| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- /*
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
- #include "acl_tensor.h"
- #include <algorithm>
- #include <cstring>
- aclDataType ggml_cann_type_mapping(ggml_type type) {
- switch (type) {
- case GGML_TYPE_F32:
- return ACL_FLOAT;
- case GGML_TYPE_F16:
- return ACL_FLOAT16;
- case GGML_TYPE_I8:
- return ACL_INT8;
- case GGML_TYPE_I16:
- return ACL_INT16;
- case GGML_TYPE_I32:
- return ACL_INT32;
- default:
- return ACL_DT_UNDEFINED;
- }
- return ACL_DT_UNDEFINED;
- }
- aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
- size_t* nb, int64_t dims, aclFormat format,
- size_t offset) {
- // If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
- // added.
- int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
- int64_t acl_storage_len = 0;
- if (ne == nullptr) {
- acl_storage_len = ggml_nbytes(tensor);
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- acl_ne[i] = tensor->ne[i];
- // The step size of acl is in elements.
- acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
- }
- } else {
- // With bcast
- for (int i = 0; i < dims; i++) {
- acl_storage_len += (ne[i] - 1) * nb[i];
- acl_ne[i] = ne[i];
- acl_stride[i] = nb[i] / ggml_element_size(tensor);
- }
- }
- // Reverse ne and stride.
- int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
- std::reverse(acl_ne, acl_ne + final_dims);
- std::reverse(acl_stride, acl_stride + final_dims);
- aclTensor* acl_tensor = aclCreateTensor(
- acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
- offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
- tensor->data);
- return acl_tensor;
- }
- bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
- return true;
- }
- }
- return false;
- }
- aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
- size_t type_size, int64_t* ne, size_t* nb,
- int64_t dims, aclFormat format,
- size_t offset) {
- int64_t tmp_ne[GGML_MAX_DIMS * 2];
- int64_t tmp_stride[GGML_MAX_DIMS * 2];
- memcpy(tmp_ne, ne, dims * sizeof(int64_t));
- for (int i = 0; i < dims; i++) {
- tmp_stride[i] = nb[i] / type_size;
- }
- std::reverse(tmp_ne, tmp_ne + dims);
- std::reverse(tmp_stride, tmp_stride + dims);
- int64_t acl_storage_len = 0;
- for (int i = 0; i < dims; i++) {
- acl_storage_len += (ne[i] - 1) * nb[i];
- }
- aclTensor* acl_tensor =
- aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
- format, &acl_storage_len, 1, data_ptr);
- return acl_tensor;
- }
- int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
- const ggml_tensor* src1,
- int64_t* bcast_src0_ne,
- int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
- size_t* bcast_src1_nb) {
- GGML_ASSERT(ggml_can_repeat(src1, src0));
- int bcast_dim_cnt = 0;
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- int64_t nr = src0->ne[i] / src1->ne[i];
- bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
- bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
- bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
- bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
- bcast_dim_cnt++;
- if (nr != 1) {
- // Need to add an extra dim.
- bcast_src0_ne[bcast_dim_cnt] = nr;
- bcast_src1_ne[bcast_dim_cnt] = 1;
- bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
- bcast_src0_ne[bcast_dim_cnt - 1];
- bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
- bcast_src1_ne[bcast_dim_cnt - 1];
- bcast_dim_cnt++;
- }
- }
- return bcast_dim_cnt;
- }
- int64_t ggml_cann_get_mulmat_bcast_shape(
- const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
- const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
- int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
- size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
- // input and dst shoule in same shape, except first two dims.
- GGML_ASSERT(input_ne[2] == dst_ne[2]);
- GGML_ASSERT(input_ne[3] == dst_ne[3]);
- int bcast_dim_cnt = 0;
- // For mul_mat, a dimension needs to be added before the dimension that
- // weight needs to be expanded to satisfy the bcast rule of matrix
- // multiplication.
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- int64_t nr = input_ne[i] / weight_ne[i];
- // Do not use bcast in the first two dimensions because we only support
- // the bcast batch dimension. Just copy them.
- if (i < 2 || nr == 1) {
- bcast_input_ne[bcast_dim_cnt] = input_ne[i];
- bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
- bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
- bcast_input_nb[bcast_dim_cnt] = input_nb[i];
- bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
- bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
- bcast_dim_cnt++;
- } else {
- // Need to add an extra dim.
- bcast_input_ne[bcast_dim_cnt] = nr;
- bcast_dst_ne[bcast_dim_cnt] = nr;
- bcast_weight_ne[bcast_dim_cnt] = 1;
- bcast_input_nb[bcast_dim_cnt] = input_nb[i];
- bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
- bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
- bcast_dim_cnt++;
- bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
- bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
- bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
- bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
- bcast_input_ne[bcast_dim_cnt - 1];
- bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
- bcast_dst_ne[bcast_dim_cnt - 1];
- bcast_weight_nb[bcast_dim_cnt] =
- bcast_weight_nb[bcast_dim_cnt - 1] *
- bcast_weight_ne[bcast_dim_cnt - 1];
- bcast_dim_cnt++;
- }
- }
- return bcast_dim_cnt;
- }
|