| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867 |
- #include "ggml-opt.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "ggml-impl.h"
- #include <algorithm>
- #include <cmath>
- #include <cstdint>
- #include <cinttypes>
- #include <map>
- #include <random>
- #include <vector>
- struct ggml_opt_dataset {
- struct ggml_context * ctx;
- ggml_backend_buffer_t buf;
- struct ggml_tensor * data;
- struct ggml_tensor * labels;
- int64_t ndata;
- int64_t ndata_shard;
- size_t nbs_data;
- size_t nbs_labels;
- std::vector<int64_t> permutation;
- };
- struct ggml_opt_context {
- ggml_backend_sched_t backend_sched;
- ggml_cgraph * allocated_graph;
- ggml_cgraph * allocated_graph_copy;
- struct ggml_context * ctx_static;
- struct ggml_context * ctx_static_cpu;
- struct ggml_context * ctx_compute;
- struct ggml_context * ctx_copy;
- ggml_backend_buffer_t buf_static;
- ggml_backend_buffer_t buf_static_cpu;
- std::mt19937 rng;
- struct ggml_tensor * inputs;
- struct ggml_tensor * outputs;
- struct ggml_tensor * labels;
- struct ggml_tensor * loss;
- struct ggml_tensor * pred;
- struct ggml_tensor * ncorrect;
- struct ggml_cgraph * gf;
- struct ggml_cgraph * gb_grad;
- struct ggml_cgraph * gb_opt;
- int64_t iter;
- int32_t opt_period;
- int32_t opt_i;
- bool loss_per_datapoint;
- ggml_opt_get_optimizer_params get_opt_pars;
- void * get_opt_pars_ud;
- struct ggml_tensor * adamw_params;
- };
- struct ggml_opt_result {
- int64_t ndata = 0;
- std::vector<float> loss;
- std::vector<int32_t> pred;
- int64_t ncorrect = 0;
- bool loss_per_datapoint = false;
- int64_t opt_period = -1;
- };
- // ====== Dataset ======
- ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, int64_t ndata, int64_t ndata_shard) {
- GGML_ASSERT(ne_datapoint > 0);
- GGML_ASSERT(ne_label >= 0);
- GGML_ASSERT(ndata > 0);
- GGML_ASSERT(ndata_shard > 0);
- ggml_opt_dataset_t result = new ggml_opt_dataset;
- result->ndata = ndata;
- result->ndata_shard = ndata_shard;
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ 2*ggml_tensor_overhead(),
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- result->ctx = ggml_init(params);
- }
- result->data = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_datapoint, ndata);
- result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata;
- if (ne_label > 0) {
- result->labels = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_label, ndata);
- result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata;
- } else {
- result->labels = nullptr;
- result->nbs_labels = 0;
- }
- result->buf = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx, ggml_backend_cpu_buffer_type());
- const int64_t nshards = ndata/ndata_shard;
- result->permutation.resize(nshards);
- for (int64_t i = 0; i < nshards; ++i) {
- result->permutation[i] = i;
- }
- return result;
- }
- void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) {
- ggml_backend_buffer_free(dataset->buf);
- ggml_free(dataset->ctx);
- delete dataset;
- }
- struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) {
- return dataset->data;
- }
- struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset) {
- return dataset->labels;
- }
- void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata) {
- GGML_ASSERT(idata <= dataset->ndata);
- if (idata < 0) {
- std::shuffle(dataset->permutation.begin(), dataset->permutation.end(), opt_ctx->rng);
- return;
- }
- GGML_ASSERT(idata % dataset->ndata_shard == 0);
- const int64_t ishard_max = idata / dataset->ndata_shard;
- std::shuffle(dataset->permutation.begin(), dataset->permutation.begin() + ishard_max, opt_ctx->rng);
- }
- void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * data_batch, struct ggml_tensor * labels_batch, int64_t ibatch) {
- GGML_ASSERT( data_batch && ggml_is_contiguous(data_batch));
- GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch));
- GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
- const size_t nb_data_batch = ggml_nbytes(data_batch);
- GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
- const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;
- if (labels_batch) {
- const size_t nb_labels_batch = ggml_nbytes(labels_batch);
- GGML_ASSERT(nb_labels_batch == shards_per_batch*dataset->nbs_labels);
- }
- GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));
- for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
- const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];
- const char * ptr_data = (const char *) dataset->data->data + ishard*dataset->nbs_data;
