ggml.c 386 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include <cublas_v2.h>
  128. #include <cuda_runtime.h>
  129. #include "ggml-cuda.h"
  130. #define CUDA_CHECK(err) \
  131. do { \
  132. cudaError_t err_ = (err); \
  133. if (err_ != cudaSuccess) { \
  134. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  135. cudaGetErrorString(err_)); \
  136. exit(1); \
  137. } \
  138. } while (0)
  139. #define CUBLAS_CHECK(err) \
  140. do { \
  141. cublasStatus_t err_ = (err); \
  142. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  143. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  144. exit(1); \
  145. } \
  146. } while (0)
  147. static cublasHandle_t cublasH = NULL;
  148. static cudaStream_t cudaStream = NULL;
  149. static void init_cublas(void) {
  150. if (cublasH == NULL) {
  151. // create cublas handle, bind a stream
  152. CUBLAS_CHECK(cublasCreate(&cublasH));
  153. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  154. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  155. // configure logging to stdout
  156. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  157. }
  158. }
  159. #endif
  160. #undef MIN
  161. #undef MAX
  162. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  163. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  164. // floating point type used to accumulate sums
  165. typedef double ggml_float;
  166. // 16-bit float
  167. // on Arm, we use __fp16
  168. // on x86, we use uint16_t
  169. #ifdef __ARM_NEON
  170. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  171. //
  172. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  173. //
  174. #include <arm_neon.h>
  175. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  176. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  177. #define GGML_FP16_TO_FP32(x) ((float) (x))
  178. #define GGML_FP32_TO_FP16(x) (x)
  179. #else
  180. #ifdef __wasm_simd128__
  181. #include <wasm_simd128.h>
  182. #else
  183. #ifdef __POWER9_VECTOR__
  184. #include <altivec.h>
  185. #undef bool
  186. #define bool _Bool
  187. #else
  188. #include <immintrin.h>
  189. #endif
  190. #endif
  191. #ifdef __F16C__
  192. #ifdef _MSC_VER
  193. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  194. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  195. #else
  196. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  197. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  198. #endif
  199. #elif defined(__POWER9_VECTOR__)
  200. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  201. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  202. /* the inline asm below is about 12% faster than the lookup method */
  203. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  204. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  205. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  206. register float f;
  207. register double d;
  208. __asm__(
  209. "mtfprd %0,%2\n"
  210. "xscvhpdp %0,%0\n"
  211. "frsp %1,%0\n" :
  212. /* temp */ "=d"(d),
  213. /* out */ "=f"(f):
  214. /* in */ "r"(h));
  215. return f;
  216. }
  217. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  218. register double d;
  219. register ggml_fp16_t r;
  220. __asm__( /* xscvdphp can work on double or single precision */
  221. "xscvdphp %0,%2\n"
  222. "mffprd %1,%0\n" :
  223. /* temp */ "=d"(d),
  224. /* out */ "=r"(r):
  225. /* in */ "f"(f));
  226. return r;
  227. }
  228. #else
  229. // FP16 <-> FP32
  230. // ref: https://github.com/Maratyszcza/FP16
  231. static inline float fp32_from_bits(uint32_t w) {
  232. union {
  233. uint32_t as_bits;
  234. float as_value;
  235. } fp32;
  236. fp32.as_bits = w;
  237. return fp32.as_value;
  238. }
  239. static inline uint32_t fp32_to_bits(float f) {
  240. union {
  241. float as_value;
  242. uint32_t as_bits;
  243. } fp32;
  244. fp32.as_value = f;
  245. return fp32.as_bits;
  246. }
  247. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  248. const uint32_t w = (uint32_t) h << 16;
  249. const uint32_t sign = w & UINT32_C(0x80000000);
  250. const uint32_t two_w = w + w;
  251. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  252. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  253. const float exp_scale = 0x1.0p-112f;
  254. #else
  255. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  256. #endif
  257. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  258. const uint32_t magic_mask = UINT32_C(126) << 23;
  259. const float magic_bias = 0.5f;
  260. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  261. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  262. const uint32_t result = sign |
  263. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  264. return fp32_from_bits(result);
  265. }
  266. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  267. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  268. const float scale_to_inf = 0x1.0p+112f;
  269. const float scale_to_zero = 0x1.0p-110f;
  270. #else
  271. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  272. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  273. #endif
  274. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  275. const uint32_t w = fp32_to_bits(f);
  276. const uint32_t shl1_w = w + w;
  277. const uint32_t sign = w & UINT32_C(0x80000000);
  278. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  279. if (bias < UINT32_C(0x71000000)) {
  280. bias = UINT32_C(0x71000000);
  281. }
  282. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  283. const uint32_t bits = fp32_to_bits(base);
  284. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  285. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  286. const uint32_t nonsign = exp_bits + mantissa_bits;
  287. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  288. }
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  291. #endif // __F16C__
  292. #endif // __ARM_NEON
  293. //
  294. // global data
  295. //
  296. // precomputed gelu table for f16 (128 KB)
  297. static ggml_fp16_t table_gelu_f16[1 << 16];
  298. // precomputed silu table for f16 (128 KB)
  299. static ggml_fp16_t table_silu_f16[1 << 16];
  300. // precomputed exp table for f16 (128 KB)
  301. static ggml_fp16_t table_exp_f16[1 << 16];
  302. // precomputed f32 table for f16 (256 KB)
  303. static float table_f32_f16[1 << 16];
  304. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  305. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  306. // This is also true for POWER9.
  307. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  308. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  309. uint16_t s;
  310. memcpy(&s, &f, sizeof(uint16_t));
  311. return table_f32_f16[s];
  312. }
  313. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  314. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  315. #endif
  316. // note: do not use these inside ggml.c
  317. // these are meant to be used via the ggml.h API
  318. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  319. return (float) GGML_FP16_TO_FP32(x);
  320. }
  321. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  322. return GGML_FP32_TO_FP16(x);
  323. }
  324. //
  325. // timing
  326. //
  327. #if defined(_MSC_VER) || defined(__MINGW32__)
  328. static int64_t timer_freq;
  329. void ggml_time_init(void) {
  330. LARGE_INTEGER frequency;
  331. QueryPerformanceFrequency(&frequency);
  332. timer_freq = frequency.QuadPart;
  333. }
  334. int64_t ggml_time_ms(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return (t.QuadPart * 1000) / timer_freq;
  338. }
  339. int64_t ggml_time_us(void) {
  340. LARGE_INTEGER t;
  341. QueryPerformanceCounter(&t);
  342. return (t.QuadPart * 1000000) / timer_freq;
  343. }
  344. #else
  345. void ggml_time_init(void) {}
  346. int64_t ggml_time_ms(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  350. }
  351. int64_t ggml_time_us(void) {
  352. struct timespec ts;
  353. clock_gettime(CLOCK_MONOTONIC, &ts);
  354. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  355. }
  356. #endif
  357. int64_t ggml_cycles(void) {
  358. return clock();
  359. }
  360. int64_t ggml_cycles_per_ms(void) {
  361. return CLOCKS_PER_SEC/1000;
  362. }
  363. #ifdef GGML_PERF
  364. #define ggml_perf_time_ms() ggml_time_ms()
  365. #define ggml_perf_time_us() ggml_time_us()
  366. #define ggml_perf_cycles() ggml_cycles()
  367. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  368. #else
  369. #define ggml_perf_time_ms() 0
  370. #define ggml_perf_time_us() 0
  371. #define ggml_perf_cycles() 0
  372. #define ggml_perf_cycles_per_ms() 0
  373. #endif
  374. //
  375. // cache line
  376. //
  377. #if defined(__cpp_lib_hardware_interference_size)
  378. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  379. #else
  380. #if defined(__POWER9_VECTOR__)
  381. #define CACHE_LINE_SIZE 128
  382. #else
  383. #define CACHE_LINE_SIZE 64
  384. #endif
  385. #endif
  386. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  387. //
  388. // quantization
  389. //
  390. #if __AVX__ || __AVX2__ || __AVX512F__
  391. // Unpack 16 4-bit fields into 16 bytes
  392. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  393. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  394. {
  395. // Load 8 bytes from memory
  396. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  397. // Expand bytes into uint16_t values
  398. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  399. // Unpack values into individual bytes
  400. const __m128i lowMask = _mm_set1_epi8( 0xF );
  401. __m128i high = _mm_andnot_si128( lowMask, bytes );
  402. __m128i low = _mm_and_si128( lowMask, bytes );
  403. high = _mm_slli_epi16( high, 4 );
  404. bytes = _mm_or_si128( low, high );
  405. return bytes;
  406. }
  407. #if __AVX2__ || __AVX512F__
  408. // Unpack 32 4-bit fields into 32 bytes
  409. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  410. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  411. {
  412. // Load 16 bytes from memory
  413. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  414. // Expand bytes into uint16_t values
  415. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  416. // Unpack values into individual bytes
  417. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  418. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  419. __m256i low = _mm256_and_si256( lowMask, bytes );
  420. high = _mm256_slli_epi16( high, 4 );
  421. bytes = _mm256_or_si256( low, high );
  422. return bytes;
  423. }
  424. static inline __m128i packNibbles( __m256i bytes )
  425. {
  426. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  427. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  428. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  429. __m256i low = _mm256_and_si256( lowByte, bytes );
  430. high = _mm256_srli_epi16( high, 4 );
  431. bytes = _mm256_or_si256( low, high );
  432. // Compress uint16_t lanes into bytes
  433. __m128i r0 = _mm256_castsi256_si128( bytes );
  434. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  435. return _mm_packus_epi16( r0, r1 );
  436. }
  437. #else
  438. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  439. {
  440. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  441. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  442. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  443. __m128i low = _mm_and_si128( lowByte, bytes1 );
  444. high = _mm_srli_epi16( high, 4 );
  445. bytes1 = _mm_or_si128( low, high );
  446. high = _mm_andnot_si128( lowByte, bytes2 );
  447. low = _mm_and_si128( lowByte, bytes2 );
  448. high = _mm_srli_epi16( high, 4 );
  449. bytes2 = _mm_or_si128( low, high );
  450. return _mm_packus_epi16( bytes1, bytes2);
  451. }
  452. #endif
  453. #endif // __AVX__ || __AVX2__ || __AVX512F__
  454. #if __ARM_NEON
  455. #if !defined(__aarch64__)
  456. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  457. return
  458. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  459. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  460. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  461. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  462. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  463. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  464. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  465. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  466. }
  467. inline static int16_t vaddvq_s8(int8x16_t v) {
  468. return
  469. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  470. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  471. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  472. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  473. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  474. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  475. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  476. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  477. }
  478. inline static int32_t vaddvq_s16(int16x8_t v) {
  479. return
  480. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  481. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  482. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  483. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  484. }
  485. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  486. return
  487. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  488. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  489. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  490. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  491. }
  492. inline static int32_t vaddvq_s32(int32x4_t v) {
  493. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  494. }
  495. inline static float vaddvq_f32(float32x4_t v) {
  496. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  497. }
  498. float vminvq_f32(float32x4_t v) {
  499. return
  500. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  501. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  502. }
  503. float vmaxvq_f32(float32x4_t v) {
  504. return
  505. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  506. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  507. }
  508. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  509. return vget_low_s8(vcombine_s8(a, b));
  510. }
  511. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  512. return vget_high_s8(vcombine_s8(a, b));
  513. }
  514. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  515. return vget_low_u8(vcombine_u8(a, b));
  516. }
  517. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  518. return vget_high_u8(vcombine_u8(a, b));
  519. }
  520. #endif
  521. #endif
  522. #define QK4_0 32
  523. typedef struct {
  524. float d; // delta
  525. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  526. } block_q4_0;
  527. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  528. #define QK4_1 32
  529. typedef struct {
  530. float d; // delta
  531. float m; // min
  532. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  533. } block_q4_1;
  534. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  535. #define QK4_2 16
  536. typedef struct {
  537. ggml_fp16_t d; // delta
  538. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  539. } block_q4_2;
  540. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  541. #define QK4_3 16
  542. typedef struct {
  543. ggml_fp16_t d; // delta
  544. ggml_fp16_t m; // min
  545. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  546. } block_q4_3;
  547. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  548. #define QK8_0 32
  549. typedef struct {
  550. float d; // delta
  551. float s; // d * sum(qs[i])
  552. int8_t qs[QK8_0]; // quants
  553. } block_q8_0;
  554. static_assert(sizeof(block_q8_0) == 2*sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  555. // reference implementation for deterministic creation of model files
  556. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  557. assert(k % QK4_0 == 0);
  558. const int nb = k / QK4_0;
  559. uint8_t pp[QK4_0/2];
  560. for (int i = 0; i < nb; i++) {
  561. float amax = 0.0f; // absolute max
  562. for (int l = 0; l < QK4_0; l++) {
  563. const float v = x[i*QK4_0 + l];
  564. amax = MAX(amax, fabsf(v));
  565. }
  566. const float d = amax / ((1 << 3) - 1);
  567. const float id = d ? 1.0f/d : 0.0f;
  568. y[i].d = d;
  569. for (int l = 0; l < QK4_0; l += 2) {
  570. const float v0 = x[i*QK4_0 + l + 0]*id;
  571. const float v1 = x[i*QK4_0 + l + 1]*id;
  572. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  573. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  574. assert(vi0 < 16);
  575. assert(vi1 < 16);
  576. pp[l/2] = vi0 | (vi1 << 4);
  577. }
  578. memcpy(y[i].qs, pp, sizeof(pp));
  579. }
  580. }
  581. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  582. assert(k % QK4_0 == 0);
  583. const int nb = k / QK4_0;
  584. block_q4_0 * restrict y = vy;
  585. #if defined(__POWER9_VECTOR__)
  586. const vector float v85 = vec_splats(8.5f);
  587. for (int i = 0; i < nb; i++) {
  588. float amax = 0.0f; // absolute max
  589. vector float srcv [8];
  590. vector float asrcv[8];
  591. vector float amaxv[8];
  592. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  593. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  594. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  595. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  596. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  597. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  598. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  599. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  600. amax = MAX(
  601. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  602. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  603. const float d = amax / ((1 << 3) - 1);
  604. const float id = d ? 1.0/d : 0.0;
  605. y[i].d = d;
  606. const vector float vid = vec_splats(id);
  607. uint8_t * restrict pb = y[i].qs;
  608. for (int l = 0; l < 8; l++) {
  609. const vector float vf = vec_madd(srcv[l], vid, v85);
  610. const vector signed int vi = vec_signed(vf);
  611. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  612. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  613. }
  614. }
  615. #elif __ARM_NEON
  616. for (int i = 0; i < nb; i++) {
  617. float32x4_t srcv [8];
  618. float32x4_t asrcv[8];
  619. float32x4_t amaxv[8];
  620. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  621. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  622. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  623. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  624. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  625. const float amax = vmaxvq_f32(amaxv[0]);
  626. const float d = amax / ((1 << 3) - 1);
  627. const float id = d ? 1.0f/d : 0.0f;
  628. y[i].d = d;
  629. for (int l = 0; l < 8; l++) {
  630. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  631. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  632. const int32x4_t vi = vcvtq_s32_f32(vf);
  633. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  634. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  635. }
  636. }
  637. #elif defined(__AVX2__)
  638. for (int i = 0; i < nb; i++) {
  639. // Load elements into 4 AVX vectors
  640. __m256 v0 = _mm256_loadu_ps( x );
  641. __m256 v1 = _mm256_loadu_ps( x + 8 );
  642. __m256 v2 = _mm256_loadu_ps( x + 16 );
  643. __m256 v3 = _mm256_loadu_ps( x + 24 );
  644. x += 32;
  645. // Compute max(abs(e)) for the block
  646. const __m256 signBit = _mm256_set1_ps( -0.0f );
  647. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  648. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  649. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  650. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  651. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  652. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  653. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  654. const float maxScalar = _mm_cvtss_f32( max4 );
  655. // Quantize these floats
  656. const float d = maxScalar / 7.0f;
  657. y[i].d = d;
  658. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  659. const __m256 mul = _mm256_set1_ps( id );
  660. // Apply the multiplier
  661. v0 = _mm256_mul_ps( v0, mul );
  662. v1 = _mm256_mul_ps( v1, mul );
  663. v2 = _mm256_mul_ps( v2, mul );
  664. v3 = _mm256_mul_ps( v3, mul );
  665. // Round to nearest integer
  666. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  667. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  668. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  669. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  670. // Convert floats to integers
  671. __m256i i0 = _mm256_cvtps_epi32( v0 );
  672. __m256i i1 = _mm256_cvtps_epi32( v1 );
  673. __m256i i2 = _mm256_cvtps_epi32( v2 );
  674. __m256i i3 = _mm256_cvtps_epi32( v3 );
  675. // Convert int32 to int16
  676. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  677. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  678. // Convert int16 to int8
  679. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  680. // We got our precious signed bytes, but the order is now wrong
  681. // These AVX2 pack instructions process 16-byte pieces independently
  682. // The following instruction is fixing the order
  683. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  684. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  685. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  686. const __m256i off = _mm256_set1_epi8( 8 );
  687. i0 = _mm256_add_epi8( i0, off );
  688. // Compress the vector into 4 bit/value, and store
  689. __m128i res = packNibbles( i0 );
  690. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  691. }
  692. #elif defined(__AVX__)
  693. for (int i = 0; i < nb; i++) {
  694. // Load elements into 4 AVX vectors
  695. __m256 v0 = _mm256_loadu_ps( x );
  696. __m256 v1 = _mm256_loadu_ps( x + 8 );
  697. __m256 v2 = _mm256_loadu_ps( x + 16 );
  698. __m256 v3 = _mm256_loadu_ps( x + 24 );
  699. x += 32;
  700. // Compute max(abs(e)) for the block
  701. const __m256 signBit = _mm256_set1_ps( -0.0f );
  702. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  703. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  704. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  705. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  706. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  707. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  708. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  709. const float maxScalar = _mm_cvtss_f32( max4 );
  710. // Quantize these floats
  711. const float d = maxScalar / 7.0f;
  712. y[i].d = d;
  713. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  714. const __m256 mul = _mm256_set1_ps( id );
  715. // Apply the multiplier
  716. v0 = _mm256_mul_ps( v0, mul );
  717. v1 = _mm256_mul_ps( v1, mul );
  718. v2 = _mm256_mul_ps( v2, mul );
  719. v3 = _mm256_mul_ps( v3, mul );
  720. // Round to nearest integer
  721. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  722. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  723. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  724. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  725. // Convert floats to integers
  726. __m256i i0 = _mm256_cvtps_epi32( v0 );
  727. __m256i i1 = _mm256_cvtps_epi32( v1 );
  728. __m256i i2 = _mm256_cvtps_epi32( v2 );
  729. __m256i i3 = _mm256_cvtps_epi32( v3 );
  730. // Since we don't have in AVX some necessary functions,
  731. // we split the registers in half and call AVX2 analogs from SSE
  732. __m128i ni0 = _mm256_castsi256_si128( i0 );
  733. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  734. __m128i ni2 = _mm256_castsi256_si128( i1 );
  735. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  736. __m128i ni4 = _mm256_castsi256_si128( i2 );
  737. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  738. __m128i ni6 = _mm256_castsi256_si128( i3 );
  739. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  740. // Convert int32 to int16
  741. ni0 = _mm_packs_epi32( ni0, ni1 );
  742. ni2 = _mm_packs_epi32( ni2, ni3 );
  743. ni4 = _mm_packs_epi32( ni4, ni5 );
  744. ni6 = _mm_packs_epi32( ni6, ni7 );
  745. // Convert int16 to int8
  746. ni0 = _mm_packs_epi16( ni0, ni2 );
  747. ni4 = _mm_packs_epi16( ni4, ni6 );
  748. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  749. const __m128i off = _mm_set1_epi8( 8);
  750. ni0 = _mm_add_epi8( ni0, off );
  751. ni4 = _mm_add_epi8( ni4, off );
  752. // Compress the vector into 4 bit/value, and store
  753. __m128i res = packNibbles( ni0, ni4 );
  754. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  755. }
  756. #elif defined(__wasm_simd128__)
  757. for (int i = 0; i < nb; i++) {
  758. float amax = 0.0f; // absolute max
  759. v128_t srcv [8];
  760. v128_t asrcv[8];
  761. v128_t amaxv[8];
  762. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  763. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  764. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  765. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  766. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  767. amax = MAX(
  768. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  769. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  770. const float d = amax / ((1 << 3) - 1);
  771. const float id = d ? 1.0/d : 0.0;
  772. y[i].d = d;
  773. for (int l = 0; l < 8; l++) {
  774. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  775. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  776. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  777. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  778. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  779. }
  780. }
  781. #else
  782. // scalar
  783. quantize_row_q4_0_reference(x, y, k);
  784. #endif
  785. }
  786. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  787. assert(k % QK4_1 == 0);
  788. const int nb = k / QK4_1;
  789. block_q4_1 * restrict y = vy;
  790. uint8_t pp[QK4_1/2];
  791. for (int i = 0; i < nb; i++) {
  792. float min = FLT_MAX;
  793. float max = -FLT_MAX;
  794. for (int l = 0; l < QK4_1; l++) {
  795. const float v = x[i*QK4_1 + l];
  796. if (v < min) min = v;
  797. if (v > max) max = v;
  798. }
  799. const float d = (max - min) / ((1 << 4) - 1);
  800. const float id = d ? 1.0f/d : 0.0f;
  801. y[i].d = d;
  802. y[i].m = min;
  803. for (int l = 0; l < QK4_1; l += 2) {
  804. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  805. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  806. const uint8_t vi0 = roundf(v0);
  807. const uint8_t vi1 = roundf(v1);
  808. assert(vi0 < 16);
  809. assert(vi1 < 16);
  810. pp[l/2] = vi0 | (vi1 << 4);
  811. }
  812. memcpy(y[i].qs, pp, sizeof(pp));
  813. }
  814. }
  815. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  816. assert(k % QK4_1 == 0);
  817. const int nb = k / QK4_1;
  818. block_q4_1 * restrict y = vy;
  819. #if defined(__AVX2__)
  820. for (int i = 0; i < nb; i++) {
  821. // Load elements into 4 AVX vectors
  822. __m256 v0 = _mm256_loadu_ps( x );
  823. __m256 v1 = _mm256_loadu_ps( x + 8 );
  824. __m256 v2 = _mm256_loadu_ps( x + 16 );
  825. __m256 v3 = _mm256_loadu_ps( x + 24 );
  826. x += 32;
  827. // Compute max for the block
  828. __m256 vmax;
  829. vmax = _mm256_max_ps( v0, v1 );
  830. vmax = _mm256_max_ps( vmax, v2 );
  831. vmax = _mm256_max_ps( vmax, v3 );
  832. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  833. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  834. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  835. const float maxScalar = _mm_cvtss_f32( max4 );
  836. // Compute min for the block
  837. __m256 vmin;
  838. vmin = _mm256_min_ps( v0, v1 );
  839. vmin = _mm256_min_ps( vmin, v2 );
  840. vmin = _mm256_min_ps( vmin, v3 );
  841. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  842. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  843. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  844. const float minScalar = _mm_cvtss_f32( min4 );
  845. // Quantize these floats
  846. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  847. const float id = d ? 1.0f/d : 0.0f;
  848. y[i].m = minScalar;
  849. y[i].d = d;
  850. // x = (x-min)*id
  851. const __m256 mul = _mm256_set1_ps( id );
  852. const __m256 off = _mm256_set1_ps( minScalar );
  853. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  854. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  855. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  856. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  857. // Round to nearest integer
  858. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  859. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  860. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  861. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  862. // Convert floats to integers
  863. __m256i i0 = _mm256_cvtps_epi32( v0 );
  864. __m256i i1 = _mm256_cvtps_epi32( v1 );
  865. __m256i i2 = _mm256_cvtps_epi32( v2 );
  866. __m256i i3 = _mm256_cvtps_epi32( v3 );
  867. // Convert int32 to int16
  868. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  869. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  870. // Convert int16 to int8
  871. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  872. // We got our precious signed bytes, but the order is now wrong
  873. // These AVX2 pack instructions process 16-byte pieces independently
  874. // The following instruction is fixing the order
  875. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  876. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  877. // Compress the vector into 4 bit/value, and store
  878. __m128i res = packNibbles( i0 );
  879. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  880. }
  881. #elif __ARM_NEON
  882. for (int i = 0; i < nb; i++) {
  883. float32x4_t srcv[8];
  884. float32x4_t minv[8];
  885. float32x4_t maxv[8];
  886. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  887. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  888. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  889. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  890. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  891. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  892. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  893. const float min = vminvq_f32(minv[0]);
  894. const float max = vmaxvq_f32(maxv[0]);
  895. const float d = (max - min) / ((1 << 4) - 1);
  896. const float id = d ? 1.0f/d : 0.0f;
  897. y[i].d = d;
  898. y[i].m = min;
  899. const float32x4_t minv0 = vdupq_n_f32(min);
  900. for (int l = 0; l < 8; l++) {
  901. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  902. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  903. const int32x4_t vi = vcvtq_s32_f32(vf);
  904. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  905. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  906. }
  907. }
  908. #else
  909. // scalar
  910. quantize_row_q4_1_reference(x, vy, k);
  911. #endif
  912. }
  913. // reference implementation for deterministic creation of model files
  914. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  915. assert(k % QK4_2 == 0);
  916. const int nb = k / QK4_2;
  917. for (int i = 0; i < nb; i++) {
  918. float amax = 0.0f; // absolute max
  919. for (int l = 0; l < QK4_2; l++) {
  920. const float v = x[i*QK4_2 + l];
  921. amax = MAX(amax, fabsf(v));
  922. }
  923. const float d = amax / ((1 << 3) - 1);
  924. const float id = d ? 1.0f/d : 0.0f;
  925. y[i].d = GGML_FP32_TO_FP16(d);
  926. for (int l = 0; l < QK4_2; l += 2) {
  927. const float v0 = x[i*QK4_2 + l + 0]*id;
  928. const float v1 = x[i*QK4_2 + l + 1]*id;
  929. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  930. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  931. assert(vi0 < 16);
  932. assert(vi1 < 16);
  933. y[i].qs[l/2] = vi0 | (vi1 << 4);
  934. }
  935. }
  936. }
  937. static inline int nearest_int(float fval) {
  938. assert(fval <= 4194303.f);
  939. float val = fval + 12582912.f;
  940. int i; memcpy(&i, &val, sizeof(int));
  941. return (i & 0x007fffff) - 0x00400000;
  942. }
  943. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  944. const float * restrict candidates, int8_t * restrict L) {
  945. assert (nmin >= INT8_MIN);
  946. assert (nmax <= INT8_MAX);
  947. float amax = 0;
  948. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  949. if (!amax) { // all zero
  950. for (int i=0; i<n; ++i) L[i] = 0;
  951. return 1.f;
  952. }
  953. float best = 0, bestScale = 0;
  954. for (int si=0; si<nCandidates; ++si) {
  955. float iscale = candidates[si]/amax;
  956. float sumlxP = 0; int suml2P = 0;
  957. float sumlxM = 0; int suml2M = 0;
  958. for (int i=0; i<n; ++i) {
  959. int l = nearest_int(iscale*X[i]);
  960. int lp = MAX(nmin, MIN(nmax, +l));
  961. int lm = MAX(nmin, MIN(nmax, -l));
  962. sumlxP += X[i]*lp; suml2P += lp*lp;
  963. sumlxM += X[i]*lm; suml2M += lm*lm;
  964. }
  965. float sumlxP2 = sumlxP*sumlxP;
  966. float sumlxM2 = sumlxM*sumlxM;
  967. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  968. if (sumlxP2 > best*suml2P) {
  969. best = sumlxP2/suml2P; bestScale = iscale;
  970. }
  971. } else {
  972. if (sumlxM2 > best*suml2M) {
  973. best = sumlxM2/suml2M; bestScale = -iscale;
  974. }
  975. }
  976. }
  977. float sumlx = 0; int suml2 = 0;
  978. for (int i=0; i<n; ++i) {
  979. int l = nearest_int(bestScale*X[i]);
  980. l = MAX(nmin, MIN(nmax, l));
  981. sumlx += X[i]*l; suml2 += l*l;
  982. L[i] = l;
  983. }
  984. float scale = sumlx/suml2;
  985. return scale;
  986. }
  987. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  988. #define CANDIDATE_COUNT 8
  989. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  990. assert(k % QK4_2 == 0);
  991. int8_t L[QK4_2];
  992. const int nb = k / QK4_2;
  993. for (int i = 0; i < nb; i++) {
  994. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  995. y[i].d = GGML_FP32_TO_FP16(scale);
  996. for (int l = 0; l < QK4_2; l += 2) {
  997. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  998. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  999. assert(vi0 < 16);
  1000. assert(vi1 < 16);
  1001. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1002. }
  1003. x += QK4_2;
  1004. }
  1005. }
  1006. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1007. assert(k % QK4_2 == 0);
  1008. block_q4_2 * restrict y = vy;
  1009. //quantize_row_q4_2_reference(x, y, k);
  1010. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1011. quantize_row_q4_2_rmse(x, y, k);
  1012. }
  1013. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1014. assert(k % QK4_3 == 0);
  1015. const int nb = k / QK4_3;
  1016. for (int i = 0; i < nb; i++) {
  1017. float min = FLT_MAX;
  1018. float max = -FLT_MAX;
  1019. for (int l = 0; l < QK4_3; l++) {
  1020. const float v = x[i*QK4_3 + l];
  1021. if (v < min) min = v;
  1022. if (v > max) max = v;
  1023. }
  1024. const float d = (max - min) / ((1 << 4) - 1);
  1025. const float id = d ? 1.0f/d : 0.0f;
  1026. y[i].d = GGML_FP32_TO_FP16(d);
  1027. y[i].m = GGML_FP32_TO_FP16(min);
  1028. for (int l = 0; l < QK4_3; l += 2) {
  1029. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1030. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1031. const uint8_t vi0 = (int) (v0 + 0.5f);
  1032. const uint8_t vi1 = (int) (v1 + 0.5f);
  1033. assert(vi0 < 16);
  1034. assert(vi1 < 16);
  1035. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1036. }
  1037. }
  1038. }
  1039. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1040. assert(k % QK4_3 == 0);
  1041. block_q4_3 * restrict y = vy;
  1042. quantize_row_q4_3_reference(x, y, k);
  1043. }
  1044. // reference implementation for deterministic creation of model files
  1045. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1046. assert(k % QK8_0 == 0);
  1047. const int nb = k / QK8_0;
  1048. for (int i = 0; i < nb; i++) {
  1049. float amax = 0.0f; // absolute max
  1050. for (int l = 0; l < QK8_0; l++) {
  1051. const float v = x[i*QK8_0 + l];
  1052. amax = MAX(amax, fabsf(v));
  1053. }
  1054. const float d = amax / ((1 << 7) - 1);
  1055. const float id = d ? 1.0f/d : 0.0f;
  1056. y[i].d = d;
  1057. int sum = 0;
  1058. for (int l = 0; l < QK8_0; ++l) {
  1059. const float v = x[i*QK8_0 + l]*id;
  1060. y[i].qs[l] = roundf(v);
  1061. sum += y[i].qs[l];
  1062. }
  1063. y[i].s = d * sum;
  1064. }
  1065. }
  1066. #ifdef __AVX2__
  1067. // There is no better way of doing this?
  1068. // I guess not, AVX is not very good at horizontal sums.
  1069. // The commented solution for a hotrizontal sum was suggested by @pubby as being slightly
  1070. // faster than the solution below. As I don't have an AVX2 system handt right now to test,
  1071. // keeping the original.
  1072. // TODO: Please try and if it does make a differece, uncomment and remove the implementation below.
