1
0

speculative.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <string>
  6. #include <vector>
  7. #include <set>
  8. #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
  9. #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
  10. struct seq_draft {
  11. bool active = false;
  12. bool drafting = false;
  13. bool skip = false;
  14. int i_batch_dft = 0;
  15. std::vector<int> i_batch_tgt;
  16. std::vector<llama_token> tokens;
  17. std::vector<std::vector<llama_token_data>> dists;
  18. struct llama_sampling_context * ctx_sampling;
  19. };
  20. int main(int argc, char ** argv) {
  21. gpt_params params;
  22. if (gpt_params_parse(argc, argv, params) == false) {
  23. return 1;
  24. }
  25. if (params.model_draft.empty()) {
  26. fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
  27. return 1;
  28. }
  29. // max number of parallel drafting sequences (i.e. tree branches)
  30. const int n_seq_dft = params.n_parallel;
  31. // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
  32. const float p_split = params.p_split;
  33. if (params.seed == LLAMA_DEFAULT_SEED) {
  34. params.seed = time(NULL);
  35. }
  36. std::default_random_engine rng(params.seed);
  37. std::uniform_real_distribution<> u_dist;
  38. #ifndef LOG_DISABLE_LOGS
  39. log_set_target(log_filename_generator("speculative", "log"));
  40. LOG_TEE("Log start\n");
  41. log_dump_cmdline(argc, argv);
  42. #endif // LOG_DISABLE_LOGS
  43. // init llama.cpp
  44. llama_backend_init();
  45. llama_numa_init(params.numa);
  46. llama_model * model_tgt = NULL;
  47. llama_model * model_dft = NULL;
  48. llama_context * ctx_tgt = NULL;
  49. llama_context * ctx_dft = NULL;
  50. // load the target model
  51. std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
  52. // load the draft model
  53. params.model = params.model_draft;
  54. params.n_gpu_layers = params.n_gpu_layers_draft;
  55. if (params.n_threads_draft > 0) {
  56. params.n_threads = params.n_threads_draft;
  57. }
  58. params.n_threads_batch = params.n_threads_batch_draft;
  59. std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
  60. const bool vocab_type_tgt = llama_vocab_type(model_tgt);
  61. LOG("vocab_type tgt: %d\n", vocab_type_tgt);
  62. const bool vocab_type_dft = llama_vocab_type(model_dft);
  63. LOG("vocab_type dft: %d\n", vocab_type_dft);
  64. if (vocab_type_tgt != vocab_type_dft) {
  65. fprintf(stderr, "%s: error: draft model vocab type must match target model to use speculation but ", __func__);
  66. fprintf(stderr, "vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
  67. return 1;
  68. }
  69. if (
  70. llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
  71. llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
  72. llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
  73. llama_token_eos(model_tgt) != llama_token_eos(model_dft)
  74. ) {
  75. fprintf(stderr, "%s: error: draft model special tokens must match target model to use speculation\n", __func__);
  76. return 1;
  77. }
  78. {
  79. const int n_vocab_tgt = llama_n_vocab(model_tgt);
  80. const int n_vocab_dft = llama_n_vocab(model_dft);
  81. const int vocab_diff = n_vocab_tgt > n_vocab_dft
  82. ? n_vocab_tgt - n_vocab_dft
  83. : n_vocab_dft - n_vocab_tgt;
  84. if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
  85. fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
  86. fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
  87. n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
  88. return 1;
  89. }
  90. for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
  91. const char * token_text_tgt = llama_token_get_text(model_tgt, i);
  92. const char * token_text_dft = llama_token_get_text(model_dft, i);
  93. if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
  94. fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
  95. fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
  96. llama_token_to_piece(ctx_tgt, i).c_str(),
  97. llama_token_to_piece(ctx_dft, i).c_str());
  98. return 1;
  99. }
  100. }
  101. }
  102. // Tokenize the prompt
  103. std::vector<llama_token> inp;
  104. inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
  105. const int max_context_size = llama_n_ctx(ctx_tgt);
  106. const int max_tokens_list_size = max_context_size - 4;
  107. if ((int) inp.size() > max_tokens_list_size) {
  108. fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  109. return 1;
  110. }
  111. fprintf(stderr, "\n\n");
  112. for (auto id : inp) {
  113. fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
  114. }