- ggml_backend_tensor_set(data_batch, ptr_data, ishard_batch*dataset->nbs_data, dataset->nbs_data);
- if (!labels_batch) {
- continue;
- }
- const char * ptr_labels = (const char *) dataset->labels->data + ishard*dataset->nbs_labels;
- ggml_backend_tensor_set(labels_batch, ptr_labels, ishard_batch*dataset->nbs_labels, dataset->nbs_labels);
- }
- }
- // ====== Model / Context ======
- struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) {
- GGML_UNUSED(userdata);
- ggml_opt_optimizer_params result;
- result.adamw.alpha = 0.001f;
- result.adamw.beta1 = 0.9f;
- result.adamw.beta2 = 0.999f;
- result.adamw.eps = 1e-8f;
- result.adamw.wd = 0.0f;
- return result;
- }
- struct ggml_opt_params ggml_opt_default_params(
- ggml_backend_sched_t backend_sched,
- struct ggml_context * ctx_compute,
- struct ggml_tensor * inputs,
- struct ggml_tensor * outputs,
- enum ggml_opt_loss_type loss_type) {
- return {
- /*backend_sched =*/ backend_sched,
- /*ctx_compute =*/ ctx_compute,
- /*inputs =*/ inputs,
- /*logits =*/ outputs,
- /*loss_type =*/ loss_type,
- /*build_type =*/ GGML_OPT_BUILD_TYPE_OPT,
- /*opt_period =*/ 1,
- /*get_opt_pars =*/ ggml_opt_get_default_optimizer_params,
- /*get_opt_pars_ud =*/ nullptr,
- };
- }
- static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_map, ggml_context * ctx, ggml_tensor * tensor) {
- if (!tensor) {
- return nullptr;
- }
- if (tensor_map.find(tensor) != tensor_map.end()) {
- return tensor_map[tensor];
- }
- ggml_tensor * new_tensor = ggml_dup_tensor(ctx, tensor);
- tensor_map[tensor] = new_tensor;
- new_tensor->op = tensor->op;
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- new_tensor->nb[i] = tensor->nb[i];
- }
- new_tensor->flags = tensor->flags;
- memcpy(new_tensor->op_params, tensor->op_params, sizeof(tensor->op_params));
- strcpy(new_tensor->name, tensor->name);
- new_tensor->data = tensor->data;
- new_tensor->buffer = tensor->buffer;
- new_tensor->extra = tensor->extra;
- new_tensor->view_offs = tensor->view_offs;
- new_tensor->view_src = map_tensor(tensor_map, ctx, tensor->view_src);
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- new_tensor->src[i] = map_tensor(tensor_map, ctx, tensor->src[i]);
- }
- return new_tensor;
- }
- static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * graph) {
- std::map<ggml_tensor *, ggml_tensor *> tensor_map;
- ggml_cgraph * new_graph = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true);
- for (int i = 0; i < graph->n_leafs; i++) {
- ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->leafs[i]));
- }
- for (int i = 0; i < graph->n_nodes; i++) {
- ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->nodes[i]));
- }
- for (int i = 0; i < graph->n_nodes; ++i) {
- const size_t igrad_src = ggml_hash_find(&graph->visited_hash_set, graph->nodes[i]);
- const size_t igrad_dst = ggml_hash_find(&new_graph->visited_hash_set, new_graph->nodes[i]);
- graph->grads[igrad_dst] = new_graph->grads[igrad_src];
- graph->grad_accs[igrad_dst] = new_graph->grad_accs[igrad_src];
- }
- return new_graph;
- }
- static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) {
- GGML_ASSERT(graph);
- if (opt_ctx->allocated_graph == graph) {
- return;
- }
- ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph
- {
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE,
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- ggml_free(opt_ctx->ctx_copy);
- opt_ctx->ctx_copy = ggml_init(params);
- }
- opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph);
- ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
- opt_ctx->allocated_graph = graph;
- }
- ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
- ggml_opt_context_t result = new struct ggml_opt_context;
- result->backend_sched = params.backend_sched;
- result->allocated_graph = nullptr;
- result->allocated_graph_copy = nullptr;
- result->ctx_compute = params.ctx_compute;
- result->ctx_copy = nullptr;
- result->inputs = params.inputs;
- result->outputs = params.outputs;
- result->iter = 1;
- result->opt_period = params.opt_period;
- result->opt_i = 0;
- result->get_opt_pars = params.get_opt_pars;
- result->get_opt_pars_ud = params.get_opt_pars_ud;
- GGML_ASSERT(result->inputs->data && "the inputs must be allocated statically");
- GGML_ASSERT(result->opt_period >= 1);
- const bool accumulate = params.build_type == GGML_OPT_BUILD_TYPE_GRAD ||
- (params.build_type == GGML_OPT_BUILD_TYPE_OPT && result->opt_period > 1);
- ggml_set_input(result->inputs);
- ggml_set_output(result->outputs);
- result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass.
