1
0

server.cpp 206 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. static bool server_task_type_need_embd(server_task_type task_type) {
  79. switch (task_type) {
  80. case SERVER_TASK_TYPE_EMBEDDING:
  81. case SERVER_TASK_TYPE_RERANK:
  82. return true;
  83. default:
  84. return false;
  85. }
  86. }
  87. static bool server_task_type_need_logits(server_task_type task_type) {
  88. switch (task_type) {
  89. case SERVER_TASK_TYPE_COMPLETION:
  90. case SERVER_TASK_TYPE_INFILL:
  91. return true;
  92. default:
  93. return false;
  94. }
  95. }
  96. struct slot_params {
  97. bool stream = true;
  98. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  99. bool return_tokens = false;
  100. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  101. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  102. int32_t n_predict = -1; // new tokens to predict
  103. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  104. int64_t t_max_prompt_ms = -1; // TODO: implement
  105. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  106. std::vector<common_adapter_lora_info> lora;
  107. std::vector<std::string> antiprompt;
  108. std::vector<std::string> response_fields;
  109. bool timings_per_token = false;
  110. bool post_sampling_probs = false;
  111. struct common_params_sampling sampling;
  112. struct common_params_speculative speculative;
  113. // OAI-compat fields
  114. bool verbose = false;
  115. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  116. std::string oaicompat_model;
  117. std::string oaicompat_cmpl_id;
  118. common_chat_syntax oaicompat_chat_syntax;
  119. // Embeddings
  120. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  121. json to_json() const {
  122. std::vector<std::string> samplers;
  123. samplers.reserve(sampling.samplers.size());
  124. for (const auto & sampler : sampling.samplers) {
  125. samplers.emplace_back(common_sampler_type_to_str(sampler));
  126. }
  127. json lora = json::array();
  128. for (size_t i = 0; i < this->lora.size(); ++i) {
  129. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  130. }
  131. auto grammar_triggers = json::array();
  132. for (const auto & trigger : sampling.grammar_triggers) {
  133. server_grammar_trigger ct(std::move(trigger));
  134. grammar_triggers.push_back(ct.to_json());
  135. }
  136. return json {
  137. {"n_predict", n_predict}, // Server configured n_predict
  138. {"seed", sampling.seed},
  139. {"temperature", sampling.temp},
  140. {"dynatemp_range", sampling.dynatemp_range},
  141. {"dynatemp_exponent", sampling.dynatemp_exponent},
  142. {"top_k", sampling.top_k},
  143. {"top_p", sampling.top_p},
  144. {"min_p", sampling.min_p},
  145. {"top_n_sigma", sampling.top_n_sigma},
  146. {"xtc_probability", sampling.xtc_probability},
  147. {"xtc_threshold", sampling.xtc_threshold},
  148. {"typical_p", sampling.typ_p},
  149. {"repeat_last_n", sampling.penalty_last_n},
  150. {"repeat_penalty", sampling.penalty_repeat},
  151. {"presence_penalty", sampling.penalty_present},
  152. {"frequency_penalty", sampling.penalty_freq},
  153. {"dry_multiplier", sampling.dry_multiplier},
  154. {"dry_base", sampling.dry_base},
  155. {"dry_allowed_length", sampling.dry_allowed_length},
  156. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  157. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  158. {"mirostat", sampling.mirostat},
  159. {"mirostat_tau", sampling.mirostat_tau},
  160. {"mirostat_eta", sampling.mirostat_eta},
  161. {"stop", antiprompt},
  162. {"max_tokens", n_predict}, // User configured n_predict
  163. {"n_keep", n_keep},
  164. {"n_discard", n_discard},
  165. {"ignore_eos", sampling.ignore_eos},
  166. {"stream", stream},
  167. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  168. {"n_probs", sampling.n_probs},
  169. {"min_keep", sampling.min_keep},
  170. {"grammar", sampling.grammar},
  171. {"grammar_lazy", sampling.grammar_lazy},
  172. {"grammar_triggers", grammar_triggers},
  173. {"preserved_tokens", sampling.preserved_tokens},
  174. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  175. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  176. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  177. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  178. {"samplers", samplers},
  179. {"speculative.n_max", speculative.n_max},
  180. {"speculative.n_min", speculative.n_min},
  181. {"speculative.p_min", speculative.p_min},
  182. {"timings_per_token", timings_per_token},
  183. {"post_sampling_probs", post_sampling_probs},
  184. {"lora", lora},
  185. };
  186. }
  187. };
  188. struct server_task {
  189. int id = -1; // to be filled by server_queue
  190. int index = -1; // used when there are multiple prompts (batch request)
  191. server_task_type type;
  192. // used by SERVER_TASK_TYPE_CANCEL
  193. int id_target = -1;
  194. // used by SERVER_TASK_TYPE_INFERENCE
  195. slot_params params;
  196. server_tokens prompt_tokens;
  197. int id_selected_slot = -1;
  198. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  199. struct slot_action {
  200. int slot_id;
  201. std::string filename;
  202. std::string filepath;
  203. };
  204. slot_action slot_action;
  205. // used by SERVER_TASK_TYPE_METRICS
  206. bool metrics_reset_bucket = false;
  207. // used by SERVER_TASK_TYPE_SET_LORA
  208. std::vector<common_adapter_lora_info> set_lora;
  209. server_task(server_task_type type) : type(type) {}
  210. static slot_params params_from_json_cmpl(
  211. const llama_context * ctx,
  212. const common_params & params_base,
  213. const json & data) {
  214. const llama_model * model = llama_get_model(ctx);
  215. const llama_vocab * vocab = llama_model_get_vocab(model);
  216. slot_params params;
  217. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  218. slot_params defaults;
  219. defaults.sampling = params_base.sampling;
  220. defaults.speculative = params_base.speculative;
  221. defaults.n_keep = params_base.n_keep;
  222. defaults.antiprompt = params_base.antiprompt;
  223. // enabling this will output extra debug information in the HTTP responses from the server
  224. params.verbose = params_base.verbosity > 9;
  225. params.timings_per_token = json_value(data, "timings_per_token", false);
  226. params.stream = json_value(data, "stream", false);
  227. params.cache_prompt = json_value(data, "cache_prompt", true);
  228. params.return_tokens = json_value(data, "return_tokens", false);
  229. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  230. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  231. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  232. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  233. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  234. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  235. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  236. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  237. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  238. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  239. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  240. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  241. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  242. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  243. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  244. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  245. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  246. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  247. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  248. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  249. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  250. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  251. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  252. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  253. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  254. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  255. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  256. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  257. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  258. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  259. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  260. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  261. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  262. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  263. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  264. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  265. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  266. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  267. // Use OpenAI API logprobs only if n_probs wasn't provided
  268. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  269. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  270. }
  271. if (data.contains("lora")) {
  272. if (data.at("lora").is_array()) {
  273. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  274. } else {
  275. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  276. }
  277. } else {
  278. params.lora = params_base.lora_adapters;
  279. }
  280. // TODO: add more sanity checks for the input parameters
  281. if (params.sampling.penalty_last_n < -1) {
  282. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  283. }
  284. if (params.sampling.dry_penalty_last_n < -1) {
  285. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  286. }
  287. if (params.sampling.penalty_last_n == -1) {
  288. // note: should be the slot's context and not the full context, but it's ok
  289. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  290. }
  291. if (params.sampling.dry_penalty_last_n == -1) {
  292. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  293. }
  294. if (params.sampling.dry_base < 1.0f) {
  295. params.sampling.dry_base = defaults.sampling.dry_base;
  296. }
  297. // sequence breakers for DRY
  298. {
  299. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  300. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  301. if (data.contains("dry_sequence_breakers")) {
  302. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  303. if (params.sampling.dry_sequence_breakers.empty()) {
  304. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  305. }
  306. }
  307. }
  308. // process "json_schema" and "grammar"
  309. if (data.contains("json_schema") && !data.contains("grammar")) {
  310. try {
  311. auto schema = json_value(data, "json_schema", json::object());
  312. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  313. params.sampling.grammar = json_schema_to_grammar(schema);
  314. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  315. } catch (const std::exception & e) {
  316. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  317. }
  318. } else {
  319. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  320. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  321. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  322. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  323. }
  324. {
  325. auto it = data.find("chat_format");
  326. if (it != data.end()) {
  327. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  328. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  329. } else {
  330. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  331. }
  332. common_reasoning_format reasoning_format = params_base.reasoning_format;
  333. if (data.contains("reasoning_format")) {
  334. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  335. }
  336. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  337. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  338. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  339. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  340. }
  341. {
  342. const auto preserved_tokens = data.find("preserved_tokens");
  343. if (preserved_tokens != data.end()) {
  344. for (const auto & t : *preserved_tokens) {
  345. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  346. if (ids.size() == 1) {
  347. SRV_DBG("Preserved token: %d\n", ids[0]);
  348. params.sampling.preserved_tokens.insert(ids[0]);
  349. } else {
  350. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  351. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  352. }
  353. }
  354. }
  355. const auto grammar_triggers = data.find("grammar_triggers");
  356. if (grammar_triggers != data.end()) {
  357. for (const auto & t : *grammar_triggers) {
  358. server_grammar_trigger ct(t);
  359. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  360. const auto & word = ct.value.value;
  361. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  362. if (ids.size() == 1) {
  363. auto token = ids[0];
  364. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  365. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  366. }
  367. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  368. common_grammar_trigger trigger;
  369. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  370. trigger.value = word;
  371. trigger.token = token;
  372. params.sampling.grammar_triggers.push_back(std::move(trigger));
  373. } else {
  374. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  375. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  376. }
  377. } else {
  378. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  379. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  380. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  381. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  382. } else {
  383. throw std::runtime_error("Unknown grammar trigger type");
  384. }
  385. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  386. }
  387. }
  388. }
  389. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  390. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  391. }
  392. }
  393. {
  394. params.sampling.logit_bias.clear();
  395. const auto & logit_bias = data.find("logit_bias");
  396. if (logit_bias != data.end() && logit_bias->is_array()) {
  397. const int n_vocab = llama_vocab_n_tokens(vocab);
  398. for (const auto & el : *logit_bias) {
  399. // TODO: we may want to throw errors here, in case "el" is incorrect
  400. if (el.is_array() && el.size() == 2) {
  401. float bias;
  402. if (el[1].is_number()) {
  403. bias = el[1].get<float>();
  404. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  405. bias = -INFINITY;
  406. } else {
  407. continue;
  408. }
  409. if (el[0].is_number_integer()) {
  410. llama_token tok = el[0].get<llama_token>();
  411. if (tok >= 0 && tok < n_vocab) {
  412. params.sampling.logit_bias.push_back({tok, bias});
  413. }
  414. } else if (el[0].is_string()) {
  415. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  416. for (auto tok : toks) {
  417. params.sampling.logit_bias.push_back({tok, bias});
  418. }
  419. }
  420. }
  421. }
  422. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  423. const int n_vocab = llama_vocab_n_tokens(vocab);
  424. for (const auto & el : logit_bias->items()) {
  425. float bias;
  426. const auto & key = el.key();
  427. const auto & value = el.value();
  428. if (value.is_number()) {
  429. bias = value.get<float>();
  430. } else if (value.is_boolean() && !value.get<bool>()) {
  431. bias = -INFINITY;
  432. } else {
  433. continue;
  434. }
  435. char *end;
  436. llama_token tok = strtol(key.c_str(), &end, 10);
  437. if (*end == 0) {
  438. if (tok >= 0 && tok < n_vocab) {
  439. params.sampling.logit_bias.push_back({tok, bias});
  440. }
  441. } else {
  442. auto toks = common_tokenize(vocab, key, false);
  443. for (auto tok : toks) {
  444. params.sampling.logit_bias.push_back({tok, bias});
  445. }
  446. }
  447. }
  448. }
  449. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  450. if (params.sampling.ignore_eos) {
  451. params.sampling.logit_bias.insert(
  452. params.sampling.logit_bias.end(),
  453. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  454. }
  455. }
  456. {
  457. params.antiprompt.clear();
  458. const auto & stop = data.find("stop");
  459. if (stop != data.end() && stop->is_array()) {
  460. for (const auto & word : *stop) {
  461. if (!word.empty()) {
  462. params.antiprompt.push_back(word);
  463. }
  464. }
  465. }
  466. // set reverse prompt from cli args if not set in the request
  467. if (params.antiprompt.empty()) {
  468. params.antiprompt = defaults.antiprompt;
  469. }
  470. }
  471. {
  472. const auto samplers = data.find("samplers");
  473. if (samplers != data.end()) {
  474. if (samplers->is_array()) {
  475. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  476. } else if (samplers->is_string()){
  477. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  478. }
  479. } else {
  480. params.sampling.samplers = defaults.sampling.samplers;
  481. }
  482. }
  483. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  484. params.oaicompat_model = json_value(data, "model", model_name);
  485. return params;
  486. }
  487. // utility function
  488. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  489. std::unordered_set<int> ids(tasks.size());
  490. for (size_t i = 0; i < tasks.size(); i++) {
  491. ids.insert(tasks[i].id);
  492. }
  493. return ids;
  494. }
  495. };
  496. struct result_timings {
  497. int32_t prompt_n = -1;
  498. double prompt_ms;
  499. double prompt_per_token_ms;
  500. double prompt_per_second;
  501. int32_t predicted_n = -1;
  502. double predicted_ms;
  503. double predicted_per_token_ms;
  504. double predicted_per_second;
  505. // Optional speculative metrics - only included when > 0
  506. int32_t draft_n = 0;
  507. int32_t draft_n_accepted = 0;
  508. json to_json() const {
  509. json base = {
  510. {"prompt_n", prompt_n},
  511. {"prompt_ms", prompt_ms},
  512. {"prompt_per_token_ms", prompt_per_token_ms},
  513. {"prompt_per_second", prompt_per_second},
  514. {"predicted_n", predicted_n},
  515. {"predicted_ms", predicted_ms},
  516. {"predicted_per_token_ms", predicted_per_token_ms},
  517. {"predicted_per_second", predicted_per_second},
  518. };
  519. if (draft_n > 0) {
  520. base["draft_n"] = draft_n;
  521. base["draft_n_accepted"] = draft_n_accepted;
  522. }
  523. return base;
  524. }
  525. };
  526. struct server_task_result {
  527. int id = -1;
  528. int id_slot = -1;
  529. virtual bool is_error() {
  530. // only used by server_task_result_error
  531. return false;
  532. }
  533. virtual bool is_stop() {
  534. // only used by server_task_result_cmpl_*
  535. return false;
  536. }
  537. virtual int get_index() {
  538. return -1;
  539. }
  540. virtual json to_json() = 0;
  541. virtual ~server_task_result() = default;
  542. };
  543. // using shared_ptr for polymorphism of server_task_result
  544. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  545. inline std::string stop_type_to_str(stop_type type) {
  546. switch (type) {
  547. case STOP_TYPE_EOS: return "eos";
  548. case STOP_TYPE_WORD: return "word";
  549. case STOP_TYPE_LIMIT: return "limit";
  550. default: return "none";
  551. }
  552. }
  553. struct completion_token_output {
  554. llama_token tok;
  555. float prob;
  556. std::string text_to_send;
  557. struct prob_info {
  558. llama_token tok;
  559. std::string txt;
  560. float prob;
  561. };
  562. std::vector<prob_info> probs;
  563. json to_json(bool post_sampling_probs) const {
  564. json probs_for_token = json::array();
  565. for (const auto & p : probs) {
  566. std::string txt(p.txt);
  567. txt.resize(validate_utf8(txt));
  568. probs_for_token.push_back(json {
  569. {"id", p.tok},
  570. {"token", txt},
  571. {"bytes", str_to_bytes(p.txt)},
  572. {
  573. post_sampling_probs ? "prob" : "logprob",
  574. post_sampling_probs ? p.prob : logarithm(p.prob)
  575. },
  576. });
  577. }
  578. return probs_for_token;
  579. }