  115. fflush(stderr);
  116. const int n_input = inp.size();
  117. const auto t_enc_start = ggml_time_us();
  118. // eval the prompt with both models
  119. llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
  120. llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
  121. llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
  122. const auto t_enc_end = ggml_time_us();
  123. // the 2 models should have the same vocab
  124. //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
  125. // how many tokens to draft each time
  126. int n_draft = params.n_draft;
  127. int n_predict = 0;
  128. int n_drafted = 0;
  129. int n_accept = 0;
  130. int n_past_tgt = inp.size();
  131. int n_past_dft = inp.size();
  132. // used to determine end of generation
  133. bool has_eos = false;
  134. // target model sampling context
  135. struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
  136. // draft sequence data
  137. std::vector<seq_draft> drafts(n_seq_dft);
  138. params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
  139. if (params.sparams.temp == 0) {
  140. params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
  141. }
  142. for (int s = 0; s < n_seq_dft; ++s) {
  143. drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
  144. }
  145. llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
  146. llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
  147. const auto t_dec_start = ggml_time_us();
  148. // sample from the last token of the prompt
  149. drafts[0].i_batch_tgt.resize(1);
  150. drafts[0].i_batch_tgt[0] = 0;
  151. while (true) {
  152. std::set<int> active_seqs = {};
  153. // print current draft sequences
  154. for (int s = 0; s < n_seq_dft; ++s) {
  155. if (!drafts[s].active) {
  156. continue;
  157. }
  158. active_seqs.insert(s);
  159. const auto & tokens = drafts[s].tokens;
  160. LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
  161. }
  162. int i_dft = 0;
  163. int s_keep = 0;
  164. llama_token token_id;
  165. std::string token_str;
  166. // loop until we fail to accept a drafted token or we run out of drafted tokens
  167. while (true) {
  168. // check if the target token matches any of the drafts
  169. // for stochastic sampling, attempt to match the token with the drafted tokens
  170. {
  171. bool accept = false;
  172. if (params.sparams.temp > 0) {
  173. // stochastic verification
  174. llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
  175. llama_sample_softmax(ctx_tgt, &dist_tgt);
  176. float p_tgt = 0, p_dft = 0;
  177. // GGML_ASSERT(dist_tgt.size() == dist_dft.size());
  178. while (active_seqs.size() > 0) {
  179. // randomly select a sequence to verify from active sequences
  180. std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
  181. int s = *std::next(active_seqs.begin(), u_int_dist(rng));
  182. if (i_dft >= (int) drafts[s].tokens.size()) {
  183. drafts[s].active = false;
  184. active_seqs.erase(s);
  185. continue;
  186. }
  187. if (accept) {
  188. // if we already accepted a token, we can skip the rest
  189. if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
  190. drafts[s].active = false;
  191. active_seqs.erase(s);
  192. }
  193. continue;
  194. }
  195. LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
  196. float r = u_dist(rng);
  197. llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
  198. // acquire the token probabilities assigned by the draft and target models
  199. for (size_t i = 0; i < dist_tgt.size; i++) {
  200. if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
  201. p_tgt = dist_tgt.data[i].p;
  202. }
  203. if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
  204. p_dft = dist_dft.data[i].p;
  205. }
  206. if (p_tgt && p_dft) {
  207. break;
  208. }
  209. }
  210. LOG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
  211. if (r <= p_tgt / p_dft) {
  212. s_keep = s;
  213. accept = true;
  214. token_id = drafts[s].tokens[i_dft];
  215. token_str = llama_token_to_piece(ctx_tgt, token_id);
  216. llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
  217. LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
  218. break;
  219. } else {
  220. LOG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
  221. drafts[s].active = false;
  222. // calculate residual probability
  223. GGML_ASSERT(dist_tgt.sorted);
  224. GGML_ASSERT(dist_dft.sorted);
  225. float sum_probs = 0.0f;
  226. // sort dist by id
  227. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  228. return a.id < b.id;
  229. });
  230. std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