- ggml_build_forward_expand(result->gf, result->outputs);
- int n_param = 0;
- for (int i = 0; i < result->gf->n_nodes; ++i) {
- if (result->gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
- n_param++;
- }
- }
- {
- // The static context is used for:
- // - gradients (1 tensor per param if using gradient accumulation)
- // - optimizer momenta (2 tensors per param)
- // - labels
- // - loss + its gradient (up to 5 tensors)
- // - pred
- // - ncorrect (2 tensors).
- const size_t tensors_per_param = (accumulate ? 1 : 0) + (params.build_type == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0);
- const size_t size_meta = (tensors_per_param*n_param + 9) * ggml_tensor_overhead();
- struct ggml_init_params params = {
- /*.mem_size =*/ size_meta,
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- result->ctx_static = ggml_init(params);
- }
- {
- // The static cpu context is used for:
- // - optimizer parameters (1 for the entire context)
- const size_t size_meta = 1 * ggml_tensor_overhead();
- struct ggml_init_params params = {
- /*.mem_size =*/ size_meta,
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- result->ctx_static_cpu = ggml_init(params);
- }
- switch (params.loss_type) {
- case GGML_OPT_LOSS_TYPE_MEAN: {
- result->labels = nullptr;
- result->loss = ggml_sum(result->ctx_static, result->outputs);
- ggml_set_name(result->loss, "loss_sum");
- const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
- result->loss = ggml_scale(result->ctx_static, result->loss, scale);
- ggml_set_name(result->loss, "loss_mean");
- result->loss_per_datapoint = true;
- break;
- }
- case GGML_OPT_LOSS_TYPE_SUM: {
- result->labels = nullptr;
- result->loss = ggml_sum(result->ctx_static, result->outputs);
- ggml_set_name(result->loss, "loss_sum");
- result->loss_per_datapoint = false;
- break;
- }
- case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: {
- result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
- ggml_set_input(result->labels);
- ggml_set_name(result->labels, "labels");
- result->loss = ggml_cross_entropy_loss(result->ctx_static, result->outputs, result->labels);
- ggml_set_name(result->loss, "loss_cross_entropy");
- if (result->opt_period > 1) {
- result->loss = ggml_scale(result->ctx_static, result->loss, 1.0f / result->opt_period);
- ggml_set_name(result->loss, "loss_cross_entropy_scaled");
- }
- result->loss_per_datapoint = true;
- break;
- }
- case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: {
- result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
- ggml_set_input(result->labels);
- ggml_set_name(result->labels, "labels");
- result->loss = ggml_sub(result->ctx_static, result->outputs, result->labels);
- ggml_set_name(result->loss, "loss_error");
- result->loss = ggml_sqr(result->ctx_static, result->loss);
- ggml_set_name(result->loss, "loss_squared_error");
- result->loss = ggml_sum(result->ctx_static, result->loss);
- ggml_set_name(result->loss, "loss_sum_squared_error");
- const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
- result->loss = ggml_scale(result->ctx_static, result->loss, scale);
- ggml_set_name(result->loss, "loss_mean_squared_error");
- result->loss_per_datapoint = true;
- break;
- }
- }
- ggml_set_output(result->loss);
- ggml_set_loss(result->loss);
- ggml_build_forward_expand(result->gf, result->loss);
- result->pred = ggml_argmax(result->ctx_static, result->outputs);
- ggml_set_name(result->pred, "pred");
- ggml_set_output(result->pred);
- ggml_build_forward_expand(result->gf, result->pred);
- if (result->labels) {
- result->ncorrect = ggml_count_equal(result->ctx_static, result->pred, ggml_argmax(result->ctx_static, result->labels));
- ggml_set_name(result->ncorrect, "ncorrect");
- ggml_set_output(result->ncorrect);
- ggml_build_forward_expand(result->gf, result->ncorrect);
- } else {
- result->ncorrect = nullptr;
- }
- if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
- result->gb_grad = nullptr;
- result->gb_opt = nullptr;
- result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
- result->buf_static_cpu = nullptr;
- ggml_opt_alloc_graph(result, result->gf);
- return result;
- }
- // gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients.
