test-backend-ops.cpp 315 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. // generate an F16 mask where certain blocks are randomly masked with -INF value
  121. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  122. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  123. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  124. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  125. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  126. std::random_device rd;
  127. std::mt19937 gen(rd());
  128. std::uniform_real_distribution<float> dis(min, max);
  129. for (size_t i = 0; i < data_f32.size(); i++) {
  130. data_f32[i] = dis(gen);
  131. }
  132. // block size
  133. const int blck0 = 128;
  134. const int blck1 = 64;
  135. // number of INF blocks
  136. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  137. for (int b = 0; b < n_inf_blocks; b++) {
  138. const int p3 = (rd() % ne3);
  139. const int p2 = (rd() % ne2);
  140. const int p1 = (rd() % ne1);
  141. const int p0 = (rd() % ne0);
  142. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  143. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  144. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  145. data_f32[idx + i0] = -INFINITY;
  146. }
  147. }
  148. }
  149. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  150. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  151. }
  152. // generate a lower triangular matrix
  153. static void init_tensor_tril(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  154. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  155. GGML_ASSERT(tensor->ne[0] == tensor->ne[1]);
  156. GGML_TENSOR_LOCALS(int32_t, ne, tensor, ne);
  157. GGML_TENSOR_LOCALS(size_t, nb, tensor, nb);
  158. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  159. std::random_device rd;
  160. std::mt19937 gen(rd());
  161. std::uniform_real_distribution<float> dis(min, max);
  162. for (int64_t i3 = 0; i3 < ne3; i3++) {
  163. for (int64_t i2 = 0; i2 < ne2; i2++) {
  164. for (int64_t i1 = 0; i1 < ne1; i1++) {
  165. for (int64_t i0 = 0; i0 < ne0; i0++) {
  166. int64_t idx = (i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3) / sizeof(float);
  167. if (i0 <= i1) {
  168. data_f32[idx] = dis(gen);
  169. } else {
  170. data_f32[idx] = 0.0f;
  171. }
  172. }
  173. }
  174. }
  175. }
  176. ggml_backend_tensor_set(tensor, data_f32.data(), 0, ggml_nbytes(tensor));
  177. }
  178. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  179. std::vector<float> tv;
  180. tv.reserve(ggml_nelements(t));
  181. std::vector<uint8_t> buf(ggml_nbytes(t));
  182. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  183. const auto * tt = ggml_get_type_traits(t->type);
  184. size_t bs = ggml_blck_size(t->type);
  185. std::vector<float> vq(ggml_blck_size(t->type));
  186. bool quantized = ggml_is_quantized(t->type);
  187. // access elements by index to avoid gaps in views
  188. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  189. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  190. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  191. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  192. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  193. if (t->type == GGML_TYPE_F16) {
  194. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  195. } else if (t->type == GGML_TYPE_BF16) {
  196. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  197. } else if (t->type == GGML_TYPE_F32) {
  198. tv.push_back(*(float *) &buf[i]);
  199. } else if (t->type == GGML_TYPE_I64) {
  200. tv.push_back((float)*(int64_t *) &buf[i]);
  201. } else if (t->type == GGML_TYPE_I32) {
  202. tv.push_back((float)*(int32_t *) &buf[i]);
  203. } else if (t->type == GGML_TYPE_I16) {
  204. tv.push_back((float)*(int16_t *) &buf[i]);
  205. } else if (t->type == GGML_TYPE_I8) {
  206. tv.push_back((float)*(int8_t *) &buf[i]);
  207. } else if (quantized) {
  208. tt->to_float(&buf[i], vq.data(), bs);
  209. tv.insert(tv.end(), vq.begin(), vq.end());
  210. } else {
  211. GGML_ABORT("fatal error");
  212. }
  213. }
  214. }
  215. }
  216. }
  217. return tv;
  218. }
  219. // normalized mean squared error = mse(a, b) / mse(a, 0)
  220. static double nmse(const float * a, const float * b, size_t n) {
  221. double mse_a_b = 0.0;
  222. double mse_a_0 = 0.0;
  223. for (size_t i = 0; i < n; i++) {
  224. float a_i = a[i];
  225. float b_i = b[i];
  226. mse_a_b += (a_i - b_i) * (a_i - b_i);
  227. mse_a_0 += a_i * a_i;
  228. }
  229. return mse_a_b / mse_a_0;
  230. }
  231. // maximum absolute asymmetry between a and b
  232. // asymmetry: (a - b) / (a + b)
  233. // This is more stable than relative error if one of the values fluctuates towards zero.
  234. // n: number of values to compare.
  235. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  236. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  237. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  238. double sum = 0.0f;
  239. size_t nvalid = 0;
  240. for (size_t i = 0; i < n; i++) {
  241. if (!expected_vals.empty()) {
  242. bool matches_any = false;
  243. for (const float & ev : expected_vals) {
  244. if (fabsf(a[i] - ev) < 1e-3f) {
  245. matches_any = true;
  246. break;
  247. }
  248. }
  249. if (!matches_any) {
  250. continue;
  251. }
  252. }
  253. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  254. sum += fabsf(asymm);
  255. nvalid++;
  256. }
  257. return sum/nvalid;
  258. }
  259. // utils for printing the variables of the test cases
  260. static std::string var_to_str(const std::string & x) {
  261. return x;
  262. }
  263. template<typename T>
  264. static std::string var_to_str(const T & x) {
  265. return std::to_string(x);
  266. }
  267. template<typename T, size_t N>
  268. static std::string var_to_str(const T (&x)[N]) {
  269. std::string s = "[";
  270. for (size_t i = 0; i < N; i++) {
  271. if (i > 0) {
  272. s += ",";
  273. }
  274. s += var_to_str(x[i]);
  275. }
  276. s += "]";
  277. return s;
  278. }
  279. template<typename T, size_t N>
  280. static std::string var_to_str(const std::array<T, N> & x) {
  281. std::string s = "[";
  282. for (size_t i = 0; i < N; i++) {
  283. if (i > 0) {
  284. s += ",";
  285. }
  286. s += var_to_str(x[i]);
  287. }
  288. s += "]";
  289. return s;
  290. }
  291. static std::string var_to_str(ggml_type type) {
  292. return ggml_type_name(type);
  293. }
  294. static std::string var_to_str(ggml_prec prec) {
  295. return prec == GGML_PREC_F32 ? "f32" : "def";
  296. }
  297. static std::string var_to_str(ggml_op_pool pool) {
  298. switch (pool) {
  299. case GGML_OP_POOL_AVG: return "avg";
  300. case GGML_OP_POOL_MAX: return "max";
  301. default: return std::to_string(pool);
  302. }
  303. }
  304. static std::string var_to_str(ggml_scale_mode mode) {
  305. switch (mode) {
  306. case GGML_SCALE_MODE_NEAREST: return "nearest";
  307. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  308. case GGML_SCALE_MODE_BICUBIC: return "bicubic";
  309. default: return std::to_string(mode);
  310. }
  311. }
  312. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  313. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  314. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  315. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  316. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  317. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  318. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  319. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  320. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  321. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  322. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  323. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  324. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  325. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  326. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  327. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  328. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  329. #ifdef GGML_USE_SYCL
  330. static bool inline _isinf(float f) {
  331. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  332. }
  333. #else
  334. static bool inline _isinf(float f) { return std::isinf(f); }
  335. #endif
  336. // accept FLT_MAX as infinity
  337. static bool isinf_or_max(float f) {
  338. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  339. }
  340. static bool ggml_is_view_op(enum ggml_op op) {
  341. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  342. }
  343. enum test_mode {
  344. MODE_TEST,
  345. MODE_PERF,
  346. MODE_GRAD,
  347. MODE_SUPPORT,
  348. };
  349. // Output format support similar to llama-bench
  350. enum output_formats { CONSOLE, SQL, CSV };
  351. static const char * output_format_str(output_formats format) {
  352. switch (format) {
  353. case CONSOLE:
  354. return "console";
  355. case SQL:
  356. return "sql";
  357. case CSV:
  358. return "csv";
  359. default:
  360. GGML_ABORT("invalid output format");
  361. }
  362. }
  363. static bool output_format_from_str(const std::string & s, output_formats & format) {
  364. if (s == "console") {
  365. format = CONSOLE;
  366. } else if (s == "sql") {
  367. format = SQL;
  368. } else if (s == "csv") {
  369. format = CSV;
  370. } else {
  371. return false;
  372. }
  373. return true;
  374. }
  375. // Test result structure for SQL output
  376. struct test_result {
  377. std::string test_time;
  378. std::string build_commit;
  379. std::string backend_name;
  380. std::string op_name;
  381. std::string op_params;
  382. std::string test_mode;
  383. bool supported;
  384. bool passed;
  385. std::string error_message;
  386. double time_us;
  387. double flops;
  388. double bandwidth_gb_s;
  389. size_t memory_kb;
  390. int n_runs;
  391. std::string device_description;
  392. std::string backend_reg_name;
  393. test_result() {
  394. // Initialize with default values
  395. time_us = 0.0;
  396. flops = 0.0;
  397. bandwidth_gb_s = 0.0;
  398. memory_kb = 0;
  399. n_runs = 0;
  400. supported = false;
  401. passed = false;
  402. // Set test time
  403. time_t t = time(NULL);
  404. char buf[32];
  405. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  406. test_time = buf;
  407. // Set build info
  408. build_commit = ggml_commit();
  409. }
  410. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  411. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  412. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  413. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  414. backend_name(backend_name),
  415. op_name(op_name),
  416. op_params(op_params),
  417. test_mode(test_mode),
  418. supported(supported),
  419. passed(passed),
  420. error_message(error_message),
  421. time_us(time_us),
  422. flops(flops),
  423. bandwidth_gb_s(bandwidth_gb_s),
  424. memory_kb(memory_kb),
  425. n_runs(n_runs),
  426. device_description(device_description),
  427. backend_reg_name(backend_reg_name) {
  428. // Set test time
  429. time_t t = time(NULL);
  430. char buf[32];
  431. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  432. test_time = buf;
  433. // Set build info
  434. build_commit = ggml_commit();
  435. }
  436. static const std::vector<std::string> & get_fields() {
  437. static const std::vector<std::string> fields = {
  438. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  439. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  440. "device_description", "backend_reg_name"
  441. };
  442. return fields;
  443. }
  444. enum field_type { STRING, BOOL, INT, FLOAT };
  445. static field_type get_field_type(const std::string & field) {
  446. if (field == "supported" || field == "passed") {
  447. return BOOL;
  448. }
  449. if (field == "memory_kb" || field == "n_runs") {
  450. return INT;
  451. }
  452. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  453. return FLOAT;
  454. }
  455. return STRING;
  456. }
  457. std::vector<std::string> get_values() const {
  458. return { test_time,
  459. build_commit,
  460. backend_name,
  461. op_name,
  462. op_params,
  463. test_mode,
  464. std::to_string(supported),
  465. std::to_string(passed),
  466. error_message,
  467. std::to_string(time_us),
  468. std::to_string(flops),
  469. std::to_string(bandwidth_gb_s),
  470. std::to_string(memory_kb),
  471. std::to_string(n_runs),
  472. device_description,
  473. backend_reg_name };
  474. }
  475. };
  476. // Printer classes for different output formats
  477. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  478. struct test_operation_info {
  479. std::string op_name;
  480. std::string op_params;
  481. std::string backend_name;
  482. test_status_t status = test_status_t::OK;
  483. std::string failure_reason;
  484. // Additional information fields that were previously in separate structs
  485. std::string error_component;
  486. std::string error_details;
  487. // Gradient info
  488. int64_t gradient_index = -1;
  489. std::string gradient_param_name;
  490. float gradient_value = 0.0f;
  491. // MAA error info
  492. double maa_error = 0.0;
  493. double maa_threshold = 0.0;
  494. // Flags for different types of information
  495. bool has_error = false;
  496. bool has_gradient_info = false;
  497. bool has_maa_error = false;
  498. bool is_compare_failure = false;
  499. bool is_large_tensor_skip = false;
  500. test_operation_info() = default;
  501. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  502. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  503. op_name(op_name),
  504. op_params(op_params),
  505. backend_name(backend_name),
  506. status(status),
  507. failure_reason(failure_reason) {}
  508. // Set error information
  509. void set_error(const std::string & component, const std::string & details) {
  510. has_error = true;
  511. error_component = component;
  512. error_details = details;
  513. if (status == test_status_t::OK) {
  514. status = test_status_t::FAIL;
  515. }
  516. }
  517. // Set gradient information
  518. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  519. has_gradient_info = true;
  520. gradient_index = index;
  521. gradient_param_name = param_name;
  522. gradient_value = value;
  523. if (status == test_status_t::OK) {
  524. status = test_status_t::FAIL;
  525. }
  526. }
  527. // Set MAA error information
  528. void set_maa_error(double error, double threshold) {
  529. has_maa_error = true;
  530. maa_error = error;
  531. maa_threshold = threshold;
  532. if (status == test_status_t::OK) {
  533. status = test_status_t::FAIL;
  534. }
  535. }
  536. // Set compare failure
  537. void set_compare_failure() {
  538. is_compare_failure = true;
  539. if (status == test_status_t::OK) {
  540. status = test_status_t::FAIL;
  541. }
  542. }
  543. // Set large tensor skip
  544. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  545. };
  546. struct test_summary_info {
  547. size_t tests_passed;
  548. size_t tests_total;
  549. bool is_backend_summary = false; // true for backend summary, false for test summary
  550. test_summary_info() = default;
  551. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  552. tests_passed(tests_passed),
  553. tests_total(tests_total),
  554. is_backend_summary(is_backend_summary) {}
  555. };
  556. struct testing_start_info {
  557. size_t device_count;
  558. testing_start_info() = default;
  559. testing_start_info(size_t device_count) : device_count(device_count) {}
  560. };
  561. struct backend_init_info {
  562. size_t device_index;
  563. size_t total_devices;
  564. std::string device_name;
  565. bool skipped = false;
  566. std::string skip_reason;
  567. std::string description;
  568. size_t memory_total_mb = 0;
  569. size_t memory_free_mb = 0;
  570. bool has_memory_info = false;
  571. backend_init_info() = default;
  572. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  573. const std::string & skip_reason = "", const std::string & description = "",
  574. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  575. device_index(device_index),
  576. total_devices(total_devices),
  577. device_name(device_name),
  578. skipped(skipped),
  579. skip_reason(skip_reason),
  580. description(description),
  581. memory_total_mb(memory_total_mb),
  582. memory_free_mb(memory_free_mb),
  583. has_memory_info(has_memory_info) {}
  584. };
  585. struct backend_status_info {
  586. std::string backend_name;
  587. test_status_t status;
  588. backend_status_info() = default;
  589. backend_status_info(const std::string & backend_name, test_status_t status) :
  590. backend_name(backend_name),
  591. status(status) {}
  592. };
  593. struct overall_summary_info {
  594. size_t backends_passed;
  595. size_t backends_total;
  596. bool all_passed;
  597. overall_summary_info() = default;
  598. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  599. backends_passed(backends_passed),
  600. backends_total(backends_total),
  601. all_passed(all_passed) {}
  602. };
  603. struct printer {
  604. virtual ~printer() {}
  605. FILE * fout = stdout;
  606. virtual void print_header() {}
  607. virtual void print_test_result(const test_result & result) = 0;
  608. virtual void print_footer() {}
  609. virtual void print_operation(const test_operation_info & info) { (void) info; }
  610. virtual void print_summary(const test_summary_info & info) { (void) info; }
  611. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  612. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  613. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  614. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  615. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  616. };
  617. struct console_printer : public printer {
  618. void print_test_result(const test_result & result) override {
  619. if (result.test_mode == "test") {
  620. print_test_console(result);
  621. } else if (result.test_mode == "perf") {
  622. print_perf_console(result);
  623. } else if (result.test_mode == "support") {
  624. print_support_console(result);
  625. }
  626. }
  627. void print_operation(const test_operation_info & info) override {
  628. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  629. fflush(stdout);
  630. // Handle large tensor skip first
  631. if (info.is_large_tensor_skip) {
  632. printf("skipping large tensors for speed \n");
  633. return;
  634. }
  635. // Handle not supported status
  636. if (info.status == test_status_t::NOT_SUPPORTED) {
  637. if (!info.failure_reason.empty()) {
  638. printf("not supported [%s]\n", info.failure_reason.c_str());
  639. } else {
  640. printf("not supported [%s]\n", info.backend_name.c_str());
  641. }
  642. return;
  643. }
  644. // Handle errors and additional information
  645. if (info.has_error) {
  646. if (info.error_component == "allocation") {
  647. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  648. } else if (info.error_component == "backend") {
  649. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  650. } else {
  651. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  652. }
  653. }
  654. // Handle gradient info
  655. if (info.has_gradient_info) {
  656. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  657. info.gradient_param_name.c_str(), info.gradient_value);
  658. }
  659. // Handle MAA error
  660. if (info.has_maa_error) {
  661. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  662. }
  663. // Handle compare failure
  664. if (info.is_compare_failure) {
  665. printf("compare failed ");
  666. }
  667. // Print final status
  668. if (info.status == test_status_t::OK) {
  669. printf("\033[1;32mOK\033[0m\n");
  670. } else {
  671. printf("\033[1;31mFAIL\033[0m\n");
  672. }
  673. }
  674. void print_summary(const test_summary_info & info) override {
  675. if (info.is_backend_summary) {
  676. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  677. } else {
  678. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  679. }
  680. }
  681. void print_backend_status(const backend_status_info & info) override {
  682. printf(" Backend %s: ", info.backend_name.c_str());
  683. if (info.status == test_status_t::OK) {
  684. printf("\033[1;32mOK\033[0m\n");
  685. } else {
  686. printf("\033[1;31mFAIL\033[0m\n");
  687. }
  688. }
  689. void print_testing_start(const testing_start_info & info) override {
  690. printf("Testing %zu devices\n\n", info.device_count);
  691. }
  692. void print_backend_init(const backend_init_info & info) override {
  693. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  694. if (info.skipped) {
  695. printf(" %s\n", info.skip_reason.c_str());
  696. return;
  697. }
  698. if (!info.description.empty()) {
  699. printf(" Device description: %s\n", info.description.c_str());
  700. }
  701. if (info.has_memory_info) {
  702. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  703. }
  704. printf("\n");
  705. }
  706. void print_overall_summary(const overall_summary_info & info) override {
  707. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  708. if (info.all_passed) {
  709. printf("\033[1;32mOK\033[0m\n");
  710. } else {
  711. printf("\033[1;31mFAIL\033[0m\n");
  712. }
  713. }
  714. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  715. if (failed_tests.empty()) {
  716. return;
  717. }
  718. printf("\nFailing tests:\n");
  719. for (const auto & test_name : failed_tests) {
  720. printf(" %s\n", test_name.c_str());
  721. }
  722. }
  723. private:
  724. void print_test_console(const test_result & result) {
  725. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  726. fflush(stdout);
  727. if (!result.supported) {
  728. printf("not supported [%s] ", result.backend_name.c_str());
  729. printf("\n");
  730. return;
  731. }
  732. if (result.passed) {
  733. printf("\033[1;32mOK\033[0m\n");
  734. } else {
  735. printf("\033[1;31mFAIL\033[0m\n");
  736. }
  737. }
  738. void print_perf_console(const test_result & result) {
  739. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  740. fflush(stdout);
  741. if (!result.supported) {
  742. printf("not supported\n");
  743. return;
  744. }
  745. // align while also leaving some margin for variations in parameters
  746. int align = 8;
  747. int last = (len + align - 1) / align * align;
  748. if (last - len < 5) {
  749. last += align;
  750. }
  751. printf("%*s", last - len, "");
  752. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  753. if (result.flops > 0) {
  754. auto format_flops = [](double flops) -> std::string {
  755. char buf[256];
  756. if (flops >= 1e12) {
  757. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  758. } else if (flops >= 1e9) {
  759. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  760. } else if (flops >= 1e6) {
  761. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  762. } else {
  763. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  764. }
  765. return buf;
  766. };
  767. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  768. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  769. format_flops(result.flops).c_str());
  770. } else {
  771. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  772. }
  773. printf("\n");
  774. }
  775. void print_support_console(const test_result & result) {
  776. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  777. fflush(stdout);
  778. if (result.supported) {
  779. printf("\033[1;32mSUPPORTED\033[0m\n");
  780. } else {
  781. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  782. }
  783. }
  784. };
  785. struct sql_printer : public printer {
  786. static std::string get_sql_field_type(const std::string & field) {
  787. switch (test_result::get_field_type(field)) {
  788. case test_result::STRING:
  789. return "TEXT";
  790. case test_result::BOOL:
  791. case test_result::INT:
  792. return "INTEGER";
  793. case test_result::FLOAT:
  794. return "REAL";
  795. default:
  796. GGML_ABORT("invalid field type");
  797. }
  798. }
  799. void print_header() override {
  800. std::vector<std::string> fields = test_result::get_fields();
  801. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  802. for (size_t i = 0; i < fields.size(); i++) {
  803. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  804. i < fields.size() - 1 ? "," : "");
  805. }
  806. fprintf(fout, ");\n\n");
  807. }
  808. void print_test_result(const test_result & result) override {
  809. fprintf(fout, "INSERT INTO test_backend_ops (");
  810. std::vector<std::string> fields = test_result::get_fields();
  811. for (size_t i = 0; i < fields.size(); i++) {
  812. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  813. }
  814. fprintf(fout, ") VALUES (");
  815. std::vector<std::string> values = result.get_values();
  816. for (size_t i = 0; i < values.size(); i++) {
  817. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  818. }
  819. fprintf(fout, ");\n");
  820. }
  821. };
  822. struct csv_printer : public printer {
  823. void print_header() override {
  824. std::vector<std::string> fields = test_result::get_fields();
  825. std::vector<std::string> fields_csv = get_fields_csv();
  826. for (size_t i = 0; i < fields.size(); i++) {
  827. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  828. continue;
  829. }
  830. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  831. }
  832. printf("\n");
  833. }
  834. void print_test_result(const test_result & result) override {
  835. std::vector<std::string> values = result.get_values();
  836. std::vector<std::string> fields = test_result::get_fields();
  837. std::vector<std::string> fields_csv = get_fields_csv();
  838. for (size_t i = 0; i < values.size(); i++) {
  839. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  840. continue;
  841. }
  842. // Escape quotes and wrap in quotes for CSV
  843. std::string escaped_value = values[i];
  844. size_t pos = 0;
  845. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  846. escaped_value.replace(pos, 1, "\"\"");
  847. pos += 2;
  848. }
  849. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  850. }
  851. printf("\n");
  852. }
  853. static std::vector<std::string> get_fields_csv() {
  854. return {
  855. "op_name",
  856. "op_params",
  857. "supported",
  858. "error_message",
  859. "test_mode",
  860. "backend_reg_name",
  861. "backend_name",
  862. };
  863. }
  864. };
  865. static std::unique_ptr<printer> create_printer(output_formats format) {
  866. switch (format) {
  867. case CONSOLE:
  868. return std::make_unique<console_printer>();
  869. case SQL:
  870. return std::make_unique<sql_printer>();
  871. case CSV:
  872. return std::make_unique<csv_printer>();
  873. }
  874. GGML_ABORT("invalid output format");
  875. }
  876. struct test_case {
  877. virtual ~test_case() {}
  878. virtual std::string op_desc(ggml_tensor * t) {
  879. return ggml_op_desc(t);
  880. }
  881. virtual std::string vars() {
  882. return "";
  883. }
  884. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  885. virtual double max_nmse_err() {
  886. return 1e-7;
  887. }
  888. virtual double max_maa_err() {
  889. return 1e-4;
  890. }
  891. virtual float grad_eps() {
  892. return 1e-1f;
  893. }
  894. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  895. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  896. virtual bool grad_precise() {
  897. return false;
  898. }
  899. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  900. virtual int64_t grad_nmax() {
  901. return 10000;
  902. }
  903. // No effect if empty.
