llama.cpp 355 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #ifdef GGML_USE_CUBLAS
  7. # include "ggml-cuda.h"
  8. #elif defined(GGML_USE_CLBLAST)
  9. # include "ggml-opencl.h"
  10. #endif
  11. #ifdef GGML_USE_METAL
  12. # include "ggml-metal.h"
  13. #endif
  14. #ifdef GGML_USE_MPI
  15. # include "ggml-mpi.h"
  16. #endif
  17. #ifdef GGML_USE_K_QUANTS
  18. # ifndef QK_K
  19. # ifdef GGML_QKK_64
  20. # define QK_K 64
  21. # else
  22. # define QK_K 256
  23. # endif
  24. # endif
  25. #endif
  26. #ifdef __has_include
  27. #if __has_include(<unistd.h>)
  28. #include <unistd.h>
  29. #if defined(_POSIX_MAPPED_FILES)
  30. #include <sys/mman.h>
  31. #endif
  32. #if defined(_POSIX_MEMLOCK_RANGE)
  33. #include <sys/resource.h>
  34. #endif
  35. #endif
  36. #endif
  37. #if defined(_WIN32)
  38. #define WIN32_LEAN_AND_MEAN
  39. #ifndef NOMINMAX
  40. #define NOMINMAX
  41. #endif
  42. #include <windows.h>
  43. #include <io.h>
  44. #include <stdio.h> // for _fseeki64
  45. #endif
  46. #include <algorithm>
  47. #include <array>
  48. #include <cassert>
  49. #include <cinttypes>
  50. #include <climits>
  51. #include <cstdarg>
  52. #include <cstddef>
  53. #include <cstdint>
  54. #include <cstdio>
  55. #include <cstring>
  56. #include <ctime>
  57. #include <fstream>
  58. #include <initializer_list>
  59. #include <map>
  60. #include <memory>
  61. #include <mutex>
  62. #include <numeric>
  63. #include <queue>
  64. #include <random>
  65. #include <regex>
  66. #include <sstream>
  67. #include <thread>
  68. #include <unordered_map>
  69. #include <set>
  70. #if defined(_MSC_VER)
  71. #pragma warning(disable: 4244 4267) // possible loss of data
  72. #endif
  73. #ifdef __GNUC__
  74. #ifdef __MINGW32__
  75. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  76. #else
  77. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  78. #endif
  79. #else
  80. #define LLAMA_ATTRIBUTE_FORMAT(...)
  81. #endif
  82. //
  83. // logging
  84. //
  85. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  86. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  87. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  88. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  89. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  90. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  91. //
  92. // helpers
  93. //
  94. static size_t utf8_len(char src) {
  95. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  96. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  97. return lookup[highbits];
  98. }
  99. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  100. std::string result;
  101. for (size_t pos = 0; ; pos += search.length()) {
  102. auto new_pos = s.find(search, pos);
  103. if (new_pos == std::string::npos) {
  104. result += s.substr(pos, s.size() - pos);
  105. break;
  106. }
  107. result += s.substr(pos, new_pos - pos) + replace;
  108. pos = new_pos;
  109. }
  110. s = std::move(result);
  111. }
  112. static bool is_float_close(float a, float b, float abs_tol) {
  113. // Check for non-negative tolerance
  114. if (abs_tol < 0.0) {
  115. throw std::invalid_argument("Tolerance must be non-negative");
  116. }
  117. // Exact equality check
  118. if (a == b) {
  119. return true;
  120. }
  121. // Check for infinities
  122. if (std::isinf(a) || std::isinf(b)) {
  123. return false;
  124. }
  125. // Regular comparison using the provided absolute tolerance
  126. return std::fabs(b - a) <= abs_tol;
  127. }
  128. #ifdef GGML_USE_CPU_HBM
  129. #include <hbwmalloc.h>
  130. #endif
  131. static void zeros(std::ofstream & file, size_t n) {
  132. char zero = 0;
  133. for (size_t i = 0; i < n; ++i) {
  134. file.write(&zero, 1);
  135. }
  136. }
  137. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  138. static std::string format(const char * fmt, ...) {
  139. va_list ap;
  140. va_list ap2;
  141. va_start(ap, fmt);
  142. va_copy(ap2, ap);
  143. int size = vsnprintf(NULL, 0, fmt, ap);
  144. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  145. std::vector<char> buf(size + 1);
  146. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  147. GGML_ASSERT(size2 == size);
  148. va_end(ap2);
  149. va_end(ap);
  150. return std::string(buf.data(), size);
  151. }
  152. //
  153. // gguf constants (sync with gguf.py)
  154. //
  155. enum llm_arch {
  156. LLM_ARCH_LLAMA,
  157. LLM_ARCH_FALCON,
  158. LLM_ARCH_BAICHUAN,
  159. LLM_ARCH_GPT2,
  160. LLM_ARCH_GPTJ,
  161. LLM_ARCH_GPTNEOX,
  162. LLM_ARCH_MPT,
  163. LLM_ARCH_STARCODER,
  164. LLM_ARCH_PERSIMMON,
  165. LLM_ARCH_REFACT,
  166. LLM_ARCH_BLOOM,
  167. LLM_ARCH_UNKNOWN,
  168. };
  169. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  170. { LLM_ARCH_LLAMA, "llama" },
  171. { LLM_ARCH_FALCON, "falcon" },
  172. { LLM_ARCH_GPT2, "gpt2" },
  173. { LLM_ARCH_GPTJ, "gptj" },
  174. { LLM_ARCH_GPTNEOX, "gptneox" },
  175. { LLM_ARCH_MPT, "mpt" },
  176. { LLM_ARCH_BAICHUAN, "baichuan" },
  177. { LLM_ARCH_STARCODER, "starcoder" },
  178. { LLM_ARCH_PERSIMMON, "persimmon" },
  179. { LLM_ARCH_REFACT, "refact" },
  180. { LLM_ARCH_BLOOM, "bloom" },
  181. };
  182. enum llm_kv {
  183. LLM_KV_GENERAL_ARCHITECTURE,
  184. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  185. LLM_KV_GENERAL_ALIGNMENT,
  186. LLM_KV_GENERAL_NAME,
  187. LLM_KV_GENERAL_AUTHOR,
  188. LLM_KV_GENERAL_URL,
  189. LLM_KV_GENERAL_DESCRIPTION,
  190. LLM_KV_GENERAL_LICENSE,
  191. LLM_KV_GENERAL_SOURCE_URL,
  192. LLM_KV_GENERAL_SOURCE_HF_REPO,
  193. LLM_KV_CONTEXT_LENGTH,
  194. LLM_KV_EMBEDDING_LENGTH,
  195. LLM_KV_BLOCK_COUNT,
  196. LLM_KV_FEED_FORWARD_LENGTH,
  197. LLM_KV_USE_PARALLEL_RESIDUAL,
  198. LLM_KV_TENSOR_DATA_LAYOUT,
  199. LLM_KV_ATTENTION_HEAD_COUNT,
  200. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  201. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  202. LLM_KV_ATTENTION_CLAMP_KQV,
  203. LLM_KV_ATTENTION_LAYERNORM_EPS,
  204. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  205. LLM_KV_ROPE_DIMENSION_COUNT,
  206. LLM_KV_ROPE_FREQ_BASE,
  207. LLM_KV_ROPE_SCALE_LINEAR,
  208. LLM_KV_TOKENIZER_MODEL,
  209. LLM_KV_TOKENIZER_LIST,
  210. LLM_KV_TOKENIZER_TOKEN_TYPE,
  211. LLM_KV_TOKENIZER_SCORES,
  212. LLM_KV_TOKENIZER_MERGES,
  213. LLM_KV_TOKENIZER_BOS_ID,
  214. LLM_KV_TOKENIZER_EOS_ID,
  215. LLM_KV_TOKENIZER_UNK_ID,
  216. LLM_KV_TOKENIZER_SEP_ID,
  217. LLM_KV_TOKENIZER_PAD_ID,
  218. LLM_KV_TOKENIZER_HF_JSON,
  219. LLM_KV_TOKENIZER_RWKV,
  220. };
  221. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  222. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  223. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  224. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  225. { LLM_KV_GENERAL_NAME, "general.name" },
  226. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  227. { LLM_KV_GENERAL_URL, "general.url" },
  228. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  229. { LLM_KV_GENERAL_LICENSE, "general.license" },
  230. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  231. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  232. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  233. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  234. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  235. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  236. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  237. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  238. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  239. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  240. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  241. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  242. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  243. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  244. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  245. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  246. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  247. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  248. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  249. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  250. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  251. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  252. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  253. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  254. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  255. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  256. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  257. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  258. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  259. };
  260. struct LLM_KV {
  261. LLM_KV(llm_arch arch) : arch(arch) {}
  262. llm_arch arch;
  263. std::string operator()(llm_kv kv) const {
  264. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  265. }
  266. };
  267. enum llm_tensor {
  268. LLM_TENSOR_TOKEN_EMBD,
  269. LLM_TENSOR_TOKEN_EMBD_NORM,
  270. LLM_TENSOR_POS_EMBD,
  271. LLM_TENSOR_OUTPUT,
  272. LLM_TENSOR_OUTPUT_NORM,
  273. LLM_TENSOR_ROPE_FREQS,
  274. LLM_TENSOR_ATTN_Q,
  275. LLM_TENSOR_ATTN_K,
  276. LLM_TENSOR_ATTN_V,
  277. LLM_TENSOR_ATTN_QKV,
  278. LLM_TENSOR_ATTN_OUT,
  279. LLM_TENSOR_ATTN_NORM,
  280. LLM_TENSOR_ATTN_NORM_2,
  281. LLM_TENSOR_ATTN_ROT_EMBD,
  282. LLM_TENSOR_FFN_GATE,
  283. LLM_TENSOR_FFN_DOWN,
  284. LLM_TENSOR_FFN_UP,
  285. LLM_TENSOR_FFN_NORM,
  286. LLM_TENSOR_ATTN_Q_NORM,
  287. LLM_TENSOR_ATTN_K_NORM,
  288. };
  289. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  290. {
  291. LLM_ARCH_LLAMA,
  292. {
  293. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  294. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  295. { LLM_TENSOR_OUTPUT, "output" },
  296. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  297. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  298. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  299. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  300. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  301. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  302. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  303. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  304. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  305. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  306. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  307. },
  308. },
  309. {
  310. LLM_ARCH_BAICHUAN,
  311. {
  312. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  313. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  314. { LLM_TENSOR_OUTPUT, "output" },
  315. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  316. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  317. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  318. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  319. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  320. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  321. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  322. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  323. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  324. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  325. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  326. },
  327. },
  328. {
  329. LLM_ARCH_FALCON,
  330. {
  331. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  332. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  333. { LLM_TENSOR_OUTPUT, "output" },
  334. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  335. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  336. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  337. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  338. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  339. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  340. },
  341. },
  342. {
  343. LLM_ARCH_GPT2,
  344. {
  345. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  346. },
  347. },
  348. {
  349. LLM_ARCH_GPTJ,
  350. {
  351. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  352. },
  353. },
  354. {
  355. LLM_ARCH_GPTNEOX,
  356. {
  357. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  358. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  359. { LLM_TENSOR_OUTPUT, "output" },
  360. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  361. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  362. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  363. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  364. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  365. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  366. },
  367. },
  368. {
  369. LLM_ARCH_PERSIMMON,
  370. {
  371. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  372. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  373. { LLM_TENSOR_OUTPUT, "output"},
  374. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  375. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  376. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  377. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  378. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  379. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  380. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  381. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  382. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  383. },
  384. },
  385. {
  386. LLM_ARCH_MPT,
  387. {
  388. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  389. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  390. { LLM_TENSOR_OUTPUT, "output" },
  391. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  392. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  393. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  394. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  395. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  396. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  397. },
  398. },
  399. {
  400. LLM_ARCH_STARCODER,
  401. {
  402. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  403. { LLM_TENSOR_POS_EMBD, "position_embd" },
  404. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  405. { LLM_TENSOR_OUTPUT, "output" },
  406. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  407. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  408. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  409. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  410. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  411. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  412. },
  413. },
  414. {
  415. LLM_ARCH_REFACT,
  416. {
  417. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  418. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  419. { LLM_TENSOR_OUTPUT, "output" },
  420. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  421. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  422. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  423. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  424. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  425. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  426. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  427. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  428. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  429. },
  430. },
  431. {
  432. LLM_ARCH_BLOOM,
  433. {
  434. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  435. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  436. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  437. { LLM_TENSOR_OUTPUT, "output" },
  438. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  439. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  440. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  441. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  442. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  443. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  444. },
  445. },
  446. {
  447. LLM_ARCH_UNKNOWN,
  448. {
  449. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  450. },
  451. },
  452. };
  453. static llm_arch llm_arch_from_string(const std::string & name) {
  454. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  455. if (kv.second == name) {
  456. return kv.first;
  457. }
  458. }
  459. return LLM_ARCH_UNKNOWN;
  460. }
  461. // helper to handle gguf constants
  462. // usage:
  463. //
  464. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  465. //
  466. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  467. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  468. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  469. //
  470. struct LLM_TN {
  471. LLM_TN(llm_arch arch) : arch(arch) {}
  472. llm_arch arch;
  473. std::string operator()(llm_tensor tensor) const {
  474. return LLM_TENSOR_NAMES[arch].at(tensor);
  475. }
  476. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  477. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  478. }
  479. std::string operator()(llm_tensor tensor, int bid) const {
  480. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  481. }
  482. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  483. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  484. }
  485. };
  486. //
  487. // gguf helpers
  488. //
  489. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  490. do { \
  491. const std::string skey(key); \
  492. const int kid = gguf_find_key(ctx, skey.c_str()); \
  493. if (kid >= 0) { \
  494. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  495. if (ktype != (type)) { \
  496. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  497. } \
  498. (dst) = func(ctx, kid); \
  499. } else if (req) { \
  500. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  501. } \
  502. } while (0)
  503. //
  504. // ggml helpers
  505. //
  506. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  507. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  508. if (plan.work_size > 0) {
  509. buf.resize(plan.work_size);
  510. plan.work_data = buf.data();
  511. }
  512. ggml_graph_compute(graph, &plan);
  513. }
  514. //
  515. // llama helpers
  516. //
  517. #ifdef GGML_USE_CUBLAS
  518. # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
  519. # define llama_host_free(data) ggml_cuda_host_free(data)
  520. #elif GGML_USE_METAL
  521. # define llama_host_malloc(n) ggml_metal_host_malloc(n)
  522. # define llama_host_free(data) ggml_metal_host_free(data)
  523. #elif GGML_USE_CPU_HBM
  524. # define llama_host_malloc(n) hbw_malloc(n)
  525. # define llama_host_free(data) if (data != NULL) hbw_free(data)
  526. #else
  527. # define llama_host_malloc(n) malloc(n)
  528. # define llama_host_free(data) free(data)
  529. #endif
  530. #if defined(_WIN32)
  531. static std::string llama_format_win_err(DWORD err) {
  532. LPSTR buf;
  533. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  534. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  535. if (!size) {
  536. return "FormatMessageA failed";
  537. }
  538. std::string ret(buf, size);
  539. LocalFree(buf);
  540. return ret;
  541. }
  542. #endif
  543. struct llama_buffer {
  544. void * data = NULL;
  545. size_t size = 0;
  546. // fallback to malloc / free
  547. // useful in cases where CUDA can try to allocate PINNED memory
  548. bool fallback = false;
  549. void resize(size_t n) {
  550. llama_host_free(data);
  551. data = llama_host_malloc(n);
  552. if (!data) {
  553. fallback = true;
  554. data = malloc(n);
  555. } else {
  556. fallback = false;
  557. }
  558. GGML_ASSERT(data);
  559. size = n;
  560. }
  561. ~llama_buffer() {
  562. if (data) {
  563. if (fallback) { // NOLINT
  564. free(data);
  565. } else {
  566. llama_host_free(data);
  567. }
  568. }
  569. data = NULL;
  570. }
  571. };
  572. struct llama_file {
  573. // use FILE * so we don't have to re-open the file to mmap
  574. FILE * fp;
  575. size_t size;
  576. llama_file(const char * fname, const char * mode) {
  577. fp = std::fopen(fname, mode);
  578. if (fp == NULL) {
  579. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  580. }
  581. seek(0, SEEK_END);
  582. size = tell();
  583. seek(0, SEEK_SET);
  584. }
  585. size_t tell() const {
  586. #ifdef _WIN32
  587. __int64 ret = _ftelli64(fp);
  588. #else
  589. long ret = std::ftell(fp);
  590. #endif
  591. GGML_ASSERT(ret != -1); // this really shouldn't fail
  592. return (size_t) ret;
  593. }
  594. void seek(size_t offset, int whence) const {
  595. #ifdef _WIN32
  596. int ret = _fseeki64(fp, (__int64) offset, whence);
  597. #else
  598. int ret = std::fseek(fp, (long) offset, whence);
  599. #endif
  600. GGML_ASSERT(ret == 0); // same
  601. }
  602. void read_raw(void * ptr, size_t len) const {
  603. if (len == 0) {
  604. return;
  605. }
  606. errno = 0;
  607. std::size_t ret = std::fread(ptr, len, 1, fp);
  608. if (ferror(fp)) {
  609. throw std::runtime_error(format("read error: %s", strerror(errno)));
  610. }
  611. if (ret != 1) {
  612. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  613. }
  614. }
  615. uint32_t read_u32() const {
  616. uint32_t ret;
  617. read_raw(&ret, sizeof(ret));
  618. return ret;
  619. }
  620. void write_raw(const void * ptr, size_t len) const {
  621. if (len == 0) {
  622. return;
  623. }
  624. errno = 0;
  625. size_t ret = std::fwrite(ptr, len, 1, fp);
  626. if (ret != 1) {
  627. throw std::runtime_error(format("write error: %s", strerror(errno)));
  628. }
  629. }
  630. void write_u32(std::uint32_t val) const {
  631. write_raw(&val, sizeof(val));
  632. }
  633. ~llama_file() {
  634. if (fp) {
  635. std::fclose(fp);
  636. }
  637. }
  638. };
  639. struct llama_mmap {
  640. void * addr;
  641. size_t size;
  642. llama_mmap(const llama_mmap &) = delete;
  643. #ifdef _POSIX_MAPPED_FILES
  644. static constexpr bool SUPPORTED = true;
  645. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  646. size = file->size;
  647. int fd = fileno(file->fp);
  648. int flags = MAP_SHARED;
  649. // prefetch/readahead impairs performance on NUMA systems
  650. if (numa) { prefetch = 0; }
  651. #ifdef __linux__
  652. if (prefetch) { flags |= MAP_POPULATE; }
  653. #endif
  654. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  655. if (addr == MAP_FAILED) {
  656. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  657. }
  658. if (prefetch > 0) {
  659. // Advise the kernel to preload the mapped memory
  660. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  661. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  662. strerror(errno));
  663. }
  664. }
  665. if (numa) {
  666. // advise the kernel not to use readahead
  667. // (because the next page might not belong on the same node)
  668. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  669. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  670. strerror(errno));
  671. }
  672. }
  673. }
  674. ~llama_mmap() {
  675. munmap(addr, size);
  676. }
  677. #elif defined(_WIN32)
  678. static constexpr bool SUPPORTED = true;
  679. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  680. (void) numa;
  681. size = file->size;
  682. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  683. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  684. DWORD error = GetLastError();
  685. if (hMapping == NULL) {
  686. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  687. }
  688. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  689. error = GetLastError();
  690. CloseHandle(hMapping);
  691. if (addr == NULL) {
  692. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  693. }
  694. if (prefetch) {
  695. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  696. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  697. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  698. // may fail on pre-Windows 8 systems
  699. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  700. if (pPrefetchVirtualMemory) {
  701. // advise the kernel to preload the mapped memory
  702. WIN32_MEMORY_RANGE_ENTRY range;
  703. range.VirtualAddress = addr;
  704. range.NumberOfBytes = (SIZE_T)size;
  705. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  706. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  707. llama_format_win_err(GetLastError()).c_str());
  708. }
  709. }
  710. }
  711. }
  712. ~llama_mmap() {
  713. if (!UnmapViewOfFile(addr)) {
  714. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  715. llama_format_win_err(GetLastError()).c_str());
  716. }
  717. }
  718. #else
  719. static constexpr bool SUPPORTED = false;
  720. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  721. (void) file;
  722. (void) prefetch;
  723. (void) numa;
  724. throw std::runtime_error(std::string("mmap not supported"));
  725. }
  726. #endif
  727. };
  728. // Represents some region of memory being locked using mlock or VirtualLock;
  729. // will automatically unlock on destruction.
  730. struct llama_mlock {
  731. void * addr = NULL;
  732. size_t size = 0;
  733. bool failed_already = false;
  734. llama_mlock() {}
  735. llama_mlock(const llama_mlock &) = delete;
  736. ~llama_mlock() {
  737. if (size) {
  738. raw_unlock(addr, size);
  739. }
  740. }
  741. void init(void * ptr) {
  742. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  743. addr = ptr;
  744. }
  745. void grow_to(size_t target_size) {
  746. GGML_ASSERT(addr);
  747. if (failed_already) {
  748. return;
  749. }
  750. size_t granularity = lock_granularity();
  751. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  752. if (target_size > size) {
  753. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  754. size = target_size;
  755. } else {
  756. failed_already = true;
  757. }
  758. }
  759. }
  760. #ifdef _POSIX_MEMLOCK_RANGE
  761. static constexpr bool SUPPORTED = true;
  762. static size_t lock_granularity() {
  763. return (size_t) sysconf(_SC_PAGESIZE);
  764. }
  765. #ifdef __APPLE__
  766. #define MLOCK_SUGGESTION \
  767. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  768. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  769. #else
  770. #define MLOCK_SUGGESTION \
  771. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  772. #endif
  773. bool raw_lock(const void * addr, size_t size) const {
  774. if (!mlock(addr, size)) {
  775. return true;
  776. }
  777. char* errmsg = std::strerror(errno);
  778. bool suggest = (errno == ENOMEM);
  779. // Check if the resource limit is fine after all
  780. struct rlimit lock_limit;
  781. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  782. suggest = false;
  783. }
  784. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  785. suggest = false;
  786. }
  787. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  788. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  789. return false;
  790. }
  791. #undef MLOCK_SUGGESTION
  792. static void raw_unlock(void * addr, size_t size) {
  793. if (munlock(addr, size)) {
  794. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  795. }
  796. }
  797. #elif defined(_WIN32)
  798. static constexpr bool SUPPORTED = true;
  799. static size_t lock_granularity() {
  800. SYSTEM_INFO si;
  801. GetSystemInfo(&si);
  802. return (size_t) si.dwPageSize;
  803. }
  804. bool raw_lock(void * ptr, size_t len) const {
  805. for (int tries = 1; ; tries++) {
  806. if (VirtualLock(ptr, len)) {
  807. return true;
  808. }
  809. if (tries == 2) {
  810. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  811. len, size, llama_format_win_err(GetLastError()).c_str());
  812. return false;
  813. }
  814. // It failed but this was only the first try; increase the working
  815. // set size and try again.
  816. SIZE_T min_ws_size, max_ws_size;
  817. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  818. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  819. llama_format_win_err(GetLastError()).c_str());
  820. return false;
  821. }
  822. // Per MSDN: "The maximum number of pages that a process can lock
  823. // is equal to the number of pages in its minimum working set minus
  824. // a small overhead."
  825. // Hopefully a megabyte is enough overhead:
  826. size_t increment = len + 1048576;
  827. // The minimum must be <= the maximum, so we need to increase both:
  828. min_ws_size += increment;
  829. max_ws_size += increment;
  830. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  831. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  832. llama_format_win_err(GetLastError()).c_str());
  833. return false;
  834. }
  835. }
  836. }
  837. static void raw_unlock(void * ptr, size_t len) {
  838. if (!VirtualUnlock(ptr, len)) {
  839. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  840. llama_format_win_err(GetLastError()).c_str());
  841. }
  842. }
  843. #else
  844. static constexpr bool SUPPORTED = false;
  845. static size_t lock_granularity() {
  846. return (size_t) 65536;
  847. }
  848. bool raw_lock(const void * addr, size_t len) const {
  849. fprintf(stderr, "warning: mlock not supported on this system\n");
  850. return false;
  851. }
  852. static void raw_unlock(const void * addr, size_t len) {}
  853. #endif
  854. };
  855. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  856. static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  857. (void) tensor;
  858. }
  859. static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  860. std::vector<char> result(8, 0);
  861. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  862. if (n_tokens < 0) {
  863. result.resize(-n_tokens);
  864. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  865. GGML_ASSERT(check == -n_tokens);
  866. } else {
  867. result.resize(n_tokens);
  868. }
  869. return std::string(result.data(), result.size());
  870. }
  871. //
  872. // globals
  873. //
  874. struct llama_state {
  875. // We save the log callback globally
  876. ggml_log_callback log_callback = llama_log_callback_default;
  877. void * log_callback_user_data = nullptr;
  878. };
  879. static llama_state g_state;
  880. // available llama models
  881. enum e_model {
  882. MODEL_UNKNOWN,
  883. MODEL_1B,
  884. MODEL_3B,
  885. MODEL_7B,
  886. MODEL_8B,
  887. MODEL_13B,
  888. MODEL_15B,
  889. MODEL_30B,
  890. MODEL_34B,
  891. MODEL_40B,
  892. MODEL_65B,
  893. MODEL_70B,
  894. };
  895. static const size_t kB = 1024;
  896. static const size_t MB = kB*kB;
  897. static const size_t GB = kB*kB*kB;
  898. struct llama_hparams {
  899. bool vocab_only;
  900. uint32_t n_vocab;
  901. uint32_t n_ctx_train; // context size the model was trained on
  902. uint32_t n_embd;
  903. uint32_t n_head;
  904. uint32_t n_head_kv;
  905. uint32_t n_layer;
  906. uint32_t n_rot;
  907. uint32_t n_ff;
  908. float f_norm_eps;
  909. float f_norm_rms_eps;
  910. float rope_freq_base_train;
  911. float rope_freq_scale_train;
  912. float f_clamp_kqv;
  913. float f_max_alibi_bias;
  914. bool operator!=(const llama_hparams & other) const {
  915. if (this->vocab_only != other.vocab_only) return true;
  916. if (this->n_vocab != other.n_vocab) return true;
  917. if (this->n_ctx_train != other.n_ctx_train) return true;
  918. if (this->n_embd != other.n_embd) return true;
  919. if (this->n_head != other.n_head) return true;
  920. if (this->n_head_kv != other.n_head_kv) return true;
  921. if (this->n_layer != other.n_layer) return true;
  922. if (this->n_rot != other.n_rot) return true;
  923. if (this->n_ff != other.n_ff) return true;
  924. const float EPSILON = 1e-9;
  925. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  926. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  927. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  928. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  929. return false;
  930. }
  931. uint32_t n_gqa() const {
  932. return n_head/n_head_kv;
  933. }
  934. uint32_t n_embd_head() const {
  935. return n_embd/n_head;
  936. }
  937. uint32_t n_embd_gqa() const {
  938. return n_embd/n_gqa();
  939. }
  940. };
  941. struct llama_cparams {
  942. uint32_t n_ctx; // context size used during inference
  943. uint32_t n_batch;
  944. uint32_t n_threads; // number of threads to use for generation
  945. uint32_t n_threads_batch; // number of threads to use for batch processing
  946. float rope_freq_base;
  947. float rope_freq_scale;
  948. bool mul_mat_q;
  949. };
  950. struct llama_layer {
  951. // normalization
  952. struct ggml_tensor * attn_norm;
  953. struct ggml_tensor * attn_norm_b;
  954. struct ggml_tensor * attn_norm_2;
  955. struct ggml_tensor * attn_norm_2_b;
  956. struct ggml_tensor * attn_q_norm;
  957. struct ggml_tensor * attn_q_norm_b;
  958. struct ggml_tensor * attn_k_norm;
  959. struct ggml_tensor * attn_k_norm_b;
  960. // attention
  961. struct ggml_tensor * wq;
  962. struct ggml_tensor * wk;
  963. struct ggml_tensor * wv;
  964. struct ggml_tensor * wo;
  965. struct ggml_tensor * wqkv;
  966. // attention bias
  967. struct ggml_tensor * bo;
  968. struct ggml_tensor * bqkv;
  969. // normalization
  970. struct ggml_tensor * ffn_norm;
  971. struct ggml_tensor * ffn_norm_b;
  972. // ff
  973. struct ggml_tensor * w1; // ffn_gate
  974. struct ggml_tensor * w2; // ffn_down
  975. struct ggml_tensor * w3; // ffn_up
  976. // ff bias
  977. struct ggml_tensor * b2; // ffn_down
  978. struct ggml_tensor * b3; // ffn_up
  979. };
  980. struct llama_kv_cell {
  981. llama_pos pos = -1;
  982. llama_pos delta = 0;
  983. std::set<llama_seq_id> seq_id;
  984. bool has_seq_id(const llama_seq_id & id) const {
  985. return seq_id.find(id) != seq_id.end();
  986. }
  987. };
  988. // ring-buffer of cached KV data
  989. struct llama_kv_cache {
  990. bool has_shift = false;
  991. // Note: The value of head isn't only used to optimize searching
  992. // for a free KV slot. llama_decode_internal also uses it, so it
  993. // cannot be freely changed after a slot has been allocated.
  994. uint32_t head = 0;
  995. uint32_t size = 0;
  996. // computed before each graph build
  997. uint32_t n = 0;
  998. std::vector<llama_kv_cell> cells;
  999. struct ggml_tensor * k = NULL;
  1000. struct ggml_tensor * v = NULL;
  1001. struct ggml_context * ctx = NULL;
  1002. llama_buffer buf;
  1003. ~llama_kv_cache() {
  1004. if (ctx) {
  1005. ggml_free(ctx);
  1006. }
  1007. #ifdef GGML_USE_CUBLAS
  1008. ggml_cuda_free_data(k);
  1009. ggml_cuda_free_data(v);
  1010. #endif // GGML_USE_CUBLAS
  1011. }
  1012. };
  1013. struct llama_vocab {
  1014. using id = int32_t;
  1015. using token = std::string;
  1016. using ttype = llama_token_type;
  1017. struct token_data {
  1018. token text;
  1019. float score;
  1020. ttype type;
  1021. };
  1022. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1023. std::unordered_map<token, id> token_to_id;
  1024. std::vector<token_data> id_to_token;
  1025. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1026. // default LLaMA special tokens
  1027. id special_bos_id = 1;
  1028. id special_eos_id = 2;
  1029. id special_unk_id = 0;
  1030. id special_sep_id = -1;
  1031. id special_pad_id = -1;
  1032. id linefeed_id = 13;
  1033. id special_prefix_id = 32007;
  1034. id special_middle_id = 32009;
  1035. id special_suffix_id = 32008;
  1036. id special_eot_id = 32010;
  1037. int find_bpe_rank(std::string token_left, std::string token_right) const {
  1038. replace_all(token_left, " ", "\u0120");
  1039. replace_all(token_left, "\n", "\u010A");
  1040. replace_all(token_right, " ", "\u0120");
  1041. replace_all(token_right, "\n", "\u010A");
  1042. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1043. if (it == bpe_ranks.end()) {
  1044. return -1;
  1045. }
  1046. return it->second;
  1047. }
  1048. };
  1049. struct llama_model {
  1050. e_model type = MODEL_UNKNOWN;
  1051. llm_arch arch = LLM_ARCH_UNKNOWN;
  1052. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1053. std::string name = "n/a";
  1054. llama_hparams hparams = {};
  1055. llama_vocab vocab;
  1056. struct ggml_tensor * tok_embeddings;
  1057. struct ggml_tensor * pos_embeddings;
  1058. struct ggml_tensor * tok_norm;
  1059. struct ggml_tensor * tok_norm_b;
  1060. struct ggml_tensor * output_norm;
  1061. struct ggml_tensor * output_norm_b;
  1062. struct ggml_tensor * output;
  1063. std::vector<llama_layer> layers;
  1064. int n_gpu_layers;
  1065. // context
  1066. struct ggml_context * ctx = NULL;
  1067. // the model memory buffer
  1068. llama_buffer buf;
  1069. // model memory mapped file
  1070. std::unique_ptr<llama_mmap> mapping;
  1071. // objects representing data potentially being locked in memory
  1072. llama_mlock mlock_buf;
  1073. llama_mlock mlock_mmap;
  1074. // for quantize-stats only
  1075. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1076. int64_t t_load_us = 0;
  1077. int64_t t_start_us = 0;
  1078. ~llama_model() {
  1079. if (ctx) {
  1080. ggml_free(ctx);
  1081. }
  1082. #ifdef GGML_USE_CUBLAS
  1083. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1084. ggml_cuda_free_data(tensors_by_name[i].second);
  1085. }
  1086. ggml_cuda_free_scratch();
  1087. #elif defined(GGML_USE_CLBLAST)
  1088. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1089. ggml_cl_free_data(tensors_by_name[i].second);
  1090. }
  1091. #endif
  1092. }
  1093. };
  1094. struct llama_context {
  1095. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1096. ~llama_context() {
  1097. #ifdef GGML_USE_METAL
  1098. if (ctx_metal) {
  1099. ggml_metal_free(ctx_metal);
  1100. }
  1101. #endif
  1102. if (alloc) {
  1103. ggml_allocr_free(alloc);
  1104. }
  1105. }
  1106. llama_cparams cparams;
  1107. const llama_model & model;
  1108. // key + value cache for the self attention
  1109. struct llama_kv_cache kv_self;
  1110. std::mt19937 rng;
  1111. bool has_evaluated_once = false;
  1112. int64_t t_start_us;
  1113. int64_t t_load_us;
  1114. int64_t t_sample_us = 0;
  1115. int64_t t_p_eval_us = 0;
  1116. int64_t t_eval_us = 0;
  1117. int32_t n_sample = 0; // number of tokens sampled
  1118. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1119. int32_t n_eval = 0; // number of eval calls
  1120. // decode output (2-dimensional array: [n_tokens][n_vocab])
  1121. std::vector<float> logits;
  1122. bool logits_all = false;
  1123. // input embedding (1-dimensional array: [n_embd])
  1124. std::vector<float> embedding;
  1125. // reusable buffer for `struct ggml_graph_plan.work_data`
  1126. std::vector<uint8_t> work_buffer;
  1127. // memory buffers used to evaluate the model
  1128. llama_buffer buf_compute;
  1129. llama_buffer buf_alloc;
  1130. ggml_allocr * alloc = NULL;
  1131. #ifdef GGML_USE_METAL
  1132. ggml_metal_context * ctx_metal = NULL;
  1133. #endif
  1134. #ifdef GGML_USE_MPI
  1135. ggml_mpi_context * ctx_mpi = NULL;
  1136. #endif
  1137. };
  1138. //
  1139. // kv cache helpers
  1140. //
  1141. static bool llama_kv_cache_init(
  1142. const struct llama_hparams & hparams,
  1143. struct llama_kv_cache & cache,
  1144. ggml_type wtype,
  1145. uint32_t n_ctx,
  1146. int n_gpu_layers) {
  1147. const uint32_t n_embd = hparams.n_embd_gqa();
  1148. const uint32_t n_layer = hparams.n_layer;
  1149. const int64_t n_mem = n_layer*n_ctx;
  1150. const int64_t n_elements = n_embd*n_mem;
  1151. cache.has_shift = false;
  1152. cache.head = 0;
  1153. cache.size = n_ctx;
  1154. cache.cells.clear();
  1155. cache.cells.resize(n_ctx);
  1156. // TODO: this should be:
  1157. // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
  1158. // change it and test that it works
  1159. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  1160. memset(cache.buf.data, 0, cache.buf.size);
  1161. struct ggml_init_params params;
  1162. params.mem_size = cache.buf.size;
  1163. params.mem_buffer = cache.buf.data;
  1164. params.no_alloc = false;
  1165. cache.ctx = ggml_init(params);
  1166. if (!cache.ctx) {
  1167. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1168. return false;
  1169. }
  1170. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1171. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1172. ggml_set_name(cache.k, "cache_k");
  1173. ggml_set_name(cache.v, "cache_v");
  1174. (void) n_gpu_layers;
  1175. #ifdef GGML_USE_CUBLAS
  1176. size_t vram_kv_cache = 0;
  1177. if (n_gpu_layers > (int)n_layer + 1) {
  1178. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1179. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1180. vram_kv_cache += ggml_nbytes(cache.v);
  1181. }
  1182. if (n_gpu_layers > (int)n_layer + 2) {
  1183. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1184. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1185. vram_kv_cache += ggml_nbytes(cache.k);
  1186. }
  1187. if (vram_kv_cache > 0) {
  1188. LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
  1189. }
  1190. #endif // GGML_USE_CUBLAS
  1191. return true;
  1192. }
  1193. // find an empty slot of size "n_tokens" in the cache
  1194. // updates the cache head
  1195. // Note: On success, it's important that cache.head points
  1196. // to the first cell of the slot.
