utils.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. # type: ignore[reportUnusedImport]
  4. import subprocess
  5. import os
  6. import re
  7. import json
  8. import sys
  9. import requests
  10. import time
  11. from concurrent.futures import ThreadPoolExecutor, as_completed
  12. from typing import (
  13. Any,
  14. Callable,
  15. ContextManager,
  16. Iterable,
  17. Iterator,
  18. List,
  19. Literal,
  20. Tuple,
  21. Set,
  22. )
  23. from re import RegexFlag
  24. import wget
  25. DEFAULT_HTTP_TIMEOUT = 12
  26. if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ:
  27. DEFAULT_HTTP_TIMEOUT = 30
  28. class ServerResponse:
  29. headers: dict
  30. status_code: int
  31. body: dict | Any
  32. class ServerProcess:
  33. # default options
  34. debug: bool = False
  35. server_port: int = 8080
  36. server_host: str = "127.0.0.1"
  37. model_hf_repo: str = "ggml-org/models"
  38. model_hf_file: str | None = "tinyllamas/stories260K.gguf"
  39. model_alias: str = "tinyllama-2"
  40. temperature: float = 0.8
  41. seed: int = 42
  42. # custom options
  43. model_alias: str | None = None
  44. model_url: str | None = None
  45. model_file: str | None = None
  46. model_draft: str | None = None
  47. n_threads: int | None = None
  48. n_gpu_layer: int | None = None
  49. n_batch: int | None = None
  50. n_ubatch: int | None = None
  51. n_ctx: int | None = None
  52. n_ga: int | None = None
  53. n_ga_w: int | None = None
  54. n_predict: int | None = None
  55. n_prompts: int | None = 0
  56. slot_save_path: str | None = None
  57. id_slot: int | None = None
  58. cache_prompt: bool | None = None
  59. n_slots: int | None = None
  60. ctk: str | None = None
  61. ctv: str | None = None
  62. fa: bool | None = None
  63. server_continuous_batching: bool | None = False
  64. server_embeddings: bool | None = False
  65. server_reranking: bool | None = False
  66. server_metrics: bool | None = False
  67. server_slots: bool | None = False
  68. pooling: str | None = None
  69. draft: int | None = None
  70. api_key: str | None = None
  71. lora_files: List[str] | None = None
  72. enable_ctx_shift: int | None = False
  73. draft_min: int | None = None
  74. draft_max: int | None = None
  75. no_webui: bool | None = None
  76. jinja: bool | None = None
  77. reasoning_format: Literal['deepseek', 'none', 'nothink'] | None = None
  78. reasoning_budget: int | None = None
  79. chat_template: str | None = None
  80. chat_template_file: str | None = None
  81. server_path: str | None = None
  82. mmproj_url: str | None = None
  83. # session variables
  84. process: subprocess.Popen | None = None
  85. def __init__(self):
  86. if "N_GPU_LAYERS" in os.environ:
  87. self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
  88. if "DEBUG" in os.environ:
  89. self.debug = True
  90. if "PORT" in os.environ:
  91. self.server_port = int(os.environ["PORT"])
  92. def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
  93. if self.server_path is not None:
  94. server_path = self.server_path
  95. elif "LLAMA_SERVER_BIN_PATH" in os.environ:
  96. server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
  97. elif os.name == "nt":
  98. server_path = "../../../build/bin/Release/llama-server.exe"
  99. else:
  100. server_path = "../../../build/bin/llama-server"
  101. server_args = [
  102. "--host",
  103. self.server_host,
  104. "--port",
  105. self.server_port,
  106. "--temp",
  107. self.temperature,
  108. "--seed",
  109. self.seed,
  110. ]
  111. if self.model_file:
  112. server_args.extend(["--model", self.model_file])
  113. if self.model_url:
  114. server_args.extend(["--model-url", self.model_url])
  115. if self.model_draft:
  116. server_args.extend(["--model-draft", self.model_draft])
  117. if self.model_hf_repo:
  118. server_args.extend(["--hf-repo", self.model_hf_repo])
  119. if self.model_hf_file:
  120. server_args.extend(["--hf-file", self.model_hf_file])
  121. if self.n_batch:
  122. server_args.extend(["--batch-size", self.n_batch])
