convert_hf_to_gguf.py 197 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. import math
  17. import numpy as np
  18. import torch
  19. if TYPE_CHECKING:
  20. from torch import Tensor
  21. if 'NO_LOCAL_GGUF' not in os.environ:
  22. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  23. import gguf
  24. logger = logging.getLogger("hf-to-gguf")
  25. ###### MODEL DEFINITIONS ######
  26. class SentencePieceTokenTypes(IntEnum):
  27. NORMAL = 1
  28. UNKNOWN = 2
  29. CONTROL = 3
  30. USER_DEFINED = 4
  31. UNUSED = 5
  32. BYTE = 6
  33. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  34. class Model:
  35. _model_classes: dict[str, type[Model]] = {}
  36. dir_model: Path
  37. ftype: gguf.LlamaFileType
  38. fname_out: Path
  39. is_big_endian: bool
  40. endianess: gguf.GGUFEndian
  41. use_temp_file: bool
  42. lazy: bool
  43. part_names: list[str]
  44. is_safetensors: bool
  45. hparams: dict[str, Any]
  46. block_count: int
  47. tensor_map: gguf.TensorNameMap
  48. tensor_names: set[str] | None
  49. gguf_writer: gguf.GGUFWriter
  50. model_name: str | None
  51. metadata_override: Path | None
  52. dir_model_card: Path
  53. is_lora: bool
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. def prepare_tensors(self):
  228. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  229. for name, data_torch in self.get_tensors():
  230. # we don't need these
  231. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  232. continue
  233. old_dtype = data_torch.dtype
  234. # convert any unsupported data types to float32
  235. if data_torch.dtype not in (torch.float16, torch.float32):
  236. data_torch = data_torch.to(torch.float32)
  237. # use the first number-like part of the tensor name as the block id
  238. bid = None
  239. for part in name.split("."):
  240. if part.isdecimal():
  241. bid = int(part)
  242. break
  243. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  244. data: np.ndarray # type hint
  245. n_dims = len(data.shape)
  246. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  247. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  248. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  249. data_qtype = gguf.GGMLQuantizationType.F32
  250. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  251. # Some tensor types are always in float32
  252. if data_qtype is False and (
  253. any(
  254. self.match_model_tensor_name(new_name, key, bid)
  255. for key in (
  256. gguf.MODEL_TENSOR.FFN_GATE_INP,
  257. gguf.MODEL_TENSOR.POS_EMBD,
  258. gguf.MODEL_TENSOR.TOKEN_TYPES,
  259. gguf.MODEL_TENSOR.SSM_CONV1D,
  260. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  261. gguf.MODEL_TENSOR.TIME_MIX_W1,
  262. gguf.MODEL_TENSOR.TIME_MIX_W2,
  263. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  264. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  265. )
  266. )
  267. or not new_name.endswith(".weight")
  268. ):
  269. data_qtype = gguf.GGMLQuantizationType.F32
  270. if data_qtype is False and any(
  271. self.match_model_tensor_name(new_name, key, bid)
  272. for key in (
  273. gguf.MODEL_TENSOR.TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. )
  276. ):
  277. if self.ftype in (
  278. gguf.LlamaFileType.MOSTLY_TQ1_0,
  279. gguf.LlamaFileType.MOSTLY_TQ2_0,
  280. ):
  281. # TODO: use Q4_K and Q6_K
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  284. if isinstance(data_qtype, bool):
  285. if self.ftype == gguf.LlamaFileType.ALL_F32:
  286. data_qtype = gguf.GGMLQuantizationType.F32
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  288. data_qtype = gguf.GGMLQuantizationType.F16
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  290. data_qtype = gguf.GGMLQuantizationType.BF16
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  292. data_qtype = gguf.GGMLQuantizationType.Q8_0
  293. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  294. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  295. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  296. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  297. else:
  298. raise ValueError(f"Unknown file type: {self.ftype.name}")
  299. try:
  300. data = gguf.quants.quantize(data, data_qtype)
  301. except gguf.QuantError as e:
  302. logger.warning("%s, %s", e, "falling back to F16")
  303. data_qtype = gguf.GGMLQuantizationType.F16
  304. data = gguf.quants.quantize(data, data_qtype)
  305. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  306. # reverse shape to make it similar to the internal ggml dimension order
  307. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  308. # n_dims is implicit in the shape
  309. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  310. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  311. def set_type(self):
  312. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  313. def prepare_metadata(self, vocab_only: bool):
  314. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  315. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  316. # Fallback to model directory name if metadata name is still missing
  317. if self.metadata.name is None:
  318. self.metadata.name = self.dir_model.name
  319. # Generate parameter weight class (useful for leader boards) if not yet determined
  320. if self.metadata.size_label is None and total_params > 0:
  321. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  322. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  323. output_type: str = self.ftype.name.partition("_")[2]
  324. # Filename Output
  325. if self.fname_out.is_dir():
  326. # Generate default filename based on model specification and available metadata
  327. if not vocab_only:
  328. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  329. else:
  330. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  331. # Use the default filename
  332. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  333. else:
  334. # Output path is a custom defined templated filename
  335. # Note: `not is_dir()` is used because `.is_file()` will not detect
  336. # file template strings as it doesn't actually exist as a file
  337. # Process templated file name with the output ftype, useful with the "auto" ftype
  338. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  339. self.set_type()
  340. logger.info("Set meta model")
  341. self.metadata.set_gguf_meta_model(self.gguf_writer)
  342. logger.info("Set model parameters")
  343. self.set_gguf_parameters()
  344. logger.info("Set model tokenizer")
  345. self.set_vocab()
  346. logger.info("Set model quantization version")
  347. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  348. def write(self):
  349. self.prepare_tensors()
  350. self.prepare_metadata(vocab_only=False)
  351. self.gguf_writer.write_header_to_file(path=self.fname_out)
  352. self.gguf_writer.write_kv_data_to_file()
  353. self.gguf_writer.write_tensors_to_file(progress=True)
  354. self.gguf_writer.close()
  355. def write_vocab(self):
  356. if len(self.gguf_writer.tensors) != 1:
  357. raise ValueError('Splitting the vocabulary is not supported')
  358. self.prepare_metadata(vocab_only=True)
  359. self.gguf_writer.write_header_to_file(path=self.fname_out)
  360. self.gguf_writer.write_kv_data_to_file()
  361. self.gguf_writer.close()
  362. @staticmethod
  363. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  364. part_names: list[str] = []
  365. for filename in os.listdir(dir_model):
  366. if filename.startswith(prefix) and filename.endswith(suffix):
  367. part_names.append(filename)
  368. part_names.sort()
  369. return part_names
  370. @staticmethod
  371. def load_hparams(dir_model: Path):
  372. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  373. return json.load(f)
  374. @classmethod
  375. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  376. assert names
  377. def func(modelcls: AnyModel) -> AnyModel:
  378. for name in names:
  379. cls._model_classes[name] = modelcls
  380. return modelcls
  381. return func
  382. @classmethod
  383. def from_model_architecture(cls, arch: str) -> type[Model]:
  384. try:
  385. return cls._model_classes[arch]
  386. except KeyError:
  387. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  388. def does_token_look_special(self, token: str | bytes) -> bool:
  389. if isinstance(token, (bytes, bytearray)):
  390. token_text = token.decode(encoding="utf-8")
  391. elif isinstance(token, memoryview):
  392. token_text = token.tobytes().decode(encoding="utf-8")
  393. else:
  394. token_text = token
  395. # Some models mark some added tokens which ought to be control tokens as not special.
  396. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  397. seems_special = token_text in (
  398. "<pad>", # deepseek-coder
  399. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  400. )
  401. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  402. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  403. # TODO: should these be marked as UNUSED instead? (maybe not)
  404. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  405. return seems_special
  406. # used for GPT-2 BPE and WordPiece vocabs
  407. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  408. tokens: list[str] = []
  409. toktypes: list[int] = []
  410. from transformers import AutoTokenizer
  411. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  412. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  413. assert max(tokenizer.vocab.values()) < vocab_size
  414. tokpre = self.get_vocab_base_pre(tokenizer)
  415. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  416. added_vocab = tokenizer.get_added_vocab()
  417. for i in range(vocab_size):
  418. if i not in reverse_vocab:
  419. tokens.append(f"[PAD{i}]")
  420. toktypes.append(gguf.TokenType.UNUSED)
  421. else:
  422. token: str = reverse_vocab[i]
  423. if token in added_vocab:
  424. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  425. toktypes.append(gguf.TokenType.CONTROL)
  426. else:
  427. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  428. toktypes.append(gguf.TokenType.USER_DEFINED)
  429. else:
  430. toktypes.append(gguf.TokenType.NORMAL)
  431. tokens.append(token)
  432. return tokens, toktypes, tokpre
  433. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  434. # do not modify it manually!
  435. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  436. # Marker: Start get_vocab_base_pre
  437. def get_vocab_base_pre(self, tokenizer) -> str:
  438. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  439. # is specific for the BPE pre-tokenizer used by the model
  440. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  441. # use in llama.cpp to implement the same pre-tokenizer
  442. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  443. chktok = tokenizer.encode(chktxt)
  444. chkhsh = sha256(str(chktok).encode()).hexdigest()
  445. logger.debug(f"chktok: {chktok}")
  446. logger.debug(f"chkhsh: {chkhsh}")
  447. res = None
  448. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  449. # or pull the latest version of the model from Huggingface
  450. # don't edit the hashes manually!
  451. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  452. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  453. res = "llama-bpe"
  454. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  455. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  456. res = "deepseek-llm"
  457. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  458. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  459. res = "deepseek-coder"
  460. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  461. # ref: https://huggingface.co/tiiuae/falcon-7b
  462. res = "falcon"
  463. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  464. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  465. res = "bert-bge"
  466. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  467. # ref: https://huggingface.co/mosaicml/mpt-7b
  468. res = "mpt"
  469. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  470. # ref: https://huggingface.co/bigcode/starcoder2-3b
  471. res = "starcoder"
  472. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  473. # ref: https://huggingface.co/openai-community/gpt2
  474. res = "gpt-2"
  475. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  476. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  477. res = "stablelm2"
  478. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  479. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  480. res = "refact"
  481. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  482. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  483. res = "command-r"
  484. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  485. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  486. res = "qwen2"
  487. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  488. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  489. res = "olmo"
  490. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  491. # ref: https://huggingface.co/databricks/dbrx-base
  492. res = "dbrx"
  493. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  494. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  495. res = "jina-v2-en"
  496. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  497. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  498. res = "jina-v2-es"
  499. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  500. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  501. res = "jina-v2-de"
  502. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  503. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  504. res = "smaug-bpe"
  505. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  506. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  507. res = "poro-chat"
  508. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  509. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  510. res = "jina-v2-code"
  511. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  512. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  513. res = "chatglm-bpe"
  514. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  515. # ref: https://huggingface.co/LumiOpen/Viking-7B
  516. res = "viking"
  517. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  518. # ref: https://huggingface.co/core42/jais-13b
  519. res = "jais"
  520. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  521. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  522. res = "codeshell"
  523. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  524. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  525. res = "tekken"
  526. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  527. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  528. res = "smollm"
  529. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  530. # ref: https://huggingface.co/bigscience/bloom
  531. res = "bloom"
  532. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  533. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  534. res = "gpt3-finnish"
  535. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  536. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  537. res = "exaone"
  538. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  539. # ref: https://huggingface.co/microsoft/phi-2
  540. res = "phi-2"
  541. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  542. # ref: https://huggingface.co/facebook/chameleon-7b
  543. res = "chameleon"
  544. if res is None:
  545. logger.warning("\n")
  546. logger.warning("**************************************************************************************")
  547. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  548. logger.warning("** There are 2 possible reasons for this:")
  549. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  550. logger.warning("** - the pre-tokenization config has changed upstream")
  551. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  552. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  553. logger.warning("**")
  554. logger.warning(f"** chkhsh: {chkhsh}")
  555. logger.warning("**************************************************************************************")
  556. logger.warning("\n")
  557. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  558. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  559. logger.debug(f"chkhsh: {chkhsh}")
  560. return res
  561. # Marker: End get_vocab_base_pre
  562. def _set_vocab_gpt2(self) -> None:
  563. tokens, toktypes, tokpre = self.get_vocab_base()
  564. self.gguf_writer.add_tokenizer_model("gpt2")
  565. self.gguf_writer.add_tokenizer_pre(tokpre)
  566. self.gguf_writer.add_token_list(tokens)
  567. self.gguf_writer.add_token_types(toktypes)
  568. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  569. special_vocab.add_to_gguf(self.gguf_writer)
  570. def _set_vocab_qwen(self):
  571. dir_model = self.dir_model
  572. hparams = self.hparams
  573. tokens: list[str] = []
  574. toktypes: list[int] = []
  575. from transformers import AutoTokenizer
  576. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  577. vocab_size = hparams["vocab_size"]
  578. assert max(tokenizer.get_vocab().values()) < vocab_size
  579. tokpre = self.get_vocab_base_pre(tokenizer)
  580. merges = []
  581. vocab = {}
  582. mergeable_ranks = tokenizer.mergeable_ranks
  583. for token, rank in mergeable_ranks.items():
  584. vocab[QwenModel.token_bytes_to_string(token)] = rank
  585. if len(token) == 1:
  586. continue
  587. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  588. assert len(merged) == 2
  589. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  590. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  591. added_vocab = tokenizer.special_tokens
  592. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  593. for i in range(vocab_size):
  594. if i not in reverse_vocab:
  595. tokens.append(f"[PAD{i}]")
  596. toktypes.append(gguf.TokenType.UNUSED)
  597. elif reverse_vocab[i] in added_vocab:
  598. tokens.append(reverse_vocab[i])
  599. toktypes.append(gguf.TokenType.CONTROL)
  600. else:
  601. tokens.append(reverse_vocab[i])
  602. toktypes.append(gguf.TokenType.NORMAL)
  603. self.gguf_writer.add_tokenizer_model("gpt2")
  604. self.gguf_writer.add_tokenizer_pre(tokpre)
  605. self.gguf_writer.add_token_list(tokens)
  606. self.gguf_writer.add_token_types(toktypes)
  607. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  608. special_vocab.merges = merges
  609. # only add special tokens when they were not already loaded from config.json
  610. if len(special_vocab.special_token_ids) == 0:
  611. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  612. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  613. # this one is usually not in config.json anyway
  614. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  615. special_vocab.add_to_gguf(self.gguf_writer)
  616. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  617. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  618. self.gguf_writer.add_tokenizer_model("llama")
  619. self.gguf_writer.add_tokenizer_pre("default")
  620. self.gguf_writer.add_token_list(tokens)
  621. self.gguf_writer.add_token_scores(scores)
  622. self.gguf_writer.add_token_types(toktypes)
  623. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  624. special_vocab.add_to_gguf(self.gguf_writer)
  625. def _create_vocab_sentencepiece(self):
  626. from sentencepiece import SentencePieceProcessor
  627. tokenizer_path = self.dir_model / 'tokenizer.model'
  628. if not tokenizer_path.is_file():
  629. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  630. tokenizer = SentencePieceProcessor()
  631. tokenizer.LoadFromFile(str(tokenizer_path))
  632. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  633. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  634. scores: list[float] = [-10000.0] * vocab_size
  635. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  636. for token_id in range(tokenizer.vocab_size()):
  637. piece = tokenizer.IdToPiece(token_id)
  638. text = piece.encode("utf-8")
  639. score = tokenizer.GetScore(token_id)
  640. toktype = SentencePieceTokenTypes.NORMAL
  641. if tokenizer.IsUnknown(token_id):
  642. toktype = SentencePieceTokenTypes.UNKNOWN
  643. elif tokenizer.IsControl(token_id):
  644. toktype = SentencePieceTokenTypes.CONTROL
  645. elif tokenizer.IsUnused(token_id):
  646. toktype = SentencePieceTokenTypes.UNUSED
  647. elif tokenizer.IsByte(token_id):
  648. toktype = SentencePieceTokenTypes.BYTE
  649. tokens[token_id] = text