  580. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  581. json out = json::array();
  582. for (const auto & p : probs) {
  583. std::string txt(p.text_to_send);
  584. txt.resize(validate_utf8(txt));
  585. out.push_back(json {
  586. {"id", p.tok},
  587. {"token", txt},
  588. {"bytes", str_to_bytes(p.text_to_send)},
  589. {
  590. post_sampling_probs ? "prob" : "logprob",
  591. post_sampling_probs ? p.prob : logarithm(p.prob)
  592. },
  593. {
  594. post_sampling_probs ? "top_probs" : "top_logprobs",
  595. p.to_json(post_sampling_probs)
  596. },
  597. });
  598. }
  599. return out;
  600. }
  601. static float logarithm(float x) {
  602. // nlohmann::json converts -inf to null, so we need to prevent that
  603. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  604. }
  605. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  606. std::vector<unsigned char> bytes;
  607. for (unsigned char c : str) {
  608. bytes.push_back(c);
  609. }
  610. return bytes;
  611. }
  612. };
  613. struct swa_checkpoint {
  614. llama_pos pos_min;
  615. llama_pos pos_max;
  616. std::vector<uint8_t> data;
  617. };
  618. struct server_task_result_cmpl_final : server_task_result {
  619. int index = 0;
  620. std::string content;
  621. llama_tokens tokens;
  622. bool stream;
  623. result_timings timings;
  624. std::string prompt;
  625. bool truncated;
  626. int32_t n_decoded;
  627. int32_t n_prompt_tokens;
  628. int32_t n_tokens_cached;
  629. bool has_new_line;
  630. std::string stopping_word;
  631. stop_type stop = STOP_TYPE_NONE;
  632. bool post_sampling_probs;
  633. std::vector<completion_token_output> probs_output;
  634. std::vector<std::string> response_fields;
  635. slot_params generation_params;
  636. // OAI-compat fields
  637. bool verbose = false;
  638. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  639. std::string oaicompat_model;
  640. std::string oaicompat_cmpl_id;
  641. common_chat_msg oaicompat_msg;
  642. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  643. virtual int get_index() override {
  644. return index;
  645. }
  646. virtual bool is_stop() override {
  647. return true; // in stream mode, final responses are considered stop
  648. }
  649. virtual json to_json() override {
  650. switch (oaicompat) {
  651. case OAICOMPAT_TYPE_NONE:
  652. return to_json_non_oaicompat();
  653. case OAICOMPAT_TYPE_COMPLETION:
  654. return to_json_oaicompat();
  655. case OAICOMPAT_TYPE_CHAT:
  656. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  657. default:
  658. GGML_ASSERT(false && "Invalid oaicompat_type");
  659. }
  660. }
  661. json to_json_non_oaicompat() {
  662. json res = json {
  663. {"index", index},
  664. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  665. {"tokens", stream ? llama_tokens {} : tokens},
  666. {"id_slot", id_slot},
  667. {"stop", true},
  668. {"model", oaicompat_model},
  669. {"tokens_predicted", n_decoded},
  670. {"tokens_evaluated", n_prompt_tokens},
  671. {"generation_settings", generation_params.to_json()},
  672. {"prompt", prompt},
  673. {"has_new_line", has_new_line},
  674. {"truncated", truncated},
  675. {"stop_type", stop_type_to_str(stop)},
  676. {"stopping_word", stopping_word},
  677. {"tokens_cached", n_tokens_cached},
  678. {"timings", timings.to_json()},
  679. };
  680. if (!stream && !probs_output.empty()) {
  681. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  682. }
  683. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  684. }
  685. json to_json_oaicompat() {
  686. std::time_t t = std::time(0);
  687. json logprobs = json(nullptr); // OAI default to null
  688. if (!stream && probs_output.size() > 0) {
  689. logprobs = json{
  690. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  691. };
  692. }
  693. json finish_reason = "length";
  694. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  695. finish_reason = "stop";
  696. }
  697. json res = json {
  698. {"choices", json::array({
  699. json{
  700. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  701. {"index", index},
  702. {"logprobs", logprobs},
  703. {"finish_reason", finish_reason},
  704. }
  705. })},
  706. {"created", t},
  707. {"model", oaicompat_model},
  708. {"system_fingerprint", build_info},
  709. {"object", "text_completion"},
  710. {"usage", json {
  711. {"completion_tokens", n_decoded},
  712. {"prompt_tokens", n_prompt_tokens},
  713. {"total_tokens", n_decoded + n_prompt_tokens}
  714. }},
  715. {"id", oaicompat_cmpl_id}
  716. };
  717. // extra fields for debugging purposes
  718. if (verbose) {
  719. res["__verbose"] = to_json_non_oaicompat();
  720. }
  721. if (timings.prompt_n >= 0) {
  722. res.push_back({"timings", timings.to_json()});
  723. }
  724. return res;
  725. }
  726. json to_json_oaicompat_chat() {
  727. std::string finish_reason = "length";
  728. common_chat_msg msg;
  729. if (!oaicompat_msg.empty()) {
  730. msg = oaicompat_msg;
  731. } else {
  732. msg.role = "assistant";
  733. msg.content = content;
  734. }
  735. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  736. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  737. }
  738. json choice {
  739. {"finish_reason", finish_reason},
  740. {"index", 0},
  741. {"message", msg.to_json_oaicompat<json>()},
  742. };
  743. if (!stream && probs_output.size() > 0) {
  744. choice["logprobs"] = json{
  745. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  746. };
  747. }
  748. std::time_t t = std::time(0);
  749. json res = json {
  750. {"choices", json::array({choice})},
  751. {"created", t},
  752. {"model", oaicompat_model},
  753. {"system_fingerprint", build_info},
  754. {"object", "chat.completion"},
  755. {"usage", json {
  756. {"completion_tokens", n_decoded},
  757. {"prompt_tokens", n_prompt_tokens},
  758. {"total_tokens", n_decoded + n_prompt_tokens}
  759. }},
  760. {"id", oaicompat_cmpl_id}
  761. };
  762. // extra fields for debugging purposes
  763. if (verbose) {
  764. res["__verbose"] = to_json_non_oaicompat();
  765. }
  766. if (timings.prompt_n >= 0) {
  767. res.push_back({"timings", timings.to_json()});
  768. }
  769. return res;
  770. }
  771. json to_json_oaicompat_chat_stream() {
  772. std::time_t t = std::time(0);
  773. std::string finish_reason = "length";
  774. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  775. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  776. }
  777. json deltas = json::array();
  778. for (const auto & diff : oaicompat_msg_diffs) {
  779. deltas.push_back({
  780. {"choices", json::array({
  781. json {
  782. {"finish_reason", nullptr},
  783. {"index", 0},
  784. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  785. },
  786. })},
  787. {"created", t},
  788. {"id", oaicompat_cmpl_id},
  789. {"model", oaicompat_model},
  790. {"system_fingerprint", build_info},
  791. {"object", "chat.completion.chunk"},
  792. });
  793. }
  794. deltas.push_back({
  795. {"choices", json::array({
  796. json {
  797. {"finish_reason", finish_reason},
  798. {"index", 0},
  799. {"delta", json::object()},
  800. },
  801. })},
  802. {"created", t},
  803. {"id", oaicompat_cmpl_id},
  804. {"model", oaicompat_model},
  805. {"system_fingerprint", build_info},
  806. {"object", "chat.completion.chunk"},
  807. });
  808. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  809. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  810. deltas.push_back({
  811. {"choices", json::array()},
  812. {"created", t},
  813. {"id", oaicompat_cmpl_id},
  814. {"model", oaicompat_model},
  815. {"system_fingerprint", build_info},
  816. {"object", "chat.completion.chunk"},
  817. {"usage", json {
  818. {"completion_tokens", n_decoded},
  819. {"prompt_tokens", n_prompt_tokens},
  820. {"total_tokens", n_decoded + n_prompt_tokens},
  821. }},
  822. });
  823. if (timings.prompt_n >= 0) {
  824. deltas.back().push_back({"timings", timings.to_json()});
  825. }
  826. // extra fields for debugging purposes
  827. if (verbose && !deltas.empty()) {
  828. deltas.front()["__verbose"] = to_json_non_oaicompat();
  829. }
  830. return deltas;
  831. }
  832. };
  833. struct server_task_result_cmpl_partial : server_task_result {
  834. int index = 0;
  835. std::string content;
  836. llama_tokens tokens;
  837. int32_t n_decoded;
  838. int32_t n_prompt_tokens;
  839. bool post_sampling_probs;
  840. completion_token_output prob_output;
  841. result_timings timings;
  842. // OAI-compat fields
  843. bool verbose = false;
  844. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  845. std::string oaicompat_model;
  846. std::string oaicompat_cmpl_id;
  847. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  848. virtual int get_index() override {
  849. return index;
  850. }
  851. virtual bool is_stop() override {
  852. return false; // in stream mode, partial responses are not considered stop
  853. }
  854. virtual json to_json() override {
  855. switch (oaicompat) {
  856. case OAICOMPAT_TYPE_NONE:
  857. return to_json_non_oaicompat();
  858. case OAICOMPAT_TYPE_COMPLETION:
  859. return to_json_oaicompat();
  860. case OAICOMPAT_TYPE_CHAT:
  861. return to_json_oaicompat_chat();
  862. default:
  863. GGML_ASSERT(false && "Invalid oaicompat_type");
  864. }
  865. }
  866. json to_json_non_oaicompat() {
  867. // non-OAI-compat JSON
  868. json res = json {
  869. {"index", index},
  870. {"content", content},
  871. {"tokens", tokens},
  872. {"stop", false},
  873. {"id_slot", id_slot},
  874. {"tokens_predicted", n_decoded},
  875. {"tokens_evaluated", n_prompt_tokens},
  876. };
  877. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  878. if (timings.prompt_n > 0) {
  879. res.push_back({"timings", timings.to_json()});
  880. }
  881. if (!prob_output.probs.empty()) {
  882. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  883. }
  884. return res;
  885. }
  886. json to_json_oaicompat() {
  887. std::time_t t = std::time(0);
  888. json logprobs = json(nullptr); // OAI default to null
  889. if (prob_output.probs.size() > 0) {
  890. logprobs = json{
  891. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  892. };
  893. }
  894. json res = json {
  895. {"choices", json::array({
  896. json{
  897. {"text", content},
  898. {"index", index},
  899. {"logprobs", logprobs},
  900. {"finish_reason", nullptr},
  901. }
  902. })},
  903. {"created", t},
  904. {"model", oaicompat_model},
  905. {"system_fingerprint", build_info},
  906. {"object", "text_completion"},
  907. {"id", oaicompat_cmpl_id}
  908. };
  909. // extra fields for debugging purposes
  910. if (verbose) {
  911. res["__verbose"] = to_json_non_oaicompat();
  912. }
  913. if (timings.prompt_n >= 0) {
  914. res.push_back({"timings", timings.to_json()});
  915. }
  916. return res;
  917. }
  918. json to_json_oaicompat_chat() {
  919. bool first = n_decoded == 1;
  920. std::time_t t = std::time(0);
  921. json choices;
  922. std::vector<json> deltas;
  923. auto add_delta = [&](const json & delta) {
  924. deltas.push_back({
  925. {"choices", json::array({
  926. json {
  927. {"finish_reason", nullptr},
  928. {"index", 0},
  929. {"delta", delta},
  930. },
  931. })},
  932. {"created", t},
  933. {"id", oaicompat_cmpl_id},
  934. {"model", oaicompat_model},
  935. {"system_fingerprint", build_info},
  936. {"object", "chat.completion.chunk"},
  937. });
  938. };
  939. // We have to send an initial update to conform to openai behavior
  940. if (first) {
  941. add_delta({
  942. {"role", "assistant"},
  943. {"content", nullptr},
  944. });
  945. }
  946. for (const auto & diff : oaicompat_msg_diffs) {
  947. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  948. }
  949. if (!deltas.empty()) {
  950. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  951. if (prob_output.probs.size() > 0) {
  952. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  953. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  954. };
  955. }
  956. if (timings.prompt_n >= 0) {
  957. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  958. }
  959. }
  960. return deltas;
  961. }
  962. };
  963. struct server_task_result_embd : server_task_result {
  964. int index = 0;
  965. std::vector<std::vector<float>> embedding;
  966. int32_t n_tokens;
  967. // OAI-compat fields
  968. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  969. virtual int get_index() override {
  970. return index;
  971. }
  972. virtual json to_json() override {
  973. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  974. ? to_json_oaicompat()
  975. : to_json_non_oaicompat();
  976. }
  977. json to_json_non_oaicompat() {
  978. return json {
  979. {"index", index},
  980. {"embedding", embedding},
  981. };
  982. }
  983. json to_json_oaicompat() {
  984. return json {
  985. {"index", index},
  986. {"embedding", embedding[0]},
  987. {"tokens_evaluated", n_tokens},
  988. };
  989. }
  990. };
  991. struct server_task_result_rerank : server_task_result {
  992. int index = 0;
  993. float score = -1e6;
  994. int32_t n_tokens;
  995. virtual int get_index() override {
  996. return index;
  997. }
  998. virtual json to_json() override {
  999. return json {
  1000. {"index", index},
  1001. {"score", score},
  1002. {"tokens_evaluated", n_tokens},
  1003. };
  1004. }
  1005. };
  1006. // this function maybe used outside of server_task_result_error
  1007. static json format_error_response(const std::string & message, const enum error_type type) {
  1008. std::string type_str;
  1009. int code = 500;
  1010. switch (type) {
  1011. case ERROR_TYPE_INVALID_REQUEST:
  1012. type_str = "invalid_request_error";
  1013. code = 400;
  1014. break;
  1015. case ERROR_TYPE_AUTHENTICATION:
  1016. type_str = "authentication_error";
  1017. code = 401;
  1018. break;
  1019. case ERROR_TYPE_NOT_FOUND:
  1020. type_str = "not_found_error";
  1021. code = 404;
  1022. break;
  1023. case ERROR_TYPE_SERVER:
  1024. type_str = "server_error";
  1025. code = 500;
  1026. break;
  1027. case ERROR_TYPE_PERMISSION:
  1028. type_str = "permission_error";
  1029. code = 403;
  1030. break;
  1031. case ERROR_TYPE_NOT_SUPPORTED:
  1032. type_str = "not_supported_error";
  1033. code = 501;
  1034. break;
  1035. case ERROR_TYPE_UNAVAILABLE:
  1036. type_str = "unavailable_error";
  1037. code = 503;
  1038. break;
  1039. }
  1040. return json {
  1041. {"code", code},
  1042. {"message", message},
  1043. {"type", type_str},
  1044. };
  1045. }
  1046. struct server_task_result_error : server_task_result {
  1047. int index = 0;
  1048. error_type err_type = ERROR_TYPE_SERVER;
  1049. std::string err_msg;
  1050. virtual bool is_error() override {
  1051. return true;
  1052. }
  1053. virtual json to_json() override {
  1054. return format_error_response(err_msg, err_type);
  1055. }
  1056. };
  1057. struct server_task_result_metrics : server_task_result {
  1058. int n_idle_slots;
  1059. int n_processing_slots;
  1060. int n_tasks_deferred;
  1061. int64_t t_start;
  1062. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1063. uint64_t n_prompt_tokens_processed_total = 0;
  1064. uint64_t t_prompt_processing_total = 0;
  1065. uint64_t n_tokens_predicted_total = 0;
  1066. uint64_t t_tokens_generation_total = 0;
  1067. uint64_t n_past_max = 0;
  1068. uint64_t n_prompt_tokens_processed = 0;
  1069. uint64_t t_prompt_processing = 0;
  1070. uint64_t n_tokens_predicted = 0;
  1071. uint64_t t_tokens_generation = 0;
  1072. uint64_t n_decode_total = 0;
  1073. uint64_t n_busy_slots_total = 0;
  1074. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1075. // therefore, we use json to temporarily store the slot.to_json() result
  1076. json slots_data = json::array();
  1077. virtual json to_json() override {
  1078. return json {
  1079. { "idle", n_idle_slots },
  1080. { "processing", n_processing_slots },
  1081. { "deferred", n_tasks_deferred },
  1082. { "t_start", t_start },
  1083. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1084. { "t_tokens_generation_total", t_tokens_generation_total },
  1085. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1086. { "t_prompt_processing_total", t_prompt_processing_total },
  1087. { "n_past_max", n_past_max },
  1088. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1089. { "t_prompt_processing", t_prompt_processing },
  1090. { "n_tokens_predicted", n_tokens_predicted },
  1091. { "t_tokens_generation", t_tokens_generation },
  1092. { "n_decode_total", n_decode_total },
  1093. { "n_busy_slots_total", n_busy_slots_total },
  1094. { "slots", slots_data },
  1095. };
  1096. }
  1097. };
  1098. struct server_task_result_slot_save_load : server_task_result {
  1099. std::string filename;
  1100. bool is_save; // true = save, false = load
  1101. size_t n_tokens;
  1102. size_t n_bytes;
  1103. double t_ms;
  1104. virtual json to_json() override {
  1105. if (is_save) {
  1106. return json {
  1107. { "id_slot", id_slot },
  1108. { "filename", filename },
  1109. { "n_saved", n_tokens },
  1110. { "n_written", n_bytes },
  1111. { "timings", {
  1112. { "save_ms", t_ms }
  1113. }},
  1114. };
  1115. } else {
  1116. return json {
  1117. { "id_slot", id_slot },
  1118. { "filename", filename },
  1119. { "n_restored", n_tokens },
  1120. { "n_read", n_bytes },
  1121. { "timings", {
  1122. { "restore_ms", t_ms }
  1123. }},
  1124. };
  1125. }
  1126. }
  1127. };
  1128. struct server_task_result_slot_erase : server_task_result {
  1129. size_t n_erased;
  1130. virtual json to_json() override {
  1131. return json {
  1132. { "id_slot", id_slot },
  1133. { "n_erased", n_erased },
  1134. };
  1135. }
  1136. };
  1137. struct server_task_result_apply_lora : server_task_result {
  1138. virtual json to_json() override {
  1139. return json {{ "success", true }};
  1140. }
  1141. };
  1142. struct server_slot {
  1143. int id;
  1144. int id_task = -1;
  1145. // only used for completion/embedding/infill/rerank
  1146. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1147. llama_batch batch_spec = {};
  1148. llama_context * ctx = nullptr;
  1149. llama_context * ctx_dft = nullptr;
  1150. // multimodal
  1151. mtmd_context * mctx = nullptr;
  1152. common_speculative * spec = nullptr;
  1153. std::vector<common_adapter_lora_info> lora;
  1154. // the index relative to completion multi-task request
  1155. size_t index = 0;
  1156. struct slot_params params;
  1157. slot_state state = SLOT_STATE_IDLE;
  1158. // used to determine the slot that has been used the longest
  1159. int64_t t_last_used = -1;
  1160. // generation props
  1161. int32_t n_ctx = 0; // context size per slot
  1162. int32_t n_past = 0;
  1163. int32_t n_decoded = 0;
  1164. int32_t n_remaining = -1;
  1165. int32_t i_batch = -1;
  1166. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1167. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1168. int32_t n_prompt_tokens = 0;
  1169. int32_t n_prompt_tokens_processed = 0;
  1170. // input prompt tokens
  1171. server_tokens prompt_tokens;
  1172. size_t last_nl_pos = 0;
  1173. std::string generated_text;
  1174. llama_tokens generated_tokens;
  1175. common_chat_msg chat_msg;
  1176. server_tokens cache_tokens;
  1177. std::vector<completion_token_output> generated_token_probs;
  1178. std::vector<swa_checkpoint> swa_checkpoints;
  1179. bool has_next_token = true;
  1180. bool has_new_line = false;
  1181. bool truncated = false;
  1182. stop_type stop;
  1183. std::string stopping_word;
  1184. // sampling
  1185. json json_schema;
  1186. struct common_sampler * smpl = nullptr;
  1187. llama_token sampled;
  1188. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1189. std::vector<std::string> generated_tool_call_ids;
  1190. // stats
  1191. size_t n_sent_text = 0; // number of sent text character