- result->gb_grad = ggml_graph_dup(result->ctx_compute, result->gf);
- ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate);
- if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) {
- result->gb_opt = nullptr;
- result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
- result->buf_static_cpu = nullptr;
- ggml_opt_alloc_graph(result, result->gb_grad);
- ggml_graph_reset(result->gb_grad);
- return result;
- }
- GGML_ASSERT(params.build_type == GGML_OPT_BUILD_TYPE_OPT);
- // gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
- result->gb_opt = ggml_graph_dup(result->ctx_compute, result->gb_grad);
- result->adamw_params = ggml_new_tensor_1d(result->ctx_static_cpu, GGML_TYPE_F32, 7);
- ggml_set_input(result->adamw_params);
- ggml_set_name(result->adamw_params, "adamw_params");
- for (int i = result->gf->n_nodes-1; i >= 0; --i) {
- struct ggml_tensor * node = result->gb_opt->nodes[i];
- struct ggml_tensor * grad = ggml_graph_get_grad(result->gb_opt, node);
- if (node->flags & GGML_TENSOR_FLAG_PARAM) {
- struct ggml_tensor * m = ggml_dup_tensor(result->ctx_static, node);
- struct ggml_tensor * v = ggml_dup_tensor(result->ctx_static, node);
- struct ggml_tensor * opt_step = ggml_opt_step_adamw(result->ctx_compute, node, grad, m, v, result->adamw_params);
- ggml_build_forward_expand(result->gb_opt, opt_step);
- }
- }
- result->buf_static = ggml_backend_alloc_ctx_tensors(
- result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
- result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type());
- ggml_opt_alloc_graph(result, result->gb_opt);
- ggml_graph_reset(result->gb_opt);
- return result;
- }
- void ggml_opt_free(ggml_opt_context_t opt_ctx) {
- if (opt_ctx == nullptr) {
- return;
- }
- ggml_backend_buffer_free(opt_ctx->buf_static);
- ggml_backend_buffer_free(opt_ctx->buf_static_cpu);
- ggml_free(opt_ctx->ctx_static);
- ggml_free(opt_ctx->ctx_static_cpu);
- delete opt_ctx;
- }
- void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer) {
- if (optimizer) {
- ggml_graph_reset(opt_ctx->gb_opt);
- opt_ctx->iter = 1;
- } else {
- ggml_graph_reset(opt_ctx->gb_grad);
- }
- }
- struct ggml_tensor * ggml_opt_inputs(ggml_opt_context_t opt_ctx) {
- return opt_ctx->inputs;
- }
- struct ggml_tensor * ggml_opt_outputs(ggml_opt_context_t opt_ctx) {
- return opt_ctx->outputs;
- }
- struct ggml_tensor * ggml_opt_labels(ggml_opt_context_t opt_ctx) {
- return opt_ctx->labels;
- }
- struct ggml_tensor * ggml_opt_loss(ggml_opt_context_t opt_ctx) {
- return opt_ctx->loss;
- }
- struct ggml_tensor * ggml_opt_pred(ggml_opt_context_t opt_ctx) {
- return opt_ctx->pred;
- }
- struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx) {
- return opt_ctx->ncorrect;
- }
- struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node) {
- return ggml_graph_get_grad_acc(opt_ctx->gb_opt, node);
- }
- // ====== Optimization Result ======
- ggml_opt_result_t ggml_opt_result_init() {
- return new ggml_opt_result;
- }
- void ggml_opt_result_free(ggml_opt_result_t result) {
- delete result;
- }
- void ggml_opt_result_reset(ggml_opt_result_t result) {
- result->ndata = 0;
- result->loss.clear();
- result->pred.clear();
- result->ncorrect = 0;
- }
- void ggml_opt_result_ndata(ggml_opt_result_t result, int64_t * ndata) {
- *ndata = result->ndata;
- }
- void ggml_opt_result_loss(ggml_opt_result_t result, double * loss, double * unc) {
- const int64_t nbatches = result->loss.size(); // Number of physical batches.