  1197. static bool llama_kv_cache_find_slot(
  1198. struct llama_kv_cache & cache,
  1199. const struct llama_batch & batch) {
  1200. const uint32_t n_ctx = cache.size;
  1201. const uint32_t n_tokens = batch.n_tokens;
  1202. if (n_tokens > n_ctx) {
  1203. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1204. return false;
  1205. }
  1206. uint32_t n_tested = 0;
  1207. while (true) {
  1208. if (cache.head + n_tokens > n_ctx) {
  1209. n_tested += n_ctx - cache.head;
  1210. cache.head = 0;
  1211. continue;
  1212. }
  1213. bool found = true;
  1214. for (uint32_t i = 0; i < n_tokens; i++) {
  1215. if (cache.cells[cache.head + i].pos >= 0) {
  1216. found = false;
  1217. cache.head += i + 1;
  1218. n_tested += i + 1;
  1219. break;
  1220. }
  1221. }
  1222. if (found) {
  1223. break;
  1224. }
  1225. if (n_tested >= n_ctx) {
  1226. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  1227. return false;
  1228. }
  1229. }
  1230. for (uint32_t i = 0; i < n_tokens; i++) {
  1231. cache.cells[cache.head + i].pos = batch.pos[i];
  1232. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
  1233. }
  1234. return true;
  1235. }
  1236. // find how many cells are currently in use
  1237. static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  1238. for (uint32_t i = cache.size - 1; i > 0; --i) {
  1239. if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
  1240. return i + 1;
  1241. }
  1242. }
  1243. return 0;
  1244. }
  1245. static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
  1246. if (c0 < 0) c0 = 0;
  1247. if (c1 < 0) c1 = cache.size;
  1248. for (int32_t i = c0; i < c1; ++i) {
  1249. cache.cells[i].pos = -1;
  1250. cache.cells[i].seq_id.clear();
  1251. }
  1252. // Searching for a free slot can start here since we know it will be empty.
  1253. cache.head = uint32_t(c0);
  1254. }
  1255. static void llama_kv_cache_seq_rm(
  1256. struct llama_kv_cache & cache,
  1257. llama_seq_id seq_id,
  1258. llama_pos p0,
  1259. llama_pos p1) {
  1260. uint32_t new_head = cache.size;
  1261. if (p0 < 0) p0 = 0;
  1262. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1263. for (uint32_t i = 0; i < cache.size; ++i) {
  1264. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1265. cache.cells[i].seq_id.erase(seq_id);
  1266. if (cache.cells[i].seq_id.empty()) {
  1267. cache.cells[i].pos = -1;
  1268. if (new_head == cache.size) new_head = i;
  1269. }
  1270. }
  1271. }
  1272. // If we freed up a slot, set head to it so searching can start there.
  1273. if (new_head != cache.size) cache.head = new_head;
  1274. }
  1275. static void llama_kv_cache_seq_cp(
  1276. struct llama_kv_cache & cache,
  1277. llama_seq_id seq_id_src,
  1278. llama_seq_id seq_id_dst,
  1279. llama_pos p0,
  1280. llama_pos p1) {
  1281. if (p0 < 0) p0 = 0;
  1282. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1283. cache.head = 0;
  1284. for (uint32_t i = 0; i < cache.size; ++i) {
  1285. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1286. cache.cells[i].seq_id.insert(seq_id_dst);
  1287. }
  1288. }
  1289. }
  1290. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1291. uint32_t new_head = cache.size;
  1292. for (uint32_t i = 0; i < cache.size; ++i) {
  1293. if (!cache.cells[i].has_seq_id(seq_id)) {
  1294. cache.cells[i].pos = -1;
  1295. cache.cells[i].seq_id.clear();
  1296. if (new_head == cache.size) new_head = i;
  1297. }
  1298. }
  1299. // If we freed up a slot, set head to it so searching can start there.
  1300. if (new_head != cache.size) cache.head = new_head;
  1301. }
  1302. static void llama_kv_cache_seq_shift(
  1303. struct llama_kv_cache & cache,
  1304. llama_seq_id seq_id,
  1305. llama_pos p0,
  1306. llama_pos p1,
  1307. llama_pos delta) {
  1308. uint32_t new_head = cache.size;
  1309. if (p0 < 0) p0 = 0;
  1310. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1311. for (uint32_t i = 0; i < cache.size; ++i) {
  1312. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1313. cache.cells[i].pos += delta;
  1314. if (cache.cells[i].pos < 0) {
  1315. cache.cells[i].pos = -1;
  1316. cache.cells[i].seq_id.clear();
  1317. if (new_head == cache.size) new_head = i;
  1318. } else {
  1319. cache.has_shift = true;
  1320. cache.cells[i].delta = delta;
  1321. }
  1322. }
  1323. }
  1324. // If we freed up a slot, set head to it so searching can start there.
  1325. // Otherwise we just start the next search from the beginning.
  1326. cache.head = new_head != cache.size ? new_head : 0;
  1327. }
  1328. //
  1329. // model loading and saving
  1330. //
  1331. enum llama_fver {
  1332. GGUF_FILE_VERSION_V1 = 1,
  1333. GGUF_FILE_VERSION_V2 = 2,
  1334. };
  1335. static const char * llama_file_version_name(llama_fver version) {
  1336. switch (version) {
  1337. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1338. case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
  1339. }
  1340. return "unknown";
  1341. }
  1342. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1343. char buf[256];
  1344. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1345. for (size_t i = 1; i < ne.size(); i++) {
  1346. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1347. }
  1348. return buf;
  1349. }
  1350. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1351. char buf[256];
  1352. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1353. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1354. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1355. }
  1356. return buf;
  1357. }
  1358. struct llama_model_loader {
  1359. int n_kv = 0;
  1360. int n_tensors = 0;
  1361. int n_created = 0;
  1362. int64_t n_elements = 0;
  1363. size_t n_bytes = 0;
  1364. bool use_mmap = false;
  1365. llama_file file;
  1366. llama_ftype ftype;
  1367. llama_fver fver;
  1368. std::unique_ptr<llama_mmap> mapping;
  1369. struct gguf_context * ctx_gguf = NULL;
  1370. struct ggml_context * ctx_meta = NULL;
  1371. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1372. struct gguf_init_params params = {
  1373. /*.no_alloc = */ true,
  1374. /*.ctx = */ &ctx_meta,
  1375. };
  1376. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1377. if (!ctx_gguf) {
  1378. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1379. }
  1380. n_kv = gguf_get_n_kv(ctx_gguf);
  1381. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1382. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1383. for (int i = 0; i < n_tensors; i++) {
  1384. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1385. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1386. n_elements += ggml_nelements(t);
  1387. n_bytes += ggml_nbytes(t);
  1388. }
  1389. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1390. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1391. // determine file type based on the number of tensors for each quantization and print meta data
  1392. // TODO: make optional
  1393. {
  1394. std::map<enum ggml_type, uint32_t> n_type;
  1395. uint32_t n_type_max = 0;
  1396. enum ggml_type type_max = GGML_TYPE_F32;
  1397. for (int i = 0; i < n_tensors; i++) {
  1398. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1399. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1400. n_type[meta->type]++;
  1401. if (n_type_max < n_type[meta->type]) {
  1402. n_type_max = n_type[meta->type];
  1403. type_max = meta->type;
  1404. }
  1405. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1406. }
  1407. switch (type_max) {
  1408. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1409. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1410. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1411. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1412. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1413. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1414. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1415. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1416. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1417. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1418. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1419. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1420. default:
  1421. {
  1422. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1423. ftype = LLAMA_FTYPE_ALL_F32;
  1424. } break;
  1425. }
  1426. // this is a way to mark that we have "guessed" the file type
  1427. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1428. {
  1429. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1430. if (kid >= 0) {
  1431. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1432. }
  1433. }
  1434. for (int i = 0; i < n_kv; i++) {
  1435. const char * name = gguf_get_key(ctx_gguf, i);
  1436. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1437. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1438. }
  1439. // print type counts
  1440. for (auto & kv : n_type) {
  1441. if (kv.second == 0) {
  1442. continue;
  1443. }
  1444. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1445. }
  1446. }
  1447. if (!llama_mmap::SUPPORTED) {
  1448. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1449. use_mmap = false;
  1450. }
  1451. this->use_mmap = use_mmap;
  1452. }
  1453. ~llama_model_loader() {
  1454. if (ctx_gguf) {
  1455. gguf_free(ctx_gguf);
  1456. }
  1457. if (ctx_meta) {
  1458. ggml_free(ctx_meta);
  1459. }
  1460. }
  1461. std::string get_arch_name() const {
  1462. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1463. std::string arch_name;
  1464. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1465. return arch_name;
  1466. }
  1467. enum llm_arch get_arch() const {
  1468. const std::string arch_name = get_arch_name();
  1469. return llm_arch_from_string(arch_name);
  1470. }
  1471. const char * get_tensor_name(int i) const {
  1472. return gguf_get_tensor_name(ctx_gguf, i);
  1473. }
  1474. struct ggml_tensor * get_tensor_meta(int i) const {
  1475. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1476. }
  1477. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1478. ctx_size_p = 0;
  1479. mmapped_size_p = 0;
  1480. for (int i = 0; i < n_tensors; i++) {
  1481. struct ggml_tensor * meta = get_tensor_meta(i);
  1482. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1483. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1484. }
  1485. }
  1486. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) {
  1487. if (backend != GGML_BACKEND_CPU) {
  1488. ggml_set_no_alloc(ctx, true);
  1489. }
  1490. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1491. tensor->backend = backend; // TODO: ggml_set_backend
  1492. ggml_set_name(tensor, ggml_get_name(meta));
  1493. if (backend != GGML_BACKEND_CPU) {
  1494. ggml_set_no_alloc(ctx, use_mmap);
  1495. }
  1496. n_created++;
  1497. return tensor;
  1498. }
  1499. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
  1500. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1501. if (cur == NULL) {
  1502. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1503. }
  1504. {
  1505. bool is_ok = true;
  1506. for (size_t i = 0; i < ne.size(); ++i) {
  1507. if (ne[i] != cur->ne[i]) {
  1508. is_ok = false;
  1509. break;
  1510. }
  1511. }
  1512. if (!is_ok) {
  1513. throw std::runtime_error(
  1514. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1515. __func__, name.c_str(),
  1516. llama_format_tensor_shape(ne).c_str(),
  1517. llama_format_tensor_shape(cur).c_str()));
  1518. }
  1519. }
  1520. return create_tensor_for(ctx, cur, backend);
  1521. }
  1522. void done_getting_tensors() const {
  1523. if (n_created != n_tensors) {
  1524. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1525. }
  1526. }
  1527. size_t file_offset(const char * name) const {
  1528. const int idx = gguf_find_tensor(ctx_gguf, name);
  1529. if (idx < 0) {
  1530. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1531. }
  1532. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1533. }
  1534. void load_data_for(struct ggml_tensor * cur) const {
  1535. const size_t offs = file_offset(ggml_get_name(cur));
  1536. if (use_mmap) {
  1537. cur->data = (uint8_t *) mapping->addr + offs;
  1538. } else {
  1539. file.seek(offs, SEEK_SET);
  1540. file.read_raw(cur->data, ggml_nbytes(cur));
  1541. }
  1542. }
  1543. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1544. size_t size_data = 0;
  1545. size_t size_lock = 0;
  1546. size_t size_pref = 0; // prefetch
  1547. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1548. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1549. size_data += ggml_nbytes(cur);
  1550. if (cur->backend == GGML_BACKEND_CPU) {
  1551. size_pref += ggml_nbytes(cur);
  1552. }
  1553. }
  1554. if (use_mmap) {
  1555. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1556. if (lmlock) {
  1557. lmlock->init(mapping->addr);
  1558. }
  1559. }
  1560. size_t done_size = 0;
  1561. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1562. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1563. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1564. if (progress_callback) {
  1565. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1566. }
  1567. // allocate temp buffer if not using mmap
  1568. if (!use_mmap && cur->data == NULL) {
  1569. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1570. #ifdef GGML_USE_CPU_HBM
  1571. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1572. #else
  1573. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1574. #endif
  1575. }
  1576. load_data_for(cur);
  1577. switch (cur->backend) {
  1578. case GGML_BACKEND_CPU:
  1579. if (use_mmap && lmlock) {
  1580. size_lock += ggml_nbytes(cur);
  1581. lmlock->grow_to(size_lock);
  1582. }
  1583. break;
  1584. #ifdef GGML_USE_CUBLAS
  1585. case GGML_BACKEND_GPU:
  1586. case GGML_BACKEND_GPU_SPLIT:
  1587. // old code:
  1588. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1589. // TODO: test if this works !!
  1590. ggml_cuda_transform_tensor(cur->data, cur);
  1591. if (!use_mmap) {
  1592. free(cur->data);
  1593. }
  1594. break;
  1595. #elif defined(GGML_USE_CLBLAST)
  1596. case GGML_BACKEND_GPU:
  1597. ggml_cl_transform_tensor(cur->data, cur);
  1598. if (!use_mmap) {
  1599. free(cur->data);
  1600. }
  1601. break;
  1602. #endif
  1603. default:
  1604. continue;
  1605. }
  1606. done_size += ggml_nbytes(cur);
  1607. }
  1608. }
  1609. };
  1610. //
  1611. // load LLaMA models
  1612. //
  1613. static std::string llama_model_arch_name(llm_arch arch) {
  1614. auto it = LLM_ARCH_NAMES.find(arch);
  1615. if (it == LLM_ARCH_NAMES.end()) {
  1616. return "unknown";
  1617. }
  1618. return it->second;
  1619. }
  1620. static std::string llama_model_ftype_name(llama_ftype ftype) {
  1621. if (ftype & LLAMA_FTYPE_GUESSED) {
  1622. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1623. }
  1624. switch (ftype) {
  1625. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1626. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1627. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1628. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1629. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1630. return "mostly Q4_1, some F16";
  1631. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1632. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1633. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1634. // K-quants
  1635. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1636. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1637. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1638. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1639. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1640. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1641. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1642. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1643. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1644. default: return "unknown, may not work";
  1645. }
  1646. }
  1647. static const char * llama_model_type_name(e_model type) {
  1648. switch (type) {
  1649. case MODEL_1B: return "1B";
  1650. case MODEL_3B: return "3B";
  1651. case MODEL_7B: return "7B";
  1652. case MODEL_8B: return "8B";
  1653. case MODEL_13B: return "13B";
  1654. case MODEL_15B: return "15B";
  1655. case MODEL_30B: return "30B";
  1656. case MODEL_34B: return "34B";
  1657. case MODEL_40B: return "40B";
  1658. case MODEL_65B: return "65B";
  1659. case MODEL_70B: return "70B";
  1660. default: return "?B";
  1661. }
  1662. }
  1663. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1664. model.arch = ml.get_arch();
  1665. if (model.arch == LLM_ARCH_UNKNOWN) {
  1666. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1667. }
  1668. }
  1669. static void llm_load_hparams(
  1670. llama_model_loader & ml,
  1671. llama_model & model) {
  1672. struct gguf_context * ctx = ml.ctx_gguf;
  1673. const auto kv = LLM_KV(model.arch);
  1674. auto & hparams = model.hparams;
  1675. // get general kv
  1676. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1677. // get hparams kv
  1678. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1679. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1680. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1681. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1682. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1683. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1684. // n_head_kv is optional, default to n_head
  1685. hparams.n_head_kv = hparams.n_head;
  1686. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1687. // rope_freq_base (optional)
  1688. hparams.rope_freq_base_train = 10000.0f;
  1689. GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1690. // rope_freq_scale (inverse of the kv) is optional
  1691. float ropescale = 1.0f;
  1692. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1693. hparams.rope_freq_scale_train = 1.0f/ropescale;
  1694. // sanity check for n_rot (optional)
  1695. {
  1696. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1697. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1698. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1699. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1700. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1701. }
  1702. }
  1703. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1704. // gpt-j n_rot = rotary_dim
  1705. }
  1706. // arch-specific KVs
  1707. switch (model.arch) {
  1708. case LLM_ARCH_LLAMA:
  1709. {
  1710. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1711. switch (hparams.n_layer) {
  1712. case 26: model.type = e_model::MODEL_3B; break;
  1713. case 32: model.type = e_model::MODEL_7B; break;
  1714. case 40: model.type = e_model::MODEL_13B; break;
  1715. case 48: model.type = e_model::MODEL_34B; break;
  1716. case 60: model.type = e_model::MODEL_30B; break;
  1717. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1718. default: model.type = e_model::MODEL_UNKNOWN;
  1719. }
  1720. } break;
  1721. case LLM_ARCH_FALCON:
  1722. {
  1723. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1724. switch (hparams.n_layer) {
  1725. case 32: model.type = e_model::MODEL_7B; break;
  1726. case 60: model.type = e_model::MODEL_40B; break;
  1727. default: model.type = e_model::MODEL_UNKNOWN;
  1728. }
  1729. } break;
  1730. case LLM_ARCH_BAICHUAN:
  1731. {
  1732. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1733. switch (hparams.n_layer) {
  1734. case 32: model.type = e_model::MODEL_7B; break;
  1735. case 40: model.type = e_model::MODEL_13B; break;
  1736. default: model.type = e_model::MODEL_UNKNOWN;
  1737. }
  1738. } break;
  1739. case LLM_ARCH_STARCODER:
  1740. {
  1741. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1742. switch (hparams.n_layer) {
  1743. case 24: model.type = e_model::MODEL_1B; break;
  1744. case 36: model.type = e_model::MODEL_3B; break;
  1745. case 42: model.type = e_model::MODEL_7B; break;
  1746. case 40: model.type = e_model::MODEL_15B; break;
  1747. default: model.type = e_model::MODEL_UNKNOWN;
  1748. }
  1749. } break;
  1750. case LLM_ARCH_PERSIMMON:
  1751. {
  1752. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1753. switch (hparams.n_layer) {
  1754. case 36: model.type = e_model::MODEL_8B; break;
  1755. default: model.type = e_model::MODEL_UNKNOWN;
  1756. }
  1757. } break;
  1758. case LLM_ARCH_REFACT:
  1759. {
  1760. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1761. switch (hparams.n_layer) {
  1762. case 32: model.type = e_model::MODEL_1B; break;
  1763. default: model.type = e_model::MODEL_UNKNOWN;
  1764. }
  1765. } break;
  1766. case LLM_ARCH_BLOOM:
  1767. {
  1768. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1769. switch (hparams.n_layer) {
  1770. case 24: model.type = e_model::MODEL_1B; break;
  1771. case 30:
  1772. switch (hparams.n_embd) {
  1773. case 2560: model.type = e_model::MODEL_3B; break;
  1774. case 4096: model.type = e_model::MODEL_7B; break;
  1775. } break;
  1776. }
  1777. } break;
  1778. case LLM_ARCH_MPT:
  1779. {
  1780. hparams.f_clamp_kqv = 0.0f;
  1781. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1782. GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV));
  1783. GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS));
  1784. switch (hparams.n_layer) {
  1785. case 32: model.type = e_model::MODEL_7B; break;
  1786. case 48: model.type = e_model::MODEL_30B; break;
  1787. default: model.type = e_model::MODEL_UNKNOWN;
  1788. }
  1789. } break;
  1790. default: (void)0;
  1791. }
  1792. model.ftype = ml.ftype;
  1793. }
  1794. // TODO: This should probably be in llama.h
  1795. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos);
  1796. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1797. static void llm_load_vocab(
  1798. llama_model_loader & ml,
  1799. llama_model & model) {
  1800. auto & vocab = model.vocab;
  1801. struct gguf_context * ctx = ml.ctx_gguf;
  1802. const auto kv = LLM_KV(model.arch);
  1803. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1804. if (token_idx == -1) {
  1805. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1806. }
  1807. const float * scores = nullptr;
  1808. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1809. if (score_idx != -1) {
  1810. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1811. }
  1812. const int * toktypes = nullptr;
  1813. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1814. if (toktype_idx != -1) {
  1815. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1816. }
  1817. // determine vocab type
  1818. {
  1819. std::string tokenizer_name;
  1820. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1821. if (tokenizer_name == "llama") {
  1822. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1823. // default special tokens
  1824. vocab.special_bos_id = 1;
  1825. vocab.special_eos_id = 2;
  1826. vocab.special_unk_id = 0;
  1827. vocab.special_sep_id = -1;
  1828. vocab.special_pad_id = -1;
  1829. } else if (tokenizer_name == "gpt2") {
  1830. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1831. // read bpe merges and populate bpe ranks
  1832. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1833. if (merges_keyidx == -1) {
  1834. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1835. }
  1836. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1837. for (int i = 0; i < n_merges; i++) {
  1838. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1839. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1840. std::string first;
  1841. std::string second;
  1842. const size_t pos = word.find(' ', 1);
  1843. if (pos != std::string::npos) {
  1844. first = word.substr(0, pos);
  1845. second = word.substr(pos + 1);
  1846. }
  1847. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1848. }
  1849. // default special tokens
  1850. vocab.special_bos_id = 11;
  1851. vocab.special_eos_id = 11;
  1852. vocab.special_unk_id = -1;
  1853. vocab.special_sep_id = -1;
  1854. vocab.special_pad_id = -1;
  1855. } else {
  1856. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1857. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1858. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1859. }
  1860. }
  1861. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1862. vocab.id_to_token.resize(n_vocab);
  1863. for (uint32_t i = 0; i < n_vocab; i++) {
  1864. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1865. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1866. vocab.token_to_id[word] = i;
  1867. auto & token_data = vocab.id_to_token[i];
  1868. token_data.text = std::move(word);
  1869. token_data.score = scores ? scores[i] : 0.0f;
  1870. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  1871. }
  1872. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  1873. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1874. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1875. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1876. } else {
  1877. vocab.linefeed_id = llama_tokenize_internal(vocab, "\u010A", false)[0];
  1878. }
  1879. // special tokens
  1880. GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
  1881. GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
  1882. GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
  1883. GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
  1884. GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
  1885. }
  1886. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  1887. const auto & hparams = model.hparams;
  1888. const auto & vocab = model.vocab;
  1889. // hparams
  1890. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  1891. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  1892. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  1893. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  1894. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  1895. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  1896. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  1897. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  1898. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  1899. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  1900. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  1901. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  1902. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  1903. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  1904. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  1905. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  1906. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  1907. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  1908. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  1909. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  1910. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  1911. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  1912. if (ml.n_bytes < GB) {
  1913. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  1914. } else {
  1915. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  1916. }
  1917. // general kv
  1918. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  1919. // special tokens
  1920. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  1921. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  1922. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  1923. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  1924. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  1925. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  1926. }
  1927. static void llm_load_tensors(
  1928. llama_model_loader & ml,
  1929. llama_model & model,
  1930. int n_gpu_layers,
  1931. int main_gpu,
  1932. const float * tensor_split,
  1933. bool use_mlock,
  1934. llama_progress_callback progress_callback,
  1935. void * progress_callback_user_data) {
  1936. model.t_start_us = ggml_time_us();
  1937. auto & ctx = model.ctx;
  1938. auto & hparams = model.hparams;
  1939. model.n_gpu_layers = n_gpu_layers;
  1940. size_t ctx_size;
  1941. size_t mmapped_size;
  1942. ml.calc_sizes(ctx_size, mmapped_size);
  1943. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  1944. // create the ggml context
  1945. {
  1946. model.buf.resize(ctx_size);
  1947. if (use_mlock) {
  1948. model.mlock_buf.init (model.buf.data);
  1949. model.mlock_buf.grow_to(model.buf.size);
  1950. }
  1951. struct ggml_init_params params = {
  1952. /*.mem_size =*/ model.buf.size,
  1953. /*.mem_buffer =*/ model.buf.data,
  1954. /*.no_alloc =*/ ml.use_mmap,
  1955. };
  1956. model.ctx = ggml_init(params);
  1957. if (!model.ctx) {
  1958. throw std::runtime_error(format("ggml_init() failed"));
  1959. }
  1960. }
  1961. (void) main_gpu;
  1962. #ifdef GGML_USE_CUBLAS
  1963. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  1964. ggml_cuda_set_main_device(main_gpu);
  1965. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  1966. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  1967. #elif defined(GGML_USE_CLBLAST)
  1968. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  1969. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  1970. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  1971. #else
  1972. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  1973. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  1974. #endif
  1975. // prepare memory for the weights
  1976. size_t vram_weights = 0;
  1977. {
  1978. const int64_t n_embd = hparams.n_embd;
  1979. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  1980. const int64_t n_layer = hparams.n_layer;
  1981. const int64_t n_vocab = hparams.n_vocab;
  1982. const auto tn = LLM_TN(model.arch);
  1983. switch (model.arch) {
  1984. case LLM_ARCH_LLAMA:
  1985. case LLM_ARCH_REFACT:
  1986. {
  1987. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1988. // output
  1989. {
  1990. ggml_backend_type backend_norm;
  1991. ggml_backend_type backend_output;
  1992. if (n_gpu_layers > int(n_layer)) {
  1993. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1994. // on Windows however this is detrimental unless everything is on the GPU
  1995. #ifndef _WIN32
  1996. backend_norm = LLAMA_BACKEND_OFFLOAD;
  1997. #else
  1998. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1999. #endif // _WIN32
  2000. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2001. } else {
  2002. backend_norm = GGML_BACKEND_CPU;
  2003. backend_output = GGML_BACKEND_CPU;
  2004. }
  2005. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2006. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2007. if (backend_norm == GGML_BACKEND_GPU) {
  2008. vram_weights += ggml_nbytes(model.output_norm);
  2009. }
  2010. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2011. vram_weights += ggml_nbytes(model.output);
  2012. }
  2013. }
  2014. const uint32_t n_ff = hparams.n_ff;
  2015. const int i_gpu_start = n_layer - n_gpu_layers;
  2016. model.layers.resize(n_layer);
  2017. for (uint32_t i = 0; i < n_layer; ++i) {
  2018. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2019. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2020. auto & layer = model.layers[i];
  2021. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2022. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2023. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2024. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2025. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2026. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2027. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2028. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2029. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2030. if (backend == GGML_BACKEND_GPU) {
  2031. vram_weights +=
  2032. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2033. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2034. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2035. }
  2036. }
  2037. } break;
  2038. case LLM_ARCH_BAICHUAN:
  2039. {
  2040. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2041. {
  2042. ggml_backend_type backend_norm;
  2043. ggml_backend_type backend_output;
  2044. if (n_gpu_layers > int(n_layer)) {
  2045. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2046. // on Windows however this is detrimental unless everything is on the GPU
  2047. #ifndef _WIN32
  2048. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2049. #else
  2050. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2051. #endif // _WIN32
  2052. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2053. } else {
  2054. backend_norm = GGML_BACKEND_CPU;
  2055. backend_output = GGML_BACKEND_CPU;
  2056. }
  2057. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2058. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2059. if (backend_norm == GGML_BACKEND_GPU) {
  2060. vram_weights += ggml_nbytes(model.output_norm);
  2061. }
  2062. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2063. vram_weights += ggml_nbytes(model.output);
  2064. }
  2065. }
  2066. const uint32_t n_ff = hparams.n_ff;
  2067. const int i_gpu_start = n_layer - n_gpu_layers;
  2068. model.layers.resize(n_layer);
  2069. for (uint32_t i = 0; i < n_layer; ++i) {
  2070. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2071. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2072. auto & layer = model.layers[i];
  2073. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2074. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2075. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2076. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2077. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2078. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2079. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2080. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2081. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2082. if (backend == GGML_BACKEND_GPU) {
  2083. vram_weights +=
  2084. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2085. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2086. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2087. }
  2088. }
  2089. } break;
  2090. case LLM_ARCH_FALCON:
  2091. {
  2092. // TODO: CPU-only for now
  2093. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2094. // output
  2095. {
  2096. ggml_backend_type backend_norm;
  2097. ggml_backend_type backend_output;
  2098. if (n_gpu_layers > int(n_layer)) {
  2099. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2100. // on Windows however this is detrimental unless everything is on the GPU
  2101. #ifndef _WIN32
  2102. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2103. #else
  2104. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2105. #endif // _WIN32
  2106. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2107. } else {
  2108. backend_norm = GGML_BACKEND_CPU;
  2109. backend_output = GGML_BACKEND_CPU;
  2110. }
  2111. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2112. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2113. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2114. if (backend_norm == GGML_BACKEND_GPU) {
  2115. vram_weights += ggml_nbytes(model.output_norm);
  2116. vram_weights += ggml_nbytes(model.output_norm_b);
  2117. }