  904. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  905. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  906. virtual std::vector<float> grad_expect() {
  907. return {};
  908. }
  909. virtual void initialize_tensors(ggml_context * ctx) {
  910. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  911. init_tensor_uniform(t);
  912. }
  913. }
  914. virtual size_t op_size(ggml_tensor * t) {
  915. size_t size = ggml_nbytes(t);
  916. // add source tensors
  917. for (int i = 0; i < GGML_MAX_SRC; i++) {
  918. if (t->src[i] != NULL) {
  919. size += ggml_nbytes(t->src[i]);
  920. }
  921. }
  922. return size;
  923. }
  924. virtual uint64_t op_flops(ggml_tensor * t) {
  925. GGML_UNUSED(t);
  926. return 0;
  927. }
  928. virtual bool run_whole_graph() { return false; }
  929. ggml_cgraph * gf = nullptr;
  930. ggml_cgraph * gb = nullptr;
  931. static const int sentinel_size = 1024;
  932. test_mode mode;
  933. std::vector<ggml_tensor *> sentinels;
  934. std::string current_op_name;
  935. void add_sentinel(ggml_context * ctx) {
  936. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  937. return;
  938. }
  939. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  940. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  941. sentinels.push_back(sentinel);
  942. }
  943. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  944. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  945. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  946. add_sentinel(ctx);
  947. return t;
  948. }
  949. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  950. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  951. add_sentinel(ctx);
  952. return t;
  953. }
  954. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  955. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  956. add_sentinel(ctx);
  957. return t;
  958. }
  959. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  960. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  961. add_sentinel(ctx);
  962. return t;
  963. }
  964. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  965. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  966. add_sentinel(ctx);
  967. return t;
  968. }
  969. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  970. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  971. if (op_names_filter) {
  972. const auto op_name = op_desc(op);
  973. const auto op_full_name = op_name + "(" + vars() + ")";
  974. std::string_view filter(op_names_filter);
  975. while (!filter.empty()) {
  976. auto comma_pos = filter.find_first_of(',');
  977. const auto lparen_pos = filter.find_first_of('(');
  978. if (lparen_pos < comma_pos) {
  979. auto rparen_pos = filter.find_first_of(')');
  980. comma_pos = filter.find_first_of(',', rparen_pos);
  981. const auto op_filter = filter.substr(0, comma_pos);
  982. if (op_filter == op_full_name) {
  983. return true;
  984. }
  985. } else {
  986. const auto op_filter = filter.substr(0, comma_pos);
  987. if (op_filter == op_name) {
  988. return true;
  989. }
  990. }
  991. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  992. }
  993. return false;
  994. } else {
  995. return true;
  996. }
  997. }
  998. test_status_t eval(ggml_backend_t backend1,
  999. ggml_backend_t backend2,
  1000. const char * op_names_filter,
  1001. printer * output_printer) {
  1002. mode = MODE_TEST;
  1003. ggml_init_params params = {
  1004. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  1005. /* .mem_base = */ NULL,
  1006. /* .no_alloc = */ true,
  1007. };
  1008. ggml_context * ctx = ggml_init(params);
  1009. GGML_ASSERT(ctx);
  1010. gf = ggml_new_graph(ctx);
  1011. // pre-graph sentinel
  1012. add_sentinel(ctx);
  1013. ggml_tensor * out = build_graph(ctx);
  1014. current_op_name = op_desc(out);
  1015. if (!matches_filter(out, op_names_filter)) {
  1016. //printf(" %s: skipping\n", op_desc(out).c_str());
  1017. ggml_free(ctx);
  1018. return test_status_t::SKIPPED;
  1019. }
  1020. // check if the backends support the ops
  1021. bool supported = true;
  1022. for (ggml_backend_t backend : {backend1, backend2}) {
  1023. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1024. if (!ggml_backend_supports_op(backend, t)) {
  1025. supported = false;
  1026. break;
  1027. }
  1028. }
  1029. }
  1030. if (!supported) {
  1031. // Create test result for unsupported operation
  1032. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1033. false, false, "not supported");
  1034. if (output_printer) {
  1035. output_printer->print_test_result(result);
  1036. }
  1037. ggml_free(ctx);
  1038. return test_status_t::NOT_SUPPORTED;
  1039. }
  1040. // post-graph sentinel
  1041. add_sentinel(ctx);
  1042. // allocate
  1043. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1044. if (buf == NULL) {
  1045. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1046. ggml_free(ctx);
  1047. return test_status_t::FAIL;
  1048. }
  1049. // build graph
  1050. ggml_build_forward_expand(gf, out);
  1051. // add sentinels as graph nodes so that they are checked in the callback
  1052. for (ggml_tensor * sentinel : sentinels) {
  1053. ggml_graph_add_node(gf, sentinel);
  1054. }
  1055. // randomize tensors
  1056. initialize_tensors(ctx);
  1057. // compare
  1058. struct callback_userdata {
  1059. bool ok;
  1060. double max_err;
  1061. ggml_backend_t backend1;
  1062. ggml_backend_t backend2;
  1063. };
  1064. callback_userdata ud {
  1065. true,
  1066. max_nmse_err(),
  1067. backend1,
  1068. backend2
  1069. };
  1070. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1071. callback_userdata * ud = (callback_userdata *) user_data;
  1072. const char * bn1 = ggml_backend_name(ud->backend1);
  1073. const char * bn2 = ggml_backend_name(ud->backend2);
  1074. if (t1->op == GGML_OP_NONE) {
  1075. // sentinels must be unchanged
  1076. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1077. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1078. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1079. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1080. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1081. printf("sentinel mismatch: %s ", t1->name);
  1082. ud->ok = false;
  1083. return true;
  1084. }
  1085. }
  1086. std::vector<float> f1 = tensor_to_float(t1);
  1087. std::vector<float> f2 = tensor_to_float(t2);
  1088. for (size_t i = 0; i < f1.size(); i++) {
  1089. // check for nans
  1090. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1091. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1092. ud->ok = false;
  1093. return true;
  1094. }
  1095. // check for infs: both must be inf of the same sign, or both must be finite
  1096. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1097. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1098. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1099. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1100. ud->ok = false;
  1101. return true;
  1102. }
  1103. } else {
  1104. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1105. ud->ok = false;
  1106. return true;
  1107. }
  1108. }
  1109. }
  1110. double err = nmse(f1.data(), f2.data(), f1.size());
  1111. if (err > ud->max_err) {
  1112. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1113. //for (int i = 0; i < (int) f1.size(); i++) {
  1114. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1115. //}
  1116. //printf("\n");
  1117. //exit(1);
  1118. ud->ok = false;
  1119. }
  1120. return true;
  1121. GGML_UNUSED(index);
  1122. };
  1123. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1124. ggml_backend_buffer_free(buf);
  1125. ggml_free(ctx);
  1126. // Create test result
  1127. bool test_passed = ud.ok && cmp_ok;
  1128. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1129. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1130. error_msg);
  1131. if (output_printer) {
  1132. output_printer->print_test_result(result);
  1133. }
  1134. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1135. }
  1136. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1137. mode = MODE_PERF;
  1138. static const size_t graph_nodes = 8192;
  1139. ggml_init_params params = {
  1140. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1141. /* .mem_base = */ NULL,
  1142. /* .no_alloc = */ true,
  1143. };
  1144. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1145. GGML_ASSERT(ctx);
  1146. ggml_tensor * out = build_graph(ctx.get());
  1147. current_op_name = op_desc(out);
  1148. if (!matches_filter(out, op_names_filter)) {
  1149. //printf(" %s: skipping\n", op_desc(out).c_str());
  1150. return true;
  1151. }
  1152. if (!ggml_backend_supports_op(backend, out)) {
  1153. // Create test result for unsupported performance test
  1154. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1155. "not supported");
  1156. output_printer->print_test_result(result);
  1157. return true;
  1158. }
  1159. // allocate
  1160. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1161. if (buf == NULL) {
  1162. printf("failed to allocate tensors\n");
  1163. return false;
  1164. }
  1165. // randomize tensors
  1166. initialize_tensors(ctx.get());
  1167. // build graph
  1168. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1169. ggml_build_forward_expand(gf, out);
  1170. // warmup run
  1171. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1172. if (status != GGML_STATUS_SUCCESS) {
  1173. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1174. return false;
  1175. }
  1176. // determine number of runs
  1177. int n_runs;
  1178. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1179. if (op_flops(out) > 0) {
  1180. // based on flops
  1181. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1182. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1183. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1184. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1185. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1186. } else {
  1187. // based on memory size
  1188. const size_t GB = 1ULL << 30;
  1189. const size_t target_size_cpu = 8 * GB;
  1190. const size_t target_size_gpu = 32 * GB;
  1191. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1192. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1193. }
  1194. // duplicate the op
  1195. for (int i = 1; i < n_runs; i++) {
  1196. ggml_graph_add_node(gf, out);
  1197. }
  1198. // calculate memory
  1199. size_t mem = n_runs * op_size(out);
  1200. auto tensor_op_size = [](ggml_tensor * t) {
  1201. size_t size = ggml_nbytes(t);
  1202. // add source tensors
  1203. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1204. if (t->src[i] != NULL) {
  1205. size += ggml_nbytes(t->src[i]);
  1206. }
  1207. }
  1208. return size;
  1209. };
  1210. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1211. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1212. continue;
  1213. }
  1214. mem += tensor_op_size(ggml_graph_node(gf, i));
  1215. }
  1216. // run
  1217. int64_t total_time_us = 0;
  1218. int64_t total_mem = 0;
  1219. int total_runs = 0;
  1220. do {
  1221. int64_t start_time = ggml_time_us();
  1222. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1223. if (status != GGML_STATUS_SUCCESS) {
  1224. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1225. return false;
  1226. }
  1227. int64_t end_time = ggml_time_us();
  1228. total_time_us += end_time - start_time;
  1229. total_mem += mem;
  1230. total_runs += n_runs;
  1231. } while (total_time_us < 1000*1000); // run for at least 1 second
  1232. // Create test result
  1233. double avg_time_us = (double) total_time_us / total_runs;
  1234. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1235. double calculated_bandwidth =
  1236. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1237. size_t calculated_memory_kb = op_size(out) / 1024;
  1238. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1239. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1240. if (output_printer) {
  1241. output_printer->print_test_result(result);
  1242. }
  1243. return true;
  1244. }
  1245. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1246. mode = MODE_SUPPORT;
  1247. static const size_t graph_nodes = 8192;
  1248. ggml_init_params params = {
  1249. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1250. /* .mem_base = */ NULL,
  1251. /* .no_alloc = */ true,
  1252. };
  1253. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1254. GGML_ASSERT(ctx);
  1255. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1256. ggml_tensor * out = build_graph(ctx.get());
  1257. current_op_name = op_desc(out);
  1258. if (!matches_filter(out, op_names_filter)) {
  1259. return true;
  1260. }
  1261. bool supported = ggml_backend_supports_op(backend, out);
  1262. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1263. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1264. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1265. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1266. output_printer->print_test_result(result);
  1267. return true;
  1268. }
  1269. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1270. mode = MODE_GRAD;
  1271. const std::vector<float> expect = grad_expect();
  1272. ggml_init_params params = {
  1273. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1274. /* .mem_base = */ NULL,
  1275. /* .no_alloc = */ true,
  1276. };
  1277. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1278. GGML_ASSERT(ctx);
  1279. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1280. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1281. ggml_tensor * out = build_graph(ctx.get());
  1282. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1283. return true;
  1284. }
  1285. if (out->type != GGML_TYPE_F32) {
  1286. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1287. test_status_t::NOT_SUPPORTED,
  1288. out->name + std::string("->type != FP32")));
  1289. return true;
  1290. }
  1291. // Print operation info first
  1292. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1293. // check if the backend supports the ops
  1294. bool supported = true;
  1295. bool any_params = false;
  1296. std::string failure_reason;
  1297. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1298. if (!ggml_backend_supports_op(backend, t)) {
  1299. supported = false;
  1300. failure_reason = ggml_backend_name(backend);
  1301. break;
  1302. }
  1303. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1304. any_params = true;
  1305. if (t->type != GGML_TYPE_F32) {
  1306. supported = false;
  1307. failure_reason = std::string(t->name) + "->type != FP32";
  1308. break;
  1309. }
  1310. }
  1311. }
  1312. if (!any_params) {
  1313. supported = false;
  1314. failure_reason = op_desc(out);
  1315. }
  1316. if (!supported) {
  1317. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1318. test_status_t::NOT_SUPPORTED, failure_reason));
  1319. return true;
  1320. }
  1321. int64_t ngrads = 0;
  1322. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1323. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1324. ngrads += ggml_nelements(t);
  1325. }
  1326. }
  1327. if (ngrads > grad_nmax()) {
  1328. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1329. info.set_large_tensor_skip();
  1330. output_printer->print_operation(info);
  1331. return true;
  1332. }
  1333. if (!ggml_is_scalar(out)) {
  1334. out = ggml_sum(ctx.get(), out);
  1335. ggml_set_name(out, "sum_of_out");
  1336. }
  1337. ggml_set_loss(out);
  1338. ggml_build_forward_expand(gf, out);
  1339. ggml_graph_cpy(gf, gb);
  1340. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1341. if (expect.size() != 1 || expect[0] != 0.0f) {
  1342. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1343. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1344. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1345. }
  1346. }
  1347. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1348. if (!ggml_backend_supports_op(backend, t)) {
  1349. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1350. test_status_t::NOT_SUPPORTED,
  1351. ggml_backend_name(backend)));
  1352. supported = false;
  1353. break;
  1354. }
  1355. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1356. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1357. test_status_t::NOT_SUPPORTED,
  1358. std::string(t->name) + "->type != FP32"));
  1359. supported = false;
  1360. break;
  1361. }
  1362. }
  1363. if (!supported) {
  1364. return true;
  1365. }
  1366. // allocate
  1367. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1368. if (buf == NULL) {
  1369. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1370. info.set_error("allocation", "");
  1371. output_printer->print_operation(info);
  1372. return false;
  1373. }
  1374. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1375. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1376. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1377. if (status != GGML_STATUS_SUCCESS) {
  1378. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1379. return false;
  1380. }
  1381. status = ggml_backend_graph_compute(backend, gb);
  1382. if (status != GGML_STATUS_SUCCESS) {
  1383. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1384. return false;
  1385. }
  1386. bool ok = true;
  1387. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1388. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1389. continue;
  1390. }
  1391. const char * bn = ggml_backend_name(backend);
  1392. const int64_t ne = ggml_nelements(t);
  1393. std::vector<float> ga;
  1394. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1395. if (grad) {
  1396. ga = tensor_to_float(grad);
  1397. } else {
  1398. ga.resize(ne); // default value is 0.0f
  1399. }
  1400. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1401. // check for nans
  1402. if (!std::isfinite(ga[i])) {
  1403. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1404. info.set_gradient_info(i, bn, ga[i]);
  1405. output_printer->print_operation(info);
  1406. ok = false;
  1407. break;
  1408. }
  1409. }
  1410. if (!ok) {
  1411. break;
  1412. }
  1413. std::vector<float> gn(ne); // gradient numeric
  1414. GGML_ASSERT(ga.size() == gn.size());
  1415. std::vector<float> x0 = tensor_to_float(t); // original t data
  1416. GGML_ASSERT(ggml_is_scalar(out));
  1417. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1418. const float eps = grad_eps();
  1419. for (int64_t i = 0; i < ne; ++i) {
  1420. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1421. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1422. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1423. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1424. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1425. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1426. status = ggml_backend_graph_compute(backend, gf);
  1427. if (status != GGML_STATUS_SUCCESS) {
  1428. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1429. return false;
  1430. }
  1431. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1432. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1433. status = ggml_backend_graph_compute(backend, gf);
  1434. if (status != GGML_STATUS_SUCCESS) {
  1435. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1436. return false;
  1437. }
  1438. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1439. if (grad_precise()) {
  1440. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1441. status = ggml_backend_graph_compute(backend, gf);
  1442. if (status != GGML_STATUS_SUCCESS) {
  1443. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1444. return false;
  1445. }
  1446. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1447. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1448. status = ggml_backend_graph_compute(backend, gf);
  1449. if (status != GGML_STATUS_SUCCESS) {
  1450. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1451. return false;
  1452. }
  1453. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1454. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1455. } else {
  1456. gn[i] = (fu - fd) / (2.0f*eps);
  1457. }
  1458. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1459. }
  1460. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1461. if (err > max_maa_err()) {
  1462. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1463. info.set_maa_error(err, max_maa_err());
  1464. output_printer->print_operation(info);
  1465. ok = false;
  1466. break;
  1467. }
  1468. if (!ok) {
  1469. break;
  1470. }
  1471. }
  1472. // Create final test result
  1473. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1474. if (!ok) {
  1475. final_info.set_compare_failure();
  1476. }
  1477. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1478. output_printer->print_operation(final_info);
  1479. if (ok) {
  1480. return true;
  1481. }
  1482. return false;
  1483. }
  1484. };
  1485. // ###################################
  1486. // ## Section 2: GGML Op Defintions ##
  1487. // ###################################
  1488. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1489. // GGML_OP_EXAMPLE
  1490. struct test_example : public test_case {
  1491. // Always define these 2 or variants thereof:
  1492. const ggml_type type; // The type of the input tensors.
  1493. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1494. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1495. // Or they may need additional parameters.
  1496. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1497. // In most cases these are just the properties of the struct that you defined above.
  1498. // This is needed for info prints.
  1499. std::string vars() override {
  1500. return VARS_TO_STR2(type, ne);
  1501. }
  1502. // Define a constructor for the struct.
  1503. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1504. // and just use initializer lists.
  1505. test_example(ggml_type type = GGML_TYPE_F32,
  1506. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1507. : type(type), ne(ne) {}
  1508. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1509. ggml_tensor * build_graph(ggml_context * ctx) override {
  1510. // Step 1: create input tensors that don't depend on any other tensors:
  1511. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1512. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1513. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1514. ggml_set_name(b, "b");
  1515. // Step 2: use the op that you want to test in the GGML compute graph.
  1516. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1517. ggml_set_name(out, "out");
  1518. // Step 3: return the output tensor.
  1519. return out;
  1520. }
  1521. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1522. // immediately after you create the tensors.
  1523. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1524. };
  1525. // GGML_OP_UNARY
  1526. struct test_unary : public test_case {
  1527. const ggml_unary_op op;
  1528. const ggml_type type;
  1529. const std::array<int64_t, 4> ne_a;
  1530. int v; // view (1 : non-contiguous a)
  1531. std::string vars() override {
  1532. return VARS_TO_STR3(type, ne_a, v);
  1533. }
  1534. test_unary(ggml_unary_op op,
  1535. ggml_type type = GGML_TYPE_F32,
  1536. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1537. int v = 0)
  1538. : op(op), type(type), ne_a(ne_a), v(v) {}
  1539. ggml_tensor * build_graph(ggml_context * ctx) override {
  1540. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1541. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU ||
  1542. op == GGML_UNARY_OP_EXPM1 || op == GGML_UNARY_OP_SOFTPLUS;
  1543. ggml_tensor * a;
  1544. if (v & 1) {
  1545. auto ne = ne_a; ne[0] *= 3;
  1546. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1547. if (grad_supported) {
  1548. ggml_set_param(a);
  1549. }
  1550. ggml_set_name(a, "a");
  1551. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1552. ggml_set_name(a, "view_of_a");
  1553. } else {
  1554. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1555. if (grad_supported) {
  1556. ggml_set_param(a);
  1557. }
  1558. ggml_set_name(a, "a");
  1559. }
  1560. ggml_tensor * out = ggml_unary(ctx, a, op);
  1561. ggml_set_name(out, "out");
  1562. return out;
  1563. }
  1564. void initialize_tensors(ggml_context * ctx) override {
  1565. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1566. // test extended range of values to check for NaNs in GELU
  1567. init_tensor_uniform(t, -150.f, 150.f);
  1568. }
  1569. }
  1570. float grad_eps() override {
  1571. return 15.0f;
  1572. }
  1573. std::vector<float> grad_expect() override {
  1574. if (op == GGML_UNARY_OP_ABS) {
  1575. return {-1.0f, 1.0f};
  1576. }
  1577. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1578. return {0.0f};
  1579. }
  1580. if (op == GGML_UNARY_OP_RELU) {
  1581. return {0.0f, 1.0f};
  1582. }
  1583. return {};
  1584. }
  1585. };
  1586. // GGML_OP_GLU
  1587. struct test_glu : public test_case {
  1588. const ggml_glu_op op;
  1589. const ggml_type type;
  1590. const std::array<int64_t, 4> ne_a;
  1591. int v; // view (1 : non-contiguous a)
  1592. bool swapped;
  1593. std::string vars() override {
  1594. return VARS_TO_STR4(type, ne_a, v, swapped);
  1595. }
  1596. test_glu(ggml_glu_op op,
  1597. ggml_type type = GGML_TYPE_F32,
  1598. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1599. int v = 0,
  1600. bool swapped = false)
  1601. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1602. ggml_tensor * build_graph(ggml_context * ctx) override {
  1603. ggml_tensor * a;
  1604. if (v & 1) {
  1605. auto ne = ne_a; ne[0] *= 3;
  1606. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1607. ggml_set_name(a, "a");
  1608. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1609. ggml_set_name(a, "view_of_a");
  1610. } else {
  1611. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1612. ggml_set_name(a, "a");
  1613. }
  1614. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1615. ggml_set_name(out, "out");
  1616. return out;
  1617. }
  1618. void initialize_tensors(ggml_context * ctx) override {
  1619. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1620. // test extended range of values to check for NaNs in GELU
  1621. init_tensor_uniform(t, -150.f, 150.f);
  1622. }
  1623. }
  1624. };
  1625. struct test_glu_split : public test_case {
  1626. const ggml_glu_op op;
  1627. const ggml_type type;
  1628. const std::array<int64_t, 4> ne_a;
  1629. int v; // view (1 : non-contiguous a)
  1630. std::string vars() override {
  1631. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1632. }
  1633. test_glu_split(ggml_glu_op op,
  1634. ggml_type type = GGML_TYPE_F32,
  1635. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1636. int v = 0)
  1637. : op(op), type(type), ne_a(ne_a), v(v) {}
  1638. ggml_tensor * build_graph(ggml_context * ctx) override {
  1639. ggml_tensor * a;
  1640. ggml_tensor * b;
  1641. if (v & 1) {
  1642. auto ne = ne_a; ne[0] *= 3;
  1643. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1644. ggml_set_param(a);
  1645. ggml_set_name(a, "a");
  1646. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1647. ggml_set_name(a, "view_of_a");
  1648. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1649. ggml_set_param(b);
  1650. ggml_set_name(b, "b");
  1651. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1652. ggml_set_name(a, "view_of_b");
  1653. } else {
  1654. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1655. ggml_set_param(a);
  1656. ggml_set_name(a, "a");
  1657. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1658. ggml_set_param(b);
  1659. ggml_set_name(b, "b");
  1660. }
  1661. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1662. ggml_set_name(out, "out");
  1663. return out;
  1664. }
  1665. void initialize_tensors(ggml_context * ctx) override {
  1666. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1667. // test extended range of values to check for NaNs in GELU
  1668. init_tensor_uniform(t, -150.f, 150.f);
  1669. }
  1670. }
  1671. };
  1672. struct test_swiglu_oai : public test_case {
  1673. const ggml_type type;
  1674. const std::array<int64_t, 4> ne_a;
  1675. int v; // view (1 : non-contiguous a)
  1676. float alpha;
  1677. float limit;
  1678. std::string vars() override {
  1679. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1680. }
  1681. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1682. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1683. int v = 0,
  1684. float alpha = 1.702f,
  1685. float limit = 7.0f)
  1686. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1687. ggml_tensor * build_graph(ggml_context * ctx) override {
  1688. ggml_tensor * a;
  1689. ggml_tensor * b;
  1690. if (v & 1) {
  1691. auto ne = ne_a; ne[0] *= 3;
  1692. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1693. ggml_set_param(a);
  1694. ggml_set_name(a, "a");
  1695. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1696. ggml_set_name(a, "view_of_a");
  1697. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1698. ggml_set_param(b);
  1699. ggml_set_name(b, "b");
  1700. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1701. ggml_set_name(a, "view_of_b");
  1702. } else {
  1703. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1704. ggml_set_param(a);
  1705. ggml_set_name(a, "a");
  1706. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1707. ggml_set_param(b);
  1708. ggml_set_name(b, "b");
  1709. }
  1710. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1711. ggml_set_name(out, "out");
  1712. return out;
  1713. }
  1714. void initialize_tensors(ggml_context * ctx) override {
  1715. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1716. // test extended range of values to check for NaNs in GELU
  1717. init_tensor_uniform(t, -150.f, 150.f);
  1718. }
  1719. }
  1720. };
  1721. // GGML_OP_GET_ROWS
  1722. struct test_get_rows : public test_case {
  1723. const ggml_type type;
  1724. const int n; // cols
  1725. const int m; // rows
  1726. const int r; // rows to get
  1727. const int be1; // batch size
  1728. const int be2; // batch size
  1729. const bool v; // view (non-contiguous src1)
  1730. std::string vars() override {
  1731. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1732. }
  1733. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1734. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1735. ggml_tensor * build_graph(ggml_context * ctx) override {
  1736. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1737. ggml_set_name(in, "in");
  1738. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1739. ggml_set_name(rows, "rows");
  1740. if (v) {
  1741. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1742. ggml_set_name(rows, "view_of_rows");
  1743. }
  1744. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1745. if (grad_supported) {
  1746. ggml_set_param(in);
  1747. // rows is a constant input -> no gradients
  1748. }
  1749. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1750. ggml_set_name(out, "out");
  1751. return out;
  1752. }
  1753. void initialize_tensors(ggml_context * ctx) override {
  1754. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1755. if (t->type == GGML_TYPE_I32) {
  1756. if (ggml_is_view_op(t->op)) { continue; }
  1757. // rows
  1758. std::vector<int> data(r*be1*be2);
  1759. for (int i = 0; i < r*be1*be2; i++) {
  1760. data[i] = rand() % m;
  1761. }
  1762. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1763. } else {
  1764. init_tensor_uniform(t);
  1765. }
  1766. }
  1767. }
  1768. };
  1769. // GGML_OP_GET_ROWS_BACK
  1770. struct test_get_rows_back : public test_case {
  1771. const ggml_type type;
  1772. const int n; // cols
  1773. const int m; // rows
  1774. const int r; // rows to get
  1775. const int b; // batch size
  1776. const bool v; // view (non-contiguous src1)
  1777. std::string vars() override {
  1778. return VARS_TO_STR6(type, n, m, r, b, v);
  1779. }
  1780. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1781. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1782. ggml_tensor * build_graph(ggml_context * ctx) override {
  1783. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1784. ggml_set_name(in_forward, "in_forward");
  1785. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1786. ggml_set_name(rows, "rows");
  1787. if (v) {
  1788. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1789. ggml_set_name(rows, "view_of_rows");
  1790. }
  1791. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1792. ggml_set_name(grad, "grad");
  1793. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1794. ggml_set_name(out, "out");
  1795. return out;
  1796. }
  1797. void initialize_tensors(ggml_context * ctx) override {
  1798. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1799. if (t->type == GGML_TYPE_I32) {
  1800. if (ggml_is_view_op(t->op)) { continue; }
  1801. // rows
  1802. std::vector<int> data(r*b);
  1803. for (int i = 0; i < r*b; i++) {
  1804. data[i] = rand() % m;
  1805. }
  1806. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1807. } else {
  1808. init_tensor_uniform(t);
  1809. }
  1810. }
  1811. }
  1812. };
  1813. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1814. std::random_device rd;
  1815. std::default_random_engine rng(rd());
  1816. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1817. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1818. // generate a shuffled subset of row indices
  1819. std::vector<int64_t> data(num_rows);
  1820. for (int i = 0; i < num_rows; i++) {
  1821. data[i] = i;
  1822. }
  1823. std::shuffle(data.begin(), data.end(), rng);
  1824. data.resize(t->ne[0]);
  1825. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1826. if (t->type == GGML_TYPE_I32) {
  1827. // TODO: Make a template or something
  1828. std::vector<int32_t> data_i32(t->ne[0]);
  1829. for (int i = 0; i < t->ne[0]; i++) {
  1830. data_i32[i] = static_cast<int32_t>(data[i]);
  1831. }
  1832. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1833. } else {
  1834. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1835. }
  1836. }
  1837. }
  1838. }
  1839. // GGML_OP_SET_ROWS
  1840. struct test_set_rows : public test_case {
  1841. const ggml_type type;
  1842. const ggml_type type_idx;
  1843. const std::array<int64_t, 4> ne;
  1844. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1845. const int r; // rows to set
  1846. const bool v; // view (non-contiguous src1)
  1847. std::string vars() override {
  1848. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1849. }
  1850. test_set_rows(ggml_type type,
  1851. ggml_type type_idx,
  1852. std::array<int64_t, 4> ne,
  1853. std::array<int, 2> nr23,
  1854. int r, bool v = false)
  1855. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1856. ggml_tensor * build_graph(ggml_context * ctx) override {
  1857. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1858. ggml_set_name(dst, "dst");
  1859. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1860. ggml_set_name(src, "src");
  1861. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1862. ggml_set_name(row_idxs, "row_idxs");
  1863. if (v) {
  1864. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1865. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1866. ggml_set_name(row_idxs, "view_of_rows");
  1867. }
  1868. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1869. ggml_set_name(out, "out");
  1870. return out;
  1871. }
  1872. void initialize_tensors(ggml_context * ctx) override {
  1873. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1874. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1875. if (ggml_is_view_op(t->op)) {
  1876. continue;
  1877. }
  1878. init_set_rows_row_ids(t, ne[1]);
  1879. } else {
  1880. init_tensor_uniform(t);
  1881. }
  1882. }
  1883. }
  1884. double max_nmse_err() override {
  1885. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1886. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1887. // estimate what the max nmse error would be if one quantized value is
  1888. // off by one. The test values are distributed in [-1,1], so it'll be
  1889. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1890. // which is roughly 0.25 times the number of elements.