  1073. //static inline float horizontal_sum(__m256i a) {
  1074. // __m256i b = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(a)));
  1075. // __m256i sum = _mm256_add_epi32(a, b);
  1076. // __m256i hi = _mm256_unpackhi_epi64(sum, sum);
  1077. // sum = _mm256_add_epi32(sum, hi);
  1078. // return _mm256_cvtsi256_si32(sum) + _mm256_extract_epi32(sum, 4);
  1079. //}
  1080. static inline float horizontal_sum(__m256i a) {
  1081. __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extracti128_si256(a, 1));
  1082. __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  1083. __m128i sum64 = _mm_add_epi32(hi64, sum128);
  1084. __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  1085. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  1086. }
  1087. #endif
  1088. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1089. assert(k % QK8_0 == 0);
  1090. const int nb = k / QK8_0;
  1091. block_q8_0 * restrict y = vy;
  1092. #if defined(__ARM_NEON)
  1093. for (int i = 0; i < nb; i++) {
  1094. float32x4_t srcv [8];
  1095. float32x4_t asrcv[8];
  1096. float32x4_t amaxv[8];
  1097. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1098. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1099. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1100. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1101. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1102. const float amax = vmaxvq_f32(amaxv[0]);
  1103. const float d = amax / ((1 << 7) - 1);
  1104. const float id = d ? 1.0f/d : 0.0f;
  1105. y[i].d = d;
  1106. int32x4_t accv = vdupq_n_s32(0);
  1107. for (int l = 0; l < 8; l++) {
  1108. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1109. const int32x4_t vi = vcvtnq_s32_f32(v);
  1110. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1111. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1112. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1113. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1114. accv = vaddq_s32(accv, vi);
  1115. }
  1116. int32_t sum = vaddvq_s32(accv);
  1117. y[i].s = d * sum;
  1118. }
  1119. #elif defined(__AVX2__) || defined(__AVX__)
  1120. for (int i = 0; i < nb; i++) {
  1121. // Load elements into 4 AVX vectors
  1122. __m256 v0 = _mm256_loadu_ps( x );
  1123. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1124. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1125. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1126. x += 32;
  1127. // Compute max(abs(e)) for the block
  1128. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1129. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1130. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1131. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1132. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1133. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1134. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1135. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1136. const float maxScalar = _mm_cvtss_f32( max4 );
  1137. // Quantize these floats
  1138. const float d = maxScalar / 127.f;
  1139. y[i].d = d;
  1140. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1141. const __m256 mul = _mm256_set1_ps( id );
  1142. // Apply the multiplier
  1143. v0 = _mm256_mul_ps( v0, mul );
  1144. v1 = _mm256_mul_ps( v1, mul );
  1145. v2 = _mm256_mul_ps( v2, mul );
  1146. v3 = _mm256_mul_ps( v3, mul );
  1147. // Round to nearest integer
  1148. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1149. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1150. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1151. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1152. // Convert floats to integers
  1153. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1154. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1155. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1156. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1157. #if defined(__AVX2__)
  1158. // Compute the sum of the quants and set y[i].s
  1159. y[i].s = d * horizontal_sum(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1160. // Convert int32 to int16
  1161. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1162. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1163. // Convert int16 to int8
  1164. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1165. // We got our precious signed bytes, but the order is now wrong
  1166. // These AVX2 pack instructions process 16-byte pieces independently
  1167. // The following instruction is fixing the order
  1168. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1169. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1170. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1171. #else
  1172. // Since we don't have in AVX some necessary functions,
  1173. // we split the registers in half and call AVX2 analogs from SSE
  1174. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1175. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1176. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1177. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1178. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1179. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1180. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1181. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1182. // Convert int32 to int16
  1183. ni0 = _mm_packs_epi32( ni0, ni1 );
  1184. ni2 = _mm_packs_epi32( ni2, ni3 );
  1185. ni4 = _mm_packs_epi32( ni4, ni5 );
  1186. ni6 = _mm_packs_epi32( ni6, ni7 );
  1187. // Convert int16 to int8
  1188. ni0 = _mm_packs_epi16( ni0, ni2 );
  1189. ni4 = _mm_packs_epi16( ni4, ni6 );
  1190. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1191. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1192. #endif
  1193. }
  1194. #else
  1195. // scalar
  1196. quantize_row_q8_0_reference(x, y, k);
  1197. #endif
  1198. #if defined __AVX__
  1199. // TODO: vectorize this
  1200. for (int i=0; i<nb; ++i) {
  1201. int sum = 0;
  1202. for (int l=0; l<QK8_0; ++l) sum += y[i].qs[l];
  1203. y[i].s = y[i].d * sum;
  1204. }
  1205. #endif
  1206. }
  1207. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1208. assert(k % QK4_0 == 0);
  1209. const int nb = k / QK4_0;
  1210. const block_q4_0 * restrict x = vx;
  1211. #if defined(__AVX2__)
  1212. for (int i = 0; i < nb; i++) {
  1213. // scale factor
  1214. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1215. const uint8_t * restrict pp = x[i].qs;
  1216. for (int l = 0; l < QK4_0; l += 32) {
  1217. // Load 32x4-bit integers into 32x8-bit integers
  1218. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1219. // Subtract 8 from the integers
  1220. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1221. // Convert to 16-bit int
  1222. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1223. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1224. // Convert to 32-bit int -> float 32
  1225. const __m256 vf[4] = {
  1226. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1227. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1228. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1229. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1230. };
  1231. // Scale and store
  1232. for (int j = 0; j < 4; j++) {
  1233. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1234. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1235. }
  1236. }
  1237. }
  1238. #elif defined(__ARM_NEON)
  1239. for (int i = 0; i < nb; i++) {
  1240. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1241. const uint8_t * restrict pp = x[i].qs;
  1242. for (int l = 0; l < QK4_0; l += 16) {
  1243. // Load 16x4-bit integers into 8x8-bit integers
  1244. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1245. // Expand 4-bit qs to 8-bit bytes
  1246. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1247. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1248. // Convert to signed 8-bit integers
  1249. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1250. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1251. // Subtract 8 from each byte
  1252. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1253. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1254. // Interleave and combine
  1255. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1256. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1257. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1258. // convert to 2x int16x8_t
  1259. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1260. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1261. // convert to 4x float32x4_t
  1262. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1263. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1264. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1265. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1266. // Multiply by d
  1267. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1268. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1269. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1270. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1271. // Store
  1272. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1273. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1274. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1275. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1276. }
  1277. }
  1278. #else
  1279. // scalar
  1280. for (int i = 0; i < nb; i++) {
  1281. const float d = x[i].d;
  1282. const uint8_t * restrict pp = x[i].qs;
  1283. for (int l = 0; l < QK4_0; l += 2) {
  1284. const uint8_t vi = pp[l/2];
  1285. const int8_t vi0 = vi & 0xf;
  1286. const int8_t vi1 = vi >> 4;
  1287. const float v0 = (vi0 - 8)*d;
  1288. const float v1 = (vi1 - 8)*d;
  1289. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1290. y[i*QK4_0 + l + 0] = v0;
  1291. y[i*QK4_0 + l + 1] = v1;
  1292. assert(!isnan(y[i*QK4_0 + l + 0]));
  1293. assert(!isnan(y[i*QK4_0 + l + 1]));
  1294. }
  1295. }
  1296. #endif
  1297. }
  1298. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1299. assert(k % QK4_1 == 0);
  1300. const int nb = k / QK4_1;
  1301. const block_q4_1 * restrict x = vx;
  1302. #if defined(__AVX2__)
  1303. for (int i = 0; i < nb; i++) {
  1304. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1305. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1306. const uint8_t * restrict pp = x[i].qs;
  1307. for (int l = 0; l < QK4_1; l += 32) {
  1308. // Load 32x4-bit integers into 32x8-bit integers
  1309. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1310. // Convert to 16-bit int
  1311. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1312. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1313. // Convert to 32-bit int -> float 32
  1314. const __m256 vf[4] = {
  1315. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1316. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1317. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1318. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1319. };
  1320. // Scale, add m and store
  1321. for (int j = 0; j < 4; j++) {
  1322. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1323. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1324. }
  1325. }
  1326. }
  1327. #elif defined(__ARM_NEON)
  1328. for (int i = 0; i < nb; i++) {
  1329. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1330. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1331. const uint8_t * restrict pp = x[i].qs;
  1332. for (int l = 0; l < QK4_1; l += 16) {
  1333. // Load 16x4-bit integers into 8x8-bit integers
  1334. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1335. // Expand 4-bit qs to 8-bit bytes
  1336. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1337. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1338. // Interleave and combine
  1339. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1340. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1341. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1342. // convert to 2x uint16x8_t
  1343. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1344. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1345. // convert to 4x float32x4_t
  1346. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1347. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1348. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1349. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1350. // multiply by d and add m
  1351. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1352. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1353. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1354. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1355. // Store
  1356. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1357. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1358. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1359. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1360. }
  1361. }
  1362. #else
  1363. for (int i = 0; i < nb; i++) {
  1364. const float d = x[i].d;
  1365. const float m = x[i].m;
  1366. const uint8_t * restrict pp = x[i].qs;
  1367. for (int l = 0; l < QK4_1; l += 2) {
  1368. const uint8_t vi = pp[l/2];
  1369. const int8_t vi0 = vi & 0xf;
  1370. const int8_t vi1 = vi >> 4;
  1371. const float v0 = vi0*d + m;
  1372. const float v1 = vi1*d + m;
  1373. y[i*QK4_1 + l + 0] = v0;
  1374. y[i*QK4_1 + l + 1] = v1;
  1375. assert(!isnan(y[i*QK4_1 + l + 0]));
  1376. assert(!isnan(y[i*QK4_1 + l + 1]));
  1377. }
  1378. }
  1379. #endif
  1380. }
  1381. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1382. assert(k % QK4_2 == 0);
  1383. const int nb = k / QK4_2;
  1384. const block_q4_2 * restrict x = vx;
  1385. for (int i = 0; i < nb; i++) {
  1386. const float d = GGML_FP16_TO_FP32(x[i].d);
  1387. const uint8_t * restrict pp = x[i].qs;
  1388. for (int l = 0; l < QK4_2; l += 2) {
  1389. const uint8_t vi = pp[l/2];
  1390. const int8_t vi0 = vi & 0xf;
  1391. const int8_t vi1 = vi >> 4;
  1392. const float v0 = (vi0 - 8)*d;
  1393. const float v1 = (vi1 - 8)*d;
  1394. y[i*QK4_2 + l + 0] = v0;
  1395. y[i*QK4_2 + l + 1] = v1;
  1396. assert(!isnan(y[i*QK4_2 + l + 0]));
  1397. assert(!isnan(y[i*QK4_2 + l + 1]));
  1398. }
  1399. }
  1400. }
  1401. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1402. assert(k % QK4_3 == 0);
  1403. const int nb = k / QK4_3;
  1404. const block_q4_3 * restrict x = vx;
  1405. for (int i = 0; i < nb; i++) {
  1406. const float d = GGML_FP16_TO_FP32(x[i].d);
  1407. const float m = GGML_FP16_TO_FP32(x[i].m);
  1408. const uint8_t * restrict pp = x[i].qs;
  1409. for (int l = 0; l < QK4_3; l += 2) {
  1410. const uint8_t vi = pp[l/2];
  1411. const int8_t vi0 = vi & 0xf;
  1412. const int8_t vi1 = vi >> 4;
  1413. const float v0 = vi0*d + m;
  1414. const float v1 = vi1*d + m;
  1415. y[i*QK4_3 + l + 0] = v0;
  1416. y[i*QK4_3 + l + 1] = v1;
  1417. assert(!isnan(y[i*QK4_3 + l + 0]));
  1418. assert(!isnan(y[i*QK4_3 + l + 1]));
  1419. }
  1420. }
  1421. }
  1422. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1423. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1424. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1425. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1426. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1427. [GGML_TYPE_Q4_0] = {
  1428. .dequantize_row_q = dequantize_row_q4_0,
  1429. .quantize_row_q = quantize_row_q4_0,
  1430. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1431. .quantize_row_q_dot = quantize_row_q8_0,
  1432. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1433. },
  1434. [GGML_TYPE_Q4_1] = {
  1435. .dequantize_row_q = dequantize_row_q4_1,
  1436. .quantize_row_q = quantize_row_q4_1,
  1437. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1438. .quantize_row_q_dot = quantize_row_q8_0,
  1439. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1440. },
  1441. [GGML_TYPE_Q4_2] = {
  1442. .dequantize_row_q = dequantize_row_q4_2,
  1443. .quantize_row_q = quantize_row_q4_2,
  1444. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1445. .quantize_row_q_dot = quantize_row_q8_0,
  1446. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1447. },
  1448. [GGML_TYPE_Q4_3] = {
  1449. .dequantize_row_q = dequantize_row_q4_3,
  1450. .quantize_row_q = quantize_row_q4_3,
  1451. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1452. .quantize_row_q_dot = quantize_row_q8_0,
  1453. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1454. },
  1455. [GGML_TYPE_Q8_0] = {
  1456. .dequantize_row_q = NULL, // TODO
  1457. .quantize_row_q = quantize_row_q8_0,
  1458. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1459. .quantize_row_q_dot = quantize_row_q8_0,
  1460. .vec_dot_q = NULL, // TODO
  1461. },
  1462. };
  1463. // For internal test use
  1464. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1465. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1466. return quantize_fns[i];
  1467. }
  1468. //
  1469. // simd mappings
  1470. //
  1471. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1472. // we then implement the fundamental computation operations below using only these macros
  1473. // adding support for new architectures requires to define the corresponding SIMD macros
  1474. //
  1475. // GGML_F32_STEP / GGML_F16_STEP
  1476. // number of elements to process in a single step
  1477. //
  1478. // GGML_F32_EPR / GGML_F16_EPR
  1479. // number of elements to fit in a single register
  1480. //
  1481. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1482. #define GGML_SIMD
  1483. // F32 NEON
  1484. #define GGML_F32_STEP 16
  1485. #define GGML_F32_EPR 4
  1486. #define GGML_F32x4 float32x4_t
  1487. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1488. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1489. #define GGML_F32x4_LOAD vld1q_f32
  1490. #define GGML_F32x4_STORE vst1q_f32
  1491. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1492. #define GGML_F32x4_ADD vaddq_f32
  1493. #define GGML_F32x4_MUL vmulq_f32
  1494. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1495. #define GGML_F32x4_REDUCE(res, x) \
  1496. { \
  1497. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1498. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1499. } \
  1500. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1501. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1502. } \
  1503. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1504. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1505. } \
  1506. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1507. }
  1508. #define GGML_F32_VEC GGML_F32x4
  1509. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1510. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1511. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1512. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1513. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1514. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1515. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1516. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1517. // F16 NEON
  1518. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1519. #define GGML_F16_STEP 32
  1520. #define GGML_F16_EPR 8
  1521. #define GGML_F16x8 float16x8_t
  1522. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1523. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1524. #define GGML_F16x8_LOAD vld1q_f16
  1525. #define GGML_F16x8_STORE vst1q_f16
  1526. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1527. #define GGML_F16x8_ADD vaddq_f16
  1528. #define GGML_F16x8_MUL vmulq_f16
  1529. #define GGML_F16x8_REDUCE(res, x) \
  1530. { \
  1531. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1532. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1533. } \
  1534. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1535. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1536. } \
  1537. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1538. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1539. } \
  1540. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1541. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1542. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1543. }
  1544. #define GGML_F16_VEC GGML_F16x8
  1545. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1546. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1547. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1548. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1549. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1550. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1551. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1552. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1553. #else
  1554. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1555. // and take advantage of the vcvt_ functions to convert to/from FP16
  1556. #define GGML_F16_STEP 16
  1557. #define GGML_F16_EPR 4
  1558. #define GGML_F32Cx4 float32x4_t
  1559. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1560. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1561. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1562. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1563. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1564. #define GGML_F32Cx4_ADD vaddq_f32
  1565. #define GGML_F32Cx4_MUL vmulq_f32
  1566. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1567. #define GGML_F16_VEC GGML_F32Cx4
  1568. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1569. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1570. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1571. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1572. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1573. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1574. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1575. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1576. #endif
  1577. #elif defined(__AVX__)
  1578. #define GGML_SIMD
  1579. // F32 AVX
  1580. #define GGML_F32_STEP 32
  1581. #define GGML_F32_EPR 8
  1582. #define GGML_F32x8 __m256
  1583. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1584. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1585. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1586. #define GGML_F32x8_STORE _mm256_storeu_ps
  1587. #if defined(__FMA__)
  1588. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1589. #else
  1590. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1591. #endif
  1592. #define GGML_F32x8_ADD _mm256_add_ps
  1593. #define GGML_F32x8_MUL _mm256_mul_ps
  1594. #define GGML_F32x8_REDUCE(res, x) \
  1595. { \
  1596. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1597. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1598. } \
  1599. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1600. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1601. } \
  1602. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1603. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1604. } \
  1605. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1606. _mm256_extractf128_ps(x[0], 1)); \
  1607. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1608. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1609. }
  1610. // TODO: is this optimal ?
  1611. #define GGML_F32_VEC GGML_F32x8
  1612. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1613. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1614. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1615. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1616. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1617. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1618. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1619. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1620. // F16 AVX
  1621. #define GGML_F16_STEP 32
  1622. #define GGML_F16_EPR 8
  1623. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1624. #define GGML_F32Cx8 __m256
  1625. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1626. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1627. #if defined(__F16C__)
  1628. // the _mm256_cvt intrinsics require F16C
  1629. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1630. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1631. #else
  1632. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1633. float tmp[8];
  1634. for (int i = 0; i < 8; i++)
  1635. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1636. return _mm256_loadu_ps(tmp);
  1637. }
  1638. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1639. float arr[8];
  1640. _mm256_storeu_ps(arr, y);
  1641. for (int i = 0; i < 8; i++)
  1642. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1643. }
  1644. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1645. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1646. #endif
  1647. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1648. #define GGML_F32Cx8_ADD _mm256_add_ps
  1649. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1650. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1651. #define GGML_F16_VEC GGML_F32Cx8
  1652. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1653. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1654. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1655. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1656. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1657. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1658. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1659. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1660. #elif defined(__POWER9_VECTOR__)
  1661. #define GGML_SIMD
  1662. // F32 POWER9
  1663. #define GGML_F32_STEP 32
  1664. #define GGML_F32_EPR 4
  1665. #define GGML_F32x4 vector float
  1666. #define GGML_F32x4_ZERO 0.0f
  1667. #define GGML_F32x4_SET1 vec_splats
  1668. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1669. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1670. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1671. #define GGML_F32x4_ADD vec_add
  1672. #define GGML_F32x4_MUL vec_mul
  1673. #define GGML_F32x4_REDUCE(res, x) \
  1674. { \
  1675. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1676. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1677. } \
  1678. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1679. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1680. } \
  1681. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1682. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1683. } \
  1684. res = vec_extract(x[0], 0) + \
  1685. vec_extract(x[0], 1) + \
  1686. vec_extract(x[0], 2) + \
  1687. vec_extract(x[0], 3); \
  1688. }
  1689. #define GGML_F32_VEC GGML_F32x4
  1690. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1691. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1692. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1693. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1694. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1695. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1696. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1697. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1698. // F16 POWER9
  1699. #define GGML_F16_STEP GGML_F32_STEP
  1700. #define GGML_F16_EPR GGML_F32_EPR
  1701. #define GGML_F16_VEC GGML_F32x4
  1702. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1703. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1704. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1705. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1706. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1707. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1708. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1709. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1710. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1711. #define GGML_F16_VEC_STORE(p, r, i) \
  1712. if (i & 0x1) \
  1713. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1714. r[i - GGML_ENDIAN_BYTE(0)]), \
  1715. 0, p - GGML_F16_EPR)
  1716. #elif defined(__wasm_simd128__)
  1717. #define GGML_SIMD
  1718. // F32 WASM
  1719. #define GGML_F32_STEP 16
  1720. #define GGML_F32_EPR 4
  1721. #define GGML_F32x4 v128_t
  1722. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1723. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1724. #define GGML_F32x4_LOAD wasm_v128_load
  1725. #define GGML_F32x4_STORE wasm_v128_store
  1726. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1727. #define GGML_F32x4_ADD wasm_f32x4_add
  1728. #define GGML_F32x4_MUL wasm_f32x4_mul
  1729. #define GGML_F32x4_REDUCE(res, x) \
  1730. { \
  1731. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1732. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1733. } \
  1734. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1735. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1736. } \
  1737. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1738. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1739. } \
  1740. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1741. wasm_f32x4_extract_lane(x[0], 1) + \
  1742. wasm_f32x4_extract_lane(x[0], 2) + \
  1743. wasm_f32x4_extract_lane(x[0], 3); \
  1744. }
  1745. #define GGML_F32_VEC GGML_F32x4
  1746. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1747. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1748. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1749. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1750. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1751. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1752. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1753. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1754. // F16 WASM
  1755. #define GGML_F16_STEP 16
  1756. #define GGML_F16_EPR 4
  1757. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1758. float tmp[4];
  1759. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1760. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1761. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1762. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1763. return wasm_v128_load(tmp);
  1764. }
  1765. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1766. float tmp[4];
  1767. wasm_v128_store(tmp, x);
  1768. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1769. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1770. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1771. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1772. }
  1773. #define GGML_F16x4 v128_t
  1774. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1775. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1776. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1777. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1778. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1779. #define GGML_F16x4_ADD wasm_f32x4_add
  1780. #define GGML_F16x4_MUL wasm_f32x4_mul
  1781. #define GGML_F16x4_REDUCE(res, x) \
  1782. { \
  1783. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1784. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1785. } \
  1786. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1787. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1788. } \
  1789. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1790. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1791. } \
  1792. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1793. wasm_f32x4_extract_lane(x[0], 1) + \
  1794. wasm_f32x4_extract_lane(x[0], 2) + \
  1795. wasm_f32x4_extract_lane(x[0], 3); \
  1796. }
  1797. #define GGML_F16_VEC GGML_F16x4
  1798. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1799. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1800. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1801. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1802. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1803. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1804. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1805. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1806. #elif defined(__SSE3__)
  1807. #define GGML_SIMD
  1808. // F32 SSE
  1809. #define GGML_F32_STEP 32
  1810. #define GGML_F32_EPR 4
  1811. #define GGML_F32x4 __m128
  1812. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1813. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1814. #define GGML_F32x4_LOAD _mm_loadu_ps
  1815. #define GGML_F32x4_STORE _mm_storeu_ps
  1816. #if defined(__FMA__)
  1817. // TODO: Does this work?
  1818. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1819. #else
  1820. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1821. #endif
  1822. #define GGML_F32x4_ADD _mm_add_ps
  1823. #define GGML_F32x4_MUL _mm_mul_ps
  1824. #define GGML_F32x4_REDUCE(res, x) \
  1825. { \
  1826. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1827. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1828. } \
  1829. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1830. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1831. } \
  1832. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1833. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1834. } \
  1835. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1836. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1837. }
  1838. // TODO: is this optimal ?
  1839. #define GGML_F32_VEC GGML_F32x4
  1840. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1841. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1842. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1843. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1844. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1845. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1846. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1847. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1848. // F16 SSE
  1849. #define GGML_F16_STEP 32
  1850. #define GGML_F16_EPR 4
  1851. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1852. float tmp[4];
  1853. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1854. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1855. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1856. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1857. return _mm_loadu_ps(tmp);
  1858. }
  1859. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1860. float arr[4];
  1861. _mm_storeu_ps(arr, y);
  1862. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1863. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1864. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1865. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1866. }
  1867. #define GGML_F32Cx4 __m128
  1868. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1869. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1870. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1871. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1872. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1873. #define GGML_F32Cx4_ADD _mm_add_ps
  1874. #define GGML_F32Cx4_MUL _mm_mul_ps
  1875. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1876. #define GGML_F16_VEC GGML_F32Cx4
  1877. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1878. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1879. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1880. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1881. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1882. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1883. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1884. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1885. #endif
  1886. // GGML_F32_ARR / GGML_F16_ARR
  1887. // number of registers to use per step
  1888. #ifdef GGML_SIMD
  1889. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1890. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1891. #endif
  1892. //
  1893. // fundamental operations
  1894. //
  1895. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1896. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1897. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1898. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1899. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1900. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1901. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1902. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1903. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1904. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1905. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1906. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1907. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1908. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1909. #ifdef GGML_SIMD
  1910. float sumf = 0.0f;
  1911. const int np = (n & ~(GGML_F32_STEP - 1));
  1912. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1913. GGML_F32_VEC ax[GGML_F32_ARR];
  1914. GGML_F32_VEC ay[GGML_F32_ARR];
  1915. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1916. for (int j = 0; j < GGML_F32_ARR; j++) {
  1917. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1918. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1919. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1920. }
  1921. }
  1922. // reduce sum0..sum3 to sum0
  1923. GGML_F32_VEC_REDUCE(sumf, sum);
  1924. // leftovers
  1925. for (int i = np; i < n; ++i) {
  1926. sumf += x[i]*y[i];
  1927. }
  1928. #else
  1929. // scalar
  1930. ggml_float sumf = 0.0;
  1931. for (int i = 0; i < n; ++i) {
  1932. sumf += (ggml_float)(x[i]*y[i]);
  1933. }
  1934. #endif
  1935. *s = sumf;
  1936. }
  1937. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1938. ggml_float sumf = 0.0;
  1939. #if defined(GGML_SIMD)
  1940. const int np = (n & ~(GGML_F16_STEP - 1));
  1941. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1942. GGML_F16_VEC ax[GGML_F16_ARR];
  1943. GGML_F16_VEC ay[GGML_F16_ARR];
  1944. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1945. for (int j = 0; j < GGML_F16_ARR; j++) {
  1946. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1947. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1948. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1949. }
  1950. }
  1951. // reduce sum0..sum3 to sum0
  1952. GGML_F16_VEC_REDUCE(sumf, sum);
  1953. // leftovers
  1954. for (int i = np; i < n; ++i) {
  1955. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1956. }
  1957. #else
  1958. for (int i = 0; i < n; ++i) {
  1959. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1960. }
  1961. #endif
  1962. *s = sumf;
  1963. }
  1964. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1965. const int nb = n / QK8_0;
  1966. assert(n % QK8_0 == 0);
  1967. assert(nb % 2 == 0);
  1968. const block_q4_0 * restrict x = vx;
  1969. const block_q8_0 * restrict y = vy;
  1970. float sumf = 0.0;
  1971. #if defined(__ARM_NEON)
  1972. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1973. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1974. float sum8 = 0;
  1975. for (int i = 0; i < nb; i += 2) {
  1976. const block_q4_0 * restrict x0 = &x[i + 0];
  1977. const block_q4_0 * restrict x1 = &x[i + 1];
  1978. const block_q8_0 * restrict y0 = &y[i + 0];
  1979. const block_q8_0 * restrict y1 = &y[i + 1];
  1980. sum8 += x0->d * y0->s + x1->d * y1->s;
  1981. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1982. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1983. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1984. // 4-bit -> 8-bit
  1985. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1986. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1987. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1988. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1989. // load y
  1990. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1991. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1992. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1993. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1994. // interleave
  1995. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1996. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1997. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1998. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1999. #if defined(__ARM_FEATURE_DOTPROD)
  2000. // dot product into int32x4_t
  2001. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2002. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2003. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2004. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2005. #else
  2006. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2007. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2008. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2009. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2010. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2011. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2012. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2013. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2014. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2015. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2016. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2017. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2018. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2019. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2020. #endif
  2021. }
  2022. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8;
  2023. #elif defined(__AVX2__)
  2024. // Initialize accumulator with zeros
  2025. __m256 acc = _mm256_setzero_ps();
  2026. // Main loop
  2027. for (int i = 0; i < nb; ++i) {
  2028. /* Compute combined scale for the block */
  2029. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2030. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2031. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2032. const __m256i off = _mm256_set1_epi8( 8 );
  2033. bx = _mm256_sub_epi8( bx, off );
  2034. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2035. // Get absolute values of x vectors
  2036. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2037. // Sign the values of the y vectors
  2038. const __m256i sy = _mm256_sign_epi8(by, bx);
  2039. // Perform multiplication and create 16-bit values
  2040. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2041. const __m256i ones = _mm256_set1_epi16(1);
  2042. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2043. /* Convert to vectore of 8 int32_t to 8 floats */
  2044. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2045. /* Multiply q with scale and accumulate */
  2046. acc = _mm256_fmadd_ps( d, q, acc );
  2047. }
  2048. // Return horizontal sum of the acc vector
  2049. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2050. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2051. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2052. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2053. sumf = _mm_cvtss_f32( res );
  2054. #elif defined(__AVX__)
  2055. // Initialize accumulator with zeros
  2056. __m256 acc = _mm256_setzero_ps();
  2057. // Main loop
  2058. for (int i = 0; i < nb; ++i) {
  2059. // Compute combined scale for the block
  2060. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2061. __m128i i32[2];
  2062. for (int j = 0; j < 2; ++j) {
  2063. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2064. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2065. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2066. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2067. const __m128i off = _mm_set1_epi8( 8 );
  2068. bx = _mm_sub_epi8( bx, off );
  2069. // Get absolute values of x vectors
  2070. const __m128i ax = _mm_sign_epi8(bx, bx);
  2071. // Sign the values of the y vectors
  2072. const __m128i sy = _mm_sign_epi8(by, bx);
  2073. // Perform multiplication and create 16-bit values
  2074. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2075. const __m128i ones = _mm_set1_epi16(1);
  2076. i32[j] = _mm_madd_epi16(ones, dot);
  2077. }
  2078. // Convert int32_t to float
  2079. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2080. // Apply the scale, and accumulate
  2081. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2082. }
  2083. // Return horizontal sum of the acc vector
  2084. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2085. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2086. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2087. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2088. sumf = _mm_cvtss_f32( res );
  2089. #else
  2090. // scalar
  2091. for (int i = 0; i < nb; i++) {
  2092. const float d0 = x[i].d;
  2093. const float d1 = y[i].d;
  2094. const uint8_t * restrict p0 = x[i].qs;
  2095. const int8_t * restrict p1 = y[i].qs;
  2096. int sumi = 0;
  2097. for (int j = 0; j < QK8_0/2; j++) {
  2098. const uint8_t v0 = p0[j];
  2099. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2100. const int i1 = (int8_t) (v0 >> 4) - 8;
  2101. const int i2 = p1[2*j + 0];
  2102. const int i3 = p1[2*j + 1];
  2103. sumi += i0*i2 + i1*i3;
  2104. }
  2105. sumf += d0*d1*sumi;
  2106. }
  2107. #endif
  2108. *s = sumf;
  2109. }
  2110. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2111. const int nb = n / QK8_0;
  2112. assert(n % QK8_0 == 0);
  2113. assert(nb % 2 == 0);
  2114. const block_q4_1 * restrict x = vx;
  2115. const block_q8_0 * restrict y = vy;
  2116. float sumf = 0.0;
  2117. // TODO: add AVX / WASM SIMD / etc
  2118. #if defined(__ARM_NEON)
  2119. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2120. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2121. float summs = 0;
  2122. for (int i = 0; i < nb; i += 2) {
  2123. const block_q4_1 * restrict x0 = &x[i + 0];
  2124. const block_q4_1 * restrict x1 = &x[i + 1];
  2125. const block_q8_0 * restrict y0 = &y[i + 0];
  2126. const block_q8_0 * restrict y1 = &y[i + 1];
  2127. summs += x0->m * y0->s + x1->m * y1->s;
  2128. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2129. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2130. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2131. // 4-bit -> 8-bit
  2132. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2133. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2134. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2135. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2136. // load y
  2137. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2138. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2139. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2140. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2141. // interleave
  2142. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2143. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2144. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2145. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2146. #if defined(__ARM_FEATURE_DOTPROD)
  2147. // dot product into int32x4_t
  2148. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2149. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2150. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2151. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2152. #else
  2153. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2154. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2155. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2156. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2157. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2158. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2159. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2160. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2161. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2162. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2163. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2164. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2165. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2166. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2167. #endif
  2168. }
  2169. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2170. #elif defined(__AVX2__)
  2171. // Initialize accumulator with zeros
  2172. __m256 acc = _mm256_setzero_ps();
  2173. float summs = 0;
  2174. // Main loop
  2175. for (int i = 0; i < nb; ++i) {
  2176. const float * d0 = &x[i].d;
  2177. const float * d1 = &y[i].d;
  2178. //const float * m0 = &x[i].m;
  2179. summs += x[i].m * y[i].s;
  2180. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2181. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2182. // Compute combined scales
  2183. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2184. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2185. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2186. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2187. // Get absolute values of x vectors
  2188. const __m256i ax = _mm256_sign_epi8( bx, bx );
  2189. // Sign the values of the y vectors
  2190. const __m256i sy = _mm256_sign_epi8( by, bx );
  2191. // Perform multiplication and create 16-bit values
  2192. const __m256i dot = _mm256_maddubs_epi16( ax, sy );
  2193. const __m256i ones = _mm256_set1_epi16( 1 );
  2194. const __m256i xy_q = _mm256_madd_epi16( ones, dot );
  2195. // Convert to vector of 8 int32_t to 8 floats
  2196. const __m256 xy = _mm256_cvtepi32_ps( xy_q );
  2197. // Accumulate d0*d1*x*y
  2198. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2199. }
  2200. // Return horizontal sum of the acc vector
  2201. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2202. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2203. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2204. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2205. sumf = _mm_cvtss_f32( res ) + summs;
  2206. #else
  2207. // scalar
  2208. for (int i = 0; i < nb; i++) {
  2209. const float d0 = x[i].d;
  2210. const float m0 = x[i].m;
  2211. const float d1 = y[i].d;
  2212. const uint8_t * restrict p0 = x[i].qs;
  2213. const int8_t * restrict p1 = y[i].qs;
  2214. // TODO: this is very slow ..
  2215. for (int j = 0; j < QK8_0/2; j++) {
  2216. const uint8_t v0 = p0[j];
  2217. const float f0 = d0*(v0 & 0xf) + m0;
  2218. const float f1 = d0*(v0 >> 4) + m0;
  2219. const float f2 = d1*p1[2*j + 0];
  2220. const float f3 = d1*p1[2*j + 1];
  2221. sumf += f0*f2 + f1*f3;
  2222. }
  2223. }
  2224. #endif
  2225. *s = sumf;
  2226. }
  2227. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2228. const int nb = n / QK8_0;
  2229. assert(n % QK8_0 == 0);
  2230. assert(nb % 2 == 0);
  2231. assert(QK8_0 == 2*QK4_2);
  2232. const block_q4_2 * restrict x = vx;
  2233. const block_q8_0 * restrict y = vy;
  2234. float sumf = 0.0;
  2235. #if defined(__ARM_NEON)
  2236. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2237. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2238. for (int i = 0; i < nb; i += 2) {
  2239. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2240. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2241. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2242. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2243. const block_q8_0 * restrict y0 = &y[i + 0];
  2244. const block_q8_0 * restrict y1 = &y[i + 1];
  2245. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2246. const int8x16_t s8b = vdupq_n_s8(0x8);
  2247. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2248. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2249. // 4-bit -> 8-bit
  2250. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2251. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2252. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2253. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2254. // sub 8
  2255. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2256. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2257. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2258. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2259. // interleave
  2260. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2261. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2262. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2263. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2264. // load y
  2265. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2266. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2267. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2268. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2269. #if defined(__ARM_FEATURE_DOTPROD)
  2270. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2271. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2272. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2273. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2274. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2275. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2276. #else
  2277. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2278. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2279. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2280. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2281. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2282. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2283. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2284. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2285. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2286. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2287. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2288. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2289. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2290. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2291. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2292. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2293. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2294. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2295. #endif
  2296. }
  2297. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2298. #elif defined(__AVX2__)
  2299. // Initialize accumulator with zeros
  2300. __m256 acc = _mm256_setzero_ps();
  2301. // Main loop
  2302. for (int i = 0; i < nb; i++) {
  2303. /* Compute combined scale for the block */
  2304. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2305. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2306. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2307. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2308. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2309. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2310. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2311. const __m256i off = _mm256_set1_epi8(8);
  2312. bx = _mm256_sub_epi8(bx, off);
  2313. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2314. // Get absolute values of x vectors
  2315. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2316. // Sign the values of the y vectors
  2317. const __m256i sy = _mm256_sign_epi8(by, bx);
  2318. // Perform multiplication and create 16-bit values
  2319. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2320. const __m256i ones = _mm256_set1_epi16(1);
  2321. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2322. /* Convert to vectore of 8 int32_t to 8 floats */
  2323. __m256 q = _mm256_cvtepi32_ps(xy_q);
  2324. /* Multiply q with scale and accumulate */
  2325. acc = _mm256_fmadd_ps(d, q, acc);
  2326. }
  2327. // Return horizontal sum of the acc vector
  2328. __m128 res = _mm256_extractf128_ps(acc, 1);
  2329. res = _mm_add_ps(res, _mm256_castps256_ps128(acc));
  2330. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  2331. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  2332. sumf = _mm_cvtss_f32(res);
  2333. #else
  2334. // scalar
  2335. for (int i = 0; i < nb; i++) {
  2336. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2337. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2338. const int8_t * restrict y0 = y[i].qs;
  2339. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2340. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2341. int sumi_0 = 0;
  2342. int sumi_1 = 0;
  2343. for (int j = 0; j < QK8_0/4; j++) {
  2344. const uint8_t v0 = x0[j];
  2345. const uint8_t v1 = x1[j];
  2346. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2347. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2348. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2349. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2350. const int i2_0 = y0[2*j + 0];
  2351. const int i3_0 = y0[2*j + 1];
  2352. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2353. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2354. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2355. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2356. }
  2357. sumf += (d0 * y[i].d) * sumi_0;
  2358. sumf += (d1 * y[i].d) * sumi_1;
  2359. }
  2360. #endif
  2361. *s = sumf;
  2362. }
  2363. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2364. const int nb = n / QK8_0;
  2365. assert(n % QK8_0 == 0);
  2366. assert(nb % 2 == 0);
  2367. assert(QK8_0 == 2*QK4_2);
  2368. const block_q4_3 * restrict x = vx;
  2369. const block_q8_0 * restrict y = vy;
  2370. float sumf = 0.0;
  2371. #if defined(__ARM_NEON)
  2372. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2373. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2374. for (int i = 0; i < nb; i += 2) {
  2375. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2376. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2377. const block_q4_3 * restrict x1_0 = &x[2*(i + 1) + 0];
  2378. const block_q4_3 * restrict x1_1 = &x[2*(i + 1) + 1];
  2379. const block_q8_0 * restrict y0 = &y[i + 0];
  2380. const block_q8_0 * restrict y1 = &y[i + 1];
  2381. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2382. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2383. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2384. const float x1_0d = GGML_FP16_TO_FP32(x1_0->d);
  2385. const float x1_1d = GGML_FP16_TO_FP32(x1_1->d);
  2386. const float x0_0m = GGML_FP16_TO_FP32(x0_0->m);
  2387. const float x0_1m = GGML_FP16_TO_FP32(x0_1->m);
  2388. const float x1_0m = GGML_FP16_TO_FP32(x1_0->m);
  2389. const float x1_1m = GGML_FP16_TO_FP32(x1_1->m);
  2390. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2391. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2392. // 4-bit -> 8-bit
  2393. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2394. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2395. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2396. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2397. // interleave
  2398. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2399. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2400. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2401. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2402. // load y
  2403. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2404. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2405. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2406. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2407. const int16x8_t sy0_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0l)), vmovl_s8(vget_high_s8(v1_0l)));
  2408. const int16x8_t sy0_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0h)), vmovl_s8(vget_high_s8(v1_0h)));
  2409. const int16x8_t sy1_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1l)), vmovl_s8(vget_high_s8(v1_1l)));
  2410. const int16x8_t sy1_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1h)), vmovl_s8(vget_high_s8(v1_1h)));
  2411. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_0), vget_high_s16(sy0_0))), x0_0m*y0->d);
  2412. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_1), vget_high_s16(sy0_1))), x0_1m*y0->d);
  2413. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_0), vget_high_s16(sy1_0))), x1_0m*y1->d);
  2414. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_1), vget_high_s16(sy1_1))), x1_1m*y1->d);
  2415. #if defined(__ARM_FEATURE_DOTPROD)
  2416. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2417. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2418. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), x1_0d*y1->d);
  2419. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), x1_1d*y1->d);
  2420. #else
  2421. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2422. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2423. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2424. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2425. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2426. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2427. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2428. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2429. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2430. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2431. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2432. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2433. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2434. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2435. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(pl1), x1_0d*y1->d);
  2436. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph1), x1_1d*y1->d);
  2437. #endif
  2438. }
  2439. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2440. #else
  2441. // scalar
  2442. for (int i = 0; i < nb; i++) {
  2443. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2444. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2445. const int8_t * restrict y0 = y[i].qs;
  2446. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2447. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2448. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2449. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2450. int sy_0 = 0;
  2451. int sy_1 = 0;
  2452. int sxy_0 = 0;
  2453. int sxy_1 = 0;
  2454. for (int j = 0; j < QK8_0/4; j++) {
  2455. const uint8_t v0 = x0[j];
  2456. const uint8_t v1 = x1[j];
  2457. const int x0_0 = v0 & 0xf;
  2458. const int x1_0 = v0 >> 4;
  2459. const int x0_1 = v1 & 0xf;
  2460. const int x1_1 = v1 >> 4;
  2461. const int y0_0 = y0[2*j + 0];
  2462. const int y1_0 = y0[2*j + 1];
  2463. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2464. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2465. sy_0 += y0_0 + y1_0;
  2466. sy_1 += y0_1 + y1_1;
  2467. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2468. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2469. }
  2470. sumf += (d0*sxy_0 + m0*sy_0)*y[i].d;
  2471. sumf += (d1*sxy_1 + m1*sy_1)*y[i].d;
  2472. }
  2473. #endif
  2474. *s = sumf;
  2475. }
  2476. // compute GGML_VEC_DOT_UNROLL dot products at once
  2477. // xs - x row stride in bytes
  2478. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2479. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2480. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2481. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2482. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2483. }
  2484. #if defined(GGML_SIMD)
  2485. const int np = (n & ~(GGML_F16_STEP - 1));
  2486. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2487. GGML_F16_VEC ax[GGML_F16_ARR];
  2488. GGML_F16_VEC ay[GGML_F16_ARR];
  2489. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2490. for (int j = 0; j < GGML_F16_ARR; j++) {
  2491. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2492. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2493. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2494. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2495. }
  2496. }
  2497. }
  2498. // reduce sum0..sum3 to sum0
  2499. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2500. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2501. }
  2502. // leftovers
  2503. for (int i = np; i < n; ++i) {
  2504. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2505. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2506. }
  2507. }
  2508. #else
  2509. for (int i = 0; i < n; ++i) {
  2510. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2511. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2512. }
  2513. }
  2514. #endif
  2515. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2516. s[i] = sumf[i];
  2517. }
  2518. }
  2519. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2520. #if defined(GGML_SIMD)
  2521. const int np = (n & ~(GGML_F32_STEP - 1));
  2522. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2523. GGML_F32_VEC ax[GGML_F32_ARR];
  2524. GGML_F32_VEC ay[GGML_F32_ARR];
  2525. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2526. for (int j = 0; j < GGML_F32_ARR; j++) {
  2527. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2528. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2529. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2530. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2531. }
  2532. }
  2533. // leftovers
  2534. for (int i = np; i < n; ++i) {
  2535. y[i] += x[i]*v;
  2536. }
  2537. #else
  2538. // scalar
  2539. for (int i = 0; i < n; ++i) {
  2540. y[i] += x[i]*v;
  2541. }
  2542. #endif
  2543. }
  2544. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2545. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2546. #if defined(GGML_SIMD)
  2547. const int np = (n & ~(GGML_F32_STEP - 1));
  2548. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2549. GGML_F32_VEC ay[GGML_F32_ARR];
  2550. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2551. for (int j = 0; j < GGML_F32_ARR; j++) {
  2552. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2553. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2554. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2555. }
  2556. }
  2557. // leftovers
  2558. for (int i = np; i < n; ++i) {
  2559. y[i] *= v;
  2560. }
  2561. #else
  2562. // scalar
  2563. for (int i = 0; i < n; ++i) {
  2564. y[i] *= v;
  2565. }
  2566. #endif
  2567. }
  2568. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2569. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2570. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2571. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2572. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2573. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2574. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2575. static const float GELU_COEF_A = 0.044715f;
  2576. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2577. inline static float ggml_gelu_f32(float x) {
  2578. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2579. }
  2580. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2581. const uint16_t * i16 = (const uint16_t *) x;
  2582. for (int i = 0; i < n; ++i) {
  2583. y[i] = table_gelu_f16[i16[i]];
  2584. }
  2585. }
  2586. #ifdef GGML_GELU_FP16
  2587. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2588. uint16_t t;
  2589. for (int i = 0; i < n; ++i) {
  2590. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2591. memcpy(&t, &fp16, sizeof(uint16_t));
  2592. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2593. }
  2594. }
  2595. #else
  2596. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2597. for (int i = 0; i < n; ++i) {
  2598. y[i] = ggml_gelu_f32(x[i]);
  2599. }
  2600. }
  2601. #endif
  2602. // Sigmoid Linear Unit (SiLU) function
  2603. inline static float ggml_silu_f32(float x) {
  2604. return x/(1.0f + expf(-x));
  2605. }
  2606. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2607. const uint16_t * i16 = (const uint16_t *) x;
  2608. for (int i = 0; i < n; ++i) {
  2609. y[i] = table_silu_f16[i16[i]];
  2610. }
  2611. }
  2612. #ifdef GGML_SILU_FP16
  2613. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2614. uint16_t t;
  2615. for (int i = 0; i < n; ++i) {
  2616. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2617. memcpy(&t, &fp16, sizeof(uint16_t));
  2618. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2619. }
  2620. }
  2621. #else
  2622. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2623. for (int i = 0; i < n; ++i) {
  2624. y[i] = ggml_silu_f32(x[i]);
  2625. }
  2626. }
  2627. #endif
  2628. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2629. #ifndef GGML_USE_ACCELERATE
  2630. ggml_float sum = 0.0;
  2631. for (int i = 0; i < n; ++i) {
  2632. sum += (ggml_float)x[i];
  2633. }
  2634. *s = sum;
  2635. #else
  2636. vDSP_sve(x, 1, s, n);
  2637. #endif
  2638. }
  2639. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2640. #ifndef GGML_USE_ACCELERATE
  2641. float max = -INFINITY;
  2642. for (int i = 0; i < n; ++i) {
  2643. max = MAX(max, x[i]);
  2644. }
  2645. *s = max;
  2646. #else
  2647. vDSP_maxv(x, 1, s, n);
  2648. #endif
  2649. }
  2650. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2651. ggml_vec_norm_f32(n, s, x);
  2652. *s = 1.f/(*s);
  2653. }
  2654. //
  2655. // logging
  2656. //
  2657. #if (GGML_DEBUG >= 1)
  2658. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2659. #else
  2660. #define GGML_PRINT_DEBUG(...)