  650. scores[token_id] = score
  651. toktypes[token_id] = toktype
  652. added_tokens_file = self.dir_model / 'added_tokens.json'
  653. if added_tokens_file.is_file():
  654. with open(added_tokens_file, "r", encoding="utf-8") as f:
  655. added_tokens_json = json.load(f)
  656. for key in added_tokens_json:
  657. token_id = added_tokens_json[key]
  658. if token_id >= vocab_size:
  659. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  660. continue
  661. tokens[token_id] = key.encode("utf-8")
  662. scores[token_id] = -1000.0
  663. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  664. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  665. if tokenizer_config_file.is_file():
  666. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  667. tokenizer_config_json = json.load(f)
  668. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  669. for token_id, token_data in added_tokens_decoder.items():
  670. token_id = int(token_id)
  671. token: str = token_data["content"]
  672. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  673. if tokens[token_id] != token.encode("utf-8"):
  674. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  675. if token_data.get("special") or self.does_token_look_special(token):
  676. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  677. else:
  678. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  679. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  680. scores[token_id] = -1000.0
  681. tokens[token_id] = token.encode("utf-8")
  682. if vocab_size > len(tokens):
  683. pad_count = vocab_size - len(tokens)
  684. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  685. for i in range(1, pad_count + 1):
  686. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  687. scores.append(-1000.0)
  688. toktypes.append(SentencePieceTokenTypes.UNUSED)
  689. return tokens, scores, toktypes
  690. def _set_vocab_llama_hf(self):
  691. vocab = gguf.LlamaHfVocab(self.dir_model)
  692. tokens = []
  693. scores = []
  694. toktypes = []
  695. for text, score, toktype in vocab.all_tokens():
  696. tokens.append(text)
  697. scores.append(score)
  698. toktypes.append(toktype)
  699. assert len(tokens) == vocab.vocab_size
  700. self.gguf_writer.add_tokenizer_model("llama")
  701. self.gguf_writer.add_tokenizer_pre("default")
  702. self.gguf_writer.add_token_list(tokens)
  703. self.gguf_writer.add_token_scores(scores)
  704. self.gguf_writer.add_token_types(toktypes)
  705. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  706. special_vocab.add_to_gguf(self.gguf_writer)
  707. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  708. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  709. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  710. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  711. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  712. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  713. assert field # tokenizer model
  714. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  715. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  716. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  717. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  718. assert field # token list
  719. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  720. if model_name == "llama-spm":
  721. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  722. assert field # token scores
  723. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  724. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  725. assert field # token types
  726. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  727. if model_name != "llama-spm":
  728. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  729. assert field # token merges
  730. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  731. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  732. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  733. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  734. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  735. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  736. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  737. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  738. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  739. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  740. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  741. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  742. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  743. @Model.register("GPTNeoXForCausalLM")
  744. class GPTNeoXModel(Model):
  745. model_arch = gguf.MODEL_ARCH.GPTNEOX
  746. def set_gguf_parameters(self):
  747. block_count = self.hparams["num_hidden_layers"]
  748. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  749. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  750. self.gguf_writer.add_block_count(block_count)
  751. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  752. self.gguf_writer.add_rope_dimension_count(
  753. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  754. )
  755. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  756. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  757. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  759. del bid # unused
  760. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  761. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  762. tensors: list[tuple[str, Tensor]] = []
  763. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  764. # Map bloom-style qkv_linear to gpt-style qkv_linear
  765. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  766. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  767. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  768. data_torch = torch.cat(
  769. (
  770. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  771. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  772. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  773. ),
  774. dim=0,
  775. )
  776. logger.info("re-format attention.linear_qkv.weight")
  777. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  778. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  779. data_torch = torch.cat(
  780. (
  781. qkv_bias[:, 0, :].reshape((n_embed,)),
  782. qkv_bias[:, 1, :].reshape((n_embed,)),
  783. qkv_bias[:, 2, :].reshape((n_embed,)),
  784. ),
  785. dim=0,
  786. )
  787. logger.info("re-format attention.linear_qkv.bias")
  788. tensors.append((self.map_tensor_name(name), data_torch))
  789. return tensors
  790. @Model.register("BloomForCausalLM", "BloomModel")
  791. class BloomModel(Model):
  792. model_arch = gguf.MODEL_ARCH.BLOOM
  793. def set_gguf_parameters(self):
  794. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  795. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  796. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  797. self.gguf_writer.add_embedding_length(n_embed)
  798. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  799. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  800. self.gguf_writer.add_head_count(n_head)
  801. self.gguf_writer.add_head_count_kv(n_head)
  802. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  803. self.gguf_writer.add_file_type(self.ftype)
  804. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  805. del bid # unused
  806. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  807. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  808. name = re.sub(r'transformer\.', '', name)
  809. tensors: list[tuple[str, Tensor]] = []
  810. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  811. # Map bloom-style qkv_linear to gpt-style qkv_linear
  812. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  813. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  814. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  815. data_torch = torch.cat(
  816. (
  817. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  818. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  819. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  820. ),
  821. dim=0,
  822. )
  823. logger.info("re-format attention.linear_qkv.weight")
  824. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  825. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  826. data_torch = torch.cat(
  827. (
  828. qkv_bias[:, 0, :].reshape((n_embed,)),
  829. qkv_bias[:, 1, :].reshape((n_embed,)),
  830. qkv_bias[:, 2, :].reshape((n_embed,)),
  831. ),
  832. dim=0,
  833. )
  834. logger.info("re-format attention.linear_qkv.bias")
  835. tensors.append((self.map_tensor_name(name), data_torch))
  836. if name == "word_embeddings.weight":
  837. assert self.tensor_names is not None
  838. # TODO: tie them at runtime, don't duplicate in the model file
  839. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  840. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  841. return tensors
  842. @Model.register("MPTForCausalLM")
  843. class MPTModel(Model):
  844. model_arch = gguf.MODEL_ARCH.MPT
  845. def set_vocab(self):
  846. try:
  847. self._set_vocab_gpt2()
  848. except Exception:
  849. # Fallback for SEA-LION model
  850. self._set_vocab_sentencepiece()
  851. self.gguf_writer.add_add_bos_token(False)
  852. self.gguf_writer.add_pad_token_id(3)
  853. self.gguf_writer.add_eos_token_id(1)
  854. self.gguf_writer.add_unk_token_id(0)
  855. def set_gguf_parameters(self):
  856. block_count = self.hparams["n_layers"]
  857. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  858. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  859. self.gguf_writer.add_block_count(block_count)
  860. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  861. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  862. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  863. self.gguf_writer.add_head_count_kv(kv_n_heads)
  864. self.gguf_writer.add_layer_norm_eps(1e-5)
  865. if self.hparams["attn_config"]["clip_qkv"] is not None:
  866. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  867. if self.hparams["attn_config"]["alibi"]:
  868. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  869. else:
  870. self.gguf_writer.add_max_alibi_bias(0.0)
  871. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  872. del bid # unused
  873. if "scales" in name:
  874. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  875. new_name = new_name.replace("scales", "act.scales")
  876. else:
  877. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  878. return [(new_name, data_torch)]
  879. @Model.register("OrionForCausalLM")
  880. class OrionModel(Model):
  881. model_arch = gguf.MODEL_ARCH.ORION
  882. def set_vocab(self):
  883. self._set_vocab_sentencepiece()
  884. def set_gguf_parameters(self):
  885. block_count = self.hparams["num_hidden_layers"]
  886. head_count = self.hparams["num_attention_heads"]
  887. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  888. ctx_length = 0
  889. if "max_sequence_length" in self.hparams:
  890. ctx_length = self.hparams["max_sequence_length"]
  891. elif "max_position_embeddings" in self.hparams:
  892. ctx_length = self.hparams["max_position_embeddings"]
  893. elif "model_max_length" in self.hparams:
  894. ctx_length = self.hparams["model_max_length"]
  895. else:
  896. raise ValueError("gguf: can not find ctx length parameter.")
  897. self.gguf_writer.add_file_type(self.ftype)
  898. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  899. self.gguf_writer.add_context_length(ctx_length)
  900. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  901. self.gguf_writer.add_block_count(block_count)
  902. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  903. self.gguf_writer.add_head_count(head_count)
  904. self.gguf_writer.add_head_count_kv(head_count_kv)
  905. # note: config provides rms norm but it is actually layer norm
  906. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  907. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  908. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  909. class BaichuanModel(Model):
  910. model_arch = gguf.MODEL_ARCH.BAICHUAN
  911. def set_vocab(self):
  912. self._set_vocab_sentencepiece()
  913. def set_gguf_parameters(self):
  914. block_count = self.hparams["num_hidden_layers"]
  915. head_count = self.hparams["num_attention_heads"]
  916. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  917. ctx_length = 0
  918. if "max_sequence_length" in self.hparams:
  919. ctx_length = self.hparams["max_sequence_length"]
  920. elif "max_position_embeddings" in self.hparams:
  921. ctx_length = self.hparams["max_position_embeddings"]
  922. elif "model_max_length" in self.hparams:
  923. ctx_length = self.hparams["model_max_length"]
  924. else:
  925. raise ValueError("gguf: can not find ctx length parameter.")
  926. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  927. self.gguf_writer.add_context_length(ctx_length)
  928. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  929. self.gguf_writer.add_block_count(block_count)
  930. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  931. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  932. self.gguf_writer.add_head_count(head_count)
  933. self.gguf_writer.add_head_count_kv(head_count_kv)
  934. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  935. self.gguf_writer.add_file_type(self.ftype)
  936. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  937. if self.hparams["rope_scaling"].get("type") == "linear":
  938. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  939. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  941. head_count = self.hparams["num_attention_heads"]
  942. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  943. tensors: list[tuple[str, Tensor]] = []
  944. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  945. logger.info(f"Unpacking and permuting layer {bid}")
  946. tensors = [
  947. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  948. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  949. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  950. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  951. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  952. self._reverse_hf_part(data_torch, 2)),
  953. ]
  954. else:
  955. tensors = [(self.map_tensor_name(name), data_torch)]
  956. return tensors
  957. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  958. if n_kv_head is not None and n_head != n_kv_head:
  959. n_head //= n_kv_head
  960. return (
  961. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  962. .swapaxes(1, 2)
  963. .reshape(weights.shape)
  964. )
  965. def _reverse_hf_permute_part(
  966. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  967. ) -> Tensor:
  968. r = weights.shape[0] // 3
  969. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  970. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  971. r = weights.shape[0] // 3
  972. return weights[r * n_part:r * n_part + r, ...]
  973. @Model.register("XverseForCausalLM")
  974. class XverseModel(Model):
  975. model_arch = gguf.MODEL_ARCH.XVERSE
  976. def set_vocab(self):
  977. assert (self.dir_model / "tokenizer.json").is_file()
  978. dir_model = self.dir_model
  979. hparams = self.hparams
  980. tokens: list[bytes] = []
  981. toktypes: list[int] = []
  982. from transformers import AutoTokenizer
  983. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  984. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  985. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  986. # because vocab_size is the count of items, and indexes start at 0.
  987. max_vocab_index = max(tokenizer.get_vocab().values())
  988. if max_vocab_index >= vocab_size:
  989. raise ValueError("Vocabulary size exceeds expected maximum size.")
  990. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  991. added_vocab = tokenizer.get_added_vocab()
  992. for token_id in range(vocab_size):
  993. token_text = reverse_vocab[token_id].encode('utf-8')
  994. # replace "\x00" to string with length > 0
  995. if token_text == b"\x00":
  996. toktype = gguf.TokenType.BYTE # special
  997. token_text = f"<{token_text}>".encode('utf-8')
  998. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  999. toktype = gguf.TokenType.BYTE # special
  1000. elif reverse_vocab[token_id] in added_vocab:
  1001. if tokenizer.added_tokens_decoder[token_id].special:
  1002. toktype = gguf.TokenType.CONTROL
  1003. else:
  1004. toktype = gguf.TokenType.USER_DEFINED
  1005. else:
  1006. toktype = gguf.TokenType.NORMAL
  1007. tokens.append(token_text)
  1008. toktypes.append(toktype)
  1009. self.gguf_writer.add_tokenizer_model("llama")
  1010. self.gguf_writer.add_tokenizer_pre("default")
  1011. self.gguf_writer.add_token_list(tokens)
  1012. self.gguf_writer.add_token_types(toktypes)
  1013. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1014. special_vocab.add_to_gguf(self.gguf_writer)
  1015. def set_gguf_parameters(self):
  1016. block_count = self.hparams["num_hidden_layers"]
  1017. head_count = self.hparams["num_attention_heads"]
  1018. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1019. ctx_length = 0
  1020. if "max_sequence_length" in self.hparams:
  1021. ctx_length = self.hparams["max_sequence_length"]
  1022. elif "max_position_embeddings" in self.hparams:
  1023. ctx_length = self.hparams["max_position_embeddings"]
  1024. elif "model_max_length" in self.hparams:
  1025. ctx_length = self.hparams["model_max_length"]
  1026. else:
  1027. raise ValueError("gguf: can not find ctx length parameter.")
  1028. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1029. self.gguf_writer.add_context_length(ctx_length)
  1030. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1031. self.gguf_writer.add_block_count(block_count)
  1032. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1033. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1034. self.gguf_writer.add_head_count(head_count)
  1035. self.gguf_writer.add_head_count_kv(head_count_kv)
  1036. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1037. self.gguf_writer.add_file_type(self.ftype)
  1038. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1039. if self.hparams["rope_scaling"].get("type") == "linear":
  1040. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1041. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1042. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1043. del bid # unused
  1044. head_count = self.hparams["num_attention_heads"]
  1045. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1046. # HF models permute some of the tensors, so we need to undo that
  1047. if name.endswith("q_proj.weight"):
  1048. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1049. if name.endswith("k_proj.weight"):
  1050. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1051. return [(self.map_tensor_name(name), data_torch)]
  1052. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1053. if n_kv_head is not None and n_head != n_kv_head:
  1054. n_head //= n_kv_head
  1055. return (
  1056. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1057. .swapaxes(1, 2)
  1058. .reshape(weights.shape)
  1059. )
  1060. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1061. class FalconModel(Model):
  1062. model_arch = gguf.MODEL_ARCH.FALCON
  1063. def set_gguf_parameters(self):
  1064. block_count = self.hparams.get("num_hidden_layers")
  1065. if block_count is None:
  1066. block_count = self.hparams["n_layer"] # old name
  1067. n_head = self.hparams.get("num_attention_heads")
  1068. if n_head is None:
  1069. n_head = self.hparams["n_head"] # old name
  1070. n_head_kv = self.hparams.get("num_kv_heads")
  1071. if n_head_kv is None:
  1072. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1073. self.gguf_writer.add_context_length(2048) # not in config.json
  1074. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1075. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1076. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1077. self.gguf_writer.add_block_count(block_count)
  1078. self.gguf_writer.add_head_count(n_head)
  1079. self.gguf_writer.add_head_count_kv(n_head_kv)
  1080. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1081. self.gguf_writer.add_file_type(self.ftype)
  1082. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1083. del bid # unused
  1084. # QKV tensor transform
  1085. # The original query_key_value tensor contains n_head_kv "kv groups",
  1086. # each consisting of n_head/n_head_kv query weights followed by one key
  1087. # and one value weight (shared by all query heads in the kv group).