- if (nbatches == 0) {
- *loss = 0.0;
- *unc = NAN;
- return;
- }
- double sum = 0.0;
- double sum_squared = 0.0;
- for (const float & loss : result->loss) {
- // If the loss is per datapoint it was scaled by 1.0f/opt_period for each physical batch.
- const float loss_scaled = result->loss_per_datapoint ? loss*result->opt_period : loss;
- sum += loss_scaled;
- sum_squared += loss_scaled*loss_scaled;
- }
- const double mean = sum/nbatches;
- *loss = result->loss_per_datapoint ? mean : sum;
- if (!unc) {
- return;
- }
- if (nbatches < 2) {
- *unc = NAN;
- return;
- }
- const double var_sum = sum_squared/nbatches - mean*mean; // variance without Bessel's correction, i.e. nbatches/(nbatches-1)
- *unc = result->loss_per_datapoint ? sqrt(var_sum / (nbatches - 1)) : sqrt(var_sum * nbatches/(nbatches - 1));
- }
- void ggml_opt_result_pred(ggml_opt_result_t result, int32_t * pred) {
- for (size_t i = 0; i < result->pred.size(); ++i) {
- pred[i] = result->pred[i];
- }
- }
- void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc) {
- *accuracy = result->ncorrect >= 0 ? double(result->ncorrect) / double(result->ndata) : NAN;
- if (!unc) {
- return;
- }
- *unc = result->ncorrect >= 0 && result->ndata >= 2 ?
- sqrt((*accuracy) * (1.0 - (*accuracy)) / double(result->ndata - 1)) : NAN;
- }
- // ====== Computation ======
- static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_opt_result * result) {
- if (graph != opt_ctx->gf) {
- struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);
- GGML_ASSERT(opt_pars.adamw.alpha > 0.0f);
- GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f);
- GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f);
- GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f);
- GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f);
- GGML_ASSERT(opt_pars.adamw.eps >= 0.0f);
- GGML_ASSERT(opt_pars.adamw.wd >= 0.0f);
- GGML_ASSERT(opt_pars.adamw.wd <= 1.0f);
- // beta1, beta2 after applying warmup
- const float beta1h = 1.0f/(1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter));
- const float beta2h = 1.0f/(1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter));
- float * adamw_par_data = ggml_get_data_f32(opt_ctx->adamw_params);
- adamw_par_data[0] = opt_pars.adamw.alpha;
- adamw_par_data[1] = opt_pars.adamw.beta1;
- adamw_par_data[2] = opt_pars.adamw.beta2;
- adamw_par_data[3] = opt_pars.adamw.eps;
- adamw_par_data[4] = opt_pars.adamw.wd;
- adamw_par_data[5] = beta1h;
- adamw_par_data[6] = beta2h;
- }
- ggml_opt_alloc_graph(opt_ctx, graph);
- ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
- opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt;
- if (!result) {
- return;
- }
- if (result->ndata == 0) {
- result->loss_per_datapoint = opt_ctx->loss_per_datapoint;
- result->opt_period = opt_ctx->opt_period;
- } else {
- GGML_ASSERT(result->loss_per_datapoint == opt_ctx->loss_per_datapoint);
- GGML_ASSERT(result->opt_period == opt_ctx->opt_period);
- }
- const int64_t ndata = opt_ctx->outputs->ne[1];
- GGML_ASSERT(result->ndata == ndata*int64_t(result->loss.size()) && "varying batch size not supported");
- result->ndata += ndata;
- GGML_ASSERT(ggml_is_scalar(opt_ctx->loss));
- GGML_ASSERT(opt_ctx->loss->type == GGML_TYPE_F32);
- float loss;
- ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss));
- result->loss.push_back(loss);
- GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32);
- std::vector<int32_t> pred(ndata);
- ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred));