  123. if self.n_ubatch:
  124. server_args.extend(["--ubatch-size", self.n_ubatch])
  125. if self.n_threads:
  126. server_args.extend(["--threads", self.n_threads])
  127. if self.n_gpu_layer:
  128. server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
  129. if self.draft is not None:
  130. server_args.extend(["--draft", self.draft])
  131. if self.server_continuous_batching:
  132. server_args.append("--cont-batching")
  133. if self.server_embeddings:
  134. server_args.append("--embedding")
  135. if self.server_reranking:
  136. server_args.append("--reranking")
  137. if self.server_metrics:
  138. server_args.append("--metrics")
  139. if self.server_slots:
  140. server_args.append("--slots")
  141. if self.pooling:
  142. server_args.extend(["--pooling", self.pooling])
  143. if self.model_alias:
  144. server_args.extend(["--alias", self.model_alias])
  145. if self.n_ctx:
  146. server_args.extend(["--ctx-size", self.n_ctx])
  147. if self.n_slots:
  148. server_args.extend(["--parallel", self.n_slots])
  149. if self.ctk:
  150. server_args.extend(["-ctk", self.ctk])
  151. if self.ctv:
  152. server_args.extend(["-ctv", self.ctv])
  153. if self.fa is not None:
  154. server_args.append("-fa")
  155. if self.n_predict:
  156. server_args.extend(["--n-predict", self.n_predict])
  157. if self.slot_save_path:
  158. server_args.extend(["--slot-save-path", self.slot_save_path])
  159. if self.n_ga:
  160. server_args.extend(["--grp-attn-n", self.n_ga])
  161. if self.n_ga_w:
  162. server_args.extend(["--grp-attn-w", self.n_ga_w])
  163. if self.debug:
  164. server_args.append("--verbose")
  165. if self.lora_files:
  166. for lora_file in self.lora_files:
  167. server_args.extend(["--lora", lora_file])
  168. if self.enable_ctx_shift:
  169. server_args.append("--context-shift")
  170. if self.api_key:
  171. server_args.extend(["--api-key", self.api_key])
  172. if self.draft_max:
  173. server_args.extend(["--draft-max", self.draft_max])
  174. if self.draft_min:
  175. server_args.extend(["--draft-min", self.draft_min])
  176. if self.no_webui:
  177. server_args.append("--no-webui")
  178. if self.jinja:
  179. server_args.append("--jinja")
  180. if self.reasoning_format is not None:
  181. server_args.extend(("--reasoning-format", self.reasoning_format))
  182. if self.reasoning_budget is not None:
  183. server_args.extend(("--reasoning-budget", self.reasoning_budget))
  184. if self.chat_template:
  185. server_args.extend(["--chat-template", self.chat_template])
  186. if self.chat_template_file:
  187. server_args.extend(["--chat-template-file", self.chat_template_file])
  188. if self.mmproj_url:
  189. server_args.extend(["--mmproj-url", self.mmproj_url])
  190. args = [str(arg) for arg in [server_path, *server_args]]
  191. print(f"tests: starting server with: {' '.join(args)}")
  192. flags = 0
  193. if "nt" == os.name:
  194. flags |= subprocess.DETACHED_PROCESS
  195. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  196. flags |= subprocess.CREATE_NO_WINDOW
  197. self.process = subprocess.Popen(
  198. [str(arg) for arg in [server_path, *server_args]],
  199. creationflags=flags,
  200. stdout=sys.stdout,
  201. stderr=sys.stdout,
  202. env={**os.environ, "LLAMA_CACHE": "tmp"} if "LLAMA_CACHE" not in os.environ else None,
  203. )
  204. server_instances.add(self)
  205. print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
  206. # wait for server to start
  207. start_time = time.time()
  208. while time.time() - start_time < timeout_seconds:
  209. try:
  210. response = self.make_request("GET", "/health", headers={
  211. "Authorization": f"Bearer {self.api_key}" if self.api_key else None
  212. })
  213. if response.status_code == 200:
  214. self.ready = True
  215. return # server is ready
  216. except Exception as e:
  217. pass
  218. # Check if process died
  219. if self.process.poll() is not None:
  220. raise RuntimeError(f"Server process died with return code {self.process.returncode}")
  221. print(f"Waiting for server to start...")