  1088. # This layout makes it a big pain to work with in GGML.
  1089. # So we rearrange them here,, so that we have n_head query weights
  1090. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1091. # in contiguous fashion.
  1092. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1093. if "query_key_value" in name:
  1094. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1095. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1096. head_dim = self.hparams["hidden_size"] // n_head
  1097. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1098. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1099. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1100. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1101. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1102. return [(self.map_tensor_name(name), data_torch)]
  1103. @Model.register("GPTBigCodeForCausalLM")
  1104. class StarCoderModel(Model):
  1105. model_arch = gguf.MODEL_ARCH.STARCODER
  1106. def set_gguf_parameters(self):
  1107. block_count = self.hparams["n_layer"]
  1108. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1109. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1110. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1111. self.gguf_writer.add_block_count(block_count)
  1112. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1113. self.gguf_writer.add_head_count_kv(1)
  1114. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1115. self.gguf_writer.add_file_type(self.ftype)
  1116. @Model.register("GPTRefactForCausalLM")
  1117. class RefactModel(Model):
  1118. model_arch = gguf.MODEL_ARCH.REFACT
  1119. def set_vocab(self):
  1120. super().set_vocab()
  1121. # TODO: how to determine special FIM tokens automatically?
  1122. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1123. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1124. special_vocab._set_special_token("prefix", 1)
  1125. special_vocab._set_special_token("suffix", 3)
  1126. special_vocab._set_special_token("middle", 2)
  1127. special_vocab.chat_template = None # do not add it twice
  1128. special_vocab.add_to_gguf(self.gguf_writer)
  1129. def set_gguf_parameters(self):
  1130. hidden_dim = self.hparams["n_embd"]
  1131. inner_dim = 4 * hidden_dim
  1132. hidden_dim = int(2 * inner_dim / 3)
  1133. multiple_of = 256
  1134. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1135. block_count = self.hparams["n_layer"]
  1136. # refact uses Alibi. So this is from config.json which might be used by training.
  1137. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1138. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1139. self.gguf_writer.add_feed_forward_length(ff_dim)
  1140. self.gguf_writer.add_block_count(block_count)
  1141. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1142. self.gguf_writer.add_head_count_kv(1)
  1143. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1144. self.gguf_writer.add_file_type(self.ftype)
  1145. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1146. hidden_dim = self.hparams["n_embd"]
  1147. inner_dim = 4 * hidden_dim
  1148. hidden_dim = int(2 * inner_dim / 3)
  1149. multiple_of = 256
  1150. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1151. n_head = self.hparams["n_head"]
  1152. n_head_kv = 1
  1153. head_dim = self.hparams["n_embd"] // n_head
  1154. tensors: list[tuple[str, Tensor]] = []
  1155. if bid is not None:
  1156. if name == f"transformer.h.{bid}.attn.kv.weight":
  1157. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1158. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1159. elif name == f"transformer.h.{bid}.attn.q.weight":
  1160. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1161. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1162. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1163. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1164. if len(tensors) == 0:
  1165. tensors.append((self.map_tensor_name(name), data_torch))
  1166. return tensors
  1167. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1168. class StableLMModel(Model):
  1169. model_arch = gguf.MODEL_ARCH.STABLELM
  1170. def set_vocab(self):
  1171. if (self.dir_model / "tokenizer.json").is_file():
  1172. self._set_vocab_gpt2()
  1173. else:
  1174. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1175. self._set_vocab_qwen()
  1176. def set_gguf_parameters(self):
  1177. hparams = self.hparams
  1178. block_count = hparams["num_hidden_layers"]
  1179. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1180. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1181. self.gguf_writer.add_block_count(block_count)
  1182. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1183. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1184. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1185. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1186. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1187. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1188. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1189. self.gguf_writer.add_file_type(self.ftype)
  1190. _q_norms: list[dict[str, Tensor]] | None = None
  1191. _k_norms: list[dict[str, Tensor]] | None = None
  1192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1193. n_head = self.hparams["num_attention_heads"]
  1194. n_kv_head = self.hparams["num_key_value_heads"]
  1195. if name.find("q_layernorm.norms") != -1:
  1196. assert bid is not None
  1197. if self._q_norms is None:
  1198. self._q_norms = [{} for _ in range(self.block_count)]
  1199. self._q_norms[bid][name] = data_torch
  1200. if len(self._q_norms[bid]) >= n_head:
  1201. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1202. else:
  1203. return []
  1204. if name.find("k_layernorm.norms") != -1:
  1205. assert bid is not None
  1206. if self._k_norms is None:
  1207. self._k_norms = [{} for _ in range(self.block_count)]
  1208. self._k_norms[bid][name] = data_torch
  1209. if len(self._k_norms[bid]) >= n_kv_head:
  1210. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1211. else:
  1212. return []
  1213. return [(self.map_tensor_name(name), data_torch)]
  1214. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1215. datas: list[Tensor] = []
  1216. # extract the norms in order
  1217. for xid in range(n_head):
  1218. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1219. datas.append(norms[ename])
  1220. del norms[ename]
  1221. data_torch = torch.stack(datas, dim=0)
  1222. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1223. new_name = self.map_tensor_name(merged_name)
  1224. return [(new_name, data_torch)]
  1225. def prepare_tensors(self):
  1226. super().prepare_tensors()
  1227. if self._q_norms is not None or self._k_norms is not None:
  1228. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1229. norms = (
  1230. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1231. ) + (
  1232. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1233. )
  1234. if len(norms) > 0:
  1235. raise ValueError(f"Unprocessed norms: {norms}")
  1236. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1237. class LlamaModel(Model):
  1238. model_arch = gguf.MODEL_ARCH.LLAMA
  1239. def set_vocab(self):
  1240. try:
  1241. self._set_vocab_sentencepiece()
  1242. except FileNotFoundError:
  1243. try:
  1244. self._set_vocab_llama_hf()
  1245. except (FileNotFoundError, TypeError):
  1246. # Llama 3
  1247. self._set_vocab_gpt2()
  1248. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1249. if self.hparams.get("vocab_size", 32000) == 32016:
  1250. special_vocab = gguf.SpecialVocab(
  1251. self.dir_model, load_merges=False,
  1252. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1253. )
  1254. special_vocab._set_special_token("prefix", 32007)
  1255. special_vocab._set_special_token("suffix", 32008)
  1256. special_vocab._set_special_token("middle", 32009)
  1257. special_vocab._set_special_token("eot", 32010)
  1258. special_vocab.add_to_gguf(self.gguf_writer)
  1259. def set_gguf_parameters(self):
  1260. super().set_gguf_parameters()
  1261. hparams = self.hparams
  1262. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1263. if "head_dim" in hparams:
  1264. rope_dim = hparams["head_dim"]
  1265. else:
  1266. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1267. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1268. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1269. if self.hparams["rope_scaling"].get("type") == "linear":
  1270. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1271. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1272. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1273. if tokenizer_config_file.is_file():
  1274. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1275. tokenizer_config_json = json.load(f)
  1276. if "add_prefix_space" in tokenizer_config_json:
  1277. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1278. # Apply to granite small models only
  1279. if self.hparams.get("vocab_size", 32000) == 49152:
  1280. self.gguf_writer.add_add_bos_token(False)
  1281. @staticmethod
  1282. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1283. if n_head_kv is not None and n_head != n_head_kv:
  1284. n_head = n_head_kv
  1285. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1286. .swapaxes(1, 2)
  1287. .reshape(weights.shape))
  1288. _experts: list[dict[str, Tensor]] | None = None
  1289. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1290. n_head = self.hparams["num_attention_heads"]
  1291. n_kv_head = self.hparams.get("num_key_value_heads")
  1292. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1293. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1294. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1295. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1296. # process the experts separately
  1297. if name.find("block_sparse_moe.experts") != -1:
  1298. n_experts = self.hparams["num_local_experts"]
  1299. assert bid is not None
  1300. if self._experts is None:
  1301. self._experts = [{} for _ in range(self.block_count)]
  1302. self._experts[bid][name] = data_torch
  1303. if len(self._experts[bid]) >= n_experts * 3:
  1304. tensors: list[tuple[str, Tensor]] = []
  1305. # merge the experts into a single 3d tensor
  1306. for wid in ["w1", "w2", "w3"]:
  1307. datas: list[Tensor] = []
  1308. for xid in range(n_experts):
  1309. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1310. datas.append(self._experts[bid][ename])
  1311. del self._experts[bid][ename]
  1312. data_torch = torch.stack(datas, dim=0)
  1313. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1314. new_name = self.map_tensor_name(merged_name)
  1315. tensors.append((new_name, data_torch))
  1316. return tensors
  1317. else:
  1318. return []
  1319. return [(self.map_tensor_name(name), data_torch)]
  1320. def prepare_tensors(self):
  1321. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1322. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1323. base = self.hparams.get("rope_theta", 10000.0)
  1324. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1325. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1326. factor = rope_scaling.get("factor", 8.0)
  1327. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1328. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1329. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1330. low_freq_wavelen = old_context_len / low_freq_factor
  1331. high_freq_wavelen = old_context_len / high_freq_factor
  1332. assert low_freq_wavelen != high_freq_wavelen
  1333. rope_factors = []
  1334. for freq in freqs:
  1335. wavelen = 2 * math.pi / freq
  1336. if wavelen < high_freq_wavelen:
  1337. rope_factors.append(1)
  1338. elif wavelen > low_freq_wavelen:
  1339. rope_factors.append(factor)
  1340. else:
  1341. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1342. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1343. if not self.is_lora:
  1344. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1345. super().prepare_tensors()
  1346. if self._experts is not None:
  1347. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1348. experts = [k for d in self._experts for k in d.keys()]
  1349. if len(experts) > 0:
  1350. raise ValueError(f"Unprocessed experts: {experts}")
  1351. @Model.register("BitnetForCausalLM")
  1352. class BitnetModel(Model):
  1353. model_arch = gguf.MODEL_ARCH.BITNET
  1354. def set_vocab(self):
  1355. self._set_vocab_sentencepiece()
  1356. def set_gguf_parameters(self):
  1357. super().set_gguf_parameters()
  1358. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1359. self.gguf_writer.add_rope_scaling_factor(1.0)
  1360. def weight_quant(self, weight: Tensor) -> Tensor:
  1361. dtype = weight.dtype
  1362. weight = weight.float()
  1363. scale = weight.abs().mean().clamp(min=1e-5)
  1364. iscale = 1 / scale
  1365. # TODO: multiply by the scale directly instead of inverting it twice
  1366. # (this is also unnecessarily doubly inverted upstream)
  1367. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1368. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1369. return result.type(dtype)
  1370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1371. new_name = self.map_tensor_name(name)
  1372. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1373. gguf.MODEL_TENSOR.ATTN_Q,
  1374. gguf.MODEL_TENSOR.ATTN_K,
  1375. gguf.MODEL_TENSOR.ATTN_V,
  1376. gguf.MODEL_TENSOR.ATTN_OUT,
  1377. gguf.MODEL_TENSOR.FFN_UP,
  1378. gguf.MODEL_TENSOR.FFN_DOWN,
  1379. gguf.MODEL_TENSOR.FFN_GATE,
  1380. ]):
  1381. # transform weight into 1/0/-1 (in fp32)
  1382. data_torch = self.weight_quant(data_torch)
  1383. yield (new_name, data_torch)
  1384. @Model.register("GrokForCausalLM")
  1385. class GrokModel(Model):
  1386. model_arch = gguf.MODEL_ARCH.GROK
  1387. def set_vocab(self):
  1388. self._set_vocab_sentencepiece()
  1389. def __init__(self, *args, **kwargs):
  1390. super().__init__(*args, **kwargs)
  1391. def set_gguf_parameters(self):
  1392. super().set_gguf_parameters()
  1393. _experts: list[dict[str, Tensor]] | None = None
  1394. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1395. # process the experts separately
  1396. if name.find(".moe.") != -1:
  1397. n_experts = self.hparams["num_local_experts"]
  1398. assert bid is not None
  1399. if self._experts is None:
  1400. self._experts = [{} for _ in range(self.block_count)]
  1401. self._experts[bid][name] = data_torch
  1402. if len(self._experts[bid]) >= n_experts * 3:
  1403. tensors: list[tuple[str, Tensor]] = []
  1404. # merge the experts into a single 3d tensor
  1405. for wid in ["linear", "linear_1", "linear_v"]:
  1406. datas: list[Tensor] = []
  1407. for xid in range(n_experts):
  1408. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1409. datas.append(self._experts[bid][ename])
  1410. del self._experts[bid][ename]
  1411. data_torch = torch.stack(datas, dim=0)
  1412. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1413. new_name = self.map_tensor_name(merged_name)
  1414. tensors.append((new_name, data_torch))
  1415. return tensors
  1416. else:
  1417. return []
  1418. return [(self.map_tensor_name(name), data_torch)]
  1419. @Model.register("DbrxForCausalLM")
  1420. class DbrxModel(Model):
  1421. model_arch = gguf.MODEL_ARCH.DBRX
  1422. def set_gguf_parameters(self):
  1423. ffn_config = self.hparams["ffn_config"]
  1424. attn_config = self.hparams["attn_config"]
  1425. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1426. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1427. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1428. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1429. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1430. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1431. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1432. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1433. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1434. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1435. self.gguf_writer.add_layer_norm_eps(1e-5)
  1436. self.gguf_writer.add_file_type(self.ftype)
  1437. logger.info(f"gguf: file type = {self.ftype}")
  1438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1439. del bid # unused
  1440. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1441. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1442. n_embd = self.hparams["d_model"]
  1443. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1444. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1445. # But llama.cpp moe graph works differently
  1446. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1447. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1448. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1449. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1450. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1451. experts = False
  1452. for exp_tensor_name in exp_tensor_names.keys():
  1453. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1454. experts = True
  1455. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1456. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1457. data_torch = data_torch.permute(*permute_tensor)
  1458. break
  1459. # map tensor names
  1460. # In MoE models the ffn tensors are typically most of the model weights,
  1461. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1462. # Every other model has the weight names ending in .weight,
  1463. # let's assume that is the convention which is not the case for dbrx:
  1464. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1465. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1466. return [(new_name, data_torch)]
  1467. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1468. del name, new_name, bid # unused
  1469. return n_dims > 1
  1470. @Model.register("MiniCPMForCausalLM")
  1471. class MiniCPMModel(Model):
  1472. model_arch = gguf.MODEL_ARCH.MINICPM
  1473. def set_gguf_parameters(self):
  1474. block_count = self.hparams["num_hidden_layers"]
  1475. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1476. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1477. self.gguf_writer.add_block_count(block_count)
  1478. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1479. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1480. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1481. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1482. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1483. self.gguf_writer.add_file_type(self.ftype)
  1484. def set_vocab(self):
  1485. self._set_vocab_llama_hf()
  1486. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1487. if n_kv_head is not None and n_head != n_kv_head:
  1488. n_head //= n_kv_head
  1489. return (
  1490. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1491. .swapaxes(1, 2)
  1492. .reshape(weights.shape)
  1493. )
  1494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1495. del bid # unused
  1496. n_head = self.hparams["num_attention_heads"]
  1497. n_kv_head = self.hparams.get("num_key_value_heads")