  1891. double err_estimate = 1.0f/8.0f;
  1892. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1893. err_estimate /= 2.0f;
  1894. }
  1895. if (type == GGML_TYPE_Q8_0) {
  1896. err_estimate /= 8.0f;
  1897. }
  1898. err_estimate *= err_estimate;
  1899. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1900. return err_estimate;
  1901. }
  1902. return 1e-7;
  1903. }
  1904. };
  1905. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1906. struct test_rope_set_rows : public test_case {
  1907. const ggml_type type;
  1908. const ggml_type type_idx;
  1909. const std::array<int64_t, 4> ne;
  1910. int mode;
  1911. std::string vars() override {
  1912. return VARS_TO_STR4(type, type_idx, ne, mode);
  1913. }
  1914. std::string op_desc(ggml_tensor * t) override {
  1915. GGML_UNUSED(t);
  1916. return "ROPE_SET_ROWS";
  1917. }
  1918. bool run_whole_graph() override { return true; }
  1919. test_rope_set_rows(ggml_type type,
  1920. ggml_type type_idx,
  1921. std::array<int64_t, 4> ne,
  1922. int mode)
  1923. : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
  1924. ggml_tensor * build_graph(ggml_context * ctx) override {
  1925. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1926. ggml_set_name(src, "src");
  1927. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1928. ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
  1929. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1930. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1931. ggml_set_name(dst, "dst");
  1932. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
  1933. ggml_set_name(row_idxs, "row_idxs");
  1934. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  1935. ggml_set_name(out, "out");
  1936. return out;
  1937. }
  1938. void initialize_tensors(ggml_context * ctx) override {
  1939. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1940. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1941. if (ggml_is_view_op(t->op)) {
  1942. continue;
  1943. }
  1944. init_set_rows_row_ids(t, ne[2]);
  1945. } else {
  1946. init_tensor_uniform(t);
  1947. }
  1948. }
  1949. }
  1950. };
  1951. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
  1952. struct test_rms_norm_mul_rope : public test_case {
  1953. const std::array<int64_t, 4> ne;
  1954. const float eps;
  1955. const bool multi_add; // test a sequence of adds feeding into rms_norm
  1956. const bool set_rows;
  1957. int mode;
  1958. std::string op_desc(ggml_tensor * t) override {
  1959. GGML_UNUSED(t);
  1960. return "RMS_NORM_MUL_ROPE";
  1961. }
  1962. bool run_whole_graph() override { return true; }
  1963. std::string vars() override {
  1964. return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
  1965. }
  1966. test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
  1967. bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
  1968. : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
  1969. ggml_tensor * build_graph(ggml_context * ctx) override {
  1970. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1971. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1972. ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1973. if (multi_add) {
  1974. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  1975. }
  1976. a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  1977. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1978. ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
  1979. ggml_tensor * out;
  1980. if (set_rows) {
  1981. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1982. ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1983. ggml_set_name(dst, "dst");
  1984. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
  1985. ggml_set_name(row_idxs, "row_idxs");
  1986. out = ggml_set_rows(ctx, dst, view, row_idxs);
  1987. ggml_set_name(out, "out");
  1988. } else {
  1989. out = rope;
  1990. }
  1991. return out;
  1992. }
  1993. void initialize_tensors(ggml_context * ctx) override {
  1994. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1995. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1996. if (ggml_is_view_op(t->op)) {
  1997. continue;
  1998. }
  1999. init_set_rows_row_ids(t, ne[2]);
  2000. } else {
  2001. init_tensor_uniform(t);
  2002. }
  2003. }
  2004. }
  2005. };
  2006. // GGML_OP_ARGMAX
  2007. struct test_argmax : public test_case {
  2008. const ggml_type type;
  2009. const std::array<int64_t, 4> ne;
  2010. std::string vars() override {
  2011. return VARS_TO_STR2(type, ne);
  2012. }
  2013. test_argmax(ggml_type type = GGML_TYPE_F32,
  2014. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  2015. : type(type), ne(ne) {}
  2016. ggml_tensor * build_graph(ggml_context * ctx) override {
  2017. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2018. ggml_set_name(a, "a");
  2019. ggml_tensor * out = ggml_argmax(ctx, a);
  2020. ggml_set_name(out, "out");
  2021. return out;
  2022. }
  2023. void initialize_tensors(ggml_context * ctx) override {
  2024. std::random_device rd;
  2025. std::default_random_engine rng(rd());
  2026. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2027. if (t->type == GGML_TYPE_F32) {
  2028. // initialize with unique values to avoid ties
  2029. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2030. std::vector<float> data(t->ne[0]);
  2031. for (int i = 0; i < t->ne[0]; i++) {
  2032. data[i] = i;
  2033. }
  2034. std::shuffle(data.begin(), data.end(), rng);
  2035. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2036. }
  2037. } else {
  2038. init_tensor_uniform(t);
  2039. }
  2040. }
  2041. }
  2042. double max_nmse_err() override {
  2043. return 0.0;
  2044. }
  2045. };
  2046. // GGML_OP_COUNT_EQUAL
  2047. struct test_count_equal : public test_case {
  2048. const ggml_type type;
  2049. const std::array<int64_t, 4> ne;
  2050. std::string vars() override {
  2051. return VARS_TO_STR2(type, ne);
  2052. }
  2053. test_count_equal(ggml_type type = GGML_TYPE_F32,
  2054. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  2055. : type(type), ne(ne) {}
  2056. ggml_tensor * build_graph(ggml_context * ctx) override {
  2057. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2058. ggml_set_name(a, "a");
  2059. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  2060. ggml_set_name(a_argmax, "a_argmax");
  2061. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2062. ggml_set_name(b, "b");
  2063. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  2064. ggml_set_name(b_argmax, "b_argmax");
  2065. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  2066. ggml_set_name(out, "out");
  2067. return out;
  2068. }
  2069. double max_nmse_err() override {
  2070. return 0.0;
  2071. }
  2072. void initialize_tensors(ggml_context * ctx) override {
  2073. std::random_device rd;
  2074. std::default_random_engine rng(rd());
  2075. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2076. if (t->type == GGML_TYPE_F32) {
  2077. // initialize with unique values to avoid ties
  2078. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2079. std::vector<float> data(t->ne[0]);
  2080. for (int i = 0; i < t->ne[0]; i++) {
  2081. data[i] = i;
  2082. }
  2083. std::shuffle(data.begin(), data.end(), rng);
  2084. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2085. }
  2086. } else {
  2087. init_tensor_uniform(t);
  2088. }
  2089. }
  2090. }
  2091. };
  2092. // GGML_OP_REPEAT
  2093. struct test_repeat : public test_case {
  2094. const ggml_type type;
  2095. const std::array<int64_t, 4> ne;
  2096. const std::array<int, 4> nr;
  2097. std::string vars() override {
  2098. return VARS_TO_STR3(type, ne, nr);
  2099. }
  2100. size_t op_size(ggml_tensor * t) override {
  2101. return ggml_nbytes(t) * 2;
  2102. }
  2103. test_repeat(ggml_type type = GGML_TYPE_F32,
  2104. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2105. std::array<int, 4> nr = {2, 2, 2, 2})
  2106. : type(type), ne(ne), nr(nr) {}
  2107. ggml_tensor * build_graph(ggml_context * ctx) override {
  2108. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2109. ggml_set_name(target, "target");
  2110. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2111. ggml_set_param(src);
  2112. ggml_set_name(src, "src");
  2113. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2114. ggml_set_name(out, "out");
  2115. return out;
  2116. }
  2117. };
  2118. // GGML_OP_REPEAT_BACK
  2119. struct test_repeat_back : public test_case {
  2120. const ggml_type type;
  2121. const std::array<int64_t, 4> ne;
  2122. const std::array<int, 4> nr;
  2123. const bool v; // whether src is a noncontiguous view
  2124. std::string vars() override {
  2125. return VARS_TO_STR4(type, ne, nr, v);
  2126. }
  2127. size_t op_size(ggml_tensor * t) override {
  2128. return ggml_nbytes(t) * 2;
  2129. }
  2130. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2131. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2132. std::array<int, 4> nr = {2, 2, 2, 2},
  2133. bool v = false)
  2134. : type(type), ne(ne), nr(nr), v(v) {}
  2135. ggml_tensor * build_graph(ggml_context * ctx) override {
  2136. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2137. ggml_set_name(src, "src");
  2138. if (v) {
  2139. GGML_ASSERT(ne[0] % 2 == 0);
  2140. GGML_ASSERT(ne[1] % 2 == 0);
  2141. GGML_ASSERT(ne[2] % 2 == 0);
  2142. GGML_ASSERT(ne[3] % 2 == 0);
  2143. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2144. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2145. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2146. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2147. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2148. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2149. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2150. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2151. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2152. }
  2153. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2154. ggml_set_name(target, "target");
  2155. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2156. ggml_set_name(out, "out");
  2157. return out;
  2158. }
  2159. };
  2160. // GGML_OP_DUP
  2161. struct test_dup : public test_case {
  2162. const ggml_type type;
  2163. const std::array<int64_t, 4> ne;
  2164. const std::array<int64_t, 4> permute;
  2165. bool _use_permute;
  2166. std::string vars() override {
  2167. std::string v = VARS_TO_STR2(type, ne);
  2168. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2169. return v;
  2170. }
  2171. test_dup(ggml_type type = GGML_TYPE_F32,
  2172. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2173. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2174. : type(type), ne(ne), permute(permute),
  2175. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2176. ggml_tensor * build_graph(ggml_context * ctx) override {
  2177. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2178. ggml_set_param(src);
  2179. ggml_set_name(src, "src");
  2180. if (_use_permute) {
  2181. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2182. ggml_set_name(src, "src_permuted");
  2183. }
  2184. ggml_tensor * out = ggml_dup(ctx, src);
  2185. ggml_set_name(out, "out");
  2186. return out;
  2187. }
  2188. };
  2189. // GGML_OP_SET
  2190. struct test_set : public test_case {
  2191. const ggml_type type_src;
  2192. const ggml_type type_dst;
  2193. const std::array<int64_t, 4> ne;
  2194. const int dim;
  2195. std::string vars() override {
  2196. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2197. }
  2198. size_t op_size(ggml_tensor * t) override {
  2199. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2200. }
  2201. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2202. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2203. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2204. ggml_tensor * build_graph(ggml_context * ctx) override {
  2205. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2206. ggml_set_param(src);
  2207. ggml_set_name(src, "src");
  2208. auto ne_dst = ne;
  2209. for (int i = 0; i < dim; ++i) {
  2210. ne_dst[i] *= 2;
  2211. }
  2212. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2213. ggml_set_param(dst);
  2214. ggml_set_name(dst, "dst");
  2215. size_t offset = 0;
  2216. for (int i = 0; i < dim; ++i) {
  2217. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2218. }
  2219. ggml_tensor * out = ggml_set(ctx, dst, src,
  2220. // The backward pass requires setting a contiguous region:
  2221. src->nb[1], src->nb[2], src->nb[3], offset);
  2222. ggml_set_name(out, "out");
  2223. return out;
  2224. }
  2225. };
  2226. // GGML_OP_CPY
  2227. struct test_cpy : public test_case {
  2228. const ggml_type type_src;
  2229. const ggml_type type_dst;
  2230. const std::array<int64_t, 4> ne;
  2231. const std::array<int64_t, 4> permute_src;
  2232. const std::array<int64_t, 4> permute_dst;
  2233. bool _src_use_permute;
  2234. bool _dst_use_permute;
  2235. bool _src_transpose;
  2236. std::string vars() override {
  2237. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2238. }
  2239. double max_nmse_err() override {
  2240. if (type_src == type_dst) {
  2241. return 0.0;
  2242. }
  2243. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2244. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2245. // estimate what the max nmse error would be if one quantized value is
  2246. // off by one. The test values are distributed in [-150,150], so it'll be
  2247. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2248. // which is roughly 0.25*150^2 times the number of elements.
  2249. double err_estimate = 1.0f/8.0f * 150.0f;
  2250. if (type_dst == GGML_TYPE_IQ4_NL) {
  2251. // iq4_nl values are a bit more spread out
  2252. err_estimate *= 2.0f;
  2253. }
  2254. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2255. err_estimate /= 2.0f;
  2256. }
  2257. if (type_dst == GGML_TYPE_Q8_0) {
  2258. err_estimate /= 8.0f;
  2259. }
  2260. err_estimate *= err_estimate;
  2261. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2262. return err_estimate;
  2263. }
  2264. return 1e-6;
  2265. }
  2266. size_t op_size(ggml_tensor * t) override {
  2267. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2268. }
  2269. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2270. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2271. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2272. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2273. bool transpose_src = false)
  2274. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2275. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2276. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2277. _src_transpose(transpose_src){}
  2278. ggml_tensor * build_graph(ggml_context * ctx) override {
  2279. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2280. ggml_set_param(src);
  2281. ggml_set_name(src, "src");
  2282. if (_src_use_permute) {
  2283. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2284. ggml_set_name(src, "src_permuted");
  2285. }
  2286. if (_src_transpose) {
  2287. src = ggml_transpose(ctx, src);
  2288. ggml_set_name(src, "src_transposed");
  2289. }
  2290. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2291. ggml_set_name(dst, "dst");
  2292. if (_dst_use_permute) {
  2293. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2294. ggml_set_name(dst, "dst_permuted");
  2295. }
  2296. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2297. ggml_set_name(out, "out");
  2298. return out;
  2299. }
  2300. void initialize_tensors(ggml_context * ctx) override {
  2301. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2302. // test extended range of values to check if casting between f32 and i32 is consistent
  2303. init_tensor_uniform(t, -150.f, 150.f);
  2304. }
  2305. }
  2306. };
  2307. // GGML_OP_CONT
  2308. struct test_cont : public test_case {
  2309. const ggml_type type;
  2310. const std::array<int64_t, 4> ne;
  2311. std::string vars() override {
  2312. return VARS_TO_STR2(type, ne);
  2313. }
  2314. test_cont(ggml_type type = GGML_TYPE_F32,
  2315. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2316. : type(type), ne(ne) {}
  2317. ggml_tensor * build_graph(ggml_context * ctx) override {
  2318. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2319. ggml_set_param(src);
  2320. ggml_set_name(src, "src");
  2321. src = ggml_transpose(ctx, src);
  2322. ggml_set_name(src, "src_transposed");
  2323. ggml_tensor * out = ggml_cont(ctx, src);
  2324. ggml_set_name(out, "out");
  2325. return out;
  2326. }
  2327. };
  2328. // GGML_OP_ADD
  2329. // GGML_OP_SUB
  2330. // GGML_OP_MUL
  2331. // GGML_OP_DIV
  2332. struct test_bin_bcast : public test_case {
  2333. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2334. op_t op;
  2335. const ggml_type type;
  2336. const std::array<int64_t, 4> ne;
  2337. const std::array<int, 4> nr;
  2338. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2339. bool run_whole_graph() override { return nf > 1; }
  2340. std::string vars() override {
  2341. return VARS_TO_STR4(type, ne, nr, nf);
  2342. }
  2343. size_t op_size(ggml_tensor * t) override {
  2344. return ggml_nbytes(t) * 3;
  2345. }
  2346. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2347. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2348. std::array<int, 4> nr = {1, 2, 1, 1},
  2349. int nf = 1)
  2350. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2351. ggml_tensor * build_graph(ggml_context * ctx) override {
  2352. GGML_ASSERT(nf <= 16);
  2353. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2354. ggml_set_name(a, "a");
  2355. ggml_tensor * b[16];
  2356. for (int i = 0; i < nf; ++i) {
  2357. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2358. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2359. }
  2360. // The backward pass supports broadcasting only for GGML_ADD:
  2361. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2362. if (grad_supported) {
  2363. ggml_set_param(a);
  2364. ggml_set_param(b[0]);
  2365. }
  2366. ggml_tensor * out = a;
  2367. for (int i = 0; i < nf; ++i) {
  2368. out = op(ctx, out, b[i]);
  2369. }
  2370. ggml_set_name(out, "out");
  2371. return out;
  2372. }
  2373. void initialize_tensors(ggml_context * ctx) override {
  2374. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2375. if (op == ggml_mul || op == ggml_div) {
  2376. // MUL and DIV have numerical issues around zero:
  2377. init_tensor_uniform(t, 0.9f, 1.1f);
  2378. } else {
  2379. init_tensor_uniform(t);
  2380. }
  2381. }
  2382. }
  2383. float grad_eps() override {
  2384. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2385. }
  2386. bool grad_precise() override {
  2387. return op == ggml_div;
  2388. }
  2389. double max_maa_err() override {
  2390. return op == ggml_add ? 1e-4 : 1e-3;
  2391. }
  2392. };
  2393. // GGML_OP_ADD_ID
  2394. struct test_add_id : public test_case {
  2395. const ggml_type type_a;
  2396. const ggml_type type_b;
  2397. const int64_t n_embd;
  2398. const int64_t n_experts;
  2399. const int64_t n_experts_used;
  2400. const int64_t n_token;
  2401. std::string vars() override {
  2402. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2403. }
  2404. size_t op_size(ggml_tensor * t) override {
  2405. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2406. }
  2407. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2408. ggml_type type_b = GGML_TYPE_F32,
  2409. int64_t n_embd = 128,
  2410. int64_t n_experts = 16,
  2411. int64_t n_experts_used = 8,
  2412. int64_t n_token = 10)
  2413. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2414. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2415. ggml_tensor * build_graph(ggml_context * ctx) override {
  2416. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2417. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2418. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2419. if (n_experts_used != n_experts) {
  2420. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2421. ggml_set_name(ids, "view_of_ids");
  2422. }
  2423. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2424. ggml_set_name(out, "out");
  2425. return out;
  2426. }
  2427. void initialize_tensors(ggml_context * ctx) override {
  2428. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2429. if (t->type == GGML_TYPE_I32) {
  2430. if (ggml_is_view_op(t->op)) { continue; }
  2431. std::random_device rd;
  2432. std::default_random_engine rng(rd());
  2433. // ids
  2434. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2435. std::vector<int32_t> data(t->ne[0]);
  2436. for (int i = 0; i < t->ne[0]; i++) {
  2437. data[i] = i % n_experts;
  2438. }
  2439. std::shuffle(data.begin(), data.end(), rng);
  2440. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2441. }
  2442. } else {
  2443. init_tensor_uniform(t);
  2444. }
  2445. }
  2446. }
  2447. };
  2448. // GGML_OP_ADD1
  2449. struct test_add1 : public test_case {
  2450. const ggml_type type;
  2451. const std::array<int64_t, 4> ne;
  2452. std::string vars() override {
  2453. return VARS_TO_STR2(type, ne);
  2454. }
  2455. test_add1(ggml_type type = GGML_TYPE_F32,
  2456. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2457. : type(type), ne(ne) {}
  2458. ggml_tensor * build_graph(ggml_context * ctx) override {
  2459. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2460. ggml_set_param(a);
  2461. ggml_set_name(a, "a");
  2462. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2463. // ggml_set_param(b); // TODO: implement
  2464. ggml_set_name(b, "b");
  2465. ggml_tensor * out = ggml_add1(ctx, a, b);
  2466. ggml_set_name(out, "out");
  2467. return out;
  2468. }
  2469. float grad_eps() override {
  2470. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2471. }
  2472. };
  2473. // GGML_OP_SCALE
  2474. struct test_scale : public test_case {
  2475. const ggml_type type;
  2476. const std::array<int64_t, 4> ne;
  2477. float scale;
  2478. float bias;
  2479. bool inplace;
  2480. std::string vars() override {
  2481. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2482. }
  2483. test_scale(ggml_type type = GGML_TYPE_F32,
  2484. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2485. float scale = 2.0f,
  2486. float bias = 0.0f,
  2487. bool inplace = false)
  2488. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2489. ggml_tensor * build_graph(ggml_context * ctx) override {
  2490. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2491. ggml_set_param(a);
  2492. ggml_set_name(a, "a");
  2493. ggml_tensor * out;
  2494. if (inplace) {
  2495. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2496. } else {
  2497. out = ggml_scale_bias(ctx, a, scale, bias);
  2498. }
  2499. ggml_set_name(out, "out");
  2500. return out;
  2501. }
  2502. };
  2503. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2504. struct test_softcap : public test_case {
  2505. const ggml_type type;
  2506. const std::array<int64_t, 4> ne;
  2507. float softcap;
  2508. std::string op_desc(ggml_tensor * t) override {
  2509. GGML_UNUSED(t);
  2510. return "SOFTCAP";
  2511. }
  2512. bool run_whole_graph() override { return true; }
  2513. std::string vars() override {
  2514. return VARS_TO_STR3(type, ne, softcap);
  2515. }
  2516. test_softcap(ggml_type type = GGML_TYPE_F32,
  2517. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2518. float softcap = 30.0f)
  2519. : type(type), ne(ne), softcap(softcap) {}
  2520. ggml_tensor * build_graph(ggml_context * ctx) override {
  2521. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2522. ggml_set_param(a);
  2523. ggml_set_name(a, "a");
  2524. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2525. ggml_set_name(out, "out");
  2526. return out;
  2527. }
  2528. };
  2529. // GGML_OP_SILU_BACK
  2530. struct test_silu_back : public test_case {
  2531. const ggml_type type;
  2532. const std::array<int64_t, 4> ne;
  2533. float eps;
  2534. std::string vars() override {
  2535. return VARS_TO_STR3(type, ne, eps);
  2536. }
  2537. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2538. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2539. float eps = 1e-6f)
  2540. : type(type), ne(ne), eps(eps) {}
  2541. ggml_tensor * build_graph(ggml_context * ctx) override {
  2542. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2543. ggml_set_name(a, "a");
  2544. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2545. ggml_set_name(grad, "grad");
  2546. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2547. ggml_set_name(out, "out");
  2548. return out;
  2549. }
  2550. bool grad_precise() override {
  2551. return true;
  2552. }
  2553. };
  2554. // GGML_OP_NORM
  2555. struct test_norm : public test_case {
  2556. const ggml_type type;
  2557. const std::array<int64_t, 4> ne;
  2558. const bool v; // whether a is a non-contiguous view
  2559. const float eps;
  2560. std::string vars() override {
  2561. return VARS_TO_STR4(type, ne, v, eps);
  2562. }
  2563. test_norm(ggml_type type = GGML_TYPE_F32,
  2564. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2565. bool v = false,
  2566. float eps = 1e-6f)
  2567. : type(type), ne(ne), v(v), eps(eps) {}
  2568. ggml_tensor * build_graph(ggml_context * ctx) override {
  2569. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2570. ggml_set_name(a, "a");
  2571. if (v) {
  2572. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2573. ggml_set_name(a, "view of a");
  2574. }
  2575. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2576. ggml_set_name(out, "out");
  2577. return out;
  2578. }
  2579. };
  2580. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2581. struct test_norm_mul_add : public test_case {
  2582. const ggml_type type;
  2583. const std::array<int64_t, 4> ne;
  2584. float eps;
  2585. const bool broadcast;
  2586. std::string op_desc(ggml_tensor * t) override {
  2587. GGML_UNUSED(t);
  2588. return "NORM_MUL_ADD";
  2589. }
  2590. bool run_whole_graph() override { return true; }
  2591. std::string vars() override {
  2592. return VARS_TO_STR4(type, ne, eps, broadcast);
  2593. }
  2594. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2595. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2596. float eps = 1e-5f,
  2597. bool broadcast = false)
  2598. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2599. ggml_tensor * build_graph(ggml_context * ctx) override {
  2600. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2601. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2602. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2603. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2604. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2605. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2606. // Use a, w and b early to avoid OP_NONE in graph
  2607. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2608. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2609. ggml_tensor * m = ggml_mul(ctx, n, w);
  2610. ggml_tensor * out = ggml_add(ctx, m, b);
  2611. ggml_set_name(out, "out");
  2612. return out;
  2613. }
  2614. };
  2615. // GGML_OP_RMS_NORM
  2616. struct test_rms_norm : public test_case {
  2617. const ggml_type type;
  2618. const std::array<int64_t, 4> ne;
  2619. const bool v; // whether a is a non-contiguous view
  2620. const float eps;
  2621. const bool inplace; // whether to do the operation inplace
  2622. std::string vars() override {
  2623. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2624. }
  2625. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2626. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2627. bool v = false,
  2628. float eps = 1e-6f,
  2629. bool inplace = false)
  2630. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2631. ggml_tensor * build_graph(ggml_context * ctx) override {
  2632. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2633. ggml_set_param(a);
  2634. ggml_set_name(a, "a");
  2635. if (v) {
  2636. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2637. ggml_set_name(a, "view of a");
  2638. }
  2639. ggml_tensor * out;
  2640. if (inplace) {
  2641. out = ggml_rms_norm_inplace(ctx, a, eps);
  2642. } else {
  2643. out = ggml_rms_norm(ctx, a, eps);
  2644. }
  2645. ggml_set_name(out, "out");
  2646. return out;
  2647. }
  2648. void initialize_tensors(ggml_context * ctx) override {
  2649. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2650. init_tensor_uniform(t, -10.f, 10.f);
  2651. }
  2652. }
  2653. float grad_eps() override {
  2654. return 1.0f;
  2655. }
  2656. bool grad_precise() override {
  2657. return true;
  2658. }
  2659. };
  2660. // GGML_OP_RMS_NORM_BACK
  2661. struct test_rms_norm_back : public test_case {
  2662. const ggml_type type;
  2663. const std::array<int64_t, 4> ne;
  2664. const float eps;
  2665. std::string vars() override {
  2666. return VARS_TO_STR3(type, ne, eps);
  2667. }
  2668. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2669. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2670. float eps = 1e-6f)
  2671. : type(type), ne(ne), eps(eps) {}
  2672. ggml_tensor * build_graph(ggml_context * ctx) override {
  2673. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2674. ggml_set_name(a, "a");
  2675. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2676. ggml_set_name(b, "b");