  2661. #endif
  2662. #if (GGML_DEBUG >= 5)
  2663. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2664. #else
  2665. #define GGML_PRINT_DEBUG_5(...)
  2666. #endif
  2667. #if (GGML_DEBUG >= 10)
  2668. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2669. #else
  2670. #define GGML_PRINT_DEBUG_10(...)
  2671. #endif
  2672. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2673. //
  2674. // data types
  2675. //
  2676. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2677. [GGML_TYPE_F32] = 1,
  2678. [GGML_TYPE_F16] = 1,
  2679. [GGML_TYPE_Q4_0] = QK4_0,
  2680. [GGML_TYPE_Q4_1] = QK4_1,
  2681. [GGML_TYPE_Q4_2] = QK4_2,
  2682. [GGML_TYPE_Q4_3] = QK4_3,
  2683. [GGML_TYPE_Q8_0] = QK8_0,
  2684. [GGML_TYPE_I8] = 1,
  2685. [GGML_TYPE_I16] = 1,
  2686. [GGML_TYPE_I32] = 1,
  2687. };
  2688. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2689. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2690. [GGML_TYPE_F32] = sizeof(float),
  2691. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2692. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2693. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2694. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2695. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2696. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2697. [GGML_TYPE_I8] = sizeof(int8_t),
  2698. [GGML_TYPE_I16] = sizeof(int16_t),
  2699. [GGML_TYPE_I32] = sizeof(int32_t),
  2700. };
  2701. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2702. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2703. [GGML_TYPE_F32] = "f32",
  2704. [GGML_TYPE_F16] = "f16",
  2705. [GGML_TYPE_Q4_0] = "q4_0",
  2706. [GGML_TYPE_Q4_1] = "q4_1",
  2707. [GGML_TYPE_Q4_2] = "q4_2",
  2708. [GGML_TYPE_Q4_3] = "q4_3",
  2709. [GGML_TYPE_Q8_0] = "q8_0",
  2710. [GGML_TYPE_I8] = "i8",
  2711. [GGML_TYPE_I16] = "i16",
  2712. [GGML_TYPE_I32] = "i32",
  2713. };
  2714. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2715. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2716. [GGML_TYPE_F32] = false,
  2717. [GGML_TYPE_F16] = false,
  2718. [GGML_TYPE_Q4_0] = true,
  2719. [GGML_TYPE_Q4_1] = true,
  2720. [GGML_TYPE_Q4_2] = true,
  2721. [GGML_TYPE_Q4_3] = true,
  2722. [GGML_TYPE_Q8_0] = true,
  2723. [GGML_TYPE_I8] = false,
  2724. [GGML_TYPE_I16] = false,
  2725. [GGML_TYPE_I32] = false,
  2726. };
  2727. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2728. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2729. "NONE",
  2730. "DUP",
  2731. "ADD",
  2732. "SUB",
  2733. "MUL",
  2734. "DIV",
  2735. "SQR",
  2736. "SQRT",
  2737. "SUM",
  2738. "MEAN",
  2739. "REPEAT",
  2740. "ABS",
  2741. "SGN",
  2742. "NEG",
  2743. "STEP",
  2744. "RELU",
  2745. "GELU",
  2746. "SILU",
  2747. "NORM",
  2748. "RMS_NORM",
  2749. "MUL_MAT",
  2750. "SCALE",
  2751. "CPY",
  2752. "CONT",
  2753. "RESHAPE",
  2754. "VIEW",
  2755. "PERMUTE",
  2756. "TRANSPOSE",
  2757. "GET_ROWS",
  2758. "DIAG_MASK_INF",
  2759. "SOFT_MAX",
  2760. "ROPE",
  2761. "CONV_1D_1S",
  2762. "CONV_1D_2S",
  2763. "FLASH_ATTN",
  2764. "FLASH_FF",
  2765. "MAP_UNARY",
  2766. "MAP_BINARY",
  2767. };
  2768. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2769. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2770. "none",
  2771. "x",
  2772. "x+y",
  2773. "x-y",
  2774. "x*y",
  2775. "x/y",
  2776. "x^2",
  2777. "√x",
  2778. "Σx",
  2779. "Σx/n",
  2780. "repeat(x)",
  2781. "abs(x)",
  2782. "sgn(x)",
  2783. "-x",
  2784. "step(x)",
  2785. "relu(x)",
  2786. "gelu(x)",
  2787. "silu(x)",
  2788. "norm(x)",
  2789. "rms_norm(x)",
  2790. "X*Y",
  2791. "x*v",
  2792. "x-\\>y",
  2793. "cont(x)",
  2794. "reshape(x)",
  2795. "view(x)",
  2796. "permute(x)",
  2797. "transpose(x)",
  2798. "get_rows(x)",
  2799. "diag_mask_inf(x)",
  2800. "soft_max(x)",
  2801. "rope(x)",
  2802. "conv_1d_1s(x)",
  2803. "conv_1d_2s(x)",
  2804. "flash_attn(x)",
  2805. "flash_ff(x)",
  2806. "f(x)",
  2807. "f(x,y)",
  2808. };
  2809. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2810. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2811. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2812. //
  2813. // ggml context
  2814. //
  2815. struct ggml_context {
  2816. size_t mem_size;
  2817. void * mem_buffer;
  2818. bool mem_buffer_owned;
  2819. bool no_alloc;
  2820. int n_objects;
  2821. struct ggml_object * objects_begin;
  2822. struct ggml_object * objects_end;
  2823. struct ggml_scratch scratch;
  2824. struct ggml_scratch scratch_save;
  2825. };
  2826. struct ggml_context_container {
  2827. bool used;
  2828. struct ggml_context context;
  2829. };
  2830. //
  2831. // compute types
  2832. //
  2833. enum ggml_task_type {
  2834. GGML_TASK_INIT = 0,
  2835. GGML_TASK_COMPUTE,
  2836. GGML_TASK_FINALIZE,
  2837. };
  2838. struct ggml_compute_params {
  2839. enum ggml_task_type type;
  2840. int ith, nth;
  2841. // work buffer for all threads
  2842. size_t wsize;
  2843. void * wdata;
  2844. };
  2845. //
  2846. // ggml state
  2847. //
  2848. struct ggml_state {
  2849. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2850. };
  2851. // global state
  2852. static struct ggml_state g_state;
  2853. static atomic_int g_state_barrier = 0;
  2854. // barrier via spin lock
  2855. inline static void ggml_critical_section_start(void) {
  2856. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2857. while (processing > 0) {
  2858. // wait for other threads to finish
  2859. atomic_fetch_sub(&g_state_barrier, 1);
  2860. sched_yield(); // TODO: reconsider this
  2861. processing = atomic_fetch_add(&g_state_barrier, 1);
  2862. }
  2863. }
  2864. // TODO: make this somehow automatically executed
  2865. // some sort of "sentry" mechanism
  2866. inline static void ggml_critical_section_end(void) {
  2867. atomic_fetch_sub(&g_state_barrier, 1);
  2868. }
  2869. ////////////////////////////////////////////////////////////////////////////////
  2870. void ggml_print_object(const struct ggml_object * obj) {
  2871. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2872. obj->offs, obj->size, (const void *) obj->next);
  2873. }
  2874. void ggml_print_objects(const struct ggml_context * ctx) {
  2875. struct ggml_object * obj = ctx->objects_begin;
  2876. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2877. while (obj != NULL) {
  2878. ggml_print_object(obj);
  2879. obj = obj->next;
  2880. }
  2881. GGML_PRINT("%s: --- end ---\n", __func__);
  2882. }
  2883. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2884. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2885. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2886. }
  2887. int ggml_nrows(const struct ggml_tensor * tensor) {
  2888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2889. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2890. }
  2891. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2892. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2893. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2894. }
  2895. int ggml_blck_size(enum ggml_type type) {
  2896. return GGML_BLCK_SIZE[type];
  2897. }
  2898. size_t ggml_type_size(enum ggml_type type) {
  2899. return GGML_TYPE_SIZE[type];
  2900. }
  2901. float ggml_type_sizef(enum ggml_type type) {
  2902. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2903. }
  2904. const char * ggml_type_name(enum ggml_type type) {
  2905. return GGML_TYPE_NAME[type];
  2906. }
  2907. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2908. return GGML_TYPE_SIZE[tensor->type];
  2909. }
  2910. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2911. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2912. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2913. }
  2914. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2915. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2916. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2917. }
  2918. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2919. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2920. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2921. }
  2922. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2923. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2924. return
  2925. (t0->ne[0] == t1->ne[0]) &&
  2926. (t0->ne[2] == t1->ne[2]) &&
  2927. (t0->ne[3] == t1->ne[3]);
  2928. }
  2929. bool ggml_is_quantized(enum ggml_type type) {
  2930. return GGML_IS_QUANTIZED[type];
  2931. }
  2932. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2933. return tensor->nb[0] > tensor->nb[1];
  2934. }
  2935. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2936. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2937. return
  2938. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2939. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2940. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2941. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2942. }
  2943. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2944. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2945. return
  2946. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2947. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2948. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2949. }
  2950. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2951. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2952. return
  2953. (t0->ne[0] == t1->ne[0] ) &&
  2954. (t0->ne[1] == t1->ne[1] ) &&
  2955. (t0->ne[2] == t1->ne[2] ) &&
  2956. (t0->ne[3] == t1->ne[3] );
  2957. }
  2958. // check if t1 can be represented as a repeatition of t0
  2959. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2960. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2961. return
  2962. (t1->ne[0]%t0->ne[0] == 0) &&
  2963. (t1->ne[1]%t0->ne[1] == 0) &&
  2964. (t1->ne[2]%t0->ne[2] == 0) &&
  2965. (t1->ne[3]%t0->ne[3] == 0);
  2966. }
  2967. static inline int ggml_up32(int n) {
  2968. return (n + 31) & ~31;
  2969. }
  2970. static inline int ggml_up64(int n) {
  2971. return (n + 63) & ~63;
  2972. }
  2973. static inline int ggml_up(int n, int m) {
  2974. // assert m is a power of 2
  2975. GGML_ASSERT((m & (m - 1)) == 0);
  2976. return (n + m - 1) & ~(m - 1);
  2977. }
  2978. // assert that pointer is aligned to GGML_MEM_ALIGN
  2979. #define ggml_assert_aligned(ptr) \
  2980. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2981. ////////////////////////////////////////////////////////////////////////////////
  2982. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2983. // make this function thread safe
  2984. ggml_critical_section_start();
  2985. static bool is_first_call = true;
  2986. if (is_first_call) {
  2987. // initialize time system (required on Windows)
  2988. ggml_time_init();
  2989. // initialize GELU, SILU and EXP F32 tables
  2990. {
  2991. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2992. ggml_fp16_t ii;
  2993. for (int i = 0; i < (1 << 16); ++i) {
  2994. uint16_t ui = i;
  2995. memcpy(&ii, &ui, sizeof(ii));
  2996. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2997. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2998. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2999. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3000. }
  3001. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3002. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3003. }
  3004. // initialize g_state
  3005. {
  3006. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3007. g_state = (struct ggml_state) {
  3008. /*.contexts =*/ { { 0 } },
  3009. };
  3010. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3011. g_state.contexts[i].used = false;
  3012. }
  3013. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3014. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3015. }
  3016. // initialize cuBLAS
  3017. #if defined(GGML_USE_CUBLAS)
  3018. init_cublas();
  3019. #endif
  3020. is_first_call = false;
  3021. }
  3022. // find non-used context in g_state
  3023. struct ggml_context * ctx = NULL;
  3024. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3025. if (!g_state.contexts[i].used) {
  3026. g_state.contexts[i].used = true;
  3027. ctx = &g_state.contexts[i].context;
  3028. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3029. break;
  3030. }
  3031. }
  3032. if (ctx == NULL) {
  3033. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3034. ggml_critical_section_end();
  3035. return NULL;
  3036. }
  3037. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3038. *ctx = (struct ggml_context) {
  3039. /*.mem_size =*/ mem_size,
  3040. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3041. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3042. /*.no_alloc =*/ params.no_alloc,
  3043. /*.n_objects =*/ 0,
  3044. /*.objects_begin =*/ NULL,
  3045. /*.objects_end =*/ NULL,
  3046. /*.scratch =*/ { 0, 0, NULL, },
  3047. /*.scratch_save =*/ { 0, 0, NULL, },
  3048. };
  3049. GGML_ASSERT(ctx->mem_buffer != NULL);
  3050. ggml_assert_aligned(ctx->mem_buffer);
  3051. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3052. ggml_critical_section_end();
  3053. return ctx;
  3054. }
  3055. void ggml_free(struct ggml_context * ctx) {
  3056. // make this function thread safe
  3057. ggml_critical_section_start();
  3058. bool found = false;
  3059. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3060. if (&g_state.contexts[i].context == ctx) {
  3061. g_state.contexts[i].used = false;
  3062. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3063. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3064. if (ctx->mem_buffer_owned) {
  3065. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3066. }
  3067. found = true;
  3068. break;
  3069. }
  3070. }
  3071. if (!found) {
  3072. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3073. }
  3074. ggml_critical_section_end();
  3075. }
  3076. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3077. return ctx->objects_end->offs + ctx->objects_end->size;
  3078. }
  3079. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3080. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3081. ctx->scratch = scratch;
  3082. return result;
  3083. }
  3084. ////////////////////////////////////////////////////////////////////////////////
  3085. struct ggml_tensor * ggml_new_tensor_impl(
  3086. struct ggml_context * ctx,
  3087. enum ggml_type type,
  3088. int n_dims,
  3089. const int64_t* ne,
  3090. void* data) {
  3091. // always insert objects at the end of the context's memory pool
  3092. struct ggml_object * obj_cur = ctx->objects_end;
  3093. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3094. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3095. const size_t cur_end = cur_offs + cur_size;
  3096. size_t size_needed = 0;
  3097. if (data == NULL && !ctx->no_alloc) {
  3098. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3099. for (int i = 1; i < n_dims; i++) {
  3100. size_needed *= ne[i];
  3101. }
  3102. // align to GGML_MEM_ALIGN
  3103. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3104. }
  3105. char * const mem_buffer = ctx->mem_buffer;
  3106. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3107. if (ctx->scratch.data == NULL || data != NULL) {
  3108. size_needed += sizeof(struct ggml_tensor);
  3109. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3110. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3111. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3112. assert(false);
  3113. return NULL;
  3114. }
  3115. *obj_new = (struct ggml_object) {
  3116. .offs = cur_end + GGML_OBJECT_SIZE,
  3117. .size = size_needed,
  3118. .next = NULL,
  3119. };
  3120. } else {
  3121. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3122. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3123. assert(false);
  3124. return NULL;
  3125. }
  3126. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3127. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3128. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3129. assert(false);
  3130. return NULL;
  3131. }
  3132. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3133. *obj_new = (struct ggml_object) {
  3134. .offs = cur_end + GGML_OBJECT_SIZE,
  3135. .size = sizeof(struct ggml_tensor),
  3136. .next = NULL,
  3137. };
  3138. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3139. ctx->scratch.offs += size_needed;
  3140. }
  3141. if (obj_cur != NULL) {
  3142. obj_cur->next = obj_new;
  3143. } else {
  3144. // this is the first object in this context
  3145. ctx->objects_begin = obj_new;
  3146. }
  3147. ctx->objects_end = obj_new;
  3148. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3149. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3150. ggml_assert_aligned(result);
  3151. *result = (struct ggml_tensor) {
  3152. /*.type =*/ type,
  3153. /*.n_dims =*/ n_dims,
  3154. /*.ne =*/ { 1, 1, 1, 1 },
  3155. /*.nb =*/ { 0, 0, 0, 0 },
  3156. /*.op =*/ GGML_OP_NONE,
  3157. /*.is_param =*/ false,
  3158. /*.grad =*/ NULL,
  3159. /*.src0 =*/ NULL,
  3160. /*.src1 =*/ NULL,
  3161. /*.opt =*/ { NULL },
  3162. /*.n_tasks =*/ 0,
  3163. /*.perf_runs =*/ 0,
  3164. /*.perf_cycles =*/ 0,
  3165. /*.perf_time_us =*/ 0,
  3166. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3167. /*.pad =*/ { 0 },
  3168. };
  3169. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3170. //ggml_assert_aligned(result->data);
  3171. for (int i = 0; i < n_dims; i++) {
  3172. result->ne[i] = ne[i];
  3173. }
  3174. result->nb[0] = GGML_TYPE_SIZE[type];
  3175. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3176. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3177. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3178. }
  3179. ctx->n_objects++;
  3180. return result;
  3181. }
  3182. struct ggml_tensor * ggml_new_tensor(
  3183. struct ggml_context * ctx,
  3184. enum ggml_type type,
  3185. int n_dims,
  3186. const int64_t * ne) {
  3187. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3188. }
  3189. struct ggml_tensor * ggml_new_tensor_1d(
  3190. struct ggml_context * ctx,
  3191. enum ggml_type type,
  3192. int64_t ne0) {
  3193. return ggml_new_tensor(ctx, type, 1, &ne0);
  3194. }
  3195. struct ggml_tensor * ggml_new_tensor_2d(
  3196. struct ggml_context * ctx,
  3197. enum ggml_type type,
  3198. int64_t ne0,
  3199. int64_t ne1) {
  3200. const int64_t ne[2] = { ne0, ne1 };
  3201. return ggml_new_tensor(ctx, type, 2, ne);
  3202. }
  3203. struct ggml_tensor * ggml_new_tensor_3d(
  3204. struct ggml_context * ctx,
  3205. enum ggml_type type,
  3206. int64_t ne0,
  3207. int64_t ne1,
  3208. int64_t ne2) {
  3209. const int64_t ne[3] = { ne0, ne1, ne2 };
  3210. return ggml_new_tensor(ctx, type, 3, ne);
  3211. }
  3212. struct ggml_tensor * ggml_new_tensor_4d(
  3213. struct ggml_context * ctx,
  3214. enum ggml_type type,
  3215. int64_t ne0,
  3216. int64_t ne1,
  3217. int64_t ne2,
  3218. int64_t ne3) {
  3219. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3220. return ggml_new_tensor(ctx, type, 4, ne);
  3221. }
  3222. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3223. ctx->scratch_save = ctx->scratch;
  3224. ctx->scratch.data = NULL;
  3225. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3226. ctx->scratch = ctx->scratch_save;
  3227. ggml_set_i32(result, value);
  3228. return result;
  3229. }
  3230. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3231. ctx->scratch_save = ctx->scratch;
  3232. ctx->scratch.data = NULL;
  3233. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3234. ctx->scratch = ctx->scratch_save;
  3235. ggml_set_f32(result, value);
  3236. return result;
  3237. }
  3238. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3239. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3240. }
  3241. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3242. memset(tensor->data, 0, ggml_nbytes(tensor));
  3243. return tensor;
  3244. }
  3245. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3246. const int n = ggml_nrows(tensor);
  3247. const int nc = tensor->ne[0];
  3248. const size_t n1 = tensor->nb[1];
  3249. char * const data = tensor->data;
  3250. switch (tensor->type) {
  3251. case GGML_TYPE_I8:
  3252. {
  3253. assert(tensor->nb[0] == sizeof(int8_t));
  3254. for (int i = 0; i < n; i++) {
  3255. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3256. }
  3257. } break;
  3258. case GGML_TYPE_I16:
  3259. {
  3260. assert(tensor->nb[0] == sizeof(int16_t));
  3261. for (int i = 0; i < n; i++) {
  3262. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3263. }
  3264. } break;
  3265. case GGML_TYPE_I32:
  3266. {
  3267. assert(tensor->nb[0] == sizeof(int32_t));
  3268. for (int i = 0; i < n; i++) {
  3269. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3270. }
  3271. } break;
  3272. case GGML_TYPE_F16:
  3273. {
  3274. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3275. for (int i = 0; i < n; i++) {
  3276. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3277. }
  3278. } break;
  3279. case GGML_TYPE_F32:
  3280. {
  3281. assert(tensor->nb[0] == sizeof(float));
  3282. for (int i = 0; i < n; i++) {
  3283. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3284. }
  3285. } break;
  3286. default:
  3287. {
  3288. GGML_ASSERT(false);
  3289. } break;
  3290. }
  3291. return tensor;
  3292. }
  3293. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3294. const int n = ggml_nrows(tensor);
  3295. const int nc = tensor->ne[0];
  3296. const size_t n1 = tensor->nb[1];
  3297. char * const data = tensor->data;
  3298. switch (tensor->type) {
  3299. case GGML_TYPE_I8:
  3300. {
  3301. assert(tensor->nb[0] == sizeof(int8_t));
  3302. for (int i = 0; i < n; i++) {
  3303. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3304. }
  3305. } break;
  3306. case GGML_TYPE_I16:
  3307. {
  3308. assert(tensor->nb[0] == sizeof(int16_t));
  3309. for (int i = 0; i < n; i++) {
  3310. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3311. }
  3312. } break;
  3313. case GGML_TYPE_I32:
  3314. {
  3315. assert(tensor->nb[0] == sizeof(int32_t));
  3316. for (int i = 0; i < n; i++) {
  3317. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3318. }
  3319. } break;
  3320. case GGML_TYPE_F16:
  3321. {
  3322. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3323. for (int i = 0; i < n; i++) {
  3324. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3325. }
  3326. } break;
  3327. case GGML_TYPE_F32:
  3328. {
  3329. assert(tensor->nb[0] == sizeof(float));
  3330. for (int i = 0; i < n; i++) {
  3331. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3332. }
  3333. } break;
  3334. default:
  3335. {
  3336. GGML_ASSERT(false);
  3337. } break;
  3338. }
  3339. return tensor;
  3340. }
  3341. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3342. switch (tensor->type) {
  3343. case GGML_TYPE_I8:
  3344. {
  3345. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3346. return ((int8_t *)(tensor->data))[i];
  3347. } break;
  3348. case GGML_TYPE_I16:
  3349. {
  3350. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3351. return ((int16_t *)(tensor->data))[i];
  3352. } break;
  3353. case GGML_TYPE_I32:
  3354. {
  3355. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3356. return ((int32_t *)(tensor->data))[i];
  3357. } break;
  3358. case GGML_TYPE_F16:
  3359. {
  3360. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3361. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3362. } break;
  3363. case GGML_TYPE_F32:
  3364. {
  3365. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3366. return ((float *)(tensor->data))[i];
  3367. } break;
  3368. default:
  3369. {
  3370. GGML_ASSERT(false);
  3371. } break;
  3372. }
  3373. return 0.0f;
  3374. }
  3375. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3376. switch (tensor->type) {
  3377. case GGML_TYPE_I8:
  3378. {
  3379. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3380. ((int8_t *)(tensor->data))[i] = value;
  3381. } break;
  3382. case GGML_TYPE_I16:
  3383. {
  3384. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3385. ((int16_t *)(tensor->data))[i] = value;
  3386. } break;
  3387. case GGML_TYPE_I32:
  3388. {
  3389. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3390. ((int32_t *)(tensor->data))[i] = value;
  3391. } break;
  3392. case GGML_TYPE_F16:
  3393. {
  3394. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3395. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3396. } break;
  3397. case GGML_TYPE_F32:
  3398. {
  3399. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3400. ((float *)(tensor->data))[i] = value;
  3401. } break;
  3402. default:
  3403. {
  3404. GGML_ASSERT(false);
  3405. } break;
  3406. }
  3407. }
  3408. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3409. switch (tensor->type) {
  3410. case GGML_TYPE_I8:
  3411. {
  3412. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3413. return ((int8_t *)(tensor->data))[i];
  3414. } break;
  3415. case GGML_TYPE_I16:
  3416. {
  3417. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3418. return ((int16_t *)(tensor->data))[i];
  3419. } break;
  3420. case GGML_TYPE_I32:
  3421. {
  3422. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3423. return ((int32_t *)(tensor->data))[i];
  3424. } break;
  3425. case GGML_TYPE_F16:
  3426. {
  3427. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3428. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3429. } break;
  3430. case GGML_TYPE_F32:
  3431. {
  3432. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3433. return ((float *)(tensor->data))[i];
  3434. } break;
  3435. default:
  3436. {
  3437. GGML_ASSERT(false);
  3438. } break;
  3439. }
  3440. return 0.0f;
  3441. }
  3442. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3443. switch (tensor->type) {
  3444. case GGML_TYPE_I8:
  3445. {
  3446. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3447. ((int8_t *)(tensor->data))[i] = value;
  3448. } break;
  3449. case GGML_TYPE_I16:
  3450. {
  3451. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3452. ((int16_t *)(tensor->data))[i] = value;
  3453. } break;
  3454. case GGML_TYPE_I32:
  3455. {
  3456. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3457. ((int32_t *)(tensor->data))[i] = value;
  3458. } break;
  3459. case GGML_TYPE_F16:
  3460. {
  3461. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3462. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3463. } break;
  3464. case GGML_TYPE_F32:
  3465. {
  3466. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3467. ((float *)(tensor->data))[i] = value;
  3468. } break;
  3469. default:
  3470. {
  3471. GGML_ASSERT(false);
  3472. } break;
  3473. }
  3474. }
  3475. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3476. return tensor->data;
  3477. }
  3478. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3479. assert(tensor->type == GGML_TYPE_F32);
  3480. return (float *)(tensor->data);
  3481. }
  3482. struct ggml_tensor * ggml_view_tensor(
  3483. struct ggml_context * ctx,
  3484. const struct ggml_tensor * src) {
  3485. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3486. result->nb[0] = src->nb[0];
  3487. result->nb[1] = src->nb[1];
  3488. result->nb[2] = src->nb[2];
  3489. result->nb[3] = src->nb[3];
  3490. return result;
  3491. }
  3492. ////////////////////////////////////////////////////////////////////////////////
  3493. // ggml_dup
  3494. struct ggml_tensor * ggml_dup_impl(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. bool inplace) {
  3498. bool is_node = false;
  3499. if (!inplace && (a->grad)) {
  3500. is_node = true;
  3501. }
  3502. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3503. result->op = GGML_OP_DUP;
  3504. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3505. result->src0 = a;
  3506. result->src1 = NULL;
  3507. return result;
  3508. }
  3509. struct ggml_tensor * ggml_dup(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a) {
  3512. return ggml_dup_impl(ctx, a, false);
  3513. }
  3514. struct ggml_tensor * ggml_dup_inplace(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a) {
  3517. return ggml_dup_impl(ctx, a, true);
  3518. }
  3519. // ggml_add
  3520. struct ggml_tensor * ggml_add_impl(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. struct ggml_tensor * b,
  3524. bool inplace) {
  3525. GGML_ASSERT(ggml_are_same_shape(a, b));
  3526. bool is_node = false;
  3527. if (!inplace && (a->grad || b->grad)) {
  3528. is_node = true;
  3529. }
  3530. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3531. result->op = GGML_OP_ADD;
  3532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3533. result->src0 = a;
  3534. result->src1 = b;
  3535. return result;
  3536. }
  3537. struct ggml_tensor * ggml_add(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a,
  3540. struct ggml_tensor * b) {
  3541. return ggml_add_impl(ctx, a, b, false);
  3542. }
  3543. struct ggml_tensor * ggml_add_inplace(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a,
  3546. struct ggml_tensor * b) {
  3547. return ggml_add_impl(ctx, a, b, true);
  3548. }
  3549. // ggml_sub
  3550. struct ggml_tensor * ggml_sub_impl(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b,
  3554. bool inplace) {
  3555. GGML_ASSERT(ggml_are_same_shape(a, b));
  3556. bool is_node = false;
  3557. if (!inplace && (a->grad || b->grad)) {
  3558. is_node = true;
  3559. }
  3560. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3561. result->op = GGML_OP_SUB;
  3562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3563. result->src0 = a;
  3564. result->src1 = b;
  3565. return result;
  3566. }
  3567. struct ggml_tensor * ggml_sub(
  3568. struct ggml_context * ctx,
  3569. struct ggml_tensor * a,
  3570. struct ggml_tensor * b) {
  3571. return ggml_sub_impl(ctx, a, b, false);
  3572. }
  3573. struct ggml_tensor * ggml_sub_inplace(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. struct ggml_tensor * b) {
  3577. return ggml_sub_impl(ctx, a, b, true);
  3578. }
  3579. // ggml_mul
  3580. struct ggml_tensor * ggml_mul_impl(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a,
  3583. struct ggml_tensor * b,
  3584. bool inplace) {
  3585. GGML_ASSERT(ggml_are_same_shape(a, b));
  3586. bool is_node = false;
  3587. if (!inplace && (a->grad || b->grad)) {
  3588. is_node = true;
  3589. }
  3590. if (inplace) {
  3591. GGML_ASSERT(is_node == false);
  3592. }
  3593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3594. result->op = GGML_OP_MUL;
  3595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3596. result->src0 = a;
  3597. result->src1 = b;
  3598. return result;
  3599. }
  3600. struct ggml_tensor * ggml_mul(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a,
  3603. struct ggml_tensor * b) {
  3604. return ggml_mul_impl(ctx, a, b, false);
  3605. }
  3606. struct ggml_tensor * ggml_mul_inplace(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a,
  3609. struct ggml_tensor * b) {
  3610. return ggml_mul_impl(ctx, a, b, true);
  3611. }
  3612. // ggml_div
  3613. struct ggml_tensor * ggml_div_impl(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a,
  3616. struct ggml_tensor * b,
  3617. bool inplace) {
  3618. GGML_ASSERT(ggml_are_same_shape(a, b));
  3619. bool is_node = false;
  3620. if (!inplace && (a->grad || b->grad)) {
  3621. is_node = true;
  3622. }
  3623. if (inplace) {
  3624. GGML_ASSERT(is_node == false);
  3625. }
  3626. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3627. result->op = GGML_OP_DIV;
  3628. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3629. result->src0 = a;
  3630. result->src1 = b;
  3631. return result;
  3632. }
  3633. struct ggml_tensor * ggml_div(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a,
  3636. struct ggml_tensor * b) {
  3637. return ggml_div_impl(ctx, a, b, false);
  3638. }
  3639. struct ggml_tensor * ggml_div_inplace(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a,
  3642. struct ggml_tensor * b) {
  3643. return ggml_div_impl(ctx, a, b, true);
  3644. }
  3645. // ggml_sqr
  3646. struct ggml_tensor * ggml_sqr_impl(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. bool inplace) {
  3650. bool is_node = false;
  3651. if (!inplace && (a->grad)) {
  3652. is_node = true;
  3653. }
  3654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3655. result->op = GGML_OP_SQR;
  3656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3657. result->src0 = a;
  3658. result->src1 = NULL;
  3659. return result;
  3660. }
  3661. struct ggml_tensor * ggml_sqr(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a) {
  3664. return ggml_sqr_impl(ctx, a, false);
  3665. }
  3666. struct ggml_tensor * ggml_sqr_inplace(
  3667. struct ggml_context * ctx,
  3668. struct ggml_tensor * a) {
  3669. return ggml_sqr_impl(ctx, a, true);
  3670. }
  3671. // ggml_sqrt
  3672. struct ggml_tensor * ggml_sqrt_impl(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a,
  3675. bool inplace) {
  3676. bool is_node = false;
  3677. if (!inplace && (a->grad)) {
  3678. is_node = true;
  3679. }
  3680. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3681. result->op = GGML_OP_SQRT;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src0 = a;
  3684. result->src1 = NULL;
  3685. return result;
  3686. }
  3687. struct ggml_tensor * ggml_sqrt(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a) {
  3690. return ggml_sqrt_impl(ctx, a, false);
  3691. }
  3692. struct ggml_tensor * ggml_sqrt_inplace(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a) {
  3695. return ggml_sqrt_impl(ctx, a, true);
  3696. }
  3697. // ggml_sum
  3698. struct ggml_tensor * ggml_sum(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a) {
  3701. bool is_node = false;
  3702. if (a->grad) {
  3703. is_node = true;
  3704. }
  3705. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3706. result->op = GGML_OP_SUM;
  3707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3708. result->src0 = a;
  3709. result->src1 = NULL;
  3710. return result;
  3711. }
  3712. // ggml_mean
  3713. struct ggml_tensor * ggml_mean(
  3714. struct ggml_context * ctx,
  3715. struct ggml_tensor * a) {
  3716. bool is_node = false;
  3717. if (a->grad) {
  3718. GGML_ASSERT(false); // TODO: implement
  3719. is_node = true;
  3720. }
  3721. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3722. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3723. result->op = GGML_OP_MEAN;
  3724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3725. result->src0 = a;
  3726. result->src1 = NULL;
  3727. return result;
  3728. }
  3729. // ggml_repeat
  3730. struct ggml_tensor * ggml_repeat(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a,
  3733. struct ggml_tensor * b) {
  3734. GGML_ASSERT(ggml_can_repeat(a, b));
  3735. bool is_node = false;
  3736. if (a->grad) {
  3737. is_node = true;
  3738. }
  3739. if (ggml_are_same_shape(a, b) && !is_node) {
  3740. return a;
  3741. }
  3742. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3743. result->op = GGML_OP_REPEAT;
  3744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3745. result->src0 = a;
  3746. result->src1 = b;
  3747. return result;
  3748. }
  3749. // ggml_abs
  3750. struct ggml_tensor * ggml_abs_impl(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. bool inplace) {
  3754. bool is_node = false;
  3755. if (!inplace && (a->grad)) {
  3756. is_node = true;
  3757. }
  3758. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3759. result->op = GGML_OP_ABS;
  3760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3761. result->src0 = a;
  3762. result->src1 = NULL;
  3763. return result;
  3764. }
  3765. struct ggml_tensor * ggml_abs(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a) {
  3768. return ggml_abs_impl(ctx, a, false);
  3769. }
  3770. struct ggml_tensor * ggml_abs_inplace(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a) {
  3773. return ggml_abs_impl(ctx, a, true);
  3774. }
  3775. // ggml_sgn
  3776. struct ggml_tensor * ggml_sgn_impl(
  3777. struct ggml_context * ctx,
  3778. struct ggml_tensor * a,
  3779. bool inplace) {
  3780. bool is_node = false;
  3781. if (!inplace && (a->grad)) {
  3782. is_node = true;
  3783. }
  3784. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3785. result->op = GGML_OP_SGN;
  3786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3787. result->src0 = a;
  3788. result->src1 = NULL;
  3789. return result;
  3790. }
  3791. struct ggml_tensor * ggml_sgn(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a) {
  3794. return ggml_sgn_impl(ctx, a, false);
  3795. }
  3796. struct ggml_tensor * ggml_sgn_inplace(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * a) {
  3799. return ggml_sgn_impl(ctx, a, true);
  3800. }
  3801. // ggml_neg
  3802. struct ggml_tensor * ggml_neg_impl(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * a,
  3805. bool inplace) {
  3806. bool is_node = false;
  3807. if (!inplace && (a->grad)) {
  3808. is_node = true;
  3809. }
  3810. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3811. result->op = GGML_OP_NEG;
  3812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3813. result->src0 = a;
  3814. result->src1 = NULL;
  3815. return result;
  3816. }
  3817. struct ggml_tensor * ggml_neg(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a) {
  3820. return ggml_neg_impl(ctx, a, false);
  3821. }
  3822. struct ggml_tensor * ggml_neg_inplace(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a) {
  3825. return ggml_neg_impl(ctx, a, true);
  3826. }
  3827. // ggml_step
  3828. struct ggml_tensor * ggml_step_impl(
  3829. struct ggml_context * ctx,
  3830. struct ggml_tensor * a,
  3831. bool inplace) {
  3832. bool is_node = false;
  3833. if (!inplace && (a->grad)) {
  3834. is_node = true;
  3835. }
  3836. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3837. result->op = GGML_OP_STEP;
  3838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3839. result->src0 = a;
  3840. result->src1 = NULL;
  3841. return result;
  3842. }
  3843. struct ggml_tensor * ggml_step(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a) {
  3846. return ggml_step_impl(ctx, a, false);
  3847. }
  3848. struct ggml_tensor * ggml_step_inplace(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a) {
  3851. return ggml_step_impl(ctx, a, true);
  3852. }
  3853. // ggml_relu
  3854. struct ggml_tensor * ggml_relu_impl(
  3855. struct ggml_context * ctx,
  3856. struct ggml_tensor * a,
  3857. bool inplace) {
  3858. bool is_node = false;
  3859. if (!inplace && (a->grad)) {
  3860. is_node = true;
  3861. }
  3862. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3863. result->op = GGML_OP_RELU;
  3864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3865. result->src0 = a;
  3866. result->src1 = NULL;
  3867. return result;
  3868. }
  3869. struct ggml_tensor * ggml_relu(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a) {
  3872. return ggml_relu_impl(ctx, a, false);
  3873. }
  3874. struct ggml_tensor * ggml_relu_inplace(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a) {
  3877. return ggml_relu_impl(ctx, a, true);
  3878. }
  3879. // ggml_gelu
  3880. struct ggml_tensor * ggml_gelu_impl(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a,
  3883. bool inplace) {
  3884. bool is_node = false;
  3885. if (!inplace && (a->grad)) {
  3886. is_node = true;
  3887. }
  3888. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3889. result->op = GGML_OP_GELU;
  3890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3891. result->src0 = a;
  3892. result->src1 = NULL;
  3893. return result;
  3894. }
  3895. struct ggml_tensor * ggml_gelu(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a) {
  3898. return ggml_gelu_impl(ctx, a, false);
  3899. }
  3900. struct ggml_tensor * ggml_gelu_inplace(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a) {
  3903. return ggml_gelu_impl(ctx, a, true);
  3904. }
  3905. // ggml_silu
  3906. struct ggml_tensor * ggml_silu_impl(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. bool inplace) {
  3910. bool is_node = false;
  3911. if (!inplace && (a->grad)) {
  3912. is_node = true;
  3913. }
  3914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3915. result->op = GGML_OP_SILU;
  3916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3917. result->src0 = a;
  3918. result->src1 = NULL;
  3919. return result;
  3920. }
  3921. struct ggml_tensor * ggml_silu(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a) {
  3924. return ggml_silu_impl(ctx, a, false);
  3925. }
  3926. struct ggml_tensor * ggml_silu_inplace(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a) {
  3929. return ggml_silu_impl(ctx, a, true);
  3930. }
  3931. // ggml_norm
  3932. struct ggml_tensor * ggml_norm_impl(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. bool inplace) {
  3936. bool is_node = false;
  3937. if (!inplace && (a->grad)) {
  3938. GGML_ASSERT(false); // TODO: implement backward
  3939. is_node = true;
  3940. }
  3941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3942. result->op = GGML_OP_NORM;
  3943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3944. result->src0 = a;
  3945. result->src1 = NULL; // TODO: maybe store epsilon here?