  1498. # HF models permute some of the tensors, so we need to undo that
  1499. if name.endswith(("q_proj.weight")):
  1500. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1501. if name.endswith(("k_proj.weight")):
  1502. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1503. return [(self.map_tensor_name(name), data_torch)]
  1504. @Model.register("MiniCPM3ForCausalLM")
  1505. class MiniCPM3Model(Model):
  1506. model_arch = gguf.MODEL_ARCH.MINICPM3
  1507. def set_gguf_parameters(self):
  1508. hparams = self.hparams
  1509. rope_dims = hparams["qk_rope_head_dim"]
  1510. self.gguf_writer.add_file_type(self.ftype)
  1511. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1512. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1513. self.gguf_writer.add_block_count(self.block_count)
  1514. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1515. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1516. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1517. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1518. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1519. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1520. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1521. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1522. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1523. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1524. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1525. if rope_scaling is None:
  1526. return
  1527. long_factors = rope_scaling.get('long_factor', None)
  1528. short_factors = rope_scaling.get('short_factor', None)
  1529. if long_factors is None or short_factors is None:
  1530. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1531. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1532. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1533. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1534. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1535. def set_vocab(self):
  1536. self._set_vocab_llama_hf()
  1537. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1538. if n_kv_head is not None and n_head != n_kv_head:
  1539. n_head //= n_kv_head
  1540. return (
  1541. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1542. .swapaxes(1, 2)
  1543. .reshape(weights.shape)
  1544. )
  1545. @Model.register("QWenLMHeadModel")
  1546. class QwenModel(Model):
  1547. model_arch = gguf.MODEL_ARCH.QWEN
  1548. @staticmethod
  1549. def token_bytes_to_string(b):
  1550. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1551. byte_encoder = bytes_to_unicode()
  1552. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1553. @staticmethod
  1554. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1555. parts = [bytes([b]) for b in token]
  1556. while True:
  1557. min_idx = None
  1558. min_rank = None
  1559. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1560. rank = mergeable_ranks.get(pair[0] + pair[1])
  1561. if rank is not None and (min_rank is None or rank < min_rank):
  1562. min_idx = i
  1563. min_rank = rank
  1564. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1565. break
  1566. assert min_idx is not None
  1567. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1568. return parts
  1569. def set_vocab(self):
  1570. self._set_vocab_qwen()
  1571. def set_gguf_parameters(self):
  1572. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1573. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1574. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1575. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1576. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1577. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1578. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1579. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1580. self.gguf_writer.add_file_type(self.ftype)
  1581. @Model.register("Qwen2ForCausalLM")
  1582. class Qwen2Model(Model):
  1583. model_arch = gguf.MODEL_ARCH.QWEN2
  1584. def set_vocab(self):
  1585. try:
  1586. self._set_vocab_sentencepiece()
  1587. except FileNotFoundError:
  1588. self._set_vocab_gpt2()
  1589. @Model.register("Qwen2MoeForCausalLM")
  1590. class Qwen2MoeModel(Model):
  1591. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1592. def set_gguf_parameters(self):
  1593. super().set_gguf_parameters()
  1594. if (n_experts := self.hparams.get("num_experts")) is not None:
  1595. self.gguf_writer.add_expert_count(n_experts)
  1596. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1597. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1598. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1599. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1600. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1601. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1602. _experts: list[dict[str, Tensor]] | None = None
  1603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1604. # process the experts separately
  1605. if name.find("experts") != -1:
  1606. n_experts = self.hparams["num_experts"]
  1607. assert bid is not None
  1608. if self._experts is None:
  1609. self._experts = [{} for _ in range(self.block_count)]
  1610. self._experts[bid][name] = data_torch
  1611. if len(self._experts[bid]) >= n_experts * 3:
  1612. tensors: list[tuple[str, Tensor]] = []
  1613. # merge the experts into a single 3d tensor
  1614. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1615. datas: list[Tensor] = []
  1616. for xid in range(n_experts):
  1617. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1618. datas.append(self._experts[bid][ename])
  1619. del self._experts[bid][ename]
  1620. data_torch = torch.stack(datas, dim=0)
  1621. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1622. new_name = self.map_tensor_name(merged_name)
  1623. tensors.append((new_name, data_torch))
  1624. return tensors
  1625. else:
  1626. return []
  1627. return [(self.map_tensor_name(name), data_torch)]
  1628. def prepare_tensors(self):
  1629. super().prepare_tensors()
  1630. if self._experts is not None:
  1631. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1632. experts = [k for d in self._experts for k in d.keys()]
  1633. if len(experts) > 0:
  1634. raise ValueError(f"Unprocessed experts: {experts}")
  1635. @Model.register("GPT2LMHeadModel")
  1636. class GPT2Model(Model):
  1637. model_arch = gguf.MODEL_ARCH.GPT2
  1638. def set_gguf_parameters(self):
  1639. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1640. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1641. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1642. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1643. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1644. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1645. self.gguf_writer.add_file_type(self.ftype)
  1646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1647. del bid # unused
  1648. tensors: list[tuple[str, Tensor]] = []
  1649. # we don't need these
  1650. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1651. return tensors
  1652. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1653. data_torch = data_torch.transpose(1, 0)
  1654. new_name = self.map_tensor_name(name)
  1655. tensors.append((new_name, data_torch))
  1656. # note: GPT2 output is tied to (same as) wte in original model
  1657. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1658. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1659. return tensors
  1660. @Model.register("PhiForCausalLM")
  1661. class Phi2Model(Model):
  1662. model_arch = gguf.MODEL_ARCH.PHI2
  1663. def set_gguf_parameters(self):
  1664. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1665. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1666. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1667. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1668. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1669. self.gguf_writer.add_embedding_length(n_embd)
  1670. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1671. self.gguf_writer.add_block_count(block_count)
  1672. self.gguf_writer.add_head_count(n_head)
  1673. self.gguf_writer.add_head_count_kv(n_head)
  1674. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1675. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1676. self.gguf_writer.add_file_type(self.ftype)
  1677. self.gguf_writer.add_add_bos_token(False)
  1678. @Model.register("Phi3ForCausalLM")
  1679. class Phi3MiniModel(Model):
  1680. model_arch = gguf.MODEL_ARCH.PHI3
  1681. def set_vocab(self):
  1682. from sentencepiece import SentencePieceProcessor
  1683. tokenizer_path = self.dir_model / 'tokenizer.model'
  1684. if not tokenizer_path.is_file():
  1685. raise ValueError(f'Error: Missing {tokenizer_path}')
  1686. tokenizer = SentencePieceProcessor()
  1687. tokenizer.LoadFromFile(str(tokenizer_path))
  1688. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1689. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1690. scores: list[float] = [-10000.0] * vocab_size
  1691. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1692. for token_id in range(tokenizer.vocab_size()):
  1693. piece = tokenizer.IdToPiece(token_id)
  1694. text = piece.encode("utf-8")
  1695. score = tokenizer.GetScore(token_id)
  1696. toktype = SentencePieceTokenTypes.NORMAL
  1697. if tokenizer.IsUnknown(token_id):
  1698. toktype = SentencePieceTokenTypes.UNKNOWN
  1699. elif tokenizer.IsControl(token_id):
  1700. toktype = SentencePieceTokenTypes.CONTROL
  1701. elif tokenizer.IsUnused(token_id):
  1702. toktype = SentencePieceTokenTypes.UNUSED
  1703. elif tokenizer.IsByte(token_id):
  1704. toktype = SentencePieceTokenTypes.BYTE
  1705. tokens[token_id] = text
  1706. scores[token_id] = score
  1707. toktypes[token_id] = toktype
  1708. added_tokens_file = self.dir_model / 'added_tokens.json'
  1709. if added_tokens_file.is_file():
  1710. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1711. added_tokens_json = json.load(f)
  1712. for key in added_tokens_json:
  1713. token_id = added_tokens_json[key]
  1714. if token_id >= vocab_size:
  1715. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1716. continue
  1717. tokens[token_id] = key.encode("utf-8")
  1718. scores[token_id] = -1000.0
  1719. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1720. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1721. if tokenizer_config_file.is_file():
  1722. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1723. tokenizer_config_json = json.load(f)
  1724. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1725. for token_id, foken_data in added_tokens_decoder.items():
  1726. token_id = int(token_id)
  1727. token = foken_data["content"].encode("utf-8")
  1728. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1729. if tokens[token_id] != token:
  1730. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1731. tokens[token_id] = token
  1732. scores[token_id] = -1000.0
  1733. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1734. if foken_data.get("special"):
  1735. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1736. tokenizer_file = self.dir_model / 'tokenizer.json'
  1737. if tokenizer_file.is_file():
  1738. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1739. tokenizer_json = json.load(f)
  1740. added_tokens = tokenizer_json.get("added_tokens", [])
  1741. for foken_data in added_tokens:
  1742. token_id = int(foken_data["id"])
  1743. token = foken_data["content"].encode("utf-8")
  1744. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1745. if tokens[token_id] != token:
  1746. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1747. tokens[token_id] = token
  1748. scores[token_id] = -1000.0
  1749. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1750. if foken_data.get("special"):
  1751. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1752. self.gguf_writer.add_tokenizer_model("llama")
  1753. self.gguf_writer.add_tokenizer_pre("default")
  1754. self.gguf_writer.add_token_list(tokens)
  1755. self.gguf_writer.add_token_scores(scores)
  1756. self.gguf_writer.add_token_types(toktypes)
  1757. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1758. special_vocab.add_to_gguf(self.gguf_writer)
  1759. def set_gguf_parameters(self):
  1760. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1761. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1762. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1763. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1764. rms_eps = self.find_hparam(["rms_norm_eps"])
  1765. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1766. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1767. rope_dims = n_embd // n_head
  1768. self.gguf_writer.add_context_length(max_pos_embds)
  1769. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1770. self.gguf_writer.add_embedding_length(n_embd)
  1771. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1772. self.gguf_writer.add_block_count(block_count)
  1773. self.gguf_writer.add_head_count(n_head)
  1774. self.gguf_writer.add_head_count_kv(n_head_kv)
  1775. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1776. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1777. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1778. self.gguf_writer.add_file_type(self.ftype)
  1779. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1780. # write rope scaling for long context (128k) model
  1781. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1782. if rope_scaling is None:
  1783. return
  1784. scale = max_pos_embds / orig_max_pos_embds
  1785. rope_scaling_type = rope_scaling.get('type', '').lower()
  1786. if len(rope_scaling_type) == 0:
  1787. raise KeyError('Missing the required key rope_scaling.type')
  1788. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1789. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1790. elif rope_scaling_type == 'yarn':
  1791. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1792. else:
  1793. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1794. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1795. long_factors = rope_scaling.get('long_factor', None)
  1796. short_factors = rope_scaling.get('short_factor', None)
  1797. if long_factors is None or short_factors is None:
  1798. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1799. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1800. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1801. if not self.is_lora:
  1802. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1803. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1804. @Model.register("PlamoForCausalLM")
  1805. class PlamoModel(Model):
  1806. model_arch = gguf.MODEL_ARCH.PLAMO
  1807. def set_vocab(self):
  1808. self._set_vocab_sentencepiece()
  1809. def set_gguf_parameters(self):
  1810. hparams = self.hparams
  1811. block_count = hparams["num_hidden_layers"]
  1812. self.gguf_writer.add_context_length(4096) # not in config.json
  1813. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1814. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1815. self.gguf_writer.add_block_count(block_count)
  1816. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1817. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1818. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1819. self.gguf_writer.add_file_type(self.ftype)
  1820. def shuffle_attn_q_weight(self, data_torch):
  1821. assert data_torch.size() == (5120, 5120)
  1822. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1823. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1824. data_torch = torch.reshape(data_torch, (5120, 5120))
  1825. return data_torch
  1826. def shuffle_attn_output_weight(self, data_torch):
  1827. assert data_torch.size() == (5120, 5120)
  1828. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1829. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1830. data_torch = torch.reshape(data_torch, (5120, 5120))
  1831. return data_torch
  1832. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1833. del bid # unused
  1834. new_name = self.map_tensor_name(name)
  1835. # shuffle for broadcasting of gqa in ggml_mul_mat
  1836. if new_name.endswith("attn_q.weight"):
  1837. data_torch = self.shuffle_attn_q_weight(data_torch)
  1838. elif new_name.endswith("attn_output.weight"):
  1839. data_torch = self.shuffle_attn_output_weight(data_torch)
  1840. return [(new_name, data_torch)]
  1841. @Model.register("CodeShellForCausalLM")
  1842. class CodeShellModel(Model):
  1843. model_arch = gguf.MODEL_ARCH.CODESHELL
  1844. def set_gguf_parameters(self):
  1845. block_count = self.hparams["n_layer"]
  1846. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1847. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1848. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1849. self.gguf_writer.add_block_count(block_count)
  1850. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1851. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1852. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1853. self.gguf_writer.add_file_type(self.ftype)
  1854. self.gguf_writer.add_rope_freq_base(10000.0)
  1855. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1856. self.gguf_writer.add_rope_scaling_factor(1.0)
  1857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1858. del bid # unused
  1859. new_name = self.map_tensor_name(name)
  1860. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1861. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1862. assert self.tensor_names is not None
  1863. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1864. # copy tok_embd.weight to output.weight
  1865. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1866. return tensors
  1867. @Model.register("InternLM2ForCausalLM")
  1868. class InternLM2Model(Model):
  1869. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1870. def set_vocab(self):
  1871. # (TODO): Is there a better way?
  1872. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1873. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1874. # recognized as an empty string in C++.
  1875. from sentencepiece import SentencePieceProcessor
  1876. from sentencepiece import sentencepiece_model_pb2 as model
  1877. tokenizer_path = self.dir_model / 'tokenizer.model'
  1878. tokens: list[bytes] = []
  1879. scores: list[float] = []
  1880. toktypes: list[int] = []
  1881. if not tokenizer_path.is_file():
  1882. logger.error(f'Error: Missing {tokenizer_path}')
  1883. sys.exit(1)
  1884. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1885. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1886. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1887. tokenizer = SentencePieceProcessor()
  1888. tokenizer.LoadFromFile(str(tokenizer_path))
  1889. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1890. for token_id in range(vocab_size):
  1891. piece = tokenizer.IdToPiece(token_id)
  1892. text = piece.encode("utf-8")
  1893. score = tokenizer.GetScore(token_id)
  1894. if text == b"\x00":
  1895. # (TODO): fixme
  1896. # Hack here and replace the \x00 characters.