  1192. int64_t t_start_process_prompt;
  1193. int64_t t_start_generation;
  1194. double t_prompt_processing; // ms
  1195. double t_token_generation; // ms
  1196. std::function<void(int)> callback_on_release;
  1197. // Speculative decoding stats
  1198. int32_t n_draft_total = 0; // Total draft tokens generated
  1199. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1200. void reset() {
  1201. SLT_DBG(*this, "%s", "\n");
  1202. n_prompt_tokens = 0;
  1203. last_nl_pos = 0;
  1204. generated_text = "";
  1205. has_new_line = false;
  1206. truncated = false;
  1207. stop = STOP_TYPE_NONE;
  1208. stopping_word = "";
  1209. n_past = 0;
  1210. n_sent_text = 0;
  1211. task_type = SERVER_TASK_TYPE_COMPLETION;
  1212. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1213. generated_tokens.clear();
  1214. generated_token_probs.clear();
  1215. chat_msg = {};
  1216. json_schema = json();
  1217. generated_tool_call_ids.clear();
  1218. // clear speculative decoding stats
  1219. n_draft_total = 0;
  1220. n_draft_accepted = 0;
  1221. }
  1222. bool need_embd() const {
  1223. return server_task_type_need_embd(task_type);
  1224. }
  1225. bool need_logits() const {
  1226. return server_task_type_need_logits(task_type);
  1227. }
  1228. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1229. // also we cannot split if the pooling would require any past tokens
  1230. bool can_split() const {
  1231. return
  1232. !need_embd() ||
  1233. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1234. }
  1235. bool can_batch_with(server_slot & other_slot) const {
  1236. return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
  1237. }
  1238. bool has_budget(const common_params & global_params) {
  1239. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1240. return true; // limitless
  1241. }
  1242. n_remaining = -1;
  1243. if (params.n_predict != -1) {
  1244. n_remaining = params.n_predict - n_decoded;
  1245. } else if (global_params.n_predict != -1) {
  1246. n_remaining = global_params.n_predict - n_decoded;
  1247. }
  1248. return n_remaining > 0; // no budget
  1249. }
  1250. bool is_processing() const {
  1251. return state != SLOT_STATE_IDLE;
  1252. }
  1253. bool can_speculate() const {
  1254. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1255. }
  1256. void add_token(const completion_token_output & token) {
  1257. if (!is_processing()) {
  1258. SLT_WRN(*this, "%s", "slot is not processing\n");
  1259. return;
  1260. }
  1261. generated_token_probs.push_back(token);
  1262. }
  1263. void release() {
  1264. if (is_processing()) {
  1265. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1266. t_last_used = ggml_time_us();
  1267. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1268. state = SLOT_STATE_IDLE;
  1269. callback_on_release(id);
  1270. }
  1271. }
  1272. result_timings get_timings() const {
  1273. result_timings timings;
  1274. timings.prompt_n = n_prompt_tokens_processed;
  1275. timings.prompt_ms = t_prompt_processing;
  1276. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1277. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1278. timings.predicted_n = n_decoded;
  1279. timings.predicted_ms = t_token_generation;
  1280. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1281. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1282. // Add speculative metrics
  1283. if (n_draft_total > 0) {
  1284. timings.draft_n = n_draft_total;
  1285. timings.draft_n_accepted = n_draft_accepted;
  1286. }
  1287. return timings;
  1288. }
  1289. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1290. auto previous_msg = chat_msg;
  1291. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1292. auto new_msg = common_chat_parse(
  1293. generated_text,
  1294. /* is_partial= */ stop != STOP_TYPE_EOS,
  1295. params.oaicompat_chat_syntax);
  1296. if (!new_msg.empty()) {
  1297. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1298. chat_msg = new_msg;
  1299. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1300. }
  1301. return chat_msg;
  1302. }
  1303. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1304. size_t stop_pos = std::string::npos;
  1305. for (const std::string & word : params.antiprompt) {
  1306. size_t pos;
  1307. if (is_full_stop) {
  1308. const size_t tmp = word.size() + last_token_size;
  1309. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1310. pos = text.find(word, from_pos);
  1311. } else {
  1312. // otherwise, partial stop
  1313. pos = string_find_partial_stop(text, word);
  1314. }
  1315. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1316. if (is_full_stop) {
  1317. stop = STOP_TYPE_WORD;
  1318. stopping_word = word;
  1319. has_next_token = false;
  1320. }
  1321. stop_pos = pos;
  1322. }
  1323. }
  1324. return stop_pos;
  1325. }
  1326. void print_timings() const {
  1327. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1328. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1329. const double t_gen = t_token_generation / n_decoded;
  1330. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1331. SLT_INF(*this,
  1332. "\n"
  1333. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1334. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1335. " total time = %10.2f ms / %5d tokens\n",
  1336. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1337. t_token_generation, n_decoded, t_gen, n_gen_second,
  1338. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1339. if (n_draft_total > 0) {
  1340. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1341. SLT_INF(*this,
  1342. "\n"
  1343. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1344. draft_ratio, n_draft_accepted, n_draft_total
  1345. );
  1346. }
  1347. }
  1348. json to_json() const {
  1349. return json {
  1350. {"id", id},
  1351. {"id_task", id_task},
  1352. {"n_ctx", n_ctx},
  1353. {"speculative", can_speculate()},
  1354. {"is_processing", is_processing()},
  1355. {"params", params.to_json()},
  1356. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1357. {"next_token",
  1358. {
  1359. {"has_next_token", has_next_token},
  1360. {"has_new_line", has_new_line},
  1361. {"n_remain", n_remaining},
  1362. {"n_decoded", n_decoded},
  1363. {"stopping_word", stopping_word},
  1364. }
  1365. },
  1366. };
  1367. }
  1368. };
  1369. struct server_metrics {
  1370. int64_t t_start = 0;
  1371. uint64_t n_prompt_tokens_processed_total = 0;
  1372. uint64_t t_prompt_processing_total = 0;
  1373. uint64_t n_tokens_predicted_total = 0;
  1374. uint64_t t_tokens_generation_total = 0;
  1375. uint64_t n_past_max = 0;
  1376. uint64_t n_prompt_tokens_processed = 0;
  1377. uint64_t t_prompt_processing = 0;
  1378. uint64_t n_tokens_predicted = 0;
  1379. uint64_t t_tokens_generation = 0;
  1380. uint64_t n_decode_total = 0;
  1381. uint64_t n_busy_slots_total = 0;
  1382. void init() {
  1383. t_start = ggml_time_us();
  1384. }
  1385. void on_prompt_eval(const server_slot & slot) {
  1386. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1387. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1388. t_prompt_processing += slot.t_prompt_processing;
  1389. t_prompt_processing_total += slot.t_prompt_processing;
  1390. if (slot.n_past > 0) {
  1391. n_past_max = std::max(n_past_max, (uint64_t) slot.n_past);
  1392. }
  1393. }
  1394. void on_prediction(const server_slot & slot) {
  1395. n_tokens_predicted_total += slot.n_decoded;
  1396. n_tokens_predicted += slot.n_decoded;
  1397. t_tokens_generation += slot.t_token_generation;
  1398. t_tokens_generation_total += slot.t_token_generation;
  1399. }
  1400. void on_decoded(const std::vector<server_slot> & slots) {
  1401. n_decode_total++;
  1402. for (const auto & slot : slots) {
  1403. if (slot.is_processing()) {
  1404. n_busy_slots_total++;
  1405. }
  1406. if (slot.n_past > 0) {
  1407. n_past_max = std::max(n_past_max, (uint64_t) slot.n_past);
  1408. }
  1409. }
  1410. }
  1411. void reset_bucket() {
  1412. n_prompt_tokens_processed = 0;
  1413. t_prompt_processing = 0;
  1414. n_tokens_predicted = 0;
  1415. t_tokens_generation = 0;
  1416. }
  1417. };
  1418. struct server_queue {
  1419. int id = 0;
  1420. bool running;
  1421. // queues
  1422. std::deque<server_task> queue_tasks;
  1423. std::deque<server_task> queue_tasks_deferred;
  1424. std::mutex mutex_tasks;
  1425. std::condition_variable condition_tasks;
  1426. // callback functions
  1427. std::function<void(server_task &&)> callback_new_task;
  1428. std::function<void(void)> callback_update_slots;
  1429. // Add a new task to the end of the queue
  1430. int post(server_task && task, bool front = false) {
  1431. std::unique_lock<std::mutex> lock(mutex_tasks);
  1432. GGML_ASSERT(task.id != -1);
  1433. // if this is cancel task make sure to clean up pending tasks
  1434. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1435. cleanup_pending_task(task.id_target);
  1436. }
  1437. const int task_id = task.id;
  1438. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1439. if (front) {
  1440. queue_tasks.push_front(std::move(task));
  1441. } else {
  1442. queue_tasks.push_back(std::move(task));
  1443. }
  1444. condition_tasks.notify_one();
  1445. return task_id;
  1446. }
  1447. // multi-task version of post()
  1448. int post(std::vector<server_task> && tasks, bool front = false) {
  1449. std::unique_lock<std::mutex> lock(mutex_tasks);
  1450. for (auto & task : tasks) {
  1451. if (task.id == -1) {
  1452. task.id = id++;
  1453. }
  1454. // if this is cancel task make sure to clean up pending tasks
  1455. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1456. cleanup_pending_task(task.id_target);
  1457. }
  1458. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1459. if (front) {
  1460. queue_tasks.push_front(std::move(task));
  1461. } else {
  1462. queue_tasks.push_back(std::move(task));
  1463. }
  1464. }
  1465. condition_tasks.notify_one();
  1466. return 0;
  1467. }
  1468. // Add a new task, but defer until one slot is available
  1469. void defer(server_task && task) {
  1470. std::unique_lock<std::mutex> lock(mutex_tasks);
  1471. QUE_DBG("defer task, id = %d\n", task.id);
  1472. queue_tasks_deferred.push_back(std::move(task));
  1473. condition_tasks.notify_one();
  1474. }
  1475. // Get the next id for creating a new task
  1476. int get_new_id() {
  1477. std::unique_lock<std::mutex> lock(mutex_tasks);
  1478. int new_id = id++;
  1479. return new_id;
  1480. }
  1481. // Register function to process a new task
  1482. void on_new_task(std::function<void(server_task &&)> callback) {
  1483. callback_new_task = std::move(callback);
  1484. }
  1485. // Register the function to be called when all slots data is ready to be processed
  1486. void on_update_slots(std::function<void(void)> callback) {
  1487. callback_update_slots = std::move(callback);
  1488. }
  1489. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1490. void pop_deferred_task() {
  1491. std::unique_lock<std::mutex> lock(mutex_tasks);
  1492. if (!queue_tasks_deferred.empty()) {
  1493. queue_tasks.emplace_front(std::move(queue_tasks_deferred.front()));
  1494. queue_tasks_deferred.pop_front();
  1495. }
  1496. condition_tasks.notify_one();
  1497. }
  1498. // end the start_loop routine
  1499. void terminate() {
  1500. std::unique_lock<std::mutex> lock(mutex_tasks);
  1501. running = false;
  1502. condition_tasks.notify_all();
  1503. }
  1504. /**
  1505. * Main loop consists of these steps:
  1506. * - Wait until a new task arrives
  1507. * - Process the task (i.e. maybe copy data into slot)
  1508. * - Check if multitask is finished
  1509. * - Update all slots
  1510. */
  1511. void start_loop() {
  1512. running = true;
  1513. while (true) {
  1514. QUE_DBG("%s", "processing new tasks\n");
  1515. while (true) {
  1516. std::unique_lock<std::mutex> lock(mutex_tasks);
  1517. if (!running) {
  1518. QUE_DBG("%s", "terminate\n");
  1519. return;
  1520. }
  1521. if (queue_tasks.empty()) {
  1522. lock.unlock();
  1523. break;
  1524. }
  1525. server_task task = std::move(queue_tasks.front());
  1526. queue_tasks.pop_front();
  1527. lock.unlock();
  1528. QUE_DBG("processing task, id = %d\n", task.id);
  1529. callback_new_task(std::move(task));
  1530. }
  1531. // all tasks in the current loop is processed, slots data is now ready
  1532. QUE_DBG("%s", "update slots\n");
  1533. callback_update_slots();
  1534. QUE_DBG("%s", "waiting for new tasks\n");
  1535. {
  1536. std::unique_lock<std::mutex> lock(mutex_tasks);
  1537. if (!running) {
  1538. QUE_DBG("%s", "terminate\n");
  1539. return;
  1540. }
  1541. if (queue_tasks.empty()) {
  1542. condition_tasks.wait(lock, [&]{
  1543. return (!queue_tasks.empty() || !running);
  1544. });
  1545. }
  1546. }
  1547. }
  1548. }
  1549. private:
  1550. void cleanup_pending_task(int id_target) {
  1551. // no need lock because this is called exclusively by post()
  1552. auto rm_func = [id_target](const server_task & task) {
  1553. return task.id_target == id_target;
  1554. };
  1555. queue_tasks.erase(
  1556. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1557. queue_tasks.end());
  1558. queue_tasks_deferred.erase(
  1559. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1560. queue_tasks_deferred.end());
  1561. }
  1562. };
  1563. struct server_response {
  1564. bool running = true;
  1565. // for keeping track of all tasks waiting for the result
  1566. std::unordered_set<int> waiting_task_ids;
  1567. // the main result queue (using ptr for polymorphism)
  1568. std::vector<server_task_result_ptr> queue_results;
  1569. std::mutex mutex_results;
  1570. std::condition_variable condition_results;
  1571. // add the id_task to the list of tasks waiting for response
  1572. void add_waiting_task_id(int id_task) {
  1573. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1574. std::unique_lock<std::mutex> lock(mutex_results);
  1575. waiting_task_ids.insert(id_task);
  1576. }
  1577. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1578. std::unique_lock<std::mutex> lock(mutex_results);
  1579. for (const auto & task : tasks) {
  1580. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1581. waiting_task_ids.insert(task.id);
  1582. }
  1583. }
  1584. // when the request is finished, we can remove task associated with it
  1585. void remove_waiting_task_id(int id_task) {
  1586. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1587. std::unique_lock<std::mutex> lock(mutex_results);
  1588. waiting_task_ids.erase(id_task);
  1589. // make sure to clean up all pending results
  1590. queue_results.erase(
  1591. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1592. return res->id == id_task;
  1593. }),
  1594. queue_results.end());
  1595. }
  1596. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1597. std::unique_lock<std::mutex> lock(mutex_results);
  1598. for (const auto & id_task : id_tasks) {
  1599. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1600. waiting_task_ids.erase(id_task);
  1601. }
  1602. }
  1603. // This function blocks the thread until there is a response for one of the id_tasks
  1604. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1605. while (true) {
  1606. std::unique_lock<std::mutex> lock(mutex_results);
  1607. condition_results.wait(lock, [&]{
  1608. if (!running) {
  1609. SRV_DBG("%s : queue result stop\n", __func__);
  1610. std::terminate(); // we cannot return here since the caller is HTTP code
  1611. }
  1612. return !queue_results.empty();
  1613. });
  1614. for (size_t i = 0; i < queue_results.size(); i++) {
  1615. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1616. server_task_result_ptr res = std::move(queue_results[i]);
  1617. queue_results.erase(queue_results.begin() + i);
  1618. return res;
  1619. }
  1620. }
  1621. }
  1622. // should never reach here
  1623. }
  1624. // same as recv(), but have timeout in seconds
  1625. // if timeout is reached, nullptr is returned
  1626. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1627. while (true) {
  1628. std::unique_lock<std::mutex> lock(mutex_results);
  1629. for (int i = 0; i < (int) queue_results.size(); i++) {
  1630. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1631. server_task_result_ptr res = std::move(queue_results[i]);
  1632. queue_results.erase(queue_results.begin() + i);
  1633. return res;
  1634. }
  1635. }
  1636. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1637. if (!running) {
  1638. SRV_DBG("%s : queue result stop\n", __func__);
  1639. std::terminate(); // we cannot return here since the caller is HTTP code
  1640. }
  1641. if (cr_res == std::cv_status::timeout) {
  1642. return nullptr;
  1643. }
  1644. }
  1645. // should never reach here
  1646. }
  1647. // single-task version of recv()
  1648. server_task_result_ptr recv(int id_task) {
  1649. std::unordered_set<int> id_tasks = {id_task};
  1650. return recv(id_tasks);
  1651. }
  1652. // Send a new result to a waiting id_task
  1653. void send(server_task_result_ptr && result) {
  1654. SRV_DBG("sending result for task id = %d\n", result->id);
  1655. std::unique_lock<std::mutex> lock(mutex_results);
  1656. for (const auto & id_task : waiting_task_ids) {
  1657. if (result->id == id_task) {
  1658. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1659. queue_results.emplace_back(std::move(result));
  1660. condition_results.notify_all();
  1661. return;
  1662. }
  1663. }
  1664. }
  1665. // terminate the waiting loop
  1666. void terminate() {
  1667. running = false;
  1668. condition_results.notify_all();
  1669. }
  1670. };
  1671. struct server_context {
  1672. common_params params_base;
  1673. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1674. common_init_result llama_init;
  1675. common_init_result llama_init_dft;
  1676. llama_model * model = nullptr;
  1677. llama_context * ctx = nullptr;
  1678. // multimodal
  1679. mtmd_context * mctx = nullptr;
  1680. const llama_vocab * vocab = nullptr;
  1681. bool vocab_dft_compatible = true;
  1682. llama_model * model_dft = nullptr;
  1683. llama_context_params cparams_dft;
  1684. llama_batch batch {};
  1685. bool clean_kv_cache = true;
  1686. bool add_bos_token = true;
  1687. int32_t n_ctx; // total context for all clients / slots
  1688. // slots / clients
  1689. std::vector<server_slot> slots;
  1690. json default_generation_settings_for_props;
  1691. server_queue queue_tasks;
  1692. server_response queue_results;
  1693. server_metrics metrics;
  1694. // Necessary similarity of prompt for slot selection
  1695. float slot_prompt_similarity = 0.0f;
  1696. common_chat_templates_ptr chat_templates;
  1697. oaicompat_parser_options oai_parser_opt;
  1698. ~server_context() {
  1699. mtmd_free(mctx);
  1700. // Clear any sampling context
  1701. for (server_slot & slot : slots) {
  1702. common_sampler_free(slot.smpl);
  1703. slot.smpl = nullptr;
  1704. llama_free(slot.ctx_dft);
  1705. slot.ctx_dft = nullptr;
  1706. common_speculative_free(slot.spec);
  1707. slot.spec = nullptr;
  1708. llama_batch_free(slot.batch_spec);
  1709. }
  1710. llama_batch_free(batch);
  1711. }
  1712. bool load_model(const common_params & params) {
  1713. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1714. params_base = params;
  1715. llama_init = common_init_from_params(params_base);
  1716. model = llama_init.model.get();
  1717. ctx = llama_init.context.get();
  1718. if (model == nullptr) {
  1719. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1720. return false;
  1721. }
  1722. vocab = llama_model_get_vocab(model);
  1723. n_ctx = llama_n_ctx(ctx);
  1724. add_bos_token = llama_vocab_get_add_bos(vocab);
  1725. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1726. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1727. auto params_dft = params_base;
