| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742 |
- #include <httplib.h>
- #include <json.hpp>
- #include "common.h"
- #include "llama.h"
- struct server_params
- {
- std::string hostname = "127.0.0.1";
- int32_t port = 8080;
- };
- struct llama_server_context
- {
- bool as_loop = false;
- bool has_next_token = false;
- std::string generated_text = "";
- int32_t num_tokens_predicted = 0;
- int32_t n_past = 0;
- int32_t n_consumed = 0;
- int32_t n_session_consumed = 0;
- int32_t n_remain = 0;
- std::vector<llama_token> embd;
- std::vector<llama_token> last_n_tokens;
- std::vector<llama_token> processed_tokens;
- std::vector<llama_token> llama_token_newline;
- std::vector<llama_token> embd_inp;
- std::vector<std::vector<llama_token>> no_show_words;
- std::vector<llama_token> tokens_predicted;
- llama_context *ctx;
- gpt_params params;
- void rewind() {
- as_loop = false;
- params.antiprompt.clear();
- no_show_words.clear();
- num_tokens_predicted = 0;
- generated_text = "";
- }
- bool loadModel(gpt_params params_)
- {
- params = params_;
- ctx = llama_init_from_gpt_params(params);
- if (ctx == NULL)
- {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return false;
- }
- // determine newline token
- llama_token_newline = ::llama_tokenize(ctx, "\n", false);
- last_n_tokens.resize(params.n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- return true;
- }
- bool loadPrompt() {
- params.prompt.insert(0, 1, ' '); // always add a first space
- std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
- // compare the evaluated prompt with the new prompt
- int new_prompt_len = 0;
- for (size_t i = 0; i < prompt_tokens.size(); i++) {
- if (i < processed_tokens.size() &&
- processed_tokens[i] == prompt_tokens[i])
- {
- continue;
- }
- else
- {
- embd_inp.push_back(prompt_tokens[i]);
- if(new_prompt_len == 0) {
- if(int32_t(i) - 1 < n_past) {
- processed_tokens.erase(processed_tokens.begin() + i, processed_tokens.end());
- }
- // Evaluate the new fragment prompt from the last token processed.
- n_past = processed_tokens.size();
- }
- new_prompt_len ++;
- }
- }
- if(n_past > 0 && params.interactive) {
- n_remain -= new_prompt_len;
- }
- if ((int)embd_inp.size() > params.n_ctx - 4)
- {
- return false;
- }
- has_next_token = true;
- return true;
- }
- void beginCompletion()
- {
- if(n_remain == 0) {
- // number of tokens to keep when resetting context
- if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size())
- {
- params.n_keep = (int)embd_inp.size();
- }
- }
- n_remain = params.n_predict;
- }
- llama_token nextToken() {
- llama_token result = -1;
- if (embd.size() > 0)
- {
- if (n_past + (int)embd.size() > params.n_ctx)
- {
- // Reset context
- const int n_left = n_past - params.n_keep;
- n_past = std::max(1, params.n_keep);
- processed_tokens.erase(processed_tokens.begin() + n_past, processed_tokens.end());
- embd.insert(embd.begin(), last_n_tokens.begin() + params.n_ctx - n_left / 2 - embd.size(), last_n_tokens.end() - embd.size());
- }
- for (int i = 0; i < (int)embd.size(); i += params.n_batch)
- {
- int n_eval = (int)embd.size() - i;
- if (n_eval > params.n_batch)
- {
- n_eval = params.n_batch;
- }
- if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads))
- {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- has_next_token = false;
- return result;
- }
- n_past += n_eval;
- }
- }
- embd.clear();
- if ((int)embd_inp.size() <= n_consumed && has_next_token)
- {
- // out of user input, sample next token
- const float temp = params.temp;
- // const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
- const float top_p = params.top_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const float alpha_presence = params.presence_penalty;
- const float alpha_frequency = params.frequency_penalty;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- const bool penalize_nl = params.penalize_nl;
- llama_token id = 0;
- {
- auto logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- // Apply params.logit_bias map
- for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++)
- {
- logits[it->first] += it->second;
- }
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++)
- {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
- // Apply penalties
- float nl_logit = logits[llama_token_nl()];
- auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