  1897. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1898. text = "🐉".encode("utf-8")
  1899. toktype = SentencePieceTokenTypes.NORMAL
  1900. if tokenizer.IsUnknown(token_id):
  1901. toktype = SentencePieceTokenTypes.UNKNOWN
  1902. elif tokenizer.IsControl(token_id):
  1903. toktype = SentencePieceTokenTypes.CONTROL
  1904. elif tokenizer.IsUnused(token_id):
  1905. toktype = SentencePieceTokenTypes.UNUSED
  1906. elif tokenizer.IsByte(token_id):
  1907. toktype = SentencePieceTokenTypes.BYTE
  1908. # take care of ununsed raw token
  1909. if piece.startswith('[UNUSED'):
  1910. toktype = SentencePieceTokenTypes.UNUSED
  1911. tokens.append(text)
  1912. scores.append(score)
  1913. toktypes.append(toktype)
  1914. added_tokens_file = self.dir_model / 'added_tokens.json'
  1915. if added_tokens_file.is_file():
  1916. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1917. added_tokens_json = json.load(f)
  1918. for key in added_tokens_json:
  1919. tokens.append(key.encode("utf-8"))
  1920. scores.append(-1000.0)
  1921. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1922. chat_eos_token = '<|im_end|>'
  1923. chat_eos_token_id = None
  1924. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1925. if tokenizer_config_file.is_file():
  1926. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1927. tokenizer_config_json = json.load(f)
  1928. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1929. for token_id, foken_data in added_tokens_decoder.items():
  1930. token_id = int(token_id)
  1931. token = foken_data["content"]
  1932. if token == chat_eos_token:
  1933. chat_eos_token_id = token_id
  1934. token = token.encode("utf-8")
  1935. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1936. if tokens[token_id] != token:
  1937. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1938. tokens[token_id] = token
  1939. scores[token_id] = -1000.0
  1940. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1941. if foken_data.get("special"):
  1942. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1943. tokenizer_file = self.dir_model / 'tokenizer.json'
  1944. if tokenizer_file.is_file():
  1945. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1946. tokenizer_json = json.load(f)
  1947. added_tokens = tokenizer_json.get("added_tokens", [])
  1948. for foken_data in added_tokens:
  1949. token_id = int(foken_data["id"])
  1950. token = foken_data["content"]
  1951. if token == chat_eos_token:
  1952. chat_eos_token_id = token_id
  1953. token = token.encode("utf-8")
  1954. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1955. if tokens[token_id] != token:
  1956. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1957. tokens[token_id] = token
  1958. scores[token_id] = -1000.0
  1959. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1960. if foken_data.get("special"):
  1961. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1962. self.gguf_writer.add_tokenizer_model("llama")
  1963. self.gguf_writer.add_tokenizer_pre("default")
  1964. self.gguf_writer.add_token_list(tokens)
  1965. self.gguf_writer.add_token_scores(scores)
  1966. self.gguf_writer.add_token_types(toktypes)
  1967. self.gguf_writer.add_add_space_prefix(add_prefix)
  1968. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1969. old_eos = special_vocab.special_token_ids["eos"]
  1970. if chat_eos_token_id is not None:
  1971. # For the chat model, we replace the eos with '<|im_end|>'.
  1972. # TODO: this is a hack, should be fixed
  1973. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1974. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1975. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1976. " in chat mode so that the conversation can end normally.")
  1977. special_vocab.add_to_gguf(self.gguf_writer)
  1978. def set_gguf_parameters(self):
  1979. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1980. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1981. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1982. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1983. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1984. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1985. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1986. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1987. self.gguf_writer.add_file_type(self.ftype)
  1988. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1989. if self.hparams["rope_scaling"].get("type") == "linear":
  1990. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1991. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1992. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1993. num_heads = self.hparams["num_attention_heads"]
  1994. num_kv_heads = self.hparams["num_key_value_heads"]
  1995. n_embd = self.hparams["hidden_size"]
  1996. q_per_kv = num_heads // num_kv_heads
  1997. head_dim = n_embd // num_heads
  1998. num_groups = num_heads // q_per_kv
  1999. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2000. qkv = data_torch
  2001. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2002. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2003. # The model weights of q and k equire additional reshape.
  2004. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2005. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2006. v = v.reshape((-1, v.shape[-1]))
  2007. return [
  2008. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2009. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2010. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2011. ]
  2012. else:
  2013. return [(self.map_tensor_name(name), data_torch)]
  2014. @Model.register("BertModel", "CamembertModel")
  2015. class BertModel(Model):
  2016. model_arch = gguf.MODEL_ARCH.BERT
  2017. def __init__(self, *args, **kwargs):
  2018. super().__init__(*args, **kwargs)
  2019. self.vocab_size = None
  2020. def set_gguf_parameters(self):
  2021. super().set_gguf_parameters()
  2022. self.gguf_writer.add_causal_attention(False)
  2023. # get pooling path
  2024. pooling_path = None
  2025. module_path = self.dir_model / "modules.json"
  2026. if module_path.is_file():
  2027. with open(module_path, encoding="utf-8") as f:
  2028. modules = json.load(f)
  2029. for mod in modules:
  2030. if mod["type"] == "sentence_transformers.models.Pooling":
  2031. pooling_path = mod["path"]
  2032. break
  2033. # get pooling type
  2034. if pooling_path is not None:
  2035. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2036. pooling = json.load(f)
  2037. if pooling["pooling_mode_mean_tokens"]:
  2038. pooling_type = gguf.PoolingType.MEAN
  2039. elif pooling["pooling_mode_cls_token"]:
  2040. pooling_type = gguf.PoolingType.CLS
  2041. else:
  2042. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2043. self.gguf_writer.add_pooling_type(pooling_type)
  2044. def set_vocab(self):
  2045. tokens, toktypes, tokpre = self.get_vocab_base()
  2046. self.vocab_size = len(tokens)
  2047. # we need this to validate the size of the token_type embeddings
  2048. # though currently we are passing all zeros to the token_type embeddings
  2049. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2050. # convert to phantom space vocab
  2051. def phantom(tok):
  2052. if tok.startswith("[") and tok.endswith("]"):
  2053. return tok
  2054. if tok.startswith("##"):
  2055. return tok[2:]
  2056. return "\u2581" + tok
  2057. tokens = list(map(phantom, tokens))
  2058. # add vocab to gguf
  2059. self.gguf_writer.add_tokenizer_model("bert")
  2060. self.gguf_writer.add_tokenizer_pre(tokpre)
  2061. self.gguf_writer.add_token_list(tokens)
  2062. self.gguf_writer.add_token_types(toktypes)
  2063. # handle special tokens
  2064. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2065. special_vocab.add_to_gguf(self.gguf_writer)
  2066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2067. del bid # unused
  2068. # we are only using BERT for embeddings so we don't need the pooling layer
  2069. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2070. return [] # we don't need these
  2071. return [(self.map_tensor_name(name), data_torch)]
  2072. @Model.register("NomicBertModel")
  2073. class NomicBertModel(BertModel):
  2074. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2075. def __init__(self, *args, **kwargs):
  2076. super().__init__(*args, **kwargs)
  2077. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2078. self.hparams["n_ctx"] = 2048
  2079. # SwigLU activation
  2080. assert self.hparams["activation_function"] == "swiglu"
  2081. # this doesn't do anything in the HF version
  2082. assert self.hparams["causal"] is False
  2083. # no bias tensors
  2084. assert self.hparams["qkv_proj_bias"] is False
  2085. assert self.hparams["mlp_fc1_bias"] is False
  2086. assert self.hparams["mlp_fc2_bias"] is False
  2087. # norm at end of layer
  2088. assert self.hparams["prenorm"] is False
  2089. # standard RoPE
  2090. assert self.hparams["rotary_emb_fraction"] == 1.0
  2091. assert self.hparams["rotary_emb_interleaved"] is False
  2092. assert self.hparams["rotary_emb_scale_base"] is None
  2093. def set_gguf_parameters(self):
  2094. super().set_gguf_parameters()
  2095. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2096. @Model.register("XLMRobertaModel")
  2097. class XLMRobertaModel(BertModel):
  2098. model_arch = gguf.MODEL_ARCH.BERT
  2099. def __init__(self, *args, **kwargs):
  2100. super().__init__(*args, **kwargs)
  2101. # we need the pad_token_id to know how to chop down position_embd matrix
  2102. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2103. self._position_offset = 1 + pad_token_id
  2104. if "max_position_embeddings" in self.hparams:
  2105. self.hparams["max_position_embeddings"] -= self._position_offset
  2106. else:
  2107. self._position_offset = None
  2108. def set_vocab(self):
  2109. # to avoid TypeError: Descriptors cannot be created directly
  2110. # exception when importing sentencepiece_model_pb2
  2111. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2112. from sentencepiece import SentencePieceProcessor
  2113. from sentencepiece import sentencepiece_model_pb2 as model
  2114. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2115. if not tokenizer_path.is_file():
  2116. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2117. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2118. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2119. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2120. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2121. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2122. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2123. tokenizer = SentencePieceProcessor()
  2124. tokenizer.LoadFromFile(str(tokenizer_path))
  2125. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2126. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2127. scores: list[float] = [-10000.0] * vocab_size
  2128. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2129. for token_id in range(tokenizer.vocab_size()):
  2130. piece = tokenizer.IdToPiece(token_id)
  2131. text = piece.encode("utf-8")
  2132. score = tokenizer.GetScore(token_id)
  2133. toktype = SentencePieceTokenTypes.NORMAL
  2134. if tokenizer.IsUnknown(token_id):
  2135. toktype = SentencePieceTokenTypes.UNKNOWN
  2136. elif tokenizer.IsControl(token_id):
  2137. toktype = SentencePieceTokenTypes.CONTROL
  2138. elif tokenizer.IsUnused(token_id):
  2139. toktype = SentencePieceTokenTypes.UNUSED
  2140. elif tokenizer.IsByte(token_id):
  2141. toktype = SentencePieceTokenTypes.BYTE
  2142. tokens[token_id] = text
  2143. scores[token_id] = score
  2144. toktypes[token_id] = toktype
  2145. if vocab_size > len(tokens):
  2146. pad_count = vocab_size - len(tokens)
  2147. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2148. for i in range(1, pad_count + 1):
  2149. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2150. scores.append(-1000.0)
  2151. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2152. # realign tokens (see HF tokenizer code)
  2153. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2154. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2155. toktypes = [
  2156. SentencePieceTokenTypes.CONTROL,
  2157. SentencePieceTokenTypes.CONTROL,
  2158. SentencePieceTokenTypes.CONTROL,
  2159. SentencePieceTokenTypes.UNKNOWN,
  2160. ] + toktypes[3:-1]
  2161. self.gguf_writer.add_tokenizer_model("t5")
  2162. self.gguf_writer.add_tokenizer_pre("default")
  2163. self.gguf_writer.add_token_list(tokens)
  2164. self.gguf_writer.add_token_scores(scores)
  2165. self.gguf_writer.add_token_types(toktypes)
  2166. self.gguf_writer.add_add_space_prefix(add_prefix)
  2167. self.gguf_writer.add_token_type_count(1)
  2168. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2169. if precompiled_charsmap:
  2170. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2171. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2172. special_vocab.add_to_gguf(self.gguf_writer)
  2173. self.gguf_writer.add_add_bos_token(True)
  2174. self.gguf_writer.add_add_eos_token(True)
  2175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2176. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2177. if name == "embeddings.position_embeddings.weight":
  2178. if self._position_offset is not None:
  2179. data_torch = data_torch[self._position_offset:,:]
  2180. return super().modify_tensors(data_torch, name, bid)
  2181. @Model.register("GemmaForCausalLM")
  2182. class GemmaModel(Model):
  2183. model_arch = gguf.MODEL_ARCH.GEMMA
  2184. def set_vocab(self):
  2185. self._set_vocab_sentencepiece()
  2186. # TODO: these special tokens should be exported only for the CodeGemma family
  2187. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2188. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2189. special_vocab._set_special_token("prefix", 67)
  2190. special_vocab._set_special_token("suffix", 69)
  2191. special_vocab._set_special_token("middle", 68)
  2192. special_vocab._set_special_token("fsep", 70)
  2193. special_vocab._set_special_token("eot", 107)
  2194. special_vocab.chat_template = None # do not add it twice
  2195. special_vocab.add_to_gguf(self.gguf_writer)
  2196. self.gguf_writer.add_add_space_prefix(False)
  2197. def set_gguf_parameters(self):
  2198. hparams = self.hparams
  2199. block_count = hparams["num_hidden_layers"]
  2200. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2201. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2202. self.gguf_writer.add_block_count(block_count)
  2203. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2204. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2205. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2206. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2207. self.gguf_writer.add_key_length(hparams["head_dim"])
  2208. self.gguf_writer.add_value_length(hparams["head_dim"])
  2209. self.gguf_writer.add_file_type(self.ftype)
  2210. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2211. del bid # unused
  2212. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2213. # To prevent errors, skip loading lm_head.weight.
  2214. if name == "lm_head.weight":
  2215. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2216. return []
  2217. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2218. if name.endswith("norm.weight"):
  2219. data_torch = data_torch + 1
  2220. return [(self.map_tensor_name(name), data_torch)]
  2221. @Model.register("Gemma2ForCausalLM")
  2222. class Gemma2Model(Model):
  2223. model_arch = gguf.MODEL_ARCH.GEMMA2
  2224. def set_vocab(self):
  2225. self._set_vocab_sentencepiece()
  2226. self.gguf_writer.add_add_space_prefix(False)
  2227. def set_gguf_parameters(self):
  2228. hparams = self.hparams
  2229. block_count = hparams["num_hidden_layers"]
  2230. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2231. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2232. self.gguf_writer.add_block_count(block_count)
  2233. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2234. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2235. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2236. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2237. self.gguf_writer.add_key_length(hparams["head_dim"])
  2238. self.gguf_writer.add_value_length(hparams["head_dim"])
  2239. self.gguf_writer.add_file_type(self.ftype)
  2240. self.gguf_writer.add_attn_logit_softcapping(
  2241. self.hparams["attn_logit_softcapping"]
  2242. )
  2243. self.gguf_writer.add_final_logit_softcapping(
  2244. self.hparams["final_logit_softcapping"]
  2245. )
  2246. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2248. del bid # unused
  2249. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2250. # To prevent errors, skip loading lm_head.weight.