  222. time.sleep(0.5)
  223. raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
  224. def stop(self) -> None:
  225. if self in server_instances:
  226. server_instances.remove(self)
  227. if self.process:
  228. print(f"Stopping server with pid={self.process.pid}")
  229. self.process.kill()
  230. self.process = None
  231. def make_request(
  232. self,
  233. method: str,
  234. path: str,
  235. data: dict | Any | None = None,
  236. headers: dict | None = None,
  237. timeout: float | None = None,
  238. ) -> ServerResponse:
  239. url = f"http://{self.server_host}:{self.server_port}{path}"
  240. parse_body = False
  241. if method == "GET":
  242. response = requests.get(url, headers=headers, timeout=timeout)
  243. parse_body = True
  244. elif method == "POST":
  245. response = requests.post(url, headers=headers, json=data, timeout=timeout)
  246. parse_body = True
  247. elif method == "OPTIONS":
  248. response = requests.options(url, headers=headers, timeout=timeout)
  249. else:
  250. raise ValueError(f"Unimplemented method: {method}")
  251. result = ServerResponse()
  252. result.headers = dict(response.headers)
  253. result.status_code = response.status_code
  254. result.body = response.json() if parse_body else None
  255. print("Response from server", json.dumps(result.body, indent=2))
  256. return result
  257. def make_stream_request(
  258. self,
  259. method: str,
  260. path: str,
  261. data: dict | None = None,
  262. headers: dict | None = None,
  263. ) -> Iterator[dict]:
  264. url = f"http://{self.server_host}:{self.server_port}{path}"
  265. if method == "POST":
  266. response = requests.post(url, headers=headers, json=data, stream=True)
  267. else:
  268. raise ValueError(f"Unimplemented method: {method}")
  269. for line_bytes in response.iter_lines():
  270. line = line_bytes.decode("utf-8")
  271. if '[DONE]' in line:
  272. break
  273. elif line.startswith('data: '):
  274. data = json.loads(line[6:])
  275. print("Partial response from server", json.dumps(data, indent=2))
  276. yield data
  277. def make_any_request(
  278. self,
  279. method: str,
  280. path: str,
  281. data: dict | None = None,
  282. headers: dict | None = None,
  283. timeout: float | None = None,
  284. ) -> dict:
  285. stream = data.get('stream', False)
  286. if stream:
  287. content: list[str] = []
  288. reasoning_content: list[str] = []
  289. tool_calls: list[dict] = []
  290. finish_reason: Optional[str] = None
  291. content_parts = 0
  292. reasoning_content_parts = 0
  293. tool_call_parts = 0
  294. arguments_parts = 0
  295. for chunk in self.make_stream_request(method, path, data, headers):
  296. if chunk['choices']:
  297. assert len(chunk['choices']) == 1, f'Expected 1 choice, got {len(chunk["choices"])}'
  298. choice = chunk['choices'][0]
  299. if choice['delta'].get('content') is not None:
  300. assert len(choice['delta']['content']) > 0, f'Expected non empty content delta!'
  301. content.append(choice['delta']['content'])
  302. content_parts += 1
  303. if choice['delta'].get('reasoning_content') is not None:
  304. assert len(choice['delta']['reasoning_content']) > 0, f'Expected non empty reasoning_content delta!'