  2118. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2119. vram_weights += ggml_nbytes(model.output);
  2120. }
  2121. }
  2122. const uint32_t n_ff = hparams.n_ff;
  2123. const int i_gpu_start = n_layer - n_gpu_layers;
  2124. model.layers.resize(n_layer);
  2125. for (uint32_t i = 0; i < n_layer; ++i) {
  2126. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2127. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2128. auto & layer = model.layers[i];
  2129. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2130. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2131. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  2132. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  2133. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  2134. if (backend == GGML_BACKEND_GPU) {
  2135. vram_weights += ggml_nbytes(layer.attn_norm_2);
  2136. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  2137. }
  2138. }
  2139. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2140. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2141. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2142. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2143. if (backend == GGML_BACKEND_GPU) {
  2144. vram_weights +=
  2145. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2146. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  2147. ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2148. }
  2149. }
  2150. } break;
  2151. case LLM_ARCH_STARCODER:
  2152. {
  2153. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2154. model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
  2155. // output
  2156. {
  2157. ggml_backend_type backend_norm;
  2158. ggml_backend_type backend_output;
  2159. if (n_gpu_layers > int(n_layer)) {
  2160. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2161. // on Windows however this is detrimental unless everything is on the GPU
  2162. #ifndef _WIN32
  2163. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2164. #else
  2165. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2166. #endif // _WIN32
  2167. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2168. } else {
  2169. backend_norm = GGML_BACKEND_CPU;
  2170. backend_output = GGML_BACKEND_CPU;
  2171. }
  2172. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2173. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2174. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2175. if (backend_norm == GGML_BACKEND_GPU) {
  2176. vram_weights += ggml_nbytes(model.output_norm);
  2177. vram_weights += ggml_nbytes(model.output_norm_b);
  2178. }
  2179. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2180. vram_weights += ggml_nbytes(model.output);
  2181. }
  2182. }
  2183. const uint32_t n_ff = hparams.n_ff;
  2184. const int i_gpu_start = n_layer - n_gpu_layers;
  2185. model.layers.resize(n_layer);
  2186. for (uint32_t i = 0; i < n_layer; ++i) {
  2187. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2188. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2189. auto & layer = model.layers[i];
  2190. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2191. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2192. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2193. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2194. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2195. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2196. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2197. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2198. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2199. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2200. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2201. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2202. if (backend == GGML_BACKEND_GPU) {
  2203. vram_weights +=
  2204. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2205. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2206. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2207. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2208. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
  2209. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
  2210. }
  2211. }
  2212. } break;
  2213. case LLM_ARCH_PERSIMMON:
  2214. {
  2215. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2216. {
  2217. ggml_backend_type backend_norm;
  2218. ggml_backend_type backend_output;
  2219. if (n_gpu_layers > int(n_layer)) {
  2220. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2221. // on Windows however this is detrimental unless everything is on the GPU
  2222. #ifndef _WIN32
  2223. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2224. #else
  2225. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2226. #endif // _WIN32
  2227. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2228. } else {
  2229. backend_norm = GGML_BACKEND_CPU;
  2230. backend_output = GGML_BACKEND_CPU;
  2231. }
  2232. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2233. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2234. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2235. if (backend_norm == GGML_BACKEND_GPU) {
  2236. vram_weights += ggml_nbytes(model.output_norm);
  2237. vram_weights += ggml_nbytes(model.output_norm_b);
  2238. }
  2239. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2240. vram_weights += ggml_nbytes(model.output);
  2241. }
  2242. }
  2243. const uint32_t n_ff = hparams.n_ff;
  2244. const int i_gpu_start = n_layer - n_gpu_layers;
  2245. model.layers.resize(n_layer);
  2246. for (uint32_t i = 0; i < n_layer; ++i) {
  2247. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2248. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT;
  2249. auto & layer = model.layers[i];
  2250. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2251. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2252. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2253. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2254. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2255. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2256. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2257. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2258. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2259. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2260. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2261. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2262. layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend);
  2263. layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend);
  2264. layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend);
  2265. layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend);
  2266. }
  2267. } break;
  2268. case LLM_ARCH_BLOOM:
  2269. {
  2270. // TODO: CPU-only for now
  2271. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2272. model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU);
  2273. model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU);
  2274. // output
  2275. {
  2276. ggml_backend_type backend_norm;
  2277. ggml_backend_type backend_output;
  2278. if (n_gpu_layers > int(n_layer)) {
  2279. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2280. // on Windows however this is detrimental unless everything is on the GPU
  2281. #ifndef _WIN32
  2282. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2283. #else
  2284. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2285. #endif // _WIN32
  2286. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2287. } else {
  2288. backend_norm = GGML_BACKEND_CPU;
  2289. backend_output = GGML_BACKEND_CPU;
  2290. }
  2291. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2292. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2293. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2294. if (backend_norm == GGML_BACKEND_GPU) {
  2295. vram_weights += ggml_nbytes(model.output_norm);
  2296. vram_weights += ggml_nbytes(model.output_norm_b);
  2297. }
  2298. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2299. vram_weights += ggml_nbytes(model.output);
  2300. }
  2301. }
  2302. const uint32_t n_ff = hparams.n_ff;
  2303. const int i_gpu_start = n_layer - n_gpu_layers;
  2304. model.layers.resize(n_layer);
  2305. for (uint32_t i = 0; i < n_layer; ++i) {
  2306. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2307. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2308. auto & layer = model.layers[i];
  2309. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2310. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2311. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2312. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2313. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2314. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2315. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2316. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2317. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2318. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2319. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2320. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2321. if (backend == GGML_BACKEND_GPU) {
  2322. vram_weights +=
  2323. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2324. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2325. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2326. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2327. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3) +
  2328. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2);
  2329. }
  2330. }
  2331. } break;
  2332. case LLM_ARCH_MPT:
  2333. {
  2334. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2335. // output
  2336. {
  2337. ggml_backend_type backend_norm;
  2338. ggml_backend_type backend_output;
  2339. if (n_gpu_layers > int(n_layer)) {
  2340. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2341. // on Windows however this is detrimental unless everything is on the GPU
  2342. #ifndef _WIN32
  2343. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2344. #else
  2345. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2346. #endif // _WIN32
  2347. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2348. } else {
  2349. backend_norm = GGML_BACKEND_CPU;
  2350. backend_output = GGML_BACKEND_CPU;
  2351. }
  2352. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2353. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2354. if (backend_norm == GGML_BACKEND_GPU) {
  2355. vram_weights += ggml_nbytes(model.output_norm);
  2356. }
  2357. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2358. vram_weights += ggml_nbytes(model.output);
  2359. }
  2360. }
  2361. const uint32_t n_ff = hparams.n_ff;
  2362. const int i_gpu_start = n_layer - n_gpu_layers;
  2363. model.layers.resize(n_layer);
  2364. for (uint32_t i = 0; i < n_layer; ++i) {
  2365. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2366. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2367. auto & layer = model.layers[i];
  2368. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2369. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split);
  2370. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2371. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2372. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2373. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2374. if (backend == GGML_BACKEND_GPU) {
  2375. vram_weights +=
  2376. ggml_nbytes(layer.attn_norm) +
  2377. ggml_nbytes(layer.wqkv) +
  2378. ggml_nbytes(layer.wo) +
  2379. ggml_nbytes(layer.ffn_norm) +
  2380. ggml_nbytes(layer.w2) +
  2381. ggml_nbytes(layer.w3);
  2382. }
  2383. }
  2384. } break;
  2385. default:
  2386. throw std::runtime_error("unknown architecture");
  2387. }
  2388. }
  2389. ml.done_getting_tensors();
  2390. // print memory requirements
  2391. {
  2392. // this is the total memory required to run the inference
  2393. size_t mem_required =
  2394. ctx_size +
  2395. mmapped_size - vram_weights; // weights in VRAM not in memory
  2396. LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
  2397. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2398. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  2399. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  2400. if (n_gpu_layers > (int) hparams.n_layer) {
  2401. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  2402. }
  2403. #ifdef GGML_USE_CUBLAS
  2404. const int max_backend_supported_layers = hparams.n_layer + 3;
  2405. const int max_offloadable_layers = hparams.n_layer + 3;
  2406. #elif defined(GGML_USE_CLBLAST)
  2407. const int max_backend_supported_layers = hparams.n_layer + 1;
  2408. const int max_offloadable_layers = hparams.n_layer + 1;
  2409. #endif // GGML_USE_CUBLAS
  2410. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  2411. LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
  2412. #else
  2413. (void) n_gpu_layers;
  2414. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2415. }
  2416. // populate `tensors_by_name`
  2417. for (int i = 0; i < ml.n_tensors; ++i) {
  2418. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  2419. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  2420. }
  2421. (void) tensor_split;
  2422. #ifdef GGML_USE_CUBLAS
  2423. {
  2424. ggml_cuda_set_tensor_split(tensor_split);
  2425. }
  2426. #endif
  2427. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  2428. if (progress_callback) {
  2429. progress_callback(1.0f, progress_callback_user_data);
  2430. }
  2431. model.mapping = std::move(ml.mapping);
  2432. // loading time will be recalculate after the first eval, so
  2433. // we take page faults deferred by mmap() into consideration
  2434. model.t_load_us = ggml_time_us() - model.t_start_us;
  2435. }
  2436. static bool llama_model_load(
  2437. const std::string & fname,
  2438. llama_model & model,
  2439. int n_gpu_layers,
  2440. int main_gpu,
  2441. const float * tensor_split,
  2442. bool use_mmap,
  2443. bool use_mlock,
  2444. bool vocab_only,
  2445. llama_progress_callback progress_callback,
  2446. void *progress_callback_user_data) {
  2447. try {
  2448. llama_model_loader ml(fname, use_mmap);
  2449. model.hparams.vocab_only = vocab_only;
  2450. llm_load_arch (ml, model);
  2451. llm_load_hparams(ml, model);
  2452. llm_load_vocab (ml, model);
  2453. llm_load_print_meta(ml, model);
  2454. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  2455. throw std::runtime_error("vocab size mismatch");
  2456. }
  2457. if (vocab_only) {
  2458. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  2459. return true;
  2460. }
  2461. llm_load_tensors(
  2462. ml, model, n_gpu_layers,
  2463. main_gpu, tensor_split,
  2464. use_mlock, progress_callback, progress_callback_user_data);
  2465. } catch (const std::exception & err) {
  2466. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  2467. return false;
  2468. }
  2469. return true;
  2470. }
  2471. static struct ggml_cgraph * llm_build_llama(
  2472. llama_context & lctx,
  2473. const llama_batch & batch) {
  2474. const auto & model = lctx.model;
  2475. const auto & hparams = model.hparams;
  2476. const auto & cparams = lctx.cparams;
  2477. const auto & kv_self = lctx.kv_self;
  2478. GGML_ASSERT(!!kv_self.ctx);
  2479. const int64_t n_embd = hparams.n_embd;
  2480. const int64_t n_layer = hparams.n_layer;
  2481. const int64_t n_ctx = cparams.n_ctx;
  2482. const int64_t n_head = hparams.n_head;
  2483. const int64_t n_head_kv = hparams.n_head_kv;
  2484. const int64_t n_embd_head = hparams.n_embd_head();
  2485. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2486. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2487. const float freq_base = cparams.rope_freq_base;
  2488. const float freq_scale = cparams.rope_freq_scale;
  2489. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2490. const int n_gpu_layers = model.n_gpu_layers;
  2491. const int32_t n_tokens = batch.n_tokens;
  2492. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2493. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2494. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2495. //printf("n_kv = %d\n", n_kv);
  2496. auto & buf_compute = lctx.buf_compute;
  2497. struct ggml_init_params params = {
  2498. /*.mem_size =*/ buf_compute.size,
  2499. /*.mem_buffer =*/ buf_compute.data,
  2500. /*.no_alloc =*/ true,
  2501. };
  2502. struct ggml_context * ctx0 = ggml_init(params);
  2503. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2504. struct ggml_tensor * cur;
  2505. struct ggml_tensor * inpL;
  2506. if (batch.token) {
  2507. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2508. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2509. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2510. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2511. }
  2512. ggml_set_name(inp_tokens, "inp_tokens");
  2513. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2514. } else {
  2515. #ifdef GGML_USE_MPI
  2516. GGML_ASSERT(false && "not implemented");
  2517. #endif
  2518. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2519. ggml_allocr_alloc(lctx.alloc, inpL);
  2520. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2521. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2522. }
  2523. }
  2524. const int i_gpu_start = n_layer - n_gpu_layers;
  2525. (void) i_gpu_start;
  2526. // offload functions set the tensor output backend to GPU
  2527. // tensors are GPU-accelerated if any input or the output has been offloaded
  2528. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2529. offload_func_t offload_func_kq = llama_nop;
  2530. offload_func_t offload_func_v = llama_nop;
  2531. #ifdef GGML_USE_CUBLAS
  2532. if (n_gpu_layers > n_layer) {
  2533. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2534. }
  2535. if (n_gpu_layers > n_layer + 1) {
  2536. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2537. }
  2538. if (n_gpu_layers > n_layer + 2) {
  2539. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2540. }
  2541. #endif // GGML_USE_CUBLAS
  2542. // KQ_scale
  2543. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2544. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2545. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2546. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2547. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  2548. }
  2549. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2550. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2551. offload_func_kq(KQ_mask);
  2552. ggml_set_name(KQ_mask, "KQ_mask");
  2553. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2554. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2555. float * data = (float *) KQ_mask->data;
  2556. memset(data, 0, ggml_nbytes(KQ_mask));
  2557. for (int h = 0; h < 1; ++h) {
  2558. for (int j = 0; j < n_tokens; ++j) {
  2559. const llama_pos pos = batch.pos[j];
  2560. const llama_seq_id seq_id = batch.seq_id[j];
  2561. for (int i = 0; i < n_kv; ++i) {
  2562. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2563. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2564. }
  2565. }
  2566. }
  2567. }
  2568. }
  2569. // KQ_pos - contains the positions
  2570. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2571. offload_func_kq(KQ_pos);
  2572. ggml_set_name(KQ_pos, "KQ_pos");
  2573. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2574. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2575. int * data = (int *) KQ_pos->data;
  2576. for (int i = 0; i < n_tokens; ++i) {
  2577. data[i] = batch.pos[i];
  2578. }
  2579. }
  2580. // shift the entire K-cache if needed
  2581. if (do_rope_shift) {
  2582. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  2583. offload_func_kq(K_shift);
  2584. ggml_set_name(K_shift, "K_shift");
  2585. ggml_allocr_alloc(lctx.alloc, K_shift);
  2586. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2587. int * data = (int *) K_shift->data;
  2588. for (int i = 0; i < n_ctx; ++i) {
  2589. data[i] = kv_self.cells[i].delta;
  2590. }
  2591. }
  2592. for (int il = 0; il < n_layer; ++il) {
  2593. struct ggml_tensor * tmp =
  2594. ggml_rope_custom_inplace(ctx0,
  2595. ggml_view_3d(ctx0, kv_self.k,
  2596. n_embd_head, n_head_kv, n_ctx,
  2597. ggml_element_size(kv_self.k)*n_embd_head,
  2598. ggml_element_size(kv_self.k)*n_embd_gqa,
  2599. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  2600. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  2601. offload_func_kq(tmp);
  2602. ggml_build_forward_expand(gf, tmp);
  2603. }
  2604. }
  2605. for (int il = 0; il < n_layer; ++il) {
  2606. ggml_format_name(inpL, "layer_inp_%d", il);
  2607. offload_func_t offload_func = llama_nop;
  2608. #ifdef GGML_USE_CUBLAS
  2609. if (il >= i_gpu_start) {
  2610. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2611. }
  2612. #endif // GGML_USE_CUBLAS
  2613. struct ggml_tensor * inpSA = inpL;
  2614. // norm
  2615. {
  2616. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2617. offload_func(cur);
  2618. ggml_set_name(cur, "rms_norm_0");
  2619. // cur = cur*attn_norm(broadcasted)
  2620. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2621. offload_func(cur);
  2622. ggml_set_name(cur, "attention_norm_0");
  2623. }
  2624. // self-attention
  2625. {
  2626. // compute Q and K and RoPE them
  2627. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2628. offload_func_kq(tmpk);
  2629. ggml_set_name(tmpk, "tmpk");
  2630. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2631. offload_func_kq(tmpq);
  2632. ggml_set_name(tmpq, "tmpq");
  2633. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2634. offload_func_kq(Kcur);
  2635. ggml_set_name(Kcur, "Kcur");
  2636. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2637. offload_func_kq(Qcur);
  2638. ggml_set_name(Qcur, "Qcur");
  2639. // store key and value to memory
  2640. {
  2641. // compute the transposed [n_tokens, n_embd] V matrix
  2642. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2643. offload_func_v(tmpv);
  2644. ggml_set_name(tmpv, "tmpv");
  2645. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  2646. offload_func_v(Vcur);
  2647. ggml_set_name(Vcur, "Vcur");
  2648. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  2649. offload_func_kq(k);
  2650. ggml_set_name(k, "k");
  2651. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  2652. ( n_ctx)*ggml_element_size(kv_self.v),
  2653. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  2654. offload_func_v(v);
  2655. ggml_set_name(v, "v");
  2656. // important: storing RoPE-ed version of K in the KV cache!
  2657. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2658. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2659. }
  2660. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2661. offload_func_kq(Q);
  2662. ggml_set_name(Q, "Q");
  2663. struct ggml_tensor * K =
  2664. ggml_view_3d(ctx0, kv_self.k,
  2665. n_embd_head, n_kv, n_head_kv,
  2666. ggml_element_size(kv_self.k)*n_embd_gqa,
  2667. ggml_element_size(kv_self.k)*n_embd_head,
  2668. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2669. offload_func_kq(K);
  2670. ggml_set_name(K, "K");
  2671. // K * Q
  2672. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2673. offload_func_kq(KQ);
  2674. ggml_set_name(KQ, "KQ");
  2675. // KQ_scaled = KQ / sqrt(n_embd_head)
  2676. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  2677. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  2678. offload_func_kq(KQ_scaled);
  2679. ggml_set_name(KQ_scaled, "KQ_scaled");
  2680. // KQ_masked = mask_past(KQ_scaled)
  2681. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  2682. offload_func_kq(KQ_masked);
  2683. ggml_set_name(KQ_masked, "KQ_masked");
  2684. // KQ = soft_max(KQ_masked)
  2685. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  2686. offload_func_v(KQ_soft_max);
  2687. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2688. // split cached V into n_head heads
  2689. struct ggml_tensor * V =
  2690. ggml_view_3d(ctx0, kv_self.v,
  2691. n_kv, n_embd_head, n_head_kv,
  2692. ggml_element_size(kv_self.v)*n_ctx,
  2693. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2694. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2695. offload_func_v(V);
  2696. ggml_set_name(V, "V");
  2697. #if 1
  2698. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2699. offload_func_v(KQV);
  2700. ggml_set_name(KQV, "KQV");
  2701. #else
  2702. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2703. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2704. // is there a better way?
  2705. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  2706. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2707. #endif
  2708. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2709. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2710. offload_func_v(KQV_merged);
  2711. ggml_set_name(KQV_merged, "KQV_merged");
  2712. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  2713. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  2714. offload_func_v(cur);
  2715. ggml_set_name(cur, "KQV_merged_contiguous");
  2716. // projection (no bias)
  2717. cur = ggml_mul_mat(ctx0,
  2718. model.layers[il].wo,
  2719. cur);
  2720. offload_func(cur);
  2721. ggml_set_name(cur, "result_wo");
  2722. }
  2723. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2724. offload_func(inpFF);
  2725. ggml_set_name(inpFF, "inpFF");
  2726. // feed-forward network
  2727. {
  2728. // norm
  2729. {
  2730. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2731. offload_func(cur);
  2732. ggml_set_name(cur, "rms_norm_1");
  2733. // cur = cur*ffn_norm(broadcasted)
  2734. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2735. offload_func(cur);
  2736. ggml_set_name(cur, "ffn_norm");
  2737. }
  2738. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2739. model.layers[il].w3,
  2740. cur);
  2741. offload_func(tmp);
  2742. ggml_set_name(tmp, "result_w3");
  2743. cur = ggml_mul_mat(ctx0,
  2744. model.layers[il].w1,
  2745. cur);
  2746. offload_func(cur);
  2747. ggml_set_name(cur, "result_w1");
  2748. // SILU activation
  2749. cur = ggml_silu(ctx0, cur);
  2750. offload_func(cur);
  2751. ggml_set_name(cur, "silu");
  2752. cur = ggml_mul(ctx0, cur, tmp);
  2753. offload_func(cur);
  2754. ggml_set_name(cur, "silu_x_result_w3");
  2755. cur = ggml_mul_mat(ctx0,
  2756. model.layers[il].w2,
  2757. cur);
  2758. offload_func(cur);
  2759. ggml_set_name(cur, "result_w2");
  2760. }
  2761. cur = ggml_add(ctx0, cur, inpFF);
  2762. offload_func(cur);
  2763. ggml_set_name(cur, "inpFF_+_result_w2");
  2764. // input for next layer
  2765. inpL = cur;
  2766. }
  2767. cur = inpL;
  2768. // norm
  2769. {
  2770. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2771. offload_func_nr(cur);
  2772. ggml_set_name(cur, "rms_norm_2");
  2773. // cur = cur*norm(broadcasted)
  2774. cur = ggml_mul(ctx0, cur, model.output_norm);
  2775. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2776. ggml_set_name(cur, "result_norm");
  2777. }
  2778. // lm_head
  2779. cur = ggml_mul_mat(ctx0, model.output, cur);
  2780. ggml_set_name(cur, "result_output");
  2781. ggml_build_forward_expand(gf, cur);
  2782. ggml_free(ctx0);
  2783. return gf;
  2784. }
  2785. static struct ggml_cgraph * llm_build_baichaun(
  2786. llama_context & lctx,
  2787. const llama_batch & batch) {
  2788. const auto & model = lctx.model;
  2789. const auto & hparams = model.hparams;
  2790. const auto & cparams = lctx.cparams;
  2791. const auto & kv_self = lctx.kv_self;
  2792. GGML_ASSERT(!!kv_self.ctx);
  2793. const int64_t n_embd = hparams.n_embd;
  2794. const int64_t n_layer = hparams.n_layer;
  2795. const int64_t n_ctx = cparams.n_ctx;
  2796. const int64_t n_head = hparams.n_head;
  2797. const int64_t n_head_kv = hparams.n_head_kv;
  2798. const int64_t n_embd_head = hparams.n_embd_head();
  2799. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2800. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2801. const float freq_base = cparams.rope_freq_base;
  2802. const float freq_scale = cparams.rope_freq_scale;
  2803. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2804. const int n_gpu_layers = model.n_gpu_layers;
  2805. const int32_t n_tokens = batch.n_tokens;
  2806. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2807. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2808. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2809. auto & buf_compute = lctx.buf_compute;
  2810. struct ggml_init_params params = {
  2811. /*.mem_size =*/ buf_compute.size,
  2812. /*.mem_buffer =*/ buf_compute.data,
  2813. /*.no_alloc =*/ true,
  2814. };
  2815. struct ggml_context * ctx0 = ggml_init(params);
  2816. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2817. struct ggml_tensor * cur;
  2818. struct ggml_tensor * inpL;
  2819. if (batch.token) {
  2820. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2821. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2822. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2823. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2824. }
  2825. ggml_set_name(inp_tokens, "inp_tokens");
  2826. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2827. } else {
  2828. #ifdef GGML_USE_MPI
  2829. GGML_ASSERT(false && "not implemented");
  2830. #endif
  2831. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2832. ggml_allocr_alloc(lctx.alloc, inpL);
  2833. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2834. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2835. }
  2836. }
  2837. const int i_gpu_start = n_layer - n_gpu_layers;
  2838. (void) i_gpu_start;
  2839. // offload functions set the tensor output backend to GPU
  2840. // tensors are GPU-accelerated if any input or the output has been offloaded
  2841. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2842. offload_func_t offload_func_kq = llama_nop;
  2843. offload_func_t offload_func_v = llama_nop;
  2844. #ifdef GGML_USE_CUBLAS
  2845. if (n_gpu_layers > n_layer) {
  2846. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2847. }
  2848. if (n_gpu_layers > n_layer + 1) {
  2849. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2850. }
  2851. if (n_gpu_layers > n_layer + 2) {
  2852. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2853. }
  2854. #endif // GGML_USE_CUBLAS
  2855. // KQ_scale
  2856. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2857. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2858. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2859. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2860. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2861. }
  2862. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2863. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2864. offload_func_kq(KQ_mask);
  2865. ggml_set_name(KQ_mask, "KQ_mask");
  2866. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2867. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2868. float * data = (float *) KQ_mask->data;
  2869. memset(data, 0, ggml_nbytes(KQ_mask));
  2870. for (int h = 0; h < 1; ++h) {
  2871. for (int j = 0; j < n_tokens; ++j) {
  2872. const llama_pos pos = batch.pos[j];
  2873. const llama_seq_id seq_id = batch.seq_id[j];
  2874. for (int i = 0; i < n_kv; ++i) {
  2875. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2876. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2877. }
  2878. }
  2879. }
  2880. }
  2881. }
  2882. // KQ_pos - contains the positions
  2883. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2884. offload_func_kq(KQ_pos);
  2885. ggml_set_name(KQ_pos, "KQ_pos");
  2886. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2887. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2888. int * data = (int *) KQ_pos->data;
  2889. for (int i = 0; i < n_tokens; ++i) {
  2890. data[i] = batch.pos[i];
  2891. }
  2892. }
  2893. // shift the entire K-cache if needed
  2894. if (do_rope_shift) {
  2895. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  2896. offload_func_kq(K_shift);
  2897. ggml_set_name(K_shift, "K_shift");
  2898. ggml_allocr_alloc(lctx.alloc, K_shift);
  2899. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2900. int * data = (int *) K_shift->data;
  2901. for (int i = 0; i < n_ctx; ++i) {
  2902. data[i] = kv_self.cells[i].delta;
  2903. }
  2904. }
  2905. for (int il = 0; il < n_layer; ++il) {
  2906. struct ggml_tensor * tmp =
  2907. ggml_rope_custom_inplace(ctx0,
  2908. ggml_view_3d(ctx0, kv_self.k,
  2909. n_embd_head, n_head_kv, n_ctx,
  2910. ggml_element_size(kv_self.k)*n_embd_head,
  2911. ggml_element_size(kv_self.k)*n_embd_gqa,
  2912. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  2913. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  2914. offload_func_kq(tmp);
  2915. ggml_build_forward_expand(gf, tmp);
  2916. }
  2917. }
  2918. for (int il = 0; il < n_layer; ++il) {
  2919. ggml_format_name(inpL, "layer_inp_%d", il);
  2920. offload_func_t offload_func = llama_nop;
  2921. #ifdef GGML_USE_CUBLAS
  2922. if (il >= i_gpu_start) {
  2923. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2924. }
  2925. #endif // GGML_USE_CUBLAS
  2926. struct ggml_tensor * inpSA = inpL;
  2927. // norm
  2928. {
  2929. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2930. offload_func(cur);
  2931. ggml_set_name(cur, "rms_norm_0");
  2932. // cur = cur*attn_norm(broadcasted)
  2933. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2934. offload_func(cur);
  2935. ggml_set_name(cur, "attention_norm_0");
  2936. }
  2937. // self-attention
  2938. {
  2939. // compute Q and K and RoPE them
  2940. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2941. offload_func_kq(tmpk);
  2942. ggml_set_name(tmpk, "tmpk");
  2943. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2944. offload_func_kq(tmpq);
  2945. ggml_set_name(tmpq, "tmpq");
  2946. struct ggml_tensor * Kcur;
  2947. struct ggml_tensor * Qcur;
  2948. switch (model.type) {
  2949. case MODEL_7B:
  2950. Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2951. Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2952. break;
  2953. case MODEL_13B:
  2954. Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, n_tokens);
  2955. Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, n_tokens);
  2956. break;
  2957. default:
  2958. GGML_ASSERT(false);
  2959. }
  2960. offload_func_kq(Kcur);
  2961. ggml_set_name(Kcur, "Kcur");
  2962. offload_func_kq(Qcur);
  2963. ggml_set_name(Qcur, "Qcur");
  2964. // store key and value to memory
  2965. {
  2966. // compute the transposed [n_tokens, n_embd] V matrix
  2967. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2968. offload_func_v(tmpv);
  2969. ggml_set_name(tmpv, "tmpv");
  2970. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  2971. offload_func_v(Vcur);
  2972. ggml_set_name(Vcur, "Vcur");
  2973. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  2974. offload_func_kq(k);
  2975. ggml_set_name(k, "k");
  2976. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  2977. ( n_ctx)*ggml_element_size(kv_self.v),
  2978. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  2979. offload_func_v(v);
  2980. ggml_set_name(v, "v");
  2981. // important: storing RoPE-ed version of K in the KV cache!