- result->pred.insert(result->pred.end(), pred.begin(), pred.end());
- if (!opt_ctx->labels || result->ncorrect < 0) {
- result->ncorrect = -1;
- return;
- }
- GGML_ASSERT(ggml_is_scalar(opt_ctx->ncorrect));
- GGML_ASSERT(opt_ctx->ncorrect->type == GGML_TYPE_I64);
- int64_t ncorrect;
- ggml_backend_tensor_get(opt_ctx->ncorrect, &ncorrect, 0, ggml_nbytes(opt_ctx->ncorrect));
- result->ncorrect += ncorrect;
- }
- void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
- ggml_opt_eval_graph(opt_ctx, opt_ctx->gf, result);
- }
- void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
- if (opt_ctx->opt_period == 1) {
- ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
- return;
- }
- const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
- if (opt_i_next == 0) {
- ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
- ggml_opt_reset(opt_ctx, /*optimizer =*/ false);
- } else {
- ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_grad, result);
- }
- opt_ctx->opt_i = opt_i_next;
- }
- // ====== High-Level Functions ======
- void ggml_opt_epoch(
- ggml_opt_context_t opt_ctx,
- ggml_opt_dataset_t dataset,
- ggml_opt_result_t result_train,
- ggml_opt_result_t result_eval,
- int64_t idata_split,
- ggml_opt_epoch_callback callback_train,
- ggml_opt_epoch_callback callback_eval) {
- struct ggml_tensor * inputs = ggml_opt_inputs(opt_ctx);
- struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
- struct ggml_tensor * data = ggml_opt_dataset_data(dataset);
- GGML_ASSERT(data->ne[0] == inputs->ne[0]);
- const int64_t ndata = data->ne[1];
- const int64_t ndata_batch = inputs->ne[1];
- GGML_ASSERT(data->ne[1] % inputs->ne[1] == 0);
- const int64_t nbatches = ndata/ndata_batch;
- idata_split = idata_split < 0 ? ndata : idata_split;
- GGML_ASSERT(idata_split % ndata_batch == 0);
- const int64_t ibatch_split = idata_split / ndata_batch;
- int64_t ibatch = 0;
- int64_t t_loop_start = ggml_time_us();
- for (; ibatch < ibatch_split; ++ibatch) {
- ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
- ggml_opt_forward_backward(opt_ctx, result_train);
- if (callback_train) {
- callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start);
- }
- }
- t_loop_start = ggml_time_us();
- for (; ibatch < nbatches; ++ibatch) {
- ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
- ggml_opt_forward(opt_ctx, result_eval);
- if (callback_eval) {
- callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start);
- }
- }
- }
- void ggml_opt_epoch_callback_progress_bar(
- bool train,
- ggml_opt_context_t opt_ctx,
- ggml_opt_dataset_t dataset,
- ggml_opt_result_t result,
- int64_t ibatch,
- int64_t ibatch_max,
- int64_t t_start_us) {
- fprintf(stderr, "%s[", train ? "train: " : "val: ");
- constexpr int64_t bar_length = 25;
- for (int64_t j = 0; j < bar_length; ++j) {
- const int64_t ibatch_j = ibatch_max * j/bar_length;
- if (ibatch_j < ibatch) {
- fprintf(stderr, "=");
- } else if (ibatch_max * (j - 1)/bar_length < ibatch) {
- fprintf(stderr, ">");
- } else {
- fprintf(stderr, " ");
- }
- }
- const int64_t batch_size = ggml_opt_inputs(opt_ctx)->ne[1];
- const int64_t idata = ibatch*batch_size;
- const int64_t idata_max = ibatch_max*batch_size;
- double loss;
- double loss_unc;
- ggml_opt_result_loss(result, &loss, &loss_unc);
- double accuracy;
- double accuracy_unc;
- ggml_opt_result_accuracy(result, &accuracy, &accuracy_unc);
- const int64_t t_ibatch_us = ggml_time_us() - t_start_us;
- int64_t t_ibatch_s = t_ibatch_us / 1000000;
