| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- #include "common.h"
- #include "llama.h"
- #include <algorithm>
- #include <cstdio>
- #include <string>
- #include <vector>
- static void print_usage(int, char ** argv) {
- LOG_TEE("\nexample usage:\n");
- LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
- LOG_TEE("\n");
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- params.prompt = "Hello my name is";
- params.n_predict = 32;
- auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_COMMON, print_usage);
- if (!gpt_params_parse(argc, argv, params, options)) {
- return 1;
- }
- // number of parallel batches
- int n_parallel = params.n_parallel;
- // total length of the sequences including the prompt
- int n_predict = params.n_predict;
- // init LLM
- llama_backend_init();
- llama_numa_init(params.numa);
- // initialize the model
- llama_model_params model_params = llama_model_params_from_gpt_params(params);
- llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- // tokenize the prompt
- std::vector<llama_token> tokens_list;
- tokens_list = ::llama_tokenize(model, params.prompt, true);
- const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
- // initialize the context
- llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
- ctx_params.n_ctx = n_kv_req;
- ctx_params.n_batch = std::max(n_predict, n_parallel);
- llama_context * ctx = llama_new_context_with_model(model, ctx_params);
- auto sparams = llama_sampler_chain_default_params();
- llama_sampler * smpl = llama_sampler_chain_init(sparams);
- llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k));
- llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep));
- llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp));
- llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
- if (ctx == NULL) {
- fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
- return 1;
- }
- const int n_ctx = llama_n_ctx(ctx);
- LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
- // make sure the KV cache is big enough to hold all the prompt and generated tokens
- if (n_kv_req > n_ctx) {
- LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
- LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
- return 1;
- }
- // print the prompt token-by-token
- fprintf(stderr, "\n");
- for (auto id : tokens_list) {
- fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
- }
- fflush(stderr);
- // create a llama_batch
- // we use this object to submit token data for decoding
- llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
- std::vector<llama_seq_id> seq_ids(n_parallel, 0);
- for (int32_t i = 0; i < n_parallel; ++i) {
- seq_ids[i] = i;
- }
- // evaluate the initial prompt
- for (size_t i = 0; i < tokens_list.size(); ++i) {
- llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
- }
- GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
- if (llama_model_has_encoder(model)) {
- if (llama_encode(ctx, batch)) {
- LOG_TEE("%s : failed to eval\n", __func__);
- return 1;
- }
- llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
- if (decoder_start_token_id == -1) {
- decoder_start_token_id = llama_token_bos(model);
- }
- llama_batch_clear(batch);
- llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
- }
- // llama_decode will output logits only for the last token of the prompt
- batch.logits[batch.n_tokens - 1] = true;
- if (llama_decode(ctx, batch) != 0) {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return 1;
- }
- //// assign the system KV cache to all parallel sequences
- //// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
- //for (int32_t i = 1; i < n_parallel; ++i) {
- // llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
- //}
- if (n_parallel > 1) {
- LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
- }
- // main loop
- // we will store the parallel decoded sequences in this vector
- std::vector<std::string> streams(n_parallel);
- // remember the batch index of the last token for each parallel sequence
- // we need this to determine which logits to sample from
- std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
- int n_cur = batch.n_tokens;
- int n_decode = 0;
- const auto t_main_start = ggml_time_us();
- while (n_cur <= n_predict) {
- // prepare the next batch
- llama_batch_clear(batch);
- // sample the next token for each parallel sequence / stream
- for (int32_t i = 0; i < n_parallel; ++i) {
- if (i_batch[i] < 0) {
- // the stream has already finished
- continue;
- }
- const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
- llama_sampler_accept(smpl, new_token_id);
- // is it an end of generation? -> mark the stream as finished
- if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
- i_batch[i] = -1;
- LOG_TEE("\n");
- if (n_parallel > 1) {
- LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
- }
- continue;
- }
- // if there is only one stream, we print immediately to stdout
- if (n_parallel == 1) {
- LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
- fflush(stdout);
- }
- streams[i] += llama_token_to_piece(ctx, new_token_id);
- i_batch[i] = batch.n_tokens;
- // push this new token for next evaluation
- llama_batch_add(batch, new_token_id, n_cur, { i }, true);
- n_decode += 1;
- }
- // all streams are finished
- if (batch.n_tokens == 0) {
- break;
- }
- n_cur += 1;
- // evaluate the current batch with the transformer model
- if (llama_decode(ctx, batch)) {
- fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
- return 1;
- }
- }
- LOG_TEE("\n");
- if (n_parallel > 1) {
- LOG_TEE("\n");
- for (int32_t i = 0; i < n_parallel; ++i) {
- LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
- }
- }
- const auto t_main_end = ggml_time_us();
- LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
- __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
- LOG_TEE("\n");
- llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
- llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
- fprintf(stderr, "\n");
- llama_batch_free(batch);
- llama_sampler_free(smpl);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|