  2982. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2983. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2984. }
  2985. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2986. offload_func_kq(Q);
  2987. ggml_set_name(Q, "Q");
  2988. struct ggml_tensor * K =
  2989. ggml_view_3d(ctx0, kv_self.k,
  2990. n_embd_head, n_kv, n_head_kv,
  2991. ggml_element_size(kv_self.k)*n_embd_gqa,
  2992. ggml_element_size(kv_self.k)*n_embd_head,
  2993. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2994. offload_func_kq(K);
  2995. ggml_set_name(K, "K");
  2996. // K * Q
  2997. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2998. offload_func_kq(KQ);
  2999. ggml_set_name(KQ, "KQ");
  3000. // KQ_scaled = KQ / sqrt(n_embd_head)
  3001. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3002. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3003. offload_func_kq(KQ_scaled);
  3004. ggml_set_name(KQ_scaled, "KQ_scaled");
  3005. struct ggml_tensor * KQ_masked;
  3006. struct ggml_tensor * KQ_scaled_alibi;
  3007. switch (model.type) {
  3008. case MODEL_7B:
  3009. KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3010. break;
  3011. case MODEL_13B:
  3012. // TODO: replace with ggml_add()
  3013. KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3014. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3015. KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3016. break;
  3017. default:
  3018. GGML_ASSERT(false);
  3019. }
  3020. // KQ = soft_max(KQ_masked)
  3021. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3022. offload_func_v(KQ_soft_max);
  3023. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3024. // split cached V into n_head heads
  3025. struct ggml_tensor * V =
  3026. ggml_view_3d(ctx0, kv_self.v,
  3027. n_kv, n_embd_head, n_head_kv,
  3028. ggml_element_size(kv_self.v)*n_ctx,
  3029. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3030. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3031. offload_func_v(V);
  3032. ggml_set_name(V, "V");
  3033. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3034. offload_func_v(KQV);
  3035. ggml_set_name(KQV, "KQV");
  3036. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3037. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3038. offload_func_v(KQV_merged);
  3039. ggml_set_name(KQV_merged, "KQV_merged");
  3040. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3041. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3042. offload_func_v(cur);
  3043. ggml_set_name(cur, "KQV_merged_contiguous");
  3044. // projection (no bias)
  3045. cur = ggml_mul_mat(ctx0,
  3046. model.layers[il].wo,
  3047. cur);
  3048. offload_func(cur);
  3049. ggml_set_name(cur, "result_wo");
  3050. }
  3051. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3052. offload_func(inpFF);
  3053. ggml_set_name(inpFF, "inpFF");
  3054. // feed-forward network
  3055. {
  3056. // norm
  3057. {
  3058. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3059. offload_func(cur);
  3060. ggml_set_name(cur, "rms_norm_1");
  3061. // cur = cur*ffn_norm(broadcasted)
  3062. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3063. offload_func(cur);
  3064. ggml_set_name(cur, "ffn_norm");
  3065. }
  3066. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3067. model.layers[il].w3,
  3068. cur);
  3069. offload_func(tmp);
  3070. ggml_set_name(tmp, "result_w3");
  3071. cur = ggml_mul_mat(ctx0,
  3072. model.layers[il].w1,
  3073. cur);
  3074. offload_func(cur);
  3075. ggml_set_name(cur, "result_w1");
  3076. // SILU activation
  3077. cur = ggml_silu(ctx0, cur);
  3078. offload_func(cur);
  3079. ggml_set_name(cur, "silu");
  3080. cur = ggml_mul(ctx0, cur, tmp);
  3081. offload_func(cur);
  3082. ggml_set_name(cur, "silu_x_result_w3");
  3083. cur = ggml_mul_mat(ctx0,
  3084. model.layers[il].w2,
  3085. cur);
  3086. offload_func(cur);
  3087. ggml_set_name(cur, "result_w2");
  3088. }
  3089. cur = ggml_add(ctx0, cur, inpFF);
  3090. offload_func(cur);
  3091. ggml_set_name(cur, "inpFF_+_result_w2");
  3092. // input for next layer
  3093. inpL = cur;
  3094. }
  3095. cur = inpL;
  3096. // norm
  3097. {
  3098. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3099. offload_func_nr(cur);
  3100. ggml_set_name(cur, "rms_norm_2");
  3101. // cur = cur*norm(broadcasted)
  3102. cur = ggml_mul(ctx0, cur, model.output_norm);
  3103. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3104. ggml_set_name(cur, "result_norm");
  3105. }
  3106. // lm_head
  3107. cur = ggml_mul_mat(ctx0, model.output, cur);
  3108. ggml_set_name(cur, "result_output");
  3109. ggml_build_forward_expand(gf, cur);
  3110. ggml_free(ctx0);
  3111. return gf;
  3112. }
  3113. static struct ggml_cgraph * llm_build_refact(
  3114. llama_context & lctx,
  3115. const llama_batch & batch) {
  3116. const auto & model = lctx.model;
  3117. const auto & hparams = model.hparams;
  3118. const auto & cparams = lctx.cparams;
  3119. const auto & kv_self = lctx.kv_self;
  3120. GGML_ASSERT(!!kv_self.ctx);
  3121. const int64_t n_embd = hparams.n_embd;
  3122. const int64_t n_layer = hparams.n_layer;
  3123. const int64_t n_ctx = cparams.n_ctx;
  3124. const int64_t n_head = hparams.n_head;
  3125. const int64_t n_head_kv = hparams.n_head_kv;
  3126. const int64_t n_embd_head = hparams.n_embd_head();
  3127. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3128. const float norm_rms_eps = hparams.f_norm_rms_eps;
  3129. const int n_gpu_layers = model.n_gpu_layers;
  3130. const int32_t n_tokens = batch.n_tokens;
  3131. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3132. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3133. // printf("n_kv = %d\n", n_kv);
  3134. auto & buf_compute = lctx.buf_compute;
  3135. struct ggml_init_params params = {
  3136. /*.mem_size =*/ buf_compute.size,
  3137. /*.mem_buffer =*/ buf_compute.data,
  3138. /*.no_alloc =*/ true,
  3139. };
  3140. struct ggml_context * ctx0 = ggml_init(params);
  3141. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3142. struct ggml_tensor * cur;
  3143. struct ggml_tensor * inpL;
  3144. if (batch.token) {
  3145. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3146. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3147. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3148. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3149. }
  3150. ggml_set_name(inp_tokens, "inp_tokens");
  3151. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3152. } else {
  3153. #ifdef GGML_USE_MPI
  3154. GGML_ASSERT(false && "not implemented");
  3155. #endif
  3156. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3157. ggml_allocr_alloc(lctx.alloc, inpL);
  3158. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3159. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3160. }
  3161. }
  3162. const int i_gpu_start = n_layer - n_gpu_layers;
  3163. (void) i_gpu_start;
  3164. // offload functions set the tensor output backend to GPU
  3165. // tensors are GPU-accelerated if any input or the output has been offloaded
  3166. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3167. offload_func_t offload_func_kq = llama_nop;
  3168. offload_func_t offload_func_v = llama_nop;
  3169. #ifdef GGML_USE_CUBLAS
  3170. if (n_gpu_layers > n_layer) {
  3171. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3172. }
  3173. if (n_gpu_layers > n_layer + 1) {
  3174. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3175. }
  3176. if (n_gpu_layers > n_layer + 2) {
  3177. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3178. }
  3179. #endif // GGML_USE_CUBLAS
  3180. // KQ_scale
  3181. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3182. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3183. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3184. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3185. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  3186. }
  3187. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3188. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3189. offload_func_kq(KQ_mask);
  3190. ggml_set_name(KQ_mask, "KQ_mask");
  3191. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3192. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3193. float * data = (float *) KQ_mask->data;
  3194. memset(data, 0, ggml_nbytes(KQ_mask));
  3195. for (int h = 0; h < 1; ++h) {
  3196. for (int j = 0; j < n_tokens; ++j) {
  3197. const llama_pos pos = batch.pos[j];
  3198. const llama_seq_id seq_id = batch.seq_id[j];
  3199. for (int i = 0; i < n_kv; ++i) {
  3200. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3201. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3202. }
  3203. }
  3204. }
  3205. }
  3206. }
  3207. for (int il = 0; il < n_layer; ++il) {
  3208. ggml_format_name(inpL, "layer_inp_%d", il);
  3209. offload_func_t offload_func = llama_nop;
  3210. #ifdef GGML_USE_CUBLAS
  3211. if (il >= i_gpu_start) {
  3212. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3213. }
  3214. #endif // GGML_USE_CUBLAS
  3215. struct ggml_tensor * inpSA = inpL;
  3216. // norm
  3217. {
  3218. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  3219. offload_func(cur);
  3220. ggml_set_name(cur, "rms_norm_0");
  3221. // cur = cur*attn_norm(broadcasted)
  3222. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3223. offload_func(cur);
  3224. ggml_set_name(cur, "attention_norm_0");
  3225. }
  3226. // self-attention
  3227. {
  3228. // compute Q and K
  3229. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3230. offload_func_kq(tmpk);
  3231. ggml_set_name(tmpk, "tmpk");
  3232. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3233. offload_func_kq(tmpq);
  3234. ggml_set_name(tmpq, "tmpq");
  3235. struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
  3236. offload_func_kq(Kcur);
  3237. ggml_set_name(Kcur, "Kcur");
  3238. struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens);
  3239. offload_func_kq(Qcur);
  3240. ggml_set_name(Qcur, "Qcur");
  3241. // store key and value to memory
  3242. {
  3243. // compute the transposed [n_tokens, n_embd] V matrix
  3244. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3245. offload_func_v(tmpv);
  3246. ggml_set_name(tmpv, "tmpv");
  3247. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  3248. offload_func_v(Vcur);
  3249. ggml_set_name(Vcur, "Vcur");
  3250. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3251. offload_func_kq(k);
  3252. ggml_set_name(k, "k");
  3253. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3254. ( n_ctx)*ggml_element_size(kv_self.v),
  3255. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3256. offload_func_v(v);
  3257. ggml_set_name(v, "v");
  3258. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3259. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3260. }
  3261. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3262. offload_func_kq(Q);
  3263. ggml_set_name(Q, "Q");
  3264. struct ggml_tensor * K =
  3265. ggml_view_3d(ctx0, kv_self.k,
  3266. n_embd_head, n_kv, n_head_kv,
  3267. ggml_element_size(kv_self.k)*n_embd_gqa,
  3268. ggml_element_size(kv_self.k)*n_embd_head,
  3269. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3270. offload_func_kq(K);
  3271. ggml_set_name(K, "K");
  3272. // K * Q
  3273. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3274. offload_func_kq(KQ);
  3275. ggml_set_name(KQ, "KQ");
  3276. // KQ_scaled = KQ / sqrt(n_embd_head)
  3277. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  3278. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3279. offload_func_kq(KQ_scaled);
  3280. ggml_set_name(KQ_scaled, "KQ_scaled");
  3281. // KQ_masked = mask_past(KQ_scaled)
  3282. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3283. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3284. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3285. offload_func_kq(KQ_masked);
  3286. ggml_set_name(KQ_masked, "KQ_masked");
  3287. // KQ = soft_max(KQ_masked)
  3288. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3289. offload_func_v(KQ_soft_max);
  3290. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3291. // split cached V into n_head heads
  3292. struct ggml_tensor * V =
  3293. ggml_view_3d(ctx0, kv_self.v,
  3294. n_kv, n_embd_head, n_head_kv,
  3295. ggml_element_size(kv_self.v)*n_ctx,
  3296. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3297. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3298. offload_func_v(V);
  3299. ggml_set_name(V, "V");
  3300. #if 1
  3301. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3302. offload_func_v(KQV);
  3303. ggml_set_name(KQV, "KQV");
  3304. #else
  3305. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  3306. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  3307. // is there a better way?
  3308. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  3309. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  3310. #endif
  3311. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3312. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3313. offload_func_v(KQV_merged);
  3314. ggml_set_name(KQV_merged, "KQV_merged");
  3315. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3316. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3317. offload_func_v(cur);
  3318. ggml_set_name(cur, "KQV_merged_contiguous");
  3319. // projection (no bias)
  3320. cur = ggml_mul_mat(ctx0,
  3321. model.layers[il].wo,
  3322. cur);
  3323. offload_func(cur);
  3324. ggml_set_name(cur, "result_wo");
  3325. }
  3326. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3327. offload_func(inpFF);
  3328. ggml_set_name(inpFF, "inpFF");
  3329. // feed-forward network
  3330. {
  3331. // norm
  3332. {
  3333. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3334. offload_func(cur);
  3335. ggml_set_name(cur, "rms_norm_1");
  3336. // cur = cur*ffn_norm(broadcasted)
  3337. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3338. offload_func(cur);
  3339. ggml_set_name(cur, "ffn_norm");
  3340. }
  3341. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3342. model.layers[il].w3,
  3343. cur);
  3344. offload_func(tmp);
  3345. ggml_set_name(tmp, "result_w3");
  3346. cur = ggml_mul_mat(ctx0,
  3347. model.layers[il].w1,
  3348. cur);
  3349. offload_func(cur);
  3350. ggml_set_name(cur, "result_w1");
  3351. // SILU activation
  3352. cur = ggml_silu(ctx0, cur);
  3353. offload_func(cur);
  3354. ggml_set_name(cur, "silu");
  3355. cur = ggml_mul(ctx0, cur, tmp);
  3356. offload_func(cur);
  3357. ggml_set_name(cur, "silu_x_result_w3");
  3358. cur = ggml_mul_mat(ctx0,
  3359. model.layers[il].w2,
  3360. cur);
  3361. offload_func(cur);
  3362. ggml_set_name(cur, "result_w2");
  3363. }
  3364. cur = ggml_add(ctx0, cur, inpFF);
  3365. offload_func(cur);
  3366. ggml_set_name(cur, "inpFF_+_result_w2");
  3367. // input for next layer
  3368. inpL = cur;
  3369. }
  3370. cur = inpL;
  3371. // norm
  3372. {
  3373. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3374. offload_func_nr(cur);
  3375. ggml_set_name(cur, "rms_norm_2");
  3376. // cur = cur*norm(broadcasted)
  3377. cur = ggml_mul(ctx0, cur, model.output_norm);
  3378. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3379. ggml_set_name(cur, "result_norm");
  3380. }
  3381. // lm_head
  3382. cur = ggml_mul_mat(ctx0, model.output, cur);
  3383. ggml_set_name(cur, "result_output");
  3384. ggml_build_forward_expand(gf, cur);
  3385. ggml_free(ctx0);
  3386. return gf;
  3387. }
  3388. static struct ggml_cgraph * llm_build_falcon(
  3389. llama_context & lctx,
  3390. const llama_batch & batch) {
  3391. const auto & model = lctx.model;
  3392. const auto & hparams = model.hparams;
  3393. const auto & cparams = lctx.cparams;
  3394. const auto & kv_self = lctx.kv_self;
  3395. GGML_ASSERT(!!kv_self.ctx);
  3396. const int64_t n_embd = hparams.n_embd;
  3397. const int64_t n_layer = hparams.n_layer;
  3398. const int64_t n_ctx = cparams.n_ctx;
  3399. const int64_t n_head = hparams.n_head;
  3400. const int64_t n_head_kv = hparams.n_head_kv;
  3401. const int64_t n_embd_head = hparams.n_embd_head();
  3402. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3403. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3404. const float freq_base = cparams.rope_freq_base;
  3405. const float freq_scale = cparams.rope_freq_scale;
  3406. const float norm_eps = hparams.f_norm_eps;
  3407. const int n_gpu_layers = model.n_gpu_layers;
  3408. const int32_t n_tokens = batch.n_tokens;
  3409. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3410. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3411. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  3412. //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n",
  3413. // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift);
  3414. auto & buf_compute = lctx.buf_compute;
  3415. struct ggml_init_params params = {
  3416. /*.mem_size =*/ buf_compute.size,
  3417. /*.mem_buffer =*/ buf_compute.data,
  3418. /*.no_alloc =*/ true,
  3419. };
  3420. struct ggml_context * ctx0 = ggml_init(params);
  3421. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3422. struct ggml_tensor * cur;
  3423. struct ggml_tensor * inpL;
  3424. if (batch.token) {
  3425. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3426. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3427. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3428. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3429. }
  3430. ggml_set_name(inp_tokens, "inp_tokens");
  3431. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3432. } else {
  3433. #ifdef GGML_USE_MPI
  3434. GGML_ASSERT(false && "not implemented");
  3435. #endif
  3436. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3437. ggml_allocr_alloc(lctx.alloc, inpL);
  3438. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3439. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3440. }
  3441. }
  3442. const int i_gpu_start = n_layer - n_gpu_layers;
  3443. (void) i_gpu_start;
  3444. // offload functions set the tensor output backend to GPU
  3445. // tensors are GPU-accelerated if any input or the output has been offloaded
  3446. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3447. offload_func_t offload_func_kq = llama_nop;
  3448. offload_func_t offload_func_v = llama_nop;
  3449. #ifdef GGML_USE_CUBLAS
  3450. if (n_gpu_layers > n_layer) {
  3451. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3452. }
  3453. if (n_gpu_layers > n_layer + 1) {
  3454. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3455. }
  3456. if (n_gpu_layers > n_layer + 2) {
  3457. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3458. }
  3459. #endif // GGML_USE_CUBLAS
  3460. // KQ_scale
  3461. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3462. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3463. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3464. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3465. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3466. }
  3467. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3468. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3469. offload_func_kq(KQ_mask);
  3470. ggml_set_name(KQ_mask, "KQ_mask");
  3471. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3472. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3473. float * data = (float *) KQ_mask->data;
  3474. memset(data, 0, ggml_nbytes(KQ_mask));
  3475. for (int h = 0; h < 1; ++h) {
  3476. for (int j = 0; j < n_tokens; ++j) {
  3477. const llama_pos pos = batch.pos[j];
  3478. const llama_seq_id seq_id = batch.seq_id[j];
  3479. for (int i = 0; i < n_kv; ++i) {
  3480. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3481. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3482. }
  3483. }
  3484. }
  3485. }
  3486. }
  3487. // KQ_pos - contains the positions
  3488. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3489. offload_func_kq(KQ_pos);
  3490. ggml_set_name(KQ_pos, "KQ_pos");
  3491. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  3492. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3493. int * data = (int *) KQ_pos->data;
  3494. for (int i = 0; i < n_tokens; ++i) {
  3495. data[i] = batch.pos[i];
  3496. }
  3497. }
  3498. // shift the entire K-cache if needed
  3499. if (do_rope_shift) {
  3500. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  3501. offload_func_kq(K_shift);
  3502. ggml_set_name(K_shift, "K_shift");
  3503. ggml_allocr_alloc(lctx.alloc, K_shift);
  3504. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3505. int * data = (int *) K_shift->data;
  3506. for (int i = 0; i < n_ctx; ++i) {
  3507. data[i] = kv_self.cells[i].delta;
  3508. }
  3509. }
  3510. for (int il = 0; il < n_layer; ++il) {
  3511. struct ggml_tensor * tmp =
  3512. ggml_rope_custom_inplace(ctx0,
  3513. ggml_view_3d(ctx0, kv_self.k,
  3514. n_embd_head, n_head_kv, n_ctx,
  3515. ggml_element_size(kv_self.k)*n_embd_head,
  3516. ggml_element_size(kv_self.k)*n_embd_gqa,
  3517. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  3518. K_shift, n_embd_head, 2, 0, freq_base, freq_scale);
  3519. offload_func_kq(tmp);
  3520. ggml_build_forward_expand(gf, tmp);
  3521. }
  3522. }
  3523. for (int il = 0; il < n_layer; ++il) {
  3524. struct ggml_tensor * attn_norm;
  3525. offload_func_t offload_func = llama_nop;
  3526. #ifdef GGML_USE_CUBLAS
  3527. if (il >= i_gpu_start) {
  3528. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3529. }
  3530. #endif // GGML_USE_CUBLAS
  3531. // self-attention
  3532. // TODO: refactor into common function (shared with LLaMA)
  3533. {
  3534. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  3535. offload_func(attn_norm);
  3536. attn_norm = ggml_add(ctx0,
  3537. ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
  3538. model.layers[il].attn_norm_b);
  3539. offload_func(attn_norm->src[0]);
  3540. offload_func(attn_norm);
  3541. if (model.layers[il].attn_norm_2) { // Falcon-40B
  3542. cur = ggml_norm(ctx0, inpL, norm_eps);
  3543. offload_func(cur);
  3544. cur = ggml_add(ctx0,
  3545. ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
  3546. model.layers[il].attn_norm_2_b);
  3547. offload_func(cur->src[0]);
  3548. offload_func(cur);
  3549. } else { // Falcon 7B
  3550. cur = attn_norm;
  3551. }
  3552. // compute QKV
  3553. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3554. offload_func_kq(cur);
  3555. // Note that the strides for Kcur, Vcur are set up so that the
  3556. // resulting views are misaligned with the tensor's storage
  3557. // (by applying the K/V offset we shift the tensor's original
  3558. // view to stick out behind the viewed QKV tensor's allocated
  3559. // memory, so to say). This is ok because no actual accesses
  3560. // happen to that out-of-range memory, but it can require some
  3561. // trickery when trying to accurately dump these views for
  3562. // debugging.
  3563. const size_t wsize = ggml_type_size(cur->type);
  3564. // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
  3565. // non-contiguous views is added for the rope operator
  3566. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
  3567. ctx0, cur, n_embd_head, n_head, n_tokens,
  3568. wsize * n_embd_head,
  3569. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3570. 0));
  3571. offload_func_kq(tmpq);
  3572. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
  3573. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3574. wsize * n_embd_head,
  3575. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3576. wsize * n_embd_head * n_head));
  3577. offload_func_kq(tmpk);
  3578. struct ggml_tensor * tmpv = ggml_view_3d(
  3579. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3580. wsize * n_embd_head,
  3581. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3582. wsize * n_embd_head * (n_head + n_head_kv));
  3583. offload_func_v(tmpv);
  3584. // using mode = 2 for neox mode
  3585. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, tmpq, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3586. offload_func_kq(Qcur);
  3587. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, tmpk, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3588. offload_func_kq(Kcur);
  3589. {
  3590. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3591. offload_func_v(Vcur);
  3592. offload_func_v(Vcur->src[0]->src[0]);
  3593. ggml_set_name(Vcur, "Vcur");
  3594. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3595. offload_func_kq(k);
  3596. ggml_set_name(k, "k");
  3597. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3598. ( n_ctx)*ggml_element_size(kv_self.v),
  3599. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3600. offload_func_v(v);
  3601. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3602. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3603. }
  3604. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3605. offload_func_kq(Q);
  3606. ggml_set_name(Q, "Q");
  3607. struct ggml_tensor * K =
  3608. ggml_view_3d(ctx0, kv_self.k,
  3609. n_embd_head, n_kv, n_head_kv,
  3610. ggml_element_size(kv_self.k)*n_embd_gqa,
  3611. ggml_element_size(kv_self.k)*n_embd_head,
  3612. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3613. offload_func_kq(K);
  3614. ggml_set_name(K, "K");
  3615. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3616. offload_func_kq(KQ);
  3617. ggml_set_name(KQ, "KQ");
  3618. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3619. offload_func_kq(KQ_scaled);
  3620. ggml_set_name(KQ_scaled, "KQ_scaled");
  3621. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3622. offload_func_kq(KQ_masked);
  3623. ggml_set_name(KQ_masked, "KQ_masked");
  3624. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3625. offload_func_v(KQ_soft_max);
  3626. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3627. struct ggml_tensor * V =
  3628. ggml_view_3d(ctx0, kv_self.v,
  3629. n_kv, n_embd_head, n_head_kv,
  3630. ggml_element_size(kv_self.v)*n_ctx,
  3631. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3632. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3633. offload_func_v(V);
  3634. ggml_set_name(V, "V");
  3635. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3636. offload_func_v(KQV);
  3637. ggml_set_name(KQV, "KQV");
  3638. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3639. offload_func_v(KQV_merged);
  3640. ggml_set_name(KQV_merged, "KQV_merged");
  3641. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3642. offload_func_v(cur);
  3643. ggml_set_name(cur, "KQV_merged_contiguous");
  3644. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  3645. offload_func(cur);
  3646. ggml_set_name(cur, "result_wo");
  3647. }
  3648. struct ggml_tensor * attn_out = cur;
  3649. // feed forward
  3650. {
  3651. struct ggml_tensor * inpFF = attn_norm;
  3652. cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
  3653. offload_func(cur);
  3654. cur = ggml_gelu(ctx0, cur);
  3655. offload_func(cur);
  3656. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  3657. offload_func(cur);
  3658. }
  3659. cur = ggml_add(ctx0, cur, attn_out);
  3660. offload_func(cur);
  3661. cur = ggml_add(ctx0, cur, inpL);
  3662. offload_func(cur);
  3663. // input for next layer
  3664. inpL = cur;
  3665. }
  3666. cur = inpL;
  3667. // norm
  3668. {
  3669. cur = ggml_norm(ctx0, cur, norm_eps);
  3670. offload_func_nr(cur);
  3671. cur = ggml_add(ctx0,
  3672. ggml_mul(ctx0, cur, model.output_norm),
  3673. model.output_norm_b);
  3674. ggml_set_name(cur, "result_norm");
  3675. }
  3676. cur = ggml_mul_mat(ctx0, model.output, cur);
  3677. ggml_set_name(cur, "result_output");
  3678. ggml_build_forward_expand(gf, cur);
  3679. ggml_free(ctx0);
  3680. return gf;
  3681. }
  3682. static struct ggml_cgraph * llm_build_starcoder(
  3683. llama_context & lctx,
  3684. const llama_batch & batch) {
  3685. const auto & model = lctx.model;
  3686. const auto & hparams = model.hparams;
  3687. const auto & cparams = lctx.cparams;
  3688. const auto & kv_self = lctx.kv_self;
  3689. GGML_ASSERT(!!kv_self.ctx);
  3690. const int64_t n_embd = hparams.n_embd;
  3691. const int64_t n_layer = hparams.n_layer;
  3692. const int64_t n_ctx = cparams.n_ctx;
  3693. const int64_t n_head = hparams.n_head;
  3694. const int64_t n_head_kv = hparams.n_head_kv;
  3695. const int64_t n_embd_head = hparams.n_embd_head();
  3696. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3697. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3698. const float norm_eps = hparams.f_norm_eps;
  3699. const int32_t n_tokens = batch.n_tokens;
  3700. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3701. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3702. auto & buf_compute = lctx.buf_compute;
  3703. struct ggml_init_params params = {
  3704. /*.mem_size =*/ buf_compute.size,
  3705. /*.mem_buffer =*/ buf_compute.data,
  3706. /*.no_alloc =*/ true,
  3707. };
  3708. struct ggml_context * ctx0 = ggml_init(params);
  3709. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3710. struct ggml_tensor * cur;
  3711. struct ggml_tensor * token;
  3712. struct ggml_tensor * position;
  3713. struct ggml_tensor * inpL;
  3714. if (batch.token) {
  3715. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3716. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3717. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3718. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3719. }
  3720. ggml_set_name(inp_tokens, "inp_tokens");
  3721. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3722. } else {
  3723. #ifdef GGML_USE_MPI
  3724. GGML_ASSERT(false && "not implemented");
  3725. #endif
  3726. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3727. ggml_allocr_alloc(lctx.alloc, token);
  3728. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3729. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  3730. }
  3731. }
  3732. {
  3733. // Compute position embeddings.
  3734. struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3735. ggml_allocr_alloc(lctx.alloc, inp_positions);
  3736. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3737. for (int i = 0; i < n_tokens; ++i) {
  3738. ((int32_t *) inp_positions->data)[i] = batch.pos[i];
  3739. }
  3740. }
  3741. ggml_set_name(inp_positions, "inp_positions");
  3742. position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
  3743. }
  3744. // KQ_scale
  3745. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3746. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3747. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3748. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3749. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3750. }
  3751. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3752. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3753. ggml_set_name(KQ_mask, "KQ_mask");
  3754. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3755. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3756. float * data = (float *) KQ_mask->data;
  3757. memset(data, 0, ggml_nbytes(KQ_mask));
  3758. for (int h = 0; h < 1; ++h) {
  3759. for (int j = 0; j < n_tokens; ++j) {
  3760. const llama_pos pos = batch.pos[j];
  3761. const llama_seq_id seq_id = batch.seq_id[j];
  3762. for (int i = 0; i < n_kv; ++i) {
  3763. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3764. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3765. }
  3766. }
  3767. }
  3768. }
  3769. }
  3770. inpL = ggml_add(ctx0, token, position);
  3771. ggml_set_name(inpL, "inpL");
  3772. for (int il = 0; il < n_layer; ++il) {
  3773. {
  3774. // Norm
  3775. cur = ggml_norm(ctx0, inpL, norm_eps);
  3776. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  3777. }
  3778. {
  3779. // Self Attention
  3780. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  3781. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  3782. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  3783. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  3784. struct ggml_tensor * Qcur = tmpq;
  3785. struct ggml_tensor * Kcur = tmpk;
  3786. {
  3787. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3788. ggml_set_name(Vcur, "Vcur");
  3789. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3790. ggml_set_name(k, "k");
  3791. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3792. ( n_ctx)*ggml_element_size(kv_self.v),
  3793. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3794. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3795. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3796. }
  3797. struct ggml_tensor * Q =
  3798. ggml_permute(ctx0,
  3799. ggml_cpy(ctx0,
  3800. Qcur,
  3801. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  3802. 0, 2, 1, 3);
  3803. ggml_set_name(Q, "Q");
  3804. struct ggml_tensor * K =
  3805. ggml_view_3d(ctx0, kv_self.k,
  3806. n_embd_head, n_kv, n_head_kv,
  3807. ggml_element_size(kv_self.k)*n_embd_gqa,
  3808. ggml_element_size(kv_self.k)*n_embd_head,
  3809. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3810. ggml_set_name(K, "K");
  3811. // K * Q
  3812. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3813. ggml_set_name(KQ, "KQ");
  3814. // KQ_scaled = KQ / sqrt(n_embd_head)
  3815. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3816. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  3817. ggml_set_name(KQ_scaled, "KQ_scaled");
  3818. // KQ_masked = mask_past(KQ_scaled)
  3819. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3820. ggml_set_name(KQ_masked, "KQ_masked");
  3821. // KQ = soft_max(KQ_masked)
  3822. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  3823. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3824. // split cached V into n_head heads
  3825. struct ggml_tensor * V =
  3826. ggml_view_3d(ctx0, kv_self.v,
  3827. n_kv, n_embd_head, n_head_kv,
  3828. ggml_element_size(kv_self.v)*n_ctx,
  3829. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3830. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3831. ggml_set_name(V, "V");
  3832. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3833. ggml_set_name(KQV, "KQV");
  3834. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3835. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3836. ggml_set_name(KQV_merged, "KQV_merged");
  3837. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3838. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3839. ggml_set_name(cur, "KQV_merged_contiguous");
  3840. }
  3841. // Projection
  3842. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  3843. // Add the input
  3844. cur = ggml_add(ctx0, cur, inpL);
  3845. struct ggml_tensor * inpFF = cur;
  3846. // FF
  3847. {
  3848. // Norm
  3849. {
  3850. cur = ggml_norm(ctx0, inpFF, norm_eps);
  3851. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  3852. }
  3853. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  3854. // GELU activation
  3855. cur = ggml_gelu(ctx0, cur);
  3856. // Projection
  3857. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  3858. }
  3859. inpL = ggml_add(ctx0, cur, inpFF);
  3860. }
  3861. // Output Norm
  3862. {
  3863. cur = ggml_norm(ctx0, inpL, norm_eps);
  3864. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  3865. }
  3866. ggml_set_name(cur, "result_norm");
  3867. cur = ggml_mul_mat(ctx0, model.output, cur);
  3868. ggml_set_name(cur, "result_output");
  3869. ggml_build_forward_expand(gf, cur);
  3870. ggml_free(ctx0);
  3871. return gf;
  3872. }
  3873. static struct ggml_cgraph * llm_build_persimmon(
  3874. llama_context & lctx,
  3875. const llama_batch & batch) {
  3876. const auto & model = lctx.model;
  3877. const auto & hparams = model.hparams;
  3878. const auto & kv_self = lctx.kv_self;
  3879. GGML_ASSERT(!!kv_self.ctx);
  3880. const auto & cparams = lctx.cparams;
  3881. const int64_t n_embd = hparams.n_embd;
  3882. const int64_t n_layer = hparams.n_layer;
  3883. const int64_t n_ctx = cparams.n_ctx;
  3884. const int64_t n_head_kv = hparams.n_head_kv;
  3885. const int64_t n_head = hparams.n_head;
  3886. const int64_t n_embd_head = hparams.n_embd_head();
  3887. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3888. const size_t n_rot = n_embd_head / 2;
  3889. const float freq_base = cparams.rope_freq_base;
  3890. const float freq_scale = cparams.rope_freq_scale;
  3891. const float norm_eps = hparams.f_norm_eps;
  3892. const int n_gpu_layers = model.n_gpu_layers;
  3893. const int32_t n_tokens = batch.n_tokens;
  3894. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3895. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3896. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  3897. auto & buf_compute = lctx.buf_compute;
  3898. struct ggml_init_params params = {
  3899. /*.mem_size =*/ buf_compute.size,
  3900. /*.mem_buffer =*/ buf_compute.data,
  3901. /*.no_alloc =*/ true,
  3902. };
  3903. struct ggml_context * ctx0 = ggml_init(params);
  3904. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3905. struct ggml_tensor * cur;
  3906. struct ggml_tensor * inpL;
  3907. if (batch.token) {
  3908. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3909. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3910. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3911. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3912. }
  3913. ggml_set_name(inp_tokens, "inp_tokens");
  3914. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3915. } else {
  3916. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3917. ggml_allocr_alloc(lctx.alloc, inpL);
  3918. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3919. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3920. }
  3921. }
  3922. const int i_gpu_start = n_layer - n_gpu_layers;
  3923. (void) i_gpu_start;
  3924. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3925. offload_func_t offload_func_kq = llama_nop;
  3926. offload_func_t offload_func_v = llama_nop;
  3927. // KQ_scale
  3928. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3929. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3930. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3931. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  3932. }
  3933. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3934. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3935. offload_func_kq(KQ_mask);
  3936. ggml_set_name(KQ_mask, "KQ_mask");
  3937. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3938. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3939. float * data = (float *) KQ_mask->data;
  3940. memset(data, 0, ggml_nbytes(KQ_mask));
  3941. for (int h = 0; h < 1; ++h) {
  3942. for (int j = 0; j < n_tokens; ++j) {
  3943. const llama_pos pos = batch.pos[j];
  3944. const llama_seq_id seq_id = batch.seq_id[j];
  3945. for (int i = 0; i < n_kv; ++i) {
  3946. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3947. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3948. }
  3949. }
  3950. }
  3951. }
  3952. }
  3953. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3954. offload_func_kq(KQ_pos);
  3955. ggml_set_name(KQ_pos, "KQ_pos");
  3956. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  3957. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3958. int * data = (int *) KQ_pos->data;
  3959. for (int i = 0; i < n_tokens; ++i) {
  3960. data[i] = batch.pos[i];
  3961. }
  3962. }
  3963. if (do_rope_shift) {
  3964. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  3965. offload_func_kq(K_shift);
  3966. ggml_set_name(K_shift, "K_shift");
  3967. ggml_allocr_alloc(lctx.alloc, K_shift);
  3968. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3969. int * data = (int *) K_shift->data;
  3970. for (int i = 0; i < n_ctx; ++i) {
  3971. data[i] = kv_self.cells[i].delta;
  3972. }
  3973. }
  3974. for (int il = 0; il < n_layer; ++il) {
  3975. struct ggml_tensor * tmp =
  3976. // we rotate only the first n_rot dimensions.
  3977. ggml_rope_custom_inplace(ctx0,
  3978. ggml_view_3d(ctx0, kv_self.k,
  3979. n_rot, n_head, n_ctx,
  3980. ggml_element_size(kv_self.k)*n_embd_gqa,
  3981. ggml_element_size(kv_self.k)*n_embd_head,
  3982. ggml_element_size(kv_self.k)*(n_embd_head*n_ctx*il)
  3983. ),
  3984. K_shift, n_rot, 2, 0, freq_base, freq_scale);
  3985. offload_func_kq(tmp);
  3986. ggml_build_forward_expand(gf, tmp);
  3987. }
  3988. }
  3989. for (int il=0; il < n_layer; ++il) {
  3990. struct ggml_tensor * residual = inpL;
  3991. offload_func_t offload_func = llama_nop;
  3992. {
  3993. cur = ggml_norm(ctx0, inpL, norm_eps);
  3994. offload_func(cur);
  3995. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3996. offload_func(cur);
  3997. cur = ggml_add(ctx0, cur, model.layers[il].attn_norm_b);
  3998. offload_func(cur);
  3999. ggml_format_name(cur, "input_layernorm_%d", il);
  4000. }
  4001. // self attention
  4002. {
  4003. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4004. offload_func_kq(cur);
  4005. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4006. offload_func_kq(cur);
  4007. // split qkv
  4008. GGML_ASSERT(n_head_kv == n_head);
  4009. ggml_set_name(cur, format("qkv_%d", il).c_str());
  4010. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  4011. offload_func_kq(tmpqkv);
  4012. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  4013. offload_func_kq(tmpqkv_perm);
  4014. ggml_format_name(tmpqkv_perm, "tmpqkv_perm_%d", il);
  4015. struct ggml_tensor * tmpq = ggml_view_3d(
  4016. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4017. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4018. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4019. 0
  4020. );
  4021. offload_func_kq(tmpq);
  4022. struct ggml_tensor * tmpk = ggml_view_3d(
  4023. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4024. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4025. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4026. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  4027. );
  4028. offload_func_kq(tmpk);
  4029. // Q/K Layernorm
  4030. tmpq = ggml_norm(ctx0, tmpq, norm_eps);
  4031. offload_func_kq(tmpq);
  4032. tmpq = ggml_mul(ctx0, tmpq, model.layers[il].attn_q_norm);
  4033. offload_func_kq(tmpq);
  4034. tmpq = ggml_add(ctx0, tmpq, model.layers[il].attn_q_norm_b);
  4035. offload_func_kq(tmpq);
  4036. tmpk = ggml_norm(ctx0, tmpk, norm_eps);
  4037. offload_func_v(tmpk);
  4038. tmpk = ggml_mul(ctx0, tmpk, model.layers[il].attn_k_norm);
  4039. offload_func_v(tmpk);
  4040. tmpk = ggml_add(ctx0, tmpk, model.layers[il].attn_k_norm_b);
  4041. offload_func_v(tmpk);
  4042. // RoPE the first n_rot of q/k, pass the other half, and concat.