  3946. return result;
  3947. }
  3948. struct ggml_tensor * ggml_norm(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a) {
  3951. return ggml_norm_impl(ctx, a, false);
  3952. }
  3953. struct ggml_tensor * ggml_norm_inplace(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a) {
  3956. return ggml_norm_impl(ctx, a, true);
  3957. }
  3958. struct ggml_tensor * ggml_rms_norm_impl(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a,
  3961. bool inplace) {
  3962. bool is_node = false;
  3963. if (!inplace && (a->grad)) {
  3964. GGML_ASSERT(false); // TODO: implement backward
  3965. is_node = true;
  3966. }
  3967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3968. result->op = GGML_OP_RMS_NORM;
  3969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3970. result->src0 = a;
  3971. result->src1 = NULL; // TODO: maybe store epsilon here?
  3972. return result;
  3973. }
  3974. struct ggml_tensor * ggml_rms_norm(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a) {
  3977. return ggml_rms_norm_impl(ctx, a, false);
  3978. }
  3979. struct ggml_tensor * ggml_rms_norm_inplace(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a) {
  3982. return ggml_rms_norm_impl(ctx, a, true);
  3983. }
  3984. // ggml_mul_mat
  3985. struct ggml_tensor * ggml_mul_mat(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. struct ggml_tensor * b) {
  3989. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3990. GGML_ASSERT(!ggml_is_transposed(a));
  3991. bool is_node = false;
  3992. if (a->grad || b->grad) {
  3993. is_node = true;
  3994. }
  3995. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3996. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3997. result->op = GGML_OP_MUL_MAT;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src0 = a;
  4000. result->src1 = b;
  4001. return result;
  4002. }
  4003. // ggml_scale
  4004. struct ggml_tensor * ggml_scale_impl(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. struct ggml_tensor * b,
  4008. bool inplace) {
  4009. GGML_ASSERT(ggml_is_scalar(b));
  4010. GGML_ASSERT(ggml_is_padded_1d(a));
  4011. bool is_node = false;
  4012. if (!inplace && (a->grad || b->grad)) {
  4013. GGML_ASSERT(false); // TODO: implement backward
  4014. is_node = true;
  4015. }
  4016. // TODO: when implement backward, fix this:
  4017. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4018. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4019. result->op = GGML_OP_SCALE;
  4020. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4021. result->src0 = a;
  4022. result->src1 = b;
  4023. return result;
  4024. }
  4025. struct ggml_tensor * ggml_scale(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. struct ggml_tensor * b) {
  4029. return ggml_scale_impl(ctx, a, b, false);
  4030. }
  4031. struct ggml_tensor * ggml_scale_inplace(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. struct ggml_tensor * b) {
  4035. return ggml_scale_impl(ctx, a, b, true);
  4036. }
  4037. // ggml_cpy
  4038. struct ggml_tensor * ggml_cpy_impl(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. struct ggml_tensor * b,
  4042. bool inplace) {
  4043. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4044. bool is_node = false;
  4045. if (!inplace && (a->grad || b->grad)) {
  4046. GGML_ASSERT(false); // TODO: implement backward
  4047. is_node = true;
  4048. }
  4049. // make a view of the destination
  4050. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4051. result->op = GGML_OP_CPY;
  4052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4053. result->src0 = a;
  4054. result->src1 = b;
  4055. return result;
  4056. }
  4057. struct ggml_tensor * ggml_cpy(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a,
  4060. struct ggml_tensor * b) {
  4061. return ggml_cpy_impl(ctx, a, b, false);
  4062. }
  4063. struct ggml_tensor * ggml_cpy_inplace(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. struct ggml_tensor * b) {
  4067. return ggml_cpy_impl(ctx, a, b, true);
  4068. }
  4069. // ggml_cont
  4070. struct ggml_tensor * ggml_cont_impl(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. bool inplace) {
  4074. bool is_node = false;
  4075. if (!inplace && a->grad) {
  4076. GGML_ASSERT(false); // TODO: implement backward
  4077. is_node = true;
  4078. }
  4079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4080. result->op = GGML_OP_CONT;
  4081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4082. result->src0 = a;
  4083. result->src1 = NULL;
  4084. return result;
  4085. }
  4086. struct ggml_tensor * ggml_cont(
  4087. struct ggml_context * ctx,
  4088. struct ggml_tensor * a) {
  4089. return ggml_cont_impl(ctx, a, false);
  4090. }
  4091. struct ggml_tensor * ggml_cont_inplace(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a) {
  4094. return ggml_cont_impl(ctx, a, true);
  4095. }
  4096. // ggml_reshape
  4097. struct ggml_tensor * ggml_reshape(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * b) {
  4101. GGML_ASSERT(ggml_is_contiguous(a));
  4102. GGML_ASSERT(ggml_is_contiguous(b));
  4103. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4104. bool is_node = false;
  4105. if (a->grad || b->grad) {
  4106. GGML_ASSERT(false); // TODO: implement backward
  4107. is_node = true;
  4108. }
  4109. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4110. result->op = GGML_OP_RESHAPE;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src0 = a;
  4113. result->src1 = NULL;
  4114. return result;
  4115. }
  4116. struct ggml_tensor * ggml_reshape_2d(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. int64_t ne0,
  4120. int64_t ne1) {
  4121. GGML_ASSERT(ggml_is_contiguous(a));
  4122. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4123. bool is_node = false;
  4124. if (a->grad) {
  4125. GGML_ASSERT(false); // TODO: implement backward
  4126. is_node = true;
  4127. }
  4128. const int64_t ne[2] = { ne0, ne1 };
  4129. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4130. result->op = GGML_OP_RESHAPE;
  4131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4132. result->src0 = a;
  4133. result->src1 = NULL;
  4134. return result;
  4135. }
  4136. struct ggml_tensor * ggml_reshape_3d(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. int64_t ne0,
  4140. int64_t ne1,
  4141. int64_t ne2) {
  4142. GGML_ASSERT(ggml_is_contiguous(a));
  4143. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4144. bool is_node = false;
  4145. if (a->grad) {
  4146. GGML_ASSERT(false); // TODO: implement backward
  4147. is_node = true;
  4148. }
  4149. const int64_t ne[3] = { ne0, ne1, ne2 };
  4150. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4151. result->op = GGML_OP_RESHAPE;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src0 = a;
  4154. result->src1 = NULL;
  4155. return result;
  4156. }
  4157. // ggml_view_1d
  4158. struct ggml_tensor * ggml_view_1d(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. int64_t ne0,
  4162. size_t offset) {
  4163. if (a->grad) {
  4164. GGML_ASSERT(false); // gradient propagation is not supported
  4165. }
  4166. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4167. result->op = GGML_OP_VIEW;
  4168. result->grad = NULL;
  4169. result->src0 = a;
  4170. result->src1 = NULL; // TODO: maybe store the offset here?
  4171. return result;
  4172. }
  4173. // ggml_view_2d
  4174. struct ggml_tensor * ggml_view_2d(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. int64_t ne0,
  4178. int64_t ne1,
  4179. size_t nb1,
  4180. size_t offset) {
  4181. if (a->grad) {
  4182. GGML_ASSERT(false); // gradient propagation is not supported
  4183. }
  4184. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4185. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4186. result->nb[1] = nb1;
  4187. result->nb[2] = result->nb[1]*ne1;
  4188. result->nb[3] = result->nb[2];
  4189. result->op = GGML_OP_VIEW;
  4190. result->grad = NULL;
  4191. result->src0 = a;
  4192. result->src1 = NULL; // TODO: maybe store the offset here?
  4193. return result;
  4194. }
  4195. // ggml_view_3d
  4196. struct ggml_tensor * ggml_view_3d(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. int64_t ne0,
  4200. int64_t ne1,
  4201. int64_t ne2,
  4202. size_t nb1,
  4203. size_t nb2,
  4204. size_t offset) {
  4205. if (a->grad) {
  4206. GGML_ASSERT(false); // gradient propagation is not supported
  4207. }
  4208. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4209. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4210. result->nb[1] = nb1;
  4211. result->nb[2] = nb2;
  4212. result->nb[3] = result->nb[2]*ne2;
  4213. result->op = GGML_OP_VIEW;
  4214. result->grad = NULL;
  4215. result->src0 = a;
  4216. result->src1 = NULL; // TODO: maybe store the offset here?
  4217. return result;
  4218. }
  4219. // ggml_permute
  4220. struct ggml_tensor * ggml_permute(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a,
  4223. int axis0,
  4224. int axis1,
  4225. int axis2,
  4226. int axis3) {
  4227. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4228. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4229. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4230. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4231. GGML_ASSERT(axis0 != axis1);
  4232. GGML_ASSERT(axis0 != axis2);
  4233. GGML_ASSERT(axis0 != axis3);
  4234. GGML_ASSERT(axis1 != axis2);
  4235. GGML_ASSERT(axis1 != axis3);
  4236. GGML_ASSERT(axis2 != axis3);
  4237. bool is_node = false;
  4238. if (a->grad) {
  4239. GGML_ASSERT(false); // TODO: implement backward
  4240. is_node = true;
  4241. }
  4242. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4243. int ne[GGML_MAX_DIMS];
  4244. int nb[GGML_MAX_DIMS];
  4245. ne[axis0] = a->ne[0];
  4246. ne[axis1] = a->ne[1];
  4247. ne[axis2] = a->ne[2];
  4248. ne[axis3] = a->ne[3];
  4249. nb[axis0] = a->nb[0];
  4250. nb[axis1] = a->nb[1];
  4251. nb[axis2] = a->nb[2];
  4252. nb[axis3] = a->nb[3];
  4253. result->ne[0] = ne[0];
  4254. result->ne[1] = ne[1];
  4255. result->ne[2] = ne[2];
  4256. result->ne[3] = ne[3];
  4257. result->nb[0] = nb[0];
  4258. result->nb[1] = nb[1];
  4259. result->nb[2] = nb[2];
  4260. result->nb[3] = nb[3];
  4261. result->op = GGML_OP_PERMUTE;
  4262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4263. result->src0 = a;
  4264. result->src1 = NULL; // TODO: maybe store the permutation here?
  4265. return result;
  4266. }
  4267. // ggml_transpose
  4268. struct ggml_tensor * ggml_transpose(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a) {
  4271. bool is_node = false;
  4272. if (a->grad) {
  4273. GGML_ASSERT(false); // TODO: implement backward
  4274. is_node = true;
  4275. }
  4276. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4277. result->ne[0] = a->ne[1];
  4278. result->ne[1] = a->ne[0];
  4279. result->nb[0] = a->nb[1];
  4280. result->nb[1] = a->nb[0];
  4281. result->op = GGML_OP_TRANSPOSE;
  4282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4283. result->src0 = a;
  4284. result->src1 = NULL;
  4285. return result;
  4286. }
  4287. // ggml_get_rows
  4288. struct ggml_tensor * ggml_get_rows(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b) {
  4292. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4293. bool is_node = false;
  4294. if (a->grad || b->grad) {
  4295. GGML_ASSERT(false); // TODO: implement backward
  4296. is_node = true;
  4297. }
  4298. // TODO: implement non F32 return
  4299. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4300. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4301. result->op = GGML_OP_GET_ROWS;
  4302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4303. result->src0 = a;
  4304. result->src1 = b;
  4305. return result;
  4306. }
  4307. // ggml_diag_mask_inf
  4308. struct ggml_tensor * ggml_diag_mask_inf(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. int n_past) {
  4312. bool is_node = false;
  4313. if (a->grad) {
  4314. GGML_ASSERT(false); // TODO: implement backward
  4315. is_node = true;
  4316. }
  4317. // TODO: when implement backward, fix this:
  4318. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4319. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4320. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4321. result->op = GGML_OP_DIAG_MASK_INF;
  4322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4323. result->src0 = a;
  4324. result->src1 = b;
  4325. return result;
  4326. }
  4327. // ggml_soft_max
  4328. struct ggml_tensor * ggml_soft_max(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a) {
  4331. bool is_node = false;
  4332. if (a->grad) {
  4333. GGML_ASSERT(false); // TODO: implement backward
  4334. is_node = true;
  4335. }
  4336. // TODO: when implement backward, fix this:
  4337. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4338. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4339. result->op = GGML_OP_SOFT_MAX;
  4340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4341. result->src0 = a;
  4342. result->src1 = NULL;
  4343. return result;
  4344. }
  4345. // ggml_rope
  4346. struct ggml_tensor * ggml_rope(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. int n_past,
  4350. int n_dims,
  4351. int mode) {
  4352. GGML_ASSERT(n_past >= 0);
  4353. bool is_node = false;
  4354. if (a->grad) {
  4355. GGML_ASSERT(false); // TODO: implement backward
  4356. is_node = true;
  4357. }
  4358. // TODO: when implement backward, fix this:
  4359. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4360. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4361. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4362. ((int32_t *) b->data)[0] = n_past;
  4363. ((int32_t *) b->data)[1] = n_dims;
  4364. ((int32_t *) b->data)[2] = mode;
  4365. result->op = GGML_OP_ROPE;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src0 = a;
  4368. result->src1 = b;
  4369. return result;
  4370. }
  4371. // ggml_conv_1d_1s
  4372. struct ggml_tensor * ggml_conv_1d_1s(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. struct ggml_tensor * b) {
  4376. GGML_ASSERT(ggml_is_matrix(b));
  4377. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4378. GGML_ASSERT(a->ne[3] == 1);
  4379. bool is_node = false;
  4380. if (a->grad || b->grad) {
  4381. GGML_ASSERT(false); // TODO: implement backward
  4382. is_node = true;
  4383. }
  4384. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4385. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4386. result->op = GGML_OP_CONV_1D_1S;
  4387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4388. result->src0 = a;
  4389. result->src1 = b;
  4390. return result;
  4391. }
  4392. // ggml_conv_1d_2s
  4393. struct ggml_tensor * ggml_conv_1d_2s(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a,
  4396. struct ggml_tensor * b) {
  4397. GGML_ASSERT(ggml_is_matrix(b));
  4398. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4399. GGML_ASSERT(a->ne[3] == 1);
  4400. bool is_node = false;
  4401. if (a->grad || b->grad) {
  4402. GGML_ASSERT(false); // TODO: implement backward
  4403. is_node = true;
  4404. }
  4405. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4406. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4407. result->op = GGML_OP_CONV_1D_2S;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src0 = a;
  4410. result->src1 = b;
  4411. return result;
  4412. }
  4413. // ggml_flash_attn
  4414. struct ggml_tensor * ggml_flash_attn(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * q,
  4417. struct ggml_tensor * k,
  4418. struct ggml_tensor * v,
  4419. bool masked) {
  4420. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4421. // TODO: check if vT can be multiplied by (k*qT)
  4422. bool is_node = false;
  4423. if (q->grad || k->grad || v->grad) {
  4424. GGML_ASSERT(false); // TODO: implement backward
  4425. is_node = true;
  4426. }
  4427. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4428. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4429. result->op = GGML_OP_FLASH_ATTN;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src0 = q;
  4432. result->src1 = k;
  4433. result->opt[0] = v;
  4434. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4435. return result;
  4436. }
  4437. // ggml_flash_ff
  4438. struct ggml_tensor * ggml_flash_ff(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b0,
  4442. struct ggml_tensor * b1,
  4443. struct ggml_tensor * c0,
  4444. struct ggml_tensor * c1) {
  4445. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4446. // TODO: more checks
  4447. bool is_node = false;
  4448. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4449. GGML_ASSERT(false); // TODO: implement backward
  4450. is_node = true;
  4451. }
  4452. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4453. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4454. result->op = GGML_OP_FLASH_FF;
  4455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4456. result->src0 = a;
  4457. result->src1 = b0;
  4458. result->opt[0] = b1;
  4459. result->opt[1] = c0;
  4460. result->opt[2] = c1;
  4461. return result;
  4462. }
  4463. // ggml_map_unary
  4464. struct ggml_tensor * ggml_map_unary_impl_f32(
  4465. struct ggml_context * ctx,
  4466. struct ggml_tensor * a,
  4467. const ggml_unary_op_f32_t fun,
  4468. bool inplace) {
  4469. bool is_node = false;
  4470. if (!inplace && a->grad) {
  4471. is_node = true;
  4472. }
  4473. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4474. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4475. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4476. result->op = GGML_OP_MAP_UNARY;
  4477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4478. result->src0 = a;
  4479. result->opt[0] = addr_tensor;
  4480. return result;
  4481. }
  4482. struct ggml_tensor * ggml_map_unary_f32(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. const ggml_unary_op_f32_t fun) {
  4486. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4487. }
  4488. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. const ggml_unary_op_f32_t fun) {
  4492. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4493. }
  4494. // ggml_map_binary
  4495. struct ggml_tensor * ggml_map_binary_impl_f32(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. struct ggml_tensor * b,
  4499. const ggml_binary_op_f32_t fun,
  4500. bool inplace) {
  4501. GGML_ASSERT(ggml_are_same_shape(a, b));
  4502. bool is_node = false;
  4503. if (!inplace && (a->grad || b->grad)) {
  4504. is_node = true;
  4505. }
  4506. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4507. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4508. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4509. result->op = GGML_OP_MAP_BINARY;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src0 = a;
  4512. result->src1 = b;
  4513. result->opt[0] = addr_tensor;
  4514. return result;
  4515. }
  4516. struct ggml_tensor * ggml_map_binary_f32(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. struct ggml_tensor * b,
  4520. const ggml_binary_op_f32_t fun) {
  4521. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4522. }
  4523. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. struct ggml_tensor * b,
  4527. const ggml_binary_op_f32_t fun) {
  4528. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4529. }
  4530. ////////////////////////////////////////////////////////////////////////////////
  4531. void ggml_set_param(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * tensor) {
  4534. tensor->is_param = true;
  4535. GGML_ASSERT(tensor->grad == NULL);
  4536. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4537. }
  4538. // ggml_compute_forward_dup
  4539. static void ggml_compute_forward_dup_f16(
  4540. const struct ggml_compute_params * params,
  4541. const struct ggml_tensor * src0,
  4542. struct ggml_tensor * dst) {
  4543. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4545. return;
  4546. }
  4547. const int64_t ne00 = src0->ne[0];
  4548. const int64_t ne01 = src0->ne[1];
  4549. const int64_t ne02 = src0->ne[2];
  4550. const int64_t ne03 = src0->ne[3];
  4551. const int64_t ne0 = dst->ne[0];
  4552. const int64_t ne1 = dst->ne[1];
  4553. const int64_t ne2 = dst->ne[2];
  4554. const int64_t ne3 = dst->ne[3];
  4555. const size_t nb00 = src0->nb[0];
  4556. const size_t nb01 = src0->nb[1];
  4557. const size_t nb02 = src0->nb[2];
  4558. const size_t nb03 = src0->nb[3];
  4559. const size_t nb0 = dst->nb[0];
  4560. const size_t nb1 = dst->nb[1];
  4561. const size_t nb2 = dst->nb[2];
  4562. const size_t nb3 = dst->nb[3];
  4563. const int ith = params->ith; // thread index
  4564. const int nth = params->nth; // number of threads
  4565. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4566. // parallelize by elements
  4567. const int ne = ggml_nelements(dst);
  4568. const int dr = (ne + nth - 1) / nth;
  4569. const int ie0 = dr * ith;
  4570. const int ie1 = MIN(ie0 + dr, ne);
  4571. memcpy(
  4572. ((char *) dst->data + ie0*nb0),
  4573. ((char *) src0->data + ie0*nb00),
  4574. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4575. return;
  4576. }
  4577. // parallelize by rows
  4578. const int nr = ne01;
  4579. // number of rows per thread
  4580. const int dr = (nr + nth - 1) / nth;
  4581. // row range for this thread
  4582. const int ir0 = dr * ith;
  4583. const int ir1 = MIN(ir0 + dr, nr);
  4584. if (src0->type == dst->type &&
  4585. ne00 == ne0 &&
  4586. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4587. // copy by rows
  4588. const size_t rs = ne00*nb00;
  4589. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4590. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4591. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4592. memcpy(
  4593. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4594. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4595. rs);
  4596. }
  4597. }
  4598. }
  4599. return;
  4600. }
  4601. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4602. if (ggml_is_contiguous(dst)) {
  4603. if (nb00 == sizeof(ggml_fp16_t)) {
  4604. if (dst->type == GGML_TYPE_F16) {
  4605. size_t id = 0;
  4606. const size_t rs = ne00 * nb00;
  4607. char * dst_ptr = (char *) dst->data;
  4608. for (int i03 = 0; i03 < ne03; i03++) {
  4609. for (int i02 = 0; i02 < ne02; i02++) {
  4610. id += rs * ir0;
  4611. for (int i01 = ir0; i01 < ir1; i01++) {
  4612. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4613. memcpy(dst_ptr + id, src0_ptr, rs);
  4614. id += rs;
  4615. }
  4616. id += rs * (ne01 - ir1);
  4617. }
  4618. }
  4619. } else if (dst->type == GGML_TYPE_F32) {
  4620. size_t id = 0;
  4621. float * dst_ptr = (float *) dst->data;
  4622. for (int i03 = 0; i03 < ne03; i03++) {
  4623. for (int i02 = 0; i02 < ne02; i02++) {
  4624. id += ne00 * ir0;
  4625. for (int i01 = ir0; i01 < ir1; i01++) {
  4626. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4627. for (int i00 = 0; i00 < ne00; i00++) {
  4628. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4629. id++;
  4630. }
  4631. }
  4632. id += ne00 * (ne01 - ir1);
  4633. }
  4634. }
  4635. } else if (ggml_is_quantized(dst->type)) {
  4636. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4637. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4638. size_t id = 0;
  4639. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4640. char * dst_ptr = (char *) dst->data;
  4641. for (int i03 = 0; i03 < ne03; i03++) {
  4642. for (int i02 = 0; i02 < ne02; i02++) {
  4643. id += rs * ir0;
  4644. for (int i01 = ir0; i01 < ir1; i01++) {
  4645. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4646. for (int i00 = 0; i00 < ne00; i00++) {
  4647. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4648. }
  4649. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4650. id += rs;
  4651. }
  4652. id += rs * (ne01 - ir1);
  4653. }
  4654. }
  4655. } else {
  4656. GGML_ASSERT(false); // TODO: implement
  4657. }
  4658. } else {
  4659. //printf("%s: this is not optimal - fix me\n", __func__);
  4660. if (dst->type == GGML_TYPE_F32) {
  4661. size_t id = 0;
  4662. float * dst_ptr = (float *) dst->data;
  4663. for (int i03 = 0; i03 < ne03; i03++) {
  4664. for (int i02 = 0; i02 < ne02; i02++) {
  4665. id += ne00 * ir0;
  4666. for (int i01 = ir0; i01 < ir1; i01++) {
  4667. for (int i00 = 0; i00 < ne00; i00++) {
  4668. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4669. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4670. id++;
  4671. }
  4672. }
  4673. id += ne00 * (ne01 - ir1);
  4674. }
  4675. }
  4676. } else if (dst->type == GGML_TYPE_F16) {
  4677. size_t id = 0;
  4678. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4679. for (int i03 = 0; i03 < ne03; i03++) {
  4680. for (int i02 = 0; i02 < ne02; i02++) {
  4681. id += ne00 * ir0;
  4682. for (int i01 = ir0; i01 < ir1; i01++) {
  4683. for (int i00 = 0; i00 < ne00; i00++) {
  4684. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4685. dst_ptr[id] = *src0_ptr;
  4686. id++;
  4687. }
  4688. }
  4689. id += ne00 * (ne01 - ir1);
  4690. }
  4691. }
  4692. } else {
  4693. GGML_ASSERT(false); // TODO: implement
  4694. }
  4695. }
  4696. return;
  4697. }
  4698. // dst counters
  4699. int64_t i10 = 0;
  4700. int64_t i11 = 0;
  4701. int64_t i12 = 0;
  4702. int64_t i13 = 0;
  4703. if (dst->type == GGML_TYPE_F16) {
  4704. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4705. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4706. i10 += ne00 * ir0;
  4707. while (i10 >= ne0) {
  4708. i10 -= ne0;
  4709. if (++i11 == ne1) {
  4710. i11 = 0;
  4711. if (++i12 == ne2) {
  4712. i12 = 0;
  4713. if (++i13 == ne3) {
  4714. i13 = 0;
  4715. }
  4716. }
  4717. }
  4718. }
  4719. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4720. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4721. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4722. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4723. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4724. if (++i10 == ne00) {
  4725. i10 = 0;
  4726. if (++i11 == ne01) {
  4727. i11 = 0;
  4728. if (++i12 == ne02) {
  4729. i12 = 0;
  4730. if (++i13 == ne03) {
  4731. i13 = 0;
  4732. }
  4733. }
  4734. }
  4735. }
  4736. }
  4737. }
  4738. i10 += ne00 * (ne01 - ir1);
  4739. while (i10 >= ne0) {
  4740. i10 -= ne0;
  4741. if (++i11 == ne1) {
  4742. i11 = 0;
  4743. if (++i12 == ne2) {
  4744. i12 = 0;
  4745. if (++i13 == ne3) {
  4746. i13 = 0;
  4747. }
  4748. }
  4749. }
  4750. }
  4751. }
  4752. }
  4753. } else if (dst->type == GGML_TYPE_F32) {
  4754. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4756. i10 += ne00 * ir0;
  4757. while (i10 >= ne0) {
  4758. i10 -= ne0;
  4759. if (++i11 == ne1) {
  4760. i11 = 0;
  4761. if (++i12 == ne2) {
  4762. i12 = 0;
  4763. if (++i13 == ne3) {
  4764. i13 = 0;
  4765. }
  4766. }
  4767. }
  4768. }
  4769. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4770. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4771. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4772. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4773. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4774. if (++i10 == ne0) {
  4775. i10 = 0;
  4776. if (++i11 == ne1) {
  4777. i11 = 0;
  4778. if (++i12 == ne2) {
  4779. i12 = 0;
  4780. if (++i13 == ne3) {
  4781. i13 = 0;
  4782. }
  4783. }
  4784. }
  4785. }
  4786. }
  4787. }
  4788. i10 += ne00 * (ne01 - ir1);
  4789. while (i10 >= ne0) {
  4790. i10 -= ne0;
  4791. if (++i11 == ne1) {
  4792. i11 = 0;
  4793. if (++i12 == ne2) {
  4794. i12 = 0;
  4795. if (++i13 == ne3) {
  4796. i13 = 0;
  4797. }
  4798. }
  4799. }
  4800. }
  4801. }
  4802. }
  4803. } else {
  4804. GGML_ASSERT(false); // TODO: implement
  4805. }
  4806. }
  4807. static void ggml_compute_forward_dup_f32(
  4808. const struct ggml_compute_params * params,
  4809. const struct ggml_tensor * src0,
  4810. struct ggml_tensor * dst) {
  4811. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4813. return;
  4814. }
  4815. const int64_t ne00 = src0->ne[0];
  4816. const int64_t ne01 = src0->ne[1];
  4817. const int64_t ne02 = src0->ne[2];
  4818. const int64_t ne03 = src0->ne[3];
  4819. const int64_t ne0 = dst->ne[0];
  4820. const int64_t ne1 = dst->ne[1];
  4821. const int64_t ne2 = dst->ne[2];
  4822. const int64_t ne3 = dst->ne[3];
  4823. const size_t nb00 = src0->nb[0];
  4824. const size_t nb01 = src0->nb[1];
  4825. const size_t nb02 = src0->nb[2];
  4826. const size_t nb03 = src0->nb[3];
  4827. const size_t nb0 = dst->nb[0];
  4828. const size_t nb1 = dst->nb[1];
  4829. const size_t nb2 = dst->nb[2];
  4830. const size_t nb3 = dst->nb[3];
  4831. const int ith = params->ith; // thread index
  4832. const int nth = params->nth; // number of threads
  4833. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4834. // parallelize by elements
  4835. const int ne = ggml_nelements(dst);
  4836. const int dr = (ne + nth - 1) / nth;
  4837. const int ie0 = dr * ith;
  4838. const int ie1 = MIN(ie0 + dr, ne);
  4839. memcpy(
  4840. ((char *) dst->data + ie0*nb0),
  4841. ((char *) src0->data + ie0*nb00),
  4842. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4843. return;
  4844. }
  4845. // parallelize by rows
  4846. const int nr = ne01;
  4847. // number of rows per thread
  4848. const int dr = (nr + nth - 1) / nth;
  4849. // row range for this thread
  4850. const int ir0 = dr * ith;
  4851. const int ir1 = MIN(ir0 + dr, nr);
  4852. if (src0->type == dst->type &&
  4853. ne00 == ne0 &&
  4854. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4855. // copy by rows
  4856. const size_t rs = ne00*nb00;
  4857. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4858. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4859. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4860. memcpy(
  4861. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4862. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4863. rs);
  4864. }
  4865. }
  4866. }
  4867. return;
  4868. }
  4869. if (ggml_is_contiguous(dst)) {
  4870. // TODO: simplify
  4871. if (nb00 == sizeof(float)) {
  4872. if (dst->type == GGML_TYPE_F32) {
  4873. size_t id = 0;
  4874. const size_t rs = ne00 * nb00;
  4875. char * dst_ptr = (char *) dst->data;
  4876. for (int i03 = 0; i03 < ne03; i03++) {
  4877. for (int i02 = 0; i02 < ne02; i02++) {
  4878. id += rs * ir0;
  4879. for (int i01 = ir0; i01 < ir1; i01++) {
  4880. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4881. memcpy(dst_ptr + id, src0_ptr, rs);
  4882. id += rs;
  4883. }
  4884. id += rs * (ne01 - ir1);
  4885. }
  4886. }
  4887. } else if (dst->type == GGML_TYPE_F16) {
  4888. size_t id = 0;
  4889. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4890. for (int i03 = 0; i03 < ne03; i03++) {
  4891. for (int i02 = 0; i02 < ne02; i02++) {
  4892. id += ne00 * ir0;
  4893. for (int i01 = ir0; i01 < ir1; i01++) {
  4894. for (int i00 = 0; i00 < ne00; i00++) {
  4895. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4896. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4897. id++;
  4898. }
  4899. }
  4900. id += ne00 * (ne01 - ir1);
  4901. }
  4902. }
  4903. } else if (ggml_is_quantized(dst->type)) {
  4904. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4905. size_t id = 0;
  4906. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4907. char * dst_ptr = (char *) dst->data;
  4908. for (int i03 = 0; i03 < ne03; i03++) {
  4909. for (int i02 = 0; i02 < ne02; i02++) {
  4910. id += rs * ir0;
  4911. for (int i01 = ir0; i01 < ir1; i01++) {
  4912. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4913. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4914. id += rs;
  4915. }
  4916. id += rs * (ne01 - ir1);
  4917. }
  4918. }
  4919. } else {
  4920. GGML_ASSERT(false); // TODO: implement
  4921. }
  4922. } else {
  4923. //printf("%s: this is not optimal - fix me\n", __func__);
  4924. if (dst->type == GGML_TYPE_F32) {
  4925. size_t id = 0;
  4926. float * dst_ptr = (float *) dst->data;
  4927. for (int i03 = 0; i03 < ne03; i03++) {
  4928. for (int i02 = 0; i02 < ne02; i02++) {
  4929. id += ne00 * ir0;
  4930. for (int i01 = ir0; i01 < ir1; i01++) {
  4931. for (int i00 = 0; i00 < ne00; i00++) {
  4932. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4933. dst_ptr[id] = *src0_ptr;
  4934. id++;
  4935. }
  4936. }
  4937. id += ne00 * (ne01 - ir1);
  4938. }
  4939. }
  4940. } else if (dst->type == GGML_TYPE_F16) {
  4941. size_t id = 0;
  4942. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4943. for (int i03 = 0; i03 < ne03; i03++) {
  4944. for (int i02 = 0; i02 < ne02; i02++) {
  4945. id += ne00 * ir0;
  4946. for (int i01 = ir0; i01 < ir1; i01++) {
  4947. for (int i00 = 0; i00 < ne00; i00++) {
  4948. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4949. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4950. id++;
  4951. }
  4952. }
  4953. id += ne00 * (ne01 - ir1);
  4954. }
  4955. }
  4956. } else {
  4957. GGML_ASSERT(false); // TODO: implement
  4958. }
  4959. }
  4960. return;
  4961. }
  4962. // dst counters
  4963. int64_t i10 = 0;
  4964. int64_t i11 = 0;
  4965. int64_t i12 = 0;
  4966. int64_t i13 = 0;
  4967. if (dst->type == GGML_TYPE_F32) {
  4968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4969. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4970. i10 += ne00 * ir0;
  4971. while (i10 >= ne0) {
  4972. i10 -= ne0;
  4973. if (++i11 == ne1) {
  4974. i11 = 0;
  4975. if (++i12 == ne2) {
  4976. i12 = 0;
  4977. if (++i13 == ne3) {
  4978. i13 = 0;
  4979. }
  4980. }
  4981. }
  4982. }
  4983. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4984. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4985. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4986. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4987. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4988. if (++i10 == ne0) {
  4989. i10 = 0;
  4990. if (++i11 == ne1) {
  4991. i11 = 0;
  4992. if (++i12 == ne2) {
  4993. i12 = 0;
  4994. if (++i13 == ne3) {
  4995. i13 = 0;
  4996. }
  4997. }
  4998. }
  4999. }
  5000. }
  5001. }
  5002. i10 += ne00 * (ne01 - ir1);
  5003. while (i10 >= ne0) {
  5004. i10 -= ne0;
  5005. if (++i11 == ne1) {
  5006. i11 = 0;
  5007. if (++i12 == ne2) {
  5008. i12 = 0;
  5009. if (++i13 == ne3) {
  5010. i13 = 0;
  5011. }
  5012. }
  5013. }
  5014. }
  5015. }
  5016. }
  5017. } else if (dst->type == GGML_TYPE_F16) {
  5018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5020. i10 += ne00 * ir0;
  5021. while (i10 >= ne0) {
  5022. i10 -= ne0;
  5023. if (++i11 == ne1) {
  5024. i11 = 0;
  5025. if (++i12 == ne2) {
  5026. i12 = 0;
  5027. if (++i13 == ne3) {
  5028. i13 = 0;
  5029. }
  5030. }
  5031. }
  5032. }
  5033. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5035. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5036. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5037. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5038. if (++i10 == ne0) {
  5039. i10 = 0;
  5040. if (++i11 == ne1) {
  5041. i11 = 0;
  5042. if (++i12 == ne2) {
  5043. i12 = 0;
  5044. if (++i13 == ne3) {
  5045. i13 = 0;
  5046. }
  5047. }
  5048. }
  5049. }
  5050. }
  5051. }
  5052. i10 += ne00 * (ne01 - ir1);
  5053. while (i10 >= ne0) {
  5054. i10 -= ne0;
  5055. if (++i11 == ne1) {
  5056. i11 = 0;
  5057. if (++i12 == ne2) {
  5058. i12 = 0;
  5059. if (++i13 == ne3) {
  5060. i13 = 0;
  5061. }
  5062. }
  5063. }
  5064. }
  5065. }
  5066. }
  5067. } else {
  5068. GGML_ASSERT(false); // TODO: implement
  5069. }
  5070. }
  5071. static void ggml_compute_forward_dup(
  5072. const struct ggml_compute_params * params,
  5073. const struct ggml_tensor * src0,
  5074. struct ggml_tensor * dst) {
  5075. switch (src0->type) {
  5076. case GGML_TYPE_F16:
  5077. {
  5078. ggml_compute_forward_dup_f16(params, src0, dst);
  5079. } break;
  5080. case GGML_TYPE_F32:
  5081. {
  5082. ggml_compute_forward_dup_f32(params, src0, dst);
  5083. } break;
  5084. default:
  5085. {
  5086. GGML_ASSERT(false);
  5087. } break;
  5088. }
  5089. }
  5090. // ggml_compute_forward_add
  5091. static void ggml_compute_forward_add_f32(
  5092. const struct ggml_compute_params * params,
  5093. const struct ggml_tensor * src0,
  5094. const struct ggml_tensor * src1,
  5095. struct ggml_tensor * dst) {
  5096. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5097. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5098. return;
  5099. }
  5100. const int ith = params->ith;
  5101. const int nth = params->nth;
  5102. const int n = ggml_nrows(src0);
  5103. const int nc = src0->ne[0];
  5104. const size_t nb00 = src0->nb[0];
  5105. const size_t nb01 = src0->nb[1];
  5106. const size_t nb10 = src1->nb[0];
  5107. const size_t nb11 = src1->nb[1];
  5108. const size_t nb0 = dst->nb[0];
  5109. const size_t nb1 = dst->nb[1];
  5110. GGML_ASSERT( nb0 == sizeof(float));
  5111. GGML_ASSERT(nb00 == sizeof(float));
  5112. if (nb10 == sizeof(float)) {
  5113. for (int j = ith; j < n; j += nth) {
  5114. #ifdef GGML_USE_ACCELERATE
  5115. vDSP_vadd(
  5116. (float *) ((char *) src0->data + j*nb01), 1,
  5117. (float *) ((char *) src1->data + j*nb11), 1,
  5118. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5119. #else
  5120. ggml_vec_add_f32(nc,
  5121. (float *) ((char *) dst->data + j*nb1),
  5122. (float *) ((char *) src0->data + j*nb01),
  5123. (float *) ((char *) src1->data + j*nb11));
  5124. #endif
  5125. }
  5126. } else {
  5127. // src1 is not contiguous
  5128. for (int j = ith; j < n; j += nth) {
  5129. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5130. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5131. for (int i = 0; i < nc; i++) {
  5132. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5133. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5134. }
  5135. }
  5136. }
  5137. }
  5138. static void ggml_compute_forward_add_f16_f32(
  5139. const struct ggml_compute_params * params,
  5140. const struct ggml_tensor * src0,
  5141. const struct ggml_tensor * src1,
  5142. struct ggml_tensor * dst) {
  5143. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5145. return;
  5146. }
  5147. const int ith = params->ith;
  5148. const int nth = params->nth;
  5149. const int n = ggml_nrows(src0);
  5150. const int nc = src0->ne[0];
  5151. const size_t nb00 = src0->nb[0];
  5152. const size_t nb01 = src0->nb[1];
  5153. const size_t nb10 = src1->nb[0];
  5154. const size_t nb11 = src1->nb[1];
  5155. const size_t nb0 = dst->nb[0];
  5156. const size_t nb1 = dst->nb[1];