  1728. params_dft.devices = params_base.speculative.devices;
  1729. params_dft.model = params_base.speculative.model;
  1730. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1731. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1732. params_dft.n_parallel = 1;
  1733. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  1734. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  1735. params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
  1736. params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
  1737. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  1738. llama_init_dft = common_init_from_params(params_dft);
  1739. model_dft = llama_init_dft.model.get();
  1740. if (model_dft == nullptr) {
  1741. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1742. return false;
  1743. }
  1744. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  1745. if (!vocab_dft_compatible) {
  1746. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1747. }
  1748. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1749. cparams_dft = common_context_params_to_llama(params_dft);
  1750. cparams_dft.n_batch = n_ctx_dft;
  1751. // the context is not needed - we will create one for each slot
  1752. llama_init_dft.context.reset();
  1753. }
  1754. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1755. try {
  1756. common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
  1757. } catch (const std::exception & e) {
  1758. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1759. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1760. chat_templates = common_chat_templates_init(model, "chatml");
  1761. }
  1762. std::string & mmproj_path = params_base.mmproj.path;
  1763. if (!mmproj_path.empty()) {
  1764. mtmd_context_params mparams = mtmd_context_params_default();
  1765. mparams.use_gpu = params_base.mmproj_use_gpu;
  1766. mparams.print_timings = false;
  1767. mparams.n_threads = params_base.cpuparams.n_threads;
  1768. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1769. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1770. if (mctx == nullptr) {
  1771. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1772. return false;
  1773. }
  1774. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1775. if (params_base.ctx_shift) {
  1776. params_base.ctx_shift = false;
  1777. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1778. }
  1779. if (params_base.n_cache_reuse) {
  1780. params_base.n_cache_reuse = 0;
  1781. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1782. }
  1783. if (!params_base.speculative.model.path.empty()) {
  1784. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1785. return false;
  1786. }
  1787. }
  1788. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  1789. if (params_base.ctx_shift) {
  1790. params_base.ctx_shift = false;
  1791. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1792. }
  1793. if (params_base.n_cache_reuse) {
  1794. params_base.n_cache_reuse = 0;
  1795. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1796. }
  1797. }
  1798. return true;
  1799. }
  1800. void init() {
  1801. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1802. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1803. for (int i = 0; i < params_base.n_parallel; i++) {
  1804. server_slot slot;
  1805. slot.id = i;
  1806. slot.ctx = ctx;
  1807. slot.n_ctx = n_ctx_slot;
  1808. slot.n_predict = params_base.n_predict;
  1809. slot.mctx = mctx;
  1810. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1811. if (model_dft) {
  1812. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1813. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1814. if (slot.ctx_dft == nullptr) {
  1815. SRV_ERR("%s", "failed to create draft context\n");
  1816. return;
  1817. }
  1818. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  1819. if (slot.spec == nullptr) {
  1820. SRV_ERR("%s", "failed to create speculator\n");
  1821. return;
  1822. }
  1823. for (auto &pair : params_base.speculative.replacements) {
  1824. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  1825. }
  1826. }
  1827. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1828. slot.params.sampling = params_base.sampling;
  1829. slot.params.n_keep = params_base.n_keep;
  1830. slot.callback_on_release = [this](int) {
  1831. queue_tasks.pop_deferred_task();
  1832. };
  1833. slot.reset();
  1834. slots.push_back(std::move(slot));
  1835. }
  1836. default_generation_settings_for_props = slots[0].to_json();
  1837. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1838. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1839. {
  1840. const int32_t n_batch = llama_n_batch(ctx);
  1841. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1842. }
  1843. metrics.init();
  1844. oai_parser_opt = {
  1845. /* use_jinja */ params_base.use_jinja,
  1846. /* prefill_assistant */ params_base.prefill_assistant,
  1847. /* reasoning_format */ params_base.reasoning_format,
  1848. /* chat_template_kwargs */ params_base.default_template_kwargs,
  1849. /* common_chat_templates */ chat_templates.get(),
  1850. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1851. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1852. /* enable_thinking */ params_base.reasoning_budget != 0,
  1853. };
  1854. }
  1855. server_slot * get_slot_by_id(int id) {
  1856. for (server_slot & slot : slots) {
  1857. if (slot.id == id) {
  1858. return &slot;
  1859. }
  1860. }
  1861. return nullptr;
  1862. }
  1863. server_slot * get_available_slot(const server_task & task) {
  1864. server_slot * ret = nullptr;
  1865. // find the slot that has at least n% prompt similarity
  1866. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1867. int lcs_len = 0;
  1868. float similarity = 0;
  1869. for (server_slot & slot : slots) {
  1870. // skip the slot if it is not available
  1871. if (slot.is_processing()) {
  1872. continue;
  1873. }
  1874. // skip the slot if it does not contains cached tokens
  1875. if (slot.cache_tokens.empty()) {
  1876. continue;
  1877. }
  1878. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1879. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1880. // fraction of the common subsequence length compared to the current slot's prompt length
  1881. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1882. // select the current slot if the criteria match
  1883. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1884. lcs_len = cur_lcs_len;
  1885. similarity = cur_similarity;
  1886. ret = &slot;
  1887. }
  1888. }
  1889. if (ret != nullptr) {
  1890. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1891. }
  1892. }
  1893. // find the slot that has been least recently used
  1894. if (ret == nullptr) {
  1895. int64_t t_last = -1;
  1896. for (server_slot & slot : slots) {
  1897. // skip the slot if it is not available
  1898. if (slot.is_processing()) {
  1899. continue;
  1900. }
  1901. // select the current slot if the criteria match
  1902. if (!ret || slot.t_last_used <= t_last) {
  1903. t_last = slot.t_last_used;
  1904. ret = &slot;
  1905. }
  1906. }
  1907. if (ret != nullptr) {
  1908. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1909. }
  1910. }
  1911. return ret;
  1912. }
  1913. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1914. slot.reset();
  1915. slot.id_task = task.id;
  1916. slot.index = task.index;
  1917. slot.task_type = task.type;
  1918. slot.params = std::move(task.params);
  1919. slot.prompt_tokens = std::move(task.prompt_tokens);
  1920. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1921. // if lora is changed, we cannot reuse cached tokens
  1922. slot.cache_tokens.clear();
  1923. slot.lora = slot.params.lora;
  1924. }
  1925. if (!slot.prompt_tokens.validate(ctx)) {
  1926. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1927. return false;
  1928. }
  1929. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1930. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1931. // Might be better to reject the request with a 400 ?
  1932. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1933. slot.params.n_predict = slot.n_predict;
  1934. }
  1935. {
  1936. if (slot.smpl != nullptr) {
  1937. common_sampler_free(slot.smpl);
  1938. }
  1939. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1940. if (slot.smpl == nullptr) {
  1941. // for now, the only error that may happen here is invalid grammar
  1942. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1943. return false;
  1944. }
  1945. }
  1946. if (slot.ctx_dft) {
  1947. llama_batch_free(slot.batch_spec);
  1948. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1949. }
  1950. slot.state = SLOT_STATE_STARTED;
  1951. SLT_INF(slot, "%s", "processing task\n");
  1952. return true;
  1953. }
  1954. void kv_cache_clear() {
  1955. SRV_DBG("%s", "clearing KV cache\n");
  1956. // clear the entire KV cache
  1957. llama_memory_clear(llama_get_memory(ctx), true);
  1958. clean_kv_cache = false;
  1959. }
  1960. bool process_token(completion_token_output & result, server_slot & slot) {
  1961. // remember which tokens were sampled - used for repetition penalties during sampling
  1962. const std::string token_str = result.text_to_send;
  1963. slot.sampled = result.tok;
  1964. slot.generated_text += token_str;
  1965. if (slot.params.return_tokens) {
  1966. slot.generated_tokens.push_back(result.tok);
  1967. }
  1968. slot.has_next_token = true;
  1969. // check if there is incomplete UTF-8 character at the end
  1970. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1971. // search stop word and delete it
  1972. if (!incomplete) {
  1973. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1974. const std::string str_test = slot.generated_text.substr(pos);
  1975. bool send_text = true;
  1976. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1977. if (stop_pos != std::string::npos) {
  1978. slot.generated_text.erase(
  1979. slot.generated_text.begin() + pos + stop_pos,
  1980. slot.generated_text.end());
  1981. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1982. } else if (slot.has_next_token) {
  1983. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1984. send_text = stop_pos == std::string::npos;
  1985. }
  1986. // check if there is any token to predict
  1987. if (send_text) {
  1988. // no send the stop word in the response
  1989. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1990. slot.n_sent_text += result.text_to_send.size();
  1991. // add the token to slot queue and cache
  1992. } else {
  1993. result.text_to_send = "";
  1994. }
  1995. slot.add_token(result);
  1996. if (slot.params.stream) {
  1997. send_partial_response(slot, result);
  1998. }
  1999. }
  2000. if (incomplete) {
  2001. slot.has_next_token = true;
  2002. }
  2003. // if context shifting is disabled, make sure that we don't run out of context
  2004. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  2005. slot.stop = STOP_TYPE_LIMIT;
  2006. slot.has_next_token = false;
  2007. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  2008. }
  2009. // check the limits
  2010. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  2011. slot.stop = STOP_TYPE_LIMIT;
  2012. slot.has_next_token = false;
  2013. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  2014. }
  2015. if (slot.has_new_line) {
  2016. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  2017. if (slot.params.n_indent > 0) {
  2018. // check the current indentation
  2019. // TODO: improve by not doing it more than once for each new line
  2020. if (slot.last_nl_pos > 0) {
  2021. size_t pos = slot.last_nl_pos;
  2022. int n_indent = 0;
  2023. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  2024. n_indent++;
  2025. pos++;
  2026. }
  2027. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  2028. slot.stop = STOP_TYPE_LIMIT;
  2029. slot.has_next_token = false;
  2030. // cut the last line
  2031. slot.generated_text.erase(pos, std::string::npos);
  2032. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2033. }
  2034. }
  2035. // find the next new line
  2036. {
  2037. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2038. if (pos != std::string::npos) {
  2039. slot.last_nl_pos = pos + 1;
  2040. }
  2041. }
  2042. }
  2043. }
  2044. // check if there is a new line in the generated text
  2045. if (result.text_to_send.find('\n') != std::string::npos) {
  2046. slot.has_new_line = true;
  2047. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2048. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  2049. slot.stop = STOP_TYPE_LIMIT;
  2050. slot.has_next_token = false;
  2051. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  2052. }
  2053. }
  2054. // if context shift is disabled, we stop when it reaches the context limit
  2055. if (slot.n_past >= slot.n_ctx) {
  2056. slot.truncated = true;
  2057. slot.stop = STOP_TYPE_LIMIT;
  2058. slot.has_next_token = false;
  2059. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2060. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  2061. }
  2062. if (llama_vocab_is_eog(vocab, result.tok)) {
  2063. slot.stop = STOP_TYPE_EOS;
  2064. slot.has_next_token = false;
  2065. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2066. }
  2067. const auto n_ctx_train = llama_model_n_ctx_train(model);
  2068. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  2069. slot.truncated = true;
  2070. slot.stop = STOP_TYPE_LIMIT;
  2071. slot.has_next_token = false; // stop prediction
  2072. SLT_WRN(slot,
  2073. "n_predict (%d) is set for infinite generation. "
  2074. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  2075. slot.params.n_predict, n_ctx_train);
  2076. }
  2077. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2078. return slot.has_next_token; // continue
  2079. }
  2080. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  2081. size_t n_probs = slot.params.sampling.n_probs;
  2082. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2083. if (post_sampling) {
  2084. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2085. const size_t max_probs = cur_p->size;
  2086. // set probability for sampled token
  2087. for (size_t i = 0; i < max_probs; i++) {
  2088. if (cur_p->data[i].id == result.tok) {
  2089. result.prob = cur_p->data[i].p;
  2090. break;
  2091. }
  2092. }
  2093. // set probability for top n_probs tokens
  2094. result.probs.reserve(max_probs);
  2095. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2096. result.probs.push_back({
  2097. cur_p->data[i].id,
  2098. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2099. cur_p->data[i].p
  2100. });
  2101. }
  2102. } else {
  2103. // TODO: optimize this with min-p optimization
  2104. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2105. // set probability for sampled token
  2106. for (size_t i = 0; i < n_vocab; i++) {
  2107. // set probability for sampled token
  2108. if (cur[i].id == result.tok) {
  2109. result.prob = cur[i].p;
  2110. break;
  2111. }
  2112. }
  2113. // set probability for top n_probs tokens
  2114. result.probs.reserve(n_probs);
  2115. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2116. result.probs.push_back({
  2117. cur[i].id,
  2118. common_token_to_piece(ctx, cur[i].id, special),
  2119. cur[i].p
  2120. });
  2121. }
  2122. }
  2123. }
  2124. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2125. send_error(task.id, error, type);
  2126. }
  2127. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2128. send_error(slot.id_task, error, type);
  2129. }
  2130. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2131. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2132. auto res = std::make_unique<server_task_result_error>();
  2133. res->id = id_task;
  2134. res->err_type = type;
  2135. res->err_msg = error;
  2136. queue_results.send(std::move(res));
  2137. }
  2138. // if multimodal is enabled, send an error and return false
  2139. bool ensure_no_mtmd(const int id_task) {
  2140. if (mctx) {
  2141. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2142. return false;
  2143. }
  2144. return true;
  2145. }
  2146. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2147. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2148. res->id = slot.id_task;
  2149. res->index = slot.index;
  2150. res->content = tkn.text_to_send;
  2151. res->tokens = { tkn.tok };
  2152. res->n_decoded = slot.n_decoded;
  2153. res->n_prompt_tokens = slot.n_prompt_tokens;
  2154. res->post_sampling_probs = slot.params.post_sampling_probs;
  2155. res->verbose = slot.params.verbose;
  2156. res->oaicompat = slot.params.oaicompat;
  2157. res->oaicompat_model = slot.params.oaicompat_model;
  2158. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2159. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2160. // populate res.probs_output
  2161. if (slot.params.sampling.n_probs > 0) {
  2162. res->prob_output = tkn; // copy the token probs
  2163. }
  2164. // populate timings if this is final response or timings_per_token is enabled
  2165. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2166. res->timings = slot.get_timings();
  2167. }
  2168. queue_results.send(std::move(res));
  2169. }
  2170. void send_final_response(server_slot & slot) {
  2171. auto res = std::make_unique<server_task_result_cmpl_final>();
  2172. res->id = slot.id_task;
  2173. res->id_slot = slot.id;
  2174. res->index = slot.index;
  2175. res->content = slot.generated_text;
  2176. res->tokens = std::move(slot.generated_tokens);
  2177. res->timings = slot.get_timings();
  2178. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2179. res->response_fields = std::move(slot.params.response_fields);
  2180. res->truncated = slot.truncated;
  2181. res->n_decoded = slot.n_decoded;
  2182. res->n_prompt_tokens = slot.n_prompt_tokens;
  2183. res->n_tokens_cached = slot.n_past;
  2184. res->has_new_line = slot.has_new_line;
  2185. res->stopping_word = slot.stopping_word;
  2186. res->stop = slot.stop;
  2187. res->post_sampling_probs = slot.params.post_sampling_probs;
  2188. res->verbose = slot.params.verbose;
  2189. res->stream = slot.params.stream;
  2190. res->oaicompat = slot.params.oaicompat;
  2191. res->oaicompat_model = slot.params.oaicompat_model;
  2192. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2193. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2194. // populate res.probs_output
  2195. if (slot.params.sampling.n_probs > 0) {
  2196. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2197. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2198. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2199. res->probs_output = std::vector<completion_token_output>(
  2200. slot.generated_token_probs.begin(),
  2201. slot.generated_token_probs.end() - safe_offset);
  2202. } else {
  2203. res->probs_output = std::vector<completion_token_output>(
  2204. slot.generated_token_probs.begin(),
  2205. slot.generated_token_probs.end());
  2206. }
  2207. }
  2208. res->generation_params = slot.params; // copy the parameters
  2209. queue_results.send(std::move(res));
  2210. }
  2211. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2212. auto res = std::make_unique<server_task_result_embd>();
  2213. res->id = slot.id_task;
  2214. res->index = slot.index;
  2215. res->n_tokens = slot.n_prompt_tokens;
  2216. res->oaicompat = slot.params.oaicompat;
  2217. const int n_embd = llama_model_n_embd(model);
  2218. std::vector<float> embd_res(n_embd, 0.0f);
  2219. for (int i = 0; i < batch.n_tokens; ++i) {
  2220. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2221. continue;
  2222. }
  2223. const float * embd = nullptr;
  2224. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2225. embd = llama_get_embeddings_ith(ctx, i);
  2226. } else {
  2227. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2228. }