  231. return a.id < b.id;
  232. });
  233. for (size_t i = 0; i < dist_tgt.size; i++) {
  234. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
  235. sum_probs += dist_tgt.data[i].p;
  236. }
  237. for (size_t i = 0; i < dist_tgt.size; i++) {
  238. dist_tgt.data[i].p /= sum_probs;
  239. }
  240. // sort dist_tgt by p desc
  241. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  242. return a.p > b.p;
  243. });
  244. }
  245. active_seqs.erase(s);
  246. for(int i = 0; i < n_seq_dft; i++) {
  247. if (i == s) {
  248. continue;
  249. }
  250. if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
  251. // synchronize active status for sequences with the same drafted token
  252. drafts[i].active = drafts[i].active && accept;
  253. if (!drafts[i].active) {
  254. active_seqs.erase(s);
  255. }
  256. }
  257. }
  258. }
  259. if (!accept) {
  260. // all drafted tokens were rejected
  261. // sample from the target model
  262. LOG("all drafted tokens were rejected, sampling from residual distribution\n");
  263. token_id = llama_sample_token(ctx_tgt, &dist_tgt);
  264. llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
  265. token_str = llama_token_to_piece(ctx_tgt, token_id);
  266. }
  267. } else {
  268. // greedy verification
  269. // sample from the target model
  270. LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
  271. token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
  272. llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
  273. //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
  274. token_str = llama_token_to_piece(ctx_tgt, token_id);
  275. for (int s = 0; s < n_seq_dft; ++s) {
  276. if (!drafts[s].active) {
  277. continue;
  278. }
  279. if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
  280. LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
  281. s_keep = s;
  282. accept = true;
  283. } else {
  284. drafts[s].active = false;
  285. }
  286. }
  287. }
  288. if (token_id == llama_token_eos(model_tgt)) {
  289. has_eos = true;
  290. }
  291. ++n_predict;
  292. if (accept) {
  293. ++n_accept;
  294. ++n_past_tgt;
  295. ++n_past_dft;
  296. ++i_dft;
  297. if (params.use_color) {
  298. // Color token according to its origin sequence
  299. printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
  300. } else {
  301. printf("%s", token_str.c_str());
  302. }
  303. fflush(stdout);
  304. continue;
  305. } else {
  306. printf("%s", token_str.c_str());
  307. fflush(stdout);
  308. break;
  309. }
  310. }
  311. }
  312. {
  313. LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
  314. // TODO: simplify
  315. {
  316. LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
  317. llama_kv_cache_seq_keep(ctx_dft, s_keep);
  318. llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
  319. llama_kv_cache_seq_keep(ctx_dft, 0);
  320. llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
  321. llama_kv_cache_seq_keep(ctx_tgt, s_keep);
  322. llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
  323. llama_kv_cache_seq_keep(ctx_tgt, 0);
  324. }
  325. for (int s = 0; s < n_seq_dft; ++s) {
  326. drafts[s].active = false;
  327. drafts[s].tokens.clear();
  328. drafts[s].i_batch_tgt.clear();
  329. drafts[s].dists.clear();
  330. }
  331. // note: will be erased after the speculation phase
  332. drafts[0].tokens.push_back(token_id);
  333. drafts[0].dists.push_back(std::vector<llama_token_data>());
  334. drafts[0].i_batch_tgt.push_back(0);
  335. llama_batch_clear(batch_dft);
  336. llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
  337. llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
  338. // LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
  339. llama_decode(ctx_dft, batch_dft);
  340. ++n_past_dft;
  341. }
  342. if (n_predict > params.n_predict || has_eos) {
  343. break;
  344. }
  345. llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
  346. int n_seq_cur = 1;
  347. int n_past_cur = n_past_dft;
  348. for (int s = 0; s < n_seq_dft; ++s) {
  349. drafts[s].active = false;
  350. drafts[s].drafting = false;
  351. }
  352. drafts[0].active = true;
  353. drafts[0].drafting = true;
  354. drafts[0].i_batch_dft = 0;
  355. llama_batch_clear(batch_tgt);
  356. llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
  357. // sample n_draft tokens from the draft model using tree-based sampling
  358. for (int i = 0; i < n_draft; ++i) {
  359. batch_dft.n_tokens = 0;
  360. for (int s = 0; s < n_seq_dft; ++s) {
  361. drafts[s].skip = false;
  362. }