  4043. struct ggml_tensor * qrot = ggml_view_3d(
  4044. ctx0, tmpq, n_rot, n_head, n_tokens,
  4045. ggml_element_size(tmpq) * n_embd_head,
  4046. ggml_element_size(tmpq) * n_embd_head * n_head,
  4047. 0
  4048. );
  4049. offload_func_kq(qrot);
  4050. ggml_format_name(qrot, "qrot_%d", il);
  4051. struct ggml_tensor * krot = ggml_view_3d(
  4052. ctx0, tmpk, n_rot, n_head, n_tokens,
  4053. ggml_element_size(tmpk) * n_embd_head,
  4054. ggml_element_size(tmpk) * n_embd_head * n_head,
  4055. 0
  4056. );
  4057. offload_func_kq(krot);
  4058. ggml_format_name(krot, "krot_%d", il);
  4059. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  4060. struct ggml_tensor * qpass = ggml_view_3d(
  4061. ctx0, tmpq, n_rot, n_head, n_tokens,
  4062. ggml_element_size(tmpq) * n_embd_head,
  4063. ggml_element_size(tmpq) * n_embd_head * n_head,
  4064. ggml_element_size(tmpq) * n_rot
  4065. );
  4066. offload_func_kq(qpass);
  4067. ggml_format_name(qpass, "qpass_%d", il);
  4068. struct ggml_tensor * kpass = ggml_view_3d(
  4069. ctx0, tmpk, n_rot, n_head, n_tokens,
  4070. ggml_element_size(tmpk) * n_embd_head,
  4071. ggml_element_size(tmpk) * n_embd_head * n_head,
  4072. ggml_element_size(tmpk) * n_rot
  4073. );
  4074. offload_func_kq(kpass);
  4075. ggml_format_name(kpass, "kpass_%d", il);
  4076. struct ggml_tensor * qrotated = ggml_rope_custom(
  4077. ctx0, qrot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4078. );
  4079. offload_func_kq(qrotated);
  4080. struct ggml_tensor * krotated = ggml_rope_custom(
  4081. ctx0, krot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4082. );
  4083. offload_func_kq(krotated);
  4084. // ggml currently only supports concatenation on dim=2
  4085. // so we need to permute qrot, qpass, concat, then permute back.
  4086. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  4087. offload_func_kq(qrotated);
  4088. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  4089. offload_func_kq(krotated);
  4090. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  4091. offload_func_kq(qpass);
  4092. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  4093. offload_func_kq(kpass);
  4094. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  4095. offload_func_kq(Qcur);
  4096. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  4097. offload_func_kq(Kcur);
  4098. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3));
  4099. offload_func_kq(Q);
  4100. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  4101. offload_func_kq(Kcur);
  4102. {
  4103. struct ggml_tensor * tmpv = ggml_view_3d(
  4104. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4105. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4106. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4107. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  4108. );
  4109. offload_func_v(tmpv);
  4110. // store K, V in cache
  4111. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  4112. offload_func_v(Vcur);
  4113. ggml_set_name(Vcur, "Vcur");
  4114. struct ggml_tensor * k = ggml_view_1d(
  4115. ctx0, kv_self.k, n_tokens*n_embd_gqa,
  4116. (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)
  4117. );
  4118. offload_func_kq(k);
  4119. ggml_set_name(k, "k");
  4120. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4121. ( n_ctx)*ggml_element_size(kv_self.v),
  4122. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4123. offload_func_v(v);
  4124. ggml_set_name(v, "v");
  4125. // important: storing RoPE-ed version of K in the KV cache!
  4126. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4127. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4128. }
  4129. struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k,
  4130. n_embd_head, n_kv, n_head_kv,
  4131. ggml_element_size(kv_self.k)*n_embd_gqa,
  4132. ggml_element_size(kv_self.k)*n_embd_head,
  4133. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4134. offload_func_kq(K);
  4135. ggml_format_name(K, "K_%d", il);
  4136. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4137. offload_func_kq(KQ);
  4138. ggml_set_name(KQ, "KQ");
  4139. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4140. offload_func_kq(KQ_scaled);
  4141. ggml_set_name(KQ_scaled, "KQ_scaled");
  4142. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  4143. offload_func_kq(KQ_masked);
  4144. ggml_set_name(KQ_masked, "KQ_masked");
  4145. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4146. offload_func_kq(KQ_soft_max);
  4147. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4148. struct ggml_tensor * V =
  4149. ggml_view_3d(ctx0, kv_self.v,
  4150. n_kv, n_embd_head, n_head_kv,
  4151. ggml_element_size(kv_self.v)*n_ctx,
  4152. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4153. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4154. offload_func_v(V);
  4155. ggml_set_name(V, "V");
  4156. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4157. offload_func_v(KQV);
  4158. ggml_set_name(KQV, "KQV");
  4159. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4160. offload_func_v(KQV_merged);
  4161. ggml_set_name(KQV_merged, "KQV_merged");
  4162. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4163. offload_func_v(cur);
  4164. ggml_set_name(cur, "KQV_merged_contiguous");
  4165. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4166. offload_func(cur);
  4167. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  4168. offload_func(cur);
  4169. ggml_set_name(cur, "result_wo");
  4170. }
  4171. struct ggml_tensor * inpFF = ggml_add(ctx0, residual, cur);
  4172. offload_func(inpFF);
  4173. ggml_set_name(inpFF, "inpFF");
  4174. {
  4175. // MLP
  4176. {
  4177. // Norm
  4178. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4179. offload_func(cur);
  4180. cur = ggml_add(ctx0,
  4181. ggml_mul(ctx0, cur, model.layers[il].ffn_norm),
  4182. model.layers[il].ffn_norm_b
  4183. );
  4184. ggml_set_name(cur, "ffn_norm");
  4185. offload_func(cur);
  4186. }
  4187. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4188. offload_func(cur);
  4189. cur = ggml_add(ctx0, cur, model.layers[il].b3);
  4190. offload_func(cur);
  4191. ggml_set_name(cur, "result_ffn_up");
  4192. cur = ggml_sqr(ctx0, ggml_relu(ctx0, cur));
  4193. ggml_set_name(cur, "result_ffn_act");
  4194. offload_func(cur);
  4195. offload_func(cur->src[0]);
  4196. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4197. offload_func(cur);
  4198. cur = ggml_add(ctx0,
  4199. cur,
  4200. model.layers[il].b2);
  4201. offload_func(cur);
  4202. ggml_set_name(cur, "outFF");
  4203. }
  4204. cur = ggml_add(ctx0, cur, inpFF);
  4205. offload_func(cur);
  4206. ggml_set_name(cur, "inpFF_+_outFF");
  4207. inpL = cur;
  4208. }
  4209. cur = inpL;
  4210. {
  4211. cur = ggml_norm(ctx0, cur, norm_eps);
  4212. offload_func_nr(cur);
  4213. cur = ggml_mul(ctx0, cur, model.output_norm);
  4214. offload_func_nr(cur);
  4215. cur = ggml_add(ctx0, cur, model.output_norm_b);
  4216. // offload_func_nr(cur);
  4217. ggml_set_name(cur, "result_norm");
  4218. }
  4219. cur = ggml_mul_mat(ctx0, model.output, cur);
  4220. ggml_set_name(cur, "result_output");
  4221. ggml_build_forward_expand(gf, cur);
  4222. ggml_free(ctx0);
  4223. return gf;
  4224. }
  4225. static struct ggml_cgraph * llm_build_bloom(
  4226. llama_context & lctx,
  4227. const llama_batch & batch) {
  4228. const auto & model = lctx.model;
  4229. const auto & hparams = model.hparams;
  4230. const auto & cparams = lctx.cparams;
  4231. const auto & kv_self = lctx.kv_self;
  4232. GGML_ASSERT(!!kv_self.ctx);
  4233. const int64_t n_embd = hparams.n_embd;
  4234. const int64_t n_layer = hparams.n_layer;
  4235. const int64_t n_ctx = cparams.n_ctx;
  4236. const int64_t n_head = hparams.n_head;
  4237. const int64_t n_head_kv = hparams.n_head_kv;
  4238. const int64_t n_embd_head = hparams.n_embd_head();
  4239. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4240. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4241. const float norm_eps = hparams.f_norm_eps;
  4242. const int32_t n_tokens = batch.n_tokens;
  4243. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4244. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4245. auto & buf_compute = lctx.buf_compute;
  4246. struct ggml_init_params params = {
  4247. /*.mem_size =*/ buf_compute.size,
  4248. /*.mem_buffer =*/ buf_compute.data,
  4249. /*.no_alloc =*/ false,
  4250. };
  4251. params.no_alloc = true;
  4252. struct ggml_context * ctx0 = ggml_init(params);
  4253. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4254. struct ggml_tensor * cur;
  4255. struct ggml_tensor * token;
  4256. struct ggml_tensor * inpL;
  4257. if (batch.token) {
  4258. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4259. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4260. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4261. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4262. }
  4263. ggml_set_name(inp_tokens, "inp_tokens");
  4264. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4265. } else {
  4266. #ifdef GGML_USE_MPI
  4267. GGML_ASSERT(false && "not implemented");
  4268. #endif
  4269. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4270. ggml_allocr_alloc(lctx.alloc, token);
  4271. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4272. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  4273. }
  4274. }
  4275. // KQ_scale
  4276. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4277. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4278. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4279. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4280. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4281. }
  4282. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4283. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4284. ggml_set_name(KQ_mask, "KQ_mask");
  4285. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4286. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4287. float * data = (float *) KQ_mask->data;
  4288. memset(data, 0, ggml_nbytes(KQ_mask));
  4289. for (int h = 0; h < 1; ++h) {
  4290. for (int j = 0; j < n_tokens; ++j) {
  4291. const llama_pos pos = batch.pos[j];
  4292. const llama_seq_id seq_id = batch.seq_id[j];
  4293. for (int i = 0; i < n_kv; ++i) {
  4294. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4295. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4296. }
  4297. }
  4298. }
  4299. }
  4300. }
  4301. // norm
  4302. {
  4303. inpL = ggml_norm(ctx0, token, norm_eps);
  4304. inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b);
  4305. }
  4306. ggml_set_name(inpL, "inpL");
  4307. for (int il = 0; il < n_layer; ++il) {
  4308. {
  4309. // Norm
  4310. cur = ggml_norm(ctx0, inpL, norm_eps);
  4311. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  4312. }
  4313. {
  4314. // Self Attention
  4315. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  4316. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  4317. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  4318. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  4319. struct ggml_tensor * Qcur = tmpq;
  4320. struct ggml_tensor * Kcur = tmpk;
  4321. // store key and value to memory
  4322. {
  4323. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4324. ggml_set_name(Vcur, "Vcur");
  4325. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4326. ggml_set_name(k, "k");
  4327. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4328. ( n_ctx)*ggml_element_size(kv_self.v),
  4329. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4330. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4331. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4332. }
  4333. struct ggml_tensor * Q =
  4334. ggml_permute(ctx0,
  4335. ggml_cpy(ctx0,
  4336. Qcur,
  4337. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  4338. 0, 2, 1, 3);
  4339. ggml_set_name(Q, "Q");
  4340. struct ggml_tensor * K =
  4341. ggml_view_3d(ctx0, kv_self.k,
  4342. n_embd_head, n_kv, n_head_kv,
  4343. ggml_element_size(kv_self.k)*n_embd_gqa,
  4344. ggml_element_size(kv_self.k)*n_embd_head,
  4345. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4346. ggml_set_name(K, "K");
  4347. // K * Q
  4348. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4349. ggml_set_name(KQ, "KQ");
  4350. // KQ_scaled = KQ / sqrt(n_embd_head)
  4351. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  4352. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  4353. ggml_set_name(KQ_scaled, "KQ_scaled");
  4354. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8);
  4355. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4356. // KQ_masked = mask_past(KQ_scaled)
  4357. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4358. ggml_set_name(KQ_masked, "KQ_masked");
  4359. // KQ = soft_max(KQ_masked)
  4360. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4361. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4362. // split cached V into n_head heads
  4363. struct ggml_tensor * V =
  4364. ggml_view_3d(ctx0, kv_self.v,
  4365. n_kv, n_embd_head, n_head_kv,
  4366. ggml_element_size(kv_self.v)*n_ctx,
  4367. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4368. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4369. ggml_set_name(V, "V");
  4370. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4371. ggml_set_name(KQV, "KQV");
  4372. // KQV_merged = KQV.permute(0, 2, 1, 3)
  4373. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4374. ggml_set_name(KQV_merged, "KQV_merged");
  4375. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  4376. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4377. ggml_set_name(cur, "KQV_merged_contiguous");
  4378. }
  4379. // Projection
  4380. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  4381. // Add the input
  4382. cur = ggml_add(ctx0, cur, inpL);
  4383. struct ggml_tensor * inpFF = cur;
  4384. // FF
  4385. {
  4386. // Norm
  4387. {
  4388. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4389. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  4390. }
  4391. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  4392. // GELU activation
  4393. cur = ggml_gelu(ctx0, cur);
  4394. // Projection
  4395. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  4396. }
  4397. inpL = ggml_add(ctx0, cur, inpFF);
  4398. }
  4399. // Output Norm
  4400. {
  4401. cur = ggml_norm(ctx0, inpL, norm_eps);
  4402. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  4403. }
  4404. ggml_set_name(cur, "result_norm");
  4405. cur = ggml_mul_mat(ctx0, model.output, cur);
  4406. ggml_set_name(cur, "result_output");
  4407. ggml_build_forward_expand(gf, cur);
  4408. ggml_free(ctx0);
  4409. return gf;
  4410. }
  4411. static struct ggml_cgraph * llm_build_mpt(
  4412. llama_context & lctx,
  4413. const llama_batch & batch) {
  4414. const auto & model = lctx.model;
  4415. const auto & hparams = model.hparams;
  4416. const auto & cparams = lctx.cparams;
  4417. const auto & kv_self = lctx.kv_self;
  4418. GGML_ASSERT(!!kv_self.ctx);
  4419. const int64_t n_embd = hparams.n_embd;
  4420. const int64_t n_layer = hparams.n_layer;
  4421. const int64_t n_ctx = cparams.n_ctx;
  4422. const int64_t n_head = hparams.n_head;
  4423. const int64_t n_head_kv = hparams.n_head_kv; // == n_head for MPT, as there's no MQA/GQA
  4424. const int64_t n_embd_head = hparams.n_embd_head();
  4425. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4426. const float norm_eps = hparams.f_norm_eps;
  4427. const float clamp_kqv = hparams.f_clamp_kqv;
  4428. const float max_alibi_bias = hparams.f_max_alibi_bias;
  4429. const int n_gpu_layers = model.n_gpu_layers;
  4430. const int32_t n_tokens = batch.n_tokens;
  4431. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4432. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4433. auto & buf_compute = lctx.buf_compute;
  4434. struct ggml_init_params params = {
  4435. /*.mem_size =*/ buf_compute.size,
  4436. /*.mem_buffer =*/ buf_compute.data,
  4437. /*.no_alloc =*/ false,
  4438. };
  4439. params.no_alloc = true;
  4440. struct ggml_context * ctx0 = ggml_init(params);
  4441. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4442. struct ggml_tensor * cur;
  4443. struct ggml_tensor * inpL;
  4444. //int warmup = 0;
  4445. if (batch.token) {
  4446. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4447. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4448. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4449. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4450. //warmup = ((uint32_t*) inp_tokens->data)[0] == 0;
  4451. }
  4452. ggml_set_name(inp_tokens, "inp_tokens");
  4453. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4454. } else {
  4455. #ifdef GGML_USE_MPI
  4456. GGML_ASSERT(false && "not implemented");
  4457. #endif
  4458. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4459. ggml_allocr_alloc(lctx.alloc, inpL);
  4460. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4461. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  4462. }
  4463. }
  4464. const int i_gpu_start = n_layer - n_gpu_layers;
  4465. (void) i_gpu_start;
  4466. // offload functions set the tensor output backend to GPU
  4467. // tensors are GPU-accelerated if any input or the output has been offloaded
  4468. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  4469. offload_func_t offload_func_kq = llama_nop;
  4470. offload_func_t offload_func_v = llama_nop;
  4471. #ifdef GGML_USE_CUBLAS
  4472. if (n_gpu_layers > n_layer) {
  4473. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  4474. }
  4475. if (n_gpu_layers > n_layer + 1) {
  4476. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  4477. }
  4478. if (n_gpu_layers > n_layer + 2) {
  4479. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  4480. }
  4481. #endif // GGML_USE_CUBLAS
  4482. // KQ_scale
  4483. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4484. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4485. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4486. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4487. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4488. }
  4489. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4490. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4491. offload_func_kq(KQ_mask);
  4492. ggml_set_name(KQ_mask, "KQ_mask");
  4493. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4494. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4495. float * data = (float *) KQ_mask->data;
  4496. memset(data, 0, ggml_nbytes(KQ_mask));
  4497. for (int h = 0; h < 1; ++h) {
  4498. for (int j = 0; j < n_tokens; ++j) {
  4499. const llama_pos pos = batch.pos[j];
  4500. const llama_seq_id seq_id = batch.seq_id[j];
  4501. for (int i = 0; i < n_kv; ++i) {
  4502. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4503. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4504. }
  4505. }
  4506. }
  4507. }
  4508. }
  4509. for (int il = 0; il < n_layer; ++il) {
  4510. struct ggml_tensor * attn_norm;
  4511. offload_func_t offload_func = llama_nop;
  4512. #ifdef GGML_USE_CUBLAS
  4513. if (il >= i_gpu_start) {
  4514. offload_func = ggml_cuda_assign_buffers_no_alloc;
  4515. }
  4516. #endif // GGML_USE_CUBLAS
  4517. // self-attention
  4518. // TODO: refactor into common function (shared with LLaMA)
  4519. {
  4520. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  4521. offload_func(attn_norm);
  4522. attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm);
  4523. offload_func(attn_norm);
  4524. if (1) {
  4525. cur = attn_norm;
  4526. }
  4527. // compute QKV
  4528. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4529. offload_func_kq(cur);
  4530. if (clamp_kqv > 0.0f) {
  4531. cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv);
  4532. offload_func_kq(cur);
  4533. }
  4534. const size_t wsize = ggml_type_size(cur->type);
  4535. struct ggml_tensor * Qcur = ggml_view_3d(
  4536. ctx0, cur, n_embd_head, n_head, n_tokens,
  4537. wsize * n_embd_head,
  4538. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4539. 0);
  4540. offload_func_kq(Qcur);
  4541. struct ggml_tensor * Kcur = ggml_view_3d(
  4542. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4543. wsize * n_embd_head,
  4544. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4545. wsize * n_embd_head * n_head);
  4546. offload_func_kq(Kcur);
  4547. struct ggml_tensor * tmpv = ggml_view_3d(
  4548. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4549. wsize * n_embd_head,
  4550. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4551. wsize * n_embd_head * (n_head + n_head_kv));
  4552. offload_func_kq(Kcur);
  4553. ggml_set_name(Qcur, "Qcur");
  4554. ggml_set_name(Kcur, "Kcur");
  4555. {
  4556. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4557. offload_func_v(Vcur);
  4558. offload_func_v(Vcur->src[0]->src[0]);
  4559. ggml_set_name(Vcur, "Vcur");
  4560. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4561. offload_func_kq(k);
  4562. ggml_set_name(k, "k");
  4563. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4564. ( n_ctx)*ggml_element_size(kv_self.v),
  4565. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4566. offload_func_v(v);
  4567. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4568. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4569. }
  4570. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  4571. offload_func_kq(Q);
  4572. ggml_set_name(Q, "Q");
  4573. struct ggml_tensor * K =
  4574. ggml_view_3d(ctx0, kv_self.k,
  4575. n_embd_head, n_kv, n_head_kv,
  4576. ggml_element_size(kv_self.k)*n_embd_gqa,
  4577. ggml_element_size(kv_self.k)*n_embd_head,
  4578. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4579. offload_func_kq(K);
  4580. ggml_set_name(K, "K");
  4581. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4582. offload_func_kq(KQ);
  4583. ggml_set_name(KQ, "KQ");
  4584. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4585. offload_func_kq(KQ_scaled);
  4586. ggml_set_name(KQ_scaled, "KQ_scaled");
  4587. // TODO: replace with ggml_add()
  4588. struct ggml_tensor * KQ_scaled_alibi =
  4589. ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias);
  4590. offload_func_kq(KQ_scaled_alibi);
  4591. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4592. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4593. offload_func_kq(KQ_masked);
  4594. ggml_set_name(KQ_masked, "KQ_masked");
  4595. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  4596. offload_func_v(KQ_soft_max);
  4597. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4598. struct ggml_tensor * V =
  4599. ggml_view_3d(ctx0, kv_self.v,
  4600. n_kv, n_embd_head, n_head_kv,
  4601. ggml_element_size(kv_self.v)*n_ctx,
  4602. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4603. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4604. offload_func_v(V);
  4605. ggml_set_name(V, "V");
  4606. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4607. offload_func_v(KQV);
  4608. ggml_set_name(KQV, "KQV");
  4609. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4610. offload_func_v(KQV_merged);
  4611. ggml_set_name(KQV_merged, "KQV_merged");
  4612. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4613. offload_func_v(cur);
  4614. ggml_set_name(cur, "KQV_merged_contiguous");
  4615. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4616. offload_func(cur);
  4617. ggml_set_name(cur, "result_wo");
  4618. }
  4619. // Add the input
  4620. cur = ggml_add(ctx0, cur, inpL);
  4621. offload_func(cur);
  4622. struct ggml_tensor * attn_out = cur;
  4623. // feed forward
  4624. {
  4625. // Norm
  4626. {
  4627. cur = ggml_norm(ctx0, attn_out, norm_eps);
  4628. offload_func(cur);
  4629. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  4630. offload_func(cur);
  4631. }
  4632. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4633. offload_func(cur);
  4634. cur = ggml_gelu(ctx0, cur);
  4635. offload_func(cur);
  4636. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4637. offload_func(cur);
  4638. }
  4639. cur = ggml_add(ctx0, cur, attn_out);
  4640. offload_func(cur);
  4641. // input for next layer
  4642. inpL = cur;
  4643. }
  4644. cur = inpL;
  4645. // norm
  4646. {
  4647. cur = ggml_norm(ctx0, cur, norm_eps);
  4648. offload_func_nr(cur);
  4649. cur = ggml_mul(ctx0, cur, model.output_norm);
  4650. ggml_set_name(cur, "result_norm");
  4651. }
  4652. cur = ggml_mul_mat(ctx0, model.output, cur);
  4653. ggml_set_name(cur, "result_output");
  4654. ggml_build_forward_expand(gf, cur);
  4655. ggml_free(ctx0);
  4656. return gf;
  4657. }
  4658. static struct ggml_cgraph * llama_build_graph(
  4659. llama_context & lctx,
  4660. const llama_batch & batch) {
  4661. const auto & model = lctx.model;
  4662. struct ggml_cgraph * result = NULL;
  4663. switch (model.arch) {
  4664. case LLM_ARCH_LLAMA:
  4665. {
  4666. result = llm_build_llama(lctx, batch);
  4667. } break;
  4668. case LLM_ARCH_BAICHUAN:
  4669. {
  4670. result = llm_build_baichaun(lctx, batch);
  4671. } break;
  4672. case LLM_ARCH_FALCON:
  4673. {
  4674. result = llm_build_falcon(lctx, batch);
  4675. } break;
  4676. case LLM_ARCH_STARCODER:
  4677. {
  4678. result = llm_build_starcoder(lctx, batch);
  4679. } break;
  4680. case LLM_ARCH_PERSIMMON:
  4681. {
  4682. result = llm_build_persimmon(lctx, batch);
  4683. } break;
  4684. case LLM_ARCH_REFACT:
  4685. {
  4686. result = llm_build_refact(lctx, batch);
  4687. } break;
  4688. case LLM_ARCH_BLOOM:
  4689. {
  4690. result = llm_build_bloom(lctx, batch);
  4691. } break;
  4692. case LLM_ARCH_MPT:
  4693. {
  4694. result = llm_build_mpt(lctx, batch);
  4695. } break;
  4696. default:
  4697. GGML_ASSERT(false);
  4698. }
  4699. return result;
  4700. }
  4701. // decode a batch of tokens by evaluating the transformer
  4702. //
  4703. // - lctx: llama context
  4704. // - batch: batch to evaluate
  4705. // - n_threads: number of threads to use
  4706. //
  4707. // return 0 on success
  4708. // return positive int on warning
  4709. // return negative int on error
  4710. //
  4711. static int llama_decode_internal(
  4712. llama_context & lctx,
  4713. llama_batch batch) {
  4714. const uint32_t n_tokens = batch.n_tokens;
  4715. if (n_tokens == 0) {
  4716. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  4717. return -1;
  4718. }
  4719. const auto & model = lctx.model;
  4720. const auto & hparams = model.hparams;
  4721. const auto & cparams = lctx.cparams;
  4722. const auto n_batch = cparams.n_batch;
  4723. GGML_ASSERT(n_tokens <= n_batch);
  4724. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  4725. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  4726. const int64_t t_start_us = ggml_time_us();
  4727. #ifdef GGML_USE_MPI
  4728. // TODO: needs fix after #3228
  4729. GGML_ASSERT(false && "not implemented");
  4730. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  4731. #endif
  4732. GGML_ASSERT(n_threads > 0);
  4733. auto & kv_self = lctx.kv_self;
  4734. GGML_ASSERT(!!kv_self.ctx);
  4735. const int64_t n_embd = hparams.n_embd;
  4736. const int64_t n_vocab = hparams.n_vocab;
  4737. // helpers for smoother batch API transistion
  4738. // after deprecating the llama_eval calls, these will be removed
  4739. std::vector<llama_pos> pos;
  4740. std::vector<llama_seq_id> seq_id;
  4741. if (batch.pos == nullptr) {
  4742. pos.resize(n_tokens);
  4743. for (uint32_t i = 0; i < n_tokens; i++) {
  4744. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  4745. }
  4746. batch.pos = pos.data();
  4747. }
  4748. if (batch.seq_id == nullptr) {
  4749. seq_id.resize(n_tokens);
  4750. for (uint32_t i = 0; i < n_tokens; i++) {
  4751. seq_id[i] = batch.all_seq_id;
  4752. }
  4753. batch.seq_id = seq_id.data();
  4754. }
  4755. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  4756. return 1;
  4757. }
  4758. // a heuristic, to avoid attending the full cache if it is not yet utilized
  4759. // after enough generations, the benefit from this heuristic disappears
  4760. // if we start defragmenting the cache, the benefit from this will be more important
  4761. //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
  4762. kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
  4763. //printf("kv_self.n = %d\n", kv_self.n);
  4764. ggml_allocr_reset(lctx.alloc);
  4765. ggml_cgraph * gf = llama_build_graph(lctx, batch);
  4766. ggml_allocr_alloc_graph(lctx.alloc, gf);
  4767. #ifdef GGML_USE_CUBLAS
  4768. for (int i = 0; i < gf->n_leafs; i++) {
  4769. ggml_tensor * node = gf->leafs[i];
  4770. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4771. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4772. ggml_cuda_copy_to_device(node);
  4773. }
  4774. }
  4775. for (int i = 0; i < gf->n_nodes; i++) {
  4776. ggml_tensor * node = gf->nodes[i];
  4777. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4778. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4779. }
  4780. }
  4781. ggml_cuda_set_mul_mat_q(cparams.mul_mat_q);
  4782. #endif
  4783. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  4784. // for big prompts, if BLAS is enabled, it is better to use only one thread
  4785. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  4786. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  4787. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  4788. // with the BLAS calls. need a better solution
  4789. if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  4790. n_threads = std::min(4, n_threads);
  4791. }
  4792. // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
  4793. const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
  4794. model.arch == LLM_ARCH_BAICHUAN ||
  4795. model.arch == LLM_ARCH_FALCON ||
  4796. model.arch == LLM_ARCH_REFACT ||
  4797. model.arch == LLM_ARCH_MPT;
  4798. const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
  4799. if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
  4800. n_threads = 1;
  4801. }
  4802. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  4803. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  4804. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  4805. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  4806. #if GGML_USE_MPI
  4807. const int64_t n_layer = hparams.n_layer;
  4808. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  4809. #endif
  4810. #ifdef GGML_USE_METAL
  4811. if (lctx.ctx_metal) {
  4812. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  4813. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  4814. } else {
  4815. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4816. }
  4817. #else
  4818. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4819. #endif
  4820. #if GGML_USE_MPI
  4821. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  4822. #endif
  4823. // update the kv ring buffer
  4824. lctx.kv_self.has_shift = false;
  4825. lctx.kv_self.head += n_tokens;
  4826. // Ensure kv cache head points to a valid index.
  4827. if (lctx.kv_self.head >= lctx.kv_self.size) {
  4828. lctx.kv_self.head = 0;
  4829. }
  4830. #ifdef GGML_PERF
  4831. // print timing information per ggml operation (for debugging purposes)
  4832. // requires GGML_PERF to be defined
  4833. ggml_graph_print(gf);
  4834. #endif
  4835. // plot the computation graph in dot format (for debugging purposes)
  4836. //if (n_past%100 == 0) {
  4837. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  4838. //}
  4839. // extract logits
  4840. {
  4841. auto & logits_out = lctx.logits;
  4842. if (batch.logits) {
  4843. logits_out.resize(n_vocab * n_tokens);
  4844. for (uint32_t i = 0; i < n_tokens; i++) {
  4845. if (batch.logits[i] == 0) {
  4846. continue;
  4847. }
  4848. memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
  4849. }
  4850. } else if (lctx.logits_all) {
  4851. logits_out.resize(n_vocab * n_tokens);
  4852. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
  4853. } else {
  4854. logits_out.resize(n_vocab);
  4855. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
  4856. }
  4857. }
  4858. // extract embeddings
  4859. if (!lctx.embedding.empty()) {
  4860. auto & embedding_out = lctx.embedding;
  4861. embedding_out.resize(n_embd);
  4862. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd);
  4863. }
  4864. // measure the performance only for the single-token evals
  4865. if (n_tokens == 1) {
  4866. lctx.t_eval_us += ggml_time_us() - t_start_us;
  4867. lctx.n_eval++;
  4868. }
  4869. else if (n_tokens > 1) {
  4870. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  4871. lctx.n_p_eval += n_tokens;
  4872. }
  4873. // get a more accurate load time, upon first eval
  4874. // TODO: fix this
  4875. if (!lctx.has_evaluated_once) {
  4876. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  4877. lctx.has_evaluated_once = true;
  4878. }
  4879. return 0;
  4880. }
  4881. //
  4882. // tokenizer
  4883. //
  4884. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  4885. return vocab.type;
  4886. }
  4887. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  4888. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  4889. }
  4890. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  4891. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  4892. }
  4893. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  4894. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  4895. }
  4896. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  4897. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  4898. }
  4899. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  4900. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  4901. }
  4902. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  4903. GGML_ASSERT(llama_is_byte_token(vocab, id));
  4904. const auto& token_data = vocab.id_to_token.at(id);
  4905. switch (llama_vocab_get_type(vocab)) {
  4906. case LLAMA_VOCAB_TYPE_SPM: {
  4907. auto buf = token_data.text.substr(3, 2);
  4908. return strtol(buf.c_str(), NULL, 16);
  4909. }
  4910. case LLAMA_VOCAB_TYPE_BPE: {
  4911. GGML_ASSERT(false);
  4912. return unicode_to_bytes_bpe(token_data.text);
  4913. }
  4914. default:
  4915. GGML_ASSERT(false);
  4916. }
  4917. }
  4918. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  4919. switch (llama_vocab_get_type(vocab)) {
  4920. case LLAMA_VOCAB_TYPE_SPM: {
  4921. char buf[7];
  4922. int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
  4923. GGML_ASSERT(0 <= result && result < 7);
  4924. return vocab.token_to_id.at(buf);
  4925. }
  4926. case LLAMA_VOCAB_TYPE_BPE: {
  4927. return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
  4928. }
  4929. default:
  4930. GGML_ASSERT(false);
  4931. }
  4932. }
  4933. static void llama_escape_whitespace(std::string & text) {
  4934. replace_all(text, " ", "\xe2\x96\x81");
  4935. }
  4936. static void llama_unescape_whitespace(std::string & word) {
  4937. replace_all(word, "\xe2\x96\x81", " ");
  4938. }
  4939. struct llm_symbol {
  4940. using index = int;
  4941. index prev;
  4942. index next;
  4943. const char * text;
  4944. size_t n;
  4945. };
  4946. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  4947. // SPM tokenizer
  4948. // original implementation:
  4949. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  4950. struct llm_bigram_spm {
  4951. struct comparator {
  4952. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  4953. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  4954. }
  4955. };
  4956. using queue_storage = std::vector<llm_bigram_spm>;
  4957. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  4958. llm_symbol::index left;
  4959. llm_symbol::index right;
  4960. float score;
  4961. size_t size;
  4962. };
  4963. struct llm_tokenizer_spm {
  4964. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  4965. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  4966. // split string into utf8 chars
  4967. int index = 0;
  4968. size_t offs = 0;
  4969. while (offs < text.size()) {
  4970. llm_symbol sym;
  4971. size_t len = utf8_len(text[offs]);
  4972. sym.text = text.c_str() + offs;
  4973. sym.n = std::min(len, text.size() - offs);
  4974. offs += sym.n;
  4975. sym.prev = index - 1;
  4976. sym.next = offs == text.size() ? -1 : index + 1;
  4977. index++;
  4978. symbols.emplace_back(sym);
  4979. }
  4980. // seed the work queue with all possible 2-character tokens.