  2229. if (embd == nullptr) {
  2230. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2231. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2232. continue;
  2233. }
  2234. // normalize only when there is pooling
  2235. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2236. common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
  2237. res->embedding.push_back(embd_res);
  2238. break;
  2239. } else {
  2240. res->embedding.emplace_back(embd, embd + n_embd);
  2241. }
  2242. }
  2243. SLT_DBG(slot, "%s", "sending embeddings\n");
  2244. queue_results.send(std::move(res));
  2245. }
  2246. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2247. auto res = std::make_unique<server_task_result_rerank>();
  2248. res->id = slot.id_task;
  2249. res->index = slot.index;
  2250. res->n_tokens = slot.n_prompt_tokens;
  2251. for (int i = 0; i < batch.n_tokens; ++i) {
  2252. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2253. continue;
  2254. }
  2255. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2256. if (embd == NULL) {
  2257. embd = llama_get_embeddings_ith(ctx, i);
  2258. }
  2259. if (embd == NULL) {
  2260. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2261. res->score = -1e6;
  2262. continue;
  2263. }
  2264. res->score = embd[0];
  2265. }
  2266. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2267. queue_results.send(std::move(res));
  2268. }
  2269. //
  2270. // Functions to create new task(s) and receive result(s)
  2271. //
  2272. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2273. std::vector<server_task> cancel_tasks;
  2274. cancel_tasks.reserve(id_tasks.size());
  2275. for (const auto & id_task : id_tasks) {
  2276. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2277. server_task task(SERVER_TASK_TYPE_CANCEL);
  2278. task.id_target = id_task;
  2279. queue_results.remove_waiting_task_id(id_task);
  2280. cancel_tasks.push_back(std::move(task));
  2281. }
  2282. // push to beginning of the queue, so it has highest priority
  2283. queue_tasks.post(std::move(cancel_tasks), true);
  2284. }
  2285. // receive the results from task(s)
  2286. void receive_multi_results(
  2287. const std::unordered_set<int> & id_tasks,
  2288. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2289. const std::function<void(json)> & error_handler,
  2290. const std::function<bool()> & is_connection_closed) {
  2291. std::vector<server_task_result_ptr> results(id_tasks.size());
  2292. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2293. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2294. if (is_connection_closed()) {
  2295. cancel_tasks(id_tasks);
  2296. return;
  2297. }
  2298. if (result == nullptr) {
  2299. i--; // retry
  2300. continue;
  2301. }
  2302. if (result->is_error()) {
  2303. error_handler(result->to_json());
  2304. cancel_tasks(id_tasks);
  2305. return;
  2306. }
  2307. GGML_ASSERT(
  2308. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2309. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2310. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2311. );
  2312. const size_t idx = result->get_index();
  2313. GGML_ASSERT(idx < results.size() && "index out of range");
  2314. results[idx] = std::move(result);
  2315. }
  2316. result_handler(results);
  2317. }
  2318. // receive the results from task(s), in stream mode
  2319. void receive_cmpl_results_stream(
  2320. const std::unordered_set<int> & id_tasks,
  2321. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2322. const std::function<void(json)> & error_handler,
  2323. const std::function<bool()> & is_connection_closed) {
  2324. size_t n_finished = 0;
  2325. while (true) {
  2326. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2327. if (is_connection_closed()) {
  2328. cancel_tasks(id_tasks);
  2329. return;
  2330. }
  2331. if (result == nullptr) {
  2332. continue; // retry
  2333. }
  2334. if (result->is_error()) {
  2335. error_handler(result->to_json());
  2336. cancel_tasks(id_tasks);
  2337. return;
  2338. }
  2339. GGML_ASSERT(
  2340. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2341. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2342. );
  2343. if (!result_handler(result)) {
  2344. cancel_tasks(id_tasks);
  2345. break;
  2346. }
  2347. if (result->is_stop()) {
  2348. if (++n_finished == id_tasks.size()) {
  2349. break;
  2350. }
  2351. }
  2352. }
  2353. }
  2354. //
  2355. // Functions to process the task
  2356. //
  2357. void process_single_task(server_task && task) {
  2358. switch (task.type) {
  2359. case SERVER_TASK_TYPE_COMPLETION:
  2360. case SERVER_TASK_TYPE_INFILL:
  2361. case SERVER_TASK_TYPE_EMBEDDING:
  2362. case SERVER_TASK_TYPE_RERANK:
  2363. {
  2364. const int id_slot = task.id_selected_slot;
  2365. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2366. if (slot == nullptr) {
  2367. // if no slot is available, we defer this task for processing later
  2368. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2369. queue_tasks.defer(std::move(task));
  2370. break;
  2371. }
  2372. if (slot->is_processing()) {
  2373. // if requested slot is unavailable, we defer this task for processing later
  2374. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2375. queue_tasks.defer(std::move(task));
  2376. break;
  2377. }
  2378. if (!launch_slot_with_task(*slot, std::move(task))) {
  2379. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2380. break;
  2381. }
  2382. } break;
  2383. case SERVER_TASK_TYPE_CANCEL:
  2384. {
  2385. // release slot linked with the task id
  2386. for (auto & slot : slots) {
  2387. if (slot.id_task == task.id_target) {
  2388. slot.release();
  2389. break;
  2390. }
  2391. }
  2392. } break;
  2393. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2394. {
  2395. // do nothing
  2396. } break;
  2397. case SERVER_TASK_TYPE_METRICS:
  2398. {
  2399. json slots_data = json::array();
  2400. int n_idle_slots = 0;
  2401. int n_processing_slots = 0;
  2402. for (server_slot & slot : slots) {
  2403. json slot_data = slot.to_json();
  2404. if (slot.is_processing()) {
  2405. n_processing_slots++;
  2406. } else {
  2407. n_idle_slots++;
  2408. }
  2409. slots_data.push_back(slot_data);
  2410. }
  2411. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2412. auto res = std::make_unique<server_task_result_metrics>();
  2413. res->id = task.id;
  2414. res->slots_data = std::move(slots_data);
  2415. res->n_idle_slots = n_idle_slots;
  2416. res->n_processing_slots = n_processing_slots;
  2417. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2418. res->t_start = metrics.t_start;
  2419. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2420. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2421. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2422. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2423. res->n_past_max = metrics.n_past_max;
  2424. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2425. res->t_prompt_processing = metrics.t_prompt_processing;
  2426. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2427. res->t_tokens_generation = metrics.t_tokens_generation;
  2428. res->n_decode_total = metrics.n_decode_total;
  2429. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2430. if (task.metrics_reset_bucket) {
  2431. metrics.reset_bucket();
  2432. }
  2433. queue_results.send(std::move(res));
  2434. } break;
  2435. case SERVER_TASK_TYPE_SLOT_SAVE:
  2436. {
  2437. if (!ensure_no_mtmd(task.id)) {
  2438. break;
  2439. }
  2440. int id_slot = task.slot_action.slot_id;
  2441. server_slot * slot = get_slot_by_id(id_slot);
  2442. if (slot == nullptr) {
  2443. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2444. break;
  2445. }
  2446. if (slot->is_processing()) {
  2447. // if requested slot is unavailable, we defer this task for processing later
  2448. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2449. queue_tasks.defer(std::move(task));
  2450. break;
  2451. }
  2452. const size_t token_count = slot->cache_tokens.size();
  2453. const int64_t t_start = ggml_time_us();
  2454. std::string filename = task.slot_action.filename;
  2455. std::string filepath = task.slot_action.filepath;
  2456. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2457. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2458. const int64_t t_end = ggml_time_us();
  2459. const double t_save_ms = (t_end - t_start) / 1000.0;
  2460. auto res = std::make_unique<server_task_result_slot_save_load>();
  2461. res->id = task.id;
  2462. res->id_slot = id_slot;
  2463. res->filename = filename;
  2464. res->is_save = true;
  2465. res->n_tokens = token_count;
  2466. res->n_bytes = nwrite;
  2467. res->t_ms = t_save_ms;
  2468. queue_results.send(std::move(res));
  2469. } break;
  2470. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2471. {
  2472. if (!ensure_no_mtmd(task.id)) break;
  2473. int id_slot = task.slot_action.slot_id;
  2474. server_slot * slot = get_slot_by_id(id_slot);
  2475. if (slot == nullptr) {
  2476. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2477. break;
  2478. }
  2479. if (slot->is_processing()) {
  2480. // if requested slot is unavailable, we defer this task for processing later
  2481. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2482. queue_tasks.defer(std::move(task));
  2483. break;
  2484. }
  2485. const int64_t t_start = ggml_time_us();
  2486. std::string filename = task.slot_action.filename;
  2487. std::string filepath = task.slot_action.filepath;
  2488. llama_tokens tokens;
  2489. tokens.resize(slot->n_ctx);
  2490. size_t token_count = 0;
  2491. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2492. if (nread == 0) {
  2493. slot->cache_tokens.clear(); // KV may already been invalidated?
  2494. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2495. break;
  2496. }
  2497. tokens.resize(token_count);
  2498. slot->cache_tokens.clear();
  2499. slot->cache_tokens.insert(tokens);
  2500. const int64_t t_end = ggml_time_us();
  2501. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2502. auto res = std::make_unique<server_task_result_slot_save_load>();
  2503. res->id = task.id;
  2504. res->id_slot = id_slot;
  2505. res->filename = filename;
  2506. res->is_save = false;
  2507. res->n_tokens = token_count;
  2508. res->n_bytes = nread;
  2509. res->t_ms = t_restore_ms;
  2510. queue_results.send(std::move(res));
  2511. } break;
  2512. case SERVER_TASK_TYPE_SLOT_ERASE:
  2513. {
  2514. if (!ensure_no_mtmd(task.id)) break;
  2515. int id_slot = task.slot_action.slot_id;
  2516. server_slot * slot = get_slot_by_id(id_slot);
  2517. if (slot == nullptr) {
  2518. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2519. break;
  2520. }
  2521. if (slot->is_processing()) {
  2522. // if requested slot is unavailable, we defer this task for processing later
  2523. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2524. queue_tasks.defer(std::move(task));
  2525. break;
  2526. }
  2527. // Erase token cache
  2528. const size_t n_erased = slot->cache_tokens.size();
  2529. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2530. slot->cache_tokens.clear();
  2531. auto res = std::make_unique<server_task_result_slot_erase>();
  2532. res->id = task.id;
  2533. res->id_slot = id_slot;
  2534. res->n_erased = n_erased;
  2535. queue_results.send(std::move(res));
  2536. } break;
  2537. case SERVER_TASK_TYPE_SET_LORA:
  2538. {
  2539. params_base.lora_adapters = std::move(task.set_lora);
  2540. auto res = std::make_unique<server_task_result_apply_lora>();
  2541. res->id = task.id;
  2542. queue_results.send(std::move(res));
  2543. } break;
  2544. }
  2545. }
  2546. void update_slots() {
  2547. // check if all slots are idle
  2548. {
  2549. bool all_idle = true;
  2550. for (auto & slot : slots) {
  2551. if (slot.is_processing()) {
  2552. all_idle = false;
  2553. break;
  2554. }
  2555. }
  2556. if (all_idle) {
  2557. SRV_INF("%s", "all slots are idle\n");
  2558. if (clean_kv_cache) {
  2559. kv_cache_clear();
  2560. }
  2561. return;
  2562. }
  2563. }
  2564. {
  2565. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2566. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2567. task.id = queue_tasks.get_new_id();
  2568. queue_tasks.post(std::move(task));
  2569. }
  2570. // apply context-shift if needed
  2571. // TODO: simplify and improve
  2572. for (server_slot & slot : slots) {
  2573. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2574. if (!params_base.ctx_shift) {
  2575. // this check is redundant (for good)
  2576. // we should never get here, because generation should already stopped in process_token()
  2577. slot.release();
  2578. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2579. continue;
  2580. }
  2581. if (mctx) {
  2582. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2583. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2584. GGML_ABORT("not supported by multimodal");
  2585. }
  2586. // Shift context
  2587. const int n_keep = slot.params.n_keep + add_bos_token;
  2588. const int n_left = slot.n_past - n_keep;
  2589. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2590. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2591. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2592. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2593. // add generated tokens to cache
  2594. {
  2595. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2596. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2597. new_tokens[i - n_discard] = new_tokens[i];
  2598. }
  2599. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2600. slot.cache_tokens.clear();
  2601. slot.cache_tokens.insert(new_tokens);
  2602. }
  2603. slot.n_past -= n_discard;
  2604. slot.truncated = true;
  2605. }
  2606. }
  2607. // start populating the batch for this iteration
  2608. common_batch_clear(batch);
  2609. // track if given slot can be batched with slots already in the batch
  2610. server_slot * slot_batched = nullptr;
  2611. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2612. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2613. };
  2614. // frist, add sampled tokens from any ongoing sequences
  2615. for (auto & slot : slots) {
  2616. if (slot.state != SLOT_STATE_GENERATING) {
  2617. continue;
  2618. }
  2619. // check if we can batch this slot with the previous one
  2620. if (!slot_batched) {
  2621. slot_batched = &slot;
  2622. } else if (!slot_batched->can_batch_with(slot)) {
  2623. continue;
  2624. }
  2625. slot.i_batch = batch.n_tokens;
  2626. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2627. slot.n_past += 1;
  2628. slot.cache_tokens.push_back(slot.sampled);
  2629. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2630. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2631. }
  2632. // process in chunks of params.n_batch
  2633. int32_t n_batch = llama_n_batch(ctx);
  2634. int32_t n_ubatch = llama_n_ubatch(ctx);
  2635. // next, batch any pending prompts without exceeding n_batch
  2636. if (params_base.cont_batching || batch.n_tokens == 0) {
  2637. for (auto & slot : slots) {
  2638. // check if we can batch this slot with the previous one
  2639. if (slot.is_processing()) {
  2640. if (!slot_batched) {
  2641. slot_batched = &slot;
  2642. } else if (!slot_batched->can_batch_with(slot)) {
  2643. continue;
  2644. }
  2645. }
  2646. // this slot still has a prompt to be processed
  2647. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2648. auto & prompt_tokens = slot.prompt_tokens;
  2649. // TODO: maybe move branch to outside of this loop in the future
  2650. if (slot.state == SLOT_STATE_STARTED) {
  2651. slot.t_start_process_prompt = ggml_time_us();
  2652. slot.t_start_generation = 0;
  2653. slot.n_past = 0;
  2654. slot.n_prompt_tokens = prompt_tokens.size();
  2655. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2656. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2657. // print prompt tokens (for debugging)
  2658. /*if (1) {
  2659. // first 16 tokens (avoid flooding logs)
  2660. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2661. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2662. }
  2663. } else {
  2664. // all
  2665. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2666. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2667. }
  2668. }*/
  2669. // empty prompt passed -> release the slot and send empty response
  2670. if (prompt_tokens.empty()) {
  2671. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2672. slot.release();
  2673. slot.print_timings();
  2674. send_final_response(slot);
  2675. continue;
  2676. }
  2677. // TODO: support memory-less logits computation
  2678. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2679. slot.release();
  2680. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2681. continue;
  2682. }
  2683. if (!slot.can_split()) {
  2684. if (slot.n_prompt_tokens > n_ubatch) {
  2685. slot.release();
  2686. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2687. continue;
  2688. }
  2689. if (slot.n_prompt_tokens > slot.n_ctx) {
  2690. slot.release();
  2691. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2692. continue;
  2693. }
  2694. } else {
  2695. if (!params_base.ctx_shift) {
  2696. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2697. // TODO: there should be a separate parameter that control prompt truncation
  2698. // context shift should be applied only during the generation phase
  2699. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2700. slot.release();
  2701. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2702. continue;
  2703. }
  2704. }
  2705. if (slot.params.n_keep < 0) {
  2706. slot.params.n_keep = slot.n_prompt_tokens;
  2707. }
  2708. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2709. // if input prompt is too big, truncate it
  2710. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2711. if (mctx) {
  2712. // we should never reach this
  2713. GGML_ABORT("not supported by multimodal");
  2714. }
  2715. const int n_left = slot.n_ctx - slot.params.n_keep;
  2716. const int n_block_size = n_left / 2;
  2717. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2718. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2719. llama_tokens new_tokens(
  2720. curr_tokens.begin(),
  2721. curr_tokens.begin() + slot.params.n_keep);
  2722. new_tokens.insert(
  2723. new_tokens.end(),
  2724. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2725. curr_tokens.end());
  2726. prompt_tokens.clear();
  2727. prompt_tokens.insert(new_tokens);
  2728. slot.truncated = true;
  2729. slot.n_prompt_tokens = prompt_tokens.size();
  2730. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2731. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2732. }
  2733. if (slot.params.cache_prompt) {
  2734. // reuse any previously computed tokens that are common with the new prompt
  2735. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2736. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2737. if (params_base.n_cache_reuse > 0) {
  2738. size_t head_c = slot.n_past; // cache
  2739. size_t head_p = slot.n_past; // current prompt
  2740. if (mctx) {
  2741. // we should never reach this
  2742. GGML_ABORT("not supported by multimodal");
  2743. }
  2744. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2745. while (head_c < slot.cache_tokens.size() &&
  2746. head_p < prompt_tokens.size()) {
  2747. size_t n_match = 0;
  2748. while (head_c + n_match < slot.cache_tokens.size() &&
  2749. head_p + n_match < prompt_tokens.size() &&
  2750. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2751. n_match++;
  2752. }
  2753. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2754. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2755. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2756. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2757. //}