  363. for (int s = 0; s < n_seq_dft; ++s) {
  364. if (!drafts[s].drafting || drafts[s].skip) {
  365. continue;
  366. }
  367. llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
  368. const auto & cur_p = drafts[s].ctx_sampling->cur;
  369. for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
  370. LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
  371. k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
  372. }
  373. std::vector<int> sa(1, s);
  374. // attempt to split the branch if the probability is high enough
  375. for (int f = 1; f < 8; ++f) {
  376. if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
  377. LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
  378. llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
  379. llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
  380. // all previous tokens from this branch are now also part of the new branch
  381. for (int t = 0; t < batch_tgt.n_tokens; ++t) {
  382. for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
  383. if (batch_tgt.seq_id[t][p] == s) {
  384. batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
  385. batch_tgt.n_seq_id[t]++;
  386. break;
  387. }
  388. }
  389. }
  390. // copy the draft state
  391. drafts[n_seq_cur].active = true;
  392. drafts[n_seq_cur].drafting = true;
  393. drafts[n_seq_cur].skip = true;
  394. drafts[n_seq_cur].tokens = drafts[s].tokens;
  395. drafts[n_seq_cur].dists = drafts[s].dists;
  396. drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
  397. drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
  398. llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
  399. sa.push_back(n_seq_cur);
  400. n_seq_cur++;
  401. } else {
  402. break;
  403. }
  404. }
  405. // add drafted token for each sequence
  406. for (int is = 0; is < (int) sa.size(); ++is) {
  407. const llama_token id = cur_p[is].id;
  408. const int s = sa[is];
  409. llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
  410. drafts[s].tokens.push_back(id);
  411. // save cur_p.data into drafts[s].dists
  412. drafts[s].dists.push_back(cur_p);
  413. // add unique drafted tokens to the target batch
  414. drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
  415. llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
  416. // add the token to the batch for batched decoding with the draft model
  417. drafts[s].i_batch_dft = batch_dft.n_tokens;
  418. llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
  419. if (batch_tgt.n_tokens > n_draft) {
  420. drafts[s].drafting = false;
  421. }
  422. }
  423. }
  424. // no sequence is drafting anymore
  425. if (batch_dft.n_tokens == 0) {
  426. break;
  427. }
  428. // evaluate the drafted tokens on the draft model
  429. llama_decode(ctx_dft, batch_dft);
  430. ++n_past_cur;
  431. ++n_drafted;
  432. if (batch_tgt.n_tokens > n_draft) {
  433. break;
  434. }
  435. }
  436. // evaluate the target model on the drafted tokens
  437. {
  438. llama_kv_cache_seq_keep(ctx_tgt, 0);
  439. for (int s = 1; s < n_seq_dft; ++s) {
  440. llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
  441. }
  442. // LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
  443. llama_decode(ctx_tgt, batch_tgt);
  444. ++n_past_tgt;
  445. }
  446. // the first token is always proposed by the target model before the speculation loop so we erase it here
  447. for (int s = 0; s < n_seq_dft; ++s) {
  448. if (!drafts[s].active) {
  449. continue;
  450. }
  451. drafts[s].tokens.erase(drafts[s].tokens.begin());
  452. drafts[s].dists.erase(drafts[s].dists.begin());
  453. }
  454. }
  455. auto t_dec_end = ggml_time_us();
  456. LOG_TEE("\n\n");
  457. LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  458. LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  459. LOG_TEE("\n");
  460. LOG_TEE("n_draft = %d\n", n_draft);
  461. LOG_TEE("n_predict = %d\n", n_predict);
  462. LOG_TEE("n_drafted = %d\n", n_drafted);
  463. LOG_TEE("n_accept = %d\n", n_accept);
  464. LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  465. LOG_TEE("\ndraft:\n");
  466. llama_print_timings(ctx_dft);
  467. LOG_TEE("\ntarget:\n");
  468. llama_print_timings(ctx_tgt);
  469. llama_sampling_free(ctx_sampling);
  470. for (int s = 0; s < n_seq_dft; ++s) {
  471. llama_sampling_free(drafts[s].ctx_sampling);
  472. }
  473. llama_batch_free(batch_dft);
  474. llama_free(ctx_tgt);
  475. llama_free_model(model_tgt);
  476. llama_free(ctx_dft);
  477. llama_free_model(model_dft);
  478. llama_backend_free();
  479. fprintf(stderr, "\n\n");
  480. return 0;
  481. }