  4981. for (size_t i = 1; i < symbols.size(); ++i) {
  4982. try_add_bigram(i - 1, i);
  4983. }
  4984. // keep substituting the highest frequency pairs for as long as we can.
  4985. while (!work_queue.empty()) {
  4986. auto bigram = work_queue.top();
  4987. work_queue.pop();
  4988. auto & left_sym = symbols[bigram.left];
  4989. auto & right_sym = symbols[bigram.right];
  4990. // if one of the symbols already got merged, skip it.
  4991. if (left_sym.n == 0 || right_sym.n == 0 ||
  4992. left_sym.n + right_sym.n != bigram.size) {
  4993. continue;
  4994. }
  4995. // merge the right sym into the left one
  4996. left_sym.n += right_sym.n;
  4997. right_sym.n = 0;
  4998. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  4999. // remove the right sym from the chain
  5000. left_sym.next = right_sym.next;
  5001. if (right_sym.next >= 0) {
  5002. symbols[right_sym.next].prev = bigram.left;
  5003. }
  5004. // find more substitutions
  5005. try_add_bigram(left_sym.prev, bigram.left);
  5006. try_add_bigram(bigram.left, left_sym.next);
  5007. }
  5008. for (int i = 0; i != -1; i = symbols[i].next) {
  5009. auto & symbol = symbols[i];
  5010. resegment(symbol, output);
  5011. }
  5012. }
  5013. private:
  5014. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  5015. auto text = std::string(symbol.text, symbol.n);
  5016. auto token = vocab.token_to_id.find(text);
  5017. // Do we need to support is_unused?
  5018. if (token != vocab.token_to_id.end()) {
  5019. output.push_back((*token).second);
  5020. return;
  5021. }
  5022. const auto p = rev_merge.find(text);
  5023. if (p == rev_merge.end()) {
  5024. // output any symbols that did not form tokens as bytes.
  5025. for (int j = 0; j < (int)symbol.n; ++j) {
  5026. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  5027. output.push_back(token_id);
  5028. }
  5029. return;
  5030. }
  5031. resegment(symbols[p->second.first], output);
  5032. resegment(symbols[p->second.second], output);
  5033. }
  5034. void try_add_bigram(int left, int right) {
  5035. if (left == -1 || right == -1) {
  5036. return;
  5037. }
  5038. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  5039. auto token = vocab.token_to_id.find(text);
  5040. if (token == vocab.token_to_id.end()) {
  5041. return;
  5042. }
  5043. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  5044. return;
  5045. }
  5046. const auto & tok_data = vocab.id_to_token[(*token).second];
  5047. llm_bigram_spm bigram;
  5048. bigram.left = left;
  5049. bigram.right = right;
  5050. bigram.score = tok_data.score;
  5051. bigram.size = text.size();
  5052. work_queue.push(bigram);
  5053. // Do we need to support is_unused?
  5054. rev_merge[text] = std::make_pair(left, right);
  5055. }
  5056. const llama_vocab & vocab;
  5057. std::vector<llm_symbol> symbols;
  5058. llm_bigram_spm::queue work_queue;
  5059. std::map<std::string, std::pair<int, int>> rev_merge;
  5060. };
  5061. // BPE tokenizer
  5062. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  5063. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  5064. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  5065. struct llm_bigram_bpe {
  5066. struct comparator {
  5067. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  5068. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  5069. }
  5070. };
  5071. using queue_storage = std::vector<llm_bigram_bpe>;
  5072. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  5073. llm_symbol::index left;
  5074. llm_symbol::index right;
  5075. std::string text;
  5076. int rank;
  5077. size_t size;
  5078. };
  5079. struct llm_tokenizer_bpe {
  5080. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  5081. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  5082. int final_prev_index = -1;
  5083. auto word_collection = bpe_gpt2_preprocess(text);
  5084. symbols_final.clear();
  5085. for (auto & word : word_collection) {
  5086. work_queue = llm_bigram_bpe::queue();
  5087. symbols.clear();
  5088. int index = 0;
  5089. size_t offset = 0;
  5090. while (offset < word.size()) {
  5091. llm_symbol sym;
  5092. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  5093. sym.text = word.c_str() + offset;
  5094. sym.n = 1;
  5095. sym.n = char_len;
  5096. offset += sym.n;
  5097. sym.prev = index - 1;
  5098. sym.next = offset == word.size() ? -1 : index + 1;
  5099. index++;
  5100. symbols.emplace_back(sym);
  5101. }
  5102. for (size_t i = 1; i < symbols.size(); ++i) {
  5103. add_new_bigram(i - 1, i);
  5104. }
  5105. // build token(s)
  5106. while (!work_queue.empty()) {
  5107. auto bigram = work_queue.top();
  5108. work_queue.pop();
  5109. auto & left_symbol = symbols[bigram.left];
  5110. auto & right_symbol = symbols[bigram.right];
  5111. if (left_symbol.n == 0 || right_symbol.n == 0) {
  5112. continue;
  5113. }
  5114. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  5115. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  5116. if (left_token + right_token != bigram.text) {
  5117. continue; // Skip this bigram if it's outdated
  5118. }
  5119. // merge the right sym into the left one
  5120. left_symbol.n += right_symbol.n;
  5121. right_symbol.n = 0;
  5122. // remove the right sym from the chain
  5123. left_symbol.next = right_symbol.next;
  5124. if (right_symbol.next >= 0) {
  5125. symbols[right_symbol.next].prev = bigram.left;
  5126. }
  5127. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  5128. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  5129. }
  5130. // add the fnished tokens to the final list keeping correct order for next and prev
  5131. for (auto & sym : symbols) {
  5132. if (sym.n > 0) {
  5133. sym.prev = final_prev_index;
  5134. sym.next = -1;
  5135. if (final_prev_index != -1) {
  5136. symbols_final[final_prev_index].next = symbols_final.size();
  5137. }
  5138. symbols_final.emplace_back(sym);
  5139. final_prev_index = symbols_final.size() - 1;
  5140. }
  5141. }
  5142. }
  5143. symbols = symbols_final;
  5144. if (!symbols.empty()) {
  5145. for (int i = 0; i != -1; i = symbols[i].next) {
  5146. auto & symbol = symbols[i];
  5147. if (symbol.n == 0) {
  5148. continue;
  5149. }
  5150. const std::string str = std::string(symbol.text, symbol.n);
  5151. const auto token = vocab.token_to_id.find(str);
  5152. if (token == vocab.token_to_id.end()) {
  5153. for (auto j = str.begin(); j != str.end(); ++j) {
  5154. std::string byte_str(1, *j);
  5155. auto token_multibyte = vocab.token_to_id.find(byte_str);
  5156. if (token_multibyte == vocab.token_to_id.end()) {
  5157. throw std::runtime_error("ERROR: byte not found in vocab");
  5158. }
  5159. output.push_back((*token_multibyte).second);
  5160. }
  5161. } else {
  5162. output.push_back((*token).second);
  5163. }
  5164. }
  5165. }
  5166. }
  5167. private:
  5168. void add_new_bigram(int left, int right) {
  5169. if (left == -1 || right == -1) {
  5170. return;
  5171. }
  5172. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  5173. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  5174. int rank_found = -1;
  5175. rank_found = vocab.find_bpe_rank(left_token, right_token);
  5176. if (rank_found < 0) {
  5177. return;
  5178. }
  5179. llm_bigram_bpe bigram;
  5180. bigram.left = left;
  5181. bigram.right = right;
  5182. bigram.text = left_token + right_token;
  5183. bigram.size = left_token.size() + right_token.size();
  5184. bigram.rank = rank_found;
  5185. work_queue.push(bigram);
  5186. }
  5187. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  5188. std::vector<std::string> bpe_words;
  5189. std::vector<std::string> bpe_encoded_words;
  5190. std::string token = "";
  5191. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  5192. bool collecting_numeric = false;
  5193. bool collecting_letter = false;
  5194. bool collecting_special = false;
  5195. bool collecting_whitespace_lookahead = false;
  5196. bool collecting = false;
  5197. std::vector<std::string> text_utf;
  5198. text_utf.reserve(text.size());
  5199. bpe_words.reserve(text.size());
  5200. bpe_encoded_words.reserve(text.size());
  5201. auto cps = codepoints_from_utf8(text);
  5202. for (size_t i = 0; i < cps.size(); ++i)
  5203. text_utf.emplace_back(codepoint_to_utf8(cps[i]));
  5204. for (int i = 0; i < (int)text_utf.size(); i++) {
  5205. const std::string & utf_char = text_utf[i];
  5206. bool split_condition = false;
  5207. int bytes_remain = text_utf.size() - i;
  5208. // forward backward lookups
  5209. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  5210. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  5211. // handling contractions
  5212. if (!split_condition && bytes_remain >= 2) {
  5213. // 's|'t|'m|'d
  5214. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  5215. split_condition = true;
  5216. }
  5217. if (split_condition) {
  5218. if (token.size()) {
  5219. bpe_words.emplace_back(token); // push previous content as token
  5220. }
  5221. token = utf_char + utf_char_next;
  5222. bpe_words.emplace_back(token);
  5223. token = "";
  5224. i++;
  5225. continue;
  5226. }
  5227. }
  5228. if (!split_condition && bytes_remain >= 3) {
  5229. // 're|'ve|'ll
  5230. if (utf_char == "\'" && (
  5231. (utf_char_next == "r" && utf_char_next_next == "e") ||
  5232. (utf_char_next == "v" && utf_char_next_next == "e") ||
  5233. (utf_char_next == "l" && utf_char_next_next == "l"))
  5234. ) {
  5235. split_condition = true;
  5236. }
  5237. if (split_condition) {
  5238. // current token + next token can be defined
  5239. if (token.size()) {
  5240. bpe_words.emplace_back(token); // push previous content as token
  5241. }
  5242. token = utf_char + utf_char_next + utf_char_next_next;
  5243. bpe_words.emplace_back(token); // the contraction
  5244. token = "";
  5245. i += 2;
  5246. continue;
  5247. }
  5248. }
  5249. if (!split_condition && !collecting) {
  5250. if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  5251. collecting_letter = true;
  5252. collecting = true;
  5253. }
  5254. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5255. collecting_numeric = true;
  5256. collecting = true;
  5257. }
  5258. else if (
  5259. ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  5260. (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  5261. ) {
  5262. collecting_special = true;
  5263. collecting = true;
  5264. }
  5265. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  5266. collecting_whitespace_lookahead = true;
  5267. collecting = true;
  5268. }
  5269. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  5270. split_condition = true;
  5271. }
  5272. }
  5273. else if (!split_condition && collecting) {
  5274. if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  5275. split_condition = true;
  5276. }
  5277. else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  5278. split_condition = true;
  5279. }
  5280. else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  5281. split_condition = true;
  5282. }
  5283. else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5284. split_condition = true;
  5285. }
  5286. }
  5287. if (utf_char_next == "") {
  5288. split_condition = true; // final
  5289. token += utf_char;
  5290. }
  5291. if (split_condition) {
  5292. if (token.size()) {
  5293. bpe_words.emplace_back(token);
  5294. }
  5295. token = utf_char;
  5296. collecting = false;
  5297. collecting_letter = false;
  5298. collecting_numeric = false;
  5299. collecting_special = false;
  5300. collecting_whitespace_lookahead = false;
  5301. }
  5302. else {
  5303. token += utf_char;
  5304. }
  5305. }
  5306. for (std::string & word : bpe_words) {
  5307. std::string encoded_token = "";
  5308. for (char & c : word) {
  5309. encoded_token += bytes_to_unicode_bpe(c);
  5310. }
  5311. bpe_encoded_words.emplace_back(encoded_token);
  5312. }
  5313. return bpe_encoded_words;
  5314. }
  5315. const llama_vocab & vocab;
  5316. std::vector<llm_symbol> symbols;
  5317. std::vector<llm_symbol> symbols_final;
  5318. llm_bigram_bpe::queue work_queue;
  5319. };
  5320. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos) {
  5321. std::vector<llama_vocab::id> output;
  5322. // OG tokenizer behavior:
  5323. //
  5324. // tokenizer.encode('', add_bos=True) returns [1]
  5325. // tokenizer.encode('', add_bos=False) returns []
  5326. if (bos && vocab.special_bos_id != -1) {
  5327. output.push_back(vocab.special_bos_id);
  5328. }
  5329. if (raw_text.empty()) {
  5330. return output;
  5331. }
  5332. switch (vocab.type) {
  5333. case LLAMA_VOCAB_TYPE_SPM:
  5334. {
  5335. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  5336. raw_text = " " + raw_text;
  5337. llm_tokenizer_spm tokenizer(vocab);
  5338. llama_escape_whitespace(raw_text);
  5339. tokenizer.tokenize(raw_text, output);
  5340. } break;
  5341. case LLAMA_VOCAB_TYPE_BPE:
  5342. {
  5343. llm_tokenizer_bpe tokenizer(vocab);
  5344. tokenizer.tokenize(raw_text, output);
  5345. } break;
  5346. }
  5347. return output;
  5348. }
  5349. //
  5350. // grammar - internal
  5351. //
  5352. struct llama_partial_utf8 {
  5353. uint32_t value; // bit value so far (unshifted)
  5354. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  5355. };
  5356. struct llama_grammar {
  5357. const std::vector<std::vector<llama_grammar_element>> rules;
  5358. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5359. // buffer for partially generated UTF-8 sequence from accepted tokens
  5360. llama_partial_utf8 partial_utf8;
  5361. };
  5362. struct llama_grammar_candidate {
  5363. size_t index;
  5364. const uint32_t * code_points;
  5365. llama_partial_utf8 partial_utf8;
  5366. };
  5367. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  5368. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  5369. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  5370. const char * src,
  5371. llama_partial_utf8 partial_start) {
  5372. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  5373. const char * pos = src;
  5374. std::vector<uint32_t> code_points;
  5375. uint32_t value = partial_start.value;
  5376. int n_remain = partial_start.n_remain;
  5377. // continue previous decode, if applicable
  5378. while (*pos != 0 && n_remain > 0) {
  5379. uint8_t next_byte = static_cast<uint8_t>(*pos);
  5380. if ((next_byte >> 6) != 2) {
  5381. // invalid sequence, abort
  5382. code_points.push_back(0);
  5383. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  5384. }
  5385. value = (value << 6) + (next_byte & 0x3F);
  5386. ++pos;
  5387. --n_remain;
  5388. }
  5389. if (partial_start.n_remain > 0 && n_remain == 0) {
  5390. code_points.push_back(value);
  5391. }
  5392. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  5393. while (*pos != 0) {
  5394. uint8_t first_byte = static_cast<uint8_t>(*pos);
  5395. uint8_t highbits = first_byte >> 4;
  5396. n_remain = lookup[highbits] - 1;
  5397. if (n_remain < 0) {
  5398. // invalid sequence, abort
  5399. code_points.clear();
  5400. code_points.push_back(0);
  5401. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  5402. }
  5403. uint8_t mask = (1 << (7 - n_remain)) - 1;
  5404. value = first_byte & mask;
  5405. ++pos;
  5406. while (*pos != 0 && n_remain > 0) {
  5407. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  5408. ++pos;
  5409. --n_remain;
  5410. }
  5411. if (n_remain == 0) {
  5412. code_points.push_back(value);
  5413. }
  5414. }
  5415. code_points.push_back(0);
  5416. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  5417. }
  5418. // returns true iff pos points to the end of one of the definitions of a rule
  5419. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  5420. switch (pos->type) {
  5421. case LLAMA_GRETYPE_END: return true; // NOLINT
  5422. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  5423. default: return false;
  5424. }
  5425. }
  5426. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  5427. // asserts that pos is pointing to a char range element
  5428. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  5429. const llama_grammar_element * pos,
  5430. const uint32_t chr) {
  5431. bool found = false;
  5432. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5433. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  5434. do {
  5435. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5436. // inclusive range, e.g. [a-z]
  5437. found = found || (pos->value <= chr && chr <= pos[1].value);
  5438. pos += 2;
  5439. } else {
  5440. // exact char match, e.g. [a] or "a"
  5441. found = found || pos->value == chr;
  5442. pos += 1;
  5443. }
  5444. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5445. return std::make_pair(found == is_positive_char, pos);
  5446. }
  5447. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  5448. // range at pos (regular or inverse range)
  5449. // asserts that pos is pointing to a char range element
  5450. static bool llama_grammar_match_partial_char(
  5451. const llama_grammar_element * pos,
  5452. const llama_partial_utf8 partial_utf8) {
  5453. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5454. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  5455. uint32_t partial_value = partial_utf8.value;
  5456. int n_remain = partial_utf8.n_remain;
  5457. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  5458. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  5459. return false;
  5460. }
  5461. // range of possible code points this partial UTF-8 sequence could complete to
  5462. uint32_t low = partial_value << (n_remain * 6);
  5463. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  5464. if (low == 0) {
  5465. if (n_remain == 2) {
  5466. low = 1 << 11;
  5467. } else if (n_remain == 3) {
  5468. low = 1 << 16;
  5469. }
  5470. }
  5471. do {
  5472. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5473. // inclusive range, e.g. [a-z]
  5474. if (pos->value <= high && low <= pos[1].value) {
  5475. return is_positive_char;
  5476. }
  5477. pos += 2;
  5478. } else {
  5479. // exact char match, e.g. [a] or "a"
  5480. if (low <= pos->value && pos->value <= high) {
  5481. return is_positive_char;
  5482. }
  5483. pos += 1;
  5484. }
  5485. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5486. return !is_positive_char;
  5487. }
  5488. // transforms a grammar pushdown stack into N possible stacks, all ending
  5489. // at a character range (terminal element)
  5490. static void llama_grammar_advance_stack(
  5491. const std::vector<std::vector<llama_grammar_element>> & rules,
  5492. const std::vector<const llama_grammar_element *> & stack,
  5493. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  5494. if (stack.empty()) {
  5495. new_stacks.emplace_back(stack);
  5496. return;
  5497. }
  5498. const llama_grammar_element * pos = stack.back();
  5499. switch (pos->type) {
  5500. case LLAMA_GRETYPE_RULE_REF: {
  5501. const size_t rule_id = static_cast<size_t>(pos->value);
  5502. const llama_grammar_element * subpos = rules[rule_id].data();
  5503. do {
  5504. // init new stack without the top (pos)
  5505. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5506. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  5507. // if this rule ref is followed by another element, add that to stack
  5508. new_stack.push_back(pos + 1);
  5509. }
  5510. if (!llama_grammar_is_end_of_sequence(subpos)) {
  5511. // if alternate is nonempty, add to stack
  5512. new_stack.push_back(subpos);
  5513. }
  5514. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5515. while (!llama_grammar_is_end_of_sequence(subpos)) {
  5516. // scan to end of alternate def
  5517. subpos++;
  5518. }
  5519. if (subpos->type == LLAMA_GRETYPE_ALT) {
  5520. // there's another alternate def of this rule to process
  5521. subpos++;
  5522. } else {
  5523. break;
  5524. }
  5525. } while (true);
  5526. break;
  5527. }
  5528. case LLAMA_GRETYPE_CHAR:
  5529. case LLAMA_GRETYPE_CHAR_NOT:
  5530. new_stacks.emplace_back(stack);
  5531. break;
  5532. default:
  5533. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  5534. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  5535. // those
  5536. GGML_ASSERT(false);
  5537. }
  5538. }
  5539. // takes a set of possible pushdown stacks on a grammar, which are required to
  5540. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  5541. // produces the N possible stacks if the given char is accepted at those
  5542. // positions
  5543. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  5544. const std::vector<std::vector<llama_grammar_element>> & rules,
  5545. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5546. const uint32_t chr) {
  5547. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  5548. for (const auto & stack : stacks) {
  5549. if (stack.empty()) {
  5550. continue;
  5551. }
  5552. auto match = llama_grammar_match_char(stack.back(), chr);
  5553. if (match.first) {
  5554. const llama_grammar_element * pos = match.second;
  5555. // update top of stack to next element, if any
  5556. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5557. if (!llama_grammar_is_end_of_sequence(pos)) {
  5558. new_stack.push_back(pos);
  5559. }
  5560. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5561. }
  5562. }
  5563. return new_stacks;
  5564. }
  5565. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5566. const std::vector<std::vector<llama_grammar_element>> & rules,
  5567. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5568. const std::vector<llama_grammar_candidate> & candidates);
  5569. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  5570. const std::vector<std::vector<llama_grammar_element>> & rules,
  5571. const std::vector<const llama_grammar_element *> & stack,
  5572. const std::vector<llama_grammar_candidate> & candidates) {
  5573. std::vector<llama_grammar_candidate> rejects;
  5574. if (stack.empty()) {
  5575. for (auto tok : candidates) {
  5576. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  5577. rejects.push_back(tok);
  5578. }
  5579. }
  5580. return rejects;
  5581. }
  5582. const llama_grammar_element * stack_pos = stack.back();
  5583. std::vector<llama_grammar_candidate> next_candidates;
  5584. for (auto tok : candidates) {
  5585. if (*tok.code_points == 0) {
  5586. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  5587. // that cannot satisfy this position in grammar
  5588. if (tok.partial_utf8.n_remain != 0 &&
  5589. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  5590. rejects.push_back(tok);
  5591. }
  5592. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  5593. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  5594. } else {
  5595. rejects.push_back(tok);
  5596. }
  5597. }
  5598. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  5599. // update top of stack to next element, if any
  5600. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  5601. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  5602. stack_after.push_back(stack_pos_after);
  5603. }
  5604. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  5605. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  5606. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  5607. for (auto tok : next_rejects) {
  5608. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  5609. }
  5610. return rejects;
  5611. }
  5612. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5613. const std::vector<std::vector<llama_grammar_element>> & rules,
  5614. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5615. const std::vector<llama_grammar_candidate> & candidates) {
  5616. GGML_ASSERT(!stacks.empty()); // REVIEW
  5617. if (candidates.empty()) {
  5618. return std::vector<llama_grammar_candidate>();
  5619. }
  5620. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  5621. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  5622. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  5623. }
  5624. return rejects;
  5625. }
  5626. //
  5627. // grammar - external
  5628. //
  5629. struct llama_grammar * llama_grammar_init(
  5630. const llama_grammar_element ** rules,
  5631. size_t n_rules,
  5632. size_t start_rule_index) {
  5633. const llama_grammar_element * pos;
  5634. // copy rule definitions into vectors
  5635. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  5636. for (size_t i = 0; i < n_rules; i++) {
  5637. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  5638. vec_rules[i].push_back(*pos);
  5639. }
  5640. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  5641. }
  5642. // loop over alternates of start rule to build initial stacks
  5643. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5644. pos = rules[start_rule_index];
  5645. do {
  5646. std::vector<const llama_grammar_element *> stack;
  5647. if (!llama_grammar_is_end_of_sequence(pos)) {
  5648. // if alternate is nonempty, add to stack
  5649. stack.push_back(pos);
  5650. }
  5651. llama_grammar_advance_stack(vec_rules, stack, stacks);
  5652. while (!llama_grammar_is_end_of_sequence(pos)) {
  5653. // scan to end of alternate def
  5654. pos++;
  5655. }
  5656. if (pos->type == LLAMA_GRETYPE_ALT) {
  5657. // there's another alternate def of this rule to process
  5658. pos++;
  5659. } else {
  5660. break;
  5661. }
  5662. } while (true);
  5663. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  5664. }
  5665. void llama_grammar_free(struct llama_grammar * grammar) {
  5666. delete grammar;
  5667. }
  5668. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  5669. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  5670. // redirect elements in stacks to point to new rules
  5671. for (size_t is = 0; is < result->stacks.size(); is++) {
  5672. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  5673. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  5674. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  5675. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  5676. result->stacks[is][ie] = &result->rules[ir0][ir1];
  5677. }
  5678. }
  5679. }
  5680. }
  5681. }
  5682. return result;
  5683. }
  5684. //
  5685. // sampling
  5686. //
  5687. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5688. if (seed == LLAMA_DEFAULT_SEED) {
  5689. seed = time(NULL);
  5690. }
  5691. ctx->rng.seed(seed);
  5692. }
  5693. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  5694. GGML_ASSERT(candidates->size > 0);
  5695. const int64_t t_start_sample_us = ggml_time_us();
  5696. // Sort the logits in descending order
  5697. if (!candidates->sorted) {
  5698. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5699. return a.logit > b.logit;
  5700. });
  5701. candidates->sorted = true;
  5702. }
  5703. float max_l = candidates->data[0].logit;
  5704. float cum_sum = 0.0f;
  5705. for (size_t i = 0; i < candidates->size; ++i) {
  5706. float p = expf(candidates->data[i].logit - max_l);
  5707. candidates->data[i].p = p;
  5708. cum_sum += p;
  5709. }
  5710. for (size_t i = 0; i < candidates->size; ++i) {
  5711. candidates->data[i].p /= cum_sum;
  5712. }
  5713. if (ctx) {
  5714. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5715. }
  5716. }
  5717. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  5718. const int64_t t_start_sample_us = ggml_time_us();
  5719. k = std::max(k, (int) min_keep);
  5720. k = std::min(k, (int) candidates->size);
  5721. // Sort scores in descending order
  5722. if (!candidates->sorted) {
  5723. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  5724. return a.logit > b.logit;
  5725. };
  5726. if (k == (int) candidates->size) {
  5727. std::sort(candidates->data, candidates->data + candidates->size, comp);
  5728. } else {
  5729. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  5730. }
  5731. candidates->sorted = true;
  5732. }
  5733. candidates->size = k;
  5734. if (ctx) {
  5735. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5736. }
  5737. }
  5738. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5739. if (p >= 1.0f) {
  5740. return;
  5741. }
  5742. llama_sample_softmax(ctx, candidates);
  5743. const int64_t t_start_sample_us = ggml_time_us();
  5744. // Compute the cumulative probabilities
  5745. float cum_sum = 0.0f;
  5746. size_t last_idx = candidates->size;
  5747. for (size_t i = 0; i < candidates->size; ++i) {
  5748. cum_sum += candidates->data[i].p;
  5749. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  5750. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  5751. if (cum_sum >= p && i + 1 >= min_keep) {
  5752. last_idx = i + 1;
  5753. break;
  5754. }
  5755. }
  5756. // Resize the output vector to keep only the top-p tokens
  5757. candidates->size = last_idx;
  5758. if (ctx) {
  5759. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5760. }
  5761. }
  5762. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  5763. if (z >= 1.0f || candidates->size <= 2) {
  5764. return;
  5765. }
  5766. llama_sample_softmax(nullptr, candidates);
  5767. const int64_t t_start_sample_us = ggml_time_us();
  5768. // Compute the first and second derivatives
  5769. std::vector<float> first_derivatives(candidates->size - 1);
  5770. std::vector<float> second_derivatives(candidates->size - 2);
  5771. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  5772. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  5773. }
  5774. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5775. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  5776. }
  5777. // Calculate absolute value of second derivatives
  5778. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5779. second_derivatives[i] = std::abs(second_derivatives[i]);
  5780. }
  5781. // Normalize the second derivatives
  5782. {
  5783. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  5784. if (second_derivatives_sum > 1e-6f) {
  5785. for (float & value : second_derivatives) {
  5786. value /= second_derivatives_sum;
  5787. }
  5788. } else {
  5789. for (float & value : second_derivatives) {
  5790. value = 1.0f / second_derivatives.size();
  5791. }
  5792. }
  5793. }
  5794. float cum_sum = 0.0f;
  5795. size_t last_idx = candidates->size;
  5796. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5797. cum_sum += second_derivatives[i];
  5798. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  5799. if (cum_sum > z && i >= min_keep) {
  5800. last_idx = i;
  5801. break;
  5802. }
  5803. }
  5804. // Resize the output vector to keep only the tokens above the tail location
  5805. candidates->size = last_idx;
  5806. if (ctx) {
  5807. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5808. }
  5809. }
  5810. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5811. // Reference implementation:
  5812. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  5813. if (p >= 1.0f) {
  5814. return;
  5815. }
  5816. // Compute the softmax of logits and calculate entropy
  5817. llama_sample_softmax(nullptr, candidates);
  5818. const int64_t t_start_sample_us = ggml_time_us();
  5819. float entropy = 0.0f;
  5820. for (size_t i = 0; i < candidates->size; ++i) {
  5821. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  5822. }
  5823. // Compute the absolute difference between negative log probability and entropy for each candidate
  5824. std::vector<float> shifted_scores;
  5825. for (size_t i = 0; i < candidates->size; ++i) {
  5826. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  5827. shifted_scores.push_back(shifted_score);
  5828. }
  5829. // Sort tokens based on the shifted_scores and their corresponding indices
  5830. std::vector<size_t> indices(candidates->size);
  5831. std::iota(indices.begin(), indices.end(), 0);
  5832. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  5833. return shifted_scores[a] < shifted_scores[b];
  5834. });
  5835. // Compute the cumulative probabilities
  5836. float cum_sum = 0.0f;
  5837. size_t last_idx = indices.size();
  5838. for (size_t i = 0; i < indices.size(); ++i) {
  5839. size_t idx = indices[i];
  5840. cum_sum += candidates->data[idx].p;
  5841. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  5842. if (cum_sum > p && i >= min_keep - 1) {
  5843. last_idx = i + 1;
  5844. break;
  5845. }
  5846. }
  5847. // Resize the output vector to keep only the locally typical tokens
  5848. std::vector<llama_token_data> new_candidates;
  5849. for (size_t i = 0; i < last_idx; ++i) {
  5850. size_t idx = indices[i];
  5851. new_candidates.push_back(candidates->data[idx]);
  5852. }
  5853. // Replace the data in candidates with the new_candidates data
  5854. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  5855. candidates->size = new_candidates.size();
  5856. if (ctx) {
  5857. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5858. }
  5859. }
  5860. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  5861. const int64_t t_start_sample_us = ggml_time_us();
  5862. for (size_t i = 0; i < candidates_p->size; ++i) {
  5863. candidates_p->data[i].logit /= temp;
  5864. }
  5865. if (ctx) {
  5866. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5867. }
  5868. }
  5869. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  5870. llama_sample_temp(ctx, candidates_p, temp);
  5871. }
  5872. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  5873. if (last_tokens_size == 0 || penalty == 1.0f) {
  5874. return;
  5875. }
  5876. const int64_t t_start_sample_us = ggml_time_us();
  5877. for (size_t i = 0; i < candidates->size; ++i) {
  5878. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  5879. if (token_iter == last_tokens + last_tokens_size) {
  5880. continue;
  5881. }
  5882. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  5883. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  5884. if (candidates->data[i].logit <= 0) {
  5885. candidates->data[i].logit *= penalty;
  5886. } else {
  5887. candidates->data[i].logit /= penalty;
  5888. }
  5889. }
  5890. candidates->sorted = false;
  5891. if (ctx) {
  5892. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5893. }
  5894. }
  5895. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  5896. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  5897. return;
  5898. }
  5899. const int64_t t_start_sample_us = ggml_time_us();
  5900. // Create a frequency map to count occurrences of each token in last_tokens
  5901. std::unordered_map<llama_token, int> token_count;
  5902. for (size_t i = 0; i < last_tokens_size; ++i) {
  5903. token_count[last_tokens_p[i]]++;
  5904. }
  5905. // Apply frequency and presence penalties to the candidates
  5906. for (size_t i = 0; i < candidates->size; ++i) {
  5907. auto token_iter = token_count.find(candidates->data[i].id);
  5908. if (token_iter == token_count.end()) {
  5909. continue;
  5910. }
  5911. int count = token_iter->second;
  5912. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  5913. }
  5914. candidates->sorted = false;
  5915. if (ctx) {
  5916. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5917. }
  5918. }
  5919. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  5920. GGML_ASSERT(ctx);
  5921. const int64_t t_start_sample_us = ggml_time_us();
  5922. bool allow_eos = false;
  5923. for (const auto & stack : grammar->stacks) {
  5924. if (stack.empty()) {
  5925. allow_eos = true;
  5926. break;
  5927. }
  5928. }
  5929. const llama_token eos = llama_token_eos(ctx);
  5930. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  5931. std::vector<llama_grammar_candidate> candidates_grammar;
  5932. for (size_t i = 0; i < candidates->size; ++i) {
  5933. const llama_token id = candidates->data[i].id;
  5934. const std::string piece = llama_token_to_str(ctx, id);
  5935. if (id == eos) {
  5936. if (!allow_eos) {
  5937. candidates->data[i].logit = -INFINITY;
  5938. }
  5939. } else if (piece.empty() || piece[0] == 0) {
  5940. candidates->data[i].logit = -INFINITY;
  5941. } else {
  5942. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  5943. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  5944. }
  5945. }
  5946. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  5947. for (const auto & reject : rejects) {
  5948. candidates->data[reject.index].logit = -INFINITY;
  5949. }
  5950. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5951. }
  5952. static void llama_log_softmax(float * array, size_t size) {
  5953. float max_l = *std::max_element(array, array + size);
  5954. float sum = 0.f;
  5955. for (size_t i = 0; i < size; ++i) {
  5956. float p = expf(array[i] - max_l);
  5957. sum += p;
  5958. array[i] = p;
  5959. }
  5960. for (size_t i = 0; i < size; ++i) {
  5961. array[i] = logf(array[i] / sum);
  5962. }
  5963. }
  5964. void llama_sample_classifier_free_guidance(
  5965. struct llama_context * ctx,
  5966. llama_token_data_array * candidates,
  5967. struct llama_context * guidance_ctx,
  5968. float scale) {
  5969. int64_t t_start_sample_us = ggml_time_us();
  5970. GGML_ASSERT(ctx);
  5971. auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  5972. GGML_ASSERT(n_vocab == (int)candidates->size);
  5973. GGML_ASSERT(!candidates->sorted);
  5974. std::vector<float> logits_base;
  5975. logits_base.reserve(candidates->size);
  5976. for (size_t i = 0; i < candidates->size; ++i) {
  5977. logits_base.push_back(candidates->data[i].logit);
  5978. }
  5979. llama_log_softmax(logits_base.data(), candidates->size);
  5980. float* logits_guidance = llama_get_logits(guidance_ctx);
  5981. llama_log_softmax(logits_guidance, n_vocab);
  5982. for (int i = 0; i < n_vocab; ++i) {
  5983. float logit_guidance = logits_guidance[i];
  5984. float logit_base = logits_base[i];
  5985. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  5986. }
  5987. if (ctx) {
  5988. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5989. }
  5990. }
  5991. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  5992. GGML_ASSERT(ctx);
  5993. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  5994. int64_t t_start_sample_us;
  5995. t_start_sample_us = ggml_time_us();
  5996. llama_sample_softmax(nullptr, candidates);
  5997. // Estimate s_hat using the most probable m tokens
  5998. float s_hat = 0.0;
  5999. float sum_ti_bi = 0.0;
  6000. float sum_ti_sq = 0.0;
  6001. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  6002. float t_i = logf(float(i + 2) / float(i + 1));
  6003. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  6004. sum_ti_bi += t_i * b_i;
  6005. sum_ti_sq += t_i * t_i;
  6006. }
  6007. s_hat = sum_ti_bi / sum_ti_sq;
  6008. // Compute k from the estimated s_hat and target surprise value
  6009. float epsilon_hat = s_hat - 1;
  6010. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  6011. // Sample the next word X using top-k sampling
  6012. llama_sample_top_k(nullptr, candidates, int(k), 1);
  6013. if (ctx) {
  6014. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6015. }
  6016. llama_token X = llama_sample_token(ctx, candidates);
  6017. t_start_sample_us = ggml_time_us();
  6018. // Compute error as the difference between observed surprise and target surprise value
  6019. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6020. return candidate.id == X;
  6021. }));
  6022. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6023. float e = observed_surprise - tau;
  6024. // Update mu using the learning rate and error
  6025. *mu = *mu - eta * e;
  6026. if (ctx) {
  6027. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6028. }
  6029. return X;
  6030. }
  6031. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  6032. int64_t t_start_sample_us;
  6033. t_start_sample_us = ggml_time_us();
  6034. llama_sample_softmax(ctx, candidates);
  6035. // Truncate the words with surprise values greater than mu
  6036. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6037. return -log2f(candidate.p) > *mu;
  6038. }));
  6039. if (candidates->size == 0) {
  6040. candidates->size = 1;
  6041. }
  6042. if (ctx) {
  6043. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6044. }
  6045. // Normalize the probabilities of the remaining words
  6046. llama_sample_softmax(ctx, candidates);
  6047. // Sample the next word X from the remaining words
  6048. llama_token X = llama_sample_token(ctx, candidates);
  6049. t_start_sample_us = ggml_time_us();
  6050. // Compute error as the difference between observed surprise and target surprise value
  6051. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6052. return candidate.id == X;
  6053. }));
  6054. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6055. float e = observed_surprise - tau;
  6056. // Update mu using the learning rate and error
  6057. *mu = *mu - eta * e;
  6058. if (ctx) {
  6059. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6060. }
  6061. return X;
  6062. }
  6063. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  6064. const int64_t t_start_sample_us = ggml_time_us();
  6065. // Find max element
  6066. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  6067. return a.logit < b.logit;
  6068. });
  6069. llama_token result = max_iter->id;
  6070. if (ctx) {
  6071. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6072. ctx->n_sample++;
  6073. }
  6074. return result;
  6075. }
  6076. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  6077. GGML_ASSERT(ctx);
  6078. const int64_t t_start_sample_us = ggml_time_us();
  6079. llama_sample_softmax(nullptr, candidates);
  6080. std::vector<float> probs;
  6081. probs.reserve(candidates->size);
  6082. for (size_t i = 0; i < candidates->size; ++i) {
  6083. probs.push_back(candidates->data[i].p);
  6084. }
  6085. std::discrete_distribution<> dist(probs.begin(), probs.end());
  6086. auto & rng = ctx->rng;
  6087. int idx = dist(rng);
  6088. llama_token result = candidates->data[idx].id;
  6089. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6090. ctx->n_sample++;
  6091. return result;
  6092. }
  6093. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  6094. const int64_t t_start_sample_us = ggml_time_us();
  6095. if (token == llama_token_eos(ctx)) {
  6096. for (const auto & stack : grammar->stacks) {
  6097. if (stack.empty()) {
  6098. return;
  6099. }
  6100. }
  6101. GGML_ASSERT(false);
  6102. }
  6103. const std::string piece = llama_token_to_str(ctx, token);
  6104. // Note terminating 0 in decoded string
  6105. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  6106. const auto & code_points = decoded.first;
  6107. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  6108. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  6109. }
  6110. grammar->partial_utf8 = decoded.second;
  6111. GGML_ASSERT(!grammar->stacks.empty());
  6112. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6113. }
  6114. //
  6115. // Beam search
  6116. //
  6117. struct llama_beam {
  6118. std::vector<llama_token> tokens;
  6119. float p; // Cumulative beam probability (renormalized relative to all beams)
  6120. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  6121. // Sort beams by probability. In case of ties, prefer beams at eob.
