test-sampling.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. #include "ggml.h"
  2. #include "llama.h"
  3. #include "llama-sampling.h"
  4. #ifdef NDEBUG
  5. #undef NDEBUG
  6. #endif
  7. #include <algorithm>
  8. #include <cmath>
  9. #include <string>
  10. #include <vector>
  11. static void dump(const llama_token_data_array * cur_p) {
  12. for (size_t i = 0; i < cur_p->size; i++) {
  13. printf("%d: %f (%f)\n", cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
  14. }
  15. }
  16. #define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
  17. #define APPLY(__cnstr, __cur_p) do { \
  18. auto * cnstr = (__cnstr); \
  19. llama_sampler_apply(cnstr, (__cur_p)); \
  20. llama_sampler_free(cnstr); \
  21. } while(0)
  22. static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
  23. const size_t n_vocab = probs.size();
  24. std::vector<llama_token_data> cur;
  25. cur.reserve(n_vocab);
  26. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  27. const float logit = logf(probs[token_id]);
  28. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  29. }
  30. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  31. APPLY(llama_sampler_init_softmax(), &cur_p);
  32. DUMP(&cur_p);
  33. APPLY(llama_sampler_init_top_k(k), &cur_p);
  34. DUMP(&cur_p);
  35. GGML_ASSERT(cur_p.size == expected_probs.size());
  36. for (size_t i = 0; i < cur_p.size; i++) {
  37. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
  38. }
  39. }
  40. static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
  41. const size_t n_vocab = probs.size();
  42. std::vector<llama_token_data> cur;
  43. cur.reserve(n_vocab);
  44. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  45. const float logit = logf(probs[token_id]);
  46. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  47. }
  48. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  49. APPLY(llama_sampler_init_softmax(), &cur_p);
  50. DUMP(&cur_p);
  51. APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
  52. DUMP(&cur_p);
  53. GGML_ASSERT(cur_p.size == expected_probs.size());
  54. for (size_t i = 0; i < cur_p.size; i++) {
  55. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  56. }
  57. }
  58. static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
  59. const size_t n_vocab = probs.size();
  60. std::vector<llama_token_data> cur;
  61. cur.reserve(n_vocab);
  62. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  63. const float logit = logf(probs[token_id]);
  64. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  65. }
  66. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  67. DUMP(&cur_p);
  68. APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
  69. DUMP(&cur_p);
  70. GGML_ASSERT(cur_p.size == expected_probs.size());
  71. for (size_t i = 0; i < cur_p.size; i++) {
  72. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  73. }
  74. }
  75. static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
  76. const size_t n_vocab = probs.size();
  77. std::vector<llama_token_data> cur;
  78. cur.reserve(n_vocab);
  79. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  80. const float logit = logf(probs[token_id]);
  81. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  82. }
  83. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  84. DUMP(&cur_p);
  85. APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
  86. DUMP(&cur_p);
  87. APPLY(llama_sampler_init_softmax(), &cur_p);
  88. GGML_ASSERT(cur_p.size == expected_probs.size());
  89. for (size_t i = 0; i < cur_p.size; i++) {
  90. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  91. }
  92. }
  93. static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
  94. const size_t n_vocab = probs.size();
  95. std::vector<llama_token_data> cur;
  96. cur.reserve(n_vocab);
  97. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  98. const float logit = logf(probs[token_id]);
  99. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  100. }
  101. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  102. DUMP(&cur_p);
  103. APPLY(llama_sampler_init_typical(p, 1), &cur_p);
  104. DUMP(&cur_p);
  105. GGML_ASSERT(cur_p.size == expected_probs.size());
  106. for (size_t i = 0; i < cur_p.size; i++) {
  107. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  108. }
  109. }
  110. static void test_penalties(
  111. const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
  112. const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
  113. ) {
  114. GGML_ASSERT(probs.size() == expected_probs.size());
  115. const size_t n_vocab = probs.size();
  116. std::vector<llama_token_data> cur;
  117. cur.reserve(n_vocab);
  118. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  119. const float logit = logf(probs[token_id]);
  120. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  121. }
  122. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  123. auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
  124. for (size_t i = 0; i < last_tokens.size(); i++) {
  125. llama_sampler_accept(sampler, last_tokens[i]);
  126. }
  127. APPLY(llama_sampler_init_softmax(), &cur_p);
  128. DUMP(&cur_p);
  129. APPLY(sampler, &cur_p);
  130. APPLY(llama_sampler_init_softmax(), &cur_p);
  131. DUMP(&cur_p);
  132. GGML_ASSERT(cur_p.size == expected_probs.size());
  133. for (size_t i = 0; i < cur_p.size; i++) {
  134. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  135. }
  136. }
  137. static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
  138. ) {
  139. std::vector<llama_token_data> cur;
  140. cur.reserve(n_vocab);
  141. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  142. const float logit = logf(token_id);
  143. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  144. }
  145. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  146. llama_token min_token_id = 0;
  147. const llama_token max_token_id = n_vocab-1;