  2251. if name == "lm_head.weight":
  2252. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2253. return []
  2254. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2255. if name.endswith("norm.weight"):
  2256. data_torch = data_torch + 1
  2257. return [(self.map_tensor_name(name), data_torch)]
  2258. @Model.register("Starcoder2ForCausalLM")
  2259. class StarCoder2Model(Model):
  2260. model_arch = gguf.MODEL_ARCH.STARCODER2
  2261. @Model.register("Rwkv6ForCausalLM")
  2262. class Rwkv6Model(Model):
  2263. model_arch = gguf.MODEL_ARCH.RWKV6
  2264. def set_vocab(self):
  2265. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2266. vocab_size = self.hparams.get("vocab_size", 65536)
  2267. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2268. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2269. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2270. lines = f.readlines()
  2271. for line in lines:
  2272. parts = line.split(' ')
  2273. assert len(parts) >= 3
  2274. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2275. token = token.encode("utf-8") if isinstance(token, str) else token
  2276. assert isinstance(token, bytes)
  2277. assert len(token) == token_len
  2278. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2279. tokens.append(token_text.encode("utf-8"))
  2280. toktypes.append(gguf.TokenType.NORMAL)
  2281. remainder = vocab_size - len(tokens)
  2282. assert remainder >= 0
  2283. for i in range(len(tokens), vocab_size):
  2284. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2285. toktypes.append(gguf.TokenType.UNUSED)
  2286. self.gguf_writer.add_tokenizer_model("rwkv")
  2287. self.gguf_writer.add_token_list(tokens)
  2288. self.gguf_writer.add_token_types(toktypes)
  2289. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2290. special_vocab.add_to_gguf(self.gguf_writer)
  2291. def set_gguf_parameters(self):
  2292. block_count = self.hparams["num_hidden_layers"]
  2293. head_size = self.hparams["head_size"]
  2294. hidden_size = self.hparams["hidden_size"]
  2295. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2296. rescale_every_n_layers = self.hparams["rescale_every"]
  2297. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2298. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2299. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2300. # RWKV isn't context limited
  2301. self.gguf_writer.add_context_length(1048576)
  2302. self.gguf_writer.add_embedding_length(hidden_size)
  2303. self.gguf_writer.add_block_count(block_count)
  2304. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2305. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2306. self.gguf_writer.add_wkv_head_size(head_size)
  2307. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2308. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2309. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2310. self.gguf_writer.add_file_type(self.ftype)
  2311. # required by llama.cpp, unused
  2312. self.gguf_writer.add_head_count(0)
  2313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2314. new_name = self.map_tensor_name(name)
  2315. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2316. new_name += ".weight"
  2317. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2318. data_torch = data_torch.transpose(0, 1)
  2319. if new_name.endswith("time_mix_w2.weight"):
  2320. data_torch = data_torch.permute(0, 2, 1)
  2321. rescale_every_n_layers = self.hparams["rescale_every"]
  2322. if rescale_every_n_layers > 0:
  2323. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2324. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2325. yield (new_name, data_torch)
  2326. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2327. class MambaModel(Model):
  2328. model_arch = gguf.MODEL_ARCH.MAMBA
  2329. def set_vocab(self):
  2330. vocab_size = self.hparams["vocab_size"]
  2331. # Round vocab size to next multiple of 8
  2332. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2333. # pad using ceiling division
  2334. # ref: https://stackoverflow.com/a/17511341/22827863
  2335. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2336. self.hparams["vocab_size"] = vocab_size
  2337. if (self.dir_model / "tokenizer.json").is_file():
  2338. self._set_vocab_gpt2()
  2339. elif (self.dir_model / "tokenizer.model").is_file():
  2340. self._set_vocab_sentencepiece()
  2341. else:
  2342. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2343. self._set_vocab_builtin("gpt-neox", vocab_size)
  2344. def set_gguf_parameters(self):
  2345. d_model = self.find_hparam(["hidden_size", "d_model"])
  2346. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2347. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2348. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2349. # ceiling division
  2350. # ref: https://stackoverflow.com/a/17511341/22827863
  2351. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2352. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2353. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2354. use_dt_b_c_norm = False
  2355. # For falconmamba we do apply RMS norm on B / DT and C layers
  2356. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2357. use_dt_b_c_norm = True
  2358. # Fail early for models which don't have a block expansion factor of 2
  2359. assert d_inner == 2 * d_model
  2360. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2361. self.gguf_writer.add_embedding_length(d_model)
  2362. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2363. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2364. self.gguf_writer.add_block_count(self.block_count)
  2365. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2366. self.gguf_writer.add_ssm_inner_size(d_inner)
  2367. self.gguf_writer.add_ssm_state_size(d_state)
  2368. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2369. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2370. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2371. self.gguf_writer.add_file_type(self.ftype)
  2372. _tok_embd = None
  2373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2374. del bid # unused
  2375. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2376. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2377. new_name = self.map_tensor_name(name)
  2378. if name.endswith(".A_log"):
  2379. logger.debug("A_log --> A ==> " + new_name)
  2380. data_torch = -torch.exp(data_torch)
  2381. # assuming token_embd.weight is seen before output.weight
  2382. if self._tok_embd is not None and new_name == output_name:
  2383. if torch.equal(self._tok_embd, data_torch):
  2384. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2385. return []
  2386. elif new_name == tok_embd_name:
  2387. self._tok_embd = data_torch
  2388. return [(new_name, data_torch)]
  2389. @Model.register("CohereForCausalLM")
  2390. class CommandR2Model(Model):
  2391. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2392. def __init__(self, *args, **kwargs):
  2393. super().__init__(*args, **kwargs)
  2394. # max_position_embeddings = 8192 in config.json but model was actually
  2395. # trained on 128k context length
  2396. # aya-23 models don't have model_max_length specified
  2397. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2398. def set_gguf_parameters(self):
  2399. super().set_gguf_parameters()
  2400. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2401. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2402. @Model.register("OlmoForCausalLM")
  2403. @Model.register("OLMoForCausalLM")
  2404. class OlmoModel(Model):
  2405. model_arch = gguf.MODEL_ARCH.OLMO
  2406. def set_gguf_parameters(self):
  2407. super().set_gguf_parameters()
  2408. self.gguf_writer.add_layer_norm_eps(1e-5)
  2409. clip_qkv = self.hparams.get("clip_qkv")
  2410. if clip_qkv is not None:
  2411. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2412. # Same as super class, but permuting q_proj, k_proj
  2413. # Copied from: LlamaModel
  2414. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2415. del bid # unused
  2416. n_head = self.hparams["num_attention_heads"]
  2417. n_kv_head = self.hparams.get("num_key_value_heads")
  2418. if name.endswith("q_proj.weight"):
  2419. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2420. if name.endswith("k_proj.weight"):
  2421. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2422. return [(self.map_tensor_name(name), data_torch)]
  2423. @Model.register("OlmoeForCausalLM")
  2424. class OlmoeModel(Model):
  2425. model_arch = gguf.MODEL_ARCH.OLMOE
  2426. def set_gguf_parameters(self):
  2427. super().set_gguf_parameters()
  2428. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2429. if (n_experts := self.hparams.get("num_experts")) is not None:
  2430. self.gguf_writer.add_expert_count(n_experts)
  2431. _experts: list[dict[str, Tensor]] | None = None
  2432. # Copied from: Qwen2MoeModel
  2433. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2434. # process the experts separately
  2435. if name.find("experts") != -1:
  2436. n_experts = self.hparams["num_experts"]
  2437. assert bid is not None
  2438. if self._experts is None:
  2439. self._experts = [{} for _ in range(self.block_count)]
  2440. self._experts[bid][name] = data_torch
  2441. if len(self._experts[bid]) >= n_experts * 3:
  2442. tensors: list[tuple[str, Tensor]] = []
  2443. # merge the experts into a single 3d tensor
  2444. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2445. datas: list[Tensor] = []
  2446. for xid in range(n_experts):
  2447. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2448. datas.append(self._experts[bid][ename])
  2449. del self._experts[bid][ename]
  2450. data_torch = torch.stack(datas, dim=0)
  2451. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2452. new_name = self.map_tensor_name(merged_name)
  2453. tensors.append((new_name, data_torch))
  2454. return tensors
  2455. else:
  2456. return []
  2457. return [(self.map_tensor_name(name), data_torch)]
  2458. # Copied from: Qwen2MoeModel
  2459. def prepare_tensors(self):
  2460. super().prepare_tensors()
  2461. if self._experts is not None:
  2462. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2463. experts = [k for d in self._experts for k in d.keys()]
  2464. if len(experts) > 0:
  2465. raise ValueError(f"Unprocessed experts: {experts}")
  2466. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2467. class JinaBertV2Model(BertModel):
  2468. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2469. def __init__(self, *args, **kwargs):
  2470. super().__init__(*args, **kwargs)
  2471. self.intermediate_size = self.hparams["intermediate_size"]
  2472. def get_tensors(self):
  2473. for name, data in super().get_tensors():
  2474. if 'gated_layer' in name:
  2475. d1 = data[:self.intermediate_size, :]
  2476. name1 = name.replace('gated_layers', 'gated_layers_w')
  2477. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2478. d2 = data[self.intermediate_size:, :]
  2479. name2 = name.replace('gated_layers', 'gated_layers_v')
  2480. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2481. yield name1, d1
  2482. yield name2, d2
  2483. continue
  2484. yield name, data
  2485. def set_vocab(self):
  2486. tokenizer_class = 'BertTokenizer'
  2487. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2488. tokenizer_class = json.load(f)['tokenizer_class']
  2489. if tokenizer_class == 'BertTokenizer':
  2490. super().set_vocab()
  2491. elif tokenizer_class == 'RobertaTokenizer':
  2492. self._set_vocab_gpt2()
  2493. self.gguf_writer.add_token_type_count(2)
  2494. else:
  2495. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2496. self.gguf_writer.add_add_bos_token(True)
  2497. self.gguf_writer.add_add_eos_token(True)
  2498. @Model.register("OpenELMForCausalLM")
  2499. class OpenELMModel(Model):
  2500. model_arch = gguf.MODEL_ARCH.OPENELM
  2501. @staticmethod
  2502. def _make_divisible(v: float | int, divisor: int) -> int:
  2503. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2504. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2505. # Make sure that round down does not go down by more than 10%.
  2506. if new_v < 0.9 * v:
  2507. new_v += divisor
  2508. return new_v
  2509. def __init__(self, *args, **kwargs):
  2510. super().__init__(*args, **kwargs)
  2511. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2512. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2513. self._n_embd: int = self.hparams["model_dim"]
  2514. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2515. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2516. self._ffn_dims: list[int] = [
  2517. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2518. for multiplier in ffn_multipliers
  2519. ]
  2520. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2521. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2522. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2523. def set_vocab(self):
  2524. try:
  2525. self._set_vocab_sentencepiece()
  2526. except FileNotFoundError:
  2527. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2528. def set_gguf_parameters(self):
  2529. n_embd = self._n_embd
  2530. head_dim = self.hparams["head_dim"]
  2531. rot_pct = 1.0
  2532. assert self.block_count == len(self._num_kv_heads)
  2533. assert self.block_count == len(self._num_query_heads)
  2534. assert self.block_count == len(self._ffn_dims)
  2535. self.gguf_writer.add_block_count(self.block_count)
  2536. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2537. self.gguf_writer.add_embedding_length(n_embd)
  2538. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2539. self.gguf_writer.add_head_count(self._num_query_heads)
  2540. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2541. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2542. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2543. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2544. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2545. self.gguf_writer.add_key_length(head_dim)
  2546. self.gguf_writer.add_value_length(head_dim)
  2547. self.gguf_writer.add_file_type(self.ftype)
  2548. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2549. if "n_layers" in keys:
  2550. return self.hparams["num_transformer_layers"]
  2551. return super().find_hparam(keys, optional)
  2552. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2553. # split ff
  2554. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2555. ff_dim = self._ffn_dims[bid]
  2556. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2557. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2558. return
  2559. yield (self.map_tensor_name(name), data_torch)
  2560. @Model.register("ArcticForCausalLM")
  2561. class ArcticModel(Model):
  2562. model_arch = gguf.MODEL_ARCH.ARCTIC
  2563. def set_vocab(self):
  2564. # The reason for using a custom implementation here is that the
  2565. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2566. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2567. from sentencepiece import SentencePieceProcessor
  2568. tokenizer_path = self.dir_model / 'tokenizer.model'
  2569. if not tokenizer_path.is_file():
  2570. logger.error(f'Error: Missing {tokenizer_path}')
  2571. sys.exit(1)
  2572. # Read the whole vocabulary from the tokenizer.model file
  2573. tokenizer = SentencePieceProcessor()
  2574. tokenizer.LoadFromFile(str(tokenizer_path))
  2575. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2576. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2577. scores: list[float] = [-10000.0] * vocab_size
  2578. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2579. for token_id in range(tokenizer.vocab_size()):
  2580. piece = tokenizer.IdToPiece(token_id)
  2581. text = piece.encode("utf-8")
  2582. score = tokenizer.GetScore(token_id)
  2583. toktype = SentencePieceTokenTypes.NORMAL
  2584. if tokenizer.IsUnknown(token_id):
  2585. toktype = SentencePieceTokenTypes.UNKNOWN
  2586. elif tokenizer.IsControl(token_id):
  2587. toktype = SentencePieceTokenTypes.CONTROL
  2588. elif tokenizer.IsUnused(token_id):
  2589. toktype = SentencePieceTokenTypes.UNUSED
  2590. elif tokenizer.IsByte(token_id):
  2591. toktype = SentencePieceTokenTypes.BYTE
  2592. tokens[token_id] = text
  2593. scores[token_id] = score
  2594. toktypes[token_id] = toktype
  2595. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2596. # of information about added/redefined tokens and modify them accordingly.