- const int64_t t_ibatch_h = t_ibatch_s / 3600;
- t_ibatch_s -= t_ibatch_h * 3600;
- const int64_t t_ibatch_m = t_ibatch_s / 60;
- t_ibatch_s -= t_ibatch_m * 60;
- const int64_t t_eta_us = t_ibatch_us * (ibatch_max - ibatch)/ibatch;
- int64_t t_eta_s = t_eta_us / 1000000;
- const int64_t t_eta_h = t_eta_s / 3600;
- t_eta_s -= t_eta_h * 3600;
- const int64_t t_eta_m = t_eta_s / 60;
- t_eta_s -= t_eta_m * 60;
- fprintf(stderr, "| data=%06" PRId64 "/%06" PRId64 ", loss=%.6lf+-%.6lf, accuracy=%.2lf+-%.2lf%%, "
- "t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 ", ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 "]\r",
- idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc,
- t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s);
- if (ibatch == ibatch_max) {
- fprintf(stderr, "\n");
- }
- fflush(stderr);
- GGML_UNUSED(dataset);
- }
- void ggml_opt_fit(
- ggml_backend_sched_t backend_sched,
- ggml_context * ctx_compute,
- ggml_tensor * inputs,
- ggml_tensor * outputs,
- ggml_opt_dataset_t dataset,
- enum ggml_opt_loss_type loss_type,
- ggml_opt_get_optimizer_params get_opt_pars,
- int64_t nepoch,
- int64_t nbatch_logical,
- float val_split,
- bool silent) {
- ggml_time_init();
- const int64_t t_start_us = ggml_time_us();
- const int64_t ndata = ggml_opt_dataset_data(dataset)->ne[1];
- const int64_t nbatch_physical = inputs->ne[1];
- GGML_ASSERT(ndata % nbatch_logical == 0);
- GGML_ASSERT(nbatch_logical % nbatch_physical == 0);
- const int64_t opt_period = nbatch_logical / nbatch_physical;
- const int64_t nbatches_logical = ndata / nbatch_logical;
- GGML_ASSERT(val_split >= 0.0f);
- GGML_ASSERT(val_split < 1.0f);
- const int64_t ibatch_split = int64_t(((1.0f - val_split) * nbatches_logical)) * opt_period; // train <-> val split index (physical)
- const int64_t idata_split = ibatch_split * nbatch_physical;
- int64_t epoch = 1;
- ggml_opt_params params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type);
- params.opt_period = opt_period;
- params.get_opt_pars = get_opt_pars;
- params.get_opt_pars_ud = &epoch;
- ggml_opt_context_t opt_ctx = ggml_opt_init(params);
- // Shuffling the data is generally useful but there is only a point if not all data is used in a single batch.
- if (nbatch_logical < ndata) {
- ggml_opt_dataset_shuffle(opt_ctx, dataset, -1); // Shuffle all data (train + validation).
- }
- ggml_opt_result_t result_train = ggml_opt_result_init();
- ggml_opt_result_t result_val = ggml_opt_result_init();
- ggml_opt_epoch_callback epoch_callback = silent ? nullptr : ggml_opt_epoch_callback_progress_bar;
- for (; epoch <= nepoch; ++epoch) {
- if (nbatch_logical < idata_split) {
- ggml_opt_dataset_shuffle(opt_ctx, dataset, idata_split);
- }
- ggml_opt_result_reset(result_train);
- ggml_opt_result_reset(result_val);
- if (!silent) {
- fprintf(stderr, "%s: epoch %04" PRId64 "/%04" PRId64 ":\n", __func__, epoch, nepoch);
- }
- ggml_opt_epoch(opt_ctx, dataset, result_train, result_val, idata_split, epoch_callback, epoch_callback);
- if (!silent) {
- fprintf(stderr, "\n");
- }
- }
- if (!silent) {
- int64_t t_total_s = (ggml_time_us() - t_start_us) / 1000000;
- const int64_t t_total_h = t_total_s / 3600;
- t_total_s -= t_total_h * 3600;
- const int64_t t_total_m = t_total_s / 60;
- t_total_s -= t_total_m * 60;
- fprintf(stderr, "%s: training took %02" PRId64 ":%02" PRId64 ":%02" PRId64 "\n", __func__, t_total_h, t_total_m, t_total_s);
- }
- ggml_opt_free(opt_ctx);
- ggml_opt_result_free(result_train);
- ggml_opt_result_free(result_val);
- }
|