  305. reasoning_content.append(choice['delta']['reasoning_content'])
  306. reasoning_content_parts += 1
  307. if choice['delta'].get('finish_reason') is not None:
  308. finish_reason = choice['delta']['finish_reason']
  309. for tc in choice['delta'].get('tool_calls', []):
  310. if 'function' not in tc:
  311. raise ValueError(f"Expected function type, got {tc['type']}")
  312. if tc['index'] >= len(tool_calls):
  313. assert 'id' in tc
  314. assert tc.get('type') == 'function'
  315. assert 'function' in tc and 'name' in tc['function'] and len(tc['function']['name']) > 0, \
  316. f"Expected function call with name, got {tc.get('function')}"
  317. tool_calls.append(dict(
  318. id="",
  319. type="function",
  320. function=dict(
  321. name="",
  322. arguments="",
  323. )
  324. ))
  325. tool_call = tool_calls[tc['index']]
  326. if tc.get('id') is not None:
  327. tool_call['id'] = tc['id']
  328. fct = tc['function']
  329. assert 'id' not in fct, f"Function call should not have id: {fct}"
  330. if fct.get('name') is not None:
  331. tool_call['function']['name'] = tool_call['function'].get('name', '') + fct['name']
  332. if fct.get('arguments') is not None:
  333. tool_call['function']['arguments'] += fct['arguments']
  334. arguments_parts += 1
  335. tool_call_parts += 1
  336. else:
  337. # When `include_usage` is True (the default), we expect the last chunk of the stream
  338. # immediately preceding the `data: [DONE]` message to contain a `choices` field with an empty array
  339. # and a `usage` field containing the usage statistics (n.b., llama-server also returns `timings` in
  340. # the last chunk)
  341. assert 'usage' in chunk, f"Expected finish_reason in chunk: {chunk}"
  342. assert 'timings' in chunk, f"Expected finish_reason in chunk: {chunk}"
  343. print(f'Streamed response had {content_parts} content parts, {reasoning_content_parts} reasoning_content parts, {tool_call_parts} tool call parts incl. {arguments_parts} arguments parts')
  344. result = dict(
  345. choices=[
  346. dict(
  347. index=0,
  348. finish_reason=finish_reason,
  349. message=dict(
  350. role='assistant',
  351. content=''.join(content) if content else None,
  352. reasoning_content=''.join(reasoning_content) if reasoning_content else None,
  353. tool_calls=tool_calls if tool_calls else None,
  354. ),
  355. )
  356. ],
  357. )
  358. print("Final response from server", json.dumps(result, indent=2))
  359. return result
  360. else:
  361. response = self.make_request(method, path, data, headers, timeout=timeout)
  362. assert response.status_code == 200, f"Server returned error: {response.status_code}"
  363. return response.body
  364. server_instances: Set[ServerProcess] = set()
  365. class ServerPreset:
  366. @staticmethod
  367. def tinyllama2() -> ServerProcess:
  368. server = ServerProcess()
  369. server.model_hf_repo = "ggml-org/models"
  370. server.model_hf_file = "tinyllamas/stories260K.gguf"
  371. server.model_alias = "tinyllama-2"
  372. server.n_ctx = 512
  373. server.n_batch = 32
  374. server.n_slots = 2
  375. server.n_predict = 64
  376. server.seed = 42
  377. return server
  378. @staticmethod
  379. def bert_bge_small() -> ServerProcess:
  380. server = ServerProcess()
  381. server.model_hf_repo = "ggml-org/models"
  382. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  383. server.model_alias = "bert-bge-small"
  384. server.n_ctx = 512
  385. server.n_batch = 128
  386. server.n_ubatch = 128
  387. server.n_slots = 2
  388. server.seed = 42
  389. server.server_embeddings = True
  390. return server
  391. @staticmethod
  392. def bert_bge_small_with_fa() -> ServerProcess:
  393. server = ServerProcess()
  394. server.model_hf_repo = "ggml-org/models"
  395. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  396. server.model_alias = "bert-bge-small"
  397. server.n_ctx = 1024
  398. server.n_batch = 300
  399. server.n_ubatch = 300
  400. server.n_slots = 2
  401. server.fa = True
