1
0

common.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include "sampling.h"
  5. #define LOG_NO_FILE_LINE_FUNCTION
  6. #include "log.h"
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. #include <random>
  11. #include <thread>
  12. #include <set>
  13. #include <unordered_map>
  14. #include <tuple>
  15. #include <functional>
  16. #ifdef _WIN32
  17. #define DIRECTORY_SEPARATOR '\\'
  18. #else
  19. #define DIRECTORY_SEPARATOR '/'
  20. #endif // _WIN32
  21. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  22. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  23. #define print_build_info() do { \
  24. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  25. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  26. } while(0)
  27. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  28. struct llama_lora_adapter_info {
  29. std::string path;
  30. float scale;
  31. };
  32. struct llama_lora_adapter_container : llama_lora_adapter_info {
  33. struct llama_lora_adapter * adapter;
  34. };
  35. // build info
  36. extern int LLAMA_BUILD_NUMBER;
  37. extern char const * LLAMA_COMMIT;
  38. extern char const * LLAMA_COMPILER;
  39. extern char const * LLAMA_BUILD_TARGET;
  40. struct llama_control_vector_load_info;
  41. //
  42. // CPU utils
  43. //
  44. int32_t cpu_get_num_physical_cores();
  45. int32_t cpu_get_num_math();
  46. //
  47. // CLI argument parsing
  48. //
  49. enum llama_example {
  50. LLAMA_EXAMPLE_COMMON,
  51. LLAMA_EXAMPLE_SPECULATIVE,
  52. LLAMA_EXAMPLE_MAIN,
  53. LLAMA_EXAMPLE_INFILL,
  54. LLAMA_EXAMPLE_EMBEDDING,
  55. LLAMA_EXAMPLE_PERPLEXITY,
  56. LLAMA_EXAMPLE_RETRIEVAL,
  57. LLAMA_EXAMPLE_PASSKEY,
  58. LLAMA_EXAMPLE_IMATRIX,
  59. LLAMA_EXAMPLE_BENCH,
  60. LLAMA_EXAMPLE_SERVER,
  61. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  62. LLAMA_EXAMPLE_EXPORT_LORA,
  63. LLAMA_EXAMPLE_LLAVA,
  64. LLAMA_EXAMPLE_COUNT,
  65. };
  66. // dimensionality reduction methods, used by cvector-generator
  67. enum dimre_method {
  68. DIMRE_METHOD_PCA,
  69. DIMRE_METHOD_MEAN,
  70. };
  71. struct cpu_params {
  72. int n_threads = -1;
  73. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  74. bool mask_valid = false; // Default: any CPU
  75. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  76. bool strict_cpu = false; // Use strict CPU placement
  77. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  78. };
  79. struct gpt_params {
  80. enum llama_example curr_ex = LLAMA_EXAMPLE_COMMON;
  81. int32_t n_predict = -1; // new tokens to predict
  82. int32_t n_ctx = 0; // context size
  83. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  84. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  85. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  86. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  87. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  88. int32_t n_parallel = 1; // number of parallel sequences to decode
  89. int32_t n_sequences = 1; // number of sequences to decode
  90. float p_split = 0.1f; // speculative decoding split probability
  91. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  92. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  93. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  94. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  95. int32_t grp_attn_n = 1; // group-attention factor
  96. int32_t grp_attn_w = 512; // group-attention width
  97. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  98. float rope_freq_base = 0.0f; // RoPE base frequency
  99. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  100. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  101. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  102. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  103. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  104. int32_t yarn_orig_ctx = 0; // YaRN original context length
  105. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  106. struct cpu_params cpuparams;
  107. struct cpu_params cpuparams_batch;
  108. struct cpu_params draft_cpuparams;
  109. struct cpu_params draft_cpuparams_batch;
  110. ggml_backend_sched_eval_callback cb_eval = nullptr;
  111. void * cb_eval_user_data = nullptr;
  112. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  113. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  114. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  115. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  116. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  117. struct gpt_sampler_params sparams;
  118. std::string model = ""; // model path
  119. std::string model_draft = ""; // draft model for speculative decoding
  120. std::string model_alias = "unknown"; // model alias
  121. std::string model_url = ""; // model url to download
  122. std::string hf_token = ""; // HF token
  123. std::string hf_repo = ""; // HF repo
  124. std::string hf_file = ""; // HF file
  125. std::string prompt = "";
  126. std::string prompt_file = ""; // store the external prompt file name
  127. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  128. std::string input_prefix = ""; // string to prefix user inputs with
  129. std::string input_suffix = ""; // string to suffix user inputs with