  2677. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2678. ggml_set_name(out, "out");
  2679. return out;
  2680. }
  2681. void initialize_tensors(ggml_context * ctx) override {
  2682. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2683. init_tensor_uniform(t, -10.f, 10.f);
  2684. }
  2685. }
  2686. };
  2687. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2688. struct test_rms_norm_mul_add : public test_case {
  2689. const ggml_type type;
  2690. const std::array<int64_t, 4> ne;
  2691. const float eps;
  2692. const bool broadcast;
  2693. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2694. std::string op_desc(ggml_tensor * t) override {
  2695. GGML_UNUSED(t);
  2696. return "RMS_NORM_MUL_ADD";
  2697. }
  2698. bool run_whole_graph() override { return true; }
  2699. std::string vars() override {
  2700. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2701. }
  2702. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2703. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2704. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2705. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2706. ggml_tensor * build_graph(ggml_context * ctx) override {
  2707. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2708. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2709. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2710. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2711. ggml_set_param(a);
  2712. ggml_set_name(a, "a");
  2713. ggml_set_param(b);
  2714. ggml_set_name(b, "b");
  2715. ggml_set_param(c);
  2716. ggml_set_name(c, "c");
  2717. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2718. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2719. if (multi_add) {
  2720. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2721. }
  2722. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2723. ggml_set_name(out, "out");
  2724. return out;
  2725. }
  2726. void initialize_tensors(ggml_context * ctx) override {
  2727. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2728. init_tensor_uniform(t, -10.f, 10.f);
  2729. }
  2730. }
  2731. float grad_eps() override {
  2732. return 1.0f;
  2733. }
  2734. bool grad_precise() override {
  2735. return true;
  2736. }
  2737. };
  2738. // GGML_OP_SSM_CONV
  2739. struct test_ssm_conv : public test_case {
  2740. const ggml_type type;
  2741. const std::array<int64_t, 4> ne_a;
  2742. const std::array<int64_t, 4> ne_b;
  2743. std::string vars() override {
  2744. return VARS_TO_STR3(type, ne_a, ne_b);
  2745. }
  2746. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2747. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2748. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2749. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2750. ggml_tensor * build_graph(ggml_context * ctx) override {
  2751. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2752. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2753. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2754. return out;
  2755. }
  2756. };
  2757. // GGML_OP_SSM_SCAN
  2758. struct test_ssm_scan : public test_case {
  2759. const ggml_type type;
  2760. const int64_t d_state;
  2761. const int64_t head_dim;
  2762. const int64_t n_head;
  2763. const int64_t n_group;
  2764. const int64_t n_seq_tokens;
  2765. const int64_t n_seqs;
  2766. std::string vars() override {
  2767. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2768. }
  2769. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2770. int64_t d_state = 32,
  2771. int64_t head_dim = 1, // non-zero for Mamba-2
  2772. int64_t n_head = 32,
  2773. int64_t n_group = 1,
  2774. int64_t n_seq_tokens = 32,
  2775. int64_t n_seqs = 32)
  2776. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2777. ggml_tensor * build_graph(ggml_context * ctx) override {
  2778. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2779. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2780. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2781. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2782. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2783. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2784. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2785. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2786. return out;
  2787. }
  2788. // similar to test_mul_mat_id
  2789. void initialize_tensors(ggml_context * ctx) override {
  2790. std::random_device rd;
  2791. std::default_random_engine rng(rd());
  2792. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2793. if (t->type == GGML_TYPE_I32) {
  2794. if (ggml_is_view_op(t->op)) { continue; }
  2795. // ids
  2796. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2797. std::vector<int32_t> data(t->ne[0]);
  2798. for (int i = 0; i < t->ne[0]; i++) {
  2799. data[i] = i;
  2800. }
  2801. std::shuffle(data.begin(), data.end(), rng);
  2802. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2803. }
  2804. } else {
  2805. init_tensor_uniform(t);
  2806. }
  2807. }
  2808. }
  2809. };
  2810. // GGML_OP_RWKV_WKV6
  2811. struct test_rwkv_wkv6 : public test_case {
  2812. const ggml_type type;
  2813. const int64_t head_count;
  2814. const int64_t head_size;
  2815. const int64_t n_seq_tokens;
  2816. const int64_t n_seqs;
  2817. std::string vars() override {
  2818. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2819. }
  2820. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2821. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2822. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2823. ggml_tensor * build_graph(ggml_context * ctx) override {
  2824. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2825. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2826. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2827. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2828. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2829. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2830. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2831. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2832. return out;
  2833. }
  2834. };
  2835. // GGML_OP_GATED_LINEAR_ATTN
  2836. struct test_gla : public test_case {
  2837. const ggml_type type;
  2838. const int64_t head_count;
  2839. const int64_t head_size;
  2840. const int64_t n_seq_tokens;
  2841. const int64_t n_seqs;
  2842. std::string vars() override {
  2843. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2844. }
  2845. test_gla(ggml_type type = GGML_TYPE_F32,
  2846. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2847. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2848. ggml_tensor * build_graph(ggml_context * ctx) override {
  2849. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2850. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2851. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2852. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2853. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2854. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2855. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2856. return out;
  2857. }
  2858. };
  2859. // GGML_OP_RWKV_WKV7
  2860. struct test_rwkv_wkv7 : public test_case {
  2861. const ggml_type type;
  2862. const int64_t head_count;
  2863. const int64_t head_size;
  2864. const int64_t n_seq_tokens;
  2865. const int64_t n_seqs;
  2866. std::string vars() override {
  2867. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2868. }
  2869. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2870. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2871. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2872. ggml_tensor * build_graph(ggml_context * ctx) override {
  2873. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2874. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2875. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2876. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2877. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2878. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2879. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2880. // Outputs may become NaN with long seqlen without these normalization
  2881. a = ggml_l2_norm(ctx, a, 1e-7F);
  2882. b = ggml_l2_norm(ctx, b, 1e-7F);
  2883. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2884. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2885. return out;
  2886. }
  2887. };
  2888. // GGML_OP_MUL_MAT
  2889. struct test_mul_mat : public test_case {
  2890. const ggml_type type_a;
  2891. const ggml_type type_b;
  2892. const int64_t m;
  2893. const int64_t n;
  2894. const int64_t k;
  2895. const std::array<int64_t, 2> bs; // dims 3 and 4
  2896. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2897. const std::array<int64_t, 4> per; // permutation of dimensions
  2898. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  2899. const uint32_t o; // number of outputs
  2900. std::string vars() override {
  2901. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  2902. }
  2903. double max_nmse_err() override {
  2904. return 5e-4;
  2905. }
  2906. int64_t grad_nmax() override {
  2907. return 20000;
  2908. }
  2909. uint64_t op_flops(ggml_tensor * t) override {
  2910. GGML_UNUSED(t);
  2911. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2912. }
  2913. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2914. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2915. std::array<int64_t, 2> bs = {10, 10},
  2916. std::array<int64_t, 2> nr = {2, 2},
  2917. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2918. int64_t k_v = 0, uint32_t o = 1)
  2919. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  2920. ggml_tensor * build_graph(ggml_context * ctx) override {
  2921. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2922. ggml_tensor * a;
  2923. ggml_tensor * b;
  2924. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2925. if (npermuted > 0) {
  2926. GGML_ASSERT(npermuted == 2);
  2927. GGML_ASSERT(k_v == 0); // not handled
  2928. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2929. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2930. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2931. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2932. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2933. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2934. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2935. if (!ggml_is_quantized(type_a)) {
  2936. if (bs[1] == 1 && nr[1] == 1) {
  2937. ggml_set_param(a);
  2938. }
  2939. ggml_set_param(b);
  2940. }
  2941. ggml_set_name(a, "a");
  2942. ggml_set_name(b, "b");
  2943. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2944. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2945. ggml_set_name(a, "a_permuted");
  2946. ggml_set_name(b, "b_permuted");
  2947. } else {
  2948. const int64_t k_physical = k_v == 0 ? k : k_v;
  2949. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  2950. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  2951. if (!ggml_is_quantized(type_a)) {
  2952. if (bs[1] == 1 && nr[1] == 1) {
  2953. ggml_set_param(a);
  2954. }
  2955. ggml_set_param(b);
  2956. }
  2957. if (k_v != 0) {
  2958. GGML_ASSERT(k_v > k);
  2959. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2960. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2961. }
  2962. ggml_set_name(a, "a");
  2963. ggml_set_name(b, "b");
  2964. }
  2965. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2966. ggml_set_name(out, "out");
  2967. for (uint32_t i = 1; i < o; ++i) {
  2968. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2969. ggml_set_name(out2, "out2");
  2970. out = ggml_add(ctx, out, out2);
  2971. }
  2972. return out;
  2973. }
  2974. bool run_whole_graph() override { return o > 1; }
  2975. std::string op_desc(ggml_tensor * t) override {
  2976. GGML_UNUSED(t);
  2977. return ggml_op_name(GGML_OP_MUL_MAT);
  2978. }
  2979. };
  2980. static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
  2981. std::random_device rd;
  2982. std::default_random_engine rng(rd());
  2983. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2984. if (t->type == GGML_TYPE_I32) {
  2985. if (ggml_is_view_op(t->op)) { continue; }
  2986. // ids
  2987. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2988. std::vector<int32_t> data(t->ne[0]);
  2989. for (int i = 0; i < t->ne[0]; i++) {
  2990. data[i] = i % n_mats;
  2991. }
  2992. std::shuffle(data.begin(), data.end(), rng);
  2993. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2994. }
  2995. } else {
  2996. init_tensor_uniform(t);
  2997. }
  2998. }
  2999. }
  3000. // GGML_OP_MUL_MAT_ID
  3001. struct test_mul_mat_id : public test_case {
  3002. const ggml_type type_a;
  3003. const ggml_type type_b;
  3004. const int n_mats;
  3005. const int n_used;
  3006. const bool b; // broadcast b matrix
  3007. const int64_t m;
  3008. const int64_t n;
  3009. const int64_t k;
  3010. std::string vars() override {
  3011. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  3012. }
  3013. double max_nmse_err() override {
  3014. return 5e-4;
  3015. }
  3016. uint64_t op_flops(ggml_tensor * t) override {
  3017. GGML_UNUSED(t);
  3018. return 2 * m * k * n * n_used;
  3019. }
  3020. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3021. int n_mats = 8, int n_used = 2, bool b = false,
  3022. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  3023. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3024. m(m), n(n), k(k) {
  3025. GGML_ASSERT(n_used <= n_mats);
  3026. }
  3027. ggml_tensor * build_graph(ggml_context * ctx) override {
  3028. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3029. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3030. ggml_set_name(as, "as");
  3031. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3032. ggml_set_name(ids, "ids");
  3033. if (n_used != n_mats) {
  3034. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3035. ggml_set_name(ids, "view_of_ids");
  3036. }
  3037. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3038. ggml_set_name(b, "b");
  3039. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3040. ggml_set_name(out, "out");
  3041. return out;
  3042. }
  3043. void initialize_tensors(ggml_context * ctx) override {
  3044. init_mul_mat_id_tensors(ctx, n_mats);
  3045. }
  3046. };
  3047. // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
  3048. struct test_mul_mat_id_fusion : public test_case {
  3049. const ggml_type type_a;
  3050. const ggml_type type_b;
  3051. const int n_mats;
  3052. const int n_used;
  3053. const bool b; // broadcast b matrix
  3054. const int64_t m;
  3055. const int64_t n;
  3056. const int64_t k;
  3057. const uint32_t o; // number of outputs
  3058. const bool mul;
  3059. std::string vars() override {
  3060. return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
  3061. }
  3062. double max_nmse_err() override {
  3063. return 5e-4;
  3064. }
  3065. uint64_t op_flops(ggml_tensor * t) override {
  3066. GGML_UNUSED(t);
  3067. return 2 * m * k * n * n_used;
  3068. }
  3069. test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3070. int n_mats = 8, int n_used = 2, bool b = false,
  3071. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
  3072. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3073. m(m), n(n), k(k), o(o), mul(mul) {
  3074. GGML_ASSERT(n_used <= n_mats);
  3075. }
  3076. ggml_tensor * build_graph(ggml_context * ctx) override {
  3077. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3078. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3079. ggml_set_name(as, "as");
  3080. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3081. ggml_set_name(ids, "ids");
  3082. if (n_used != n_mats) {
  3083. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3084. ggml_set_name(ids, "view_of_ids");
  3085. }
  3086. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3087. ggml_set_name(b, "b");
  3088. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3089. ggml_set_name(out, "out");
  3090. for (uint32_t i = 1; i < o; ++i) {
  3091. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3092. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  3093. ggml_set_name(out2, "out2");
  3094. out = ggml_add(ctx, out, out2);
  3095. }
  3096. if (mul) {
  3097. std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  3098. ne[0] = 1;
  3099. ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
  3100. out = ggml_mul(ctx, out, m);
  3101. }
  3102. return out;
  3103. }
  3104. void initialize_tensors(ggml_context * ctx) override {
  3105. init_mul_mat_id_tensors(ctx, n_mats);
  3106. }
  3107. bool run_whole_graph() override { return true; }
  3108. std::string op_desc(ggml_tensor * t) override {
  3109. GGML_UNUSED(t);
  3110. return "MUL_MAT_ID_FUSION";
  3111. }
  3112. };
  3113. // GGML_OP_OUT_PROD
  3114. struct test_out_prod : public test_case {
  3115. const ggml_type type_a;
  3116. const ggml_type type_b;
  3117. const int64_t m;
  3118. const int64_t n;
  3119. const int64_t k;
  3120. const std::array<int64_t, 2> bs; // dims 3 and 4
  3121. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3122. const bool trans_b;
  3123. std::string vars() override {
  3124. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  3125. }
  3126. double max_nmse_err() override {
  3127. return 5e-4;
  3128. }
  3129. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3130. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3131. std::array<int64_t, 2> bs = {10, 10},
  3132. std::array<int64_t, 2> nr = {2, 2},
  3133. bool trans_b = false)
  3134. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  3135. ggml_tensor * build_graph(ggml_context * ctx) override {
  3136. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  3137. ggml_set_name(a, "a");
  3138. ggml_tensor * b;
  3139. if (trans_b) {
  3140. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  3141. b = ggml_transpose(ctx, b);
  3142. } else {
  3143. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3144. }
  3145. ggml_set_name(b, "b");
  3146. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3147. ggml_set_name(out, "out");
  3148. return out;
  3149. }
  3150. };
  3151. // GGML_OP_SQR
  3152. struct test_sqr : public test_case {
  3153. const ggml_type type;
  3154. const std::array<int64_t, 4> ne;
  3155. std::string vars() override {
  3156. return VARS_TO_STR2(type, ne);
  3157. }
  3158. test_sqr(ggml_type type = GGML_TYPE_F32,
  3159. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3160. : type(type), ne(ne) {}
  3161. ggml_tensor * build_graph(ggml_context * ctx) override {
  3162. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3163. ggml_set_param(a);
  3164. ggml_set_name(a, "a");
  3165. ggml_tensor * out = ggml_sqr(ctx, a);
  3166. ggml_set_name(out, "out");
  3167. return out;
  3168. }
  3169. float grad_eps() override {
  3170. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3171. }
  3172. };
  3173. // GGML_OP_SQRT
  3174. struct test_sqrt : public test_case {
  3175. const ggml_type type;
  3176. const std::array<int64_t, 4> ne;
  3177. std::string vars() override {
  3178. return VARS_TO_STR2(type, ne);
  3179. }
  3180. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3181. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3182. : type(type), ne(ne) {}
  3183. ggml_tensor * build_graph(ggml_context * ctx) override {
  3184. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3185. ggml_set_param(a);
  3186. ggml_set_name(a, "a");
  3187. ggml_tensor * out = ggml_sqrt(ctx, a);
  3188. ggml_set_name(out, "out");
  3189. return out;
  3190. }
  3191. void initialize_tensors(ggml_context * ctx) override {
  3192. // fill with positive values
  3193. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3194. init_tensor_uniform(t, 50.0f, 100.0f);
  3195. }
  3196. }
  3197. float grad_eps() override {
  3198. return 20.0f;
  3199. }
  3200. bool grad_precise() override {
  3201. return true;
  3202. }
  3203. };
  3204. // GGML_OP_LOG
  3205. struct test_log : public test_case {
  3206. const ggml_type type;
  3207. const std::array<int64_t, 4> ne;
  3208. std::string vars() override {
  3209. return VARS_TO_STR2(type, ne);
  3210. }
  3211. test_log(ggml_type type = GGML_TYPE_F32,
  3212. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3213. : type(type), ne(ne) {}
  3214. ggml_tensor * build_graph(ggml_context * ctx) override {
  3215. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3216. ggml_set_param(a);
  3217. ggml_set_name(a, "a");
  3218. ggml_tensor * out = ggml_log(ctx, a);
  3219. ggml_set_name(out, "out");
  3220. return out;
  3221. }
  3222. void initialize_tensors(ggml_context * ctx) override {
  3223. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3224. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3225. init_tensor_uniform(t, 0.9f, 1.1f);
  3226. }
  3227. }
  3228. bool grad_precise() override {
  3229. return true;
  3230. }
  3231. };
  3232. // GGML_OP_SIN
  3233. struct test_sin : public test_case {
  3234. const ggml_type type;
  3235. const std::array<int64_t, 4> ne;
  3236. std::string vars() override {
  3237. return VARS_TO_STR2(type, ne);
  3238. }
  3239. test_sin(ggml_type type = GGML_TYPE_F32,
  3240. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3241. : type(type), ne(ne) {}
  3242. ggml_tensor * build_graph(ggml_context * ctx) override {
  3243. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3244. ggml_set_param(a);
  3245. ggml_set_name(a, "a");
  3246. ggml_tensor * out = ggml_sin(ctx, a);
  3247. ggml_set_name(out, "out");
  3248. return out;
  3249. }
  3250. void initialize_tensors(ggml_context * ctx) override {
  3251. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3252. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3253. }
  3254. }
  3255. double max_maa_err() override {
  3256. return 1e-3;
  3257. }
  3258. float grad_eps() override {
  3259. return 0.2f;
  3260. }
  3261. bool grad_precise() override {
  3262. return true;
  3263. }
  3264. };
  3265. // GGML_OP_COS
  3266. struct test_cos : public test_case {
  3267. const ggml_type type;
  3268. const std::array<int64_t, 4> ne;
  3269. std::string vars() override {
  3270. return VARS_TO_STR2(type, ne);
  3271. }
  3272. test_cos(ggml_type type = GGML_TYPE_F32,
  3273. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3274. : type(type), ne(ne) {}
  3275. ggml_tensor * build_graph(ggml_context * ctx) override {
  3276. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3277. ggml_set_param(a);
  3278. ggml_set_name(a, "a");
  3279. ggml_tensor * out = ggml_cos(ctx, a);
  3280. ggml_set_name(out, "out");
  3281. return out;
  3282. }
  3283. void initialize_tensors(ggml_context * ctx) override {
  3284. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3285. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3286. }
  3287. }
  3288. double max_maa_err() override {
  3289. return 1e-3;
  3290. }
  3291. float grad_eps() override {
  3292. return 0.2f;
  3293. }
  3294. bool grad_precise() override {
  3295. return true;
  3296. }
  3297. };
  3298. // GGML_OP_CLAMP
  3299. struct test_clamp : public test_case {
  3300. const ggml_type type;
  3301. const std::array<int64_t, 4> ne;
  3302. float min;
  3303. float max;
  3304. std::string vars() override {
  3305. return VARS_TO_STR4(type, ne, min, max);
  3306. }
  3307. test_clamp(ggml_type type = GGML_TYPE_F32,
  3308. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3309. float min = -0.5f, float max = 0.5f)
  3310. : type(type), ne(ne), min(min), max(max) {}
  3311. ggml_tensor * build_graph(ggml_context * ctx) override {
  3312. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3313. ggml_set_name(a, "a");
  3314. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3315. ggml_set_name(out, "out");
  3316. return out;
  3317. }
  3318. float grad_eps() override {
  3319. return 1e-2f;
  3320. }
  3321. std::vector<float> grad_expect() override {
  3322. return {0.0f, 1.0f};
  3323. }
  3324. };
  3325. // GGML_OP_FLOOR
  3326. struct test_floor : public test_case {
  3327. const ggml_type type;
  3328. const std::array<int64_t, 4> ne;
  3329. std::string vars() override {
  3330. return VARS_TO_STR2(type, ne);
  3331. }
  3332. test_floor(ggml_type type = GGML_TYPE_F32,
  3333. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3334. : type(type), ne(ne) {}
  3335. ggml_tensor * build_graph(ggml_context * ctx) override {
  3336. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3337. ggml_set_param(a);
  3338. ggml_set_name(a, "a");
  3339. ggml_tensor * out = ggml_floor(ctx, a);
  3340. ggml_set_name(out, "out");
  3341. return out;
  3342. }
  3343. void initialize_tensors(ggml_context * ctx) override {
  3344. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3345. init_tensor_uniform(t, -10.0f, 10.0f);
  3346. }
  3347. }
  3348. };
  3349. // GGML_OP_CEIL
  3350. struct test_ceil : public test_case {
  3351. const ggml_type type;
  3352. const std::array<int64_t, 4> ne;
  3353. std::string vars() override {
  3354. return VARS_TO_STR2(type, ne);
  3355. }
  3356. test_ceil(ggml_type type = GGML_TYPE_F32,
  3357. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3358. : type(type), ne(ne) {}
  3359. ggml_tensor * build_graph(ggml_context * ctx) override {
  3360. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3361. ggml_set_param(a);
  3362. ggml_set_name(a, "a");
  3363. ggml_tensor * out = ggml_ceil(ctx, a);
  3364. ggml_set_name(out, "out");
  3365. return out;
  3366. }
  3367. void initialize_tensors(ggml_context * ctx) override {
  3368. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3369. init_tensor_uniform(t, -10.0f, 10.0f);
  3370. }
  3371. }
  3372. };
  3373. // GGML_OP_ROUND
  3374. struct test_round : public test_case {
  3375. const ggml_type type;
  3376. const std::array<int64_t, 4> ne;
  3377. std::string vars() override {
  3378. return VARS_TO_STR2(type, ne);
  3379. }
  3380. test_round(ggml_type type = GGML_TYPE_F32,
  3381. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3382. : type(type), ne(ne) {}
  3383. ggml_tensor * build_graph(ggml_context * ctx) override {
  3384. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3385. ggml_set_param(a);
  3386. ggml_set_name(a, "a");
  3387. ggml_tensor * out = ggml_round(ctx, a);
  3388. ggml_set_name(out, "out");
  3389. return out;
  3390. }
  3391. void initialize_tensors(ggml_context * ctx) override {
  3392. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3393. init_tensor_uniform(t, -10.0f, 10.0f);
  3394. }
  3395. }
  3396. };
  3397. // GGML_OP_TRUNC
  3398. struct test_trunc : public test_case {
  3399. const ggml_type type;
  3400. const std::array<int64_t, 4> ne;
  3401. std::string vars() override {
  3402. return VARS_TO_STR2(type, ne);
  3403. }
  3404. test_trunc(ggml_type type = GGML_TYPE_F32,
  3405. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3406. : type(type), ne(ne) {}
  3407. ggml_tensor * build_graph(ggml_context * ctx) override {
  3408. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3409. ggml_set_param(a);
  3410. ggml_set_name(a, "a");
  3411. ggml_tensor * out = ggml_trunc(ctx, a);
  3412. ggml_set_name(out, "out");
  3413. return out;
  3414. }
  3415. void initialize_tensors(ggml_context * ctx) override {
  3416. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3417. init_tensor_uniform(t, -10.0f, 10.0f);
  3418. }
  3419. }
  3420. };
  3421. // GGML_OP_DIAG_MASK_INF
  3422. struct test_diag_mask_inf : public test_case {
  3423. const ggml_type type;
  3424. const std::array<int64_t, 4> ne;
  3425. const int n_past;
  3426. std::string vars() override {
  3427. return VARS_TO_STR3(type, ne, n_past);
  3428. }
  3429. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3430. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3431. int n_past = 5)
  3432. : type(type), ne(ne), n_past(n_past) {}
  3433. ggml_tensor * build_graph(ggml_context * ctx) override {
  3434. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3435. ggml_set_param(a);
  3436. ggml_set_name(a, "a");
  3437. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3438. ggml_set_name(out, "out");
  3439. return out;
  3440. }
  3441. };
  3442. // GGML_OP_SOFT_MAX
  3443. struct test_soft_max : public test_case {
  3444. const ggml_type type;
  3445. const std::array<int64_t, 4> ne;
  3446. const bool mask;
  3447. const bool sinks;
  3448. const ggml_type m_prec;
  3449. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3450. const float scale;
  3451. const float max_bias;
  3452. const bool inplace;
  3453. std::string vars() override {
  3454. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3455. }
  3456. // the 1024 test with bias occasionally fails:
  3457. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3458. virtual double max_nmse_err() override {
  3459. return 1e-6;
  3460. }
  3461. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3462. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3463. bool mask = false,
  3464. bool sinks = false,
  3465. ggml_type m_prec = GGML_TYPE_F32,
  3466. std::array<int64_t, 2> nr23 = {1, 1},
  3467. float scale = 1.0f,
  3468. float max_bias = 0.0f,
  3469. bool inplace = false)