  2597. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2598. if tokenizer_config_file.is_file():
  2599. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2600. tokenizer_config_json = json.load(f)
  2601. if "added_tokens_decoder" in tokenizer_config_json:
  2602. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2603. for token_id, token_json in added_tokens_decoder.items():
  2604. token_id = int(token_id)
  2605. if token_id >= vocab_size:
  2606. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2607. continue
  2608. token_content = token_json["content"]
  2609. token_type = SentencePieceTokenTypes.USER_DEFINED
  2610. token_score = -10000.0
  2611. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2612. # Set the score to 0.0 as in the original tokenizer.model
  2613. if ("special" in token_json) and token_json["special"]:
  2614. if token_content == tokenizer_config_json["unk_token"]:
  2615. token_type = SentencePieceTokenTypes.UNKNOWN
  2616. else:
  2617. token_type = SentencePieceTokenTypes.CONTROL
  2618. token_score = 0.0
  2619. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2620. tokens[token_id] = token_content.encode("utf-8")
  2621. toktypes[token_id] = token_type
  2622. scores[token_id] = token_score
  2623. self.gguf_writer.add_tokenizer_model("llama")
  2624. self.gguf_writer.add_tokenizer_pre("default")
  2625. self.gguf_writer.add_token_list(tokens)
  2626. self.gguf_writer.add_token_scores(scores)
  2627. self.gguf_writer.add_token_types(toktypes)
  2628. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2629. special_vocab.add_to_gguf(self.gguf_writer)
  2630. def set_gguf_parameters(self):
  2631. super().set_gguf_parameters()
  2632. hparams = self.hparams
  2633. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2634. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2635. _experts: list[dict[str, Tensor]] | None = None
  2636. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2637. n_head = self.hparams["num_attention_heads"]
  2638. n_kv_head = self.hparams.get("num_key_value_heads")
  2639. if name.endswith("q_proj.weight"):
  2640. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2641. if name.endswith("k_proj.weight"):
  2642. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2643. # process the experts separately
  2644. if name.find("block_sparse_moe.experts") != -1:
  2645. n_experts = self.hparams["num_local_experts"]
  2646. assert bid is not None
  2647. if self._experts is None:
  2648. self._experts = [{} for _ in range(self.block_count)]
  2649. self._experts[bid][name] = data_torch
  2650. if len(self._experts[bid]) >= n_experts * 3:
  2651. tensors: list[tuple[str, Tensor]] = []
  2652. # merge the experts into a single 3d tensor
  2653. for wid in ["w1", "w2", "w3"]:
  2654. datas: list[Tensor] = []
  2655. for xid in range(n_experts):
  2656. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2657. datas.append(self._experts[bid][ename])
  2658. del self._experts[bid][ename]
  2659. data_torch = torch.stack(datas, dim=0)
  2660. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2661. new_name = self.map_tensor_name(merged_name)
  2662. tensors.append((new_name, data_torch))
  2663. return tensors
  2664. else:
  2665. return []
  2666. return [(self.map_tensor_name(name), data_torch)]
  2667. def prepare_tensors(self):
  2668. super().prepare_tensors()
  2669. if self._experts is not None:
  2670. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2671. experts = [k for d in self._experts for k in d.keys()]
  2672. if len(experts) > 0:
  2673. raise ValueError(f"Unprocessed experts: {experts}")
  2674. @Model.register("DeepseekV2ForCausalLM")
  2675. class DeepseekV2Model(Model):
  2676. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2677. def set_vocab(self):
  2678. self._set_vocab_gpt2()
  2679. def set_gguf_parameters(self):
  2680. super().set_gguf_parameters()
  2681. hparams = self.hparams
  2682. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2683. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2684. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2685. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2686. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2687. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2688. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2689. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2690. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2691. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2692. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2693. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2694. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2695. if self.hparams["rope_scaling"].get("type") == "yarn":
  2696. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2697. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2698. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2699. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2700. _experts: list[dict[str, Tensor]] | None = None
  2701. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2702. # process the experts separately
  2703. if name.find("mlp.experts") != -1:
  2704. n_experts = self.hparams["n_routed_experts"]
  2705. assert bid is not None
  2706. if self._experts is None:
  2707. self._experts = [{} for _ in range(self.block_count)]
  2708. self._experts[bid][name] = data_torch
  2709. if len(self._experts[bid]) >= n_experts * 3:
  2710. tensors: list[tuple[str, Tensor]] = []
  2711. # merge the experts into a single 3d tensor
  2712. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2713. datas: list[Tensor] = []
  2714. for xid in range(n_experts):
  2715. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2716. datas.append(self._experts[bid][ename])
  2717. del self._experts[bid][ename]
  2718. data_torch = torch.stack(datas, dim=0)
  2719. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2720. new_name = self.map_tensor_name(merged_name)
  2721. tensors.append((new_name, data_torch))
  2722. return tensors
  2723. else:
  2724. return []
  2725. return [(self.map_tensor_name(name), data_torch)]
  2726. def prepare_tensors(self):
  2727. super().prepare_tensors()
  2728. if self._experts is not None:
  2729. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2730. experts = [k for d in self._experts for k in d.keys()]
  2731. if len(experts) > 0:
  2732. raise ValueError(f"Unprocessed experts: {experts}")
  2733. @Model.register("T5WithLMHeadModel")
  2734. @Model.register("T5ForConditionalGeneration")
  2735. @Model.register("MT5ForConditionalGeneration")
  2736. @Model.register("UMT5ForConditionalGeneration")
  2737. class T5Model(Model):
  2738. model_arch = gguf.MODEL_ARCH.T5
  2739. def __init__(self, *args, **kwargs):
  2740. super().__init__(*args, **kwargs)
  2741. self.shared_token_embeddings_found = False
  2742. def set_vocab(self):
  2743. # to avoid TypeError: Descriptors cannot be created directly
  2744. # exception when importing sentencepiece_model_pb2
  2745. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2746. from sentencepiece import SentencePieceProcessor
  2747. from sentencepiece import sentencepiece_model_pb2 as model
  2748. tokenizer_path = self.dir_model / 'tokenizer.model'
  2749. # many older models use spiece.model tokenizer model filename
  2750. if not tokenizer_path.is_file():
  2751. tokenizer_path = self.dir_model / 'spiece.model'
  2752. if not tokenizer_path.is_file():
  2753. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2754. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2755. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2756. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2757. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2758. # assure the tokenizer model file name is correct
  2759. assert tokenizer_path.name == 'tokenizer.model'
  2760. return self._set_vocab_sentencepiece()
  2761. else:
  2762. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2763. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2764. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2765. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2766. tokenizer = SentencePieceProcessor()
  2767. tokenizer.LoadFromFile(str(tokenizer_path))
  2768. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2769. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2770. scores: list[float] = [-10000.0] * vocab_size
  2771. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2772. for token_id in range(tokenizer.vocab_size()):
  2773. piece = tokenizer.IdToPiece(token_id)
  2774. text = piece.encode("utf-8")
  2775. score = tokenizer.GetScore(token_id)
  2776. toktype = SentencePieceTokenTypes.NORMAL
  2777. if tokenizer.IsUnknown(token_id):
  2778. toktype = SentencePieceTokenTypes.UNKNOWN
  2779. elif tokenizer.IsControl(token_id):
  2780. toktype = SentencePieceTokenTypes.CONTROL
  2781. elif tokenizer.IsUnused(token_id):
  2782. toktype = SentencePieceTokenTypes.UNUSED
  2783. elif tokenizer.IsByte(token_id):
  2784. toktype = SentencePieceTokenTypes.BYTE
  2785. tokens[token_id] = text
  2786. scores[token_id] = score
  2787. toktypes[token_id] = toktype
  2788. added_tokens_file = self.dir_model / 'added_tokens.json'
  2789. if added_tokens_file.is_file():
  2790. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2791. added_tokens_json = json.load(f)
  2792. for key in added_tokens_json:
  2793. token_id = added_tokens_json[key]
  2794. if token_id >= vocab_size:
  2795. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2796. continue
  2797. tokens[token_id] = key.encode("utf-8")
  2798. scores[token_id] = -1000.0
  2799. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2800. if vocab_size > len(tokens):
  2801. pad_count = vocab_size - len(tokens)
  2802. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2803. for i in range(1, pad_count + 1):
  2804. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2805. scores.append(-1000.0)
  2806. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2807. self.gguf_writer.add_tokenizer_model("t5")
  2808. self.gguf_writer.add_tokenizer_pre("default")
  2809. self.gguf_writer.add_token_list(tokens)
  2810. self.gguf_writer.add_token_scores(scores)
  2811. self.gguf_writer.add_token_types(toktypes)
  2812. self.gguf_writer.add_add_space_prefix(add_prefix)
  2813. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2814. if precompiled_charsmap:
  2815. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2816. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2817. special_vocab.add_to_gguf(self.gguf_writer)
  2818. self.gguf_writer.add_add_bos_token(False)
  2819. self.gguf_writer.add_add_eos_token(True)
  2820. def set_gguf_parameters(self):
  2821. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2822. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2823. n_ctx = 512
  2824. self.gguf_writer.add_context_length(n_ctx)
  2825. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2826. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2827. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2828. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2829. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2830. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2831. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2832. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2833. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2834. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2835. self.gguf_writer.add_file_type(self.ftype)
  2836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2837. del bid # unused
  2838. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2839. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2840. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2841. # and decoder and ignore the remaining ones.
  2842. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2843. if not self.shared_token_embeddings_found:
  2844. name = "shared.weight"
  2845. self.shared_token_embeddings_found = True
  2846. else:
  2847. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2848. return []
  2849. return [(self.map_tensor_name(name), data_torch)]
  2850. @Model.register("T5EncoderModel")
  2851. class T5EncoderModel(Model):
  2852. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2853. def __init__(self, *args, **kwargs):
  2854. super().__init__(*args, **kwargs)
  2855. self.shared_token_embeddings_found = False
  2856. def set_vocab(self):
  2857. # to avoid TypeError: Descriptors cannot be created directly
  2858. # exception when importing sentencepiece_model_pb2
  2859. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2860. from sentencepiece import SentencePieceProcessor
  2861. from sentencepiece import sentencepiece_model_pb2 as model
  2862. tokenizer_path = self.dir_model / 'tokenizer.model'
  2863. # many older models use spiece.model tokenizer model filename
  2864. if not tokenizer_path.is_file():
  2865. tokenizer_path = self.dir_model / 'spiece.model'
  2866. if not tokenizer_path.is_file():
  2867. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2868. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2869. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2870. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2871. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2872. # assure the tokenizer model file name is correct
  2873. assert tokenizer_path.name == 'tokenizer.model'
  2874. return self._set_vocab_sentencepiece()
  2875. else:
  2876. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2877. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2878. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2879. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2880. tokenizer = SentencePieceProcessor()
  2881. tokenizer.LoadFromFile(str(tokenizer_path))
  2882. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2883. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2884. scores: list[float] = [-10000.0] * vocab_size
  2885. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2886. for token_id in range(tokenizer.vocab_size()):
  2887. piece = tokenizer.IdToPiece(token_id)
  2888. text = piece.encode("utf-8")
  2889. score = tokenizer.GetScore(token_id)
  2890. toktype = SentencePieceTokenTypes.NORMAL
  2891. if tokenizer.IsUnknown(token_id):
  2892. toktype = SentencePieceTokenTypes.UNKNOWN
  2893. elif tokenizer.IsControl(token_id):
  2894. toktype = SentencePieceTokenTypes.CONTROL
  2895. elif tokenizer.IsUnused(token_id):
  2896. toktype = SentencePieceTokenTypes.UNUSED
  2897. elif tokenizer.IsByte(token_id):
  2898. toktype = SentencePieceTokenTypes.BYTE
  2899. tokens[token_id] = text
  2900. scores[token_id] = score
  2901. toktypes[token_id] = toktype
  2902. added_tokens_file = self.dir_model / 'added_tokens.json'
  2903. if added_tokens_file.is_file():
  2904. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2905. added_tokens_json = json.load(f)
  2906. for key in added_tokens_json:
  2907. token_id = added_tokens_json[key]
  2908. if token_id >= vocab_size:
  2909. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2910. continue
  2911. tokens[token_id] = key.encode("utf-8")
  2912. scores[token_id] = -1000.0
  2913. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2914. if vocab_size > len(tokens):
  2915. pad_count = vocab_size - len(tokens)
  2916. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2917. for i in range(1, pad_count + 1):
  2918. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2919. scores.append(-1000.0)
  2920. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2921. self.gguf_writer.add_tokenizer_model("t5")
  2922. self.gguf_writer.add_tokenizer_pre("default")
  2923. self.gguf_writer.add_token_list(tokens)
  2924. self.gguf_writer.add_token_scores(scores)
  2925. self.gguf_writer.add_token_types(toktypes)
  2926. self.gguf_writer.add_add_space_prefix(add_prefix)
  2927. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2928. if precompiled_charsmap:
  2929. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2930. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2931. special_vocab.add_to_gguf(self.gguf_writer)
  2932. self.gguf_writer.add_add_bos_token(False)
  2933. self.gguf_writer.add_add_eos_token(True)
  2934. def set_gguf_parameters(self):
  2935. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2936. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2937. n_ctx = 512
  2938. self.gguf_writer.add_context_length(n_ctx)
  2939. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2940. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2941. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2942. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2943. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2944. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2945. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2946. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2947. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2948. self.gguf_writer.add_file_type(self.ftype)
  2949. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2950. del bid # unused
  2951. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2952. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2953. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2954. # and decoder and ignore the remaining ones.
  2955. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2956. if not self.shared_token_embeddings_found:
  2957. name = "shared.weight"
  2958. self.shared_token_embeddings_found = True
  2959. else:
  2960. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2961. return []
  2962. return [(self.map_tensor_name(name), data_torch)]
  2963. @Model.register("JAISLMHeadModel")
  2964. class JaisModel(Model):
  2965. model_arch = gguf.MODEL_ARCH.JAIS
  2966. def __init__(self, *args, **kwargs):
  2967. super().__init__(*args, **kwargs)
  2968. # SwigLU activation
  2969. assert self.hparams["activation_function"] == "swiglu"
  2970. # ALiBi position embedding
  2971. assert self.hparams["position_embedding_type"] == "alibi"
  2972. # Embeddings scale
  2973. self.embeddings_scale = 1.0
  2974. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2975. self.output_is_wte = False
  2976. if 'mup_embeddings_scale' in self.hparams:
  2977. self.output_is_wte = True # Hack (?)
  2978. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2979. elif 'embeddings_scale' in self.hparams:
  2980. self.embeddings_scale = self.hparams['embeddings_scale']
  2981. else:
  2982. assert False
  2983. self.width_scale = 1.0
  2984. if 'mup_output_alpha' in self.hparams:
  2985. assert 'mup_width_scale' in self.hparams
  2986. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2987. elif 'width_scale' in self.hparams:
  2988. self.width_scale = self.hparams['width_scale']
  2989. else:
  2990. assert False
  2991. self.max_alibi_bias = 8.0
  2992. def set_vocab(self):
  2993. self._set_vocab_gpt2()
  2994. def set_gguf_parameters(self):
  2995. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2996. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2997. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2998. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2999. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3000. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3001. self.gguf_writer.add_file_type(self.ftype)
  3002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3003. del bid # unused
  3004. tensors: list[tuple[str, Tensor]] = []
  3005. # we don't need these
  3006. if name.endswith((".attn.bias")):
  3007. return tensors
  3008. if name.endswith(("relative_pe.slopes")):
  3009. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3010. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3011. # but Jais's PyTorch model simply precalculates the slope values and places them
  3012. # in relative_pes.slopes
  3013. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3014. first_val = float(data_torch[0].item())
  3015. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3016. return tensors
  3017. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3018. data_torch = data_torch.transpose(1, 0)
  3019. new_name = self.map_tensor_name(name)
  3020. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3021. tensors.append((new_name, data_torch * self.embeddings_scale))
  3022. if self.output_is_wte:
  3023. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  3024. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3025. assert not self.output_is_wte
  3026. tensors.append((new_name, data_torch * self.width_scale))
  3027. else:
  3028. tensors.append((new_name, data_torch))
  3029. return tensors
  3030. def prepare_tensors(self):
  3031. super().prepare_tensors()
  3032. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3033. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3034. class ChatGLMModel(Model):
  3035. model_arch = gguf.MODEL_ARCH.CHATGLM
  3036. def set_vocab_chatglm3(self):
  3037. dir_model = self.dir_model
  3038. hparams = self.hparams
  3039. tokens: list[bytes] = []
  3040. toktypes: list[int] = []
  3041. scores: list[float] = []
  3042. from transformers import AutoTokenizer
  3043. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3044. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3045. assert max(tokenizer.get_vocab().values()) < vocab_size
  3046. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3047. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3048. for token_id in range(vocab_size):
  3049. piece = tokenizer._convert_id_to_token(token_id)
  3050. if token_id == 0:
  3051. piece = "<unk>"
  3052. elif token_id == 1:
  3053. piece = "<bos>"
  3054. elif token_id == 2:
  3055. piece = "<eos>"
  3056. text = piece.encode("utf-8")
  3057. score = 0.0
  3058. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3059. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3060. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3061. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3062. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3063. if piece in special_tokens:
  3064. toktype = SentencePieceTokenTypes.CONTROL
  3065. elif len(piece) == 0:
  3066. text = f"[PAD{token_id}]".encode("utf-8")
  3067. toktype = SentencePieceTokenTypes.UNUSED
  3068. else:
  3069. toktype = SentencePieceTokenTypes.USER_DEFINED
  3070. tokens.append(text)
  3071. scores.append(score)
  3072. toktypes.append(toktype)
  3073. continue
  3074. toktype = SentencePieceTokenTypes.NORMAL
  3075. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3076. toktype = SentencePieceTokenTypes.UNKNOWN
  3077. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3078. toktype = SentencePieceTokenTypes.CONTROL
  3079. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3080. toktype = SentencePieceTokenTypes.UNUSED
  3081. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3082. toktype = SentencePieceTokenTypes.BYTE
  3083. tokens.append(text)
  3084. scores.append(score)
  3085. toktypes.append(toktype)
  3086. self.gguf_writer.add_tokenizer_model("llama")
  3087. # glm3 needs prefix and suffix formatted as:
  3088. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3089. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3090. self.gguf_writer.add_token_list(tokens)
  3091. self.gguf_writer.add_token_scores(scores)
  3092. self.gguf_writer.add_token_types(toktypes)
  3093. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3094. special_vocab.add_to_gguf(self.gguf_writer)
  3095. @staticmethod
  3096. def token_bytes_to_string(b):
  3097. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3098. byte_encoder = bytes_to_unicode()
  3099. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3100. @staticmethod
  3101. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3102. parts = [bytes([b]) for b in token]
  3103. while True:
  3104. min_idx = None
  3105. min_rank = None
  3106. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3107. rank = mergeable_ranks.get(pair[0] + pair[1])
  3108. if rank is not None and (min_rank is None or rank < min_rank):
  3109. min_idx = i
  3110. min_rank = rank
  3111. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3112. break
  3113. assert min_idx is not None
  3114. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3115. return parts
  3116. def set_vocab(self):
  3117. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3118. self.set_vocab_chatglm3()
  3119. return
  3120. dir_model = self.dir_model
  3121. hparams = self.hparams
  3122. tokens: list[str] = []
  3123. toktypes: list[int] = []
  3124. from transformers import AutoTokenizer
  3125. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3126. vocab_size = hparams["padded_vocab_size"]
  3127. assert max(tokenizer.get_vocab().values()) < vocab_size
  3128. tokpre = self.get_vocab_base_pre(tokenizer)
  3129. merges = []
  3130. vocab = {}
  3131. mergeable_ranks = tokenizer.mergeable_ranks
  3132. for token, rank in mergeable_ranks.items():
  3133. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3134. if len(token) == 1:
  3135. continue
  3136. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3137. assert len(merged) >= 2 and len(merged) <= 7
  3138. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3139. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3140. added_vocab = tokenizer.get_added_vocab()
  3141. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3142. for i in range(vocab_size):
  3143. if i not in reverse_vocab:
  3144. tokens.append(f"[PAD{i}]")
  3145. toktypes.append(gguf.TokenType.UNUSED)
  3146. elif reverse_vocab[i] in added_vocab:
  3147. tokens.append(reverse_vocab[i])
  3148. if tokenizer.added_tokens_decoder[i].special:
  3149. toktypes.append(gguf.TokenType.CONTROL)
  3150. else:
  3151. toktypes.append(gguf.TokenType.USER_DEFINED)
  3152. else:
  3153. tokens.append(reverse_vocab[i])
  3154. toktypes.append(gguf.TokenType.NORMAL)
  3155. self.gguf_writer.add_tokenizer_model("gpt2")
  3156. self.gguf_writer.add_tokenizer_pre(tokpre)
  3157. self.gguf_writer.add_token_list(tokens)
  3158. self.gguf_writer.add_token_types(toktypes)
  3159. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3160. special_vocab.merges = merges
  3161. # only add special tokens when they were not already loaded from config.json
  3162. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3163. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3164. # this one is usually not in config.json anyway
  3165. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3166. special_vocab.add_to_gguf(self.gguf_writer)
  3167. def set_gguf_parameters(self):
  3168. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3169. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3170. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3171. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3172. self.gguf_writer.add_embedding_length(n_embed)
  3173. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3174. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3175. self.gguf_writer.add_head_count(n_head)
  3176. self.gguf_writer.add_head_count_kv(n_head_kv)
  3177. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3178. self.gguf_writer.add_file_type(self.ftype)
  3179. self.gguf_writer.add_rope_dimension_count(64)
  3180. self.gguf_writer.add_add_bos_token(False)
  3181. rope_freq = 10000
  3182. if "rope_ratio" in self.hparams:
  3183. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3184. self.gguf_writer.add_rope_freq_base(rope_freq)
  3185. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3186. del bid # unused
  3187. if name.endswith(".rotary_pos_emb.inv_freq"):
  3188. return []
  3189. name = name.removeprefix("transformer.")