  5157. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5158. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5159. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5160. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5161. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5162. if (nb10 == sizeof(float)) {
  5163. for (int j = ith; j < n; j += nth) {
  5164. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5165. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5166. for (int i = 0; i < nc; i++) {
  5167. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5168. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5169. }
  5170. }
  5171. }
  5172. else {
  5173. // src1 is not contiguous
  5174. GGML_ASSERT(false);
  5175. }
  5176. }
  5177. static void ggml_compute_forward_add_f16_f16(
  5178. const struct ggml_compute_params * params,
  5179. const struct ggml_tensor * src0,
  5180. const struct ggml_tensor * src1,
  5181. struct ggml_tensor * dst) {
  5182. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5183. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5184. return;
  5185. }
  5186. const int ith = params->ith;
  5187. const int nth = params->nth;
  5188. const int n = ggml_nrows(src0);
  5189. const int nc = src0->ne[0];
  5190. const size_t nb00 = src0->nb[0];
  5191. const size_t nb01 = src0->nb[1];
  5192. const size_t nb10 = src1->nb[0];
  5193. const size_t nb11 = src1->nb[1];
  5194. const size_t nb0 = dst->nb[0];
  5195. const size_t nb1 = dst->nb[1];
  5196. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5197. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5198. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5199. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5200. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5201. if (nb10 == sizeof(ggml_fp16_t)) {
  5202. for (int j = ith; j < n; j += nth) {
  5203. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5204. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5205. for (int i = 0; i < nc; i++) {
  5206. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5207. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5208. }
  5209. }
  5210. }
  5211. else {
  5212. // src1 is not contiguous
  5213. GGML_ASSERT(false);
  5214. }
  5215. }
  5216. static void ggml_compute_forward_add_q_f32(
  5217. const struct ggml_compute_params * params,
  5218. const struct ggml_tensor * src0,
  5219. const struct ggml_tensor * src1,
  5220. struct ggml_tensor * dst) {
  5221. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5222. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5223. return;
  5224. }
  5225. const int64_t ne00 = src0->ne[0];
  5226. const int64_t ne01 = src0->ne[1];
  5227. const int64_t ne02 = src0->ne[2];
  5228. const int64_t ne03 = src0->ne[3];
  5229. //const int64_t ne10 = src1->ne[0];
  5230. //const int64_t ne11 = src1->ne[1];
  5231. const int64_t ne12 = src1->ne[2];
  5232. const int64_t ne13 = src1->ne[3];
  5233. //const int64_t ne0 = dst->ne[0];
  5234. //const int64_t ne1 = dst->ne[1];
  5235. const int64_t ne2 = dst->ne[2];
  5236. const int64_t ne3 = dst->ne[3];
  5237. const int nb00 = src0->nb[0];
  5238. const int nb01 = src0->nb[1];
  5239. const int nb02 = src0->nb[2];
  5240. const int nb03 = src0->nb[3];
  5241. const int nb10 = src1->nb[0];
  5242. const int nb11 = src1->nb[1];
  5243. const int nb12 = src1->nb[2];
  5244. const int nb13 = src1->nb[3];
  5245. const int nb0 = dst->nb[0];
  5246. const int nb1 = dst->nb[1];
  5247. const int nb2 = dst->nb[2];
  5248. const int nb3 = dst->nb[3];
  5249. const int ith = params->ith;
  5250. const int nth = params->nth;
  5251. GGML_ASSERT(ne02 == ne12);
  5252. GGML_ASSERT(ne03 == ne13);
  5253. GGML_ASSERT(ne2 == ne12);
  5254. GGML_ASSERT(ne3 == ne13);
  5255. const enum ggml_type type = src0->type;
  5256. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5257. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5258. // we don't support permuted src0 or src1
  5259. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5260. GGML_ASSERT(nb10 == sizeof(float));
  5261. // dst cannot be transposed or permuted
  5262. GGML_ASSERT(nb0 <= nb1);
  5263. GGML_ASSERT(nb1 <= nb2);
  5264. GGML_ASSERT(nb2 <= nb3);
  5265. GGML_ASSERT(ggml_is_quantized(src0->type));
  5266. GGML_ASSERT(dst->type == src0->type);
  5267. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5268. // total rows in src0
  5269. const int nr = ne01*ne02*ne03;
  5270. // rows per thread
  5271. const int dr = (nr + nth - 1)/nth;
  5272. // row range for this thread
  5273. const int ir0 = dr*ith;
  5274. const int ir1 = MIN(ir0 + dr, nr);
  5275. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5276. for (int ir = ir0; ir < ir1; ++ir) {
  5277. // src0 indices
  5278. const int i03 = ir/(ne02*ne01);
  5279. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5280. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5281. // src1 and dst are same shape as src0 => same indices
  5282. const int i13 = i03;
  5283. const int i12 = i02;
  5284. const int i11 = i01;
  5285. const int i3 = i03;
  5286. const int i2 = i02;
  5287. const int i1 = i01;
  5288. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5289. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5290. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5291. assert(ne00 % 32 == 0);
  5292. // unquantize row from src0 to temp buffer
  5293. dequantize_row_q(src0_row, wdata, ne00);
  5294. // add src1
  5295. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5296. // quantize row to dst
  5297. quantize_row_q(wdata, dst_row, ne00);
  5298. }
  5299. }
  5300. static void ggml_compute_forward_add(
  5301. const struct ggml_compute_params * params,
  5302. const struct ggml_tensor * src0,
  5303. const struct ggml_tensor * src1,
  5304. struct ggml_tensor * dst) {
  5305. switch (src0->type) {
  5306. case GGML_TYPE_F32:
  5307. {
  5308. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5309. } break;
  5310. case GGML_TYPE_F16:
  5311. {
  5312. if (src1->type == GGML_TYPE_F16) {
  5313. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5314. }
  5315. else if (src1->type == GGML_TYPE_F32) {
  5316. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5317. }
  5318. else {
  5319. GGML_ASSERT(false);
  5320. }
  5321. } break;
  5322. case GGML_TYPE_Q4_0:
  5323. case GGML_TYPE_Q4_1:
  5324. case GGML_TYPE_Q4_2:
  5325. case GGML_TYPE_Q4_3:
  5326. {
  5327. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5328. } break;
  5329. default:
  5330. {
  5331. GGML_ASSERT(false);
  5332. } break;
  5333. }
  5334. }
  5335. // ggml_compute_forward_sub
  5336. static void ggml_compute_forward_sub_f32(
  5337. const struct ggml_compute_params * params,
  5338. const struct ggml_tensor * src0,
  5339. const struct ggml_tensor * src1,
  5340. struct ggml_tensor * dst) {
  5341. assert(params->ith == 0);
  5342. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5344. return;
  5345. }
  5346. const int n = ggml_nrows(src0);
  5347. const int nc = src0->ne[0];
  5348. assert( dst->nb[0] == sizeof(float));
  5349. assert(src0->nb[0] == sizeof(float));
  5350. assert(src1->nb[0] == sizeof(float));
  5351. for (int i = 0; i < n; i++) {
  5352. ggml_vec_sub_f32(nc,
  5353. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5354. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5355. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5356. }
  5357. }
  5358. static void ggml_compute_forward_sub(
  5359. const struct ggml_compute_params * params,
  5360. const struct ggml_tensor * src0,
  5361. const struct ggml_tensor * src1,
  5362. struct ggml_tensor * dst) {
  5363. switch (src0->type) {
  5364. case GGML_TYPE_F32:
  5365. {
  5366. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5367. } break;
  5368. default:
  5369. {
  5370. GGML_ASSERT(false);
  5371. } break;
  5372. }
  5373. }
  5374. // ggml_compute_forward_mul
  5375. static void ggml_compute_forward_mul_f32(
  5376. const struct ggml_compute_params * params,
  5377. const struct ggml_tensor * src0,
  5378. const struct ggml_tensor * src1,
  5379. struct ggml_tensor * dst) {
  5380. assert(params->ith == 0);
  5381. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5383. return;
  5384. }
  5385. const int n = ggml_nrows(src0);
  5386. const int nc = src0->ne[0];
  5387. assert( dst->nb[0] == sizeof(float));
  5388. assert(src0->nb[0] == sizeof(float));
  5389. assert(src1->nb[0] == sizeof(float));
  5390. for (int i = 0; i < n; i++) {
  5391. ggml_vec_mul_f32(nc,
  5392. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5393. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5394. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5395. }
  5396. }
  5397. static void ggml_compute_forward_mul(
  5398. const struct ggml_compute_params * params,
  5399. const struct ggml_tensor * src0,
  5400. const struct ggml_tensor * src1,
  5401. struct ggml_tensor * dst) {
  5402. switch (src0->type) {
  5403. case GGML_TYPE_F32:
  5404. {
  5405. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5406. } break;
  5407. default:
  5408. {
  5409. GGML_ASSERT(false);
  5410. } break;
  5411. }
  5412. }
  5413. // ggml_compute_forward_div
  5414. static void ggml_compute_forward_div_f32(
  5415. const struct ggml_compute_params * params,
  5416. const struct ggml_tensor * src0,
  5417. const struct ggml_tensor * src1,
  5418. struct ggml_tensor * dst) {
  5419. assert(params->ith == 0);
  5420. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5422. return;
  5423. }
  5424. const int n = ggml_nrows(src0);
  5425. const int nc = src0->ne[0];
  5426. assert( dst->nb[0] == sizeof(float));
  5427. assert(src0->nb[0] == sizeof(float));
  5428. assert(src1->nb[0] == sizeof(float));
  5429. for (int i = 0; i < n; i++) {
  5430. ggml_vec_div_f32(nc,
  5431. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5432. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5433. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5434. }
  5435. }
  5436. static void ggml_compute_forward_div(
  5437. const struct ggml_compute_params * params,
  5438. const struct ggml_tensor * src0,
  5439. const struct ggml_tensor * src1,
  5440. struct ggml_tensor * dst) {
  5441. switch (src0->type) {
  5442. case GGML_TYPE_F32:
  5443. {
  5444. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5445. } break;
  5446. default:
  5447. {
  5448. GGML_ASSERT(false);
  5449. } break;
  5450. }
  5451. }
  5452. // ggml_compute_forward_sqr
  5453. static void ggml_compute_forward_sqr_f32(
  5454. const struct ggml_compute_params * params,
  5455. const struct ggml_tensor * src0,
  5456. struct ggml_tensor * dst) {
  5457. assert(params->ith == 0);
  5458. assert(ggml_are_same_shape(src0, dst));
  5459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5460. return;
  5461. }
  5462. const int n = ggml_nrows(src0);
  5463. const int nc = src0->ne[0];
  5464. assert( dst->nb[0] == sizeof(float));
  5465. assert(src0->nb[0] == sizeof(float));
  5466. for (int i = 0; i < n; i++) {
  5467. ggml_vec_sqr_f32(nc,
  5468. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5469. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5470. }
  5471. }
  5472. static void ggml_compute_forward_sqr(
  5473. const struct ggml_compute_params * params,
  5474. const struct ggml_tensor * src0,
  5475. struct ggml_tensor * dst) {
  5476. switch (src0->type) {
  5477. case GGML_TYPE_F32:
  5478. {
  5479. ggml_compute_forward_sqr_f32(params, src0, dst);
  5480. } break;
  5481. default:
  5482. {
  5483. GGML_ASSERT(false);
  5484. } break;
  5485. }
  5486. }
  5487. // ggml_compute_forward_sqrt
  5488. static void ggml_compute_forward_sqrt_f32(
  5489. const struct ggml_compute_params * params,
  5490. const struct ggml_tensor * src0,
  5491. struct ggml_tensor * dst) {
  5492. assert(params->ith == 0);
  5493. assert(ggml_are_same_shape(src0, dst));
  5494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5495. return;
  5496. }
  5497. const int n = ggml_nrows(src0);
  5498. const int nc = src0->ne[0];
  5499. assert( dst->nb[0] == sizeof(float));
  5500. assert(src0->nb[0] == sizeof(float));
  5501. for (int i = 0; i < n; i++) {
  5502. ggml_vec_sqrt_f32(nc,
  5503. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5504. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5505. }
  5506. }
  5507. static void ggml_compute_forward_sqrt(
  5508. const struct ggml_compute_params * params,
  5509. const struct ggml_tensor * src0,
  5510. struct ggml_tensor * dst) {
  5511. switch (src0->type) {
  5512. case GGML_TYPE_F32:
  5513. {
  5514. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5515. } break;
  5516. default:
  5517. {
  5518. GGML_ASSERT(false);
  5519. } break;
  5520. }
  5521. }
  5522. // ggml_compute_forward_sum
  5523. static void ggml_compute_forward_sum_f32(
  5524. const struct ggml_compute_params * params,
  5525. const struct ggml_tensor * src0,
  5526. struct ggml_tensor * dst) {
  5527. assert(params->ith == 0);
  5528. assert(ggml_is_scalar(dst));
  5529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5530. return;
  5531. }
  5532. assert(ggml_is_scalar(dst));
  5533. assert(src0->nb[0] == sizeof(float));
  5534. const int64_t ne00 = src0->ne[0];
  5535. const int64_t ne01 = src0->ne[1];
  5536. const int64_t ne02 = src0->ne[2];
  5537. const int64_t ne03 = src0->ne[3];
  5538. const size_t nb01 = src0->nb[1];
  5539. const size_t nb02 = src0->nb[2];
  5540. const size_t nb03 = src0->nb[3];
  5541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5543. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5544. ggml_vec_sum_f32(ne00,
  5545. (float *) (dst->data),
  5546. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5547. }
  5548. }
  5549. }
  5550. }
  5551. static void ggml_compute_forward_sum(
  5552. const struct ggml_compute_params * params,
  5553. const struct ggml_tensor * src0,
  5554. struct ggml_tensor * dst) {
  5555. switch (src0->type) {
  5556. case GGML_TYPE_F32:
  5557. {
  5558. ggml_compute_forward_sum_f32(params, src0, dst);
  5559. } break;
  5560. default:
  5561. {
  5562. GGML_ASSERT(false);
  5563. } break;
  5564. }
  5565. }
  5566. // ggml_compute_forward_mean
  5567. static void ggml_compute_forward_mean_f32(
  5568. const struct ggml_compute_params * params,
  5569. const struct ggml_tensor * src0,
  5570. struct ggml_tensor * dst) {
  5571. assert(params->ith == 0);
  5572. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5573. return;
  5574. }
  5575. assert(src0->nb[0] == sizeof(float));
  5576. const int64_t ne00 = src0->ne[0];
  5577. const int64_t ne01 = src0->ne[1];
  5578. const int64_t ne02 = src0->ne[2];
  5579. const int64_t ne03 = src0->ne[3];
  5580. const size_t nb01 = src0->nb[1];
  5581. const size_t nb02 = src0->nb[2];
  5582. const size_t nb03 = src0->nb[3];
  5583. const int64_t ne0 = dst->ne[0];
  5584. const int64_t ne1 = dst->ne[1];
  5585. const int64_t ne2 = dst->ne[2];
  5586. const int64_t ne3 = dst->ne[3];
  5587. assert(ne0 == 1);
  5588. assert(ne1 == ne01);
  5589. assert(ne2 == ne02);
  5590. assert(ne3 == ne03);
  5591. UNUSED(ne0);
  5592. UNUSED(ne1);
  5593. UNUSED(ne2);
  5594. UNUSED(ne3);
  5595. const size_t nb1 = dst->nb[1];
  5596. const size_t nb2 = dst->nb[2];
  5597. const size_t nb3 = dst->nb[3];
  5598. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5599. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5600. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5601. ggml_vec_sum_f32(ne00,
  5602. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5603. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5604. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5605. }
  5606. }
  5607. }
  5608. }
  5609. static void ggml_compute_forward_mean(
  5610. const struct ggml_compute_params * params,
  5611. const struct ggml_tensor * src0,
  5612. struct ggml_tensor * dst) {
  5613. switch (src0->type) {
  5614. case GGML_TYPE_F32:
  5615. {
  5616. ggml_compute_forward_mean_f32(params, src0, dst);
  5617. } break;
  5618. default:
  5619. {
  5620. GGML_ASSERT(false);
  5621. } break;
  5622. }
  5623. }
  5624. // ggml_compute_forward_repeat
  5625. static void ggml_compute_forward_repeat_f32(
  5626. const struct ggml_compute_params * params,
  5627. const struct ggml_tensor * src0,
  5628. struct ggml_tensor * dst) {
  5629. assert(params->ith == 0);
  5630. assert(ggml_can_repeat(src0, dst));
  5631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5632. return;
  5633. }
  5634. // TODO: implement support for rank > 2 tensors
  5635. assert(src0->ne[2] == 1);
  5636. assert(src0->ne[3] == 1);
  5637. assert( dst->ne[2] == 1);
  5638. assert( dst->ne[3] == 1);
  5639. const int nc = dst->ne[0];
  5640. const int nr = dst->ne[1];
  5641. const int nc0 = src0->ne[0];
  5642. const int nr0 = src0->ne[1];
  5643. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5644. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5645. // TODO: support for transposed / permuted tensors
  5646. assert( dst->nb[0] == sizeof(float));
  5647. assert(src0->nb[0] == sizeof(float));
  5648. // TODO: maybe this is not optimal?
  5649. for (int i = 0; i < nrr; i++) {
  5650. for (int j = 0; j < ncr; j++) {
  5651. for (int k = 0; k < nr0; k++) {
  5652. ggml_vec_cpy_f32(nc0,
  5653. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5654. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5655. }
  5656. }
  5657. }
  5658. }
  5659. static void ggml_compute_forward_repeat(
  5660. const struct ggml_compute_params * params,
  5661. const struct ggml_tensor * src0,
  5662. struct ggml_tensor * dst) {
  5663. switch (src0->type) {
  5664. case GGML_TYPE_F32:
  5665. {
  5666. ggml_compute_forward_repeat_f32(params, src0, dst);
  5667. } break;
  5668. default:
  5669. {
  5670. GGML_ASSERT(false);
  5671. } break;
  5672. }
  5673. }
  5674. // ggml_compute_forward_abs
  5675. static void ggml_compute_forward_abs_f32(
  5676. const struct ggml_compute_params * params,
  5677. const struct ggml_tensor * src0,
  5678. struct ggml_tensor * dst) {
  5679. assert(params->ith == 0);
  5680. assert(ggml_are_same_shape(src0, dst));
  5681. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5682. return;
  5683. }
  5684. const int n = ggml_nrows(src0);
  5685. const int nc = src0->ne[0];
  5686. assert(dst->nb[0] == sizeof(float));
  5687. assert(src0->nb[0] == sizeof(float));
  5688. for (int i = 0; i < n; i++) {
  5689. ggml_vec_abs_f32(nc,
  5690. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5691. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5692. }
  5693. }
  5694. static void ggml_compute_forward_abs(
  5695. const struct ggml_compute_params * params,
  5696. const struct ggml_tensor * src0,
  5697. struct ggml_tensor * dst) {
  5698. switch (src0->type) {
  5699. case GGML_TYPE_F32:
  5700. {
  5701. ggml_compute_forward_abs_f32(params, src0, dst);
  5702. } break;
  5703. default:
  5704. {
  5705. GGML_ASSERT(false);
  5706. } break;
  5707. }
  5708. }
  5709. // ggml_compute_forward_sgn
  5710. static void ggml_compute_forward_sgn_f32(
  5711. const struct ggml_compute_params * params,
  5712. const struct ggml_tensor * src0,
  5713. struct ggml_tensor * dst) {
  5714. assert(params->ith == 0);
  5715. assert(ggml_are_same_shape(src0, dst));
  5716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5717. return;
  5718. }
  5719. const int n = ggml_nrows(src0);
  5720. const int nc = src0->ne[0];
  5721. assert(dst->nb[0] == sizeof(float));
  5722. assert(src0->nb[0] == sizeof(float));
  5723. for (int i = 0; i < n; i++) {
  5724. ggml_vec_sgn_f32(nc,
  5725. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5726. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5727. }
  5728. }
  5729. static void ggml_compute_forward_sgn(
  5730. const struct ggml_compute_params * params,
  5731. const struct ggml_tensor * src0,
  5732. struct ggml_tensor * dst) {
  5733. switch (src0->type) {
  5734. case GGML_TYPE_F32:
  5735. {
  5736. ggml_compute_forward_sgn_f32(params, src0, dst);
  5737. } break;
  5738. default:
  5739. {
  5740. GGML_ASSERT(false);
  5741. } break;
  5742. }
  5743. }
  5744. // ggml_compute_forward_neg
  5745. static void ggml_compute_forward_neg_f32(
  5746. const struct ggml_compute_params * params,
  5747. const struct ggml_tensor * src0,
  5748. struct ggml_tensor * dst) {
  5749. assert(params->ith == 0);
  5750. assert(ggml_are_same_shape(src0, dst));
  5751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5752. return;
  5753. }
  5754. const int n = ggml_nrows(src0);
  5755. const int nc = src0->ne[0];
  5756. assert(dst->nb[0] == sizeof(float));
  5757. assert(src0->nb[0] == sizeof(float));
  5758. for (int i = 0; i < n; i++) {
  5759. ggml_vec_neg_f32(nc,
  5760. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5761. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5762. }
  5763. }
  5764. static void ggml_compute_forward_neg(
  5765. const struct ggml_compute_params * params,
  5766. const struct ggml_tensor * src0,
  5767. struct ggml_tensor * dst) {
  5768. switch (src0->type) {
  5769. case GGML_TYPE_F32:
  5770. {
  5771. ggml_compute_forward_neg_f32(params, src0, dst);
  5772. } break;
  5773. default:
  5774. {
  5775. GGML_ASSERT(false);
  5776. } break;
  5777. }
  5778. }
  5779. // ggml_compute_forward_step
  5780. static void ggml_compute_forward_step_f32(
  5781. const struct ggml_compute_params * params,
  5782. const struct ggml_tensor * src0,
  5783. struct ggml_tensor * dst) {
  5784. assert(params->ith == 0);
  5785. assert(ggml_are_same_shape(src0, dst));
  5786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5787. return;
  5788. }
  5789. const int n = ggml_nrows(src0);
  5790. const int nc = src0->ne[0];
  5791. assert(dst->nb[0] == sizeof(float));
  5792. assert(src0->nb[0] == sizeof(float));
  5793. for (int i = 0; i < n; i++) {
  5794. ggml_vec_step_f32(nc,
  5795. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5796. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5797. }
  5798. }
  5799. static void ggml_compute_forward_step(
  5800. const struct ggml_compute_params * params,
  5801. const struct ggml_tensor * src0,
  5802. struct ggml_tensor * dst) {
  5803. switch (src0->type) {
  5804. case GGML_TYPE_F32:
  5805. {
  5806. ggml_compute_forward_step_f32(params, src0, dst);
  5807. } break;
  5808. default:
  5809. {
  5810. GGML_ASSERT(false);
  5811. } break;
  5812. }
  5813. }
  5814. // ggml_compute_forward_relu
  5815. static void ggml_compute_forward_relu_f32(
  5816. const struct ggml_compute_params * params,
  5817. const struct ggml_tensor * src0,
  5818. struct ggml_tensor * dst) {
  5819. assert(params->ith == 0);
  5820. assert(ggml_are_same_shape(src0, dst));
  5821. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5822. return;
  5823. }
  5824. const int n = ggml_nrows(src0);
  5825. const int nc = src0->ne[0];
  5826. assert(dst->nb[0] == sizeof(float));
  5827. assert(src0->nb[0] == sizeof(float));
  5828. for (int i = 0; i < n; i++) {
  5829. ggml_vec_relu_f32(nc,
  5830. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5831. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5832. }
  5833. }
  5834. static void ggml_compute_forward_relu(
  5835. const struct ggml_compute_params * params,
  5836. const struct ggml_tensor * src0,
  5837. struct ggml_tensor * dst) {
  5838. switch (src0->type) {
  5839. case GGML_TYPE_F32:
  5840. {
  5841. ggml_compute_forward_relu_f32(params, src0, dst);
  5842. } break;
  5843. default:
  5844. {
  5845. GGML_ASSERT(false);
  5846. } break;
  5847. }
  5848. }
  5849. // ggml_compute_forward_gelu
  5850. static void ggml_compute_forward_gelu_f32(
  5851. const struct ggml_compute_params * params,
  5852. const struct ggml_tensor * src0,
  5853. struct ggml_tensor * dst) {
  5854. GGML_ASSERT(ggml_is_contiguous(src0));
  5855. GGML_ASSERT(ggml_is_contiguous(dst));
  5856. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5857. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5858. return;
  5859. }
  5860. const int ith = params->ith;
  5861. const int nth = params->nth;
  5862. const int nc = src0->ne[0];
  5863. const int nr = ggml_nrows(src0);
  5864. // rows per thread
  5865. const int dr = (nr + nth - 1)/nth;
  5866. // row range for this thread
  5867. const int ir0 = dr*ith;
  5868. const int ir1 = MIN(ir0 + dr, nr);
  5869. for (int i1 = ir0; i1 < ir1; i1++) {
  5870. ggml_vec_gelu_f32(nc,
  5871. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5872. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5873. #ifndef NDEBUG
  5874. for (int k = 0; k < nc; k++) {
  5875. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5876. UNUSED(x);
  5877. assert(!isnan(x));
  5878. assert(!isinf(x));
  5879. }
  5880. #endif
  5881. }
  5882. }
  5883. static void ggml_compute_forward_gelu(
  5884. const struct ggml_compute_params * params,
  5885. const struct ggml_tensor * src0,
  5886. struct ggml_tensor * dst) {
  5887. switch (src0->type) {
  5888. case GGML_TYPE_F32:
  5889. {
  5890. ggml_compute_forward_gelu_f32(params, src0, dst);
  5891. } break;
  5892. default:
  5893. {
  5894. GGML_ASSERT(false);
  5895. } break;
  5896. }
  5897. //printf("XXXXXXXX gelu\n");
  5898. }
  5899. // ggml_compute_forward_silu
  5900. static void ggml_compute_forward_silu_f32(
  5901. const struct ggml_compute_params * params,
  5902. const struct ggml_tensor * src0,
  5903. struct ggml_tensor * dst) {
  5904. GGML_ASSERT(ggml_is_contiguous(src0));
  5905. GGML_ASSERT(ggml_is_contiguous(dst));
  5906. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5908. return;
  5909. }
  5910. const int ith = params->ith;
  5911. const int nth = params->nth;
  5912. const int nc = src0->ne[0];
  5913. const int nr = ggml_nrows(src0);
  5914. // rows per thread
  5915. const int dr = (nr + nth - 1)/nth;
  5916. // row range for this thread
  5917. const int ir0 = dr*ith;
  5918. const int ir1 = MIN(ir0 + dr, nr);
  5919. for (int i1 = ir0; i1 < ir1; i1++) {
  5920. ggml_vec_silu_f32(nc,
  5921. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5922. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5923. #ifndef NDEBUG
  5924. for (int k = 0; k < nc; k++) {
  5925. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5926. UNUSED(x);
  5927. assert(!isnan(x));
  5928. assert(!isinf(x));
  5929. }
  5930. #endif
  5931. }
  5932. }
  5933. static void ggml_compute_forward_silu(
  5934. const struct ggml_compute_params * params,
  5935. const struct ggml_tensor * src0,
  5936. struct ggml_tensor * dst) {
  5937. switch (src0->type) {
  5938. case GGML_TYPE_F32:
  5939. {
  5940. ggml_compute_forward_silu_f32(params, src0, dst);
  5941. } break;
  5942. default:
  5943. {
  5944. GGML_ASSERT(false);
  5945. } break;
  5946. }
  5947. }
  5948. // ggml_compute_forward_norm
  5949. static void ggml_compute_forward_norm_f32(
  5950. const struct ggml_compute_params * params,
  5951. const struct ggml_tensor * src0,
  5952. struct ggml_tensor * dst) {
  5953. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5955. return;
  5956. }
  5957. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5958. const int ith = params->ith;
  5959. const int nth = params->nth;
  5960. const int64_t ne00 = src0->ne[0];
  5961. const int64_t ne01 = src0->ne[1];
  5962. const int64_t ne02 = src0->ne[2];
  5963. const int64_t ne03 = src0->ne[3];
  5964. const size_t nb01 = src0->nb[1];
  5965. const size_t nb02 = src0->nb[2];
  5966. const size_t nb03 = src0->nb[3];
  5967. const size_t nb1 = dst->nb[1];
  5968. const size_t nb2 = dst->nb[2];
  5969. const size_t nb3 = dst->nb[3];
  5970. const float eps = 1e-5f; // TODO: make this a parameter
  5971. // TODO: optimize
  5972. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5973. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5974. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5975. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5976. ggml_float sum = 0.0;
  5977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5978. sum += (ggml_float)x[i00];
  5979. }
  5980. float mean = sum/ne00;
  5981. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5982. ggml_float sum2 = 0.0;
  5983. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5984. float v = x[i00] - mean;
  5985. y[i00] = v;
  5986. sum2 += (ggml_float)(v*v);
  5987. }
  5988. float variance = sum2/ne00;
  5989. const float scale = 1.0f/sqrtf(variance + eps);
  5990. ggml_vec_scale_f32(ne00, y, scale);
  5991. }
  5992. }
  5993. }
  5994. }
  5995. static void ggml_compute_forward_norm(
  5996. const struct ggml_compute_params * params,
  5997. const struct ggml_tensor * src0,
  5998. struct ggml_tensor * dst) {
  5999. switch (src0->type) {
  6000. case GGML_TYPE_F32:
  6001. {
  6002. ggml_compute_forward_norm_f32(params, src0, dst);
  6003. } break;
  6004. default:
  6005. {
  6006. GGML_ASSERT(false);
  6007. } break;
  6008. }
  6009. }
  6010. static void ggml_compute_forward_rms_norm_f32(
  6011. const struct ggml_compute_params * params,
  6012. const struct ggml_tensor * src0,
  6013. struct ggml_tensor * dst) {
  6014. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6016. return;
  6017. }
  6018. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6019. const int ith = params->ith;
  6020. const int nth = params->nth;
  6021. const int64_t ne00 = src0->ne[0];
  6022. const int64_t ne01 = src0->ne[1];
  6023. const int64_t ne02 = src0->ne[2];
  6024. const int64_t ne03 = src0->ne[3];
  6025. const size_t nb01 = src0->nb[1];
  6026. const size_t nb02 = src0->nb[2];
  6027. const size_t nb03 = src0->nb[3];
  6028. const size_t nb1 = dst->nb[1];
  6029. const size_t nb2 = dst->nb[2];
  6030. const size_t nb3 = dst->nb[3];
  6031. const float eps = 1e-6f; // TODO: make this a parameter
  6032. // TODO: optimize
  6033. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6034. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6035. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6036. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6037. ggml_float sum = 0.0;
  6038. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6039. sum += (ggml_float)(x[i00] * x[i00]);
  6040. }
  6041. float mean = sum/ne00;
  6042. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6043. memcpy(y, x, ne00 * sizeof(float));
  6044. // for (int i00 = 0; i00 < ne00; i00++) {
  6045. // y[i00] = x[i00];
  6046. // }
  6047. const float scale = 1.0f/sqrtf(mean + eps);
  6048. ggml_vec_scale_f32(ne00, y, scale);
  6049. }
  6050. }
  6051. }
  6052. }
  6053. static void ggml_compute_forward_rms_norm(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. struct ggml_tensor * dst) {
  6057. switch (src0->type) {
  6058. case GGML_TYPE_F32:
  6059. {
  6060. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6061. } break;
  6062. default:
  6063. {
  6064. GGML_ASSERT(false);
  6065. } break;
  6066. }
  6067. }
  6068. // ggml_compute_forward_mul_mat
  6069. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6070. // helper function to determine if it is better to use BLAS or not
  6071. // for large matrices, BLAS is faster
  6072. static bool ggml_compute_forward_mul_mat_use_blas(
  6073. const struct ggml_tensor * src0,
  6074. const struct ggml_tensor * src1,
  6075. struct ggml_tensor * dst) {
  6076. //const int64_t ne00 = src0->ne[0];
  6077. //const int64_t ne01 = src0->ne[1];
  6078. const int64_t ne10 = src1->ne[0];
  6079. const int64_t ne0 = dst->ne[0];
  6080. const int64_t ne1 = dst->ne[1];
  6081. // TODO: find the optimal values for these
  6082. if (ggml_is_contiguous(src0) &&
  6083. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6084. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6085. return true;
  6086. }
  6087. return false;
  6088. }
  6089. #endif
  6090. static void ggml_compute_forward_mul_mat_f32(
  6091. const struct ggml_compute_params * params,
  6092. const struct ggml_tensor * src0,
  6093. const struct ggml_tensor * src1,
  6094. struct ggml_tensor * dst) {
  6095. int64_t t0 = ggml_perf_time_us();
  6096. UNUSED(t0);
  6097. const int64_t ne00 = src0->ne[0];
  6098. const int64_t ne01 = src0->ne[1];
  6099. const int64_t ne02 = src0->ne[2];
  6100. const int64_t ne03 = src0->ne[3];
  6101. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6102. const int64_t ne10 = src1->ne[0];
  6103. #endif
  6104. const int64_t ne11 = src1->ne[1];
  6105. #ifndef NDEBUG
  6106. const int64_t ne12 = src1->ne[2];
  6107. const int64_t ne13 = src1->ne[3];
  6108. const int64_t ne0 = dst->ne[0];
  6109. const int64_t ne1 = dst->ne[1];
  6110. const int64_t ne2 = dst->ne[2];
  6111. const int64_t ne3 = dst->ne[3];
  6112. const int nb00 = src0->nb[0];
  6113. #endif
  6114. const int nb01 = src0->nb[1];
  6115. const int nb02 = src0->nb[2];
  6116. const int nb03 = src0->nb[3];
  6117. #ifndef NDEBUG
  6118. const int nb10 = src1->nb[0];
  6119. #endif
  6120. const int nb11 = src1->nb[1];
  6121. const int nb12 = src1->nb[2];
  6122. const int nb13 = src1->nb[3];
  6123. const int nb0 = dst->nb[0];
  6124. const int nb1 = dst->nb[1];
  6125. const int nb2 = dst->nb[2];
  6126. const int nb3 = dst->nb[3];
  6127. const int ith = params->ith;
  6128. const int nth = params->nth;
  6129. assert(ne02 == ne12);
  6130. assert(ne03 == ne13);
  6131. assert(ne2 == ne12);
  6132. assert(ne3 == ne13);
  6133. // we don't support permuted src0 or src1
  6134. assert(nb00 == sizeof(float));
  6135. assert(nb10 == sizeof(float));
  6136. // dst cannot be transposed or permuted
  6137. assert(nb0 == sizeof(float));
  6138. assert(nb0 <= nb1);
  6139. assert(nb1 <= nb2);
  6140. assert(nb2 <= nb3);
  6141. assert(ne0 == ne01);
  6142. assert(ne1 == ne11);
  6143. assert(ne2 == ne02);
  6144. assert(ne3 == ne03);
  6145. // nb01 >= nb00 - src0 is not transposed
  6146. // compute by src0 rows
  6147. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6148. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6149. if (params->ith != 0) {
  6150. return;
  6151. }
  6152. if (params->type == GGML_TASK_INIT) {
  6153. return;
  6154. }
  6155. if (params->type == GGML_TASK_FINALIZE) {
  6156. return;
  6157. }
  6158. #if defined(GGML_USE_CUBLAS)
  6159. float *d_X = NULL;
  6160. float *d_Y = NULL;
  6161. float *d_D = NULL;
  6162. const float alpha = 1.0f;
  6163. const float beta = 0.0f;
  6164. const int x_ne = ne01 * ne10;
  6165. const int y_ne = ne11 * ne10;
  6166. const int d_ne = ne11 * ne01;
  6167. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6168. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6169. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6170. #endif
  6171. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6172. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6173. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6174. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6175. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6176. #if defined(GGML_USE_CUBLAS)
  6177. // copy data to device
  6178. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6179. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6180. // compute
  6181. CUBLAS_CHECK(
  6182. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6183. ne01, ne11, ne10,
  6184. &alpha, d_X, ne00,
  6185. d_Y, ne10,
  6186. &beta, d_D, ne01));
  6187. // copy data to host
  6188. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6189. #else
  6190. // zT = y * xT
  6191. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6192. ne11, ne01, ne10,
  6193. 1.0f, y, ne10,
  6194. x, ne00,
  6195. 0.0f, d, ne01);
  6196. #endif
  6197. }
  6198. }
  6199. #if defined(GGML_USE_CUBLAS)
  6200. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6201. CUDA_CHECK(cudaFree(d_X));
  6202. CUDA_CHECK(cudaFree(d_Y));
  6203. CUDA_CHECK(cudaFree(d_D));
  6204. #endif
  6205. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6206. return;
  6207. }
  6208. #endif
  6209. if (params->type == GGML_TASK_INIT) {
  6210. return;
  6211. }
  6212. if (params->type == GGML_TASK_FINALIZE) {
  6213. return;
  6214. }
  6215. // parallelize by src0 rows using ggml_vec_dot_f32
  6216. // total rows in src0
  6217. const int nr = ne01*ne02*ne03;
  6218. // rows per thread
  6219. const int dr = (nr + nth - 1)/nth;
  6220. // row range for this thread
  6221. const int ir0 = dr*ith;
  6222. const int ir1 = MIN(ir0 + dr, nr);
  6223. for (int ir = ir0; ir < ir1; ++ir) {
  6224. // src0 indices
  6225. const int i03 = ir/(ne02*ne01);
  6226. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6227. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6228. for (int64_t ic = 0; ic < ne11; ++ic) {
  6229. // src1 indices
  6230. const int i13 = i03;
  6231. const int i12 = i02;
  6232. const int i11 = ic;
  6233. // dst indices
  6234. const int i0 = i01;
  6235. const int i1 = i11;
  6236. const int i2 = i02;
  6237. const int i3 = i03;
  6238. ggml_vec_dot_f32(ne00,
  6239. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6240. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6241. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6242. }
  6243. }
  6244. //int64_t t1 = ggml_perf_time_us();
  6245. //static int64_t acc = 0;
  6246. //acc += t1 - t0;
  6247. //if (t1 - t0 > 10) {
  6248. // printf("\n");
  6249. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6250. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6251. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6252. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6253. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6254. //}
  6255. }
  6256. static void ggml_compute_forward_mul_mat_f16_f32(
  6257. const struct ggml_compute_params * params,
  6258. const struct ggml_tensor * src0,
  6259. const struct ggml_tensor * src1,
  6260. struct ggml_tensor * dst) {
  6261. int64_t t0 = ggml_perf_time_us();
  6262. UNUSED(t0);
  6263. const int64_t ne00 = src0->ne[0];
  6264. const int64_t ne01 = src0->ne[1];
  6265. const int64_t ne02 = src0->ne[2];
  6266. const int64_t ne03 = src0->ne[3];
  6267. const int64_t ne10 = src1->ne[0];
  6268. const int64_t ne11 = src1->ne[1];
  6269. const int64_t ne12 = src1->ne[2];
  6270. const int64_t ne13 = src1->ne[3];
  6271. const int64_t ne0 = dst->ne[0];
  6272. const int64_t ne1 = dst->ne[1];
  6273. const int64_t ne2 = dst->ne[2];
  6274. const int64_t ne3 = dst->ne[3];
  6275. //const int64_t ne = ne0*ne1*ne2*ne3;
  6276. const int nb00 = src0->nb[0];
  6277. const int nb01 = src0->nb[1];
  6278. const int nb02 = src0->nb[2];