  3470. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3471. ggml_tensor * build_graph(ggml_context * ctx) override {
  3472. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3473. ggml_set_param(a);
  3474. ggml_set_name(a, "a");
  3475. ggml_tensor * mask = nullptr;
  3476. if (this->mask) {
  3477. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3478. ggml_set_name(mask, "mask");
  3479. }
  3480. ggml_tensor * sinks = nullptr;
  3481. if (this->sinks) {
  3482. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3483. ggml_set_name(sinks, "sinks");
  3484. }
  3485. ggml_tensor * out;
  3486. if (inplace) {
  3487. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3488. } else {
  3489. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3490. }
  3491. ggml_soft_max_add_sinks(out, sinks);
  3492. ggml_set_name(out, "out");
  3493. return out;
  3494. }
  3495. bool grad_precise() override {
  3496. return true;
  3497. }
  3498. };
  3499. // GGML_OP_SOFT_MAX_BACK
  3500. struct test_soft_max_back : public test_case {
  3501. const ggml_type type;
  3502. const std::array<int64_t, 4> ne;
  3503. const float scale;
  3504. const float max_bias;
  3505. std::string vars() override {
  3506. return VARS_TO_STR4(type, ne, scale, max_bias);
  3507. }
  3508. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3509. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3510. float scale = 1.0f,
  3511. float max_bias = 0.0f)
  3512. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3513. ggml_tensor * build_graph(ggml_context * ctx) override {
  3514. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3515. ggml_set_name(a, "a");
  3516. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3517. ggml_set_name(a, "a");
  3518. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3519. ggml_set_name(out, "out");
  3520. return out;
  3521. }
  3522. };
  3523. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3524. struct test_rope : public test_case {
  3525. const ggml_type type;
  3526. const std::array<int64_t, 4> ne_a;
  3527. int n_dims;
  3528. int mode;
  3529. int n_ctx; // used to generate positions
  3530. float fs; // freq_scale
  3531. float ef; // ext_factor
  3532. float af; // attn_factor
  3533. bool ff;
  3534. int v; // view (1 : non-contiguous a)
  3535. bool forward;
  3536. bool inplace;
  3537. std::string vars() override {
  3538. // forward can be inferred from the op, does not need to be printed
  3539. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3540. }
  3541. test_rope(ggml_type type = GGML_TYPE_F32,
  3542. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3543. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3544. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3545. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3546. ggml_tensor * build_graph(ggml_context * ctx) override {
  3547. ggml_tensor * a;
  3548. if (v & 1) {
  3549. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3550. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3551. if (forward) {
  3552. ggml_set_param(a);
  3553. }
  3554. ggml_set_name(a, "a");
  3555. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3556. ggml_set_name(a, "view_of_a");
  3557. } else {
  3558. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3559. if (forward) {
  3560. ggml_set_param(a);
  3561. }
  3562. ggml_set_name(a, "a");
  3563. }
  3564. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3565. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3566. ggml_tensor * pos;
  3567. if (is_mrope || is_vision) {
  3568. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3569. } else {
  3570. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3571. }
  3572. ggml_set_name(pos, "pos");
  3573. ggml_tensor * freq = nullptr;
  3574. if (ff) {
  3575. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3576. ggml_set_name(freq, "freq");
  3577. }
  3578. ggml_tensor * out;
  3579. if (is_mrope) {
  3580. if (is_vision) {
  3581. GGML_ASSERT(n_dims/4 > 0);
  3582. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3583. if (forward) {
  3584. if (inplace) {
  3585. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3586. } else {
  3587. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3588. }
  3589. } else {
  3590. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3591. }
  3592. } else {
  3593. GGML_ASSERT(n_dims/3 > 0);
  3594. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3595. if (forward) {
  3596. if (inplace) {
  3597. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3598. } else {
  3599. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3600. }
  3601. } else {
  3602. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3603. }
  3604. }
  3605. } else {
  3606. if (forward) {
  3607. if (inplace) {
  3608. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3609. } else {
  3610. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3611. }
  3612. } else {
  3613. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3614. }
  3615. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3616. }
  3617. ggml_set_name(out, "out");
  3618. return out;
  3619. }
  3620. void initialize_tensors(ggml_context * ctx) override {
  3621. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3622. if (t->type == GGML_TYPE_I32) {
  3623. // pos
  3624. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3625. std::vector<int> data(num_pos_ids);
  3626. for (int i = 0; i < num_pos_ids; i++) {
  3627. data[i] = rand() % n_ctx;
  3628. }
  3629. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3630. } else {
  3631. if (t->ne[0] == n_dims/2) {
  3632. // frequency factors in the range [0.9f, 1.1f]
  3633. init_tensor_uniform(t, 0.9f, 1.1f);
  3634. } else {
  3635. init_tensor_uniform(t);
  3636. }
  3637. }
  3638. }
  3639. }
  3640. double max_maa_err() override {
  3641. return 1e-3;
  3642. }
  3643. bool grad_precise() override {
  3644. return true;
  3645. }
  3646. };
  3647. // GGML_OP_POOL2D
  3648. struct test_pool2d : public test_case {
  3649. enum ggml_op_pool pool_type;
  3650. const ggml_type type_input;
  3651. const std::array<int64_t, 4> ne_input;
  3652. // kernel size
  3653. const int k0;
  3654. const int k1;
  3655. // stride
  3656. const int s0;
  3657. const int s1;
  3658. // padding
  3659. const int p0;
  3660. const int p1;
  3661. std::string vars() override {
  3662. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3663. }
  3664. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3665. ggml_type type_input = GGML_TYPE_F32,
  3666. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3667. int k0 = 3, int k1 = 3,
  3668. int s0 = 1, int s1 = 1,
  3669. int p0 = 1, int p1 = 1)
  3670. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3671. ggml_tensor * build_graph(ggml_context * ctx) override {
  3672. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3673. ggml_set_param(input);
  3674. ggml_set_name(input, "input");
  3675. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3676. ggml_set_name(out, "out");
  3677. return out;
  3678. }
  3679. };
  3680. // GGML_OP_CONV_TRANSPOSE_1D
  3681. struct test_conv_transpose_1d : public test_case {
  3682. const std::array<int64_t, 4> ne_input;
  3683. const std::array<int64_t, 4> ne_kernel;
  3684. const int s0; // stride
  3685. const int p0; // padding
  3686. const int d0; // dilation
  3687. std::string vars() override {
  3688. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3689. }
  3690. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3691. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3692. int s0 = 1, int p0 = 0, int d0 = 1)
  3693. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3694. ggml_tensor * build_graph(ggml_context * ctx) override {
  3695. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3696. ggml_set_name(input, "input");
  3697. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3698. ggml_set_name(kernel, "kernel");
  3699. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3700. ggml_set_name(out, "out");
  3701. return out;
  3702. }
  3703. };
  3704. // GGML_OP_CONV_TRANSPOSE_2D
  3705. struct test_conv_transpose_2d : public test_case {
  3706. const std::array<int64_t, 4> ne_input;
  3707. const std::array<int64_t, 4> ne_kernel;
  3708. const int stride;
  3709. std::string vars() override {
  3710. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3711. }
  3712. double max_nmse_err() override {
  3713. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3714. }
  3715. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3716. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3717. int stride = 1)
  3718. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3719. ggml_tensor * build_graph(ggml_context * ctx) override {
  3720. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3721. ggml_set_name(input, "input");
  3722. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3723. ggml_set_name(kernel, "kernel");
  3724. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3725. ggml_set_name(out, "out");
  3726. return out;
  3727. }
  3728. };
  3729. // GGML_OP_IM2COL
  3730. struct test_im2col : public test_case {
  3731. const ggml_type type_input;
  3732. const ggml_type type_kernel;
  3733. const ggml_type dst_type;
  3734. const std::array<int64_t, 4> ne_input;
  3735. const std::array<int64_t, 4> ne_kernel;
  3736. // stride
  3737. const int s0;
  3738. const int s1;
  3739. // padding
  3740. const int p0;
  3741. const int p1;
  3742. // dilation
  3743. const int d0;
  3744. const int d1;
  3745. // mode
  3746. const bool is_2D;
  3747. std::string vars() override {
  3748. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3749. }
  3750. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3751. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3752. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3753. int s0 = 1, int s1 = 1,
  3754. int p0 = 1, int p1 = 1,
  3755. int d0 = 1, int d1 = 1,
  3756. bool is_2D = true)
  3757. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3758. ggml_tensor * build_graph(ggml_context * ctx) override {
  3759. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3760. ggml_set_param(input);
  3761. ggml_set_name(input, "input");
  3762. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3763. ggml_set_name(kernel, "kernel");
  3764. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3765. ggml_set_name(out, "out");
  3766. return out;
  3767. }
  3768. };
  3769. // GGML_OP_IM2COL_3D
  3770. struct test_im2col_3d : public test_case {
  3771. const ggml_type type_input;
  3772. const ggml_type type_kernel;
  3773. const ggml_type dst_type;
  3774. const std::array<int64_t, 4> ne_input;
  3775. const std::array<int64_t, 4> ne_kernel;
  3776. // stride
  3777. const int s0;
  3778. const int s1;
  3779. const int s2;
  3780. // padding
  3781. const int p0;
  3782. const int p1;
  3783. const int p2;
  3784. // dilation
  3785. const int d0;
  3786. const int d1;
  3787. const int d2;
  3788. const int64_t IC;
  3789. const bool v;
  3790. std::string vars() override {
  3791. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3792. }
  3793. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3794. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3795. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3796. int64_t IC = 3,
  3797. int s0 = 1, int s1 = 1, int s2 = 1,
  3798. int p0 = 1, int p1 = 1, int p2 = 1,
  3799. int d0 = 1, int d1 = 1, int d2 = 1,
  3800. bool v = false)
  3801. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3802. ggml_tensor * build_graph(ggml_context * ctx) override {
  3803. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3804. ggml_set_param(input);
  3805. ggml_set_name(input, "input");
  3806. if (v) {
  3807. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3808. ggml_set_name(input, "view_of_input");
  3809. }
  3810. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3811. ggml_set_name(kernel, "kernel");
  3812. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3813. ggml_set_name(out, "out");
  3814. return out;
  3815. }
  3816. };
  3817. // CONV_2D
  3818. struct test_conv_2d : public test_case {
  3819. const std::array<int64_t, 4> ne_input;
  3820. const std::array<int64_t, 4> ne_kernel;
  3821. const ggml_type type_kernel;
  3822. const int stride0;
  3823. const int stride1;
  3824. const int padding0;
  3825. const int padding1;
  3826. const int dilation0;
  3827. const int dilation1;
  3828. // Whether the inputs are contiguous in the channel dim or the width dim
  3829. const bool cwhn;
  3830. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3831. // uses ggml_conv_2d:
  3832. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3833. // CONV_2D graph will be built, while
  3834. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3835. // IM2COL -> MUL_MM graph will be built.
  3836. std::string vars() override {
  3837. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3838. }
  3839. double max_nmse_err() override {
  3840. return 5e-4;
  3841. }
  3842. uint64_t op_flops(ggml_tensor * t) override {
  3843. GGML_UNUSED(t);
  3844. // Just counting matmul costs:
  3845. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3846. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3847. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3848. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3849. };
  3850. int64_t W = ne_input[0];
  3851. int64_t H = ne_input[1];
  3852. int64_t KW = ne_kernel[0];
  3853. int64_t KH = ne_kernel[1];
  3854. int64_t Cin = ne_kernel[2];
  3855. int64_t Cout = ne_kernel[3];
  3856. int64_t N = ne_input[3];
  3857. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3858. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3859. int64_t K = Cout;
  3860. int64_t CRS = Cin * KH * KW;
  3861. int64_t NPQ = N * OH * OW;
  3862. return K * NPQ * (2 * CRS - 1);
  3863. }
  3864. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3865. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3866. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3867. ne_input(ne_input),
  3868. ne_kernel(ne_kernel),
  3869. type_kernel(type_kernel),
  3870. stride0(stride0),
  3871. stride1(stride1),
  3872. padding0(padding0),
  3873. padding1(padding1),
  3874. dilation0(dilation0),
  3875. dilation1(dilation1),
  3876. cwhn(cwhn) {}
  3877. ggml_tensor * build_graph(ggml_context * ctx) override {
  3878. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3879. ggml_set_name(input, "input");
  3880. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3881. ggml_set_name(kernel, "kernel");
  3882. if (cwhn) {
  3883. // change memory layout to channel-most-contiguous (CWHN),
  3884. // then permute it back so NE matches the original input
  3885. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3886. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3887. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3888. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3889. }
  3890. ggml_tensor * out =
  3891. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3892. ggml_set_name(out, "out");
  3893. return out;
  3894. }
  3895. };
  3896. // GGML_OP_CONV_2D_DW
  3897. struct test_conv_2d_dw : public test_case {
  3898. const std::array<int64_t, 4> ne_input;
  3899. const std::array<int64_t, 4> ne_kernel;
  3900. const int stride;
  3901. const int padding;
  3902. const int dilation;
  3903. const bool cwhn;
  3904. std::string vars() override {
  3905. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3906. }
  3907. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3908. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3909. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3910. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3911. ggml_tensor * build_graph(ggml_context * ctx) override {
  3912. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3913. ggml_set_name(input, "input");
  3914. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3915. ggml_set_name(kernel, "kernel");
  3916. if (cwhn) {
  3917. // change memory layout to channel-most-contiguous (CWHN),
  3918. // then permute it back so NE matches the original input
  3919. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3920. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3921. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3922. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3923. }
  3924. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3925. ctx, kernel, input,
  3926. stride, stride, padding, padding, dilation, dilation);
  3927. ggml_set_name(out, "out");
  3928. return out;
  3929. }
  3930. };
  3931. // GGML_OP_CONV_3D
  3932. struct test_conv_3d : public test_case {
  3933. // Logical 5D dimensions
  3934. const int64_t N, IC, ID, IH, IW;
  3935. const int64_t OC, KD, KH, KW;
  3936. // Conv params
  3937. const int s0, s1, s2;
  3938. const int p0, p1, p2;
  3939. const int d0, d1, d2;
  3940. // Types
  3941. const ggml_type type_kernel;
  3942. std::string op_desc(ggml_tensor * t) override {
  3943. GGML_UNUSED(t);
  3944. return "CONV_3D";
  3945. }
  3946. std::string vars() override {
  3947. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3948. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3949. }
  3950. double max_nmse_err() override {
  3951. return 5e-4;
  3952. }
  3953. uint64_t op_flops(ggml_tensor * t) override {
  3954. GGML_UNUSED(t);
  3955. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3956. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3957. };
  3958. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3959. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3960. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3961. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3962. }
  3963. test_conv_3d(
  3964. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3965. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3966. int s0, int s1, int s2,
  3967. int p0, int p1, int p2,
  3968. int d0, int d1, int d2,
  3969. ggml_type type_kernel
  3970. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3971. OC(OC), KD(KD), KH(KH), KW(KW),
  3972. s0(s0), s1(s1), s2(s2),
  3973. p0(p0), p1(p1), p2(p2),
  3974. d0(d0), d1(d1), d2(d2),
  3975. type_kernel(type_kernel) {}
  3976. ggml_tensor * build_graph(ggml_context * ctx) override {
  3977. // GGML input tensor is packed as [W, H, D, C*N]
  3978. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3979. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3980. ggml_set_name(input, "input");
  3981. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3982. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3983. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3984. ggml_set_name(kernel, "kernel");
  3985. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3986. ggml_set_name(out, "out");
  3987. return out;
  3988. }
  3989. };
  3990. // GGML_OP_CONCAT
  3991. struct test_concat : public test_case {
  3992. const ggml_type type;
  3993. const std::array<int64_t, 4> ne_a;
  3994. const int64_t ne_b_d;
  3995. const int dim;
  3996. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3997. std::string vars() override {
  3998. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3999. }
  4000. test_concat(ggml_type type = GGML_TYPE_F32,
  4001. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  4002. int64_t ne_b_d = 5,
  4003. int dim = 2, int v = 0)
  4004. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  4005. ggml_tensor * build_graph(ggml_context * ctx) override {
  4006. auto ne_b = ne_a;
  4007. ne_b[dim] = ne_b_d;
  4008. ggml_tensor * a;
  4009. if (v & 1) {
  4010. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  4011. a = ggml_new_tensor(ctx, type, 4, ne.data());
  4012. ggml_set_name(a, "a");
  4013. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  4014. ggml_set_name(a, "view_of_a");
  4015. } else {
  4016. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4017. ggml_set_name(a, "a");
  4018. }
  4019. ggml_tensor * b;
  4020. if (v & 2) {
  4021. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  4022. b = ggml_new_tensor(ctx, type, 4, ne.data());
  4023. ggml_set_name(b, "b");
  4024. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  4025. ggml_set_name(b, "view_of_b");
  4026. } else {
  4027. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4028. ggml_set_name(b, "b");
  4029. }
  4030. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  4031. ggml_set_name(out, "out");
  4032. return out;
  4033. }
  4034. };
  4035. // GGML_OP_ARGSORT
  4036. struct test_argsort : public test_case {
  4037. const ggml_type type;
  4038. const std::array<int64_t, 4> ne;
  4039. ggml_sort_order order;
  4040. std::string vars() override {
  4041. return VARS_TO_STR3(type, ne, order);
  4042. }
  4043. test_argsort(ggml_type type = GGML_TYPE_F32,
  4044. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4045. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  4046. : type(type), ne(ne), order(order) {}
  4047. ggml_tensor * build_graph(ggml_context * ctx) override {
  4048. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4049. ggml_set_name(a, "a");
  4050. ggml_tensor * out = ggml_argsort(ctx, a, order);
  4051. ggml_set_name(out, "out");
  4052. return out;
  4053. }
  4054. void initialize_tensors(ggml_context * ctx) override {
  4055. std::random_device rd;
  4056. std::default_random_engine rng(rd());
  4057. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4058. if (t->type == GGML_TYPE_I32) {
  4059. // indices
  4060. std::vector<int> data(ggml_nelements(t));
  4061. for (int i = 0; i < ggml_nelements(t); i++) {
  4062. data[i] = rand();
  4063. }
  4064. std::shuffle(data.begin(), data.end(), rng);
  4065. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  4066. } else if (t->type == GGML_TYPE_F32) {
  4067. // initialize with unique values to avoid ties
  4068. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4069. std::vector<float> data(t->ne[0]);
  4070. for (int i = 0; i < t->ne[0]; i++) {
  4071. data[i] = i;
  4072. }
  4073. std::shuffle(data.begin(), data.end(), rng);
  4074. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4075. }
  4076. } else {
  4077. GGML_ABORT("fatal error");
  4078. }
  4079. }
  4080. }
  4081. };
  4082. struct test_topk_moe: public test_case {
  4083. const std::array<int64_t, 4> ne;
  4084. const int n_expert_used;
  4085. const bool with_norm;
  4086. const bool delayed_softmax;
  4087. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  4088. int n_expert_used = 1,
  4089. bool with_norm = false,
  4090. bool delayed_softmax = false) :
  4091. ne(ne),
  4092. n_expert_used(n_expert_used),
  4093. with_norm(with_norm),
  4094. delayed_softmax(delayed_softmax) {
  4095. GGML_ASSERT(n_expert_used <= ne[0]);
  4096. GGML_ASSERT(!(with_norm && delayed_softmax));
  4097. }
  4098. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  4099. std::string op_desc(ggml_tensor * t) override {
  4100. GGML_UNUSED(t);
  4101. return "TOPK_MOE";
  4102. }
  4103. bool run_whole_graph() override { return true; }
  4104. ggml_tensor * build_graph(ggml_context * ctx) override {
  4105. const int n_expert = ne[0];
  4106. const int n_tokens = ne[1];
  4107. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4108. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  4109. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  4110. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  4111. if (delayed_softmax) {
  4112. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4113. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  4114. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4115. }
  4116. if (with_norm) {
  4117. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4118. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  4119. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  4120. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  4121. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4122. }
  4123. ggml_set_name(out, "out");
  4124. return out;
  4125. }
  4126. };
  4127. struct test_mul_mat_vec_fusion : public test_case {
  4128. const ggml_type type;
  4129. const ggml_glu_op glu_op;
  4130. const int64_t m;
  4131. const int64_t n;
  4132. const int64_t k;
  4133. const bool use_id;
  4134. const int n_mats;
  4135. const int n_used;
  4136. const bool b; // broadcast b matrix (only for use_id)
  4137. const bool with_bias;
  4138. const bool with_gate;
  4139. std::array<int64_t, 2> batch_dims;
  4140. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4141. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
  4142. std::array<int64_t, 2> batch_dims = {4, 2})
  4143. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
  4144. if (use_id) {
  4145. GGML_ASSERT(n_used <= n_mats);
  4146. }
  4147. }
  4148. std::string vars() override {
  4149. return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
  4150. }
  4151. std::string op_desc(ggml_tensor * t) override {
  4152. GGML_UNUSED(t);
  4153. return "MUL_MAT_VEC_FUSION";
  4154. }
  4155. bool run_whole_graph() override { return true; }
  4156. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4157. ggml_tensor * out = nullptr;
  4158. if (with_gate) {
  4159. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4160. constexpr float alpha = 1.702f;
  4161. constexpr float limit = 7.0f;
  4162. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4163. } else {
  4164. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4165. }
  4166. }
  4167. return out;
  4168. }
  4169. ggml_tensor * build_graph(ggml_context * ctx) override {
  4170. if (!use_id) {
  4171. const int channels = batch_dims[0];
  4172. const int samples = batch_dims[1];
  4173. std::array<int64_t, 4> ne = { k, m, channels, samples };
  4174. std::array<int64_t, 4> ne0 = { k, n, channels, samples };
  4175. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4176. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4177. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4178. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4179. if (with_bias) {
  4180. std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
  4181. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4182. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4183. }
  4184. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4185. if (with_bias && with_gate) {
  4186. std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
  4187. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4188. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4189. }
  4190. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4191. std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
  4192. ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
  4193. out = ggml_add(ctx, out, bias2);
  4194. ggml_set_name(out, "out");
  4195. return out;
  4196. } else {
  4197. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4198. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4199. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4200. if (n_used != n_mats) {
  4201. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4202. }
  4203. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4204. ggml_set_name(cur, "cur");
  4205. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4206. if (with_bias) {
  4207. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4208. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4209. }
  4210. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4211. if (with_bias && with_gate) {
  4212. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4213. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4214. }
  4215. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4216. std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  4217. ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
  4218. out = ggml_mul(ctx, out, scale);
  4219. ggml_set_name(out, "out");
  4220. return out;
  4221. }
  4222. }
  4223. void initialize_tensors(ggml_context * ctx) override {
  4224. if (!use_id) {
  4225. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4226. init_tensor_uniform(t);
  4227. }
  4228. } else {
  4229. init_mul_mat_id_tensors(ctx, n_mats);
  4230. }
  4231. }
  4232. double max_nmse_err() override {
  4233. return 5e-3;
  4234. }
  4235. };
  4236. // GGML_OP_SUM
  4237. struct test_sum : public test_case {
  4238. const ggml_type type;
  4239. const std::array<int64_t, 4> ne;
  4240. const std::array<int64_t, 4> permute;
  4241. bool _use_permute;
  4242. std::string vars() override {
  4243. std::string v = VARS_TO_STR2(type, ne);
  4244. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4245. return v;
  4246. }
  4247. test_sum(ggml_type type = GGML_TYPE_F32,
  4248. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4249. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4250. : type(type), ne(ne), permute(permute),
  4251. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4252. ggml_tensor * build_graph(ggml_context * ctx) override {
  4253. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4254. ggml_set_param(a);
  4255. ggml_set_name(a, "a");
  4256. if (_use_permute) {
  4257. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4258. ggml_set_name(a, "a_permuted");