  3190. return [(self.map_tensor_name(name), data_torch)]
  3191. @Model.register("NemotronForCausalLM")
  3192. class NemotronModel(Model):
  3193. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3194. def set_vocab(self):
  3195. self._set_vocab_sentencepiece()
  3196. self.gguf_writer.add_pad_token_id(0)
  3197. self.gguf_writer.add_unk_token_id(1)
  3198. def set_gguf_parameters(self):
  3199. super().set_gguf_parameters()
  3200. hparams = self.hparams
  3201. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3202. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3203. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3204. # * Partial RoPE
  3205. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3206. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3207. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3208. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3209. # * RopeScaling for Nemotron
  3210. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3211. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3212. else:
  3213. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3214. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3215. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3216. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3217. # model.layers.{l}.input_layernorm.weight
  3218. # model.layers.{l}.post_attention_layernorm.weight
  3219. # model.norm.weight
  3220. if name.endswith("norm.weight"):
  3221. data_torch = data_torch + 1
  3222. return [(self.map_tensor_name(name), data_torch)]
  3223. @Model.register("ExaoneForCausalLM")
  3224. class ExaoneModel(Model):
  3225. model_arch = gguf.MODEL_ARCH.EXAONE
  3226. def set_gguf_parameters(self):
  3227. hparams = self.hparams
  3228. assert (hparams["activation_function"] == "silu")
  3229. max_position_embeddings = hparams["max_position_embeddings"]
  3230. embed_dim = hparams["hidden_size"]
  3231. num_heads = hparams["num_attention_heads"]
  3232. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3233. layer_norm_eps = hparams["layer_norm_epsilon"]
  3234. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3235. num_layers = hparams["num_layers"]
  3236. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3237. # attention_dropout_rate = hparams["attention_dropout"]
  3238. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3239. # embed_dropout_rate = hparams["embed_dropout"]
  3240. self.gguf_writer.add_embedding_length(embed_dim)
  3241. self.gguf_writer.add_head_count(num_heads)
  3242. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3243. self.gguf_writer.add_context_length(max_position_embeddings)
  3244. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3245. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3246. self.gguf_writer.add_block_count(num_layers)
  3247. self.gguf_writer.add_file_type(self.ftype)
  3248. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3249. self.gguf_writer.add_rope_freq_base(rope_theta)
  3250. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3251. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3252. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3253. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3254. if hparams["rope_scaling"].get("type") == "linear":
  3255. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3256. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3257. def prepare_tensors(self):
  3258. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3259. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3260. base = self.hparams.get("rope_theta", 10000.0)
  3261. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3262. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3263. factor = rope_scaling.get("factor", 8.0)
  3264. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3265. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3266. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3267. low_freq_wavelen = old_context_len / low_freq_factor
  3268. high_freq_wavelen = old_context_len / high_freq_factor
  3269. assert low_freq_wavelen != high_freq_wavelen
  3270. rope_factors = []
  3271. for freq in freqs:
  3272. wavelen = 2 * math.pi / freq
  3273. if wavelen < high_freq_wavelen:
  3274. rope_factors.append(1)
  3275. elif wavelen > low_freq_wavelen:
  3276. rope_factors.append(factor)
  3277. else:
  3278. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3279. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3280. if not self.is_lora:
  3281. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3282. super().prepare_tensors()
  3283. @Model.register("GraniteForCausalLM")
  3284. class GraniteModel(LlamaModel):
  3285. """Conversion for IBM's GraniteForCausalLM"""
  3286. model_arch = gguf.MODEL_ARCH.GRANITE
  3287. def set_gguf_parameters(self):
  3288. """Granite uses standard llama parameters with the following differences:
  3289. - No head_dim support
  3290. - New multiplier params:
  3291. - attention_scale
  3292. - embedding_scale
  3293. - residual_scale
  3294. - logits_scaling
  3295. """
  3296. if head_dim := self.hparams.pop("head_dim", None):
  3297. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3298. super().set_gguf_parameters()
  3299. # NOTE: Convert _multiplier params to _scale params for naming
  3300. # consistency
  3301. if attention_scale := self.hparams.get("attention_multiplier"):
  3302. self.gguf_writer.add_attention_scale(attention_scale)
  3303. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3304. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3305. self.gguf_writer.add_embedding_scale(embedding_scale)
  3306. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3307. if residual_scale := self.hparams.get("residual_multiplier"):
  3308. self.gguf_writer.add_residual_scale(residual_scale)
  3309. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3310. if logits_scale := self.hparams.get("logits_scaling"):
  3311. self.gguf_writer.add_logit_scale(logits_scale)
  3312. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3313. @Model.register("GraniteMoeForCausalLM")
  3314. class GraniteMoeModel(GraniteModel):
  3315. """Conversion for IBM's GraniteMoeForCausalLM"""
  3316. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3318. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3319. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3320. the hidden size that is then split during forward. To keep compatibility
  3321. with existing mixtral support, we pull them apart here.
  3322. """
  3323. if name.endswith("block_sparse_moe.input_linear.weight"):
  3324. ffn_dim = self.hparams["intermediate_size"]
  3325. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3326. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3327. return [
  3328. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3329. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3330. ]
  3331. return super().modify_tensors(data_torch, name, bid)
  3332. @Model.register("ChameleonForCausalLM")
  3333. class ChameleonModel(Model):
  3334. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3335. def set_gguf_parameters(self):
  3336. super().set_gguf_parameters()
  3337. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3338. def set_vocab(self):
  3339. self._set_vocab_gpt2()
  3340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3341. # ignore image tokenizer for now
  3342. # TODO: remove this once image support is implemented for Chameleon
  3343. if name.startswith("model.vqmodel"):
  3344. return []
  3345. n_head = self.hparams["num_attention_heads"]
  3346. n_kv_head = self.hparams.get("num_key_value_heads")
  3347. hidden_dim = self.hparams.get("hidden_size")
  3348. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3349. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3350. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3351. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3352. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3353. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3354. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3355. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3356. return [(self.map_tensor_name(name), data_torch)]
  3357. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3358. @staticmethod
  3359. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3360. head_dim = hidden_dim // n_heads
  3361. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3362. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3363. return data_torch
  3364. ###### CONVERSION LOGIC ######
  3365. # tree of lazy tensors
  3366. class LazyTorchTensor(gguf.LazyBase):
  3367. _tensor_type = torch.Tensor
  3368. # to keep the type-checker happy
  3369. dtype: torch.dtype
  3370. shape: torch.Size
  3371. # only used when converting a torch.Tensor to a np.ndarray
  3372. _dtype_map: dict[torch.dtype, type] = {
  3373. torch.float16: np.float16,
  3374. torch.float32: np.float32,
  3375. }
  3376. # used for safetensors slices
  3377. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3378. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3379. _dtype_str_map: dict[str, torch.dtype] = {
  3380. "F64": torch.float64,
  3381. "F32": torch.float32,
  3382. "BF16": torch.bfloat16,
  3383. "F16": torch.float16,
  3384. # "U64": torch.uint64,
  3385. "I64": torch.int64,
  3386. # "U32": torch.uint32,
  3387. "I32": torch.int32,
  3388. # "U16": torch.uint16,
  3389. "I16": torch.int16,
  3390. "U8": torch.uint8,
  3391. "I8": torch.int8,
  3392. "BOOL": torch.bool,
  3393. "F8_E4M3": torch.float8_e4m3fn,
  3394. "F8_E5M2": torch.float8_e5m2,
  3395. }
  3396. def numpy(self) -> gguf.LazyNumpyTensor:
  3397. dtype = self._dtype_map[self.dtype]
  3398. return gguf.LazyNumpyTensor(
  3399. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3400. args=(self,),
  3401. func=(lambda s: s.numpy())
  3402. )
  3403. @classmethod
  3404. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3405. return torch.empty(size=shape, dtype=dtype, device="meta")
  3406. @classmethod
  3407. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3408. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3409. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3410. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3411. return cast(torch.Tensor, lazy)
  3412. @classmethod
  3413. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3414. del types # unused
  3415. if kwargs is None:
  3416. kwargs = {}
  3417. if func is torch.Tensor.numpy:
  3418. return args[0].numpy()
  3419. return cls._wrap_fn(func)(*args, **kwargs)
  3420. def parse_args() -> argparse.Namespace:
  3421. parser = argparse.ArgumentParser(
  3422. description="Convert a huggingface model to a GGML compatible file")
  3423. parser.add_argument(
  3424. "--vocab-only", action="store_true",
  3425. help="extract only the vocab",
  3426. )
  3427. parser.add_argument(
  3428. "--outfile", type=Path,
  3429. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3430. )
  3431. parser.add_argument(
  3432. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3433. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3434. )
  3435. parser.add_argument(
  3436. "--bigendian", action="store_true",
  3437. help="model is executed on big endian machine",
  3438. )
  3439. parser.add_argument(
  3440. "model", type=Path,
  3441. help="directory containing model file",
  3442. )
  3443. parser.add_argument(
  3444. "--use-temp-file", action="store_true",
  3445. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3446. )
  3447. parser.add_argument(
  3448. "--no-lazy", action="store_true",
  3449. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3450. )
  3451. parser.add_argument(
  3452. "--model-name", type=str, default=None,
  3453. help="name of the model",
  3454. )
  3455. parser.add_argument(
  3456. "--verbose", action="store_true",
  3457. help="increase output verbosity",
  3458. )
  3459. parser.add_argument(
  3460. "--split-max-tensors", type=int, default=0,
  3461. help="max tensors in each split",
  3462. )
  3463. parser.add_argument(
  3464. "--split-max-size", type=str, default="0",
  3465. help="max size per split N(M|G)",
  3466. )
  3467. parser.add_argument(
  3468. "--dry-run", action="store_true",
  3469. help="only print out a split plan and exit, without writing any new files",
  3470. )
  3471. parser.add_argument(
  3472. "--no-tensor-first-split", action="store_true",
  3473. help="do not add tensors to the first split (disabled by default)"
  3474. )
  3475. parser.add_argument(
  3476. "--metadata", type=Path,
  3477. help="Specify the path for an authorship metadata override file"
  3478. )
  3479. return parser.parse_args()
  3480. def split_str_to_n_bytes(split_str: str) -> int:
  3481. if split_str.endswith("K"):
  3482. n = int(split_str[:-1]) * 1000
  3483. elif split_str.endswith("M"):
  3484. n = int(split_str[:-1]) * 1000 * 1000
  3485. elif split_str.endswith("G"):
  3486. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3487. elif split_str.isnumeric():
  3488. n = int(split_str)
  3489. else:
  3490. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3491. if n < 0:
  3492. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3493. return n
  3494. def main() -> None:
  3495. args = parse_args()
  3496. if args.verbose:
  3497. logging.basicConfig(level=logging.DEBUG)
  3498. else:
  3499. logging.basicConfig(level=logging.INFO)
  3500. dir_model = args.model
  3501. if not dir_model.is_dir():
  3502. logger.error(f'Error: {args.model} is not a directory')
  3503. sys.exit(1)
  3504. ftype_map: dict[str, gguf.LlamaFileType] = {
  3505. "f32": gguf.LlamaFileType.ALL_F32,
  3506. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3507. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3508. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3509. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3510. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3511. "auto": gguf.LlamaFileType.GUESSED,
  3512. }
  3513. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3514. if args.use_temp_file and is_split:
  3515. logger.error("Error: Cannot use temp file when splitting")
  3516. sys.exit(1)
  3517. if args.outfile is not None:
  3518. fname_out = args.outfile
  3519. else:
  3520. fname_out = dir_model
  3521. logger.info(f"Loading model: {dir_model.name}")
  3522. hparams = Model.load_hparams(dir_model)
  3523. with torch.inference_mode():
  3524. output_type = ftype_map[args.outtype]
  3525. model_architecture = hparams["architectures"][0]
  3526. try:
  3527. model_class = Model.from_model_architecture(model_architecture)
  3528. except NotImplementedError:
  3529. logger.error(f"Model {model_architecture} is not supported")
  3530. sys.exit(1)
  3531. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3532. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3533. eager=args.no_lazy,
  3534. metadata_override=args.metadata, model_name=args.model_name,
  3535. split_max_tensors=args.split_max_tensors,
  3536. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3537. small_first_shard=args.no_tensor_first_split)
  3538. if args.vocab_only:
  3539. logger.info("Exporting model vocab...")
  3540. model_instance.write_vocab()
  3541. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3542. else:
  3543. logger.info("Exporting model...")
  3544. model_instance.write()
  3545. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3546. logger.info(f"Model successfully exported to {out_path}")
  3547. if __name__ == '__main__':
  3548. main()