  6279. const int nb03 = src0->nb[3];
  6280. const int nb10 = src1->nb[0];
  6281. const int nb11 = src1->nb[1];
  6282. const int nb12 = src1->nb[2];
  6283. const int nb13 = src1->nb[3];
  6284. const int nb0 = dst->nb[0];
  6285. const int nb1 = dst->nb[1];
  6286. const int nb2 = dst->nb[2];
  6287. const int nb3 = dst->nb[3];
  6288. const int ith = params->ith;
  6289. const int nth = params->nth;
  6290. GGML_ASSERT(ne02 == ne12);
  6291. GGML_ASSERT(ne03 == ne13);
  6292. GGML_ASSERT(ne2 == ne12);
  6293. GGML_ASSERT(ne3 == ne13);
  6294. // TODO: we don't support permuted src0
  6295. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6296. // dst cannot be transposed or permuted
  6297. GGML_ASSERT(nb0 == sizeof(float));
  6298. GGML_ASSERT(nb0 <= nb1);
  6299. GGML_ASSERT(nb1 <= nb2);
  6300. GGML_ASSERT(nb2 <= nb3);
  6301. GGML_ASSERT(ne0 == ne01);
  6302. GGML_ASSERT(ne1 == ne11);
  6303. GGML_ASSERT(ne2 == ne02);
  6304. GGML_ASSERT(ne3 == ne03);
  6305. // nb01 >= nb00 - src0 is not transposed
  6306. // compute by src0 rows
  6307. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6308. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6309. GGML_ASSERT(nb10 == sizeof(float));
  6310. if (params->ith != 0) {
  6311. return;
  6312. }
  6313. if (params->type == GGML_TASK_INIT) {
  6314. return;
  6315. }
  6316. if (params->type == GGML_TASK_FINALIZE) {
  6317. return;
  6318. }
  6319. #if defined(GGML_USE_CUBLAS)
  6320. ggml_fp16_t * const wdata = params->wdata;
  6321. float *d_X = NULL;
  6322. float *d_Y = NULL;
  6323. float *d_D = NULL;
  6324. const float alpha = 1.0f;
  6325. const float beta = 0.0f;
  6326. const int x_ne = ne01 * ne10;
  6327. const int y_ne = ne11 * ne10;
  6328. const int d_ne = ne11 * ne01;
  6329. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6330. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6331. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6332. #else
  6333. float * const wdata = params->wdata;
  6334. #endif
  6335. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6336. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6337. #if defined(GGML_USE_CUBLAS)
  6338. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6339. {
  6340. size_t id = 0;
  6341. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6342. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6343. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6344. }
  6345. }
  6346. }
  6347. #else
  6348. {
  6349. size_t id = 0;
  6350. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6351. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6352. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6353. }
  6354. }
  6355. }
  6356. #endif
  6357. #if defined(GGML_USE_CUBLAS)
  6358. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6359. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6360. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6361. // copy data to device
  6362. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6363. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6364. // compute
  6365. CUBLAS_CHECK(
  6366. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6367. ne01, ne11, ne10,
  6368. &alpha, d_X, CUDA_R_16F, ne00,
  6369. d_Y, CUDA_R_16F, ne10,
  6370. &beta, d_D, CUDA_R_32F, ne01,
  6371. CUBLAS_COMPUTE_32F,
  6372. CUBLAS_GEMM_DEFAULT));
  6373. // copy data to host
  6374. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6375. #else
  6376. const float * x = wdata;
  6377. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6378. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6379. // zT = y * xT
  6380. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6381. ne11, ne01, ne10,
  6382. 1.0f, y, ne10,
  6383. x, ne00,
  6384. 0.0f, d, ne01);
  6385. #endif
  6386. }
  6387. }
  6388. #if defined(GGML_USE_CUBLAS)
  6389. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6390. CUDA_CHECK(cudaFree(d_X));
  6391. CUDA_CHECK(cudaFree(d_Y));
  6392. CUDA_CHECK(cudaFree(d_D));
  6393. #endif
  6394. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6395. return;
  6396. }
  6397. #endif
  6398. if (params->type == GGML_TASK_INIT) {
  6399. ggml_fp16_t * const wdata = params->wdata;
  6400. size_t id = 0;
  6401. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6402. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6403. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6404. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6405. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6406. }
  6407. }
  6408. }
  6409. }
  6410. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6411. return;
  6412. }
  6413. if (params->type == GGML_TASK_FINALIZE) {
  6414. return;
  6415. }
  6416. // fp16 -> half the size, so divide by 2
  6417. // TODO: do not support transposed src1
  6418. assert(nb10/2 == sizeof(ggml_fp16_t));
  6419. // parallelize by src0 rows using ggml_vec_dot_f16
  6420. // total rows in src0
  6421. const int nr = ne01*ne02*ne03;
  6422. // rows per thread
  6423. const int dr = (nr + nth - 1)/nth;
  6424. // row range for this thread
  6425. const int ir0 = dr*ith;
  6426. const int ir1 = MIN(ir0 + dr, nr);
  6427. ggml_fp16_t * wdata = params->wdata;
  6428. for (int ir = ir0; ir < ir1; ++ir) {
  6429. // src0 indices
  6430. const int i03 = ir/(ne02*ne01);
  6431. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6432. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6433. const int i13 = i03;
  6434. const int i12 = i02;
  6435. const int i0 = i01;
  6436. const int i2 = i02;
  6437. const int i3 = i03;
  6438. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6439. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6440. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6441. for (int64_t ic = 0; ic < ne11; ++ic) {
  6442. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6443. }
  6444. }
  6445. //int64_t t1 = ggml_time_us();
  6446. //static int64_t acc = 0;
  6447. //acc += t1 - t0;
  6448. //if (t1 - t0 > 10) {
  6449. // printf("\n");
  6450. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6451. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6452. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6453. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6454. //}
  6455. }
  6456. static void ggml_compute_forward_mul_mat_q_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. const struct ggml_tensor * src1,
  6460. struct ggml_tensor * dst) {
  6461. int64_t t0 = ggml_perf_time_us();
  6462. UNUSED(t0);
  6463. const int64_t ne00 = src0->ne[0];
  6464. const int64_t ne01 = src0->ne[1];
  6465. const int64_t ne02 = src0->ne[2];
  6466. const int64_t ne03 = src0->ne[3];
  6467. const int64_t ne10 = src1->ne[0];
  6468. const int64_t ne11 = src1->ne[1];
  6469. const int64_t ne12 = src1->ne[2];
  6470. const int64_t ne13 = src1->ne[3];
  6471. const int64_t ne0 = dst->ne[0];
  6472. const int64_t ne1 = dst->ne[1];
  6473. const int64_t ne2 = dst->ne[2];
  6474. const int64_t ne3 = dst->ne[3];
  6475. const int nb00 = src0->nb[0];
  6476. const int nb01 = src0->nb[1];
  6477. const int nb02 = src0->nb[2];
  6478. const int nb03 = src0->nb[3];
  6479. const int nb10 = src1->nb[0];
  6480. const int nb11 = src1->nb[1];
  6481. const int nb12 = src1->nb[2];
  6482. const int nb13 = src1->nb[3];
  6483. const int nb0 = dst->nb[0];
  6484. const int nb1 = dst->nb[1];
  6485. const int nb2 = dst->nb[2];
  6486. const int nb3 = dst->nb[3];
  6487. const int ith = params->ith;
  6488. const int nth = params->nth;
  6489. GGML_ASSERT(ne02 == ne12);
  6490. GGML_ASSERT(ne03 == ne13);
  6491. GGML_ASSERT(ne2 == ne12);
  6492. GGML_ASSERT(ne3 == ne13);
  6493. const enum ggml_type type = src0->type;
  6494. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6495. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6496. // we don't support permuted src0 or src1
  6497. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6498. GGML_ASSERT(nb10 == sizeof(float));
  6499. // dst cannot be transposed or permuted
  6500. GGML_ASSERT(nb0 == sizeof(float));
  6501. GGML_ASSERT(nb0 <= nb1);
  6502. GGML_ASSERT(nb1 <= nb2);
  6503. GGML_ASSERT(nb2 <= nb3);
  6504. GGML_ASSERT(ne0 == ne01);
  6505. GGML_ASSERT(ne1 == ne11);
  6506. GGML_ASSERT(ne2 == ne02);
  6507. GGML_ASSERT(ne3 == ne03);
  6508. // nb01 >= nb00 - src0 is not transposed
  6509. // compute by src0 rows
  6510. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6511. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6512. if (params->ith != 0) {
  6513. return;
  6514. }
  6515. if (params->type == GGML_TASK_INIT) {
  6516. return;
  6517. }
  6518. if (params->type == GGML_TASK_FINALIZE) {
  6519. return;
  6520. }
  6521. #if defined(GGML_USE_CUBLAS)
  6522. float *d_X = NULL;
  6523. float *d_Y = NULL;
  6524. float *d_D = NULL;
  6525. float *d_Q = NULL;
  6526. const float alpha = 1.0f;
  6527. const float beta = 0.0f;
  6528. const int x_ne = ne01 * ne10;
  6529. const int y_ne = ne11 * ne10;
  6530. const int d_ne = ne11 * ne01;
  6531. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6532. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6533. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6534. CUDA_CHECK(cudaMalloc((void **)(&d_Q), GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type]));
  6535. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6536. if (type == GGML_TYPE_Q4_0) {
  6537. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6538. }
  6539. else if (type == GGML_TYPE_Q4_1) {
  6540. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6541. }
  6542. else if (type == GGML_TYPE_Q4_2) {
  6543. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6544. }
  6545. else {
  6546. GGML_ASSERT(false);
  6547. }
  6548. #else
  6549. float * const wdata = params->wdata;
  6550. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6551. #endif
  6552. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6553. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6554. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6555. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6556. #if defined(GGML_USE_CUBLAS)
  6557. // copy and dequantize on device
  6558. CUDA_CHECK(
  6559. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6560. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, cudaStream));
  6561. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, cudaStream);
  6562. CUDA_CHECK(cudaGetLastError());
  6563. #else
  6564. {
  6565. size_t id = 0;
  6566. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6567. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6568. id += ne00;
  6569. }
  6570. }
  6571. const float * x = wdata;
  6572. #endif
  6573. #if defined(GGML_USE_CUBLAS)
  6574. // copy data to device
  6575. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6576. // compute
  6577. CUBLAS_CHECK(
  6578. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6579. ne01, ne11, ne10,
  6580. &alpha, d_X, ne00,
  6581. d_Y, ne10,
  6582. &beta, d_D, ne01));
  6583. // copy data to host
  6584. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6585. #else
  6586. // zT = y * xT
  6587. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6588. ne11, ne01, ne10,
  6589. 1.0f, y, ne10,
  6590. x, ne00,
  6591. 0.0f, d, ne01);
  6592. #endif
  6593. }
  6594. }
  6595. #if defined(GGML_USE_CUBLAS)
  6596. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6597. CUDA_CHECK(cudaFree(d_X));
  6598. CUDA_CHECK(cudaFree(d_Y));
  6599. CUDA_CHECK(cudaFree(d_D));
  6600. CUDA_CHECK(cudaFree(d_Q));
  6601. #endif
  6602. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6603. return;
  6604. }
  6605. #endif
  6606. if (params->type == GGML_TASK_INIT) {
  6607. char * wdata = params->wdata;
  6608. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6609. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6610. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6611. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6612. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6613. wdata += row_size;
  6614. }
  6615. }
  6616. }
  6617. return;
  6618. }
  6619. if (params->type == GGML_TASK_FINALIZE) {
  6620. return;
  6621. }
  6622. // parallelize by src0 rows using ggml_vec_dot_q
  6623. // total rows in src0
  6624. const int nr = ne01*ne02*ne03;
  6625. // rows per thread
  6626. const int dr = (nr + nth - 1)/nth;
  6627. // row range for this thread
  6628. const int ir0 = dr*ith;
  6629. const int ir1 = MIN(ir0 + dr, nr);
  6630. void * wdata = params->wdata;
  6631. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6632. for (int ir = ir0; ir < ir1; ++ir) {
  6633. // src0 indices
  6634. const int i03 = ir/(ne02*ne01);
  6635. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6636. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6637. const int i13 = i03;
  6638. const int i12 = i02;
  6639. const int i0 = i01;
  6640. const int i2 = i02;
  6641. const int i3 = i03;
  6642. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6643. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6644. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6645. assert(ne00 % 32 == 0);
  6646. for (int64_t ic = 0; ic < ne11; ++ic) {
  6647. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6648. }
  6649. }
  6650. //int64_t t1 = ggml_time_us();
  6651. //static int64_t acc = 0;
  6652. //acc += t1 - t0;
  6653. //if (t1 - t0 > 10) {
  6654. // printf("\n");
  6655. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6656. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6657. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6658. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6659. //}
  6660. }
  6661. static void ggml_compute_forward_mul_mat(
  6662. const struct ggml_compute_params * params,
  6663. const struct ggml_tensor * src0,
  6664. const struct ggml_tensor * src1,
  6665. struct ggml_tensor * dst) {
  6666. switch (src0->type) {
  6667. case GGML_TYPE_Q4_0:
  6668. case GGML_TYPE_Q4_1:
  6669. case GGML_TYPE_Q4_2:
  6670. case GGML_TYPE_Q4_3:
  6671. case GGML_TYPE_Q8_0:
  6672. {
  6673. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6674. } break;
  6675. case GGML_TYPE_F16:
  6676. {
  6677. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6678. } break;
  6679. case GGML_TYPE_F32:
  6680. {
  6681. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6682. } break;
  6683. default:
  6684. {
  6685. GGML_ASSERT(false);
  6686. } break;
  6687. }
  6688. }
  6689. // ggml_compute_forward_scale
  6690. static void ggml_compute_forward_scale_f32(
  6691. const struct ggml_compute_params * params,
  6692. const struct ggml_tensor * src0,
  6693. const struct ggml_tensor * src1,
  6694. struct ggml_tensor * dst) {
  6695. GGML_ASSERT(ggml_is_contiguous(src0));
  6696. GGML_ASSERT(ggml_is_contiguous(dst));
  6697. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6698. GGML_ASSERT(ggml_is_scalar(src1));
  6699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6700. return;
  6701. }
  6702. // scale factor
  6703. const float v = *(float *) src1->data;
  6704. const int ith = params->ith;
  6705. const int nth = params->nth;
  6706. const int nc = src0->ne[0];
  6707. const int nr = ggml_nrows(src0);
  6708. // rows per thread
  6709. const int dr = (nr + nth - 1)/nth;
  6710. // row range for this thread
  6711. const int ir0 = dr*ith;
  6712. const int ir1 = MIN(ir0 + dr, nr);
  6713. for (int i1 = ir0; i1 < ir1; i1++) {
  6714. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6715. }
  6716. }
  6717. static void ggml_compute_forward_scale(
  6718. const struct ggml_compute_params * params,
  6719. const struct ggml_tensor * src0,
  6720. const struct ggml_tensor * src1,
  6721. struct ggml_tensor * dst) {
  6722. switch (src0->type) {
  6723. case GGML_TYPE_F32:
  6724. {
  6725. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6726. } break;
  6727. default:
  6728. {
  6729. GGML_ASSERT(false);
  6730. } break;
  6731. }
  6732. }
  6733. // ggml_compute_forward_cpy
  6734. static void ggml_compute_forward_cpy(
  6735. const struct ggml_compute_params * params,
  6736. const struct ggml_tensor * src0,
  6737. struct ggml_tensor * dst) {
  6738. ggml_compute_forward_dup(params, src0, dst);
  6739. }
  6740. // ggml_compute_forward_cont
  6741. static void ggml_compute_forward_cont(
  6742. const struct ggml_compute_params * params,
  6743. const struct ggml_tensor * src0,
  6744. struct ggml_tensor * dst) {
  6745. ggml_compute_forward_dup(params, src0, dst);
  6746. }
  6747. // ggml_compute_forward_reshape
  6748. static void ggml_compute_forward_reshape(
  6749. const struct ggml_compute_params * params,
  6750. const struct ggml_tensor * src0,
  6751. struct ggml_tensor * dst) {
  6752. // NOP
  6753. UNUSED(params);
  6754. UNUSED(src0);
  6755. UNUSED(dst);
  6756. }
  6757. // ggml_compute_forward_view
  6758. static void ggml_compute_forward_view(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * src0) {
  6761. // NOP
  6762. UNUSED(params);
  6763. UNUSED(src0);
  6764. }
  6765. // ggml_compute_forward_permute
  6766. static void ggml_compute_forward_permute(
  6767. const struct ggml_compute_params * params,
  6768. const struct ggml_tensor * src0) {
  6769. // NOP
  6770. UNUSED(params);
  6771. UNUSED(src0);
  6772. }
  6773. // ggml_compute_forward_transpose
  6774. static void ggml_compute_forward_transpose(
  6775. const struct ggml_compute_params * params,
  6776. const struct ggml_tensor * src0) {
  6777. // NOP
  6778. UNUSED(params);
  6779. UNUSED(src0);
  6780. }
  6781. // ggml_compute_forward_get_rows
  6782. static void ggml_compute_forward_get_rows_q(
  6783. const struct ggml_compute_params * params,
  6784. const struct ggml_tensor * src0,
  6785. const struct ggml_tensor * src1,
  6786. struct ggml_tensor * dst) {
  6787. assert(params->ith == 0);
  6788. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6789. return;
  6790. }
  6791. const int nc = src0->ne[0];
  6792. const int nr = ggml_nelements(src1);
  6793. const enum ggml_type type = src0->type;
  6794. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6795. assert( dst->ne[0] == nc);
  6796. assert( dst->ne[1] == nr);
  6797. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6798. for (int i = 0; i < nr; ++i) {
  6799. const int r = ((int32_t *) src1->data)[i];
  6800. dequantize_row_q(
  6801. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6802. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6803. }
  6804. }
  6805. static void ggml_compute_forward_get_rows_f16(
  6806. const struct ggml_compute_params * params,
  6807. const struct ggml_tensor * src0,
  6808. const struct ggml_tensor * src1,
  6809. struct ggml_tensor * dst) {
  6810. assert(params->ith == 0);
  6811. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6812. return;
  6813. }
  6814. const int nc = src0->ne[0];
  6815. const int nr = ggml_nelements(src1);
  6816. assert( dst->ne[0] == nc);
  6817. assert( dst->ne[1] == nr);
  6818. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6819. for (int i = 0; i < nr; ++i) {
  6820. const int r = ((int32_t *) src1->data)[i];
  6821. for (int j = 0; j < nc; ++j) {
  6822. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6823. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6824. }
  6825. }
  6826. }
  6827. static void ggml_compute_forward_get_rows_f32(
  6828. const struct ggml_compute_params * params,
  6829. const struct ggml_tensor * src0,
  6830. const struct ggml_tensor * src1,
  6831. struct ggml_tensor * dst) {
  6832. assert(params->ith == 0);
  6833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6834. return;
  6835. }
  6836. const int nc = src0->ne[0];
  6837. const int nr = ggml_nelements(src1);
  6838. assert( dst->ne[0] == nc);
  6839. assert( dst->ne[1] == nr);
  6840. assert(src0->nb[0] == sizeof(float));
  6841. for (int i = 0; i < nr; ++i) {
  6842. const int r = ((int32_t *) src1->data)[i];
  6843. ggml_vec_cpy_f32(nc,
  6844. (float *) ((char *) dst->data + i*dst->nb[1]),
  6845. (float *) ((char *) src0->data + r*src0->nb[1]));
  6846. }
  6847. }
  6848. static void ggml_compute_forward_get_rows(
  6849. const struct ggml_compute_params * params,
  6850. const struct ggml_tensor * src0,
  6851. const struct ggml_tensor * src1,
  6852. struct ggml_tensor * dst) {
  6853. switch (src0->type) {
  6854. case GGML_TYPE_Q4_0:
  6855. case GGML_TYPE_Q4_1:
  6856. case GGML_TYPE_Q4_2:
  6857. case GGML_TYPE_Q4_3:
  6858. case GGML_TYPE_Q8_0:
  6859. {
  6860. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6861. } break;
  6862. case GGML_TYPE_F16:
  6863. {
  6864. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6865. } break;
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6869. } break;
  6870. default:
  6871. {
  6872. GGML_ASSERT(false);
  6873. } break;
  6874. }
  6875. //static bool first = true;
  6876. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6877. //if (first) {
  6878. // first = false;
  6879. //} else {
  6880. // for (int k = 0; k < dst->ne[1]; ++k) {
  6881. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6882. // for (int i = 0; i < 16; ++i) {
  6883. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6884. // }
  6885. // printf("\n");
  6886. // }
  6887. // printf("\n");
  6888. // }
  6889. // printf("\n");
  6890. // exit(0);
  6891. //}
  6892. }
  6893. // ggml_compute_forward_diag_mask_inf
  6894. static void ggml_compute_forward_diag_mask_inf_f32(
  6895. const struct ggml_compute_params * params,
  6896. const struct ggml_tensor * src0,
  6897. const struct ggml_tensor * src1,
  6898. struct ggml_tensor * dst) {
  6899. assert(params->ith == 0);
  6900. assert(src1->type == GGML_TYPE_I32);
  6901. assert(ggml_nelements(src1) == 1);
  6902. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6903. return;
  6904. }
  6905. const int n_past = ((int32_t *) src1->data)[0];
  6906. // TODO: handle transposed/permuted matrices
  6907. const int n = ggml_nrows(src0);
  6908. const int nc = src0->ne[0];
  6909. const int nr = src0->ne[1];
  6910. const int nz = n/nr;
  6911. assert( dst->nb[0] == sizeof(float));
  6912. assert(src0->nb[0] == sizeof(float));
  6913. for (int k = 0; k < nz; k++) {
  6914. for (int j = 0; j < nr; j++) {
  6915. for (int i = n_past; i < nc; i++) {
  6916. if (i > n_past + j) {
  6917. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6918. }
  6919. }
  6920. }
  6921. }
  6922. }
  6923. static void ggml_compute_forward_diag_mask_inf(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * src0,
  6926. const struct ggml_tensor * src1,
  6927. struct ggml_tensor * dst) {
  6928. switch (src0->type) {
  6929. case GGML_TYPE_F32:
  6930. {
  6931. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6932. } break;
  6933. default:
  6934. {
  6935. GGML_ASSERT(false);
  6936. } break;
  6937. }
  6938. }
  6939. // ggml_compute_forward_soft_max
  6940. static void ggml_compute_forward_soft_max_f32(
  6941. const struct ggml_compute_params * params,
  6942. const struct ggml_tensor * src0,
  6943. struct ggml_tensor * dst) {
  6944. GGML_ASSERT(ggml_is_contiguous(src0));
  6945. GGML_ASSERT(ggml_is_contiguous(dst));
  6946. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6948. return;
  6949. }
  6950. // TODO: handle transposed/permuted matrices
  6951. const int ith = params->ith;
  6952. const int nth = params->nth;
  6953. const int nc = src0->ne[0];
  6954. const int nr = ggml_nrows(src0);
  6955. // rows per thread
  6956. const int dr = (nr + nth - 1)/nth;
  6957. // row range for this thread
  6958. const int ir0 = dr*ith;
  6959. const int ir1 = MIN(ir0 + dr, nr);
  6960. for (int i1 = ir0; i1 < ir1; i1++) {
  6961. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6962. #ifndef NDEBUG
  6963. for (int i = 0; i < nc; ++i) {
  6964. //printf("p[%d] = %f\n", i, p[i]);
  6965. assert(!isnan(p[i]));
  6966. }
  6967. #endif
  6968. float max = -INFINITY;
  6969. ggml_vec_max_f32(nc, &max, p);
  6970. ggml_float sum = 0.0;
  6971. uint16_t scvt;
  6972. for (int i = 0; i < nc; i++) {
  6973. if (p[i] == -INFINITY) {
  6974. p[i] = 0.0f;
  6975. } else {
  6976. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6977. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6978. memcpy(&scvt, &s, sizeof(scvt));
  6979. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6980. sum += (ggml_float)val;
  6981. p[i] = val;
  6982. }
  6983. }
  6984. assert(sum > 0.0);
  6985. sum = 1.0/sum;
  6986. ggml_vec_scale_f32(nc, p, sum);
  6987. #ifndef NDEBUG
  6988. for (int i = 0; i < nc; ++i) {
  6989. assert(!isnan(p[i]));
  6990. assert(!isinf(p[i]));
  6991. }
  6992. #endif
  6993. }
  6994. }
  6995. static void ggml_compute_forward_soft_max(
  6996. const struct ggml_compute_params * params,
  6997. const struct ggml_tensor * src0,
  6998. struct ggml_tensor * dst) {
  6999. switch (src0->type) {
  7000. case GGML_TYPE_F32:
  7001. {
  7002. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7003. } break;
  7004. default:
  7005. {
  7006. GGML_ASSERT(false);
  7007. } break;
  7008. }
  7009. }
  7010. // ggml_compute_forward_rope
  7011. static void ggml_compute_forward_rope_f32(
  7012. const struct ggml_compute_params * params,
  7013. const struct ggml_tensor * src0,
  7014. const struct ggml_tensor * src1,
  7015. struct ggml_tensor * dst) {
  7016. assert(src1->type == GGML_TYPE_I32);
  7017. assert(ggml_nelements(src1) == 3);
  7018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7019. return;
  7020. }
  7021. const int n_past = ((int32_t *) src1->data)[0];
  7022. const int n_dims = ((int32_t *) src1->data)[1];
  7023. const int mode = ((int32_t *) src1->data)[2];
  7024. //const int64_t ne0 = src0->ne[0];
  7025. const int64_t ne1 = src0->ne[1];
  7026. const int64_t ne2 = src0->ne[2];
  7027. const int64_t ne3 = src0->ne[3];
  7028. const int nb0 = src0->nb[0];
  7029. const int nb1 = src0->nb[1];
  7030. const int nb2 = src0->nb[2];
  7031. const int nb3 = src0->nb[3];
  7032. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7033. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7034. assert(nb0 == sizeof(float));
  7035. const int ith = params->ith;
  7036. const int nth = params->nth;
  7037. const int nr = ggml_nrows(src0);
  7038. // rows per thread
  7039. const int dr = (nr + nth - 1)/nth;
  7040. // row range for this thread
  7041. const int ir0 = dr*ith;
  7042. const int ir1 = MIN(ir0 + dr, nr);
  7043. // row index used to determine which thread to use
  7044. int ir = 0;
  7045. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7046. const bool is_neox = mode & 2;
  7047. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7048. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7049. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7050. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7051. if (ir++ < ir0) continue;
  7052. if (ir > ir1) break;
  7053. float theta = (float)p;
  7054. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7055. const float cos_theta = cosf(theta);
  7056. const float sin_theta = sinf(theta);
  7057. theta *= theta_scale;
  7058. if (!is_neox) {
  7059. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7060. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7061. const float x0 = src[0];
  7062. const float x1 = src[1];
  7063. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7064. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7065. } else {
  7066. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7067. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7068. const float x0 = src[0];
  7069. const float x1 = src[n_dims/2];
  7070. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7071. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7072. }
  7073. }
  7074. }
  7075. }
  7076. }
  7077. }
  7078. static void ggml_compute_forward_rope_f16(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. const struct ggml_tensor * src1,
  7082. struct ggml_tensor * dst) {
  7083. assert(src1->type == GGML_TYPE_I32);
  7084. assert(ggml_nelements(src1) == 3);
  7085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7086. return;
  7087. }
  7088. const int n_past = ((int32_t *) src1->data)[0];
  7089. const int n_dims = ((int32_t *) src1->data)[1];
  7090. const int mode = ((int32_t *) src1->data)[2];
  7091. //const int64_t ne0 = src0->ne[0];
  7092. const int64_t ne1 = src0->ne[1];
  7093. const int64_t ne2 = src0->ne[2];
  7094. const int64_t ne3 = src0->ne[3];
  7095. const int nb0 = src0->nb[0];
  7096. const int nb1 = src0->nb[1];
  7097. const int nb2 = src0->nb[2];
  7098. const int nb3 = src0->nb[3];
  7099. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7100. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7101. assert(nb0 == sizeof(ggml_fp16_t));
  7102. const int ith = params->ith;
  7103. const int nth = params->nth;
  7104. const int nr = ggml_nrows(src0);
  7105. // rows per thread
  7106. const int dr = (nr + nth - 1)/nth;
  7107. // row range for this thread
  7108. const int ir0 = dr*ith;
  7109. const int ir1 = MIN(ir0 + dr, nr);
  7110. // row index used to determine which thread to use
  7111. int ir = 0;
  7112. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7113. const bool is_neox = mode & 2;
  7114. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7115. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7116. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7117. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7118. if (ir++ < ir0) continue;
  7119. if (ir > ir1) break;
  7120. float theta = (float)p;
  7121. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7122. const float cos_theta = cosf(theta);
  7123. const float sin_theta = sinf(theta);
  7124. theta *= theta_scale;
  7125. if (!is_neox) {
  7126. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7127. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7128. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7129. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7130. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7131. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7132. } else {
  7133. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7134. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7135. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7136. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7137. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7138. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7139. }
  7140. }
  7141. }
  7142. }
  7143. }
  7144. }
  7145. static void ggml_compute_forward_rope(
  7146. const struct ggml_compute_params * params,
  7147. const struct ggml_tensor * src0,
  7148. const struct ggml_tensor * src1,
  7149. struct ggml_tensor * dst) {
  7150. switch (src0->type) {
  7151. case GGML_TYPE_F16:
  7152. {
  7153. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7154. } break;
  7155. case GGML_TYPE_F32:
  7156. {
  7157. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7158. } break;
  7159. default:
  7160. {
  7161. GGML_ASSERT(false);
  7162. } break;
  7163. }
  7164. }
  7165. // ggml_compute_forward_conv_1d_1s
  7166. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7167. const struct ggml_compute_params * params,
  7168. const struct ggml_tensor * src0,
  7169. const struct ggml_tensor * src1,
  7170. struct ggml_tensor * dst) {
  7171. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7172. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7173. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7174. int64_t t0 = ggml_perf_time_us();
  7175. UNUSED(t0);
  7176. const int64_t ne00 = src0->ne[0];
  7177. const int64_t ne01 = src0->ne[1];
  7178. const int64_t ne02 = src0->ne[2];
  7179. //const int64_t ne03 = src0->ne[3];
  7180. const int64_t ne10 = src1->ne[0];
  7181. const int64_t ne11 = src1->ne[1];
  7182. //const int64_t ne12 = src1->ne[2];
  7183. //const int64_t ne13 = src1->ne[3];
  7184. //const int64_t ne0 = dst->ne[0];
  7185. //const int64_t ne1 = dst->ne[1];
  7186. //const int64_t ne2 = dst->ne[2];
  7187. //const int64_t ne3 = dst->ne[3];
  7188. //const int64_t ne = ne0*ne1*ne2*ne3;
  7189. const int nb00 = src0->nb[0];
  7190. const int nb01 = src0->nb[1];
  7191. const int nb02 = src0->nb[2];
  7192. //const int nb03 = src0->nb[3];
  7193. const int nb10 = src1->nb[0];
  7194. const int nb11 = src1->nb[1];
  7195. //const int nb12 = src1->nb[2];
  7196. //const int nb13 = src1->nb[3];
  7197. //const int nb0 = dst->nb[0];
  7198. const int nb1 = dst->nb[1];
  7199. //const int nb2 = dst->nb[2];
  7200. //const int nb3 = dst->nb[3];
  7201. const int ith = params->ith;
  7202. const int nth = params->nth;
  7203. const int nk = ne00;
  7204. const int nh = nk/2;
  7205. const int ew0 = ggml_up32(ne01);
  7206. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7207. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7208. GGML_ASSERT(nb10 == sizeof(float));
  7209. if (params->type == GGML_TASK_INIT) {
  7210. // TODO: fix this memset (wsize is overestimated)
  7211. memset(params->wdata, 0, params->wsize);
  7212. // prepare kernel data (src0)
  7213. {
  7214. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7216. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7217. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7218. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7219. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7220. dst_data[i00*ew0 + i01] = src[i00];
  7221. }
  7222. }
  7223. }
  7224. }
  7225. // prepare source data (src1)
  7226. {
  7227. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7228. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7229. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7230. ggml_fp16_t * dst_data = wdata;
  7231. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7232. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7233. }
  7234. }
  7235. }
  7236. return;
  7237. }
  7238. if (params->type == GGML_TASK_FINALIZE) {
  7239. return;
  7240. }
  7241. // total rows in dst
  7242. const int nr = ne02;
  7243. // rows per thread
  7244. const int dr = (nr + nth - 1)/nth;
  7245. // row range for this thread
  7246. const int ir0 = dr*ith;
  7247. const int ir1 = MIN(ir0 + dr, nr);
  7248. for (int i1 = ir0; i1 < ir1; i1++) {
  7249. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7250. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7251. dst_data[i0] = 0;
  7252. for (int k = -nh; k <= nh; k++) {
  7253. float v = 0.0f;
  7254. ggml_vec_dot_f16(ew0, &v,
  7255. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7256. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7257. dst_data[i0] += v;
  7258. }
  7259. }
  7260. }
  7261. }
  7262. static void ggml_compute_forward_conv_1d_1s_f32(
  7263. const struct ggml_compute_params * params,
  7264. const struct ggml_tensor * src0,
  7265. const struct ggml_tensor * src1,
  7266. struct ggml_tensor * dst) {
  7267. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7268. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7269. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7270. int64_t t0 = ggml_perf_time_us();
  7271. UNUSED(t0);
  7272. const int64_t ne00 = src0->ne[0];
  7273. const int64_t ne01 = src0->ne[1];
  7274. const int64_t ne02 = src0->ne[2];
  7275. //const int64_t ne03 = src0->ne[3];
  7276. const int64_t ne10 = src1->ne[0];
  7277. const int64_t ne11 = src1->ne[1];
  7278. //const int64_t ne12 = src1->ne[2];
  7279. //const int64_t ne13 = src1->ne[3];
  7280. //const int64_t ne0 = dst->ne[0];
  7281. //const int64_t ne1 = dst->ne[1];
  7282. //const int64_t ne2 = dst->ne[2];
  7283. //const int64_t ne3 = dst->ne[3];
  7284. //const int64_t ne = ne0*ne1*ne2*ne3;
  7285. const int nb00 = src0->nb[0];
  7286. const int nb01 = src0->nb[1];
  7287. const int nb02 = src0->nb[2];
  7288. //const int nb03 = src0->nb[3];
  7289. const int nb10 = src1->nb[0];
  7290. const int nb11 = src1->nb[1];
  7291. //const int nb12 = src1->nb[2];
  7292. //const int nb13 = src1->nb[3];
  7293. //const int nb0 = dst->nb[0];
  7294. const int nb1 = dst->nb[1];
  7295. //const int nb2 = dst->nb[2];
  7296. //const int nb3 = dst->nb[3];
  7297. const int ith = params->ith;
  7298. const int nth = params->nth;
  7299. const int nk = ne00;
  7300. const int nh = nk/2;
  7301. const int ew0 = ggml_up32(ne01);
  7302. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7303. GGML_ASSERT(nb00 == sizeof(float));
  7304. GGML_ASSERT(nb10 == sizeof(float));
  7305. if (params->type == GGML_TASK_INIT) {
  7306. // TODO: fix this memset (wsize is overestimated)
  7307. memset(params->wdata, 0, params->wsize);
  7308. // prepare kernel data (src0)
  7309. {
  7310. float * const wdata = (float *) params->wdata + 0;
  7311. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7312. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7313. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7314. float * dst_data = wdata + i02*ew0*ne00;
  7315. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7316. dst_data[i00*ew0 + i01] = src[i00];
  7317. }
  7318. }
  7319. }
  7320. }
  7321. // prepare source data (src1)
  7322. {
  7323. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7324. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7325. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7326. float * dst_data = wdata;
  7327. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7328. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7329. }
  7330. }
  7331. }
  7332. return;
  7333. }
  7334. if (params->type == GGML_TASK_FINALIZE) {
  7335. return;
  7336. }
  7337. // total rows in dst
  7338. const int nr = ne02;
  7339. // rows per thread
  7340. const int dr = (nr + nth - 1)/nth;
  7341. // row range for this thread
  7342. const int ir0 = dr*ith;
  7343. const int ir1 = MIN(ir0 + dr, nr);
  7344. for (int i1 = ir0; i1 < ir1; i1++) {
  7345. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7346. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7347. dst_data[i0] = 0;
  7348. for (int k = -nh; k <= nh; k++) {
  7349. float v = 0.0f;
  7350. ggml_vec_dot_f32(ew0, &v,
  7351. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7352. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7353. dst_data[i0] += v;
  7354. }
  7355. }
  7356. }
  7357. }
  7358. static void ggml_compute_forward_conv_1d_1s(
  7359. const struct ggml_compute_params * params,
  7360. const struct ggml_tensor * src0,
  7361. const struct ggml_tensor * src1,
  7362. struct ggml_tensor * dst) {