  4259. }
  4260. ggml_tensor * out = ggml_sum(ctx, a);
  4261. ggml_set_name(out, "out");
  4262. return out;
  4263. }
  4264. float grad_eps() override {
  4265. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4266. }
  4267. };
  4268. // GGML_OP_SUM_ROWS
  4269. struct test_sum_rows : public test_case {
  4270. const ggml_type type;
  4271. const std::array<int64_t, 4> ne;
  4272. const bool permute;
  4273. const bool slice;
  4274. std::string vars() override {
  4275. return VARS_TO_STR4(type, ne, permute, slice);
  4276. }
  4277. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4278. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4279. bool permute = false, bool slice = false)
  4280. : type(type), ne(ne), permute(permute), slice(slice) {}
  4281. ggml_tensor * build_graph(ggml_context * ctx) override {
  4282. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4283. ggml_set_param(a);
  4284. ggml_set_name(a, "a");
  4285. if (slice) {
  4286. a = ggml_view_4d(ctx, a,
  4287. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4288. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4289. }
  4290. if (permute) {
  4291. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4292. }
  4293. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4294. ggml_set_name(out, "out");
  4295. return out;
  4296. }
  4297. };
  4298. // GGML_OP_MEAN
  4299. struct test_mean : public test_case {
  4300. const ggml_type type;
  4301. const std::array<int64_t, 4> ne;
  4302. std::string vars() override {
  4303. return VARS_TO_STR2(type, ne);
  4304. }
  4305. test_mean(ggml_type type = GGML_TYPE_F32,
  4306. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4307. : type(type), ne(ne) {}
  4308. ggml_tensor * build_graph(ggml_context * ctx) override {
  4309. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4310. ggml_set_param(a);
  4311. ggml_set_name(a, "a");
  4312. ggml_tensor * out = ggml_mean(ctx, a);
  4313. ggml_set_name(out, "out");
  4314. return out;
  4315. }
  4316. float grad_eps() override {
  4317. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4318. }
  4319. };
  4320. // GGML_OP_UPSCALE
  4321. struct test_upscale : public test_case {
  4322. const ggml_type type;
  4323. const std::array<int64_t, 4> ne;
  4324. const int32_t scale_factor;
  4325. const bool transpose;
  4326. const ggml_scale_mode mode;
  4327. std::string vars() override {
  4328. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4329. }
  4330. test_upscale(ggml_type type = GGML_TYPE_F32,
  4331. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4332. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4333. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4334. ggml_tensor * build_graph(ggml_context * ctx) override {
  4335. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4336. ggml_set_name(a, "a");
  4337. if (transpose) {
  4338. a = ggml_transpose(ctx, a);
  4339. ggml_set_name(a, "a_transposed");
  4340. }
  4341. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4342. ggml_set_name(out, "out");
  4343. return out;
  4344. }
  4345. };
  4346. // GGML_OP_UPSCALE (via ggml_interpolate)
  4347. struct test_interpolate : public test_case {
  4348. const ggml_type type;
  4349. const std::array<int64_t, 4> ne;
  4350. const std::array<int64_t, 4> ne_tgt;
  4351. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4352. std::string vars() override {
  4353. ggml_scale_mode mode = (ggml_scale_mode)(this->mode & 0xFF);
  4354. std::string flags = (this->mode & GGML_SCALE_FLAG_ALIGN_CORNERS) ? "align_corners" : "none";
  4355. return VARS_TO_STR5(type, ne, ne_tgt, mode, flags);
  4356. }
  4357. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4358. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4359. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4360. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4361. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4362. ggml_tensor * build_graph(ggml_context * ctx) override {
  4363. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4364. ggml_set_name(a, "a");
  4365. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4366. ggml_set_name(out, "out");
  4367. return out;
  4368. }
  4369. };
  4370. // GGML_OP_GROUP_NORM
  4371. struct test_group_norm : public test_case {
  4372. const ggml_type type;
  4373. const std::array<int64_t, 4> ne;
  4374. const int32_t num_groups;
  4375. const float eps;
  4376. std::string vars() override {
  4377. return VARS_TO_STR4(type, ne, num_groups, eps);
  4378. }
  4379. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4380. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4381. int32_t num_groups = 32,
  4382. float eps = 1e-6f)
  4383. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4384. ggml_tensor * build_graph(ggml_context * ctx) override {
  4385. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4386. ggml_set_name(a, "a");
  4387. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4388. ggml_set_name(out, "out");
  4389. return out;
  4390. }
  4391. };
  4392. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4393. struct test_group_norm_mul_add : public test_case {
  4394. const ggml_type type;
  4395. const std::array<int64_t, 4> ne;
  4396. int num_groups;
  4397. float eps;
  4398. std::string op_desc(ggml_tensor * t) override {
  4399. GGML_UNUSED(t);
  4400. return "GROUP_NORM_MUL_ADD";
  4401. }
  4402. bool run_whole_graph() override { return true; }
  4403. std::string vars() override {
  4404. return VARS_TO_STR4(type, ne, num_groups, eps);
  4405. }
  4406. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4407. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4408. int num_groups = 4,
  4409. float eps = 1e-5f)
  4410. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4411. ggml_tensor * build_graph(ggml_context * ctx) override {
  4412. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4413. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4414. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4415. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4416. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4417. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4418. ggml_tensor * m = ggml_mul(ctx, n, w);
  4419. ggml_tensor * out = ggml_add(ctx, m, b);
  4420. ggml_set_name(out, "out");
  4421. return out;
  4422. }
  4423. };
  4424. // GGML_OP_L2_NORM
  4425. struct test_l2_norm : public test_case {
  4426. const ggml_type type;
  4427. const std::array<int64_t, 4> ne;
  4428. const float eps;
  4429. std::string vars() override {
  4430. return VARS_TO_STR2(type, ne);
  4431. }
  4432. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4433. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4434. float eps = 1e-12f)
  4435. : type(type), ne(ne), eps(eps) {}
  4436. ggml_tensor * build_graph(ggml_context * ctx) override {
  4437. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4438. ggml_set_name(a, "a");
  4439. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4440. ggml_set_name(out, "out");
  4441. return out;
  4442. }
  4443. };
  4444. // GGML_OP_ACC
  4445. struct test_acc : public test_case {
  4446. const ggml_type type;
  4447. const std::array<int64_t, 4> ne_a;
  4448. const std::array<int64_t, 4> ne_b;
  4449. std::string vars() override {
  4450. return VARS_TO_STR3(type, ne_a, ne_b);
  4451. }
  4452. test_acc(ggml_type type = GGML_TYPE_F32,
  4453. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4454. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4455. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4456. ggml_tensor * build_graph(ggml_context * ctx) override {
  4457. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4458. ggml_set_param(a);
  4459. ggml_set_name(a, "a");
  4460. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4461. ggml_set_param(b);
  4462. ggml_set_name(b, "b");
  4463. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4464. ggml_set_name(out, "out");
  4465. return out;
  4466. }
  4467. };
  4468. // GGML_OP_PAD
  4469. struct test_pad : public test_case {
  4470. const ggml_type type;
  4471. const std::array<int64_t, 4> ne_a;
  4472. const int pad_0;
  4473. const int pad_1;
  4474. std::string vars() override {
  4475. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4476. }
  4477. test_pad(ggml_type type = GGML_TYPE_F32,
  4478. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4479. int pad_0 = 1, int pad_1 = 1)
  4480. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4481. ggml_tensor * build_graph(ggml_context * ctx) override {
  4482. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4483. ggml_set_name(a, "a");
  4484. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4485. ggml_set_name(out, "out");
  4486. return out;
  4487. }
  4488. };
  4489. // GGML_OP_PAD (with extension)
  4490. struct test_pad_ext : public test_case {
  4491. const ggml_type type;
  4492. const std::array<int64_t, 4> ne_a;
  4493. const int lp0;
  4494. const int rp0;
  4495. const int lp1;
  4496. const int rp1;
  4497. const int lp2;
  4498. const int rp2;
  4499. const int lp3;
  4500. const int rp3;
  4501. const bool v;
  4502. std::string vars() override {
  4503. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4504. }
  4505. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4506. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4507. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4508. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4509. bool v = false)
  4510. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4511. ggml_tensor * build_graph(ggml_context * ctx) override {
  4512. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4513. ggml_set_name(a, "a");
  4514. if (v) {
  4515. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4516. ggml_set_name(a, "view of a");
  4517. }
  4518. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4519. ggml_set_name(out, "out");
  4520. return out;
  4521. }
  4522. };
  4523. // GGML_OP_PAD_REFLECT_1D
  4524. struct test_pad_reflect_1d : public test_case {
  4525. const ggml_type type;
  4526. const std::array<int64_t, 4> ne_a;
  4527. const int pad_0;
  4528. const int pad_1;
  4529. std::string vars() override {
  4530. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4531. }
  4532. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4533. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4534. int pad_0 = 10, int pad_1 = 9)
  4535. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4536. ggml_tensor * build_graph(ggml_context * ctx) override {
  4537. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4538. ggml_set_name(a, "a");
  4539. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4540. ggml_set_name(out, "out");
  4541. return out;
  4542. }
  4543. };
  4544. // GGML_OP_ROLL
  4545. struct test_roll : public test_case {
  4546. const int shift0;
  4547. const int shift1;
  4548. const int shift3;
  4549. const int shift4;
  4550. std::string vars() override {
  4551. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4552. }
  4553. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4554. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4555. ggml_tensor * build_graph(ggml_context * ctx) override {
  4556. int64_t ne[4] = {10, 5, 4, 3};
  4557. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4558. ggml_set_name(a, "a");
  4559. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4560. ggml_set_name(out, "out");
  4561. return out;
  4562. }
  4563. };
  4564. // GGML_OP_ARANGE
  4565. struct test_arange : public test_case {
  4566. const ggml_type type;
  4567. const float start;
  4568. const float stop;
  4569. const float step;
  4570. std::string vars() override {
  4571. return VARS_TO_STR4(type, start, stop, step);
  4572. }
  4573. test_arange(ggml_type type = GGML_TYPE_F32,
  4574. float start = 0.f, float stop = 10.f, float step = 1.f)
  4575. : type(type), start(start), stop(stop), step(step) {}
  4576. ggml_tensor * build_graph(ggml_context * ctx) override {
  4577. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4578. ggml_set_name(out, "out");
  4579. return out;
  4580. }
  4581. };
  4582. // GGML_OP_TIMESTEP_EMBEDDING
  4583. struct test_timestep_embedding : public test_case {
  4584. const ggml_type type;
  4585. const std::array<int64_t, 4> ne_a;
  4586. const int dim;
  4587. const int max_period;
  4588. std::string vars() override {
  4589. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4590. }
  4591. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4592. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4593. int dim = 320, int max_period=10000)
  4594. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4595. ggml_tensor * build_graph(ggml_context * ctx) override {
  4596. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4597. ggml_set_name(a, "a");
  4598. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4599. ggml_set_name(out, "out");
  4600. return out;
  4601. }
  4602. };
  4603. // GGML_OP_LEAKY_RELU
  4604. struct test_leaky_relu : public test_case {
  4605. const ggml_type type;
  4606. const std::array<int64_t, 4> ne_a;
  4607. const float negative_slope;
  4608. std::string vars() override {
  4609. return VARS_TO_STR3(type, ne_a, negative_slope);
  4610. }
  4611. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4612. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4613. float negative_slope = 0.1f)
  4614. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4615. ggml_tensor * build_graph(ggml_context * ctx) override {
  4616. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4617. ggml_set_name(a, "a");
  4618. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4619. ggml_set_name(out, "out");
  4620. return out;
  4621. }
  4622. };
  4623. // GGML_OP_FLASH_ATTN_EXT
  4624. struct test_flash_attn_ext : public test_case {
  4625. const int64_t hsk; // K head size
  4626. const int64_t hsv; // V head size
  4627. const int64_t nh; // num heads
  4628. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4629. const int64_t kv; // kv size
  4630. const int64_t nb; // batch size
  4631. const bool mask; // use mask
  4632. const bool sinks; // use sinks
  4633. const float max_bias; // ALiBi
  4634. const float logit_softcap; // Gemma 2
  4635. const ggml_prec prec;
  4636. const ggml_type type_KV;
  4637. std::array<int32_t, 4> permute;
  4638. std::string vars() override {
  4639. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4640. }
  4641. double max_nmse_err() override {
  4642. return 5e-4;
  4643. }
  4644. uint64_t op_flops(ggml_tensor * t) override {
  4645. GGML_UNUSED(t);
  4646. // Just counting matmul costs:
  4647. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4648. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4649. }
  4650. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4651. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4652. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4653. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4654. ggml_tensor * build_graph(ggml_context * ctx) override {
  4655. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4656. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4657. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4658. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4659. int64_t ne_perm[4];
  4660. for (int i = 0; i < 4; ++i) {
  4661. ne_perm[permute[i]] = ne[i];
  4662. }
  4663. ggml_tensor * t;
  4664. if (is_view) {
  4665. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4666. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4667. } else {
  4668. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4669. }
  4670. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4671. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4672. }
  4673. return t;
  4674. };
  4675. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4676. ggml_set_name(q, "q");
  4677. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4678. ggml_set_name(k, "k");
  4679. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4680. ggml_set_name(v, "v");
  4681. ggml_tensor * m = nullptr;
  4682. if (mask) {
  4683. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4684. ggml_set_name(m, "m");
  4685. }
  4686. ggml_tensor * s = nullptr;
  4687. if (sinks) {
  4688. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4689. ggml_set_name(s, "s");
  4690. }
  4691. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4692. ggml_flash_attn_ext_add_sinks(out, s);
  4693. ggml_flash_attn_ext_set_prec (out, prec);
  4694. ggml_set_name(out, "out");
  4695. return out;
  4696. }
  4697. void initialize_tensors(ggml_context * ctx) override {
  4698. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4699. if (strcmp(t->name, "s") == 0) {
  4700. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4701. init_tensor_uniform(t, -10.0f, 10.0f);
  4702. } else if (strcmp(t->name, "m") == 0) {
  4703. init_tensor_kq_mask(t);
  4704. } else {
  4705. init_tensor_uniform(t);
  4706. }
  4707. }
  4708. }
  4709. bool grad_precise() override {
  4710. return true;
  4711. }
  4712. };
  4713. // GGML_OP_CROSS_ENTROPY_LOSS
  4714. struct test_cross_entropy_loss : public test_case {
  4715. const ggml_type type;
  4716. const std::array<int64_t, 4> ne;
  4717. std::string vars() override {
  4718. return VARS_TO_STR2(type, ne);
  4719. }
  4720. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4721. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4722. : type(type), ne(ne) {}
  4723. ggml_tensor * build_graph(ggml_context * ctx) override {
  4724. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4725. ggml_set_param(logits);
  4726. ggml_set_name(logits, "logits");
  4727. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4728. // The labels are assumed to be constant -> no gradients.
  4729. ggml_set_name(labels, "labels");
  4730. // Ensure labels add up to 1:
  4731. labels = ggml_soft_max(ctx, labels);
  4732. ggml_set_name(labels, "labels_normalized");
  4733. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4734. ggml_set_name(out, "out");
  4735. return out;
  4736. }
  4737. void initialize_tensors(ggml_context * ctx) override {
  4738. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4739. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4740. init_tensor_uniform(t, -100.0f, 100.0f);
  4741. }
  4742. }
  4743. float grad_eps() override {
  4744. return 1.0f;
  4745. }
  4746. bool grad_precise() override {
  4747. return true;
  4748. }
  4749. };
  4750. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4751. struct test_cross_entropy_loss_back : public test_case {
  4752. const ggml_type type;
  4753. const std::array<int64_t, 4> ne;
  4754. std::string vars() override {
  4755. return VARS_TO_STR2(type, ne);
  4756. }
  4757. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4758. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4759. : type(type), ne(ne) {}
  4760. ggml_tensor * build_graph(ggml_context * ctx) override {
  4761. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4762. ggml_set_name(grad, "grad");
  4763. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4764. ggml_set_name(logits, "logits");
  4765. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4766. ggml_set_name(labels, "labels");
  4767. // Ensure labels add up to 1:
  4768. labels = ggml_soft_max(ctx, labels);
  4769. ggml_set_name(labels, "labels_normalized");
  4770. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4771. ggml_set_name(out, "out");
  4772. return out;
  4773. }
  4774. };
  4775. // GGML_OP_OPT_STEP_ADAMW
  4776. struct test_opt_step_adamw : public test_case {
  4777. const ggml_type type;
  4778. const std::array<int64_t, 4> ne;
  4779. std::string vars() override {
  4780. return VARS_TO_STR2(type, ne);
  4781. }
  4782. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4783. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4784. : type(type), ne(ne) {}
  4785. ggml_tensor * build_graph(ggml_context * ctx) override {
  4786. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4787. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4788. ggml_set_name(a, "a");
  4789. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4790. ggml_set_name(grad, "grad");
  4791. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4792. ggml_set_name(grad_m, "grad_m");
  4793. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4794. ggml_set_name(grad_v, "grad_v");
  4795. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4796. ggml_set_name(adamw_params, "adamw_params");
  4797. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4798. ggml_set_name(out, "out");
  4799. return out;
  4800. }
  4801. void initialize_tensors(ggml_context * ctx) override {
  4802. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4803. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4804. }
  4805. }
  4806. bool grad_precise() override {
  4807. return true;
  4808. }
  4809. };
  4810. // GGML_OP_OPT_STEP_SGD
  4811. struct test_opt_step_sgd : public test_case {
  4812. const ggml_type type;
  4813. const std::array<int64_t, 4> ne;
  4814. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4815. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4816. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4817. : type(type), ne(ne) {}
  4818. ggml_tensor * build_graph(ggml_context * ctx) override {
  4819. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4820. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4821. ggml_set_name(a, "a");
  4822. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4823. ggml_set_name(grad, "grad");
  4824. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4825. ggml_set_name(sgd_params, "sgd_params");
  4826. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4827. ggml_set_name(out, "out");
  4828. return out;
  4829. }
  4830. void initialize_tensors(ggml_context * ctx) override {
  4831. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4832. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4833. }
  4834. }
  4835. bool grad_precise() override {
  4836. return true;
  4837. }
  4838. };
  4839. // GGML_OP_CUMSUM
  4840. struct test_cumsum : public test_case {
  4841. const ggml_type type;
  4842. const std::array<int64_t, 4> ne;
  4843. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4844. test_cumsum(ggml_type type = GGML_TYPE_F32,
  4845. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4846. : type(type), ne(ne) {}
  4847. ggml_tensor * build_graph(ggml_context * ctx) override {
  4848. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4849. ggml_set_param(a);
  4850. ggml_set_name(a, "a");
  4851. ggml_tensor * out = ggml_cumsum(ctx, a);
  4852. ggml_set_name(out, "out");
  4853. return out;
  4854. }
  4855. void initialize_tensors(ggml_context * ctx) override {
  4856. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4857. init_tensor_uniform(t, -1.0f, 1.0f);
  4858. }
  4859. }
  4860. };
  4861. // GGML_OP_XIELU
  4862. struct test_xielu : public test_case {
  4863. const ggml_type type;
  4864. const std::array<int64_t, 4> ne;
  4865. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4866. test_xielu(ggml_type type = GGML_TYPE_F32,
  4867. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4868. : type(type), ne(ne) {}
  4869. ggml_tensor * build_graph(ggml_context * ctx) override {
  4870. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4871. ggml_set_param(a);
  4872. ggml_set_name(a, "a");
  4873. float alpha_n = 4.0f;
  4874. float alpha_p = 20.0f;
  4875. float beta = 0.5f;
  4876. float eps = 0.0000001f;
  4877. ggml_tensor * out = ggml_xielu(ctx, a, alpha_n, alpha_p, beta, eps);
  4878. ggml_set_name(out, "out");
  4879. return out;
  4880. }
  4881. void initialize_tensors(ggml_context * ctx) override {
  4882. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4883. init_tensor_uniform(t, -1.0f, 1.0f);
  4884. }
  4885. }
  4886. };
  4887. // GGML_OP_TRI
  4888. struct test_tri : public test_case {
  4889. const ggml_type type;
  4890. const std::array<int64_t, 4> ne;
  4891. const ggml_tri_type tri_type;
  4892. std::string vars() override { return VARS_TO_STR3(type, ne, tri_type); }
  4893. test_tri(ggml_tri_type tri_type, ggml_type type = GGML_TYPE_F32,
  4894. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  4895. : type(type), ne(ne), tri_type(tri_type) {
  4896. GGML_ASSERT(ne[0] == ne[1]);
  4897. }
  4898. ggml_tensor * build_graph(ggml_context * ctx) override {
  4899. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4900. ggml_set_param(a);
  4901. ggml_set_name(a, "a");
  4902. ggml_tensor * out = ggml_tri(ctx, a, tri_type);
  4903. ggml_set_name(out, "out");
  4904. return out;
  4905. }
  4906. void initialize_tensors(ggml_context * ctx) override {
  4907. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4908. init_tensor_uniform(t, -1.0f, 1.0f);
  4909. }
  4910. }
  4911. };
  4912. // GGML_OP_FILL
  4913. struct test_fill : public test_case {
  4914. const ggml_type type;
  4915. const std::array<int64_t, 4> ne;
  4916. float c;
  4917. std::string vars() override { return VARS_TO_STR3(type, ne, c); }
  4918. test_fill(float c, ggml_type type = GGML_TYPE_F32,
  4919. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  4920. : type(type), ne(ne), c(c) {}
  4921. ggml_tensor * build_graph(ggml_context * ctx) override {
  4922. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4923. ggml_set_param(a);
  4924. ggml_set_name(a, "a");
  4925. ggml_tensor * out = ggml_fill(ctx, a, c);
  4926. ggml_set_name(out, "out");
  4927. return out;
  4928. }
  4929. };
  4930. // GGML_OP_SOLVE_TRI
  4931. struct test_solve_tri : public test_case {
  4932. const ggml_type type;
  4933. const std::array<int64_t, 4> ne_lhs;
  4934. const std::array<int64_t, 4> ne_rhs;
  4935. std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
  4936. test_solve_tri(ggml_type type = GGML_TYPE_F32,
  4937. std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
  4938. std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
  4939. )
  4940. : type(type), ne_lhs(ne_lhs), ne_rhs(ne_rhs) {}
  4941. ggml_tensor * build_graph(ggml_context * ctx) override {
  4942. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne_lhs[0], ne_lhs[1], ne_lhs[2], ne_lhs[3]);
  4943. ggml_set_param(a);
  4944. ggml_set_name(a, "a");
  4945. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne_rhs[0], ne_rhs[1], ne_rhs[2], ne_rhs[3]);
  4946. ggml_set_param(b);
  4947. ggml_set_name(b, "b");
  4948. ggml_tensor * out = ggml_solve_tri(ctx, a, b, true, true, false);
  4949. ggml_set_name(out, "out");
  4950. return out;
  4951. }
  4952. void initialize_tensors(ggml_context * ctx) override {
  4953. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4954. if (strcmp(t->name, "a") == 0) {
  4955. // note: avoid zeros in the diagonal
  4956. init_tensor_tril(t, 0.1, 1.0f);
  4957. } else {
  4958. init_tensor_uniform(t, -1.0f, 1.0f);
  4959. }
  4960. }
  4961. }
  4962. };
  4963. enum llm_norm_type {
  4964. LLM_NORM,
  4965. LLM_NORM_RMS,
  4966. };
  4967. struct llama_hparams {
  4968. uint32_t n_vocab;
  4969. uint32_t n_embd;
  4970. uint32_t n_head;
  4971. uint32_t n_head_kv;
  4972. static constexpr uint32_t n_layer = 1;
  4973. uint32_t n_rot;
  4974. uint32_t n_embd_head; // dimension of values (d_v)
  4975. uint32_t n_ff;
  4976. float f_norm_eps;
  4977. float f_norm_rms_eps;
  4978. // cparams
  4979. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4980. static constexpr uint32_t n_ctx_orig = n_ctx;
  4981. // batch
  4982. int32_t n_tokens;
  4983. // llm_build_context
  4984. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4985. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4986. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4987. return n_embd_head * n_head_kv;
  4988. }
  4989. };
  4990. // LLM base class
  4991. struct test_llm : public test_case {
  4992. llama_hparams hp;
  4993. protected:
  4994. test_llm(llama_hparams hp)
  4995. : hp(std::move(hp)) {
  4996. }
  4997. public:
  4998. struct ggml_tensor * llm_build_norm(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * cur,
  5001. struct ggml_tensor * mw,
  5002. struct ggml_tensor * mb,
  5003. llm_norm_type type) {
  5004. switch (type) {
  5005. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  5006. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  5007. }
  5008. cur = ggml_mul(ctx, cur, mw);
  5009. if (mb) {
  5010. cur = ggml_add(ctx, cur, mb);
  5011. }
  5012. return cur;
  5013. }
  5014. void llm_build_kv_store(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * k_l,
  5017. struct ggml_tensor * v_l,
  5018. struct ggml_tensor * k_cur,
  5019. struct ggml_tensor * v_cur) {
  5020. // compute the transposed [n_tokens, n_embd] V matrix
  5021. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  5022. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  5023. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  5024. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  5025. ( hp.n_ctx)*ggml_element_size(v_l),
  5026. (hp.kv_head)*ggml_element_size(v_l));
  5027. // important: storing RoPE-ed version of K in the KV cache!