  2758. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2759. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  2760. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  2761. for (size_t i = 0; i < n_match; i++) {
  2762. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2763. slot.n_past++;
  2764. }
  2765. head_c += n_match;
  2766. head_p += n_match;
  2767. } else {
  2768. head_c += 1;
  2769. }
  2770. }
  2771. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2772. }
  2773. } else {
  2774. // if we don't cache the prompt, we have to remove the entire KV cache
  2775. slot.n_past = 0;
  2776. }
  2777. const auto n_swa = llama_model_n_swa(model);
  2778. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2779. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  2780. if (pos_min == -1) {
  2781. SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
  2782. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  2783. }
  2784. const auto pos_min_thold = std::max(0, slot.n_past - n_swa);
  2785. if (pos_min > pos_min_thold) {
  2786. SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa);
  2787. // search for a SWA checkpoint
  2788. const auto it = std::find_if(
  2789. slot.swa_checkpoints.rbegin(),
  2790. slot.swa_checkpoints.rend(),
  2791. [&](const auto & cur) {
  2792. return cur.pos_min <= pos_min_thold;
  2793. }
  2794. );
  2795. bool do_reset = it == slot.swa_checkpoints.rend();
  2796. if (!do_reset) {
  2797. // restore the checkpoint
  2798. const size_t swa_size = it->data.size();
  2799. const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), swa_size, slot.id, LLAMA_STATE_SEQ_FLAGS_SWA_ONLY);
  2800. if (n != swa_size) {
  2801. SLT_ERR(slot, "failed to restore SWA checkpoint, pos_min = %d, pos_max = %d, size = %.3f MiB\n", it->pos_min, it->pos_max, (float) swa_size / 1024 / 1024);
  2802. do_reset = true;
  2803. } else {
  2804. slot.n_past = std::min(slot.n_past, it->pos_max);
  2805. SLT_WRN(slot, "SWA checkpoint restore, pos_min = %d, pos_max = %d, size = %.3f MiB\n", it->pos_min, it->pos_max, (float) swa_size / 1024 / 1024);
  2806. }
  2807. }
  2808. if (do_reset) {
  2809. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2810. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2811. slot.n_past = 0;
  2812. slot.swa_checkpoints.clear();
  2813. }
  2814. }
  2815. }
  2816. if (n_swa > 0) {
  2817. const auto pos_min_thold = std::max(0, slot.n_past - n_swa);
  2818. // erase any checkpoints with pos_min > pos_min_thold
  2819. for (int i = (int) slot.swa_checkpoints.size() - 1; i >= 0; i--) {
  2820. const auto & cur = slot.swa_checkpoints[i];
  2821. if (cur.pos_min > pos_min_thold) {
  2822. slot.swa_checkpoints.erase(slot.swa_checkpoints.begin() + i);
  2823. SLT_WRN(slot, "SWA checkpoint erase, pos_min = %d, pos_max = %d, size = %.3f MiB\n", cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  2824. }
  2825. }
  2826. }
  2827. }
  2828. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2829. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2830. slot.n_past--;
  2831. }
  2832. slot.n_prompt_tokens_processed = 0;
  2833. }
  2834. if (!slot.can_split()) {
  2835. // cannot fit the prompt in the current batch - will try next iter
  2836. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2837. continue;
  2838. }
  2839. }
  2840. // keep only the common part
  2841. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
  2842. // could not partially delete (likely using a non-Transformer model)
  2843. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2844. // there is no common part left
  2845. slot.n_past = 0;
  2846. }
  2847. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2848. // remove the non-common part from the cache
  2849. slot.cache_tokens.keep_first(slot.n_past);
  2850. // check if we should process the image
  2851. if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2852. // process the image
  2853. int32_t new_n_past;
  2854. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2855. int32_t n_pos = new_n_past - slot.n_past;
  2856. if (res != 0) {
  2857. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2858. slot.release();
  2859. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2860. continue;
  2861. }
  2862. // add the image chunk to cache
  2863. {
  2864. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2865. slot.cache_tokens.push_back(chunk.get()); // copy
  2866. }
  2867. slot.n_past += n_pos;
  2868. slot.n_prompt_tokens_processed += n_pos;
  2869. }
  2870. // add prompt tokens for processing in the current batch
  2871. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2872. // get next token to process
  2873. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2874. if (cur_tok == LLAMA_TOKEN_NULL) {
  2875. break; // end of text chunk
  2876. }
  2877. // embedding requires all tokens in the batch to be output
  2878. const bool need_embd = server_task_type_need_embd(slot.task_type);
  2879. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2880. slot.cache_tokens.push_back(cur_tok);
  2881. slot.n_prompt_tokens_processed++;
  2882. slot.n_past++;
  2883. }
  2884. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2885. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2886. // entire prompt has been processed
  2887. if (slot.n_past == slot.n_prompt_tokens) {
  2888. slot.state = SLOT_STATE_DONE_PROMPT;
  2889. GGML_ASSERT(batch.n_tokens > 0);
  2890. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2891. common_sampler_reset(slot.smpl);
  2892. // Process all prompt tokens through sampler system
  2893. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2894. llama_token id = slot.prompt_tokens[i];
  2895. if (id != LLAMA_TOKEN_NULL) {
  2896. common_sampler_accept(slot.smpl, id, false);
  2897. }
  2898. }
  2899. // extract the logits only for the last token
  2900. batch.logits[batch.n_tokens - 1] = true;
  2901. slot.n_decoded = 0;
  2902. slot.i_batch = batch.n_tokens - 1;
  2903. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2904. }
  2905. }
  2906. if (batch.n_tokens >= n_batch) {
  2907. break;
  2908. }
  2909. }
  2910. }
  2911. if (batch.n_tokens == 0) {
  2912. SRV_WRN("%s", "no tokens to decode\n");
  2913. return;
  2914. }
  2915. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2916. if (slot_batched) {
  2917. // apply lora, only need to do it once per batch
  2918. common_set_adapter_lora(ctx, slot_batched->lora);
  2919. llama_set_embeddings(ctx, slot_batched->need_embd());
  2920. }
  2921. int32_t i_next = 0;
  2922. // process the created batch of tokens
  2923. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  2924. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2925. llama_batch batch_view = {
  2926. n_tokens,
  2927. batch.token + i,
  2928. nullptr,
  2929. batch.pos + i,
  2930. batch.n_seq_id + i,
  2931. batch.seq_id + i,
  2932. batch.logits + i,
  2933. };
  2934. const int ret = llama_decode(ctx, batch_view);
  2935. metrics.on_decoded(slots);
  2936. if (ret != 0) {
  2937. {
  2938. std::string err;
  2939. if (n_batch == 1 && ret == 1) {
  2940. err = "Context size has been exceeded.";
  2941. }
  2942. if (ret == -1) {
  2943. err = "Invalid input batch.";
  2944. }
  2945. if (ret < -1) {
  2946. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  2947. err = "Compute error.";
  2948. }
  2949. // TODO: handle ret == 2 (abort) when we start aborting
  2950. if (!err.empty()) {
  2951. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2952. for (auto & slot : slots) {
  2953. slot.release();
  2954. send_error(slot, err);
  2955. }
  2956. break;
  2957. }
  2958. }
  2959. // retry with half the batch size to try to find a free slot in the KV cache
  2960. n_batch /= 2;
  2961. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2962. continue; // continue loop of n_batch
  2963. }
  2964. // move the head of the batch forward with the number of tokens we just processed
  2965. i_next = i + n_tokens;
  2966. // on successful decode, restore the original batch size
  2967. n_batch = llama_n_batch(ctx);
  2968. for (auto & slot : slots) {
  2969. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2970. continue; // continue loop of slots
  2971. }
  2972. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2973. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2974. // prompt evaluated for embedding
  2975. send_embedding(slot, batch_view);
  2976. slot.release();
  2977. slot.i_batch = -1;
  2978. continue; // continue loop of slots
  2979. }
  2980. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2981. send_rerank(slot, batch_view);
  2982. slot.release();
  2983. slot.i_batch = -1;
  2984. continue; // continue loop of slots
  2985. }
  2986. // prompt evaluated for next-token prediction
  2987. slot.state = SLOT_STATE_GENERATING;
  2988. // make a checkpoint with the SWA memory
  2989. // checkpoints are needed only if we are not using "--swa-full"
  2990. if (llama_model_n_swa(model) > 0 && !params_base.swa_full && params_base.n_swa_checkpoints > 0) {
  2991. if (slot.swa_checkpoints.size() >= (size_t) params_base.n_swa_checkpoints) {
  2992. {
  2993. const auto & cur = slot.swa_checkpoints.back();
  2994. SLT_WRN(slot, "SWA checkpoint erase, pos_min = %d, pos_max = %d, size = %.3f MiB\n",
  2995. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  2996. }
  2997. slot.swa_checkpoints.erase(slot.swa_checkpoints.begin());
  2998. }
  2999. const size_t swa_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_SWA_ONLY);
  3000. auto & cur = slot.swa_checkpoints.emplace_back(swa_checkpoint{
  3001. /*.pos_min = */ llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id),
  3002. /*.pos_max = */ llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id),
  3003. /*.data = */ std::vector<uint8_t>(swa_size),
  3004. });
  3005. llama_state_seq_get_data_ext(ctx, cur.data.data(), swa_size, slot.id, LLAMA_STATE_SEQ_FLAGS_SWA_ONLY);
  3006. float size_total = 0.0f;
  3007. for (const auto & checkpoint : slot.swa_checkpoints) {
  3008. size_total += (float) checkpoint.data.size() / 1024 / 1024;
  3009. }
  3010. SLT_WRN(slot, "SWA checkpoint create, pos_min = %d, pos_max = %d, size = %.3f MiB, total = %d/%d (%.3f MiB)\n",
  3011. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024, (int) slot.swa_checkpoints.size(), params_base.n_swa_checkpoints, size_total);
  3012. }
  3013. } else if (slot.state != SLOT_STATE_GENERATING) {
  3014. continue; // continue loop of slots
  3015. }
  3016. const int tok_idx = slot.i_batch - i;
  3017. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  3018. slot.i_batch = -1;
  3019. common_sampler_accept(slot.smpl, id, true);
  3020. slot.n_decoded += 1;
  3021. const int64_t t_current = ggml_time_us();
  3022. if (slot.n_decoded == 1) {
  3023. slot.t_start_generation = t_current;
  3024. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  3025. metrics.on_prompt_eval(slot);
  3026. }
  3027. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  3028. completion_token_output result;
  3029. result.tok = id;
  3030. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3031. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  3032. if (slot.params.sampling.n_probs > 0) {
  3033. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  3034. }
  3035. if (!process_token(result, slot)) {
  3036. // release slot because of stop condition
  3037. slot.release();
  3038. slot.print_timings();
  3039. send_final_response(slot);
  3040. metrics.on_prediction(slot);
  3041. continue;
  3042. }
  3043. }
  3044. // do speculative decoding
  3045. for (auto & slot : slots) {
  3046. if (!slot.is_processing() || !slot.can_speculate()) {
  3047. continue;
  3048. }
  3049. if (slot.state != SLOT_STATE_GENERATING) {
  3050. continue;
  3051. }
  3052. if (mctx) {
  3053. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  3054. GGML_ABORT("not supported by multimodal");
  3055. }
  3056. // determine the max draft that fits the current slot state
  3057. int n_draft_max = slot.params.speculative.n_max;
  3058. // note: n_past is not yet increased for the `id` token sampled above
  3059. // also, need to leave space for 1 extra token to allow context shifts
  3060. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  3061. if (slot.n_remaining > 0) {
  3062. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  3063. }
  3064. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  3065. if (n_draft_max < slot.params.speculative.n_min) {
  3066. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  3067. continue;
  3068. }
  3069. llama_token id = slot.sampled;
  3070. struct common_speculative_params params_spec;
  3071. params_spec.n_draft = n_draft_max;
  3072. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  3073. params_spec.p_min = slot.params.speculative.p_min;
  3074. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  3075. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  3076. // ignore small drafts
  3077. if (slot.params.speculative.n_min > (int) draft.size()) {
  3078. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  3079. continue;
  3080. }
  3081. // keep track of total number of drafted tokens tested
  3082. slot.n_draft_total += draft.size();
  3083. // construct the speculation batch
  3084. common_batch_clear(slot.batch_spec);
  3085. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  3086. for (size_t i = 0; i < draft.size(); ++i) {
  3087. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  3088. }
  3089. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3090. llama_decode(ctx, slot.batch_spec);
  3091. // the accepted tokens from the speculation
  3092. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3093. slot.n_past += ids.size();
  3094. slot.n_decoded += ids.size();
  3095. // update how many tokens out of those tested were accepted
  3096. slot.n_draft_accepted += ids.size() - 1;
  3097. slot.cache_tokens.push_back(id);
  3098. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  3099. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
  3100. for (size_t i = 0; i < ids.size(); ++i) {
  3101. completion_token_output result;
  3102. result.tok = ids[i];
  3103. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3104. result.prob = 1.0f; // set later
  3105. // TODO: set result.probs
  3106. if (!process_token(result, slot)) {
  3107. // release slot because of stop condition
  3108. slot.release();
  3109. slot.print_timings();
  3110. send_final_response(slot);
  3111. metrics.on_prediction(slot);
  3112. break;
  3113. }
  3114. }
  3115. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  3116. }
  3117. }
  3118. SRV_DBG("%s", "run slots completed\n");
  3119. }
  3120. json model_meta() const {
  3121. return json {
  3122. {"vocab_type", llama_vocab_type (vocab)},
  3123. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3124. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3125. {"n_embd", llama_model_n_embd (model)},
  3126. {"n_params", llama_model_n_params (model)},
  3127. {"size", llama_model_size (model)},
  3128. };
  3129. }
  3130. };
  3131. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3132. // skip GH copilot requests when using default port
  3133. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  3134. return;
  3135. }
  3136. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3137. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3138. SRV_DBG("request: %s\n", req.body.c_str());
  3139. SRV_DBG("response: %s\n", res.body.c_str());
  3140. }
  3141. std::function<void(int)> shutdown_handler;
  3142. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3143. inline void signal_handler(int signal) {
  3144. if (is_terminating.test_and_set()) {
  3145. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3146. // this is for better developer experience, we can remove when the server is stable enough
  3147. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3148. exit(1);
  3149. }
  3150. shutdown_handler(signal);
  3151. }
  3152. int main(int argc, char ** argv) {
  3153. // own arguments required by this example
  3154. common_params params;
  3155. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3156. return 1;
  3157. }
  3158. common_init();
  3159. // struct that contains llama context and inference
  3160. server_context ctx_server;
  3161. llama_backend_init();
  3162. llama_numa_init(params.numa);
  3163. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3164. LOG_INF("\n");
  3165. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3166. LOG_INF("\n");
  3167. std::unique_ptr<httplib::Server> svr;
  3168. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3169. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3170. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3171. svr.reset(
  3172. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3173. );
  3174. } else {
  3175. LOG_INF("Running without SSL\n");
  3176. svr.reset(new httplib::Server());
  3177. }
  3178. #else
  3179. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3180. LOG_ERR("Server is built without SSL support\n");
  3181. return 1;
  3182. }
  3183. svr.reset(new httplib::Server());
  3184. #endif
  3185. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3186. svr->set_default_headers({{"Server", "llama.cpp"}});
  3187. svr->set_logger(log_server_request);
  3188. auto res_error = [](httplib::Response & res, const json & error_data) {
  3189. json final_response {{"error", error_data}};
  3190. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3191. res.status = json_value(error_data, "code", 500);
  3192. };
  3193. auto res_ok = [](httplib::Response & res, const json & data) {
  3194. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3195. res.status = 200;
  3196. };
  3197. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3198. std::string message;
  3199. try {
  3200. std::rethrow_exception(ep);
  3201. } catch (const std::exception & e) {
  3202. message = e.what();
  3203. } catch (...) {
  3204. message = "Unknown Exception";
  3205. }
  3206. try {
  3207. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3208. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3209. res_error(res, formatted_error);
  3210. } catch (const std::exception & e) {
  3211. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3212. }
  3213. });
  3214. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3215. if (res.status == 404) {
  3216. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3217. }
  3218. // for other error codes, we skip processing here because it's already done by res_error()
  3219. });
  3220. // set timeouts and change hostname and port
  3221. svr->set_read_timeout (params.timeout_read);
  3222. svr->set_write_timeout(params.timeout_write);
  3223. std::unordered_map<std::string, std::string> log_data;
  3224. log_data["hostname"] = params.hostname;
  3225. log_data["port"] = std::to_string(params.port);
  3226. if (params.api_keys.size() == 1) {
  3227. auto key = params.api_keys[0];
  3228. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3229. } else if (params.api_keys.size() > 1) {
  3230. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3231. }
  3232. // Necessary similarity of prompt for slot selection
  3233. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3234. //
  3235. // Middlewares
  3236. //
  3237. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3238. static const std::unordered_set<std::string> public_endpoints = {
  3239. "/health",
  3240. "/models",
  3241. "/v1/models",
  3242. "/api/tags"
  3243. };
  3244. // If API key is not set, skip validation
  3245. if (params.api_keys.empty()) {
  3246. return true;