  130. std::string logdir = ""; // directory in which to save YAML log files
  131. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  132. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  133. std::string logits_file = ""; // file for saving *all* logits
  134. std::string rpc_servers = ""; // comma separated list of RPC servers
  135. std::vector<std::string> in_files; // all input files
  136. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  137. std::vector<llama_model_kv_override> kv_overrides;
  138. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  139. std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  140. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  141. int32_t verbosity = 0;
  142. int32_t control_vector_layer_start = -1; // layer range for control vector
  143. int32_t control_vector_layer_end = -1; // layer range for control vector
  144. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  145. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  146. // (which is more convenient to use for plotting)
  147. //
  148. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  149. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  150. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  151. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  152. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  153. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  154. bool kl_divergence = false; // compute KL divergence
  155. std::function<void(int, char **)> print_usage = nullptr; // print example-specific usage and example
  156. bool usage = false; // print usage
  157. bool use_color = false; // use color to distinguish generations and inputs
  158. bool special = false; // enable special token output
  159. bool interactive = false; // interactive mode
  160. bool interactive_first = false; // wait for user input immediately
  161. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  162. bool prompt_cache_all = false; // save user input and generations to prompt cache
  163. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  164. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  165. bool multiline_input = false; // reverse the usage of `\`
  166. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  167. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  168. bool flash_attn = false; // flash attention
  169. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  170. bool logits_all = false; // return logits for all tokens in the batch
  171. bool use_mmap = true; // use mmap for faster loads
  172. bool use_mlock = false; // use mlock to keep model in memory
  173. bool verbose_prompt = false; // print prompt tokens before generation
  174. bool display_prompt = true; // print prompt before generation
  175. bool infill = false; // use infill mode
  176. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  177. bool no_kv_offload = false; // disable KV offloading
  178. bool warmup = true; // warmup run
  179. bool check_tensors = false; // validate tensor data
  180. std::string cache_type_k = "f16"; // KV cache data type for the K
  181. std::string cache_type_v = "f16"; // KV cache data type for the V
  182. // multimodal models (see examples/llava)
  183. std::string mmproj = ""; // path to multimodal projector
  184. std::vector<std::string> image; // path to image file(s)
  185. // embedding
  186. bool embedding = false; // get only sentence embedding
  187. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  188. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  189. std::string embd_sep = "\n"; // separator of embendings
  190. // server params
  191. int32_t port = 8080; // server listens on this network port
  192. int32_t timeout_read = 600; // http read timeout in seconds
  193. int32_t timeout_write = timeout_read; // http write timeout in seconds
  194. int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  195. std::string hostname = "127.0.0.1";
  196. std::string public_path = "";
  197. std::string chat_template = "";
  198. std::string system_prompt = "";
  199. bool enable_chat_template = true;
  200. std::vector<std::string> api_keys;
  201. std::string ssl_file_key = "";
  202. std::string ssl_file_cert = "";
  203. bool endpoint_slots = true;
  204. bool endpoint_metrics = false;
  205. bool log_json = false;
  206. std::string slot_save_path;
  207. float slot_prompt_similarity = 0.5f;
  208. // batched-bench params
  209. bool is_pp_shared = false;
  210. std::vector<int32_t> n_pp;
  211. std::vector<int32_t> n_tg;
  212. std::vector<int32_t> n_pl;
  213. // retrieval params
  214. std::vector<std::string> context_files; // context files to embed
  215. int32_t chunk_size = 64; // chunk size for context embedding
  216. std::string chunk_separator = "\n"; // chunk separator for context embedding
  217. // passkey params
  218. int32_t n_junk = 250; // number of times to repeat the junk text
  219. int32_t i_pos = -1; // position of the passkey in the junk text
  220. // imatrix params
  221. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  222. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  223. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  224. int32_t i_chunk = 0; // start processing from this chunk