- llama_sample_repetition_penalty(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
- if (!penalize_nl)
- {
- logits[llama_token_nl()] = nl_logit;
- }
- if (temp <= 0)
- {
- // Greedy sampling
- id = llama_sample_token_greedy(ctx, &candidates_p);
- }
- else
- {
- if (mirostat == 1)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- }
- else if (mirostat == 2)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- }
- else
- {
- // Temperature sampling
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
- llama_sample_typical(ctx, &candidates_p, typical_p, 1);
- llama_sample_top_p(ctx, &candidates_p, top_p, 1);
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token(ctx, &candidates_p);
- }
- }
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(id);
- processed_tokens.push_back(id);
- num_tokens_predicted++;
- }
- // replace end of text token with newline token when in interactive mode
- if (id == llama_token_eos() && params.interactive)
- {
- id = llama_token_newline.front();
- if (params.antiprompt.size() != 0)
- {
- // tokenize and inject first reverse prompt
- const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
- embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
- }
- }
- // add it to the context
- embd.push_back(id);
- for (auto id : embd)
- {
- result = id;
- }
- // decrement remaining sampling budget
- --n_remain;
- }
- else
- {
- // some user input remains from prompt or interaction, forward it to processing
- while ((int)embd_inp.size() > n_consumed)
- {
- embd.push_back(embd_inp[n_consumed]);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(embd_inp[n_consumed]);
- processed_tokens.push_back(embd_inp[n_consumed]);
- ++n_consumed;
- if ((int)embd.size() >= params.n_batch)
- {
- break;
- }
- }
- }
- if (params.interactive && (int)embd_inp.size() <= n_consumed)
- {
- // check for reverse prompt
- if (params.antiprompt.size())
- {
- std::string last_output;
- for (auto id : last_n_tokens)
- {
- last_output += llama_token_to_str(ctx, id);
- }
- has_next_token = true;
- // Check if each of the reverse prompts appears at the end of the output.
- for (std::string &antiprompt : params.antiprompt)
- {
- if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos)
- {
- has_next_token = false;
- return result;
- }
- }
- }
- if (n_past > 0)
- {
- has_next_token = true;
- }
- }
- if (!embd.empty() && embd.back() == llama_token_eos()) {
- has_next_token = false;
- }
- if (params.interactive && n_remain <= 0 && params.n_predict != -1)
- {
- n_remain = params.n_predict;
- }
- has_next_token = n_remain != 0;
- return result;
- }
- std::string doCompletion()
- {
- llama_token token = nextToken();
- if (token == -1) {
- return "";
- }
- tokens_predicted.clear();
- tokens_predicted.push_back(token);
- // Avoid add the no show words to the response
- for (std::vector<llama_token> word_tokens : no_show_words)
- {
- size_t match_token = 1;
- if (tokens_predicted.front() == word_tokens.front())
- {
- bool execute_matching = true;
- if (tokens_predicted.size() > 1) { // if previus tokens had been tested
- for (size_t i = 1; i < word_tokens.size(); i++)
- {
- if (i >= tokens_predicted.size()) {
- match_token = i;
- break;
- }
- if (tokens_predicted[i] == word_tokens[i])
- {
- continue;
- }
- else
- {
- execute_matching = false;
- break;
- }
- }
- }
- while (execute_matching) {
- if (match_token == word_tokens.size()) {
- return "";
- }
- token = nextToken();
- tokens_predicted.push_back(token);
- if (token == word_tokens[match_token])
- { // the token follow the sequence
- match_token++;
- }
- else if (match_token < word_tokens.size())
- { // no complete all word sequence
- break;
- }
- }
- }
- }
- if(as_loop) {
- generated_text = "";
- }
- for (llama_token tkn : tokens_predicted)
- {
- generated_text += llama_token_to_str(ctx, tkn);
- }
- return generated_text;
- }
- std::vector<float> embedding(std::string content, int threads) {
- content.insert(0, 1, ' ');
- std::vector<llama_token> tokens = ::llama_tokenize(ctx, content, true);
- if (tokens.size() > 0)
- {
- if (llama_eval(ctx, tokens.data(), tokens.size(), 0, threads))
- {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- std::vector<float> embeddings_;
- return embeddings_;
- }
- }
- const int n_embd = llama_n_embd(ctx);
- const auto embeddings = llama_get_embeddings(ctx);
- std::vector<float> embeddings_(embeddings, embeddings + n_embd);