  6122. bool operator<(const llama_beam & rhs) const {
  6123. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  6124. }
  6125. // Shift off first n tokens and discard them.
  6126. void shift_tokens(const size_t n) {
  6127. if (n) {
  6128. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  6129. tokens.resize(tokens.size() - n);
  6130. }
  6131. }
  6132. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  6133. };
  6134. // A struct for calculating logit-related info.
  6135. struct llama_logit_info {
  6136. const float * const logits;
  6137. const int n_vocab;
  6138. const float max_l;
  6139. const float normalizer;
  6140. struct sum_exp {
  6141. float max_l;
  6142. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  6143. };
  6144. llama_logit_info(llama_context * ctx)
  6145. : logits(llama_get_logits(ctx))
  6146. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  6147. , max_l(*std::max_element(logits, logits + n_vocab))
  6148. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  6149. { }
  6150. llama_token_data get_token_data(const llama_token token_id) const {
  6151. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  6152. return {token_id, logits[token_id], p};
  6153. }
  6154. // Return top k token_data by logit.
  6155. std::vector<llama_token_data> top_k(size_t k) {
  6156. std::vector<llama_token_data> min_heap; // min-heap by logit
  6157. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  6158. min_heap.reserve(k_min);
  6159. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  6160. min_heap.push_back(get_token_data(token_id));
  6161. }
  6162. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  6163. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  6164. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  6165. if (min_heap.front().logit < logits[token_id]) {
  6166. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  6167. min_heap.back().id = token_id;
  6168. min_heap.back().logit = logits[token_id];
  6169. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  6170. }
  6171. }
  6172. return min_heap;
  6173. }
  6174. float probability_from_logit(float logit) const {
  6175. return normalizer * std::exp(logit - max_l);
  6176. }
  6177. };
  6178. struct llama_beam_search_data {
  6179. llama_context * ctx;
  6180. size_t n_beams;
  6181. int n_past;
  6182. int n_predict;
  6183. std::vector<llama_beam> beams;
  6184. std::vector<llama_beam> next_beams;
  6185. // Re-calculated on each loop iteration
  6186. size_t common_prefix_length;
  6187. // Used to communicate to/from callback on beams state.
  6188. std::vector<llama_beam_view> beam_views;
  6189. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  6190. : ctx(ctx)
  6191. , n_beams(n_beams)
  6192. , n_past(n_past)
  6193. , n_predict(n_predict)
  6194. , beam_views(n_beams) {
  6195. beams.reserve(n_beams);
  6196. next_beams.reserve(n_beams);
  6197. }
  6198. // Collapse beams to a single beam given by index.
  6199. void collapse_beams(const size_t beam_idx) {
  6200. if (0u < beam_idx) {
  6201. std::swap(beams[0], beams[beam_idx]);
  6202. }
  6203. beams.resize(1);
  6204. }
  6205. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  6206. // The repetative patterns below reflect the 2 stages of heaps:
  6207. // * Gather elements until the vector is full, then call std::make_heap() on it.
  6208. // * If the heap is full and a new element is found that should be included, pop the
  6209. // least element to the back(), replace it with the new, then push it into the heap.
  6210. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  6211. // Min-heaps use a greater-than comparator.
  6212. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  6213. if (beam.eob) {
  6214. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  6215. if (next_beams.size() < n_beams) {
  6216. next_beams.push_back(std::move(beam));
  6217. if (next_beams.size() == n_beams) {
  6218. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6219. }
  6220. } else if (next_beams.front().p < beam.p) {
  6221. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6222. next_beams.back() = std::move(beam);
  6223. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6224. }
  6225. } else {
  6226. // beam is not at end-of-sentence, so branch with next top_k tokens.
  6227. if (!beam.tokens.empty()) {
  6228. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  6229. }
  6230. llama_logit_info logit_info(ctx);
  6231. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  6232. size_t i=0;
  6233. if (next_beams.size() < n_beams) {
  6234. for (; next_beams.size() < n_beams ; ++i) {
  6235. llama_beam next_beam = beam;
  6236. next_beam.tokens.push_back(next_tokens[i].id);
  6237. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6238. next_beams.push_back(std::move(next_beam));
  6239. }
  6240. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6241. } else {
  6242. for (; next_beams.front().p == 0.0f ; ++i) {
  6243. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6244. next_beams.back() = beam;
  6245. next_beams.back().tokens.push_back(next_tokens[i].id);
  6246. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6247. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6248. }
  6249. }
  6250. for (; i < n_beams ; ++i) {
  6251. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  6252. if (next_beams.front().p < next_p) {
  6253. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6254. next_beams.back() = beam;
  6255. next_beams.back().tokens.push_back(next_tokens[i].id);
  6256. next_beams.back().p = next_p;
  6257. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6258. }
  6259. }
  6260. }
  6261. }
  6262. // Find common_prefix_length based on beams.
  6263. // Requires beams is not empty.
  6264. size_t find_common_prefix_length() {
  6265. size_t common_prefix_length = beams[0].tokens.size();
  6266. for (size_t i = 1 ; i < beams.size() ; ++i) {
  6267. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  6268. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  6269. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  6270. common_prefix_length = j;
  6271. break;
  6272. }
  6273. }
  6274. }
  6275. return common_prefix_length;
  6276. }
  6277. // Construct beams_state to send back to caller via the callback function.
  6278. // Side effect: set common_prefix_length = find_common_prefix_length();
  6279. llama_beams_state get_beams_state(const bool last_call) {
  6280. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6281. beam_views[i] = beams[i].view();
  6282. }
  6283. common_prefix_length = find_common_prefix_length();
  6284. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  6285. }
  6286. // Loop:
  6287. // * while i < n_predict, AND
  6288. // * any of the beams have not yet reached end-of-beam (eob), AND
  6289. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  6290. // (since all other beam probabilities can only decrease)
  6291. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  6292. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  6293. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  6294. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  6295. !beams[top_beam_index()].eob ; ++i) {
  6296. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  6297. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  6298. if (common_prefix_length) {
  6299. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  6300. n_past += common_prefix_length;
  6301. }
  6302. // Zero-out next_beam probabilities to place them last in following min-heap.
  6303. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  6304. for (llama_beam & beam : beams) {
  6305. beam.shift_tokens(common_prefix_length);
  6306. fill_next_beams_by_top_probabilities(beam);
  6307. }
  6308. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  6309. beams.swap(next_beams);
  6310. renormalize_beam_probabilities(beams);
  6311. }
  6312. collapse_beams(top_beam_index());
  6313. callback(callback_data, get_beams_state(true));
  6314. }
  6315. // As beams grow, the cumulative probabilities decrease.
  6316. // Renormalize them to avoid floating point underflow.
  6317. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  6318. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  6319. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  6320. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  6321. }
  6322. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  6323. size_t top_beam_index() {
  6324. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  6325. }
  6326. // Copy (p,eob) for each beam which may have been changed by the callback.
  6327. void update_beams_from_beam_views() {
  6328. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6329. beams[i].p = beam_views[i].p;
  6330. beams[i].eob = beam_views[i].eob;
  6331. }
  6332. }
  6333. };
  6334. void llama_beam_search(llama_context * ctx,
  6335. llama_beam_search_callback_fn_t callback, void * callback_data,
  6336. size_t n_beams, int n_past, int n_predict) {
  6337. assert(ctx);
  6338. const int64_t t_start_sample_us = ggml_time_us();
  6339. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  6340. beam_search_data.loop(callback, callback_data);
  6341. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6342. ctx->n_sample++;
  6343. }
  6344. //
  6345. // quantization
  6346. //
  6347. template <typename T>
  6348. struct no_init {
  6349. T value;
  6350. no_init() { /* do nothing */ }
  6351. };
  6352. static void llama_convert_tensor_internal(
  6353. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  6354. const size_t nelements, const int nthread
  6355. ) {
  6356. if (output.size() < nelements) {
  6357. output.resize(nelements);
  6358. }
  6359. float * f32_output = (float *) output.data();
  6360. ggml_type_traits_t qtype;
  6361. if (ggml_is_quantized(tensor->type)) {
  6362. qtype = ggml_internal_get_type_traits(tensor->type);
  6363. if (qtype.to_float == NULL) {
  6364. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  6365. }
  6366. } else if (tensor->type != GGML_TYPE_F16) {
  6367. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  6368. }
  6369. if (nthread < 2) {
  6370. if (tensor->type == GGML_TYPE_F16) {
  6371. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  6372. } else if (ggml_is_quantized(tensor->type)) {
  6373. qtype.to_float(tensor->data, f32_output, nelements);
  6374. } else {
  6375. GGML_ASSERT(false); // unreachable
  6376. }
  6377. return;
  6378. }
  6379. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  6380. auto block_size_bytes = ggml_type_size(tensor->type);
  6381. GGML_ASSERT(nelements % block_size == 0);
  6382. auto nblocks = nelements / block_size;
  6383. auto blocks_per_thread = nblocks / nthread;
  6384. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  6385. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  6386. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  6387. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  6388. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  6389. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  6390. if (typ == GGML_TYPE_F16) {
  6391. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  6392. } else {
  6393. qtype.to_float(inbuf, outbuf, nels);
  6394. }
  6395. };
  6396. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  6397. in_buff_offs += thr_block_bytes;
  6398. out_buff_offs += thr_elems;
  6399. }
  6400. for (auto & w : workers) { w.join(); }
  6401. workers.clear();
  6402. }
  6403. #ifdef GGML_USE_K_QUANTS
  6404. static ggml_type get_k_quant_type(
  6405. ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
  6406. int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
  6407. ) {
  6408. const std::string name = ggml_get_name(tensor);
  6409. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6410. const auto tn = LLM_TN(model.arch);
  6411. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  6412. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  6413. };
  6414. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6415. int nx = tensor->ne[0];
  6416. if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  6417. new_type = GGML_TYPE_Q8_0;
  6418. }
  6419. else if (new_type != GGML_TYPE_Q8_0) {
  6420. new_type = GGML_TYPE_Q6_K;
  6421. }
  6422. } else if (name.find("attn_v.weight") != std::string::npos) {
  6423. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6424. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6425. new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6426. }
  6427. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6428. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  6429. use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  6430. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  6431. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  6432. (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  6433. if (model.type == MODEL_70B) {
  6434. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  6435. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  6436. // nearly negligible increase in model size by quantizing this tensor with more bits:
  6437. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  6438. }
  6439. ++*i_attention_wv;
  6440. } else if (name.find("ffn_down.weight") != std::string::npos) {
  6441. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6442. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6443. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  6444. : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
  6445. : GGML_TYPE_Q3_K;
  6446. }
  6447. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  6448. new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  6449. }
  6450. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  6451. if (model.arch == LLM_ARCH_FALCON) {
  6452. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  6453. use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6454. } else {
  6455. if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6456. }
  6457. }
  6458. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6459. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
  6460. new_type = GGML_TYPE_Q5_K;
  6461. }
  6462. ++*i_feed_forward_w2;
  6463. } else if (name.find("attn_output.weight") != std::string::npos) {
  6464. if (model.arch != LLM_ARCH_FALCON) {
  6465. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  6466. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  6467. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6468. } else {
  6469. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6470. }
  6471. }
  6472. else if (name.find("attn_qkv.weight") != std::string::npos) {
  6473. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6474. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  6475. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  6476. }
  6477. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  6478. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6479. }
  6480. // This can be used to reduce the size of the Q5_K_S model.
  6481. // The associated PPL increase is fully in line with the size reduction
  6482. //else {
  6483. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  6484. //}
  6485. bool convert_incompatible_tensor = false;
  6486. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  6487. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  6488. int nx = tensor->ne[0];
  6489. int ny = tensor->ne[1];
  6490. if (nx % QK_K != 0) {
  6491. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
  6492. convert_incompatible_tensor = true;
  6493. }
  6494. }
  6495. if (convert_incompatible_tensor) {
  6496. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6497. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  6498. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
  6499. } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  6500. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  6501. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
  6502. } else {
  6503. throw std::runtime_error("Unsupported tensor size encountered\n");
  6504. }
  6505. }
  6506. return new_type;
  6507. }
  6508. #endif
  6509. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  6510. ggml_type quantized_type;
  6511. llama_ftype ftype = params->ftype;
  6512. switch (params->ftype) {
  6513. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  6514. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  6515. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  6516. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  6517. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  6518. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  6519. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  6520. #ifdef GGML_USE_K_QUANTS
  6521. // K-quants
  6522. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  6523. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  6524. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  6525. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  6526. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  6527. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  6528. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  6529. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  6530. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  6531. #endif
  6532. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  6533. }
  6534. int nthread = params->nthread;
  6535. if (nthread <= 0) {
  6536. nthread = std::thread::hardware_concurrency();
  6537. }
  6538. // mmap consistently increases speed Linux, and also increases speed on Windows with
  6539. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  6540. #if defined(__linux__) || defined(_WIN32)
  6541. constexpr bool use_mmap = true;
  6542. #else
  6543. constexpr bool use_mmap = false;
  6544. #endif
  6545. llama_model_loader ml(fname_inp, use_mmap);
  6546. if (ml.use_mmap) {
  6547. ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
  6548. }
  6549. llama_model model;
  6550. llm_load_arch(ml, model);
  6551. llm_load_hparams(ml, model);
  6552. if (params->only_copy) {
  6553. ftype = model.ftype;
  6554. }
  6555. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  6556. struct gguf_context * ctx_out = gguf_init_empty();
  6557. // copy the KV pairs from the input file
  6558. gguf_set_kv (ctx_out, ml.ctx_gguf);
  6559. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  6560. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  6561. #ifdef GGML_USE_K_QUANTS
  6562. int n_attention_wv = 0;
  6563. int n_feed_forward_w2 = 0;
  6564. for (int i = 0; i < ml.n_tensors; ++i) {
  6565. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6566. const std::string name = ggml_get_name(meta);
  6567. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6568. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  6569. ++n_attention_wv;
  6570. }
  6571. else if (name.find("ffn_down.weight") != std::string::npos) {
  6572. ++n_feed_forward_w2;
  6573. }
  6574. }
  6575. if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
  6576. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  6577. __func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
  6578. }
  6579. int i_attention_wv = 0;
  6580. int i_feed_forward_w2 = 0;
  6581. #endif
  6582. size_t total_size_org = 0;
  6583. size_t total_size_new = 0;
  6584. std::vector<int64_t> hist_all(1 << 4, 0);
  6585. std::vector<std::thread> workers;
  6586. workers.reserve(nthread);
  6587. std::mutex mutex;
  6588. int idx = 0;
  6589. std::vector<no_init<uint8_t>> read_data;
  6590. std::vector<no_init<uint8_t>> work;
  6591. std::vector<no_init<float>> f32_conv_buf;
  6592. // populate the original tensors so we get an initial meta data
  6593. for (int i = 0; i < ml.n_tensors; ++i) {
  6594. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6595. gguf_add_tensor(ctx_out, meta);
  6596. }
  6597. std::ofstream fout(fname_out, std::ios::binary);
  6598. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  6599. const size_t meta_size = gguf_get_meta_size(ctx_out);
  6600. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  6601. // placeholder for the meta data
  6602. ::zeros(fout, meta_size);
  6603. for (int i = 0; i < ml.n_tensors; ++i) {
  6604. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  6605. const std::string name = ggml_get_name(tensor);
  6606. if (!ml.use_mmap) {
  6607. if (read_data.size() < ggml_nbytes(tensor)) {
  6608. read_data.resize(ggml_nbytes(tensor));
  6609. }
  6610. tensor->data = read_data.data();
  6611. }
  6612. ml.load_data_for(tensor);
  6613. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  6614. ++idx, ml.n_tensors,
  6615. ggml_get_name(tensor),
  6616. llama_format_tensor_shape(tensor).c_str(),
  6617. ggml_type_name(tensor->type));
  6618. // This used to be a regex, but <regex> has an extreme cost to compile times.
  6619. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  6620. // quantize only 2D tensors
  6621. quantize &= (tensor->n_dims == 2);
  6622. quantize &= params->quantize_output_tensor || name != "output.weight";
  6623. quantize &= !params->only_copy;
  6624. enum ggml_type new_type;
  6625. void * new_data;
  6626. size_t new_size;
  6627. if (quantize) {
  6628. new_type = quantized_type;
  6629. #ifdef GGML_USE_K_QUANTS
  6630. new_type = get_k_quant_type(
  6631. new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
  6632. );
  6633. #endif
  6634. // If we've decided to quantize to the same type the tensor is already
  6635. // in then there's nothing to do.
  6636. quantize = tensor->type != new_type;
  6637. }
  6638. if (!quantize) {
  6639. new_type = tensor->type;
  6640. new_data = tensor->data;
  6641. new_size = ggml_nbytes(tensor);
  6642. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  6643. } else {
  6644. const size_t nelements = ggml_nelements(tensor);
  6645. float * f32_data;
  6646. if (tensor->type == GGML_TYPE_F32) {
  6647. f32_data = (float *) tensor->data;
  6648. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  6649. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  6650. } else {
  6651. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  6652. f32_data = (float *) f32_conv_buf.data();
  6653. }
  6654. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  6655. fflush(stdout);
  6656. if (work.size() < nelements * 4) {
  6657. work.resize(nelements * 4); // upper bound on size
  6658. }
  6659. new_data = work.data();
  6660. std::array<int64_t, 1 << 4> hist_cur = {};
  6661. static const int chunk_size = 32 * 512;
  6662. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  6663. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  6664. if (nthread_use < 2) {
  6665. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  6666. } else {
  6667. size_t counter = 0;
  6668. new_size = 0;
  6669. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  6670. std::array<int64_t, 1 << 4> local_hist = {};
  6671. size_t local_size = 0;
  6672. while (true) {
  6673. std::unique_lock<std::mutex> lock(mutex);
  6674. size_t first = counter; counter += chunk_size;
  6675. if (first >= nelements) {
  6676. if (local_size > 0) {
  6677. for (int j=0; j<int(local_hist.size()); ++j) {
  6678. hist_cur[j] += local_hist[j];
  6679. }
  6680. new_size += local_size;
  6681. }
  6682. break;
  6683. }
  6684. lock.unlock();
  6685. size_t last = std::min(nelements, first + chunk_size);
  6686. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  6687. }
  6688. };
  6689. for (int it = 0; it < nthread_use - 1; ++it) {
  6690. workers.emplace_back(compute);
  6691. }
  6692. compute();
  6693. for (auto & w : workers) { w.join(); }
  6694. workers.clear();
  6695. }
  6696. LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  6697. int64_t tot_count = 0;
  6698. for (size_t i = 0; i < hist_cur.size(); i++) {
  6699. hist_all[i] += hist_cur[i];
  6700. tot_count += hist_cur[i];
  6701. }
  6702. if (tot_count > 0) {
  6703. for (size_t i = 0; i < hist_cur.size(); i++) {
  6704. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  6705. }
  6706. }
  6707. LLAMA_LOG_INFO("\n");
  6708. }
  6709. total_size_org += ggml_nbytes(tensor);
  6710. total_size_new += new_size;
  6711. // update the gguf meta data as we go
  6712. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  6713. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  6714. // write tensor data + padding
  6715. fout.write((const char *) new_data, new_size);
  6716. zeros(fout, GGML_PAD(new_size, align) - new_size);
  6717. }
  6718. // go back to beginning of file and write the updated meta data
  6719. {
  6720. fout.seekp(0);
  6721. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  6722. gguf_get_meta_data(ctx_out, data.data());
  6723. fout.write((const char *) data.data(), data.size());
  6724. }
  6725. fout.close();
  6726. gguf_free(ctx_out);
  6727. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  6728. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  6729. // print histogram for all tensors
  6730. {
  6731. int64_t sum_all = 0;
  6732. for (size_t i = 0; i < hist_all.size(); i++) {
  6733. sum_all += hist_all[i];
  6734. }
  6735. if (sum_all > 0) {
  6736. LLAMA_LOG_INFO("%s: hist: ", __func__);
  6737. for (size_t i = 0; i < hist_all.size(); i++) {
  6738. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  6739. }
  6740. LLAMA_LOG_INFO("\n");
  6741. }
  6742. }
  6743. }
  6744. static int llama_apply_lora_from_file_internal(
  6745. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  6746. ) {
  6747. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  6748. const int64_t t_start_lora_us = ggml_time_us();
  6749. auto fin = std::ifstream(path_lora, std::ios::binary);
  6750. if (!fin) {
  6751. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  6752. return 1;
  6753. }
  6754. // verify magic and version
  6755. {
  6756. uint32_t magic;
  6757. fin.read((char *) &magic, sizeof(magic));
  6758. uint32_t format_version;
  6759. fin.read((char *) &format_version, sizeof(format_version));
  6760. if (format_version != 1) {
  6761. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  6762. return 1;
  6763. }
  6764. }
  6765. int32_t lora_r;
  6766. int32_t lora_alpha;
  6767. fin.read((char *) &lora_r, sizeof(lora_r));
  6768. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  6769. float scaling = scale * (float)lora_alpha / (float)lora_r;
  6770. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  6771. // create a temporary ggml context to store the lora tensors
  6772. // todo: calculate size from biggest possible tensor
  6773. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  6774. struct ggml_init_params params;
  6775. params.mem_size = lora_buf.size();
  6776. params.mem_buffer = lora_buf.data();
  6777. params.no_alloc = false;
  6778. ggml_context * lora_ctx = ggml_init(params);
  6779. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  6780. // create a name -> tensor map of the model to accelerate lookups
  6781. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  6782. for (const auto & kv : model.tensors_by_name) {
  6783. model_tensors.insert(kv);
  6784. }
  6785. // load base model
  6786. std::unique_ptr<llama_model_loader> ml;
  6787. ggml_context * base_ctx = NULL;
  6788. std::vector<uint8_t> base_buf;
  6789. if (path_base_model) {
  6790. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  6791. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  6792. size_t ctx_size;
  6793. size_t mmapped_size;
  6794. ml->calc_sizes(ctx_size, mmapped_size);
  6795. base_buf.resize(ctx_size);
  6796. ggml_init_params base_params;
  6797. base_params.mem_size = base_buf.size();
  6798. base_params.mem_buffer = base_buf.data();
  6799. base_params.no_alloc = ml->use_mmap;
  6800. base_ctx = ggml_init(base_params);
  6801. // maybe this should in llama_model_loader
  6802. if (ml->use_mmap) {
  6803. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  6804. }
  6805. }
  6806. // read tensors and apply
  6807. bool warned = false;
  6808. int n_tensors = 0;
  6809. std::vector<uint8_t> work_buffer;
  6810. while (true) {
  6811. int32_t n_dims;
  6812. int32_t length;
  6813. int32_t ftype;
  6814. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  6815. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  6816. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  6817. if (fin.eof()) {
  6818. break;
  6819. }
  6820. int32_t ne[2] = { 1, 1 };
  6821. for (int i = 0; i < n_dims; ++i) {
  6822. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  6823. }
  6824. std::string name;
  6825. {
  6826. char buf[1024];
  6827. fin.read(buf, length);
  6828. name = std::string(buf, length);
  6829. }
  6830. // check for lora suffix and get the type of tensor
  6831. const std::string lora_suffix = ".lora";
  6832. size_t pos = name.rfind(lora_suffix);
  6833. if (pos == std::string::npos) {
  6834. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  6835. return 1;
  6836. }
  6837. std::string lora_type = name.substr(pos + lora_suffix.length());
  6838. std::string base_name = name;
  6839. base_name.erase(pos);
  6840. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  6841. if (model_tensors.find(base_name) == model_tensors.end()) {
  6842. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  6843. return 1;
  6844. }
  6845. // create ggml tensor
  6846. ggml_type wtype;
  6847. switch (ftype) {
  6848. case 0: wtype = GGML_TYPE_F32; break;
  6849. case 1: wtype = GGML_TYPE_F16; break;
  6850. default:
  6851. {
  6852. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  6853. __func__, ftype);
  6854. return false;
  6855. }
  6856. }
  6857. ggml_tensor * lora_tensor;
  6858. if (n_dims == 2) {
  6859. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  6860. }
  6861. else {
  6862. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  6863. return 1;
  6864. }
  6865. ggml_set_name(lora_tensor, "lora_tensor");
  6866. // load tensor data
  6867. size_t offset = fin.tellg();
  6868. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  6869. offset = (offset + 31) & -32;
  6870. fin.seekg(offset);
  6871. fin.read((char*)lora_tensor->data, tensor_data_size);
  6872. lora_tensors[name] = lora_tensor;
  6873. // check if we have both A and B tensors and apply
  6874. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  6875. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  6876. ggml_tensor * dest_t = model_tensors[base_name];
  6877. offload_func_t offload_func = llama_nop;
  6878. offload_func_t offload_func_force_inplace = llama_nop;
  6879. #ifdef GGML_USE_CUBLAS
  6880. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  6881. if (dest_t->type != GGML_TYPE_F16) {
  6882. throw std::runtime_error(format(
  6883. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  6884. }
  6885. offload_func = ggml_cuda_assign_buffers;
  6886. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  6887. }
  6888. #endif // GGML_USE_CUBLAS
  6889. ggml_tensor * base_t;
  6890. if (ml) {
  6891. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  6892. // load from base model
  6893. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  6894. // TODO: throw
  6895. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  6896. return 1;
  6897. }
  6898. // TODO: not tested!! maybe not working!
