each thread
  2117. ggml_tile_config_init();
  2118. GGML_DISPATCH_QTYPES(TYPE, [&] {
  2119. const int KB = K / blck_size;
  2120. const int TILE_SIZE = get_tile_size<type>();
  2121. const int row_size_A = KB * sizeof(vec_dot_type);
  2122. for (int i = begin; i < end; ++i) {
  2123. int mb = i / NB;
  2124. int nb = i % NB;
  2125. int mb_start = mb * BLOCK_M;
  2126. int mb_size = std::min(BLOCK_M, M - mb_start);
  2127. int nb_start = nb * BLOCK_N;
  2128. int nb_size = BLOCK_N;
  2129. tinygemm_kernel_amx<vec_dot_type, type, float, blck_size>(
  2130. mb_size, nb_size, KB,
  2131. (const char *)wdata + mb_start * row_size_A,
  2132. (const char *)src0->data + PACKED_INDEX(nb * 2, 0, KB, TILE_SIZE),
  2133. (float *) dst->data + mb_start * N + nb_start, ldc);
  2134. }
  2135. });
  2136. });
  2137. }
  2138. #endif // if defined(__AMX_INT8__) && defined(__AVX512VNNI__)