- return embeddings_;
- }
- };
- using namespace httplib;
- using json = nlohmann::json;
- void server_print_usage(int /*argc*/, char **argv, const gpt_params ¶ms)
- {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
- fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
- fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
- fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
- fprintf(stderr, " --embedding enable embedding mode\n");
- fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
- if (llama_mlock_supported())
- {
- fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
- }
- if (llama_mmap_supported())
- {
- fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
- }
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
- fprintf(stderr, " number of layers to store in VRAM\n");
- #endif
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, " -a ALIAS, --alias ALIAS\n");
- fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n");
- fprintf(stderr, " --host ip address to listen (default 127.0.0.1)\n");
- fprintf(stderr, " --port PORT port to listen (default 8080)\n");
- fprintf(stderr, "\n");
- }
- bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms)
- {
- gpt_params default_params;
- std::string arg;
- bool invalid_param = false;
- for (int i = 1; i < argc; i++)
- {
- arg = argv[i];
- if (arg == "--port")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.port = std::stoi(argv[i]);
- }
- else if (arg == "--host")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.hostname = argv[i];
- }
- else if (arg == "-s" || arg == "--seed")
- {
- #if defined(GGML_USE_CUBLAS)
- fprintf(stderr, "WARNING: when using cuBLAS generation results are NOT guaranteed to be reproducible.\n");
- #endif
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.seed = std::stoi(argv[i]);
- }
- else if (arg == "-m" || arg == "--model")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model = argv[i];
- }
- else if (arg == "-a" || arg == "--alias")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model_alias = argv[i];
- }
- else if (arg == "--embedding")
- {
- params.embedding = true;
- }
- else if (arg == "-h" || arg == "--help")
- {
- server_print_usage(argc, argv, default_params);
- exit(0);
- }
- else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_ctx = std::stoi(argv[i]);
- }
- else if (arg == "--memory-f32" || arg == "--memory_f32")
- {
- params.memory_f16 = false;
- }
- else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- params.n_gpu_layers = std::stoi(argv[i]);
- #else
- fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- #endif
- }
- else
- {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- server_print_usage(argc, argv, default_params);
- exit(1);
- }
- }
- if (invalid_param)
- {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- server_print_usage(argc, argv, default_params);
- exit(1);
- }
- return true;
- }
- bool parse_options_completion(json body, llama_server_context& llama, Response &res) {
- if (!body["threads"].is_null())
- {
- llama.params.n_threads = body["threads"].get<int>();
- }
- if (!body["n_predict"].is_null())
- {
- llama.params.n_predict = body["n_predict"].get<int>();
- }
- if (!body["top_k"].is_null())
- {
- llama.params.top_k = body["top_k"].get<int>();
- }
- if (!body["top_p"].is_null())
- {
- llama.params.top_p = body["top_p"].get<float>();
- }
- if (!body["temperature"].is_null())
- {
- llama.params.temp = body["temperature"].get<float>();
- }
- if (!body["batch_size"].is_null())
- {
- llama.params.n_batch = body["batch_size"].get<int>();
- }
- if (!body["n_keep"].is_null())
- {
- llama.params.n_keep = body["n_keep"].get<int>();
- }
- if (!body["as_loop"].is_null())
- {
- llama.as_loop = body["as_loop"].get<bool>();
- }
- if (!body["interactive"].is_null())
- {
- llama.params.interactive = body["interactive"].get<bool>();
- }
- if (!body["prompt"].is_null())
- {
- llama.params.prompt = body["prompt"].get<std::string>();
- }
- else
- {
- json data = {
- {"status", "error"},
- {"reason", "You need to pass the prompt"}};
- res.set_content(data.dump(), "application/json");
- res.status = 400;
- return false;
- }
- if (!body["stop"].is_null())
- {
- std::vector<std::string> stop_words = body["stop"].get<std::vector<std::string>>();
- for (std::string stop_word : stop_words)
- {
- llama.params.antiprompt.push_back(stop_word);