  3247. }
  3248. // If path is public or is static file, skip validation
  3249. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3250. return true;
  3251. }
  3252. // Check for API key in the header
  3253. auto auth_header = req.get_header_value("Authorization");
  3254. std::string prefix = "Bearer ";
  3255. if (auth_header.substr(0, prefix.size()) == prefix) {
  3256. std::string received_api_key = auth_header.substr(prefix.size());
  3257. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3258. return true; // API key is valid
  3259. }
  3260. }
  3261. // API key is invalid or not provided
  3262. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3263. LOG_WRN("Unauthorized: Invalid API Key\n");
  3264. return false;
  3265. };
  3266. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3267. server_state current_state = state.load();
  3268. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3269. auto tmp = string_split<std::string>(req.path, '.');
  3270. if (req.path == "/" || tmp.back() == "html") {
  3271. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3272. res.status = 503;
  3273. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3274. // allow the models endpoint to be accessed during loading
  3275. return true;
  3276. } else {
  3277. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3278. }
  3279. return false;
  3280. }
  3281. return true;
  3282. };
  3283. // register server middlewares
  3284. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3285. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3286. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3287. if (req.method == "OPTIONS") {
  3288. res.set_header("Access-Control-Allow-Credentials", "true");
  3289. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3290. res.set_header("Access-Control-Allow-Headers", "*");
  3291. res.set_content("", "text/html"); // blank response, no data
  3292. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3293. }
  3294. if (!middleware_server_state(req, res)) {
  3295. return httplib::Server::HandlerResponse::Handled;
  3296. }
  3297. if (!middleware_validate_api_key(req, res)) {
  3298. return httplib::Server::HandlerResponse::Handled;
  3299. }
  3300. return httplib::Server::HandlerResponse::Unhandled;
  3301. });
  3302. //
  3303. // Route handlers (or controllers)
  3304. //
  3305. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3306. // error and loading states are handled by middleware
  3307. json health = {{"status", "ok"}};
  3308. res_ok(res, health);
  3309. };
  3310. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3311. if (!params.endpoint_slots) {
  3312. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3313. return;
  3314. }
  3315. // request slots data using task queue
  3316. int task_id = ctx_server.queue_tasks.get_new_id();
  3317. {
  3318. server_task task(SERVER_TASK_TYPE_METRICS);
  3319. task.id = task_id;
  3320. ctx_server.queue_results.add_waiting_task_id(task_id);
  3321. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3322. }
  3323. // get the result
  3324. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3325. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3326. if (result->is_error()) {
  3327. res_error(res, result->to_json());
  3328. return;
  3329. }
  3330. // TODO: get rid of this dynamic_cast
  3331. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3332. GGML_ASSERT(res_metrics != nullptr);
  3333. // optionally return "fail_on_no_slot" error
  3334. if (req.has_param("fail_on_no_slot")) {
  3335. if (res_metrics->n_idle_slots == 0) {
  3336. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3337. return;
  3338. }
  3339. }
  3340. res_ok(res, res_metrics->slots_data);
  3341. };
  3342. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3343. if (!params.endpoint_metrics) {
  3344. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3345. return;
  3346. }
  3347. // request slots data using task queue
  3348. int task_id = ctx_server.queue_tasks.get_new_id();
  3349. {
  3350. server_task task(SERVER_TASK_TYPE_METRICS);
  3351. task.id = task_id;
  3352. ctx_server.queue_results.add_waiting_task_id(task_id);
  3353. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3354. }
  3355. // get the result
  3356. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3357. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3358. if (result->is_error()) {
  3359. res_error(res, result->to_json());
  3360. return;
  3361. }
  3362. // TODO: get rid of this dynamic_cast
  3363. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3364. GGML_ASSERT(res_metrics != nullptr);
  3365. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3366. json all_metrics_def = json {
  3367. {"counter", {{
  3368. {"name", "prompt_tokens_total"},
  3369. {"help", "Number of prompt tokens processed."},
  3370. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3371. }, {
  3372. {"name", "prompt_seconds_total"},
  3373. {"help", "Prompt process time"},
  3374. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3375. }, {
  3376. {"name", "tokens_predicted_total"},
  3377. {"help", "Number of generation tokens processed."},
  3378. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3379. }, {
  3380. {"name", "tokens_predicted_seconds_total"},
  3381. {"help", "Predict process time"},
  3382. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3383. }, {
  3384. {"name", "n_decode_total"},
  3385. {"help", "Total number of llama_decode() calls"},
  3386. {"value", res_metrics->n_decode_total}
  3387. }, {
  3388. {"name", "n_past_max"},
  3389. {"help", "Largest observed n_past."},
  3390. {"value", res_metrics->n_past_max}
  3391. }, {
  3392. {"name", "n_busy_slots_per_decode"},
  3393. {"help", "Average number of busy slots per llama_decode() call"},
  3394. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3395. }}},
  3396. {"gauge", {{
  3397. {"name", "prompt_tokens_seconds"},
  3398. {"help", "Average prompt throughput in tokens/s."},
  3399. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3400. },{
  3401. {"name", "predicted_tokens_seconds"},
  3402. {"help", "Average generation throughput in tokens/s."},
  3403. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3404. },{
  3405. {"name", "requests_processing"},
  3406. {"help", "Number of requests processing."},
  3407. {"value", (uint64_t) res_metrics->n_processing_slots}
  3408. },{
  3409. {"name", "requests_deferred"},
  3410. {"help", "Number of requests deferred."},
  3411. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3412. }}}
  3413. };
  3414. std::stringstream prometheus;
  3415. for (const auto & el : all_metrics_def.items()) {
  3416. const auto & type = el.key();
  3417. const auto & metrics_def = el.value();
  3418. for (const auto & metric_def : metrics_def) {
  3419. const std::string name = metric_def.at("name");
  3420. const std::string help = metric_def.at("help");
  3421. auto value = json_value(metric_def, "value", 0.);
  3422. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3423. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3424. << "llamacpp:" << name << " " << value << "\n";
  3425. }
  3426. }
  3427. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3428. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3429. res.status = 200; // HTTP OK
  3430. };
  3431. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3432. json request_data = json::parse(req.body);
  3433. std::string filename = request_data.at("filename");
  3434. if (!fs_validate_filename(filename)) {
  3435. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3436. return;
  3437. }
  3438. std::string filepath = params.slot_save_path + filename;
  3439. int task_id = ctx_server.queue_tasks.get_new_id();
  3440. {
  3441. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3442. task.id = task_id;
  3443. task.slot_action.slot_id = id_slot;
  3444. task.slot_action.filename = filename;
  3445. task.slot_action.filepath = filepath;
  3446. ctx_server.queue_results.add_waiting_task_id(task_id);
  3447. ctx_server.queue_tasks.post(std::move(task));
  3448. }
  3449. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3450. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3451. if (result->is_error()) {
  3452. res_error(res, result->to_json());
  3453. return;
  3454. }
  3455. res_ok(res, result->to_json());
  3456. };
  3457. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3458. json request_data = json::parse(req.body);
  3459. std::string filename = request_data.at("filename");
  3460. if (!fs_validate_filename(filename)) {
  3461. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3462. return;
  3463. }
  3464. std::string filepath = params.slot_save_path + filename;
  3465. int task_id = ctx_server.queue_tasks.get_new_id();
  3466. {
  3467. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3468. task.id = task_id;
  3469. task.slot_action.slot_id = id_slot;
  3470. task.slot_action.filename = filename;
  3471. task.slot_action.filepath = filepath;
  3472. ctx_server.queue_results.add_waiting_task_id(task_id);
  3473. ctx_server.queue_tasks.post(std::move(task));
  3474. }
  3475. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3476. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3477. if (result->is_error()) {
  3478. res_error(res, result->to_json());
  3479. return;
  3480. }
  3481. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3482. res_ok(res, result->to_json());
  3483. };
  3484. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3485. int task_id = ctx_server.queue_tasks.get_new_id();
  3486. {
  3487. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3488. task.id = task_id;
  3489. task.slot_action.slot_id = id_slot;
  3490. ctx_server.queue_results.add_waiting_task_id(task_id);
  3491. ctx_server.queue_tasks.post(std::move(task));
  3492. }
  3493. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3494. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3495. if (result->is_error()) {
  3496. res_error(res, result->to_json());
  3497. return;
  3498. }
  3499. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3500. res_ok(res, result->to_json());
  3501. };
  3502. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3503. if (params.slot_save_path.empty()) {
  3504. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3505. return;
  3506. }
  3507. std::string id_slot_str = req.path_params.at("id_slot");
  3508. int id_slot;
  3509. try {
  3510. id_slot = std::stoi(id_slot_str);
  3511. } catch (const std::exception &) {
  3512. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3513. return;
  3514. }
  3515. std::string action = req.get_param_value("action");
  3516. if (action == "save") {
  3517. handle_slots_save(req, res, id_slot);
  3518. } else if (action == "restore") {
  3519. handle_slots_restore(req, res, id_slot);
  3520. } else if (action == "erase") {
  3521. handle_slots_erase(req, res, id_slot);
  3522. } else {
  3523. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3524. }
  3525. };
  3526. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3527. // this endpoint is publicly available, please only return what is safe to be exposed
  3528. json data = {
  3529. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3530. { "total_slots", ctx_server.params_base.n_parallel },
  3531. { "model_path", ctx_server.params_base.model.path },
  3532. { "modalities", json{
  3533. {"vision", ctx_server.oai_parser_opt.allow_image},
  3534. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3535. } },
  3536. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3537. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3538. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3539. { "build_info", build_info },
  3540. };
  3541. if (ctx_server.params_base.use_jinja) {
  3542. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3543. data["chat_template_tool_use"] = tool_use_src;
  3544. }
  3545. }
  3546. res_ok(res, data);
  3547. };
  3548. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3549. if (!ctx_server.params_base.endpoint_props) {
  3550. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3551. return;
  3552. }
  3553. json data = json::parse(req.body);
  3554. // update any props here
  3555. res_ok(res, {{ "success", true }});
  3556. };
  3557. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3558. json data = {
  3559. {
  3560. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3561. },
  3562. {
  3563. "model_info", {
  3564. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3565. }
  3566. },
  3567. {"modelfile", ""},
  3568. {"parameters", ""},
  3569. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3570. {"details", {
  3571. {"parent_model", ""},
  3572. {"format", "gguf"},
  3573. {"family", ""},
  3574. {"families", {""}},
  3575. {"parameter_size", ""},
  3576. {"quantization_level", ""}
  3577. }},
  3578. {"model_info", ""},
  3579. {"capabilities", {"completion"}}
  3580. };
  3581. res_ok(res, data);
  3582. };
  3583. // handle completion-like requests (completion, chat, infill)
  3584. // we can optionally provide a custom format for partial results and final results
  3585. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3586. server_task_type type,
  3587. json & data,
  3588. const std::vector<raw_buffer> & files,
  3589. const std::function<bool()> & is_connection_closed,
  3590. httplib::Response & res,
  3591. oaicompat_type oaicompat) -> void {
  3592. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3593. auto completion_id = gen_chatcmplid();
  3594. std::unordered_set<int> task_ids;
  3595. try {
  3596. std::vector<server_task> tasks;
  3597. const auto & prompt = data.at("prompt");
  3598. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3599. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3600. // process files
  3601. mtmd::bitmaps bitmaps;
  3602. const bool has_mtmd = ctx_server.mctx != nullptr;
  3603. {
  3604. if (!has_mtmd && !files.empty()) {
  3605. throw std::runtime_error("This server does not support multimodal");
  3606. }
  3607. for (auto & file : files) {
  3608. mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size()));
  3609. if (!bmp.ptr) {
  3610. throw std::runtime_error("Failed to load image or audio file");
  3611. }
  3612. // calculate bitmap hash (for KV caching)
  3613. std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
  3614. bmp.set_id(hash.c_str());
  3615. bitmaps.entries.push_back(std::move(bmp));
  3616. }
  3617. }
  3618. // process prompt
  3619. std::vector<server_tokens> inputs;
  3620. if (oaicompat && has_mtmd) {
  3621. // multimodal
  3622. std::string prompt_str = prompt.get<std::string>();
  3623. mtmd_input_text inp_txt = {
  3624. prompt_str.c_str(),
  3625. /* add_special */ true,
  3626. /* parse_special */ true,
  3627. };
  3628. mtmd::input_chunks chunks(mtmd_input_chunks_init());
  3629. auto bitmaps_c_ptr = bitmaps.c_ptr();
  3630. int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
  3631. chunks.ptr.get(),
  3632. &inp_txt,
  3633. bitmaps_c_ptr.data(),
  3634. bitmaps_c_ptr.size());
  3635. if (tokenized != 0) {
  3636. throw std::runtime_error("Failed to tokenize prompt");
  3637. }
  3638. server_tokens tmp(chunks, true);
  3639. inputs.push_back(std::move(tmp));
  3640. } else {
  3641. // non-multimodal version
  3642. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3643. for (auto & p : tokenized_prompts) {
  3644. auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
  3645. inputs.push_back(std::move(tmp));
  3646. }
  3647. }
  3648. tasks.reserve(inputs.size());
  3649. for (size_t i = 0; i < inputs.size(); i++) {
  3650. server_task task = server_task(type);
  3651. task.id = ctx_server.queue_tasks.get_new_id();
  3652. task.index = i;
  3653. task.prompt_tokens = std::move(inputs[i]);
  3654. task.params = server_task::params_from_json_cmpl(
  3655. ctx_server.ctx,
  3656. ctx_server.params_base,
  3657. data);
  3658. task.id_selected_slot = json_value(data, "id_slot", -1);
  3659. // OAI-compat
  3660. task.params.oaicompat = oaicompat;
  3661. task.params.oaicompat_cmpl_id = completion_id;
  3662. // oaicompat_model is already populated by params_from_json_cmpl
  3663. tasks.push_back(std::move(task));
  3664. }
  3665. task_ids = server_task::get_list_id(tasks);
  3666. ctx_server.queue_results.add_waiting_tasks(tasks);
  3667. ctx_server.queue_tasks.post(std::move(tasks));
  3668. } catch (const std::exception & e) {
  3669. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3670. return;
  3671. }
  3672. bool stream = json_value(data, "stream", false);
  3673. if (!stream) {
  3674. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3675. if (results.size() == 1) {
  3676. // single result
  3677. res_ok(res, results[0]->to_json());
  3678. } else {
  3679. // multiple results (multitask)
  3680. json arr = json::array();
  3681. for (auto & res : results) {
  3682. arr.push_back(res->to_json());
  3683. }
  3684. res_ok(res, arr);
  3685. }
  3686. }, [&](const json & error_data) {
  3687. res_error(res, error_data);
  3688. }, is_connection_closed);
  3689. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3690. } else {
  3691. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3692. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3693. json res_json = result->to_json();
  3694. if (res_json.is_array()) {
  3695. for (const auto & res : res_json) {
  3696. if (!server_sent_event(sink, "data", res)) {
  3697. // sending failed (HTTP connection closed), cancel the generation
  3698. return false;
  3699. }
  3700. }
  3701. return true;
  3702. } else {
  3703. return server_sent_event(sink, "data", res_json);
  3704. }
  3705. }, [&](const json & error_data) {
  3706. server_sent_event(sink, "error", error_data);
  3707. }, [&sink]() {
  3708. // note: do not use req.is_connection_closed here because req is already destroyed
  3709. return !sink.is_writable();
  3710. });
  3711. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3712. static const std::string ev_done = "data: [DONE]\n\n";
  3713. sink.write(ev_done.data(), ev_done.size());
  3714. }
  3715. sink.done();
  3716. return false;
  3717. };
  3718. auto on_complete = [task_ids, &ctx_server] (bool) {
  3719. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3720. };
  3721. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3722. }
  3723. };
  3724. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3725. json data = json::parse(req.body);
  3726. std::vector<raw_buffer> files; // dummy
  3727. handle_completions_impl(
  3728. SERVER_TASK_TYPE_COMPLETION,
  3729. data,
  3730. files,
  3731. req.is_connection_closed,
  3732. res,
  3733. OAICOMPAT_TYPE_NONE);
  3734. };
  3735. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3736. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3737. std::vector<raw_buffer> files; // dummy
  3738. handle_completions_impl(
  3739. SERVER_TASK_TYPE_COMPLETION,
  3740. data,
  3741. files,
  3742. req.is_connection_closed,
  3743. res,
  3744. OAICOMPAT_TYPE_COMPLETION);
  3745. };
  3746. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3747. // check model compatibility
  3748. std::string err;
  3749. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3750. err += "prefix token is missing. ";
  3751. }
  3752. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3753. err += "suffix token is missing. ";
  3754. }
  3755. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3756. err += "middle token is missing. ";
  3757. }
  3758. if (!err.empty()) {
  3759. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3760. return;
  3761. }
  3762. json data = json::parse(req.body);
  3763. // validate input
  3764. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3765. // prompt is optional