  7363. switch (src0->type) {
  7364. case GGML_TYPE_F16:
  7365. {
  7366. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7367. } break;
  7368. case GGML_TYPE_F32:
  7369. {
  7370. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7371. } break;
  7372. default:
  7373. {
  7374. GGML_ASSERT(false);
  7375. } break;
  7376. }
  7377. }
  7378. // ggml_compute_forward_conv_1d_2s
  7379. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7380. const struct ggml_compute_params * params,
  7381. const struct ggml_tensor * src0,
  7382. const struct ggml_tensor * src1,
  7383. struct ggml_tensor * dst) {
  7384. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7385. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7386. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7387. int64_t t0 = ggml_perf_time_us();
  7388. UNUSED(t0);
  7389. const int64_t ne00 = src0->ne[0];
  7390. const int64_t ne01 = src0->ne[1];
  7391. const int64_t ne02 = src0->ne[2];
  7392. //const int64_t ne03 = src0->ne[3];
  7393. const int64_t ne10 = src1->ne[0];
  7394. const int64_t ne11 = src1->ne[1];
  7395. //const int64_t ne12 = src1->ne[2];
  7396. //const int64_t ne13 = src1->ne[3];
  7397. //const int64_t ne0 = dst->ne[0];
  7398. //const int64_t ne1 = dst->ne[1];
  7399. //const int64_t ne2 = dst->ne[2];
  7400. //const int64_t ne3 = dst->ne[3];
  7401. //const int64_t ne = ne0*ne1*ne2*ne3;
  7402. const int nb00 = src0->nb[0];
  7403. const int nb01 = src0->nb[1];
  7404. const int nb02 = src0->nb[2];
  7405. //const int nb03 = src0->nb[3];
  7406. const int nb10 = src1->nb[0];
  7407. const int nb11 = src1->nb[1];
  7408. //const int nb12 = src1->nb[2];
  7409. //const int nb13 = src1->nb[3];
  7410. //const int nb0 = dst->nb[0];
  7411. const int nb1 = dst->nb[1];
  7412. //const int nb2 = dst->nb[2];
  7413. //const int nb3 = dst->nb[3];
  7414. const int ith = params->ith;
  7415. const int nth = params->nth;
  7416. const int nk = ne00;
  7417. const int nh = nk/2;
  7418. const int ew0 = ggml_up32(ne01);
  7419. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7420. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7421. GGML_ASSERT(nb10 == sizeof(float));
  7422. if (params->type == GGML_TASK_INIT) {
  7423. // TODO: fix this memset (wsize is overestimated)
  7424. memset(params->wdata, 0, params->wsize);
  7425. // prepare kernel data (src0)
  7426. {
  7427. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7428. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7429. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7430. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7431. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7432. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7433. dst_data[i00*ew0 + i01] = src[i00];
  7434. }
  7435. }
  7436. }
  7437. }
  7438. // prepare source data (src1)
  7439. {
  7440. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7441. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7442. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7443. ggml_fp16_t * dst_data = wdata;
  7444. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7445. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7446. }
  7447. }
  7448. }
  7449. return;
  7450. }
  7451. if (params->type == GGML_TASK_FINALIZE) {
  7452. return;
  7453. }
  7454. // total rows in dst
  7455. const int nr = ne02;
  7456. // rows per thread
  7457. const int dr = (nr + nth - 1)/nth;
  7458. // row range for this thread
  7459. const int ir0 = dr*ith;
  7460. const int ir1 = MIN(ir0 + dr, nr);
  7461. for (int i1 = ir0; i1 < ir1; i1++) {
  7462. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7463. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7464. dst_data[i0/2] = 0;
  7465. for (int k = -nh; k <= nh; k++) {
  7466. float v = 0.0f;
  7467. ggml_vec_dot_f16(ew0, &v,
  7468. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7469. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7470. dst_data[i0/2] += v;
  7471. }
  7472. }
  7473. }
  7474. }
  7475. static void ggml_compute_forward_conv_1d_2s_f32(
  7476. const struct ggml_compute_params * params,
  7477. const struct ggml_tensor * src0,
  7478. const struct ggml_tensor * src1,
  7479. struct ggml_tensor * dst) {
  7480. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7481. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7482. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7483. int64_t t0 = ggml_perf_time_us();
  7484. UNUSED(t0);
  7485. const int64_t ne00 = src0->ne[0];
  7486. const int64_t ne01 = src0->ne[1];
  7487. const int64_t ne02 = src0->ne[2];
  7488. //const int64_t ne03 = src0->ne[3];
  7489. const int64_t ne10 = src1->ne[0];
  7490. const int64_t ne11 = src1->ne[1];
  7491. //const int64_t ne12 = src1->ne[2];
  7492. //const int64_t ne13 = src1->ne[3];
  7493. //const int64_t ne0 = dst->ne[0];
  7494. //const int64_t ne1 = dst->ne[1];
  7495. //const int64_t ne2 = dst->ne[2];
  7496. //const int64_t ne3 = dst->ne[3];
  7497. //const int64_t ne = ne0*ne1*ne2*ne3;
  7498. const int nb00 = src0->nb[0];
  7499. const int nb01 = src0->nb[1];
  7500. const int nb02 = src0->nb[2];
  7501. //const int nb03 = src0->nb[3];
  7502. const int nb10 = src1->nb[0];
  7503. const int nb11 = src1->nb[1];
  7504. //const int nb12 = src1->nb[2];
  7505. //const int nb13 = src1->nb[3];
  7506. //const int nb0 = dst->nb[0];
  7507. const int nb1 = dst->nb[1];
  7508. //const int nb2 = dst->nb[2];
  7509. //const int nb3 = dst->nb[3];
  7510. const int ith = params->ith;
  7511. const int nth = params->nth;
  7512. const int nk = ne00;
  7513. const int nh = nk/2;
  7514. const int ew0 = ggml_up32(ne01);
  7515. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7516. GGML_ASSERT(nb00 == sizeof(float));
  7517. GGML_ASSERT(nb10 == sizeof(float));
  7518. if (params->type == GGML_TASK_INIT) {
  7519. // TODO: fix this memset (wsize is overestimated)
  7520. memset(params->wdata, 0, params->wsize);
  7521. // prepare kernel data (src0)
  7522. {
  7523. float * const wdata = (float *) params->wdata + 0;
  7524. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7525. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7526. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7527. float * dst_data = wdata + i02*ew0*ne00;
  7528. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7529. dst_data[i00*ew0 + i01] = src[i00];
  7530. }
  7531. }
  7532. }
  7533. }
  7534. // prepare source data (src1)
  7535. {
  7536. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7537. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7538. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7539. float * dst_data = wdata;
  7540. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7541. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7542. }
  7543. }
  7544. }
  7545. return;
  7546. }
  7547. if (params->type == GGML_TASK_FINALIZE) {
  7548. return;
  7549. }
  7550. // total rows in dst
  7551. const int nr = ne02;
  7552. // rows per thread
  7553. const int dr = (nr + nth - 1)/nth;
  7554. // row range for this thread
  7555. const int ir0 = dr*ith;
  7556. const int ir1 = MIN(ir0 + dr, nr);
  7557. for (int i1 = ir0; i1 < ir1; i1++) {
  7558. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7559. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7560. dst_data[i0/2] = 0;
  7561. for (int k = -nh; k <= nh; k++) {
  7562. float v = 0.0f;
  7563. ggml_vec_dot_f32(ew0, &v,
  7564. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7565. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7566. dst_data[i0/2] += v;
  7567. }
  7568. }
  7569. }
  7570. }
  7571. static void ggml_compute_forward_conv_1d_2s(
  7572. const struct ggml_compute_params * params,
  7573. const struct ggml_tensor * src0,
  7574. const struct ggml_tensor * src1,
  7575. struct ggml_tensor * dst) {
  7576. switch (src0->type) {
  7577. case GGML_TYPE_F16:
  7578. {
  7579. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7580. } break;
  7581. case GGML_TYPE_F32:
  7582. {
  7583. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7584. } break;
  7585. default:
  7586. {
  7587. GGML_ASSERT(false);
  7588. } break;
  7589. }
  7590. }
  7591. // ggml_compute_forward_flash_attn
  7592. static void ggml_compute_forward_flash_attn_f32(
  7593. const struct ggml_compute_params * params,
  7594. const struct ggml_tensor * q,
  7595. const struct ggml_tensor * k,
  7596. const struct ggml_tensor * v,
  7597. const bool masked,
  7598. struct ggml_tensor * dst) {
  7599. int64_t t0 = ggml_perf_time_us();
  7600. UNUSED(t0);
  7601. const int64_t neq0 = q->ne[0];
  7602. const int64_t neq1 = q->ne[1];
  7603. const int64_t neq2 = q->ne[2];
  7604. const int64_t neq3 = q->ne[3];
  7605. const int64_t nek0 = k->ne[0];
  7606. const int64_t nek1 = k->ne[1];
  7607. //const int64_t nek2 = k->ne[2];
  7608. //const int64_t nek3 = k->ne[3];
  7609. //const int64_t nev0 = v->ne[0];
  7610. const int64_t nev1 = v->ne[1];
  7611. //const int64_t nev2 = v->ne[2];
  7612. //const int64_t nev3 = v->ne[3];
  7613. const int64_t ne0 = dst->ne[0];
  7614. const int64_t ne1 = dst->ne[1];
  7615. //const int64_t ne2 = dst->ne[2];
  7616. //const int64_t ne3 = dst->ne[3];
  7617. const int nbk0 = k->nb[0];
  7618. const int nbk1 = k->nb[1];
  7619. const int nbk2 = k->nb[2];
  7620. const int nbk3 = k->nb[3];
  7621. const int nbq0 = q->nb[0];
  7622. const int nbq1 = q->nb[1];
  7623. const int nbq2 = q->nb[2];
  7624. const int nbq3 = q->nb[3];
  7625. const int nbv0 = v->nb[0];
  7626. const int nbv1 = v->nb[1];
  7627. const int nbv2 = v->nb[2];
  7628. const int nbv3 = v->nb[3];
  7629. const int nb0 = dst->nb[0];
  7630. const int nb1 = dst->nb[1];
  7631. const int nb2 = dst->nb[2];
  7632. const int nb3 = dst->nb[3];
  7633. const int ith = params->ith;
  7634. const int nth = params->nth;
  7635. const int64_t D = neq0;
  7636. const int64_t N = neq1;
  7637. const int64_t P = nek1 - N;
  7638. const int64_t M = P + N;
  7639. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7640. GGML_ASSERT(ne0 == D);
  7641. GGML_ASSERT(ne1 == N);
  7642. GGML_ASSERT(P >= 0);
  7643. GGML_ASSERT(nbq0 == sizeof(float));
  7644. GGML_ASSERT(nbk0 == sizeof(float));
  7645. GGML_ASSERT(nbv0 == sizeof(float));
  7646. GGML_ASSERT(neq0 == D);
  7647. GGML_ASSERT(nek0 == D);
  7648. GGML_ASSERT(nev1 == D);
  7649. GGML_ASSERT(neq1 == N);
  7650. GGML_ASSERT(nek1 == N + P);
  7651. GGML_ASSERT(nev1 == D);
  7652. // dst cannot be transposed or permuted
  7653. GGML_ASSERT(nb0 == sizeof(float));
  7654. GGML_ASSERT(nb0 <= nb1);
  7655. GGML_ASSERT(nb1 <= nb2);
  7656. GGML_ASSERT(nb2 <= nb3);
  7657. if (params->type == GGML_TASK_INIT) {
  7658. return;
  7659. }
  7660. if (params->type == GGML_TASK_FINALIZE) {
  7661. return;
  7662. }
  7663. // parallelize by q rows using ggml_vec_dot_f32
  7664. // total rows in q
  7665. const int nr = neq1*neq2*neq3;
  7666. // rows per thread
  7667. const int dr = (nr + nth - 1)/nth;
  7668. // row range for this thread
  7669. const int ir0 = dr*ith;
  7670. const int ir1 = MIN(ir0 + dr, nr);
  7671. const float scale = 1.0f/sqrtf(D);
  7672. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7673. for (int ir = ir0; ir < ir1; ++ir) {
  7674. // q indices
  7675. const int iq3 = ir/(neq2*neq1);
  7676. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7677. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7678. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7679. for (int i = M; i < Mup; ++i) {
  7680. S[i] = -INFINITY;
  7681. }
  7682. for (int64_t ic = 0; ic < nek1; ++ic) {
  7683. // k indices
  7684. const int ik3 = iq3;
  7685. const int ik2 = iq2;
  7686. const int ik1 = ic;
  7687. // S indices
  7688. const int i1 = ik1;
  7689. ggml_vec_dot_f32(neq0,
  7690. S + i1,
  7691. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7692. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7693. }
  7694. // scale
  7695. ggml_vec_scale_f32(nek1, S, scale);
  7696. if (masked) {
  7697. for (int64_t i = P; i < M; i++) {
  7698. if (i > P + iq1) {
  7699. S[i] = -INFINITY;
  7700. }
  7701. }
  7702. }
  7703. // softmax
  7704. {
  7705. float max = -INFINITY;
  7706. ggml_vec_max_f32(M, &max, S);
  7707. ggml_float sum = 0.0;
  7708. {
  7709. #ifdef GGML_SOFT_MAX_ACCELERATE
  7710. max = -max;
  7711. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7712. vvexpf(S, S, &Mup);
  7713. ggml_vec_sum_f32(Mup, &sum, S);
  7714. #else
  7715. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7716. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7717. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7718. float * SS = S + i;
  7719. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7720. if (SS[j] == -INFINITY) {
  7721. SS[j] = 0.0f;
  7722. } else {
  7723. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7724. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7725. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7726. sump[j] += (ggml_float)val;
  7727. SS[j] = val;
  7728. }
  7729. }
  7730. }
  7731. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7732. sum += sump[i];
  7733. }
  7734. #endif
  7735. }
  7736. assert(sum > 0.0);
  7737. sum = 1.0/sum;
  7738. ggml_vec_scale_f32(M, S, sum);
  7739. #ifndef NDEBUG
  7740. for (int i = 0; i < M; ++i) {
  7741. assert(!isnan(S[i]));
  7742. assert(!isinf(S[i]));
  7743. }
  7744. #endif
  7745. }
  7746. for (int64_t ic = 0; ic < nev1; ++ic) {
  7747. // dst indices
  7748. const int i1 = iq1;
  7749. const int i2 = iq2;
  7750. const int i3 = iq3;
  7751. ggml_vec_dot_f32(nek1,
  7752. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7753. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7754. S);
  7755. }
  7756. }
  7757. }
  7758. static void ggml_compute_forward_flash_attn_f16(
  7759. const struct ggml_compute_params * params,
  7760. const struct ggml_tensor * q,
  7761. const struct ggml_tensor * k,
  7762. const struct ggml_tensor * v,
  7763. const bool masked,
  7764. struct ggml_tensor * dst) {
  7765. int64_t t0 = ggml_perf_time_us();
  7766. UNUSED(t0);
  7767. const int64_t neq0 = q->ne[0];
  7768. const int64_t neq1 = q->ne[1];
  7769. const int64_t neq2 = q->ne[2];
  7770. const int64_t neq3 = q->ne[3];
  7771. const int64_t nek0 = k->ne[0];
  7772. const int64_t nek1 = k->ne[1];
  7773. //const int64_t nek2 = k->ne[2];
  7774. //const int64_t nek3 = k->ne[3];
  7775. //const int64_t nev0 = v->ne[0];
  7776. const int64_t nev1 = v->ne[1];
  7777. //const int64_t nev2 = v->ne[2];
  7778. //const int64_t nev3 = v->ne[3];
  7779. const int64_t ne0 = dst->ne[0];
  7780. const int64_t ne1 = dst->ne[1];
  7781. //const int64_t ne2 = dst->ne[2];
  7782. //const int64_t ne3 = dst->ne[3];
  7783. const int nbk0 = k->nb[0];
  7784. const int nbk1 = k->nb[1];
  7785. const int nbk2 = k->nb[2];
  7786. const int nbk3 = k->nb[3];
  7787. const int nbq0 = q->nb[0];
  7788. const int nbq1 = q->nb[1];
  7789. const int nbq2 = q->nb[2];
  7790. const int nbq3 = q->nb[3];
  7791. const int nbv0 = v->nb[0];
  7792. const int nbv1 = v->nb[1];
  7793. const int nbv2 = v->nb[2];
  7794. const int nbv3 = v->nb[3];
  7795. const int nb0 = dst->nb[0];
  7796. const int nb1 = dst->nb[1];
  7797. const int nb2 = dst->nb[2];
  7798. const int nb3 = dst->nb[3];
  7799. const int ith = params->ith;
  7800. const int nth = params->nth;
  7801. const int64_t D = neq0;
  7802. const int64_t N = neq1;
  7803. const int64_t P = nek1 - N;
  7804. const int64_t M = P + N;
  7805. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7806. GGML_ASSERT(ne0 == D);
  7807. GGML_ASSERT(ne1 == N);
  7808. GGML_ASSERT(P >= 0);
  7809. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7810. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7811. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7812. GGML_ASSERT(neq0 == D);
  7813. GGML_ASSERT(nek0 == D);
  7814. GGML_ASSERT(nev1 == D);
  7815. GGML_ASSERT(neq1 == N);
  7816. GGML_ASSERT(nek1 == N + P);
  7817. GGML_ASSERT(nev1 == D);
  7818. // dst cannot be transposed or permuted
  7819. GGML_ASSERT(nb0 == sizeof(float));
  7820. GGML_ASSERT(nb0 <= nb1);
  7821. GGML_ASSERT(nb1 <= nb2);
  7822. GGML_ASSERT(nb2 <= nb3);
  7823. if (params->type == GGML_TASK_INIT) {
  7824. return;
  7825. }
  7826. if (params->type == GGML_TASK_FINALIZE) {
  7827. return;
  7828. }
  7829. // parallelize by q rows using ggml_vec_dot_f32
  7830. // total rows in q
  7831. const int nr = neq1*neq2*neq3;
  7832. // rows per thread
  7833. const int dr = (nr + nth - 1)/nth;
  7834. // row range for this thread
  7835. const int ir0 = dr*ith;
  7836. const int ir1 = MIN(ir0 + dr, nr);
  7837. const float scale = 1.0f/sqrtf(D);
  7838. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7839. for (int ir = ir0; ir < ir1; ++ir) {
  7840. // q indices
  7841. const int iq3 = ir/(neq2*neq1);
  7842. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7843. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7844. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7845. for (int i = M; i < Mup; ++i) {
  7846. S[i] = -INFINITY;
  7847. }
  7848. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7849. for (int64_t ic = 0; ic < nek1; ++ic) {
  7850. // k indices
  7851. const int ik3 = iq3;
  7852. const int ik2 = iq2;
  7853. const int ik1 = ic;
  7854. // S indices
  7855. const int i1 = ik1;
  7856. ggml_vec_dot_f16(neq0,
  7857. S + i1,
  7858. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7859. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7860. }
  7861. } else {
  7862. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7863. // k indices
  7864. const int ik3 = iq3;
  7865. const int ik2 = iq2;
  7866. const int ik1 = ic;
  7867. // S indices
  7868. const int i1 = ik1;
  7869. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7870. S + i1,
  7871. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7872. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7873. }
  7874. }
  7875. // scale
  7876. ggml_vec_scale_f32(nek1, S, scale);
  7877. if (masked) {
  7878. for (int64_t i = P; i < M; i++) {
  7879. if (i > P + iq1) {
  7880. S[i] = -INFINITY;
  7881. }
  7882. }
  7883. }
  7884. // softmax
  7885. {
  7886. float max = -INFINITY;
  7887. ggml_vec_max_f32(M, &max, S);
  7888. ggml_float sum = 0.0;
  7889. {
  7890. #ifdef GGML_SOFT_MAX_ACCELERATE
  7891. max = -max;
  7892. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7893. vvexpf(S, S, &Mup);
  7894. ggml_vec_sum_f32(Mup, &sum, S);
  7895. #else
  7896. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7897. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7898. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7899. float * SS = S + i;
  7900. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7901. if (SS[j] == -INFINITY) {
  7902. SS[j] = 0.0f;
  7903. } else {
  7904. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7905. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7906. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7907. sump[j] += (ggml_float)val;
  7908. SS[j] = val;
  7909. }
  7910. }
  7911. }
  7912. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7913. sum += sump[i];
  7914. }
  7915. #endif
  7916. }
  7917. assert(sum > 0.0);
  7918. sum = 1.0/sum;
  7919. ggml_vec_scale_f32(M, S, sum);
  7920. #ifndef NDEBUG
  7921. for (int i = 0; i < M; ++i) {
  7922. assert(!isnan(S[i]));
  7923. assert(!isinf(S[i]));
  7924. }
  7925. #endif
  7926. }
  7927. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7928. for (int64_t i = 0; i < M; i++) {
  7929. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7930. }
  7931. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7932. for (int64_t ic = 0; ic < nev1; ++ic) {
  7933. // dst indices
  7934. const int i1 = iq1;
  7935. const int i2 = iq2;
  7936. const int i3 = iq3;
  7937. ggml_vec_dot_f16(nek1,
  7938. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7939. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7940. S16);
  7941. }
  7942. } else {
  7943. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7944. // dst indices
  7945. const int i1 = iq1;
  7946. const int i2 = iq2;
  7947. const int i3 = iq3;
  7948. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7949. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7950. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7951. S16);
  7952. }
  7953. }
  7954. }
  7955. }
  7956. static void ggml_compute_forward_flash_attn(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * q,
  7959. const struct ggml_tensor * k,
  7960. const struct ggml_tensor * v,
  7961. const bool masked,
  7962. struct ggml_tensor * dst) {
  7963. switch (q->type) {
  7964. case GGML_TYPE_F16:
  7965. {
  7966. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7967. } break;
  7968. case GGML_TYPE_F32:
  7969. {
  7970. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7971. } break;
  7972. default:
  7973. {
  7974. GGML_ASSERT(false);
  7975. } break;
  7976. }
  7977. }
  7978. // ggml_compute_forward_flash_ff
  7979. static void ggml_compute_forward_flash_ff_f16(
  7980. const struct ggml_compute_params * params,
  7981. const struct ggml_tensor * a, // F16
  7982. const struct ggml_tensor * b0, // F16 fc_w
  7983. const struct ggml_tensor * b1, // F32 fc_b
  7984. const struct ggml_tensor * c0, // F16 proj_w
  7985. const struct ggml_tensor * c1, // F32 proj_b
  7986. struct ggml_tensor * dst) {
  7987. int64_t t0 = ggml_perf_time_us();
  7988. UNUSED(t0);
  7989. const int64_t nea0 = a->ne[0];
  7990. const int64_t nea1 = a->ne[1];
  7991. const int64_t nea2 = a->ne[2];
  7992. const int64_t nea3 = a->ne[3];
  7993. const int64_t neb00 = b0->ne[0];
  7994. const int64_t neb01 = b0->ne[1];
  7995. //const int64_t neb02 = b0->ne[2];
  7996. //const int64_t neb03 = b0->ne[3];
  7997. const int64_t neb10 = b1->ne[0];
  7998. const int64_t neb11 = b1->ne[1];
  7999. //const int64_t neb12 = b1->ne[2];
  8000. //const int64_t neb13 = b1->ne[3];
  8001. const int64_t nec00 = c0->ne[0];
  8002. const int64_t nec01 = c0->ne[1];
  8003. //const int64_t nec02 = c0->ne[2];
  8004. //const int64_t nec03 = c0->ne[3];
  8005. const int64_t nec10 = c1->ne[0];
  8006. const int64_t nec11 = c1->ne[1];
  8007. //const int64_t nec12 = c1->ne[2];
  8008. //const int64_t nec13 = c1->ne[3];
  8009. const int64_t ne0 = dst->ne[0];
  8010. const int64_t ne1 = dst->ne[1];
  8011. const int64_t ne2 = dst->ne[2];
  8012. //const int64_t ne3 = dst->ne[3];
  8013. const int nba0 = a->nb[0];
  8014. const int nba1 = a->nb[1];
  8015. const int nba2 = a->nb[2];
  8016. const int nba3 = a->nb[3];
  8017. const int nbb00 = b0->nb[0];
  8018. const int nbb01 = b0->nb[1];
  8019. const int nbb02 = b0->nb[2];
  8020. const int nbb03 = b0->nb[3];
  8021. const int nbb10 = b1->nb[0];
  8022. //const int nbb11 = b1->nb[1];
  8023. //const int nbb12 = b1->nb[2];
  8024. //const int nbb13 = b1->nb[3];
  8025. const int nbc00 = c0->nb[0];
  8026. const int nbc01 = c0->nb[1];
  8027. const int nbc02 = c0->nb[2];
  8028. const int nbc03 = c0->nb[3];
  8029. const int nbc10 = c1->nb[0];
  8030. //const int nbc11 = c1->nb[1];
  8031. //const int nbc12 = c1->nb[2];
  8032. //const int nbc13 = c1->nb[3];
  8033. const int nb0 = dst->nb[0];
  8034. const int nb1 = dst->nb[1];
  8035. const int nb2 = dst->nb[2];
  8036. const int nb3 = dst->nb[3];
  8037. const int ith = params->ith;
  8038. const int nth = params->nth;
  8039. const int64_t D = nea0;
  8040. //const int64_t N = nea1;
  8041. const int64_t M = neb01;
  8042. GGML_ASSERT(ne0 == nea0);
  8043. GGML_ASSERT(ne1 == nea1);
  8044. GGML_ASSERT(ne2 == nea2);
  8045. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8046. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8047. GGML_ASSERT(nbb10 == sizeof(float));
  8048. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8049. GGML_ASSERT(nbc10 == sizeof(float));
  8050. GGML_ASSERT(neb00 == D);
  8051. GGML_ASSERT(neb01 == M);
  8052. GGML_ASSERT(neb10 == M);
  8053. GGML_ASSERT(neb11 == 1);
  8054. GGML_ASSERT(nec00 == M);
  8055. GGML_ASSERT(nec01 == D);
  8056. GGML_ASSERT(nec10 == D);
  8057. GGML_ASSERT(nec11 == 1);
  8058. // dst cannot be transposed or permuted
  8059. GGML_ASSERT(nb0 == sizeof(float));
  8060. GGML_ASSERT(nb0 <= nb1);
  8061. GGML_ASSERT(nb1 <= nb2);
  8062. GGML_ASSERT(nb2 <= nb3);
  8063. if (params->type == GGML_TASK_INIT) {
  8064. return;
  8065. }
  8066. if (params->type == GGML_TASK_FINALIZE) {
  8067. return;
  8068. }
  8069. // parallelize by a rows using ggml_vec_dot_f32
  8070. // total rows in a
  8071. const int nr = nea1*nea2*nea3;
  8072. // rows per thread
  8073. const int dr = (nr + nth - 1)/nth;
  8074. // row range for this thread
  8075. const int ir0 = dr*ith;
  8076. const int ir1 = MIN(ir0 + dr, nr);
  8077. for (int ir = ir0; ir < ir1; ++ir) {
  8078. // a indices
  8079. const int ia3 = ir/(nea2*nea1);
  8080. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8081. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8082. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8083. for (int64_t ic = 0; ic < neb01; ++ic) {
  8084. // b0 indices
  8085. const int ib03 = ia3;
  8086. const int ib02 = ia2;
  8087. const int ib01 = ic;
  8088. // S indices
  8089. const int i1 = ib01;
  8090. ggml_vec_dot_f16(nea0,
  8091. S + i1,
  8092. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8093. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8094. }
  8095. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8096. //ggml_vec_gelu_f32(neb01, S, S);
  8097. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8098. for (int64_t i = 0; i < M; i++) {
  8099. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8100. }
  8101. ggml_vec_gelu_f16(neb01, S16, S16);
  8102. {
  8103. // dst indices
  8104. const int i1 = ia1;
  8105. const int i2 = ia2;
  8106. const int i3 = ia3;
  8107. for (int64_t ic = 0; ic < nec01; ++ic) {
  8108. ggml_vec_dot_f16(neb01,
  8109. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8110. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8111. S16);
  8112. }
  8113. ggml_vec_add_f32(nec01,
  8114. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8115. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8116. (float *) c1->data);
  8117. }
  8118. }
  8119. }
  8120. static void ggml_compute_forward_flash_ff(
  8121. const struct ggml_compute_params * params,
  8122. const struct ggml_tensor * a,
  8123. const struct ggml_tensor * b0,
  8124. const struct ggml_tensor * b1,
  8125. const struct ggml_tensor * c0,
  8126. const struct ggml_tensor * c1,
  8127. struct ggml_tensor * dst) {
  8128. switch (b0->type) {
  8129. case GGML_TYPE_F16:
  8130. {
  8131. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8132. } break;
  8133. case GGML_TYPE_F32:
  8134. {
  8135. GGML_ASSERT(false); // TODO
  8136. } break;
  8137. default:
  8138. {
  8139. GGML_ASSERT(false);
  8140. } break;
  8141. }
  8142. }
  8143. // ggml_compute_forward_map_unary
  8144. static void ggml_compute_forward_map_unary_f32(
  8145. const struct ggml_compute_params * params,
  8146. const struct ggml_tensor * src0,
  8147. struct ggml_tensor * dst,
  8148. const ggml_unary_op_f32_t fun) {
  8149. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8151. return;
  8152. }
  8153. const int n = ggml_nrows(src0);
  8154. const int nc = src0->ne[0];
  8155. assert( dst->nb[0] == sizeof(float));
  8156. assert(src0->nb[0] == sizeof(float));
  8157. for (int i = 0; i < n; i++) {
  8158. fun(nc,
  8159. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8160. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8161. }
  8162. }
  8163. static void ggml_compute_forward_map_unary(
  8164. const struct ggml_compute_params * params,
  8165. const struct ggml_tensor * src0,
  8166. struct ggml_tensor * dst,
  8167. const ggml_unary_op_f32_t fun) {
  8168. switch (src0->type) {
  8169. case GGML_TYPE_F32:
  8170. {
  8171. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8172. } break;
  8173. default:
  8174. {
  8175. GGML_ASSERT(false);
  8176. } break;
  8177. }
  8178. }
  8179. // ggml_compute_forward_map_binary
  8180. static void ggml_compute_forward_map_binary_f32(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * src1,
  8184. struct ggml_tensor * dst,
  8185. const ggml_binary_op_f32_t fun) {
  8186. assert(params->ith == 0);
  8187. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8188. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8189. return;
  8190. }
  8191. const int n = ggml_nrows(src0);
  8192. const int nc = src0->ne[0];
  8193. assert( dst->nb[0] == sizeof(float));
  8194. assert(src0->nb[0] == sizeof(float));
  8195. assert(src1->nb[0] == sizeof(float));
  8196. for (int i = 0; i < n; i++) {
  8197. fun(nc,
  8198. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8199. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8200. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8201. }
  8202. }
  8203. static void ggml_compute_forward_map_binary(
  8204. const struct ggml_compute_params * params,
  8205. const struct ggml_tensor * src0,
  8206. const struct ggml_tensor * src1,
  8207. struct ggml_tensor * dst,
  8208. const ggml_binary_op_f32_t fun) {
  8209. switch (src0->type) {
  8210. case GGML_TYPE_F32:
  8211. {
  8212. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8213. } break;
  8214. default:
  8215. {
  8216. GGML_ASSERT(false);
  8217. } break;
  8218. }
  8219. }
  8220. /////////////////////////////////
  8221. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8222. GGML_ASSERT(params);
  8223. switch (tensor->op) {
  8224. case GGML_OP_DUP:
  8225. {
  8226. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8227. } break;
  8228. case GGML_OP_ADD:
  8229. {
  8230. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8231. } break;
  8232. case GGML_OP_SUB:
  8233. {
  8234. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8235. } break;
  8236. case GGML_OP_MUL:
  8237. {
  8238. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8239. } break;
  8240. case GGML_OP_DIV:
  8241. {
  8242. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8243. } break;
  8244. case GGML_OP_SQR:
  8245. {
  8246. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8247. } break;
  8248. case GGML_OP_SQRT:
  8249. {
  8250. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8251. } break;
  8252. case GGML_OP_SUM:
  8253. {
  8254. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8255. } break;
  8256. case GGML_OP_MEAN:
  8257. {
  8258. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8259. } break;
  8260. case GGML_OP_REPEAT:
  8261. {
  8262. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8263. } break;
  8264. case GGML_OP_ABS:
  8265. {
  8266. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8267. } break;
  8268. case GGML_OP_SGN:
  8269. {
  8270. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8271. } break;
  8272. case GGML_OP_NEG:
  8273. {
  8274. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8275. } break;
  8276. case GGML_OP_STEP:
  8277. {
  8278. ggml_compute_forward_step(params, tensor->src0, tensor);
  8279. } break;
  8280. case GGML_OP_RELU:
  8281. {
  8282. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8283. } break;
  8284. case GGML_OP_GELU:
  8285. {
  8286. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8287. } break;
  8288. case GGML_OP_SILU:
  8289. {
  8290. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8291. } break;
  8292. case GGML_OP_NORM:
  8293. {
  8294. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8295. } break;
  8296. case GGML_OP_RMS_NORM:
  8297. {
  8298. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8299. } break;
  8300. case GGML_OP_MUL_MAT:
  8301. {
  8302. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8303. } break;
  8304. case GGML_OP_SCALE:
  8305. {
  8306. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8307. } break;
  8308. case GGML_OP_CPY:
  8309. {
  8310. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8311. } break;
  8312. case GGML_OP_CONT:
  8313. {
  8314. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8315. } break;
  8316. case GGML_OP_RESHAPE:
  8317. {
  8318. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8319. } break;
  8320. case GGML_OP_VIEW:
  8321. {
  8322. ggml_compute_forward_view(params, tensor->src0);
  8323. } break;
  8324. case GGML_OP_PERMUTE:
  8325. {
  8326. ggml_compute_forward_permute(params, tensor->src0);
  8327. } break;
  8328. case GGML_OP_TRANSPOSE:
  8329. {
  8330. ggml_compute_forward_transpose(params, tensor->src0);
  8331. } break;
  8332. case GGML_OP_GET_ROWS:
  8333. {
  8334. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8335. } break;
  8336. case GGML_OP_DIAG_MASK_INF:
  8337. {
  8338. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8339. } break;
  8340. case GGML_OP_SOFT_MAX:
  8341. {
  8342. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8343. } break;
  8344. case GGML_OP_ROPE:
  8345. {
  8346. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8347. } break;
  8348. case GGML_OP_CONV_1D_1S:
  8349. {
  8350. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8351. } break;
  8352. case GGML_OP_CONV_1D_2S:
  8353. {
  8354. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8355. } break;
  8356. case GGML_OP_FLASH_ATTN:
  8357. {
  8358. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8359. GGML_ASSERT(t == 0 || t == 1);
  8360. bool masked = t != 0;
  8361. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8362. } break;
  8363. case GGML_OP_FLASH_FF:
  8364. {
  8365. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8366. } break;
  8367. case GGML_OP_MAP_UNARY:
  8368. {
  8369. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8370. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8371. }
  8372. break;
  8373. case GGML_OP_MAP_BINARY:
  8374. {
  8375. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8376. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8377. }
  8378. break;
  8379. case GGML_OP_NONE:
  8380. {
  8381. // nop
  8382. } break;
  8383. case GGML_OP_COUNT:
  8384. {
  8385. GGML_ASSERT(false);
  8386. } break;
  8387. }
  8388. }
  8389. ////////////////////////////////////////////////////////////////////////////////
  8390. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8391. struct ggml_tensor * src0 = tensor->src0;
  8392. struct ggml_tensor * src1 = tensor->src1;
  8393. switch (tensor->op) {
  8394. case GGML_OP_DUP:
  8395. {
  8396. if (src0->grad) {
  8397. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8398. }
  8399. } break;
  8400. case GGML_OP_ADD:
  8401. {
  8402. if (src0->grad) {
  8403. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8404. }
  8405. if (src1->grad) {
  8406. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8407. }
  8408. } break;
  8409. case GGML_OP_SUB:
  8410. {
  8411. if (src0->grad) {
  8412. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8413. }
  8414. if (src1->grad) {
  8415. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8416. }
  8417. } break;
  8418. case GGML_OP_MUL:
  8419. {
  8420. if (src0->grad) {
  8421. src0->grad =
  8422. ggml_add_impl(ctx,
  8423. src0->grad,
  8424. ggml_mul(ctx, src1, tensor->grad),
  8425. inplace);
  8426. }
  8427. if (src1->grad) {
  8428. src1->grad =
  8429. ggml_add_impl(ctx,
  8430. src1->grad,
  8431. ggml_mul(ctx, src0, tensor->grad),
  8432. inplace);
  8433. }
  8434. } break;
  8435. case GGML_OP_DIV:
  8436. {
  8437. if (src0->grad) {
  8438. src0->grad =
  8439. ggml_add_impl(ctx,
  8440. src0->grad,
  8441. ggml_div(ctx, tensor->grad, src1),
  8442. inplace);
  8443. }
  8444. if (src1->grad) {
  8445. src1->grad =
  8446. ggml_sub_impl(ctx,
  8447. src1->grad,
  8448. ggml_mul(ctx,
  8449. tensor->grad,
  8450. ggml_div(ctx, tensor, src1)),
  8451. inplace);
  8452. }
  8453. } break;
  8454. case GGML_OP_SQR:
  8455. {
  8456. if (src0->grad) {
  8457. src0->grad =
  8458. ggml_add_impl(ctx,
  8459. src0->grad,
  8460. ggml_mul(ctx,
  8461. ggml_mul(ctx, src0, tensor->grad),
  8462. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8463. inplace);
  8464. }
  8465. } break;
  8466. case GGML_OP_SQRT:
  8467. {
  8468. if (src0->grad) {
  8469. src0->grad =
  8470. ggml_add_impl(ctx,
  8471. src0->grad,
  8472. ggml_div(ctx,
  8473. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8474. tensor),
  8475. inplace);
  8476. }
  8477. } break;
  8478. case GGML_OP_SUM:
  8479. {
  8480. if (src0->grad) {
  8481. src0->grad =
  8482. ggml_add_impl(ctx,
  8483. src0->grad,
  8484. ggml_repeat(ctx, tensor->grad, src0->grad),
  8485. inplace);
  8486. }
  8487. } break;
  8488. case GGML_OP_MEAN:
  8489. {
  8490. GGML_ASSERT(false); // TODO: implement
  8491. } break;
  8492. case GGML_OP_REPEAT:
  8493. {
  8494. if (src0->grad) {
  8495. src0->grad =
  8496. ggml_add_impl(ctx,
  8497. src0->grad,
  8498. ggml_sum(ctx, tensor->grad),
  8499. inplace);
  8500. }
  8501. } break;
  8502. case GGML_OP_ABS:
  8503. {
  8504. if (src0->grad) {
  8505. src0->grad =
  8506. ggml_add_impl(ctx,
  8507. src0->grad,
  8508. ggml_mul(ctx,
  8509. ggml_sgn(ctx, src0),
  8510. tensor->grad),
  8511. inplace);
  8512. }
  8513. } break;
  8514. case GGML_OP_SGN:
  8515. {
  8516. if (src0->grad) {
  8517. // noop
  8518. }
  8519. } break;
  8520. case GGML_OP_NEG:
  8521. {
  8522. if (src0->grad) {
  8523. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8524. }
  8525. } break;
  8526. case GGML_OP_STEP:
  8527. {
  8528. if (src0->grad) {
  8529. // noop
  8530. }
  8531. } break;
  8532. case GGML_OP_RELU:
  8533. {
  8534. if (src0->grad) {
  8535. src0->grad = ggml_sub_impl(ctx,
  8536. src0->grad,
  8537. ggml_mul(ctx,
  8538. ggml_step(ctx, src0),
  8539. tensor->grad),
  8540. inplace);
  8541. }
  8542. } break;
  8543. case GGML_OP_GELU:
  8544. {
  8545. GGML_ASSERT(false); // TODO: not implemented
  8546. } break;
  8547. case GGML_OP_SILU:
  8548. {
  8549. GGML_ASSERT(false); // TODO: not implemented
  8550. } break;
  8551. case GGML_OP_NORM:
  8552. {
  8553. GGML_ASSERT(false); // TODO: not implemented
  8554. } break;
  8555. case GGML_OP_RMS_NORM:
  8556. {
  8557. GGML_ASSERT(false); // TODO: not implemented
  8558. } break;
  8559. case GGML_OP_MUL_MAT:
  8560. {
  8561. if (src0->grad) {
  8562. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8563. GGML_ASSERT(false);
  8564. }
  8565. if (src1->grad) {
  8566. src1->grad =
  8567. ggml_add_impl(ctx,