  5028. ggml_cpy(ctx, k_cur, k_cache_view);
  5029. ggml_cpy(ctx, v_cur_t, v_cache_view);
  5030. }
  5031. struct ggml_tensor * llm_build_kqv(
  5032. struct ggml_context * ctx,
  5033. struct ggml_tensor * k_l,
  5034. struct ggml_tensor * v_l,
  5035. struct ggml_tensor * q_cur,
  5036. struct ggml_tensor * kq_mask,
  5037. float kq_scale) {
  5038. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5039. struct ggml_tensor * k =
  5040. ggml_view_3d(ctx, k_l,
  5041. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  5042. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  5043. ggml_row_size(k_l->type, hp.n_embd_head),
  5044. 0);
  5045. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5046. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  5047. // split cached v into n_head heads
  5048. struct ggml_tensor * v =
  5049. ggml_view_3d(ctx, v_l,
  5050. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  5051. ggml_element_size(v_l)*hp.n_ctx,
  5052. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  5053. 0);
  5054. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5055. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5056. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  5057. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5058. cur = ggml_mul_mat(ctx, wo, cur);
  5059. return cur;
  5060. }
  5061. void initialize_tensors(ggml_context * ctx) override {
  5062. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5063. if (t->type == GGML_TYPE_I32) {
  5064. // pos
  5065. std::vector<int> data(hp.n_tokens);
  5066. for (int i = 0; i < hp.n_tokens; i++) {
  5067. data[i] = rand() % hp.n_ctx;
  5068. }
  5069. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  5070. } else {
  5071. init_tensor_uniform(t);
  5072. }
  5073. }
  5074. }
  5075. };
  5076. // Llama
  5077. struct test_llama : public test_llm {
  5078. static constexpr float freq_base = 10000.0f;
  5079. static constexpr float freq_scale = 1.0f;
  5080. static constexpr float ext_factor = 0.0f;
  5081. static constexpr float attn_factor = 1.0f;
  5082. static constexpr float beta_fast = 32.0f;
  5083. static constexpr float beta_slow = 1.0f;
  5084. bool fused;
  5085. std::string op_desc(ggml_tensor * t) override {
  5086. GGML_UNUSED(t);
  5087. return "LLAMA";
  5088. }
  5089. std::string vars() override {
  5090. auto n_tokens = hp.n_tokens;
  5091. return VARS_TO_STR1(n_tokens);
  5092. }
  5093. double max_nmse_err() override {
  5094. return 2e-3;
  5095. }
  5096. bool run_whole_graph() override { return fused; }
  5097. test_llama(int n_tokens = 1, bool fused = false)
  5098. : test_llm({
  5099. /*n_vocab =*/ 32000,
  5100. /*n_embd =*/ 3200,
  5101. /*n_head =*/ 32,
  5102. /*n_head_kv =*/ 32,
  5103. /*n_rot =*/ 100,
  5104. /*n_embd_head =*/ 100,
  5105. /*n_ff =*/ 8640,
  5106. /*f_norm_eps =*/ 0.f,
  5107. /*f_norm_rms_eps =*/ 1e-5f,
  5108. /*n_tokens =*/ n_tokens,
  5109. })
  5110. , fused(fused)
  5111. {
  5112. }
  5113. ggml_tensor * build_graph(ggml_context * ctx) override {
  5114. struct ggml_tensor * cur;
  5115. struct ggml_tensor * inpL;
  5116. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5117. // inp_pos - contains the positions
  5118. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5119. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5120. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5121. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5122. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5123. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5124. struct ggml_tensor * inpSA = inpL;
  5125. // norm
  5126. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5127. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  5128. // self-attention
  5129. {
  5130. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5131. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5132. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5133. // compute Q and K and RoPE them
  5134. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  5135. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  5136. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  5137. Qcur = ggml_rope_ext(
  5138. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  5139. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5140. ext_factor, attn_factor, beta_fast, beta_slow
  5141. );
  5142. Kcur = ggml_rope_ext(
  5143. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  5144. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5145. ext_factor, attn_factor, beta_fast, beta_slow
  5146. );
  5147. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5148. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5149. }
  5150. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  5151. // feed-forward network
  5152. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5153. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  5154. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5155. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5156. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5157. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  5158. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  5159. cur = ggml_silu(ctx, cur);
  5160. cur = ggml_mul(ctx, cur, tmp);
  5161. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5162. cur = ggml_add(ctx, cur, ffn_inp);
  5163. // input for next layer
  5164. inpL = cur;
  5165. }
  5166. cur = inpL;
  5167. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5168. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  5169. // lm_head
  5170. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  5171. cur = ggml_mul_mat(ctx, output, cur);
  5172. return cur;
  5173. }
  5174. };
  5175. // Falcon
  5176. struct test_falcon : public test_llm {
  5177. static constexpr float freq_base = 10000.0f;
  5178. static constexpr float freq_scale = 1.0f;
  5179. static constexpr float ext_factor = 0.0f;
  5180. static constexpr float attn_factor = 1.0f;
  5181. static constexpr float beta_fast = 32.0f;
  5182. static constexpr float beta_slow = 1.0f;
  5183. std::string op_desc(ggml_tensor * t) override {
  5184. GGML_UNUSED(t);
  5185. return "FALCON";
  5186. }
  5187. std::string vars() override {
  5188. auto n_tokens = hp.n_tokens;
  5189. return VARS_TO_STR1(n_tokens);
  5190. }
  5191. double max_nmse_err() override {
  5192. return 2e-3;
  5193. }
  5194. test_falcon(int n_tokens = 1)
  5195. : test_llm({
  5196. /*n_vocab =*/ 32000,
  5197. /*n_embd =*/ 3200,
  5198. /*n_head =*/ 50,
  5199. /*n_head_kv =*/ 1,
  5200. /*n_rot =*/ 64,
  5201. /*n_embd_head =*/ 64,
  5202. /*n_ff =*/ 8640,
  5203. /*f_norm_eps =*/ 1e-5f,
  5204. /*f_norm_rms_eps =*/ 0.f,
  5205. /*n_tokens =*/ n_tokens,
  5206. }) {
  5207. }
  5208. ggml_tensor * build_graph(ggml_context * ctx) override {
  5209. struct ggml_tensor * cur;
  5210. struct ggml_tensor * inpL;
  5211. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5212. // inp_pos - contains the positions
  5213. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5214. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5215. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5216. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5217. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5218. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5219. // norm
  5220. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5221. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5222. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  5223. // self-attention
  5224. {
  5225. cur = attn_norm;
  5226. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5227. cur = ggml_mul_mat(ctx, wqkv, cur);
  5228. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5229. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5230. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5231. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5232. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5233. // using mode = 2 for neox mode
  5234. Qcur = ggml_rope_ext(
  5235. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5236. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5237. );
  5238. Kcur = ggml_rope_ext(
  5239. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5240. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5241. );
  5242. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5243. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5244. }
  5245. struct ggml_tensor * ffn_inp = cur;
  5246. // feed forward
  5247. {
  5248. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5249. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5250. cur = attn_norm;
  5251. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5252. cur = ggml_gelu(ctx, cur);
  5253. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5254. }
  5255. cur = ggml_add(ctx, cur, ffn_inp);
  5256. cur = ggml_add(ctx, cur, inpL);
  5257. // input for next layer
  5258. inpL = cur;
  5259. }
  5260. cur = inpL;
  5261. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5262. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5263. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5264. // lm_head
  5265. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5266. cur = ggml_mul_mat(ctx, output, cur);
  5267. return cur;
  5268. }
  5269. };
  5270. // ###########################################
  5271. // ## Section 3: GGML Op Test Instantiation ##
  5272. // ###########################################
  5273. static const ggml_type all_types[] = {
  5274. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5275. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5276. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5277. GGML_TYPE_Q8_0,
  5278. GGML_TYPE_MXFP4,
  5279. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5280. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5281. GGML_TYPE_Q6_K,
  5282. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5283. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5284. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5285. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5286. };
  5287. static const ggml_type base_types[] = {
  5288. GGML_TYPE_F32, GGML_TYPE_F16,
  5289. GGML_TYPE_Q8_0, // for I8MM tests
  5290. GGML_TYPE_Q4_0,
  5291. GGML_TYPE_Q4_1, // for I8MM tests
  5292. GGML_TYPE_Q4_K,
  5293. GGML_TYPE_MXFP4, // TODO: or "other"
  5294. GGML_TYPE_IQ2_XXS
  5295. };
  5296. static const ggml_type other_types[] = {
  5297. GGML_TYPE_Q4_1,
  5298. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5299. GGML_TYPE_Q8_0,
  5300. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5301. GGML_TYPE_Q5_K,
  5302. GGML_TYPE_Q6_K,
  5303. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5304. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5305. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5306. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5307. GGML_TYPE_BF16,
  5308. };
  5309. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5310. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5311. std::vector<std::unique_ptr<test_case>> test_cases;
  5312. std::default_random_engine rng(0);
  5313. // unary ops
  5314. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5315. for (int v : {0, 1}) {
  5316. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5317. if (op == GGML_UNARY_OP_XIELU) {
  5318. continue; // need extra params, separate test
  5319. }
  5320. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5321. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5322. }
  5323. }
  5324. }
  5325. // glu ops
  5326. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5327. for (int v : {0, 1}) {
  5328. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5329. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5330. // SWIGLU_OAI is handled separately
  5331. continue;
  5332. }
  5333. for (bool swapped : {false, true}) {
  5334. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5335. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5336. }
  5337. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5338. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5339. }
  5340. }
  5341. }
  5342. for (int v : {0, 1}) {
  5343. for (float alpha : {.5f, 1.702f}) {
  5344. for (float limit : {2.0f, 7.0f}) {
  5345. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5346. }
  5347. }
  5348. }
  5349. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5350. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5351. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5352. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5353. }
  5354. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5355. for (ggml_type type : all_types) {
  5356. for (int b : {1, 7}) {
  5357. for (bool v : {false, true}) {
  5358. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5359. }
  5360. }
  5361. }
  5362. for (int b : {1, 7}) {
  5363. for (bool v : {false, true}) {
  5364. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5365. }
  5366. }
  5367. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5368. for (ggml_type type : all_types) {
  5369. for (bool v : {false, true}) {
  5370. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5371. }
  5372. }
  5373. for (bool v : {false, true}) {
  5374. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5375. }
  5376. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5377. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5378. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5379. for (ggml_type type : all_types) {
  5380. for (int b : {1, 7}) {
  5381. for (bool v : {false, true}) {
  5382. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5383. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5384. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5385. if (ggml_blck_size(type) == 1) {
  5386. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5387. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5388. }
  5389. }
  5390. }
  5391. }
  5392. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
  5393. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5394. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
  5395. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
  5396. }
  5397. }
  5398. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5399. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5400. for (int k0 : {1, 3}) {
  5401. for (int k1 : {1, 3}) {
  5402. for (int s0 : {1, 2}) {
  5403. for (int s1 : {1, 2}) {
  5404. for (int p0 : {0, 1}) {
  5405. for (int p1 : {0, 1}) {
  5406. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5407. }
  5408. }
  5409. }
  5410. }
  5411. }
  5412. }
  5413. }
  5414. }
  5415. #if 0
  5416. // >4GB im2col destination. Too slow to run by default.
  5417. // Test cases taken from Wan2.1 T2V 1.3B.
  5418. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5419. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5420. #endif
  5421. // im2col 1D
  5422. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5423. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5424. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5425. for (int s0 : {1, 3}) {
  5426. for (int p0 : {0, 3}) {
  5427. for (int d0 : {1, 3}) {
  5428. test_cases.emplace_back(new test_im2col(
  5429. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5430. s0, 0, p0, 0, d0, 0, false));
  5431. }
  5432. }
  5433. }
  5434. // im2col 2D
  5435. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5436. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5437. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5438. for (int s0 : {1, 3}) {
  5439. for (int s1 : {1, 3}) {
  5440. for (int p0 : {0, 3}) {
  5441. for (int p1 : {0, 3}) {
  5442. for (int d0 : {1, 3}) {
  5443. for (int d1 : {1, 3}) {
  5444. test_cases.emplace_back(new test_im2col(
  5445. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5446. s0, s1, p0, p1, d0, d1, true));
  5447. }
  5448. }
  5449. }
  5450. }
  5451. }
  5452. }
  5453. // extra tests for im2col 2D
  5454. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5455. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5456. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5457. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5458. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5459. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5460. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5461. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5462. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5463. // im2col 3D
  5464. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5465. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5466. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5467. for (int s0 : {1, 3}) {
  5468. for (int s1 : {1, 3}) {
  5469. for (int s2 : {1, 3}) {
  5470. for (int p0 : {0, 3}) {
  5471. for (int p1 : {0, 3}) {
  5472. for (int p2 : {0, 3}) {
  5473. for (int d0 : {1, 3}) {
  5474. for (int d1 : {1, 3}) {
  5475. for (int d2 : {1, 3}) {
  5476. for (int IC : {1, 3}) {
  5477. for (bool v : {false, true}) {
  5478. test_cases.emplace_back(new test_im2col_3d(
  5479. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5480. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5481. }
  5482. }
  5483. }
  5484. }
  5485. }
  5486. }
  5487. }
  5488. }
  5489. }
  5490. }
  5491. }
  5492. // Conv_2D test cases
  5493. #ifdef DETAILED_TESTS
  5494. // Probably we do not have enough time to execute these in the pipeline.
  5495. uint32_t iwh_idx = 0;
  5496. uint32_t kwh_idx = 1;
  5497. uint32_t Cout_idx = 2;
  5498. uint32_t Cin_idx = 3;
  5499. uint32_t B_idx = 4;
  5500. std::vector<std::array<int, 5>> cases = {
  5501. //{IWH, KWH, Cout, Cin, B}
  5502. // K=CRS=NPQ=4096 conv_2d matmul performance
  5503. {19, 4, 4096, 256, 16},
  5504. // K=128, CRS=128, NPQ=4096
  5505. { 19, 4, 128, 8, 16},
  5506. // K=130, CRS=128, NPQ=4096
  5507. { 19, 4, 130, 8, 16},
  5508. // Edge case: K x CRS is small
  5509. { 19, 2, 4, 4, 16},
  5510. // A ConvNet's first layer
  5511. { 224, 3, 8, 3, 1 },
  5512. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5513. { 224, 2, 8, 1, 1 },
  5514. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5515. { 224, 2, 8, 1, 8 },
  5516. // A middle layer of a ConvNet
  5517. { 58, 3, 64, 32, 1 },
  5518. // A middle layer of a ConvNet, several images in the batch
  5519. { 58, 3, 64, 32, 8 },
  5520. // A deep layer of a ConvNet, several images in the batch
  5521. { 16, 3, 256, 128, 8 }
  5522. };
  5523. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5524. for (auto act_case : cases) {
  5525. test_cases.emplace_back(new test_conv_2d(
  5526. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5527. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5528. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5529. }
  5530. }
  5531. #endif
  5532. // CONV_2D:
  5533. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5534. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5535. };
  5536. //uint32_t s0 = 3;
  5537. uint32_t s1 = 5;
  5538. uint32_t p0 = 5;
  5539. //uint32_t p1 = 2;
  5540. uint32_t d0 = 2;
  5541. uint32_t d1 = 4;
  5542. for (uint32_t s0 : { 1, 3 }) {
  5543. for (uint32_t p1 : { 2, 5 }) {
  5544. for (uint32_t Cin : { 1, 25 }) {
  5545. for (uint32_t Cout : { 1, 12 }) {
  5546. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5547. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5548. for (uint32_t H : { 1, 133 }) {
  5549. for (uint32_t W : { 1, 141 }) {
  5550. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5551. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5552. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5553. test_cases.emplace_back(new test_conv_2d(
  5554. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5555. }
  5556. }
  5557. }
  5558. }
  5559. }
  5560. }
  5561. }
  5562. }
  5563. }
  5564. }
  5565. // sycl backend will limit task global_range < MAX_INT
  5566. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5567. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5568. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5569. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5570. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5571. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5572. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5573. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5574. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5575. // CONV_3D
  5576. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5577. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5578. };
  5579. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5580. for (int N : {1, 2}) {
  5581. for (int IC : {1, 3}) {
  5582. for (int OC : {1, 4}) {
  5583. for (int s0 : {1, 2}) {
  5584. for (int p1 : {0, 1}) {
  5585. for (int d2 : {1, 2}) {
  5586. int64_t IW = 20, IH = 22, ID = 18;
  5587. int64_t KW = 3, KH = 3, KD = 3;
  5588. int s1 = s0, s2 = s0;
  5589. int p0 = p1, p2 = p1;
  5590. int d0 = d2, d1 = d2;
  5591. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5592. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5593. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5594. continue;
  5595. }
  5596. test_cases.emplace_back(new test_conv_3d(
  5597. N, IC, ID, IH, IW,
  5598. OC, KD, KH, KW,
  5599. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5600. kernel_type));
  5601. // Asymmetric kernel and params
  5602. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5603. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5604. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5605. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5606. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5607. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5608. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5609. continue;
  5610. }
  5611. test_cases.emplace_back(new test_conv_3d(
  5612. N, IC, ID, IH, IW,
  5613. OC, asym_KD, asym_KH, asym_KW,
  5614. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5615. kernel_type));
  5616. }
  5617. }
  5618. }
  5619. }
  5620. }
  5621. }
  5622. // Case with kernel size 1
  5623. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5624. }
  5625. for(uint32_t Cout : {1, 9}){
  5626. for(uint32_t Cin : {1, 7}){
  5627. for(uint32_t K : {1, 3, 1337}){
  5628. for(uint32_t L : {1, 2, 13}){
  5629. for(uint32_t s0: {1, 2, 3}){
  5630. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5631. }
  5632. }
  5633. }
  5634. }
  5635. }
  5636. test_cases.emplace_back(new test_conv_transpose_1d());
  5637. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5638. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5639. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5640. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5641. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5642. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5643. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5644. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5645. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5646. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5647. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5648. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5649. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5650. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5651. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5652. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5653. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5654. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5655. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5656. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5657. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5658. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5659. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5660. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5661. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5662. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5663. }
  5664. for (bool view : {false, true}) {
  5665. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5666. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5667. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5668. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5669. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5670. }
  5671. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5672. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5673. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5674. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5675. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5676. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5677. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5678. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5679. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5680. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5681. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5682. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5683. }
  5684. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5685. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5686. }
  5687. // same-type copy
  5688. for (ggml_type type : all_types) {
  5689. const auto nk = ggml_blck_size(type);
  5690. for (int k = 1; k < 4; ++k) {
  5691. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5692. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5693. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5694. }
  5695. }
  5696. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5697. for (ggml_type type_dst : all_types) {
  5698. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5699. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5700. }
  5701. }
  5702. for (ggml_type type_src : all_types) {
  5703. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5704. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5705. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5706. }
  5707. }
  5708. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5709. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5710. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5711. }
  5712. }
  5713. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5714. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5715. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5716. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5717. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5718. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5719. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5720. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5721. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5722. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5723. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5724. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5725. test_cases.emplace_back(new test_cont());
  5726. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  5727. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  5728. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  5729. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  5730. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  5731. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  5732. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  5733. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  5734. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  5735. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5736. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5737. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5738. }
  5739. };
  5740. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5741. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5742. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5743. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5744. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5745. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5746. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5747. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5748. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5749. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5750. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5751. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5752. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5753. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5754. // test case for k_bin_bcast_unravel in CUDA backend
  5755. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5756. // stable diffusion
  5757. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5758. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5759. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5760. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5761. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5762. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5763. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5764. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5765. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5766. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5767. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5768. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5769. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5770. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5771. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5772. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5773. }
  5774. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5775. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5776. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5777. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5778. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5779. // fusion
  5780. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5781. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5782. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5783. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5784. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5785. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5786. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5787. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5788. test_cases.emplace_back(new test_add1());
  5789. test_cases.emplace_back(new test_scale());
  5790. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5791. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5792. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5793. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5794. test_cases.emplace_back(new test_silu_back());
  5795. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5796. for (bool v : {false, true}) {
  5797. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5798. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5799. }
  5800. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5801. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5802. }
  5803. // in-place tests
  5804. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5805. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5806. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5807. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5808. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5809. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5810. }
  5811. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5812. for (bool multi_add : {false, true}) {
  5813. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5814. }
  5815. }
  5816. for (auto multi_add : {false, true}) {
  5817. for (auto set_rows : {false, true}) {
  5818. for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
  5819. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5820. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5821. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
  5822. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5823. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5824. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5825. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5826. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5827. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5828. }
  5829. }
  5830. }
  5831. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5832. for (int64_t d_conv : {3, 4}) {
  5833. for (int64_t d_inner: {1024, 1536, 2048}) {
  5834. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5835. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5836. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5837. }
  5838. }
  5839. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5840. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5841. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5842. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5843. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5844. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5845. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5846. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5847. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5848. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5849. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5850. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5851. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5852. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5853. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5854. #if 0
  5855. // > 4GB A matrix. Too slow to be enabled by default.