  6899. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  6900. ml->load_data_for(base_t);
  6901. } else {
  6902. base_t = dest_t;
  6903. }
  6904. if (ggml_is_quantized(base_t->type)) {
  6905. if (!warned) {
  6906. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  6907. "use a f16 or f32 base model with --lora-base\n", __func__);
  6908. warned = true;
  6909. }
  6910. }
  6911. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  6912. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  6913. ggml_set_name(loraA, "loraA");
  6914. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  6915. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  6916. ggml_set_name(loraB, "loraB");
  6917. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  6918. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  6919. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  6920. return 1;
  6921. }
  6922. // w = w + BA*s
  6923. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  6924. offload_func(BA);
  6925. ggml_set_name(BA, "BA");
  6926. if (scaling != 1.0f) {
  6927. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  6928. ggml_set_name(scale_tensor, "scale_tensor");
  6929. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  6930. offload_func(BA);
  6931. ggml_set_name(BA, "BA_scaled");
  6932. }
  6933. ggml_tensor * r;
  6934. if (base_t == dest_t) {
  6935. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  6936. offload_func_force_inplace(r);
  6937. ggml_set_name(r, "r_add_inplace");
  6938. }
  6939. else {
  6940. r = ggml_add(lora_ctx, base_t, BA);
  6941. offload_func(r);
  6942. ggml_set_name(r, "r_add");
  6943. r = ggml_cpy(lora_ctx, r, dest_t);
  6944. offload_func(r);
  6945. ggml_set_name(r, "r_cpy");
  6946. }
  6947. struct ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  6948. ggml_build_forward_expand(gf, r);
  6949. ggml_graph_compute_helper(work_buffer, gf, n_threads);
  6950. // we won't need these tensors again, reset the context to save memory
  6951. ggml_free(lora_ctx);
  6952. lora_ctx = ggml_init(params);
  6953. lora_tensors.clear();
  6954. n_tensors++;
  6955. if (n_tensors % 4 == 0) {
  6956. LLAMA_LOG_INFO(".");
  6957. }
  6958. }
  6959. }
  6960. // TODO: this should be in a destructor, it will leak on failure
  6961. ggml_free(lora_ctx);
  6962. if (base_ctx) {
  6963. ggml_free(base_ctx);
  6964. }
  6965. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  6966. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  6967. return 0;
  6968. }
  6969. //
  6970. // interface implementation
  6971. //
  6972. struct llama_model_params llama_model_default_params() {
  6973. struct llama_model_params result = {
  6974. /*.n_gpu_layers =*/ 0,
  6975. /*.main_gpu =*/ 0,
  6976. /*.tensor_split =*/ nullptr,
  6977. /*.progress_callback =*/ nullptr,
  6978. /*.progress_callback_user_data =*/ nullptr,
  6979. /*.vocab_only =*/ false,
  6980. /*.use_mmap =*/ true,
  6981. /*.use_mlock =*/ false,
  6982. };
  6983. #ifdef GGML_USE_METAL
  6984. result.n_gpu_layers = 1;
  6985. #endif
  6986. return result;
  6987. }
  6988. struct llama_context_params llama_context_default_params() {
  6989. struct llama_context_params result = {
  6990. /*.seed =*/ LLAMA_DEFAULT_SEED,
  6991. /*.n_ctx =*/ 512,
  6992. /*.n_batch =*/ 512,
  6993. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  6994. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  6995. /*.rope_freq_base =*/ 0.0f,
  6996. /*.rope_freq_scale =*/ 0.0f,
  6997. /*.mul_mat_q =*/ true,
  6998. /*.f16_kv =*/ true,
  6999. /*.logits_all =*/ false,
  7000. /*.embedding =*/ false,
  7001. };
  7002. return result;
  7003. }
  7004. struct llama_model_quantize_params llama_model_quantize_default_params() {
  7005. struct llama_model_quantize_params result = {
  7006. /*.nthread =*/ 0,
  7007. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  7008. /*.allow_requantize =*/ false,
  7009. /*.quantize_output_tensor =*/ true,
  7010. /*.only_copy =*/ false,
  7011. };
  7012. return result;
  7013. }
  7014. int llama_max_devices(void) {
  7015. return LLAMA_MAX_DEVICES;
  7016. }
  7017. bool llama_mmap_supported(void) {
  7018. return llama_mmap::SUPPORTED;
  7019. }
  7020. bool llama_mlock_supported(void) {
  7021. return llama_mlock::SUPPORTED;
  7022. }
  7023. void llama_backend_init(bool numa) {
  7024. ggml_time_init();
  7025. // needed to initialize f16 tables
  7026. {
  7027. struct ggml_init_params params = { 0, NULL, false };
  7028. struct ggml_context * ctx = ggml_init(params);
  7029. ggml_free(ctx);
  7030. }
  7031. if (numa) {
  7032. ggml_numa_init();
  7033. }
  7034. #ifdef GGML_USE_MPI
  7035. ggml_mpi_backend_init();
  7036. #endif
  7037. }
  7038. void llama_backend_free(void) {
  7039. #ifdef GGML_USE_MPI
  7040. ggml_mpi_backend_free();
  7041. #endif
  7042. }
  7043. int64_t llama_time_us(void) {
  7044. return ggml_time_us();
  7045. }
  7046. struct llama_model * llama_load_model_from_file(
  7047. const char * path_model,
  7048. struct llama_model_params params) {
  7049. ggml_time_init();
  7050. llama_model * model = new llama_model;
  7051. unsigned cur_percentage = 0;
  7052. if (params.progress_callback == NULL) {
  7053. params.progress_callback_user_data = &cur_percentage;
  7054. params.progress_callback = [](float progress, void * ctx) {
  7055. unsigned * cur_percentage_p = (unsigned *) ctx;
  7056. unsigned percentage = (unsigned) (100 * progress);
  7057. while (percentage > *cur_percentage_p) {
  7058. *cur_percentage_p = percentage;
  7059. LLAMA_LOG_INFO(".");
  7060. if (percentage >= 100) {
  7061. LLAMA_LOG_INFO("\n");
  7062. }
  7063. }
  7064. };
  7065. }
  7066. if (!llama_model_load(path_model, *model, params.n_gpu_layers,
  7067. params.main_gpu, params.tensor_split,
  7068. params.use_mmap, params.use_mlock, params.vocab_only,
  7069. params.progress_callback, params.progress_callback_user_data)) {
  7070. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  7071. delete model;
  7072. return nullptr;
  7073. }
  7074. return model;
  7075. }
  7076. void llama_free_model(struct llama_model * model) {
  7077. delete model;
  7078. }
  7079. struct llama_context * llama_new_context_with_model(
  7080. struct llama_model * model,
  7081. struct llama_context_params params) {
  7082. if (!model) {
  7083. return nullptr;
  7084. }
  7085. llama_context * ctx = new llama_context(*model);
  7086. const auto & hparams = model->hparams;
  7087. auto & cparams = ctx->cparams;
  7088. cparams.n_batch = params.n_batch;
  7089. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  7090. cparams.rope_freq_base = params.rope_freq_base == 0 ? hparams.rope_freq_base_train : params.rope_freq_base;
  7091. cparams.rope_freq_scale = params.rope_freq_scale == 0 ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  7092. cparams.n_threads = params.n_threads;
  7093. cparams.n_threads_batch = params.n_threads_batch;
  7094. cparams.mul_mat_q = params.mul_mat_q;
  7095. if (params.seed == LLAMA_DEFAULT_SEED) {
  7096. params.seed = time(NULL);
  7097. }
  7098. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  7099. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  7100. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  7101. ctx->rng = std::mt19937(params.seed);
  7102. ctx->logits_all = params.logits_all;
  7103. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  7104. // reserve memory for context buffers
  7105. if (!hparams.vocab_only) {
  7106. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) {
  7107. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  7108. llama_free(ctx);
  7109. return nullptr;
  7110. }
  7111. {
  7112. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  7113. LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  7114. }
  7115. // resized during inference
  7116. if (params.logits_all) {
  7117. ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab);
  7118. } else {
  7119. ctx->logits.reserve(hparams.n_vocab);
  7120. }
  7121. if (params.embedding){
  7122. ctx->embedding.resize(hparams.n_embd);
  7123. }
  7124. {
  7125. static const size_t tensor_alignment = 32;
  7126. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  7127. ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
  7128. // create measure allocator
  7129. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  7130. // build worst-case graph
  7131. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  7132. int n_past = cparams.n_ctx - n_tokens;
  7133. llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  7134. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
  7135. #ifdef GGML_USE_METAL
  7136. if (model->n_gpu_layers > 0) {
  7137. ggml_metal_log_set_callback(llama_log_callback_default, NULL);
  7138. ctx->ctx_metal = ggml_metal_init(1);
  7139. if (!ctx->ctx_metal) {
  7140. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  7141. llama_free(ctx);
  7142. return NULL;
  7143. }
  7144. //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  7145. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7146. }
  7147. #endif
  7148. // measure memory requirements for the graph
  7149. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  7150. LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  7151. // recreate allocator with exact memory requirements
  7152. ggml_allocr_free(ctx->alloc);
  7153. ctx->buf_alloc.resize(alloc_size);
  7154. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  7155. #ifdef GGML_USE_METAL
  7156. if (ctx->ctx_metal) {
  7157. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7158. }
  7159. #endif
  7160. #ifdef GGML_USE_CUBLAS
  7161. ggml_cuda_set_scratch_size(alloc_size);
  7162. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
  7163. // calculate total VRAM usage
  7164. auto add_tensor = [](const ggml_tensor * t, size_t & size) {
  7165. if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) {
  7166. size += ggml_nbytes(t);
  7167. }
  7168. };
  7169. size_t model_vram_size = 0;
  7170. for (const auto & kv : model->tensors_by_name) {
  7171. add_tensor(kv.second, model_vram_size);
  7172. }
  7173. size_t kv_vram_size = 0;
  7174. add_tensor(ctx->kv_self.k, kv_vram_size);
  7175. add_tensor(ctx->kv_self.v, kv_vram_size);
  7176. size_t ctx_vram_size = alloc_size + kv_vram_size;
  7177. size_t total_vram_size = model_vram_size + ctx_vram_size;
  7178. LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
  7179. total_vram_size / 1024.0 / 1024.0,
  7180. model_vram_size / 1024.0 / 1024.0,
  7181. ctx_vram_size / 1024.0 / 1024.0);
  7182. #endif
  7183. }
  7184. #ifdef GGML_USE_METAL
  7185. if (model->n_gpu_layers > 0) {
  7186. // this allocates all Metal resources and memory buffers
  7187. void * data_ptr = NULL;
  7188. size_t data_size = 0;
  7189. if (ctx->model.mapping) {
  7190. data_ptr = ctx->model.mapping->addr;
  7191. data_size = ctx->model.mapping->size;
  7192. } else {
  7193. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  7194. data_size = ggml_get_mem_size (ctx->model.ctx);
  7195. }
  7196. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  7197. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  7198. #define LLAMA_METAL_CHECK_BUF(result) \
  7199. if (!(result)) { \
  7200. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  7201. llama_free(ctx); \
  7202. return NULL; \
  7203. }
  7204. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  7205. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  7206. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  7207. #undef LLAMA_METAL_CHECK_BUF
  7208. }
  7209. #endif
  7210. }
  7211. #ifdef GGML_USE_MPI
  7212. ctx->ctx_mpi = ggml_mpi_init();
  7213. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  7214. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  7215. // TODO: needs fix after #3228
  7216. GGML_ASSERT(false && "not implemented");
  7217. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  7218. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  7219. llama_backend_free();
  7220. exit(1);
  7221. }
  7222. #endif
  7223. return ctx;
  7224. }
  7225. void llama_free(struct llama_context * ctx) {
  7226. delete ctx;
  7227. }
  7228. const llama_model * llama_get_model(const struct llama_context * ctx) {
  7229. return &ctx->model;
  7230. }
  7231. int llama_n_ctx(const struct llama_context * ctx) {
  7232. return ctx->cparams.n_ctx;
  7233. }
  7234. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  7235. return model->vocab.type;
  7236. }
  7237. int llama_n_vocab(const struct llama_model * model) {
  7238. return model->vocab.id_to_token.size();
  7239. }
  7240. int llama_n_ctx_train(const struct llama_model * model) {
  7241. return model->hparams.n_ctx_train;
  7242. }
  7243. int llama_n_embd(const struct llama_model * model) {
  7244. return model->hparams.n_embd;
  7245. }
  7246. float llama_rope_freq_scale_train(const struct llama_model * model) {
  7247. return model->hparams.rope_freq_scale_train;
  7248. }
  7249. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  7250. return snprintf(buf, buf_size, "%s %s %s",
  7251. llama_model_arch_name(model->arch).c_str(),
  7252. llama_model_type_name(model->type),
  7253. llama_model_ftype_name(model->ftype).c_str());
  7254. }
  7255. uint64_t llama_model_size(const struct llama_model * model) {
  7256. uint64_t size = 0;
  7257. for (const auto & it : model->tensors_by_name) {
  7258. size += ggml_nbytes(it.second);
  7259. }
  7260. return size;
  7261. }
  7262. uint64_t llama_model_n_params(const struct llama_model * model) {
  7263. uint64_t nparams = 0;
  7264. for (const auto & it : model->tensors_by_name) {
  7265. nparams += ggml_nelements(it.second);
  7266. }
  7267. return nparams;
  7268. }
  7269. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  7270. return ggml_get_tensor(model->ctx, name);
  7271. }
  7272. int llama_model_quantize(
  7273. const char * fname_inp,
  7274. const char * fname_out,
  7275. const llama_model_quantize_params * params) {
  7276. try {
  7277. llama_model_quantize_internal(fname_inp, fname_out, params);
  7278. return 0;
  7279. } catch (const std::exception & err) {
  7280. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  7281. return 1;
  7282. }
  7283. }
  7284. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7285. try {
  7286. return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
  7287. } catch (const std::exception & err) {
  7288. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7289. return 1;
  7290. }
  7291. }
  7292. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7293. try {
  7294. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  7295. } catch (const std::exception & err) {
  7296. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7297. return 1;
  7298. }
  7299. }
  7300. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  7301. return ctx->kv_self.head;
  7302. }
  7303. void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) {
  7304. llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1);
  7305. }
  7306. void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  7307. llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  7308. }
  7309. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  7310. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  7311. }
  7312. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  7313. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  7314. }
  7315. void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  7316. llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
  7317. }
  7318. // Returns the *maximum* size of the state
  7319. size_t llama_get_state_size(const struct llama_context * ctx) {
  7320. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  7321. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  7322. const size_t s_rng_size = sizeof(size_t);
  7323. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  7324. const size_t s_logits_capacity = sizeof(size_t);
  7325. const size_t s_logits_size = sizeof(size_t);
  7326. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  7327. const size_t s_embedding_size = sizeof(size_t);
  7328. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  7329. const size_t s_kv_size = sizeof(size_t);
  7330. const size_t s_kv_ntok = sizeof(int);
  7331. const size_t s_kv = ctx->kv_self.buf.size;
  7332. const size_t s_total = (
  7333. + s_rng_size
  7334. + s_rng
  7335. + s_logits_capacity
  7336. + s_logits_size
  7337. + s_logits
  7338. + s_embedding_size
  7339. + s_embedding
  7340. + s_kv_size
  7341. + s_kv_ntok
  7342. + s_kv
  7343. );
  7344. return s_total;
  7345. }
  7346. // llama_context_data
  7347. struct llama_data_context {
  7348. virtual void write(const void * src, size_t size) = 0;
  7349. virtual size_t get_size_written() = 0;
  7350. virtual ~llama_data_context() = default;
  7351. };
  7352. struct llama_data_buffer_context : llama_data_context {
  7353. uint8_t * ptr;
  7354. size_t size_written = 0;
  7355. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  7356. void write(const void * src, size_t size) override {
  7357. memcpy(ptr, src, size);
  7358. ptr += size;
  7359. size_written += size;
  7360. }
  7361. size_t get_size_written() override {
  7362. return size_written;
  7363. }
  7364. };
  7365. struct llama_data_file_context : llama_data_context {
  7366. llama_file * file;
  7367. size_t size_written = 0;
  7368. llama_data_file_context(llama_file * f) : file(f) {}
  7369. void write(const void * src, size_t size) override {
  7370. file->write_raw(src, size);
  7371. size_written += size;
  7372. }
  7373. size_t get_size_written() override {
  7374. return size_written;
  7375. }
  7376. };
  7377. /** copy state data into either a buffer or file depending on the passed in context
  7378. *
  7379. * file context:
  7380. * llama_file file("/path", "wb");
  7381. * llama_data_file_context data_ctx(&file);
  7382. * llama_copy_state_data(ctx, &data_ctx);
  7383. *
  7384. * buffer context:
  7385. * std::vector<uint8_t> buf(max_size, 0);
  7386. * llama_data_buffer_context data_ctx(&buf.data());
  7387. * llama_copy_state_data(ctx, &data_ctx);
  7388. *
  7389. */
  7390. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  7391. // copy rng
  7392. {
  7393. std::stringstream rng_ss;
  7394. rng_ss << ctx->rng;
  7395. const size_t rng_size = rng_ss.str().size();
  7396. char rng_buf[LLAMA_MAX_RNG_STATE];
  7397. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  7398. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  7399. data_ctx->write(&rng_size, sizeof(rng_size));
  7400. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  7401. }
  7402. // copy logits
  7403. {
  7404. const size_t logits_cap = ctx->logits.capacity();
  7405. const size_t logits_size = ctx->logits.size();
  7406. data_ctx->write(&logits_cap, sizeof(logits_cap));
  7407. data_ctx->write(&logits_size, sizeof(logits_size));
  7408. if (logits_size) {
  7409. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  7410. }
  7411. // If there is a gap between the size and the capacity, write padding
  7412. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  7413. if (padding_size > 0) {
  7414. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  7415. data_ctx->write(padding.data(), padding_size);
  7416. }
  7417. }
  7418. // copy embeddings
  7419. {
  7420. const size_t embedding_size = ctx->embedding.size();
  7421. data_ctx->write(&embedding_size, sizeof(embedding_size));
  7422. if (embedding_size) {
  7423. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  7424. }
  7425. }
  7426. // copy kv cache
  7427. {
  7428. const auto & kv_self = ctx->kv_self;
  7429. const auto & hparams = ctx->model.hparams;
  7430. const auto & cparams = ctx->cparams;
  7431. const auto n_layer = hparams.n_layer;
  7432. const auto n_embd = hparams.n_embd_gqa();
  7433. const auto n_ctx = cparams.n_ctx;
  7434. const size_t kv_buf_size = kv_self.buf.size;
  7435. const uint32_t kv_head = kv_self.head;
  7436. const uint32_t kv_size = kv_self.size;
  7437. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  7438. data_ctx->write(&kv_head, sizeof(kv_head));
  7439. data_ctx->write(&kv_size, sizeof(kv_size));
  7440. if (kv_buf_size) {
  7441. const size_t elt_size = ggml_element_size(kv_self.k);
  7442. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7443. ggml_cgraph gf{};
  7444. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7445. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  7446. kout3d->data = kout3d_data.data();
  7447. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7448. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  7449. vout3d->data = vout3d_data.data();
  7450. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7451. n_embd, kv_head, n_layer,
  7452. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7453. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7454. kv_head, n_embd, n_layer,
  7455. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7456. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  7457. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  7458. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7459. ggml_free(cpy_ctx);
  7460. // our data is now in the kout3d_data and vout3d_data buffers
  7461. // write them to file
  7462. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  7463. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  7464. }
  7465. for (uint32_t i = 0; i < kv_size; ++i) {
  7466. const auto & cell = kv_self.cells[i];
  7467. const llama_pos pos = cell.pos;
  7468. const size_t seq_id_size = cell.seq_id.size();
  7469. data_ctx->write(&pos, sizeof(pos));
  7470. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  7471. for (auto seq_id : cell.seq_id) {
  7472. data_ctx->write(&seq_id, sizeof(seq_id));
  7473. }
  7474. }
  7475. }
  7476. }
  7477. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  7478. llama_data_buffer_context data_ctx(dst);
  7479. llama_copy_state_data_internal(ctx, &data_ctx);
  7480. return data_ctx.get_size_written();
  7481. }
  7482. // Sets the state reading from the specified source address
  7483. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  7484. uint8_t * inp = src;
  7485. // set rng
  7486. {
  7487. size_t rng_size;
  7488. char rng_buf[LLAMA_MAX_RNG_STATE];
  7489. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  7490. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  7491. std::stringstream rng_ss;
  7492. rng_ss.str(std::string(&rng_buf[0], rng_size));
  7493. rng_ss >> ctx->rng;
  7494. GGML_ASSERT(!rng_ss.fail());
  7495. }
  7496. // set logits
  7497. {
  7498. size_t logits_cap;
  7499. size_t logits_size;
  7500. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  7501. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  7502. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  7503. if (logits_size) {
  7504. ctx->logits.resize(logits_size);
  7505. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  7506. }
  7507. inp += logits_cap * sizeof(float);
  7508. }
  7509. // set embeddings
  7510. {
  7511. size_t embedding_size;
  7512. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  7513. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  7514. if (embedding_size) {
  7515. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  7516. inp += embedding_size * sizeof(float);
  7517. }
  7518. }
  7519. // set kv cache
  7520. {
  7521. const auto & kv_self = ctx->kv_self;
  7522. const auto & hparams = ctx->model.hparams;
  7523. const auto & cparams = ctx->cparams;
  7524. const int n_layer = hparams.n_layer;
  7525. const int n_embd = hparams.n_embd_gqa();
  7526. const int n_ctx = cparams.n_ctx;
  7527. size_t kv_buf_size;
  7528. uint32_t kv_head;
  7529. uint32_t kv_size;
  7530. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  7531. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  7532. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  7533. if (kv_buf_size) {
  7534. GGML_ASSERT(kv_self.buf.size == kv_buf_size);
  7535. const size_t elt_size = ggml_element_size(kv_self.k);
  7536. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7537. ggml_cgraph gf{};
  7538. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7539. kin3d->data = (void *) inp;
  7540. inp += ggml_nbytes(kin3d);
  7541. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7542. vin3d->data = (void *) inp;
  7543. inp += ggml_nbytes(vin3d);
  7544. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7545. n_embd, kv_head, n_layer,
  7546. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7547. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7548. kv_head, n_embd, n_layer,
  7549. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7550. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  7551. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  7552. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7553. ggml_free(cpy_ctx);
  7554. }
  7555. ctx->kv_self.head = kv_head;
  7556. ctx->kv_self.size = kv_size;
  7557. ctx->kv_self.cells.resize(kv_size);
  7558. for (uint32_t i = 0; i < kv_size; ++i) {
  7559. llama_pos pos;
  7560. size_t seq_id_size;
  7561. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  7562. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  7563. ctx->kv_self.cells[i].pos = pos;
  7564. llama_seq_id seq_id;
  7565. for (size_t j = 0; j < seq_id_size; ++j) {
  7566. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  7567. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  7568. }
  7569. }
  7570. }
  7571. const size_t nread = inp - src;
  7572. const size_t max_size = llama_get_state_size(ctx);
  7573. GGML_ASSERT(nread <= max_size);
  7574. return nread;
  7575. }
  7576. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7577. llama_file file(path_session, "rb");
  7578. // sanity checks
  7579. {
  7580. const uint32_t magic = file.read_u32();
  7581. const uint32_t version = file.read_u32();
  7582. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  7583. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  7584. return false;
  7585. }
  7586. llama_hparams session_hparams;
  7587. file.read_raw(&session_hparams, sizeof(llama_hparams));
  7588. if (session_hparams != ctx->model.hparams) {
  7589. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  7590. return false;
  7591. }
  7592. }
  7593. // load the prompt
  7594. {
  7595. const uint32_t n_token_count = file.read_u32();
  7596. if (n_token_count > n_token_capacity) {
  7597. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  7598. return false;
  7599. }
  7600. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  7601. *n_token_count_out = n_token_count;
  7602. }
  7603. // restore the context state
  7604. {
  7605. const size_t n_state_size_cur = file.size - file.tell();
  7606. const size_t n_state_size_max = llama_get_state_size(ctx);
  7607. if (n_state_size_cur > n_state_size_max) {
  7608. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  7609. return false;
  7610. }
  7611. std::vector<uint8_t> state_data(n_state_size_max);
  7612. file.read_raw(state_data.data(), n_state_size_cur);
  7613. llama_set_state_data(ctx, state_data.data());
  7614. }
  7615. return true;
  7616. }
  7617. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7618. try {
  7619. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  7620. } catch (const std::exception & err) {
  7621. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  7622. return false;
  7623. }
  7624. }
  7625. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  7626. llama_file file(path_session, "wb");
  7627. file.write_u32(LLAMA_SESSION_MAGIC);
  7628. file.write_u32(LLAMA_SESSION_VERSION);
  7629. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  7630. // save the prompt
  7631. file.write_u32((uint32_t) n_token_count);
  7632. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  7633. // save the context state using stream saving
  7634. llama_data_file_context data_ctx(&file);
  7635. llama_copy_state_data_internal(ctx, &data_ctx);
  7636. return true;
  7637. }
  7638. int llama_eval(
  7639. struct llama_context * ctx,
  7640. llama_token * tokens,
  7641. int32_t n_tokens,
  7642. int n_past) {
  7643. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7644. const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
  7645. if (ret < 0) {
  7646. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7647. }
  7648. return ret;
  7649. }
  7650. int llama_eval_embd(
  7651. struct llama_context * ctx,
  7652. float * embd,
  7653. int32_t n_tokens,
  7654. int n_past) {
  7655. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7656. llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, n_past, 1, 0, };
  7657. const int ret = llama_decode_internal(*ctx, batch);
  7658. if (ret < 0) {
  7659. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7660. }
  7661. return ret;
  7662. }
  7663. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  7664. ctx->cparams.n_threads = n_threads;
  7665. ctx->cparams.n_threads_batch = n_threads_batch;
  7666. }
  7667. struct llama_batch llama_batch_get_one(
  7668. llama_token * tokens,
  7669. int32_t n_tokens,
  7670. llama_pos pos_0,
  7671. llama_seq_id seq_id) {
  7672. return {
  7673. /*n_tokens =*/ n_tokens,
  7674. /*tokens =*/ tokens,
  7675. /*embd =*/ nullptr,
  7676. /*pos =*/ nullptr,
  7677. /*seq_id =*/ nullptr,
  7678. /*logits =*/ nullptr,
  7679. /*all_pos_0 =*/ pos_0,
  7680. /*all_pos_1 =*/ 1,
  7681. /*all_seq_id =*/ seq_id,
  7682. };
  7683. }
  7684. struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
  7685. llama_batch batch = { -1, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  7686. if (embd) {
  7687. batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
  7688. } else {
  7689. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
  7690. }
  7691. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
  7692. batch.seq_id = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_tokens);
  7693. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
  7694. return batch;
  7695. }
  7696. void llama_batch_free(struct llama_batch batch) {
  7697. if (batch.token) free(batch.token);
  7698. if (batch.embd) free(batch.embd);
  7699. if (batch.pos) free(batch.pos);
  7700. if (batch.seq_id) free(batch.seq_id);
  7701. if (batch.logits) free(batch.logits);
  7702. }
  7703. int llama_decode(
  7704. struct llama_context * ctx,
  7705. struct llama_batch batch) {
  7706. const int ret = llama_decode_internal(*ctx, batch);
  7707. if (ret < 0) {
  7708. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7709. }
  7710. return ret;
  7711. }
  7712. float * llama_get_logits(struct llama_context * ctx) {
  7713. return ctx->logits.data();
  7714. }
  7715. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  7716. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  7717. }
  7718. float * llama_get_embeddings(struct llama_context * ctx) {
  7719. return ctx->embedding.data();
  7720. }
  7721. const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) {
  7722. return ctx->model.vocab.id_to_token[token].text.c_str();
  7723. }
  7724. float llama_token_get_score(const struct llama_context * ctx, llama_token token) {
  7725. return ctx->model.vocab.id_to_token[token].score;
  7726. }
  7727. llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) {
  7728. return ctx->model.vocab.id_to_token[token].type;
  7729. }
  7730. llama_token llama_token_bos(const struct llama_context * ctx) {
  7731. return ctx->model.vocab.special_bos_id;
  7732. }
  7733. llama_token llama_token_eos(const struct llama_context * ctx) {
  7734. return ctx->model.vocab.special_eos_id;
  7735. }
  7736. llama_token llama_token_nl(const struct llama_context * ctx) {
  7737. return ctx->model.vocab.linefeed_id;
  7738. }
  7739. llama_token llama_token_prefix(const struct llama_context * ctx) {
  7740. return ctx->model.vocab.special_prefix_id;
  7741. }
  7742. llama_token llama_token_middle(const struct llama_context * ctx) {
  7743. return ctx->model.vocab.special_middle_id;
  7744. }
  7745. llama_token llama_token_suffix(const struct llama_context * ctx) {
  7746. return ctx->model.vocab.special_suffix_id;
  7747. }
  7748. llama_token llama_token_eot(const struct llama_context * ctx) {
  7749. return ctx->model.vocab.special_eot_id;
  7750. }
  7751. int llama_tokenize(
  7752. const struct llama_model * model,
  7753. const char * text,
  7754. int text_len,
  7755. llama_token * tokens,
  7756. int n_max_tokens,
  7757. bool add_bos) {
  7758. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos);
  7759. if (n_max_tokens < (int) res.size()) {
  7760. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  7761. return -((int) res.size());
  7762. }
  7763. for (size_t i = 0; i < res.size(); i++) {
  7764. tokens[i] = res[i];
  7765. }
  7766. return res.size();
  7767. }
  7768. static std::string llama_decode_text(const std::string & text) {
  7769. std::string decoded_text;
  7770. auto unicode_sequences = codepoints_from_utf8(text);
  7771. for (auto& unicode_sequence : unicode_sequences) {
  7772. decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
  7773. }
  7774. return decoded_text;
  7775. }
  7776. // does not write null-terminator to buf
  7777. int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) {
  7778. if (0 <= token && token < llama_n_vocab(model)) {
  7779. switch (llama_vocab_get_type(model->vocab)) {
  7780. case LLAMA_VOCAB_TYPE_SPM: {
  7781. if (llama_is_normal_token(model->vocab, token)) {
  7782. std::string result = model->vocab.id_to_token[token].text;
  7783. llama_unescape_whitespace(result);
  7784. if (length < (int) result.length()) {
  7785. return -result.length();
  7786. }
  7787. memcpy(buf, result.c_str(), result.length());
  7788. return result.length();
  7789. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  7790. if (length < 3) {
  7791. return -3;
  7792. }
  7793. memcpy(buf, "\xe2\x96\x85", 3);
  7794. return 3;
  7795. } else if (llama_is_control_token(model->vocab, token)) {
  7796. ;
  7797. } else if (llama_is_byte_token(model->vocab, token)) {
  7798. if (length < 1) {
  7799. return -1;
  7800. }
  7801. buf[0] = llama_token_to_byte(model->vocab, token);
  7802. return 1;
  7803. } else {
  7804. // TODO: for now we accept all unsupported token types,
  7805. // suppressing them like CONTROL tokens.
  7806. // GGML_ASSERT(false);
  7807. }
  7808. break;
  7809. }
  7810. case LLAMA_VOCAB_TYPE_BPE: {
  7811. if (llama_is_normal_token(model->vocab, token)) {
  7812. std::string result = model->vocab.id_to_token[token].text;
  7813. result = llama_decode_text(result);
  7814. if (length < (int) result.length()) {
  7815. return -result.length();
  7816. }
  7817. memcpy(buf, result.c_str(), result.length());
  7818. return result.length();
  7819. } else if (llama_is_control_token(model->vocab, token)) {
  7820. ;
  7821. } else {
  7822. // TODO: for now we accept all unsupported token types,
  7823. // suppressing them like CONTROL tokens.
  7824. // GGML_ASSERT(false);
  7825. }
  7826. break;
  7827. }
  7828. default:
  7829. GGML_ASSERT(false);
  7830. }
  7831. }
  7832. return 0;
  7833. }
  7834. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  7835. struct llama_timings result = {
  7836. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  7837. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  7838. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  7839. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  7840. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  7841. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  7842. /*.n_sample =*/ std::max(1, ctx->n_sample),
  7843. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  7844. /*.n_eval =*/ std::max(1, ctx->n_eval),
  7845. };
  7846. return result;
  7847. }
  7848. void llama_print_timings(struct llama_context * ctx) {
  7849. const llama_timings timings = llama_get_timings(ctx);
  7850. LLAMA_LOG_INFO("\n");
  7851. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  7852. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  7853. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  7854. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  7855. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  7856. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  7857. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  7858. LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  7859. }
  7860. void llama_reset_timings(struct llama_context * ctx) {
  7861. ctx->t_start_us = ggml_time_us();
  7862. ctx->t_sample_us = ctx->n_sample = 0;
  7863. ctx->t_eval_us = ctx->n_eval = 0;
  7864. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  7865. }
  7866. const char * llama_print_system_info(void) {
  7867. static std::string s;
  7868. s = "";
  7869. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  7870. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  7871. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  7872. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  7873. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  7874. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  7875. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  7876. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  7877. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  7878. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  7879. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  7880. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  7881. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  7882. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  7883. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  7884. return s.c_str();
  7885. }
  7886. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  7887. fprintf(stream, "\n");
  7888. fprintf(stream, "###########\n");
  7889. fprintf(stream, "# Timings #\n");
  7890. fprintf(stream, "###########\n");
  7891. fprintf(stream, "\n");
  7892. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  7893. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  7894. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  7895. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  7896. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  7897. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  7898. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  7899. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  7900. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  7901. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  7902. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  7903. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  7904. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  7905. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  7906. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  7907. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  7908. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  7909. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  7910. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  7911. }
  7912. // For internal test use
  7913. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  7914. struct llama_context * ctx
  7915. ) {
  7916. return ctx->model.tensors_by_name;
  7917. }
  7918. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  7919. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  7920. g_state.log_callback_user_data = user_data;
  7921. }
  7922. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  7923. va_list args_copy;
  7924. va_copy(args_copy, args);
  7925. char buffer[128];
  7926. int len = vsnprintf(buffer, 128, format, args);
  7927. if (len < 128) {
  7928. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  7929. } else {
  7930. char* buffer2 = new char[len+1];
  7931. vsnprintf(buffer2, len+1, format, args_copy);
  7932. buffer2[len] = 0;
  7933. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  7934. delete[] buffer2;
  7935. }
  7936. va_end(args_copy);
  7937. }
  7938. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  7939. va_list args;
  7940. va_start(args, format);
  7941. llama_log_internal_v(level, format, args);
  7942. va_end(args);
  7943. }
  7944. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  7945. (void) level;
  7946. (void) user_data;
  7947. fputs(text, stderr);
  7948. fflush(stderr);
  7949. }