  225. bool process_output = false; // collect data for the output tensor
  226. bool compute_ppl = true; // whether to compute perplexity
  227. // cvector-generator params
  228. int n_pca_batch = 100;
  229. int n_pca_iterations = 1000;
  230. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  231. std::string cvector_outfile = "control_vector.gguf";
  232. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  233. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  234. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  235. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  236. // batched-bench params
  237. bool batched_bench_output_jsonl = false;
  238. };
  239. struct llama_arg {
  240. std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
  241. std::vector<const char *> args;
  242. const char * value_hint = nullptr; // help text or example for arg value
  243. const char * value_hint_2 = nullptr; // for second arg value
  244. const char * env = nullptr;
  245. std::string help;
  246. void (*handler_void) (gpt_params & params) = nullptr;
  247. void (*handler_string) (gpt_params & params, const std::string &) = nullptr;
  248. void (*handler_str_str)(gpt_params & params, const std::string &, const std::string &) = nullptr;
  249. void (*handler_int) (gpt_params & params, int) = nullptr;
  250. llama_arg(
  251. const std::initializer_list<const char *> & args,
  252. const char * value_hint,
  253. const std::string & help,
  254. void (*handler)(gpt_params & params, const std::string &)
  255. ) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
  256. llama_arg(
  257. const std::initializer_list<const char *> & args,
  258. const char * value_hint,
  259. const std::string & help,
  260. void (*handler)(gpt_params & params, int)
  261. ) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
  262. llama_arg(
  263. const std::initializer_list<const char *> & args,
  264. const std::string & help,
  265. void (*handler)(gpt_params & params)
  266. ) : args(args), help(help), handler_void(handler) {}
  267. // support 2 values for arg
  268. llama_arg(
  269. const std::initializer_list<const char *> & args,
  270. const char * value_hint,
  271. const char * value_hint_2,
  272. const std::string & help,
  273. void (*handler)(gpt_params & params, const std::string &, const std::string &)
  274. ) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
  275. llama_arg & set_examples(std::initializer_list<enum llama_example> examples) {
  276. this->examples = std::move(examples);
  277. return *this;
  278. }
  279. llama_arg & set_env(const char * env) {
  280. help = help + "\n(env: " + env + ")";
  281. this->env = env;
  282. return *this;
  283. }
  284. bool in_example(enum llama_example ex) {
  285. return examples.find(ex) != examples.end();
  286. }
  287. bool get_value_from_env(std::string & output) const {
  288. if (env == nullptr) return false;
  289. char * value = std::getenv(env);
  290. if (value) {
  291. output = value;
  292. return true;
  293. }
  294. return false;
  295. }
  296. bool has_value_from_env() const {
  297. return env != nullptr && std::getenv(env);
  298. }
  299. std::string to_string();
  300. };
  301. // initialize list of options (arguments) that can be used by the current example
  302. std::vector<llama_arg> gpt_params_parser_init(gpt_params & params, llama_example ex);
  303. // optionally, we can provide "print_usage" to print example usage
  304. std::vector<llama_arg> gpt_params_parser_init(gpt_params & params, llama_example ex, std::function<void(int, char **)> print_usage);
  305. // parse input arguments from CLI
  306. // if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
  307. bool gpt_params_parse (int argc, char ** argv, gpt_params & params, std::vector<llama_arg> & options);
  308. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params, std::vector<llama_arg> & options);
  309. // print full usage message; it will be called internally by gpt_params_parse() if "-h" is set
  310. void gpt_params_print_usage(gpt_params & params, std::vector<llama_arg> & options);
  311. std::string gpt_params_get_system_info(const gpt_params & params);
  312. bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  313. bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  314. void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
  315. bool set_process_priority(enum ggml_sched_priority prio);
  316. //
  317. // String utils
  318. //
  319. std::vector<std::string> string_split(std::string input, char separator);
  320. std::string string_strip(const std::string & str);
  321. std::string string_get_sortable_timestamp();
  322. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  323. template<class T>
  324. static std::vector<T> string_split(const std::string & str, char delim) {
  325. std::vector<T> values;
  326. std::istringstream str_stream(str);
  327. std::string token;
  328. while (std::getline(str_stream, token, delim)) {
  329. T value;
  330. std::istringstream token_stream(token);
  331. token_stream >> value;
  332. values.push_back(value);
  333. }
  334. return values;
  335. }
  336. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  337. void string_process_escapes(std::string & input);
