| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- #include "common.h"
- #include "llama.h"
- #include <ctime>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") {
- std::vector<std::string> lines;
- size_t start = 0;
- size_t end = s.find(separator);
- while (end != std::string::npos) {
- lines.push_back(s.substr(start, end - start));
- start = end + separator.length();
- end = s.find(separator, start);
- }
- lines.push_back(s.substr(start)); // Add the last part
- return lines;
- }
- static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
- size_t n_tokens = tokens.size();
- for (size_t i = 0; i < n_tokens; i++) {
- llama_batch_add(batch, tokens[i], i, { seq_id }, true);
- }
- }
- static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
- const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
- const struct llama_model * model = llama_get_model(ctx);
- // clear previous kv_cache values (irrelevant for embeddings)
- llama_kv_cache_clear(ctx);
- // run model
- fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
- if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
- // encoder-only model
- if (llama_encode(ctx, batch) < 0) {
- fprintf(stderr, "%s : failed to encode\n", __func__);
- }
- } else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
- // decoder-only model
- if (llama_decode(ctx, batch) < 0) {
- fprintf(stderr, "%s : failed to decode\n", __func__);
- }
- }
- for (int i = 0; i < batch.n_tokens; i++) {
- if (!batch.logits[i]) {
- continue;
- }
- const float * embd = nullptr;
- int embd_pos = 0;
- if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
- // try to get token embeddings
- embd = llama_get_embeddings_ith(ctx, i);
- embd_pos = i;
- GGML_ASSERT(embd != NULL && "failed to get token embeddings");
- } else {
- // try to get sequence embeddings - supported only when pooling_type is not NONE
- embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- embd_pos = batch.seq_id[i][0];
- GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
- }
- float * out = output + embd_pos * n_embd;
- llama_embd_normalize(embd, out, n_embd, embd_norm);
- }
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_EMBEDDING);
- if (!gpt_params_parse(argc, argv, params, options)) {
- return 1;
- }
- params.embedding = true;
- // For non-causal models, batch size must be equal to ubatch size
- params.n_ubatch = params.n_batch;
- print_build_info();
- LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
- llama_backend_init();
- llama_numa_init(params.numa);
- // load the model
- llama_init_result llama_init = llama_init_from_gpt_params(params);
- llama_model * model = llama_init.model;
- llama_context * ctx = llama_init.context;
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return 1;
- }
- const int n_ctx_train = llama_n_ctx_train(model);
- const int n_ctx = llama_n_ctx(ctx);
- const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
- if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
- fprintf(stderr, "%s: error: computing embeddings in encoder-decoder models is not supported\n", __func__);
- return 1;
- }
- if (n_ctx > n_ctx_train) {
- fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
- __func__, n_ctx_train, n_ctx);
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
- }
- // split the prompt into lines
- std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep);
- // max batch size
- const uint64_t n_batch = params.n_batch;
- GGML_ASSERT(params.n_batch >= params.n_ctx);
- // tokenize the prompts and trim
- std::vector<std::vector<int32_t>> inputs;
- for (const auto & prompt : prompts) {
- auto inp = ::llama_tokenize(ctx, prompt, true, false);
- if (inp.size() > n_batch) {
- fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
- __func__, (long long int) inp.size(), (long long int) n_batch);
- return 1;
- }
- inputs.push_back(inp);
- }
- // check if the last token is SEP
- // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
- for (auto & inp : inputs) {
- if (inp.empty() || inp.back() != llama_token_sep(model)) {
- fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
- fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
- }
- }
- // tokenization stats
- if (params.verbose_prompt) {
- for (int i = 0; i < (int) inputs.size(); i++) {
- fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
- fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
- for (int j = 0; j < (int) inputs[i].size(); j++) {
- fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
- }
- fprintf(stderr, "\n\n");
- }
- }
- // initialize batch
- const int n_prompts = prompts.size();
- struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
- // count number of embeddings
- int n_embd_count = 0;
- if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
- for (int k = 0; k < n_prompts; k++) {
- n_embd_count += inputs[k].size();
- }
- } else {
- n_embd_count = n_prompts;
- }
- // allocate output
- const int n_embd = llama_n_embd(model);
- std::vector<float> embeddings(n_embd_count * n_embd, 0);
- float * emb = embeddings.data();
- // break into batches
- int e = 0; // number of embeddings already stored
- int s = 0; // number of prompts in current batch
- for (int k = 0; k < n_prompts; k++) {
- // clamp to n_batch tokens
- auto & inp = inputs[k];
- const uint64_t n_toks = inp.size();
- // encode if at capacity
- if (batch.n_tokens + n_toks > n_batch) {
- float * out = emb + e * n_embd;
- batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
- e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
- s = 0;
- llama_batch_clear(batch);
- }
- // add to batch
- batch_add_seq(batch, inp, s);
- s += 1;
- }
- // final batch
- float * out = emb + e * n_embd;
- batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
- if (params.embd_out.empty()) {
- fprintf(stdout, "\n");
- if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
- for (int j = 0; j < n_embd_count; j++) {
- fprintf(stdout, "embedding %d: ", j);
- for (int i = 0; i < std::min(3, n_embd); i++) {
- if (params.embd_normalize == 0) {
- fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
- } else {
- fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
- }
- }
- fprintf(stdout, " ... ");
- for (int i = n_embd - 3; i < n_embd; i++) {
- if (params.embd_normalize == 0) {
- fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
- } else {
- fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
- }
- }
- fprintf(stdout, "\n");
- }
- } else {
- // print the first part of the embeddings or for a single prompt, the full embedding
- for (int j = 0; j < n_prompts; j++) {
- fprintf(stdout, "embedding %d: ", j);
- for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
- if (params.embd_normalize == 0) {
- fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
- } else {
- fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
- }
- }
- fprintf(stdout, "\n");
- }
- // print cosine similarity matrix
- if (n_prompts > 1) {
- fprintf(stdout, "\n");
- printf("cosine similarity matrix:\n\n");
- for (int i = 0; i < n_prompts; i++) {
- fprintf(stdout, "%6.6s ", prompts[i].c_str());
- }
- fprintf(stdout, "\n");
- for (int i = 0; i < n_prompts; i++) {
- for (int j = 0; j < n_prompts; j++) {
- float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
- fprintf(stdout, "%6.2f ", sim);
- }
- fprintf(stdout, "%1.10s", prompts[i].c_str());
- fprintf(stdout, "\n");
- }
- }
- }
- }
- if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
- const bool notArray = params.embd_out != "array";
- fprintf(stdout, notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[");
- for (int j = 0;;) { // at least one iteration (one prompt)
- if (notArray) fprintf(stdout, " {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
- fprintf(stdout, "[");
- for (int i = 0;;) { // at least one iteration (n_embd > 0)
- fprintf(stdout, params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
- i++;
- if (i < n_embd) fprintf(stdout, ","); else break;
- }
- fprintf(stdout, notArray ? "]\n }" : "]");
- j++;
- if (j < n_embd_count) fprintf(stdout, notArray ? ",\n" : ","); else break;
- }
- fprintf(stdout, notArray ? "\n ]" : "]\n");
- if (params.embd_out == "json+" && n_prompts > 1) {
- fprintf(stdout, ",\n \"cosineSimilarity\": [\n");
- for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
- fprintf(stdout, " [");
- for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
- float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
- fprintf(stdout, "%6.2f", sim);
- j++;
- if (j < n_embd_count) fprintf(stdout, ", "); else break;
- }
- fprintf(stdout, " ]");
- i++;
- if (i < n_embd_count) fprintf(stdout, ",\n"); else break;
- }
- fprintf(stdout, "\n ]");
- }
- if (notArray) fprintf(stdout, "\n}\n");
- }
- LOG_TEE("\n");
- llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
- // clean up
- llama_batch_free(batch);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|