  3766. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3767. }
  3768. if (!data.contains("input_prefix")) {
  3769. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3770. }
  3771. if (!data.contains("input_suffix")) {
  3772. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3773. }
  3774. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3775. // input_extra is optional
  3776. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3777. return;
  3778. }
  3779. json input_extra = json_value(data, "input_extra", json::array());
  3780. for (const auto & chunk : input_extra) {
  3781. // { "text": string, "filename": string }
  3782. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3783. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3784. return;
  3785. }
  3786. // filename is optional
  3787. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3788. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3789. return;
  3790. }
  3791. }
  3792. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3793. std::string prompt = json_value(data, "prompt", std::string());
  3794. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3795. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3796. data["prompt"] = format_infill(
  3797. ctx_server.vocab,
  3798. data.at("input_prefix"),
  3799. data.at("input_suffix"),
  3800. data.at("input_extra"),
  3801. ctx_server.params_base.n_batch,
  3802. ctx_server.params_base.n_predict,
  3803. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3804. ctx_server.params_base.spm_infill,
  3805. tokenized_prompts[0]
  3806. );
  3807. std::vector<raw_buffer> files; // dummy
  3808. handle_completions_impl(
  3809. SERVER_TASK_TYPE_INFILL,
  3810. data,
  3811. files,
  3812. req.is_connection_closed,
  3813. res,
  3814. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3815. };
  3816. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3817. LOG_DBG("request: %s\n", req.body.c_str());
  3818. auto body = json::parse(req.body);
  3819. std::vector<raw_buffer> files;
  3820. json data = oaicompat_chat_params_parse(
  3821. body,
  3822. ctx_server.oai_parser_opt,
  3823. files);
  3824. handle_completions_impl(
  3825. SERVER_TASK_TYPE_COMPLETION,
  3826. data,
  3827. files,
  3828. req.is_connection_closed,
  3829. res,
  3830. OAICOMPAT_TYPE_CHAT);
  3831. };
  3832. // same with handle_chat_completions, but without inference part
  3833. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3834. auto body = json::parse(req.body);
  3835. std::vector<raw_buffer> files; // dummy, unused
  3836. json data = oaicompat_chat_params_parse(
  3837. body,
  3838. ctx_server.oai_parser_opt,
  3839. files);
  3840. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3841. };
  3842. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3843. server_state current_state = state.load();
  3844. json model_meta = nullptr;
  3845. if (current_state == SERVER_STATE_READY) {
  3846. model_meta = ctx_server.model_meta();
  3847. }
  3848. json models = {
  3849. {"models", {
  3850. {
  3851. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3852. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3853. {"modified_at", ""},
  3854. {"size", ""},
  3855. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3856. {"type", "model"},
  3857. {"description", ""},
  3858. {"tags", {""}},
  3859. {"capabilities", {"completion"}},
  3860. {"parameters", ""},
  3861. {"details", {
  3862. {"parent_model", ""},
  3863. {"format", "gguf"},
  3864. {"family", ""},
  3865. {"families", {""}},
  3866. {"parameter_size", ""},
  3867. {"quantization_level", ""}
  3868. }}
  3869. }
  3870. }},
  3871. {"object", "list"},
  3872. {"data", {
  3873. {
  3874. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3875. {"object", "model"},
  3876. {"created", std::time(0)},
  3877. {"owned_by", "llamacpp"},
  3878. {"meta", model_meta},
  3879. },
  3880. }}
  3881. };
  3882. res_ok(res, models);
  3883. };
  3884. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3885. const json body = json::parse(req.body);
  3886. json tokens_response = json::array();
  3887. if (body.count("content") != 0) {
  3888. const bool add_special = json_value(body, "add_special", false);
  3889. const bool parse_special = json_value(body, "parse_special", true);
  3890. const bool with_pieces = json_value(body, "with_pieces", false);
  3891. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  3892. if (with_pieces) {
  3893. for (const auto& token : tokens) {
  3894. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3895. json piece_json;
  3896. // Check if the piece is valid UTF-8
  3897. if (is_valid_utf8(piece)) {
  3898. piece_json = piece;
  3899. } else {
  3900. // If not valid UTF-8, store as array of byte values
  3901. piece_json = json::array();
  3902. for (unsigned char c : piece) {
  3903. piece_json.push_back(static_cast<int>(c));
  3904. }
  3905. }
  3906. tokens_response.push_back({
  3907. {"id", token},
  3908. {"piece", piece_json}
  3909. });
  3910. }
  3911. } else {
  3912. tokens_response = tokens;
  3913. }
  3914. }
  3915. const json data = format_tokenizer_response(tokens_response);
  3916. res_ok(res, data);
  3917. };
  3918. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3919. const json body = json::parse(req.body);
  3920. std::string content;
  3921. if (body.count("tokens") != 0) {
  3922. const llama_tokens tokens = body.at("tokens");
  3923. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3924. }
  3925. const json data = format_detokenized_response(content);
  3926. res_ok(res, data);
  3927. };
  3928. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3929. if (!ctx_server.params_base.embedding) {
  3930. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3931. return;
  3932. }
  3933. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3934. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3935. return;
  3936. }
  3937. const json body = json::parse(req.body);
  3938. // for the shape of input/content, see tokenize_input_prompts()
  3939. json prompt;
  3940. if (body.count("input") != 0) {
  3941. prompt = body.at("input");
  3942. } else if (body.contains("content")) {
  3943. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3944. prompt = body.at("content");
  3945. } else {
  3946. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3947. return;
  3948. }
  3949. bool use_base64 = false;
  3950. if (body.count("encoding_format") != 0) {
  3951. const std::string& format = body.at("encoding_format");
  3952. if (format == "base64") {
  3953. use_base64 = true;
  3954. } else if (format != "float") {
  3955. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3956. return;
  3957. }
  3958. }
  3959. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3960. for (const auto & tokens : tokenized_prompts) {
  3961. // this check is necessary for models that do not add BOS token to the input
  3962. if (tokens.empty()) {
  3963. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3964. return;
  3965. }
  3966. }
  3967. int embd_normalize = 2; // default to Euclidean/L2 norm
  3968. if (body.count("embd_normalize") != 0) {
  3969. embd_normalize = body.at("embd_normalize");
  3970. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3971. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  3972. }
  3973. }
  3974. // create and queue the task
  3975. json responses = json::array();
  3976. bool error = false;
  3977. std::unordered_set<int> task_ids;
  3978. {
  3979. std::vector<server_task> tasks;
  3980. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3981. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3982. task.id = ctx_server.queue_tasks.get_new_id();
  3983. task.index = i;
  3984. task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
  3985. // OAI-compat
  3986. task.params.oaicompat = oaicompat;
  3987. task.params.embd_normalize = embd_normalize;
  3988. tasks.push_back(std::move(task));
  3989. }
  3990. task_ids = server_task::get_list_id(tasks);
  3991. ctx_server.queue_results.add_waiting_tasks(tasks);
  3992. ctx_server.queue_tasks.post(std::move(tasks));
  3993. }
  3994. // get the result
  3995. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3996. for (auto & res : results) {
  3997. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3998. responses.push_back(res->to_json());
  3999. }
  4000. }, [&](const json & error_data) {
  4001. res_error(res, error_data);
  4002. error = true;
  4003. }, req.is_connection_closed);
  4004. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  4005. if (error) {
  4006. return;
  4007. }
  4008. // write JSON response
  4009. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  4010. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  4011. : json(responses);
  4012. res_ok(res, root);
  4013. };
  4014. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4015. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  4016. };
  4017. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4018. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  4019. };
  4020. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  4021. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  4022. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  4023. return;
  4024. }
  4025. const json body = json::parse(req.body);
  4026. // TODO: implement
  4027. //int top_n = 1;
  4028. //if (body.count("top_n") != 1) {
  4029. // top_n = body.at("top_n");
  4030. //} else {
  4031. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4032. // return;
  4033. //}
  4034. // if true, use TEI API format, otherwise use Jina API format
  4035. // Jina: https://jina.ai/reranker/
  4036. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  4037. bool is_tei_format = body.contains("texts");
  4038. json query;
  4039. if (body.count("query") == 1) {
  4040. query = body.at("query");
  4041. if (!query.is_string()) {
  4042. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  4043. return;
  4044. }
  4045. } else {
  4046. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4047. return;
  4048. }
  4049. std::vector<std::string> documents = json_value(body, "documents",
  4050. json_value(body, "texts", std::vector<std::string>()));
  4051. if (documents.empty()) {
  4052. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  4053. return;
  4054. }
  4055. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  4056. // create and queue the task
  4057. json responses = json::array();
  4058. bool error = false;
  4059. std::unordered_set<int> task_ids;
  4060. {
  4061. std::vector<server_task> tasks;
  4062. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  4063. tasks.reserve(tokenized_docs.size());
  4064. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  4065. auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  4066. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  4067. task.id = ctx_server.queue_tasks.get_new_id();
  4068. task.index = i;
  4069. task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
  4070. tasks.push_back(std::move(task));
  4071. }
  4072. task_ids = server_task::get_list_id(tasks);
  4073. ctx_server.queue_results.add_waiting_tasks(tasks);
  4074. ctx_server.queue_tasks.post(std::move(tasks));
  4075. }
  4076. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  4077. for (auto & res : results) {
  4078. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  4079. responses.push_back(res->to_json());
  4080. }
  4081. }, [&](const json & error_data) {
  4082. res_error(res, error_data);
  4083. error = true;
  4084. }, req.is_connection_closed);
  4085. if (error) {
  4086. return;
  4087. }
  4088. // write JSON response
  4089. json root = format_response_rerank(
  4090. body,
  4091. responses,
  4092. is_tei_format,
  4093. documents);
  4094. res_ok(res, root);
  4095. };
  4096. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  4097. json result = json::array();
  4098. const auto & loras = ctx_server.params_base.lora_adapters;
  4099. for (size_t i = 0; i < loras.size(); ++i) {
  4100. auto & lora = loras[i];
  4101. result.push_back({
  4102. {"id", i},
  4103. {"path", lora.path},
  4104. {"scale", lora.scale},
  4105. });
  4106. }
  4107. res_ok(res, result);
  4108. res.status = 200; // HTTP OK
  4109. };
  4110. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  4111. const json body = json::parse(req.body);
  4112. if (!body.is_array()) {
  4113. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4114. return;
  4115. }
  4116. int task_id = ctx_server.queue_tasks.get_new_id();
  4117. {
  4118. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4119. task.id = task_id;
  4120. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4121. ctx_server.queue_results.add_waiting_task_id(task_id);
  4122. ctx_server.queue_tasks.post(std::move(task));
  4123. }
  4124. // get the result
  4125. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4126. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4127. if (result->is_error()) {
  4128. res_error(res, result->to_json());
  4129. return;
  4130. }
  4131. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4132. res_ok(res, result->to_json());
  4133. };
  4134. //
  4135. // Router
  4136. //
  4137. if (!params.webui) {
  4138. LOG_INF("Web UI is disabled\n");
  4139. } else {
  4140. // register static assets routes
  4141. if (!params.public_path.empty()) {
  4142. // Set the base directory for serving static files
  4143. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4144. if (!is_found) {
  4145. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4146. return 1;
  4147. }
  4148. } else {
  4149. // using embedded static index.html
  4150. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4151. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4152. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4153. } else {
  4154. res.set_header("Content-Encoding", "gzip");
  4155. // COEP and COOP headers, required by pyodide (python interpreter)
  4156. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4157. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4158. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4159. }
  4160. return false;
  4161. });
  4162. }
  4163. }
  4164. // register API routes
  4165. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4166. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4167. svr->Get (params.api_prefix + "/props", handle_props);
  4168. svr->Post(params.api_prefix + "/props", handle_props_change);
  4169. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4170. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4171. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4172. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4173. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4174. svr->Post(params.api_prefix + "/completions", handle_completions);
  4175. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4176. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4177. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4178. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4179. svr->Post(params.api_prefix + "/infill", handle_infill);
  4180. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4181. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4182. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4183. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4184. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4185. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4186. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4187. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4188. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4189. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4190. // LoRA adapters hotswap
  4191. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4192. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4193. // Save & load slots
  4194. svr->Get (params.api_prefix + "/slots", handle_slots);
  4195. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4196. //
  4197. // Start the server
  4198. //
  4199. if (params.n_threads_http < 1) {
  4200. // +2 threads for monitoring endpoints
  4201. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4202. }
  4203. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4204. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4205. // clean up function, to be called before exit
  4206. auto clean_up = [&svr, &ctx_server]() {
  4207. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4208. svr->stop();
  4209. ctx_server.queue_results.terminate();
  4210. llama_backend_free();
  4211. };
  4212. bool was_bound = false;
  4213. bool is_sock = false;
  4214. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4215. is_sock = true;
  4216. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4217. svr->set_address_family(AF_UNIX);
  4218. // bind_to_port requires a second arg, any value other than 0 should
  4219. // simply get ignored
  4220. was_bound = svr->bind_to_port(params.hostname, 8080);
  4221. } else {
  4222. LOG_INF("%s: binding port with default address family\n", __func__);
  4223. // bind HTTP listen port
  4224. if (params.port == 0) {
  4225. int bound_port = svr->bind_to_any_port(params.hostname);
  4226. if ((was_bound = (bound_port >= 0))) {
  4227. params.port = bound_port;
  4228. }
  4229. } else {
  4230. was_bound = svr->bind_to_port(params.hostname, params.port);
  4231. }
  4232. }
  4233. if (!was_bound) {
  4234. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4235. clean_up();
  4236. return 1;
  4237. }
  4238. // run the HTTP server in a thread
  4239. std::thread t([&]() { svr->listen_after_bind(); });
  4240. svr->wait_until_ready();
  4241. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4242. // load the model
  4243. LOG_INF("%s: loading model\n", __func__);
  4244. if (!ctx_server.load_model(params)) {
  4245. clean_up();
  4246. t.join();
  4247. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4248. return 1;
  4249. }
  4250. ctx_server.init();
  4251. state.store(SERVER_STATE_READY);
  4252. LOG_INF("%s: model loaded\n", __func__);
  4253. // print sample chat example to make it clear which template is used
  4254. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4255. common_chat_templates_source(ctx_server.chat_templates.get()),
  4256. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja, ctx_server.params_base.default_template_kwargs).c_str());
  4257. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4258. ctx_server.process_single_task(std::move(task));
  4259. });
  4260. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4261. ctx_server.update_slots();
  4262. });
  4263. shutdown_handler = [&](int) {
  4264. // this will unblock start_loop()
  4265. ctx_server.queue_tasks.terminate();
  4266. };
  4267. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4268. struct sigaction sigint_action;
  4269. sigint_action.sa_handler = signal_handler;
  4270. sigemptyset (&sigint_action.sa_mask);
  4271. sigint_action.sa_flags = 0;
  4272. sigaction(SIGINT, &sigint_action, NULL);
  4273. sigaction(SIGTERM, &sigint_action, NULL);
  4274. #elif defined (_WIN32)
  4275. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4276. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4277. };
  4278. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4279. #endif
  4280. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4281. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4282. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4283. // this call blocks the main thread until queue_tasks.terminate() is called
  4284. ctx_server.queue_tasks.start_loop();
  4285. clean_up();
  4286. t.join();
  4287. return 0;
  4288. }