  148. for (auto s : samplers_sequence) {
  149. switch (s){
  150. case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break;
  151. case 'f': GGML_ABORT("tail_free test not implemented");
  152. case 'y': GGML_ABORT("typical test not implemented");
  153. case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break;
  154. case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break;
  155. case 't': GGML_ABORT("temperature test not implemented");
  156. default : GGML_ABORT("Unknown sampler");
  157. }
  158. APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests
  159. const int size = cur_p.size;
  160. if (s == 'k') {
  161. const int expected_size = std::min(size, top_k);
  162. min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
  163. GGML_ASSERT(size == expected_size);
  164. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  165. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  166. } else if (s == 'p') {
  167. const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
  168. const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
  169. min_token_id = n_vocab;
  170. int expected_size = 0;
  171. int cumsum = 0;
  172. do { // do-while because always at least one token is sampled
  173. min_token_id--;
  174. expected_size++;
  175. cumsum += min_token_id;
  176. } while (cumsum < softmax_numerator_target);
  177. // token 0 has p == 0, need special consideration for cumsum because top_p immediately returns
  178. if (min_token_id == 1) {
  179. min_token_id--;
  180. expected_size += 1;
  181. }
  182. GGML_ASSERT(size == expected_size);
  183. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  184. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  185. } else if (s == 'm') {
  186. int expected_size = ceilf((1.0f-min_p) * n_vocab);
  187. expected_size = std::max(expected_size, 1);
  188. expected_size = std::min(expected_size, size);
  189. min_token_id = floorf(min_p * n_vocab);
  190. min_token_id = std::max(min_token_id, 1);
  191. min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size));
  192. min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
  193. GGML_ASSERT(size == expected_size);
  194. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  195. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  196. } else {
  197. GGML_ABORT("fatal error");
  198. }
  199. }
  200. printf("Sampler queue %3s OK with n_vocab=%05ld top_k=%05d top_p=%f min_p=%f\n",
  201. samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
  202. }
  203. int main(void) {
  204. ggml_time_init();
  205. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
  206. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
  207. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
  208. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
  209. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
  210. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
  211. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
  212. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
  213. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
  214. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
  215. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f);
  216. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f);
  217. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f);
  218. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f);
  219. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f);
  220. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
  221. test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
  222. test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
  223. test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
  224. test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
  225. test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
  226. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
  227. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
  228. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
  229. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
  230. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
  231. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
  232. test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
  233. test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);
  234. test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);
  235. test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f);
  236. test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f);
  237. test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12);
  238. test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f);
  239. test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f);
  240. test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f);
  241. test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f);
  242. test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f);
  243. test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f);
  244. test_sampler_queue(10000, "km", 100, 0.8f, 0.1f);
  245. test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f);
  246. test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f);
  247. test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f);
  248. test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f);
  249. test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f);
  250. test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f);
  251. test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f);
  252. test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f);
  253. test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f);
  254. test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f);
  255. test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f);
  256. printf("OK\n");
  257. return 0;
  258. }