- llama.no_show_words.push_back(::llama_tokenize(llama.ctx, stop_word, false));
- }
- }
- if (!body["exclude"].is_null())
- {
- std::vector<std::string> no_show_words = body["exclude"].get<std::vector<std::string>>();
- for (std::string no_show : no_show_words)
- {
- llama.no_show_words.push_back(::llama_tokenize(llama.ctx, no_show, false));
- }
- }
- return true;
- }
- int main(int argc, char **argv)
- {
- // own arguments required by this example
- gpt_params params;
- server_params sparams;
- // struct that contains llama context and inference
- llama_server_context llama;
- params.model = "ggml-model.bin";
- if (server_params_parse(argc, argv, sparams, params) == false)
- {
- return 1;
- }
- if (params.seed <= 0)
- {
- params.seed = time(NULL);
- }
- fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
- // load the model
- if (!llama.loadModel(params))
- {
- return 1;
- }
- Server svr;
- svr.Get("/", [](const Request &, Response &res)
- { res.set_content("<h1>llama.cpp server works</h1>", "text/html"); });
- svr.Post("/completion", [&llama](const Request &req, Response &res)
- {
- if(llama.params.embedding) {
- json data = {
- {"status", "error"},
- {"reason", "To use completion function disable embedding mode"}};
- res.set_content(data.dump(), "application/json");
- res.status = 400;
- return;
- }
- llama.rewind();
- if(parse_options_completion(json::parse(req.body), llama, res) == false){
- return;
- }
- if (!llama.loadPrompt())
- {
- json data = {
- {"status", "error"},
- {"reason", "Context too long, please be more specific"}};
- res.set_content(data.dump(), "application/json");
- res.status = 400;
- return;
- }
- llama.beginCompletion();
- if(llama.as_loop) {
- json data = {
- {"status", "done" } };
- return res.set_content(data.dump(), "application/json");
- } else {
- // loop inference until finish completion
- while (llama.has_next_token)
- {
- llama.doCompletion();
- }
- try
- {
- json data = {
- {"model", llama.params.model_alias },
- {"content", llama.generated_text },
- {"tokens_predicted", llama.num_tokens_predicted}};
- return res.set_content(data.dump(), "application/json");
- }
- catch (const json::exception &e)
- {
- // Some tokens have bad UTF-8 strings, the json parser is very sensitive
- json data = {
- {"content", "Bad encoding token"},
- {"tokens_predicted", 0}};
- return res.set_content(data.dump(), "application/json");
- }
- } });
- svr.Post("/tokenize", [&llama](const Request &req, Response &res)
- {
- json body = json::parse(req.body);
- json data = {
- {"tokens", ::llama_tokenize(llama.ctx, body["content"].get<std::string>(), false) } };
- return res.set_content(data.dump(), "application/json");
- });
- svr.Post("/embedding", [&llama](const Request &req, Response &res)
- {
- if(!llama.params.embedding) {
- std::vector<float> empty;
- json data = {
- {"embedding", empty}};
- fprintf(stderr, "[llama-server] : You need enable embedding mode adding: --embedding option\n");
- return res.set_content(data.dump(), "application/json");
- }
- json body = json::parse(req.body);
- std::string content = body["content"].get<std::string>();
- int threads = body["threads"].get<int>();
- json data = {
- {"embedding", llama.embedding(content, threads) } };
- return res.set_content(data.dump(), "application/json");
- });
- svr.Get("/next-token", [&llama](const Request &req, Response &res)
- {
- if(llama.params.embedding) {
- res.set_content("{}", "application/json");
- return;
- }
- std::string result = "";
- if (req.has_param("stop")) {
- llama.has_next_token = false;
- } else {
- result = llama.doCompletion(); // inference next token
- }
- try {
- json data = {
- {"content", result },
- {"stop", !llama.has_next_token }};
- return res.set_content(data.dump(), "application/json");
- } catch (const json::exception &e) {
- // Some tokens have bad UTF-8 strings, the json parser is very sensitive
- json data = {
- {"content", "" },
- {"stop", !llama.has_next_token }};
- return res.set_content(data.dump(), "application/json");
- }
- });
- fprintf(stderr, "%s: http server Listening at http://%s:%i\n", __func__, sparams.hostname.c_str(), sparams.port);
- if(params.embedding) {
- fprintf(stderr, "NOTE: Mode embedding enabled. Completion function doesn't work in this mode.\n");
- }
- // change hostname and port
- svr.listen(sparams.hostname, sparams.port);
- }
|