  402. server.seed = 42
  403. server.server_embeddings = True
  404. return server
  405. @staticmethod
  406. def tinyllama_infill() -> ServerProcess:
  407. server = ServerProcess()
  408. server.model_hf_repo = "ggml-org/models"
  409. server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
  410. server.model_alias = "tinyllama-infill"
  411. server.n_ctx = 2048
  412. server.n_batch = 1024
  413. server.n_slots = 1
  414. server.n_predict = 64
  415. server.temperature = 0.0
  416. server.seed = 42
  417. return server
  418. @staticmethod
  419. def stories15m_moe() -> ServerProcess:
  420. server = ServerProcess()
  421. server.model_hf_repo = "ggml-org/stories15M_MOE"
  422. server.model_hf_file = "stories15M_MOE-F16.gguf"
  423. server.model_alias = "stories15m-moe"
  424. server.n_ctx = 2048
  425. server.n_batch = 1024
  426. server.n_slots = 1
  427. server.n_predict = 64
  428. server.temperature = 0.0
  429. server.seed = 42
  430. return server
  431. @staticmethod
  432. def jina_reranker_tiny() -> ServerProcess:
  433. server = ServerProcess()
  434. server.model_hf_repo = "ggml-org/models"
  435. server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
  436. server.model_alias = "jina-reranker"
  437. server.n_ctx = 512
  438. server.n_batch = 512
  439. server.n_slots = 1
  440. server.seed = 42
  441. server.server_reranking = True
  442. return server
  443. @staticmethod
  444. def tinygemma3() -> ServerProcess:
  445. server = ServerProcess()
  446. # mmproj is already provided by HF registry API
  447. server.model_hf_repo = "ggml-org/tinygemma3-GGUF"
  448. server.model_hf_file = "tinygemma3-Q8_0.gguf"
  449. server.mmproj_url = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/mmproj-tinygemma3.gguf"
  450. server.model_alias = "tinygemma3"
  451. server.n_ctx = 1024
  452. server.n_batch = 32
  453. server.n_slots = 2
  454. server.n_predict = 4
  455. server.seed = 42
  456. return server
  457. def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
  458. """
  459. Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
  460. Example usage:
  461. results = parallel_function_calls([
  462. (func1, (arg1, arg2)),
  463. (func2, (arg3, arg4)),
  464. ])
  465. """
  466. results = [None] * len(function_list)
  467. exceptions = []
  468. def worker(index, func, args):
  469. try:
  470. result = func(*args)
  471. results[index] = result
  472. except Exception as e:
  473. exceptions.append((index, str(e)))
  474. with ThreadPoolExecutor() as executor:
  475. futures = []
  476. for i, (func, args) in enumerate(function_list):
  477. future = executor.submit(worker, i, func, args)
  478. futures.append(future)
  479. # Wait for all futures to complete
  480. for future in as_completed(futures):
  481. pass
  482. # Check if there were any exceptions
  483. if exceptions:
  484. print("Exceptions occurred:")
  485. for index, error in exceptions:
  486. print(f"Function at index {index}: {error}")
  487. return results
  488. def match_regex(regex: str, text: str) -> bool:
  489. return (
  490. re.compile(
  491. regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
  492. ).search(text)
  493. is not None
  494. )
  495. def download_file(url: str, output_file_path: str | None = None) -> str:
  496. """
  497. Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
  498. output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
  499. Returns the local path of the downloaded file.
  500. """
  501. file_name = url.split('/').pop()
  502. output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
  503. if not os.path.exists(output_file):
  504. print(f"Downloading {url} to {output_file}")
  505. wget.download(url, out=output_file)
  506. print(f"Done downloading to {output_file}")
  507. else:
  508. print(f"File already exists at {output_file}")
  509. return output_file
  510. def is_slow_test_allowed():
  511. return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"