  5856. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5857. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5858. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5859. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5860. #endif
  5861. for (ggml_type type_a : all_types) {
  5862. for (int i = 1; i < 10; ++i) {
  5863. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5864. }
  5865. }
  5866. #if 0
  5867. {
  5868. // Test paths in OpenCL
  5869. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5870. std::vector<int> ks = {896, 1536, 4096};
  5871. for (auto n : ns) {
  5872. for (auto k : ks) {
  5873. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5874. }
  5875. }
  5876. }
  5877. #endif
  5878. #if 1
  5879. for (ggml_type type_a : base_types) {
  5880. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5881. std::vector<int> ks = { 256 };
  5882. if (ggml_blck_size(type_a) == 1) {
  5883. ks.push_back(4);
  5884. }
  5885. for (auto k : ks) {
  5886. // test cases without permutation
  5887. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5888. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5889. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5890. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5891. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5892. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5893. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5894. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5895. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5896. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5897. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5898. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5899. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5900. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5901. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5902. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5903. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5904. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5905. // test cases with permutation
  5906. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5907. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5908. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5909. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5910. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5911. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5912. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5913. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5914. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5915. }
  5916. // test cases with large ne00/ne10 to cover stream-k fixup
  5917. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5918. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5919. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5920. // test cases with large batch size
  5921. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  5922. }
  5923. }
  5924. for (ggml_type type_a : other_types) {
  5925. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5926. if (ggml_blck_size(type_a) != 256) {
  5927. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5928. }
  5929. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5930. }
  5931. }
  5932. #else
  5933. // m = a rows
  5934. // n = b rows
  5935. // k = cols
  5936. std::uniform_int_distribution<> dist_m(1, 128);
  5937. std::uniform_int_distribution<> dist_n(16, 128);
  5938. std::uniform_int_distribution<> dist_k(1, 16);
  5939. for (int i = 0; i < 1000; i++) {
  5940. for (ggml_type type_a : all_types) {
  5941. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5942. int m = dist_m(rng);
  5943. int n = dist_n(rng);
  5944. int k = dist_k(rng) * ggml_blck_size(type_a);
  5945. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5946. }
  5947. }
  5948. }
  5949. #endif
  5950. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5951. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5952. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5953. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5954. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5955. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5956. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5957. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5958. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  5959. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  5960. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
  5961. #if 0
  5962. // test the mat-mat path for Metal
  5963. for (int k = 1; k < 512; ++k) {
  5964. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5965. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5966. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5967. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5968. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5969. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5970. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5971. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5972. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5973. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5974. }
  5975. #endif
  5976. for (auto bs2 : {1,3}) {
  5977. for (auto bs : {1,2,4,8}) {
  5978. for (auto nr : {1,4}) {
  5979. for (uint32_t m = 0; m < 2; ++m) {
  5980. for (uint32_t k = 0; k < 2; ++k) {
  5981. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5982. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5983. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  5984. }
  5985. }
  5986. }
  5987. }
  5988. }
  5989. }
  5990. // sycl backend will limit task global_range < MAX_INT
  5991. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5992. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5993. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5994. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5995. // test large experts*tokens
  5996. for (bool b : {false, true}) {
  5997. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5998. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5999. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  6000. }
  6001. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  6002. test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  6003. // gpt-oss issue with Vulkan mmq_id
  6004. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  6005. for (ggml_type type_a : base_types) {
  6006. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6007. for (int n_mats : {4, 8}) {
  6008. for (int n_used : {1, 2, 4}) {
  6009. for (bool b : {false, true}) {
  6010. for (int n : {1, 4, 5, 17, 32, 129}) {
  6011. int m = 512;
  6012. int k = 256;
  6013. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6014. }
  6015. }
  6016. }
  6017. }
  6018. }
  6019. }
  6020. for (ggml_type type_a : other_types) {
  6021. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6022. for (int n_mats : {4}) {
  6023. for (int n_used : {2}) {
  6024. for (bool b : {false}) {
  6025. for (int n : {1, 32}) {
  6026. int m = 512;
  6027. int k = 256;
  6028. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6029. }
  6030. }
  6031. }
  6032. }
  6033. }
  6034. }
  6035. for (int bs : {1, 4, 512}) {
  6036. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
  6037. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6038. // test with mul after (ffn_moe_weighted)
  6039. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
  6040. }
  6041. }
  6042. }
  6043. for (ggml_type type_a : base_types) {
  6044. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6045. for (int n : {1, 16}) {
  6046. for (int k : {1, 16}) {
  6047. for (int bs2 : {1, 3}) {
  6048. for (int bs3 : {1, 3}) {
  6049. for (int nr2 : {1, 2}) {
  6050. for (int nr3 : {1, 2}) {
  6051. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  6052. }
  6053. }
  6054. }
  6055. }
  6056. }
  6057. }
  6058. }
  6059. }
  6060. // add_id
  6061. for (ggml_type type_a : {GGML_TYPE_F32}) {
  6062. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6063. for (int n_mats : {4, 8}) {
  6064. for (int n_used : {1, 2, 4}) {
  6065. for (int n_embd : {32, 129}) {
  6066. for (int n_token : {1, 32, 129}) {
  6067. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  6068. }
  6069. }
  6070. }
  6071. }
  6072. }
  6073. }
  6074. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6075. test_cases.emplace_back(new test_sqr (type));
  6076. test_cases.emplace_back(new test_sqrt (type));
  6077. test_cases.emplace_back(new test_log (type));
  6078. test_cases.emplace_back(new test_sin (type));
  6079. test_cases.emplace_back(new test_cos (type));
  6080. test_cases.emplace_back(new test_clamp (type));
  6081. test_cases.emplace_back(new test_leaky_relu(type));
  6082. test_cases.emplace_back(new test_floor (type));
  6083. test_cases.emplace_back(new test_ceil (type));
  6084. test_cases.emplace_back(new test_round (type));
  6085. test_cases.emplace_back(new test_trunc (type));
  6086. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  6087. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  6088. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  6089. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  6090. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  6091. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  6092. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  6093. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  6094. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  6095. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  6096. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  6097. }
  6098. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  6099. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  6100. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  6101. #if 0
  6102. std::uniform_int_distribution<> dist_ne1(1, 50);
  6103. int exponent = 1;
  6104. while (exponent < (1 << 17)) {
  6105. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  6106. for (int n = 0; n < 10; ++n) {
  6107. int64_t ne0 = dist_ne0(rng);
  6108. int64_t ne1 = dist_ne1(rng);
  6109. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  6110. }
  6111. exponent <<= 1;
  6112. }
  6113. #endif
  6114. for (bool mask : {false, true}) {
  6115. for (bool sinks : {false, true}) {
  6116. for (float max_bias : {0.0f, 8.0f}) {
  6117. if (!mask && max_bias > 0.0f) continue;
  6118. for (float scale : {1.0f, 0.1f}) {
  6119. for (int64_t ne0 : {16, 1024}) {
  6120. for (int64_t ne1 : {16, 1024}) {
  6121. if (mask) {
  6122. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6123. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6124. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6125. if (ne0 <= 32 && ne1 <= 32) {
  6126. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  6127. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  6128. }
  6129. }
  6130. } else {
  6131. /* The precision of mask here doesn't matter as boolean mask is false */
  6132. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6133. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6134. }
  6135. }
  6136. }
  6137. }
  6138. }
  6139. // inplace tests
  6140. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  6141. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  6142. }
  6143. }
  6144. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6145. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6146. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6147. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6148. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6149. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6150. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6151. for (float max_bias : {0.0f, 8.0f}) {
  6152. for (float scale : {1.0f, 0.1f}) {
  6153. for (int64_t ne0 : {16, 1024}) {
  6154. for (int64_t ne1 : {16, 1024}) {
  6155. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  6156. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  6157. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  6158. }
  6159. }
  6160. }
  6161. }
  6162. for (bool fw : {true, false}) { // fw == forward
  6163. bool all = true;
  6164. for (float fs : { 1.0f, 1.4245f }) {
  6165. for (float ef : { 0.0f, 0.7465f }) {
  6166. for (float af : { 1.0f, 1.4245f }) {
  6167. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6168. for (bool ff : {false, true}) { // freq_factors
  6169. for (float v : { 0, 1 }) {
  6170. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  6171. if (all) {
  6172. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  6173. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  6174. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  6175. }
  6176. if (all) {
  6177. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6178. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6179. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6180. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6181. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6182. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6183. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  6184. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6185. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6186. }
  6187. if (all) {
  6188. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6189. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  6190. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6191. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6192. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6193. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  6194. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6195. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6196. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6197. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  6198. }
  6199. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6200. }
  6201. }
  6202. all = false;
  6203. }
  6204. }
  6205. }
  6206. }
  6207. }
  6208. // single inplace test per type/mode/ff
  6209. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6210. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  6211. for (bool ff : {false, true}) {
  6212. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  6213. }
  6214. }
  6215. }
  6216. for (int v : { 0, 1, 2, 3 }) {
  6217. for (int dim : { 0, 1, 2, 3, }) {
  6218. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  6219. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  6220. }
  6221. }
  6222. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  6223. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  6224. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  6225. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  6226. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1023, 2, 1, 3}, order));
  6227. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 2, 1, 3}, order));
  6228. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1025, 2, 1, 3}, order));
  6229. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16384, 1, 1, 1}, order)); // many backends only handle up to 1024
  6230. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2047, 2, 1, 3}, order));
  6231. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2048, 2, 1, 3}, order));
  6232. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2049, 2, 1, 3}, order));
  6233. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  6234. }
  6235. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6236. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  6237. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  6238. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  6239. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  6240. }
  6241. for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6242. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6243. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6244. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6245. }
  6246. test_cases.emplace_back(new test_sum());
  6247. test_cases.emplace_back(new test_sum_rows());
  6248. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  6249. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  6250. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  6251. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  6252. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  6253. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  6254. test_cases.emplace_back(new test_mean());
  6255. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6256. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6257. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6258. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6259. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6260. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6261. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6262. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6263. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6264. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6265. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6266. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6267. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6268. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6269. test_cases.emplace_back(new test_acc());
  6270. test_cases.emplace_back(new test_pad());
  6271. test_cases.emplace_back(new test_pad_ext());
  6272. test_cases.emplace_back(new test_pad_reflect_1d());
  6273. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6274. test_cases.emplace_back(new test_roll());
  6275. test_cases.emplace_back(new test_arange());
  6276. test_cases.emplace_back(new test_timestep_embedding());
  6277. test_cases.emplace_back(new test_leaky_relu());
  6278. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 10, 5, 4, 3 }));
  6279. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 127, 5, 4, 3 }));
  6280. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 5, 4, 3 }));
  6281. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 255, 5, 4, 3 }));
  6282. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 256, 5, 4, 3 }));
  6283. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 511, 5, 4, 3 }));
  6284. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 512, 5, 4, 3 }));
  6285. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1023, 5, 4, 3 }));
  6286. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1024, 5, 4, 3 }));
  6287. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2047, 5, 4, 3 }));
  6288. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
  6289. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
  6290. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
  6291. test_cases.emplace_back(new test_xielu());
  6292. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER));
  6293. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER_DIAG));
  6294. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER));
  6295. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG));
  6296. test_cases.emplace_back(new test_fill(0.0f));
  6297. test_cases.emplace_back(new test_fill(2.0f, GGML_TYPE_F32, { 303, 207, 11, 3 }));
  6298. test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
  6299. test_cases.emplace_back(new test_solve_tri());
  6300. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
  6301. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
  6302. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 30, 30, 7, 1 }, { 8, 30, 7, 1 }));
  6303. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
  6304. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
  6305. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
  6306. for (bool v : {false, true}) {
  6307. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  6308. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  6309. }
  6310. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6311. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6312. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6313. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6314. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6315. for (bool mask : { true, false } ) {
  6316. for (bool sinks : { true, false } ) {
  6317. for (float max_bias : { 0.0f, 8.0f }) {
  6318. if (!mask && max_bias > 0.0f) continue;
  6319. for (float logit_softcap : {0.0f, 10.0f}) {
  6320. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6321. for (int nh : { 4, }) {
  6322. for (int nr3 : { 1, 3, }) {
  6323. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6324. for (int nr2 : { 1, 4, 16 }) {
  6325. if (nr2 == 16 && hsk != 128) continue;
  6326. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6327. for (int kv : { 113, 512, 1024, }) {
  6328. if (nr2 != 1 && kv != 512) continue;
  6329. for (int nb : { 1, 3, 32, 35, }) {
  6330. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6331. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6332. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6333. test_cases.emplace_back(new test_flash_attn_ext(
  6334. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6335. // run fewer test cases permuted
  6336. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6337. test_cases.emplace_back(new test_flash_attn_ext(
  6338. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6339. }
  6340. }
  6341. }
  6342. }
  6343. }
  6344. }
  6345. }
  6346. }
  6347. }
  6348. }
  6349. }
  6350. }
  6351. }
  6352. }
  6353. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6354. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6355. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6356. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6357. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6358. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6359. for (ggml_type type : base_types) {
  6360. for (bool with_gate : {false, true}) {
  6361. for (bool use_id : {false, true}) {
  6362. for (bool b : {false, true}) {
  6363. if (!use_id && b) {
  6364. continue;
  6365. }
  6366. for (bool with_bias : {false, true}) {
  6367. if (!with_gate && !with_bias) {
  6368. continue;
  6369. }
  6370. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6371. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6372. continue;
  6373. }
  6374. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6375. continue;
  6376. }
  6377. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6378. use_id, 16, 8, b, with_bias, with_gate));
  6379. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6380. use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
  6381. }
  6382. }
  6383. }
  6384. }
  6385. }
  6386. }
  6387. for (bool with_norm : {false, true}) {
  6388. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  6389. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  6390. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  6391. }
  6392. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  6393. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  6394. #if 0
  6395. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6396. test_cases.emplace_back(new test_llama(2, true));
  6397. test_cases.emplace_back(new test_llama(1));
  6398. test_cases.emplace_back(new test_llama(2));
  6399. test_cases.emplace_back(new test_falcon(1));
  6400. test_cases.emplace_back(new test_falcon(2));
  6401. #endif
  6402. return test_cases;
  6403. }
  6404. // Test cases for performance evaluation: should be representative of real-world use cases
  6405. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6406. std::vector<std::unique_ptr<test_case>> test_cases;
  6407. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6408. uint32_t iwh_idx = 0;
  6409. uint32_t kwh_idx = 1;
  6410. uint32_t Cout_idx = 2;
  6411. uint32_t Cin_idx = 3;
  6412. uint32_t B_idx = 4;
  6413. std::vector<std::array<int, 5>> cases = {
  6414. //{IWH, KWH, Cout, Cin, B}
  6415. // K=CRS=NPQ=4096 conv2d matmul performance
  6416. {19, 4, 4096, 256, 16},
  6417. // K=128, CRS=128, NPQ=4096
  6418. { 19, 4, 128, 8, 16},
  6419. // K=130, CRS=128, NPQ=4096
  6420. { 19, 4, 130, 8, 16},
  6421. // Edge case: K x CRS is small
  6422. { 19, 2, 4, 4, 16},
  6423. // A ConvNet's first layer
  6424. { 224, 3, 8, 3, 1 },
  6425. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6426. { 224, 2, 8, 1, 1 },
  6427. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6428. { 224, 2, 8, 1, 8 },
  6429. // A middle layer of a ConvNet
  6430. { 58, 3, 64, 32, 1 },
  6431. // A middle layer of a ConvNet, several images in the batch
  6432. { 58, 3, 64, 32, 8 },
  6433. // A deep layer of a ConvNet, several images in the batch
  6434. { 16, 3, 512, 128, 8 },
  6435. };
  6436. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6437. for (auto act_case : cases) {
  6438. // Direct CONV_2D
  6439. test_cases.emplace_back(new test_conv_2d(
  6440. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6441. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6442. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6443. }
  6444. }
  6445. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6446. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6447. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6448. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6449. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6450. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6451. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6452. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6453. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6454. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6455. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6456. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6457. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6458. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6459. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6460. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6461. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6462. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6463. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6464. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6465. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6466. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6467. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6468. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6469. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6470. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6471. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6472. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6473. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6474. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6475. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6476. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6477. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6478. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6479. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6480. for (ggml_type type_a : all_types) {
  6481. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6482. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6483. }
  6484. }
  6485. }
  6486. // qwen3-30b-a3b
  6487. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6488. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6489. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6490. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6491. }
  6492. }
  6493. }
  6494. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6495. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6496. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6497. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6498. }
  6499. }
  6500. }
  6501. // gpt-oss-20b
  6502. for (int bs : {1, 4, 8, 512}) {
  6503. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6504. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6505. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6506. }
  6507. }
  6508. }
  6509. for (int K : {3, 5}) {
  6510. for (int IC : {256, 2560}) {
  6511. for (int IW_IH : {32, 64, 256}) {
  6512. if (IC == 2560 && IW_IH == 256) {
  6513. // too big
  6514. continue;
  6515. }
  6516. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6517. }
  6518. }
  6519. }
  6520. for (int kv : { 4096, 8192, 16384, }) {
  6521. for (int hs : { 64, 128, }) {
  6522. for (int nr : { 1, 4, }) {
  6523. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6524. }
  6525. }
  6526. }
  6527. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6528. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6529. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6530. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6531. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6532. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6533. for (int n_token : {1, 512}) {
  6534. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6535. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6536. }
  6537. for (bool fw : {true, false}) { // fw == forward
  6538. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6539. for (bool ff : {false, true}) { // freq_factors
  6540. for (float v : { 0, 1 }) {
  6541. test_cases.emplace_back(new test_rope(type, {128, 32, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 7B
  6542. test_cases.emplace_back(new test_rope(type, {128, 64, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 65B
  6543. test_cases.emplace_back(new test_rope(type, { 80, 32, 512, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (stablelm)
  6544. test_cases.emplace_back(new test_rope(type, { 64, 8, 512, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (falcon 40B)
  6545. test_cases.emplace_back(new test_rope(type, {128, 12, 512, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6546. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6547. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6548. }
  6549. }
  6550. }
  6551. }
  6552. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6553. { 8192, 1, 1, 1 },
  6554. { 8192, 8192, 1, 1 },
  6555. { 128, 8192, 1, 1 },
  6556. };
  6557. for (auto it: reduce_rows_cases){
  6558. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6559. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6560. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6561. }
  6562. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
  6563. return test_cases;
  6564. }
  6565. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6566. printer * output_printer) {
  6567. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6568. if (params_filter == nullptr) {
  6569. return;
  6570. }
  6571. std::regex params_filter_regex(params_filter);
  6572. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6573. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6574. it = test_cases.erase(it);
  6575. continue;
  6576. }
  6577. it++;
  6578. }
  6579. };
  6580. if (mode == MODE_TEST) {
  6581. auto test_cases = make_test_cases_eval();
  6582. filter_test_cases(test_cases, params_filter);
  6583. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6584. if (backend_cpu == NULL) {
  6585. test_operation_info info("", "", "CPU");
  6586. info.set_error("backend", "Failed to initialize CPU backend");
  6587. output_printer->print_operation(info);
  6588. return false;
  6589. }
  6590. size_t n_ok = 0;
  6591. size_t tests_run = 0;
  6592. std::vector<std::string> failed_tests;
  6593. for (auto & test : test_cases) {
  6594. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6595. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6596. continue;
  6597. }
  6598. tests_run++;
  6599. if (status == test_status_t::OK) {
  6600. n_ok++;
  6601. } else if (status == test_status_t::FAIL) {
  6602. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6603. }
  6604. }
  6605. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6606. output_printer->print_failed_tests(failed_tests);
  6607. ggml_backend_free(backend_cpu);
  6608. return n_ok == tests_run;
  6609. }
  6610. if (mode == MODE_GRAD) {
  6611. auto test_cases = make_test_cases_eval();
  6612. filter_test_cases(test_cases, params_filter);
  6613. size_t n_ok = 0;
  6614. for (auto & test : test_cases) {
  6615. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6616. n_ok++;
  6617. }
  6618. }
  6619. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6620. return n_ok == test_cases.size();
  6621. }
  6622. if (mode == MODE_PERF) {
  6623. auto test_cases = make_test_cases_perf();
  6624. filter_test_cases(test_cases, params_filter);
  6625. for (auto & test : test_cases) {
  6626. test->eval_perf(backend, op_names_filter, output_printer);
  6627. }
  6628. return true;
  6629. }
  6630. if (mode == MODE_SUPPORT) {
  6631. auto test_cases = make_test_cases_eval();
  6632. filter_test_cases(test_cases, params_filter);
  6633. // Filter out fusion cases
  6634. test_cases.erase(
  6635. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6636. return tc->run_whole_graph();
  6637. }),
  6638. test_cases.end()
  6639. );
  6640. for (auto & test : test_cases) {
  6641. test->eval_support(backend, op_names_filter, output_printer);
  6642. }
  6643. return true;
  6644. }
  6645. GGML_ABORT("fatal error");
  6646. }
  6647. static void list_all_ops() {
  6648. printf("GGML operations:\n");
  6649. std::set<std::string> all_ops;
  6650. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6651. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6652. }
  6653. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6654. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6655. }
  6656. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6657. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6658. }
  6659. for (const auto & op : all_ops) {
  6660. printf(" %s\n", op.c_str());
  6661. }
  6662. printf("\nTotal: %zu operations\n", all_ops.size());
  6663. }
  6664. static void show_test_coverage() {
  6665. std::set<std::string> all_ops;
  6666. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6667. auto op = (enum ggml_op)i;
  6668. if (op == GGML_OP_VIEW ||
  6669. op == GGML_OP_RESHAPE ||
  6670. op == GGML_OP_PERMUTE ||
  6671. op == GGML_OP_TRANSPOSE ||
  6672. op == GGML_OP_CONT ||
  6673. op == GGML_OP_GLU ||
  6674. op == GGML_OP_UNARY) {
  6675. continue;
  6676. }
  6677. all_ops.insert(ggml_op_name(op));
  6678. }
  6679. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6680. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6681. }
  6682. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6683. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6684. }
  6685. auto test_cases = make_test_cases_eval();
  6686. // Filter out fusion cases
  6687. test_cases.erase(
  6688. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6689. return tc->run_whole_graph();
  6690. }),
  6691. test_cases.end()
  6692. );
  6693. std::set<std::string> tested_ops;
  6694. ggml_init_params params = {
  6695. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6696. /* .mem_base = */ NULL,
  6697. /* .no_alloc = */ true,
  6698. };
  6699. for (auto & test_case : test_cases) {
  6700. ggml_context * ctx = ggml_init(params);
  6701. if (ctx) {
  6702. test_case->mode = MODE_TEST;
  6703. ggml_tensor * out = test_case->build_graph(ctx);
  6704. if (out && out->op != GGML_OP_NONE) {
  6705. if (out->op == GGML_OP_UNARY) {
  6706. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6707. } else if (out->op == GGML_OP_GLU) {
  6708. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6709. } else {
  6710. tested_ops.insert(ggml_op_name(out->op));
  6711. }
  6712. }
  6713. ggml_free(ctx);
  6714. }
  6715. }
  6716. std::set<std::string> covered_ops;
  6717. std::set<std::string> uncovered_ops;
  6718. for (const auto & op : all_ops) {
  6719. if (tested_ops.count(op) > 0) {
  6720. covered_ops.insert(op);
  6721. } else {
  6722. uncovered_ops.insert(op);
  6723. }
  6724. }
  6725. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6726. for (const auto & op : covered_ops) {
  6727. printf(" ✓ %s\n", op.c_str());
  6728. }
  6729. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6730. for (const auto & op : uncovered_ops) {
  6731. printf(" ✗ %s\n", op.c_str());
  6732. }
  6733. printf("\nCoverage Summary:\n");
  6734. printf(" Total operations: %zu\n", all_ops.size());
  6735. printf(" Tested operations: %zu\n", covered_ops.size());
  6736. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6737. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6738. }
  6739. static void usage(char ** argv) {
  6740. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6741. printf(" valid modes:\n");
  6742. printf(" - test (default, compare with CPU backend for correctness)\n");
  6743. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6744. printf(" - perf (performance evaluation)\n");
  6745. printf(" - support (probe backend operation support)\n");
  6746. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6747. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6748. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6749. printf(" --list-ops lists all available GGML operations\n");
  6750. printf(" --show-coverage shows test coverage\n");
  6751. }
  6752. int main(int argc, char ** argv) {
  6753. test_mode mode = MODE_TEST;
  6754. output_formats output_format = CONSOLE;
  6755. const char * op_names_filter = nullptr;
  6756. const char * backend_filter = nullptr;
  6757. const char * params_filter = nullptr;
  6758. for (int i = 1; i < argc; i++) {
  6759. if (strcmp(argv[i], "test") == 0) {
  6760. mode = MODE_TEST;
  6761. } else if (strcmp(argv[i], "perf") == 0) {
  6762. mode = MODE_PERF;
  6763. } else if (strcmp(argv[i], "grad") == 0) {
  6764. mode = MODE_GRAD;
  6765. } else if (strcmp(argv[i], "support") == 0) {
  6766. mode = MODE_SUPPORT;
  6767. } else if (strcmp(argv[i], "-o") == 0) {
  6768. if (i + 1 < argc) {
  6769. op_names_filter = argv[++i];
  6770. } else {
  6771. usage(argv);
  6772. return 1;
  6773. }
  6774. } else if (strcmp(argv[i], "-b") == 0) {
  6775. if (i + 1 < argc) {
  6776. backend_filter = argv[++i];
  6777. } else {
  6778. usage(argv);
  6779. return 1;
  6780. }
  6781. } else if (strcmp(argv[i], "-p") == 0) {
  6782. if (i + 1 < argc) {
  6783. params_filter = argv[++i];
  6784. } else {
  6785. usage(argv);
  6786. return 1;
  6787. }
  6788. } else if (strcmp(argv[i], "--output") == 0) {
  6789. if (i + 1 < argc) {
  6790. if (!output_format_from_str(argv[++i], output_format)) {
  6791. usage(argv);
  6792. return 1;
  6793. }
  6794. } else {
  6795. usage(argv);
  6796. return 1;
  6797. }
  6798. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6799. list_all_ops();
  6800. return 0;
  6801. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6802. show_test_coverage();
  6803. return 0;
  6804. } else {
  6805. usage(argv);
  6806. return 1;
  6807. }
  6808. }
  6809. // load and enumerate backends
  6810. ggml_backend_load_all();
  6811. // Create printer for output format
  6812. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6813. if (output_printer) {
  6814. output_printer->print_header();
  6815. }
  6816. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6817. size_t n_ok = 0;
  6818. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6819. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6820. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6821. output_printer->print_backend_init(
  6822. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6823. n_ok++;
  6824. continue;
  6825. }
  6826. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6827. output_printer->print_backend_init(backend_init_info(
  6828. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6829. n_ok++;
  6830. continue;
  6831. }
  6832. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6833. GGML_ASSERT(backend != NULL);
  6834. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6835. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6836. if (ggml_backend_set_n_threads_fn) {
  6837. // TODO: better value for n_threads
  6838. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6839. }
  6840. size_t free, total; // NOLINT
  6841. ggml_backend_dev_memory(dev, &free, &total);
  6842. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6843. false, "", ggml_backend_dev_description(dev),
  6844. total / 1024 / 1024, free / 1024 / 1024, true));
  6845. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6846. if (ok) {
  6847. n_ok++;
  6848. }
  6849. output_printer->print_backend_status(
  6850. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6851. ggml_backend_free(backend);
  6852. }
  6853. ggml_quantize_free();
  6854. if (output_printer) {
  6855. output_printer->print_footer();
  6856. }
  6857. output_printer->print_overall_summary(
  6858. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6859. if (n_ok != ggml_backend_dev_count()) {
  6860. return 1;
  6861. }
  6862. return 0;
  6863. }