  338. //
  339. // Filesystem utils
  340. //
  341. bool fs_validate_filename(const std::string & filename);
  342. bool fs_create_directory_with_parents(const std::string & path);
  343. std::string fs_get_cache_directory();
  344. std::string fs_get_cache_file(const std::string & filename);
  345. //
  346. // Model utils
  347. //
  348. struct llama_init_result {
  349. struct llama_model * model = nullptr;
  350. struct llama_context * context = nullptr;
  351. std::vector<llama_lora_adapter_container> lora_adapters;
  352. };
  353. struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
  354. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  355. struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
  356. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  357. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  358. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  359. // clear LoRA adapters from context, then apply new list of adapters
  360. void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
  361. // Batch utils
  362. void llama_batch_clear(struct llama_batch & batch);
  363. void llama_batch_add(
  364. struct llama_batch & batch,
  365. llama_token id,
  366. llama_pos pos,
  367. const std::vector<llama_seq_id> & seq_ids,
  368. bool logits);
  369. //
  370. // Vocab utils
  371. //
  372. // tokenizes a string into a vector of tokens
  373. // should work similar to Python's `tokenizer.encode`
  374. std::vector<llama_token> llama_tokenize(
  375. const struct llama_context * ctx,
  376. const std::string & text,
  377. bool add_special,
  378. bool parse_special = false);
  379. std::vector<llama_token> llama_tokenize(
  380. const struct llama_model * model,
  381. const std::string & text,
  382. bool add_special,
  383. bool parse_special = false);
  384. // tokenizes a token into a piece, optionally renders special/control tokens
  385. // should work similar to Python's `tokenizer.id_to_piece`
  386. std::string llama_token_to_piece(
  387. const struct llama_context * ctx,
  388. llama_token token,
  389. bool special = true);
  390. // detokenizes a vector of tokens into a string
  391. // should work similar to Python's `tokenizer.decode`
  392. // optionally renders special/control tokens
  393. std::string llama_detokenize(
  394. llama_context * ctx,
  395. const std::vector<llama_token> & tokens,
  396. bool special = true);
  397. //
  398. // Chat template utils
  399. //
  400. // same with llama_chat_message, but uses std::string
  401. struct llama_chat_msg {
  402. std::string role;
  403. std::string content;
  404. };
  405. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  406. bool llama_chat_verify_template(const std::string & tmpl);
  407. // CPP wrapper for llama_chat_apply_template
  408. // If the built-in template is not supported, we default to chatml
  409. // If the custom "tmpl" is not supported, we throw an error
  410. std::string llama_chat_apply_template(const struct llama_model * model,
  411. const std::string & tmpl,
  412. const std::vector<llama_chat_msg> & chat,
  413. bool add_ass);
  414. // Format single message, while taking into account the position of that message in chat history
  415. std::string llama_chat_format_single(const struct llama_model * model,
  416. const std::string & tmpl,
  417. const std::vector<llama_chat_msg> & past_msg,
  418. const llama_chat_msg & new_msg,
  419. bool add_ass);
  420. // Returns an example of formatted chat
  421. std::string llama_chat_format_example(const struct llama_model * model,
  422. const std::string & tmpl);
  423. //
  424. // KV cache utils
  425. //
  426. // Dump the KV cache view with the number of sequences per cell.
  427. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  428. // Dump the KV cache view showing individual sequences in each cell (long output).
  429. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  430. //
  431. // Embedding utils
  432. //
  433. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  434. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  435. //
  436. // Control vector utils
  437. //
  438. struct llama_control_vector_data {
  439. int n_embd;
  440. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  441. std::vector<float> data;
  442. };
  443. struct llama_control_vector_load_info {
  444. float strength;
  445. std::string fname;
  446. };
  447. // Load control vectors, scale each by strength, and add them together.
  448. // On error, returns {-1, empty}
  449. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  450. //
  451. // Split utils
  452. //
  453. static const char * const LLM_KV_SPLIT_NO = "split.no";
  454. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  455. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  456. //
  457. // YAML utils
  458. //
  459. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  460. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  461. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  462. void yaml_dump_non_result_info(
  463. FILE * stream, const gpt_params & params, const llama_context * lctx,
  464. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);