| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- #include "ggml.h"
- #include "common.h"
- #include "llama.h"
- #include "log.h"
- #include "ngram-cache.h"
- #include <cmath>
- #include <cstdint>
- #include <cstdio>
- #include <fstream>
- #include <string>
- #include <vector>
- #include <unordered_map>
- int main(int argc, char ** argv){
- gpt_params params;
- auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_COMMON);
- if (!gpt_params_parse(argc, argv, params, options)) {
- return 1;
- }
- const int n_draft = params.n_draft;
- // init llama.cpp
- llama_backend_init();
- llama_numa_init(params.numa);
- // load the model
- llama_init_result llama_init = llama_init_from_gpt_params(params);
- llama_model * model = llama_init.model;
- llama_context * ctx = llama_init.context;
- // tokenize the prompt
- std::vector<llama_token> inp;
- inp = ::llama_tokenize(ctx, params.prompt, true, true);
- llama_ngram_cache ngram_cache_context;
- llama_ngram_cache ngram_cache_dynamic;
- llama_ngram_cache ngram_cache_static;
- int64_t t_draft_flat_us = 0;
- int64_t t_draft_us = 0;
- {
- const int64_t t_start_draft_us = ggml_time_us();
- if (!params.lookup_cache_static.empty()) {
- try {
- ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
- } catch (std::ifstream::failure const &) {
- fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
- exit(1);
- }
- }
- if (!params.lookup_cache_dynamic.empty()) {
- try {
- ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
- } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
- }
- t_draft_flat_us += ggml_time_us() - t_start_draft_us;
- }
- const int n_input = inp.size();
- const int n_ctx = llama_n_ctx(ctx);
- int n_drafted = 0;
- int n_accept = 0;
- const int64_t t_start_ms = ggml_time_ms();
- // Iterate over input tokens in chunks of size n_ctx.
- // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
- for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
- const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
- std::vector<llama_token> pseudo_output;
- pseudo_output.push_back(inp_slice[0]);
- while ((int) pseudo_output.size() < n_ctx) {
- // Simulate drafting and decoding from draft:
- std::vector<llama_token> draft;
- draft.push_back(pseudo_output.back());
- {
- const int64_t t_start_draft_us = ggml_time_us();
- llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
- t_draft_us += ggml_time_us() - t_start_draft_us;
- }
- n_drafted += draft.size() - 1;
- for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
- const llama_token ground_truth = inp_slice[pseudo_output.size()];
- const llama_token drafted = draft[j];
- if (ground_truth != drafted) {
- break;
- }
- ++n_accept;
- pseudo_output.push_back(ground_truth);
- {
- const int64_t t_start_draft_us = ggml_time_us();
- llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
- t_draft_us += ggml_time_us() - t_start_draft_us;
- }
- }
- // After each simulated batch decoding simulate the sampling of a single token:
- if ((int) pseudo_output.size() < n_ctx) {
- pseudo_output.push_back(inp_slice[pseudo_output.size()]);
- {
- const int64_t t_start_draft_us = ggml_time_us();
- llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
- t_draft_us += ggml_time_us() - t_start_draft_us;
- }
- }
- draft.erase(draft.begin());
- }
- if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
- const int64_t t_now_ms = ggml_time_ms();
- const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
- const int64_t eta_min = eta_ms / (60*1000);
- const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
- LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
- }
- // After each chunk, update the dynamic ngram cache with the context ngram cache:
- llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
- ngram_cache_context.clear();
- }
- LOG_TEE("\n");
- LOG_TEE("\n");
- LOG_TEE("n_draft = %d\n", n_draft);
- LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
- LOG_TEE("n_drafted = %d\n", n_drafted);
- LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
- LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
- t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
- LOG_TEE("n_accept = %d\n", n_accept);
- LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- fprintf(stderr, "\n\n");
- return 0;
- }
|