| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- #include "common.h"
- #include "llama.h"
- #include "ggml.h"
- #include <cstdio>
- #include <random>
- #include <string>
- #include <tuple>
- #include <vector>
- /**
- * This the arbitrary data which will be passed to each callback.
- * Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
- */
- struct callback_data {
- std::vector<uint8_t> data;
- };
- static std::string ggml_ne_string(const ggml_tensor * t) {
- std::string str;
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- str += std::to_string(t->ne[i]);
- if (i + 1 < GGML_MAX_DIMS) {
- str += ", ";
- }
- }
- return str;
- }
- static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
- GGML_ASSERT(n > 0);
- float sum = 0;
- for (int64_t i3 = 0; i3 < ne[3]; i3++) {
- printf(" [\n");
- for (int64_t i2 = 0; i2 < ne[2]; i2++) {
- if (i2 == n && ne[2] > 2*n) {
- printf(" ..., \n");
- i2 = ne[2] - n;
- }
- printf(" [\n");
- for (int64_t i1 = 0; i1 < ne[1]; i1++) {
- if (i1 == n && ne[1] > 2*n) {
- printf(" ..., \n");
- i1 = ne[1] - n;
- }
- printf(" [");
- for (int64_t i0 = 0; i0 < ne[0]; i0++) {
- if (i0 == n && ne[0] > 2*n) {
- printf("..., ");
- i0 = ne[0] - n;
- }
- size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
- float v;
- if (type == GGML_TYPE_F16) {
- v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
- } else if (type == GGML_TYPE_F32) {
- v = *(float *) &data[i];
- } else if (type == GGML_TYPE_I32) {
- v = (float) *(int32_t *) &data[i];
- } else if (type == GGML_TYPE_I16) {
- v = (float) *(int16_t *) &data[i];
- } else if (type == GGML_TYPE_I8) {
- v = (float) *(int8_t *) &data[i];
- } else {
- GGML_ABORT("fatal error");
- }
- printf("%12.4f", v);
- sum += v;
- if (i0 < ne[0] - 1) printf(", ");
- }
- printf("],\n");
- }
- printf(" ],\n");
- }
- printf(" ]\n");
- printf(" sum = %f\n", sum);
- }
- }
- /**
- * GGML operations callback during the graph execution.
- *
- * @param t current tensor
- * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
- * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
- * see ggml_backend_sched_eval_callback
- * @param user_data user data to pass at each call back
- * @return true to receive data or continue the graph, false otherwise
- */
- static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
- auto * cb_data = (callback_data *) user_data;
- const struct ggml_tensor * src0 = t->src[0];
- const struct ggml_tensor * src1 = t->src[1];
- if (ask) {
- return true; // Always retrieve data
- }
- char src1_str[128] = {0};
- if (src1) {
- snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
- }
- printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
- t->name, ggml_type_name(t->type), ggml_op_desc(t),
- src0->name, ggml_ne_string(src0).c_str(),
- src1 ? src1_str : "",
- ggml_ne_string(t).c_str());
- // copy the data from the GPU memory if needed
- const bool is_host = ggml_backend_buffer_is_host(t->buffer);
- if (!is_host) {
- auto n_bytes = ggml_nbytes(t);
- cb_data->data.resize(n_bytes);
- ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
- }
- if (!ggml_is_quantized(t->type)) {
- uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
- ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
- }
- return true;
- }
- static bool run(llama_context * ctx, const gpt_params & params) {
- const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
- std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
- if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return false;
- }
- return true;
- }
- int main(int argc, char ** argv) {
- callback_data cb_data;
- gpt_params params;
- auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_COMMON);
- if (!gpt_params_parse(argc, argv, params, options)) {
- return 1;
- }
- print_build_info();
- llama_backend_init();
- llama_numa_init(params.numa);
- // pass the callback to the backend scheduler
- // it will be executed for each node during the graph computation
- params.cb_eval = ggml_debug;
- params.cb_eval_user_data = &cb_data;
- params.warmup = false;
- // init
- llama_init_result llama_init = llama_init_from_gpt_params(params);
- llama_model * model = llama_init.model;
- llama_context * ctx = llama_init.context;
- if (model == nullptr || ctx == nullptr) {
- fprintf(stderr, "%s : failed to init\n", __func__);
- return 1;
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
- }
- bool OK = run(ctx, params);
- if (!OK) {
- return 1;
- }
- LOG_TEE("\n");
- llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|