  8568. src1->grad,
  8569. ggml_mul_mat(ctx,
  8570. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8571. tensor->grad),
  8572. inplace);
  8573. }
  8574. } break;
  8575. case GGML_OP_SCALE:
  8576. {
  8577. GGML_ASSERT(false); // TODO: not implemented
  8578. } break;
  8579. case GGML_OP_CPY:
  8580. {
  8581. GGML_ASSERT(false); // TODO: not implemented
  8582. } break;
  8583. case GGML_OP_CONT:
  8584. {
  8585. GGML_ASSERT(false); // TODO: not implemented
  8586. } break;
  8587. case GGML_OP_RESHAPE:
  8588. {
  8589. GGML_ASSERT(false); // TODO: not implemented
  8590. } break;
  8591. case GGML_OP_VIEW:
  8592. {
  8593. GGML_ASSERT(false); // not supported
  8594. } break;
  8595. case GGML_OP_PERMUTE:
  8596. {
  8597. GGML_ASSERT(false); // TODO: not implemented
  8598. } break;
  8599. case GGML_OP_TRANSPOSE:
  8600. {
  8601. GGML_ASSERT(false); // TODO: not implemented
  8602. } break;
  8603. case GGML_OP_GET_ROWS:
  8604. {
  8605. GGML_ASSERT(false); // TODO: not implemented
  8606. } break;
  8607. case GGML_OP_DIAG_MASK_INF:
  8608. {
  8609. GGML_ASSERT(false); // TODO: not implemented
  8610. } break;
  8611. case GGML_OP_SOFT_MAX:
  8612. {
  8613. GGML_ASSERT(false); // TODO: not implemented
  8614. } break;
  8615. case GGML_OP_ROPE:
  8616. {
  8617. GGML_ASSERT(false); // TODO: not implemented
  8618. } break;
  8619. case GGML_OP_CONV_1D_1S:
  8620. {
  8621. GGML_ASSERT(false); // TODO: not implemented
  8622. } break;
  8623. case GGML_OP_CONV_1D_2S:
  8624. {
  8625. GGML_ASSERT(false); // TODO: not implemented
  8626. } break;
  8627. case GGML_OP_FLASH_ATTN:
  8628. {
  8629. GGML_ASSERT(false); // not supported
  8630. } break;
  8631. case GGML_OP_FLASH_FF:
  8632. {
  8633. GGML_ASSERT(false); // not supported
  8634. } break;
  8635. case GGML_OP_MAP_UNARY:
  8636. case GGML_OP_MAP_BINARY:
  8637. {
  8638. GGML_ASSERT(false); // not supported
  8639. } break;
  8640. case GGML_OP_NONE:
  8641. {
  8642. // nop
  8643. } break;
  8644. case GGML_OP_COUNT:
  8645. {
  8646. GGML_ASSERT(false);
  8647. } break;
  8648. }
  8649. }
  8650. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8651. if (node->grad == NULL) {
  8652. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8653. // it can also happen during forward pass, if the user performs computations with constants
  8654. if (node->op != GGML_OP_NONE) {
  8655. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8656. }
  8657. }
  8658. // check if already visited
  8659. for (int i = 0; i < cgraph->n_nodes; i++) {
  8660. if (cgraph->nodes[i] == node) {
  8661. return;
  8662. }
  8663. }
  8664. for (int i = 0; i < cgraph->n_leafs; i++) {
  8665. if (cgraph->leafs[i] == node) {
  8666. return;
  8667. }
  8668. }
  8669. if (node->src0) {
  8670. ggml_visit_parents(cgraph, node->src0);
  8671. }
  8672. if (node->src1) {
  8673. ggml_visit_parents(cgraph, node->src1);
  8674. }
  8675. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8676. if (node->opt[i]) {
  8677. ggml_visit_parents(cgraph, node->opt[i]);
  8678. }
  8679. }
  8680. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8681. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8682. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8683. cgraph->leafs[cgraph->n_leafs] = node;
  8684. cgraph->n_leafs++;
  8685. } else {
  8686. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8687. cgraph->nodes[cgraph->n_nodes] = node;
  8688. cgraph->grads[cgraph->n_nodes] = node->grad;
  8689. cgraph->n_nodes++;
  8690. }
  8691. }
  8692. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8693. if (!expand) {
  8694. cgraph->n_nodes = 0;
  8695. cgraph->n_leafs = 0;
  8696. }
  8697. const int n0 = cgraph->n_nodes;
  8698. UNUSED(n0);
  8699. ggml_visit_parents(cgraph, tensor);
  8700. const int n_new = cgraph->n_nodes - n0;
  8701. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8702. if (n_new > 0) {
  8703. // the last added node should always be starting point
  8704. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8705. }
  8706. }
  8707. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8708. ggml_build_forward_impl(cgraph, tensor, true);
  8709. }
  8710. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8711. struct ggml_cgraph result = {
  8712. /*.n_nodes =*/ 0,
  8713. /*.n_leafs =*/ 0,
  8714. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8715. /*.work_size =*/ 0,
  8716. /*.work =*/ NULL,
  8717. /*.nodes =*/ { NULL },
  8718. /*.grads =*/ { NULL },
  8719. /*.leafs =*/ { NULL },
  8720. /*.perf_runs =*/ 0,
  8721. /*.perf_cycles =*/ 0,
  8722. /*.perf_time_us =*/ 0,
  8723. };
  8724. ggml_build_forward_impl(&result, tensor, false);
  8725. return result;
  8726. }
  8727. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8728. struct ggml_cgraph result = *gf;
  8729. GGML_ASSERT(gf->n_nodes > 0);
  8730. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8731. if (keep) {
  8732. for (int i = 0; i < gf->n_nodes; i++) {
  8733. struct ggml_tensor * node = gf->nodes[i];
  8734. if (node->grad) {
  8735. node->grad = ggml_dup_tensor(ctx, node);
  8736. gf->grads[i] = node->grad;
  8737. }
  8738. }
  8739. }
  8740. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8741. struct ggml_tensor * node = gf->nodes[i];
  8742. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8743. if (node->grad) {
  8744. ggml_compute_backward(ctx, node, keep);
  8745. }
  8746. }
  8747. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8748. struct ggml_tensor * node = gf->nodes[i];
  8749. if (node->is_param) {
  8750. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8751. ggml_build_forward_impl(&result, node->grad, true);
  8752. }
  8753. }
  8754. return result;
  8755. }
  8756. //
  8757. // thread data
  8758. //
  8759. // synchronization is done via busy loops
  8760. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8761. //
  8762. #ifdef __APPLE__
  8763. //#include <os/lock.h>
  8764. //
  8765. //typedef os_unfair_lock ggml_lock_t;
  8766. //
  8767. //#define ggml_lock_init(x) UNUSED(x)
  8768. //#define ggml_lock_destroy(x) UNUSED(x)
  8769. //#define ggml_lock_lock os_unfair_lock_lock
  8770. //#define ggml_lock_unlock os_unfair_lock_unlock
  8771. //
  8772. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8773. typedef int ggml_lock_t;
  8774. #define ggml_lock_init(x) UNUSED(x)
  8775. #define ggml_lock_destroy(x) UNUSED(x)
  8776. #define ggml_lock_lock(x) UNUSED(x)
  8777. #define ggml_lock_unlock(x) UNUSED(x)
  8778. #define GGML_LOCK_INITIALIZER 0
  8779. typedef pthread_t ggml_thread_t;
  8780. #define ggml_thread_create pthread_create
  8781. #define ggml_thread_join pthread_join
  8782. #else
  8783. //typedef pthread_spinlock_t ggml_lock_t;
  8784. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8785. //#define ggml_lock_destroy pthread_spin_destroy
  8786. //#define ggml_lock_lock pthread_spin_lock
  8787. //#define ggml_lock_unlock pthread_spin_unlock
  8788. typedef int ggml_lock_t;
  8789. #define ggml_lock_init(x) UNUSED(x)
  8790. #define ggml_lock_destroy(x) UNUSED(x)
  8791. #define ggml_lock_lock(x) UNUSED(x)
  8792. #define ggml_lock_unlock(x) UNUSED(x)
  8793. #define GGML_LOCK_INITIALIZER 0
  8794. typedef pthread_t ggml_thread_t;
  8795. #define ggml_thread_create pthread_create
  8796. #define ggml_thread_join pthread_join
  8797. #endif
  8798. struct ggml_compute_state_shared {
  8799. ggml_lock_t spin;
  8800. int n_threads;
  8801. // synchronization primitives
  8802. atomic_int n_ready;
  8803. atomic_bool has_work;
  8804. atomic_bool stop; // stop all threads
  8805. };
  8806. struct ggml_compute_state {
  8807. ggml_thread_t thrd;
  8808. struct ggml_compute_params params;
  8809. struct ggml_tensor * node;
  8810. struct ggml_compute_state_shared * shared;
  8811. };
  8812. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8813. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8814. const int n_threads = state->shared->n_threads;
  8815. while (true) {
  8816. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8817. atomic_store(&state->shared->has_work, false);
  8818. } else {
  8819. while (atomic_load(&state->shared->has_work)) {
  8820. if (atomic_load(&state->shared->stop)) {
  8821. return 0;
  8822. }
  8823. ggml_lock_lock (&state->shared->spin);
  8824. ggml_lock_unlock(&state->shared->spin);
  8825. }
  8826. }
  8827. atomic_fetch_sub(&state->shared->n_ready, 1);
  8828. // wait for work
  8829. while (!atomic_load(&state->shared->has_work)) {
  8830. if (atomic_load(&state->shared->stop)) {
  8831. return 0;
  8832. }
  8833. ggml_lock_lock (&state->shared->spin);
  8834. ggml_lock_unlock(&state->shared->spin);
  8835. }
  8836. // check if we should stop
  8837. if (atomic_load(&state->shared->stop)) {
  8838. break;
  8839. }
  8840. if (state->node) {
  8841. if (state->params.ith < state->params.nth) {
  8842. ggml_compute_forward(&state->params, state->node);
  8843. }
  8844. state->node = NULL;
  8845. } else {
  8846. break;
  8847. }
  8848. }
  8849. return 0;
  8850. }
  8851. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8852. const int n_threads = cgraph->n_threads;
  8853. struct ggml_compute_state_shared state_shared = {
  8854. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8855. /*.n_threads =*/ n_threads,
  8856. /*.n_ready =*/ 0,
  8857. /*.has_work =*/ false,
  8858. /*.stop =*/ false,
  8859. };
  8860. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8861. // create thread pool
  8862. if (n_threads > 1) {
  8863. ggml_lock_init(&state_shared.spin);
  8864. atomic_store(&state_shared.has_work, true);
  8865. for (int j = 0; j < n_threads - 1; j++) {
  8866. workers[j] = (struct ggml_compute_state) {
  8867. .thrd = 0,
  8868. .params = {
  8869. .type = GGML_TASK_COMPUTE,
  8870. .ith = j + 1,
  8871. .nth = n_threads,
  8872. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8873. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8874. },
  8875. .node = NULL,
  8876. .shared = &state_shared,
  8877. };
  8878. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8879. GGML_ASSERT(rc == 0);
  8880. UNUSED(rc);
  8881. }
  8882. }
  8883. // initialize tasks + work buffer
  8884. {
  8885. size_t work_size = 0;
  8886. // thread scheduling for the different operations
  8887. for (int i = 0; i < cgraph->n_nodes; i++) {
  8888. struct ggml_tensor * node = cgraph->nodes[i];
  8889. switch (node->op) {
  8890. case GGML_OP_CPY:
  8891. case GGML_OP_DUP:
  8892. {
  8893. node->n_tasks = n_threads;
  8894. size_t cur = 0;
  8895. if (ggml_is_quantized(node->type)) {
  8896. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8897. }
  8898. work_size = MAX(work_size, cur);
  8899. } break;
  8900. case GGML_OP_ADD:
  8901. {
  8902. node->n_tasks = n_threads;
  8903. size_t cur = 0;
  8904. if (ggml_is_quantized(node->src0->type)) {
  8905. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8906. }
  8907. work_size = MAX(work_size, cur);
  8908. } break;
  8909. case GGML_OP_SUB:
  8910. case GGML_OP_MUL:
  8911. case GGML_OP_DIV:
  8912. case GGML_OP_SQR:
  8913. case GGML_OP_SQRT:
  8914. case GGML_OP_SUM:
  8915. case GGML_OP_MEAN:
  8916. case GGML_OP_REPEAT:
  8917. case GGML_OP_ABS:
  8918. case GGML_OP_SGN:
  8919. case GGML_OP_NEG:
  8920. case GGML_OP_STEP:
  8921. case GGML_OP_RELU:
  8922. {
  8923. node->n_tasks = 1;
  8924. } break;
  8925. case GGML_OP_GELU:
  8926. {
  8927. node->n_tasks = n_threads;
  8928. } break;
  8929. case GGML_OP_SILU:
  8930. {
  8931. node->n_tasks = n_threads;
  8932. } break;
  8933. case GGML_OP_NORM:
  8934. case GGML_OP_RMS_NORM:
  8935. {
  8936. node->n_tasks = n_threads;
  8937. } break;
  8938. case GGML_OP_MUL_MAT:
  8939. {
  8940. node->n_tasks = n_threads;
  8941. // TODO: use different scheduling for different matrix sizes
  8942. //const int nr0 = ggml_nrows(node->src0);
  8943. //const int nr1 = ggml_nrows(node->src1);
  8944. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8945. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8946. size_t cur = 0;
  8947. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8948. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8949. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8950. node->n_tasks = 1; // TODO: this actually is doing nothing
  8951. // the threads are still spinning
  8952. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8953. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8954. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8955. //printf("cur = %zu\n", cur);
  8956. } else {
  8957. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8958. }
  8959. #else
  8960. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8961. #endif
  8962. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8963. cur = 0;
  8964. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8965. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8966. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8967. node->n_tasks = 1;
  8968. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8969. } else
  8970. #endif
  8971. {
  8972. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8973. }
  8974. } else {
  8975. GGML_ASSERT(false);
  8976. }
  8977. work_size = MAX(work_size, cur);
  8978. } break;
  8979. case GGML_OP_SCALE:
  8980. {
  8981. node->n_tasks = n_threads;
  8982. } break;
  8983. case GGML_OP_CONT:
  8984. case GGML_OP_RESHAPE:
  8985. case GGML_OP_VIEW:
  8986. case GGML_OP_PERMUTE:
  8987. case GGML_OP_TRANSPOSE:
  8988. case GGML_OP_GET_ROWS:
  8989. case GGML_OP_DIAG_MASK_INF:
  8990. {
  8991. node->n_tasks = 1;
  8992. } break;
  8993. case GGML_OP_SOFT_MAX:
  8994. {
  8995. node->n_tasks = n_threads;
  8996. } break;
  8997. case GGML_OP_ROPE:
  8998. {
  8999. node->n_tasks = n_threads;
  9000. } break;
  9001. case GGML_OP_CONV_1D_1S:
  9002. case GGML_OP_CONV_1D_2S:
  9003. {
  9004. node->n_tasks = n_threads;
  9005. GGML_ASSERT(node->src0->ne[3] == 1);
  9006. GGML_ASSERT(node->src1->ne[2] == 1);
  9007. GGML_ASSERT(node->src1->ne[3] == 1);
  9008. size_t cur = 0;
  9009. const int nk = node->src0->ne[0];
  9010. if (node->src0->type == GGML_TYPE_F16 &&
  9011. node->src1->type == GGML_TYPE_F32) {
  9012. cur = sizeof(ggml_fp16_t)*(
  9013. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9014. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9015. );
  9016. } else if (node->src0->type == GGML_TYPE_F32 &&
  9017. node->src1->type == GGML_TYPE_F32) {
  9018. cur = sizeof(float)*(
  9019. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9020. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9021. );
  9022. } else {
  9023. GGML_ASSERT(false);
  9024. }
  9025. work_size = MAX(work_size, cur);
  9026. } break;
  9027. case GGML_OP_FLASH_ATTN:
  9028. {
  9029. node->n_tasks = n_threads;
  9030. size_t cur = 0;
  9031. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9032. if (node->src1->type == GGML_TYPE_F32) {
  9033. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9034. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9035. }
  9036. if (node->src1->type == GGML_TYPE_F16) {
  9037. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9038. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9039. }
  9040. work_size = MAX(work_size, cur);
  9041. } break;
  9042. case GGML_OP_FLASH_FF:
  9043. {
  9044. node->n_tasks = n_threads;
  9045. size_t cur = 0;
  9046. if (node->src1->type == GGML_TYPE_F32) {
  9047. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9048. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9049. }
  9050. if (node->src1->type == GGML_TYPE_F16) {
  9051. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9052. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9053. }
  9054. work_size = MAX(work_size, cur);
  9055. } break;
  9056. case GGML_OP_MAP_UNARY:
  9057. case GGML_OP_MAP_BINARY:
  9058. {
  9059. node->n_tasks = 1;
  9060. } break;
  9061. case GGML_OP_NONE:
  9062. {
  9063. node->n_tasks = 1;
  9064. } break;
  9065. case GGML_OP_COUNT:
  9066. {
  9067. GGML_ASSERT(false);
  9068. } break;
  9069. }
  9070. }
  9071. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9072. GGML_ASSERT(false); // TODO: better handling
  9073. }
  9074. if (work_size > 0 && cgraph->work == NULL) {
  9075. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9076. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9077. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9078. }
  9079. }
  9080. const int64_t perf_start_cycles = ggml_perf_cycles();
  9081. const int64_t perf_start_time_us = ggml_perf_time_us();
  9082. for (int i = 0; i < cgraph->n_nodes; i++) {
  9083. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9084. struct ggml_tensor * node = cgraph->nodes[i];
  9085. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9086. //if (node->grad == NULL && node->perf_runs > 0) {
  9087. // continue;
  9088. //}
  9089. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9090. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9091. // INIT
  9092. struct ggml_compute_params params = {
  9093. /*.type =*/ GGML_TASK_INIT,
  9094. /*.ith =*/ 0,
  9095. /*.nth =*/ node->n_tasks,
  9096. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9097. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9098. };
  9099. ggml_compute_forward(&params, node);
  9100. // COMPUTE
  9101. if (node->n_tasks > 1) {
  9102. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9103. atomic_store(&state_shared.has_work, false);
  9104. }
  9105. while (atomic_load(&state_shared.has_work)) {
  9106. ggml_lock_lock (&state_shared.spin);
  9107. ggml_lock_unlock(&state_shared.spin);
  9108. }
  9109. // launch thread pool
  9110. for (int j = 0; j < n_threads - 1; j++) {
  9111. workers[j].params = (struct ggml_compute_params) {
  9112. .type = GGML_TASK_COMPUTE,
  9113. .ith = j + 1,
  9114. .nth = node->n_tasks,
  9115. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9116. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9117. };
  9118. workers[j].node = node;
  9119. }
  9120. atomic_fetch_sub(&state_shared.n_ready, 1);
  9121. while (atomic_load(&state_shared.n_ready) > 0) {
  9122. ggml_lock_lock (&state_shared.spin);
  9123. ggml_lock_unlock(&state_shared.spin);
  9124. }
  9125. atomic_store(&state_shared.has_work, true);
  9126. }
  9127. params.type = GGML_TASK_COMPUTE;
  9128. ggml_compute_forward(&params, node);
  9129. // wait for thread pool
  9130. if (node->n_tasks > 1) {
  9131. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9132. atomic_store(&state_shared.has_work, false);
  9133. }
  9134. while (atomic_load(&state_shared.has_work)) {
  9135. ggml_lock_lock (&state_shared.spin);
  9136. ggml_lock_unlock(&state_shared.spin);
  9137. }
  9138. atomic_fetch_sub(&state_shared.n_ready, 1);
  9139. while (atomic_load(&state_shared.n_ready) != 0) {
  9140. ggml_lock_lock (&state_shared.spin);
  9141. ggml_lock_unlock(&state_shared.spin);
  9142. }
  9143. }
  9144. // FINALIZE
  9145. if (node->n_tasks > 1) {
  9146. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9147. atomic_store(&state_shared.has_work, false);
  9148. }
  9149. while (atomic_load(&state_shared.has_work)) {
  9150. ggml_lock_lock (&state_shared.spin);
  9151. ggml_lock_unlock(&state_shared.spin);
  9152. }
  9153. // launch thread pool
  9154. for (int j = 0; j < n_threads - 1; j++) {
  9155. workers[j].params = (struct ggml_compute_params) {
  9156. .type = GGML_TASK_FINALIZE,
  9157. .ith = j + 1,
  9158. .nth = node->n_tasks,
  9159. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9160. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9161. };
  9162. workers[j].node = node;
  9163. }
  9164. atomic_fetch_sub(&state_shared.n_ready, 1);
  9165. while (atomic_load(&state_shared.n_ready) > 0) {
  9166. ggml_lock_lock (&state_shared.spin);
  9167. ggml_lock_unlock(&state_shared.spin);
  9168. }
  9169. atomic_store(&state_shared.has_work, true);
  9170. }
  9171. params.type = GGML_TASK_FINALIZE;
  9172. ggml_compute_forward(&params, node);
  9173. // wait for thread pool
  9174. if (node->n_tasks > 1) {
  9175. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9176. atomic_store(&state_shared.has_work, false);
  9177. }
  9178. while (atomic_load(&state_shared.has_work)) {
  9179. ggml_lock_lock (&state_shared.spin);
  9180. ggml_lock_unlock(&state_shared.spin);
  9181. }
  9182. atomic_fetch_sub(&state_shared.n_ready, 1);
  9183. while (atomic_load(&state_shared.n_ready) != 0) {
  9184. ggml_lock_lock (&state_shared.spin);
  9185. ggml_lock_unlock(&state_shared.spin);
  9186. }
  9187. }
  9188. // performance stats (node)
  9189. {
  9190. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9191. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9192. node->perf_runs++;
  9193. node->perf_cycles += perf_cycles_cur;
  9194. node->perf_time_us += perf_time_us_cur;
  9195. }
  9196. }
  9197. // join thread pool
  9198. if (n_threads > 1) {
  9199. atomic_store(&state_shared.stop, true);
  9200. atomic_store(&state_shared.has_work, true);
  9201. for (int j = 0; j < n_threads - 1; j++) {
  9202. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9203. GGML_ASSERT(rc == 0);
  9204. UNUSED(rc);
  9205. }
  9206. ggml_lock_destroy(&state_shared.spin);
  9207. }
  9208. // performance stats (graph)
  9209. {
  9210. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9211. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9212. cgraph->perf_runs++;
  9213. cgraph->perf_cycles += perf_cycles_cur;
  9214. cgraph->perf_time_us += perf_time_us_cur;
  9215. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9216. __func__, cgraph->perf_runs,
  9217. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9218. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9219. (double) perf_time_us_cur / 1000.0,
  9220. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9221. }
  9222. }
  9223. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9224. for (int i = 0; i < cgraph->n_nodes; i++) {
  9225. struct ggml_tensor * grad = cgraph->grads[i];
  9226. if (grad) {
  9227. ggml_set_zero(grad);
  9228. }
  9229. }
  9230. }
  9231. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9232. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9233. GGML_PRINT("=== GRAPH ===\n");
  9234. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9235. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9236. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9237. for (int i = 0; i < cgraph->n_nodes; i++) {
  9238. struct ggml_tensor * node = cgraph->nodes[i];
  9239. perf_total_per_op_us[node->op] += node->perf_time_us;
  9240. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9241. i,
  9242. node->ne[0], node->ne[1], node->ne[2],
  9243. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9244. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9245. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9246. (double) node->perf_time_us / 1000.0,
  9247. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9248. }
  9249. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9250. for (int i = 0; i < cgraph->n_leafs; i++) {
  9251. struct ggml_tensor * node = cgraph->leafs[i];
  9252. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9253. i,
  9254. node->ne[0], node->ne[1],
  9255. GGML_OP_LABEL[node->op]);
  9256. }
  9257. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9258. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9259. }
  9260. GGML_PRINT("========================================\n");
  9261. }
  9262. // check if node is part of the graph
  9263. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9264. if (cgraph == NULL) {
  9265. return true;
  9266. }
  9267. for (int i = 0; i < cgraph->n_nodes; i++) {
  9268. if (cgraph->nodes[i] == node) {
  9269. return true;
  9270. }
  9271. }
  9272. return false;
  9273. }
  9274. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9275. for (int i = 0; i < cgraph->n_nodes; i++) {
  9276. struct ggml_tensor * parent = cgraph->nodes[i];
  9277. if (parent->grad == node) {
  9278. return parent;
  9279. }
  9280. }
  9281. return NULL;
  9282. }
  9283. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9284. char color[16];
  9285. FILE * fp = fopen(filename, "w");
  9286. GGML_ASSERT(fp);
  9287. fprintf(fp, "digraph G {\n");
  9288. fprintf(fp, " newrank = true;\n");
  9289. fprintf(fp, " rankdir = LR;\n");
  9290. for (int i = 0; i < gb->n_nodes; i++) {
  9291. struct ggml_tensor * node = gb->nodes[i];
  9292. if (ggml_graph_get_parent(gb, node) != NULL) {
  9293. continue;
  9294. }
  9295. if (node->is_param) {
  9296. snprintf(color, sizeof(color), "yellow");
  9297. } else if (node->grad) {
  9298. if (ggml_graph_find(gf, node)) {
  9299. snprintf(color, sizeof(color), "green");
  9300. } else {
  9301. snprintf(color, sizeof(color), "lightblue");
  9302. }
  9303. } else {
  9304. snprintf(color, sizeof(color), "white");
  9305. }
  9306. fprintf(fp, " \"%p\" [ \
  9307. style = filled; fillcolor = %s; shape = record; \
  9308. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9309. (void *) node, color,
  9310. i, node->ne[0], node->ne[1],
  9311. GGML_OP_SYMBOL[node->op]);
  9312. if (node->grad) {
  9313. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9314. } else {
  9315. fprintf(fp, "\"; ]\n");
  9316. }
  9317. }
  9318. for (int i = 0; i < gb->n_leafs; i++) {
  9319. struct ggml_tensor * node = gb->leafs[i];
  9320. snprintf(color, sizeof(color), "pink");
  9321. if (ggml_nelements(node) == 1) {
  9322. fprintf(fp, " \"%p\" [ \
  9323. style = filled; fillcolor = %s; shape = record; \
  9324. label=\"<x>%.1e\"; ]\n",
  9325. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9326. } else {
  9327. fprintf(fp, " \"%p\" [ \
  9328. style = filled; fillcolor = %s; shape = record; \
  9329. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9330. (void *) node, color,
  9331. i, node->ne[0], node->ne[1]);
  9332. }
  9333. }
  9334. for (int i = 0; i < gb->n_nodes; i++) {
  9335. struct ggml_tensor * node = gb->nodes[i];
  9336. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9337. if (node->src0) {
  9338. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9339. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9340. parent0 ? (void *) parent0 : (void *) node->src0,
  9341. parent0 ? "g" : "x",
  9342. parent ? (void *) parent : (void *) node,
  9343. parent ? "g" : "x",
  9344. parent ? "empty" : "vee",
  9345. parent ? "dashed" : "solid");
  9346. }
  9347. if (node->src1) {
  9348. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9349. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9350. parent1 ? (void *) parent1 : (void *) node->src1,
  9351. parent1 ? "g" : "x",
  9352. parent ? (void *) parent : (void *) node,
  9353. parent ? "g" : "x",
  9354. parent ? "empty" : "vee",
  9355. parent ? "dashed" : "solid");
  9356. }
  9357. }
  9358. for (int i = 0; i < gb->n_leafs; i++) {
  9359. struct ggml_tensor * node = gb->leafs[i];
  9360. if (node->src0) {
  9361. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9362. (void *) node->src0, "x",
  9363. (void *) node, "x");
  9364. }
  9365. if (node->src1) {
  9366. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9367. (void *) node->src1, "x",
  9368. (void *) node, "x");
  9369. }
  9370. }
  9371. fprintf(fp, "}\n");
  9372. fclose(fp);
  9373. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9374. }
  9375. ////////////////////////////////////////////////////////////////////////////////
  9376. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9377. int i = 0;
  9378. for (int p = 0; p < np; ++p) {
  9379. const int64_t ne = ggml_nelements(ps[p]) ;
  9380. // TODO: add function to set tensor from array
  9381. for (int64_t j = 0; j < ne; ++j) {
  9382. ggml_set_f32_1d(ps[p], j, x[i++]);
  9383. }
  9384. }
  9385. }
  9386. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9387. int i = 0;
  9388. for (int p = 0; p < np; ++p) {
  9389. const int64_t ne = ggml_nelements(ps[p]) ;
  9390. // TODO: add function to get all elements at once
  9391. for (int64_t j = 0; j < ne; ++j) {
  9392. x[i++] = ggml_get_f32_1d(ps[p], j);
  9393. }
  9394. }
  9395. }
  9396. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9397. int i = 0;
  9398. for (int p = 0; p < np; ++p) {
  9399. const int64_t ne = ggml_nelements(ps[p]) ;
  9400. // TODO: add function to get all elements at once
  9401. for (int64_t j = 0; j < ne; ++j) {
  9402. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9403. }
  9404. }
  9405. }
  9406. //
  9407. // ADAM
  9408. //
  9409. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9410. //
  9411. static enum ggml_opt_result ggml_opt_adam(
  9412. struct ggml_context * ctx,
  9413. struct ggml_opt_params params,
  9414. struct ggml_tensor * f,
  9415. struct ggml_cgraph * gf,
  9416. struct ggml_cgraph * gb) {
  9417. GGML_ASSERT(ggml_is_scalar(f));
  9418. gf->n_threads = params.n_threads;
  9419. gb->n_threads = params.n_threads;
  9420. // these will store the parameters we want to optimize
  9421. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9422. int np = 0;
  9423. int nx = 0;
  9424. for (int i = 0; i < gf->n_nodes; ++i) {
  9425. if (gf->nodes[i]->is_param) {
  9426. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9427. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9428. ps[np++] = gf->nodes[i];
  9429. nx += ggml_nelements(gf->nodes[i]);
  9430. }
  9431. }
  9432. // constants
  9433. const float alpha = params.adam.alpha;
  9434. const float beta1 = params.adam.beta1;
  9435. const float beta2 = params.adam.beta2;
  9436. const float eps = params.adam.eps;
  9437. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9438. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9439. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9440. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9441. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9442. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9443. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9444. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9445. // initialize
  9446. ggml_vec_set_f32(nx, m, 0.0f);
  9447. ggml_vec_set_f32(nx, v, 0.0f);
  9448. // update view
  9449. ggml_opt_get_params(np, ps, x);
  9450. // compute the function value
  9451. ggml_graph_reset (gf);
  9452. ggml_set_f32 (f->grad, 1.0f);
  9453. ggml_graph_compute(ctx, gb);
  9454. float fx_prev = ggml_get_f32_1d(f, 0);
  9455. if (pf) {
  9456. pf[0] = fx_prev;
  9457. }
  9458. int n_no_improvement = 0;
  9459. float fx_best = fx_prev;
  9460. // run the optimizer
  9461. for (int t = 0; t < params.adam.n_iter; ++t) {
  9462. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9463. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9464. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9465. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9466. for (int i = 0; i < np; ++i) {
  9467. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9468. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9469. }
  9470. const int64_t t_start_wall = ggml_time_us();
  9471. const int64_t t_start_cpu = ggml_cycles();
  9472. UNUSED(t_start_wall);
  9473. UNUSED(t_start_cpu);
  9474. {
  9475. // update the gradient
  9476. ggml_opt_get_grad(np, ps, g1);
  9477. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9478. ggml_vec_scale_f32(nx, m, beta1);
  9479. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9480. // g2 = g1^2
  9481. ggml_vec_sqr_f32 (nx, g2, g1);
  9482. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9483. ggml_vec_scale_f32(nx, v, beta2);
  9484. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9485. // m^hat = m_t / (1 - beta1^t)
  9486. // v^hat = v_t / (1 - beta2^t)
  9487. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9488. ggml_vec_cpy_f32 (nx, mh, m);
  9489. ggml_vec_cpy_f32 (nx, vh, v);
  9490. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9491. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9492. ggml_vec_sqrt_f32 (nx, vh, vh);
  9493. ggml_vec_acc1_f32 (nx, vh, eps);
  9494. ggml_vec_div_f32 (nx, mh, mh, vh);
  9495. ggml_vec_sub_f32 (nx, x, x, mh);
  9496. // update the parameters
  9497. ggml_opt_set_params(np, ps, x);
  9498. }
  9499. ggml_graph_reset (gf);
  9500. ggml_set_f32 (f->grad, 1.0f);
  9501. ggml_graph_compute(ctx, gb);
  9502. const float fx = ggml_get_f32_1d(f, 0);
  9503. // check convergence
  9504. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9505. GGML_PRINT_DEBUG("converged\n");
  9506. return GGML_OPT_OK;
  9507. }
  9508. // delta-based convergence test
  9509. if (pf != NULL) {
  9510. // need at least params.past iterations to start checking for convergence
  9511. if (params.past <= t) {
  9512. const float rate = (pf[t%params.past] - fx)/fx;
  9513. if (fabsf(rate) < params.delta) {
  9514. return GGML_OPT_OK;
  9515. }
  9516. }
  9517. pf[t%params.past] = fx;
  9518. }
  9519. // check for improvement
  9520. if (params.max_no_improvement > 0) {
  9521. if (fx_best > fx) {
  9522. fx_best = fx;
  9523. n_no_improvement = 0;
  9524. } else {
  9525. ++n_no_improvement;
  9526. if (n_no_improvement >= params.max_no_improvement) {
  9527. return GGML_OPT_OK;
  9528. }
  9529. }
  9530. }
  9531. fx_prev = fx;
  9532. {
  9533. const int64_t t_end_cpu = ggml_cycles();
  9534. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9535. UNUSED(t_end_cpu);
  9536. const int64_t t_end_wall = ggml_time_us();
  9537. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9538. UNUSED(t_end_wall);
  9539. }
  9540. }
  9541. return GGML_OPT_DID_NOT_CONVERGE;
  9542. }
  9543. //
  9544. // L-BFGS
  9545. //
  9546. // the L-BFGS implementation below is based on the following implementation:
  9547. //
  9548. // https://github.com/chokkan/liblbfgs
  9549. //
  9550. struct ggml_lbfgs_iteration_data {
  9551. float alpha;
  9552. float ys;
  9553. float * s;
  9554. float * y;
  9555. };
  9556. static enum ggml_opt_result linesearch_backtracking(
  9557. struct ggml_context * ctx,
  9558. const struct ggml_opt_params * params,
  9559. int nx,
  9560. float * x,
  9561. float * fx,
  9562. float * g,
  9563. float * d,
  9564. float * step,
  9565. const float * xp,
  9566. struct ggml_tensor * f,
  9567. struct ggml_cgraph * gf,
  9568. struct ggml_cgraph * gb,
  9569. const int np,
  9570. struct ggml_tensor * ps[]) {
  9571. int count = 0;
  9572. float width = 0.0f;
  9573. float dg = 0.0f;
  9574. float finit = 0.0f;
  9575. float dginit = 0.0f;
  9576. float dgtest = 0.0f;
  9577. const float dec = 0.5f;
  9578. const float inc = 2.1f;
  9579. if (*step <= 0.f) {
  9580. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9581. }
  9582. // compute the initial gradient in the search direction
  9583. ggml_vec_dot_f32(nx, &dginit, g, d);
  9584. // make sure that d points to a descent direction
  9585. if (0 < dginit) {
  9586. return GGML_LINESEARCH_FAIL;
  9587. }
  9588. // initialize local variables
  9589. finit = *fx;
  9590. dgtest = params->lbfgs.ftol*dginit;
  9591. while (true) {
  9592. ggml_vec_cpy_f32(nx, x, xp);
  9593. ggml_vec_mad_f32(nx, x, d, *step);
  9594. // evaluate the function and gradient values
  9595. {
  9596. ggml_opt_set_params(np, ps, x);
  9597. ggml_graph_reset (gf);
  9598. ggml_set_f32 (f->grad, 1.0f);
  9599. ggml_graph_compute(ctx, gb);
  9600. ggml_opt_get_grad(np, ps, g);
  9601. *fx = ggml_get_f32_1d(f, 0);
  9602. }
  9603. ++count;
  9604. if (*fx > finit + (*step)*dgtest) {
  9605. width = dec;
  9606. } else {
  9607. // Armijo condition is satisfied
  9608. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9609. return count;
  9610. }
  9611. ggml_vec_dot_f32(nx, &dg, g, d);
  9612. // check the Wolfe condition
  9613. if (dg < params->lbfgs.wolfe * dginit) {
  9614. width = inc;
  9615. } else {
  9616. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9617. // regular Wolfe conditions
  9618. return count;
  9619. }
  9620. if(dg > -params->lbfgs.wolfe*dginit) {
  9621. width = dec;
  9622. } else {
  9623. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9624. return count;
  9625. }
  9626. return count;
  9627. }
  9628. }
  9629. if (*step < params->lbfgs.min_step) {
  9630. return GGML_LINESEARCH_MINIMUM_STEP;
  9631. }
  9632. if (*step > params->lbfgs.max_step) {
  9633. return GGML_LINESEARCH_MAXIMUM_STEP;
  9634. }
  9635. if (params->lbfgs.max_linesearch <= count) {
  9636. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9637. }
  9638. (*step) *= width;
  9639. }
  9640. return GGML_LINESEARCH_FAIL;
  9641. }
  9642. static enum ggml_opt_result ggml_opt_lbfgs(
  9643. struct ggml_context * ctx,
  9644. struct ggml_opt_params params,
  9645. struct ggml_tensor * f,
  9646. struct ggml_cgraph * gf,
  9647. struct ggml_cgraph * gb) {
  9648. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9649. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9650. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9651. return GGML_OPT_INVALID_WOLFE;
  9652. }
  9653. }
  9654. gf->n_threads = params.n_threads;
  9655. gb->n_threads = params.n_threads;
  9656. const int m = params.lbfgs.m;
  9657. // these will store the parameters we want to optimize
  9658. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9659. int np = 0;
  9660. int nx = 0;
  9661. for (int i = 0; i < gf->n_nodes; ++i) {
  9662. if (gf->nodes[i]->is_param) {
  9663. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9664. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9665. ps[np++] = gf->nodes[i];
  9666. nx += ggml_nelements(gf->nodes[i]);
  9667. }
  9668. }
  9669. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9670. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9671. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9672. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9673. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9674. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9675. float fx = 0.0f; // cost function value
  9676. float xnorm = 0.0f; // ||x||
  9677. float gnorm = 0.0f; // ||g||
  9678. float step = 0.0f;
  9679. // initialize x from the graph nodes
  9680. ggml_opt_get_params(np, ps, x);
  9681. // the L-BFGS memory
  9682. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9683. for (int i = 0; i < m; ++i) {
  9684. lm[i].alpha = 0.0f;
  9685. lm[i].ys = 0.0f;
  9686. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9687. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9688. }
  9689. // evaluate the function value and its gradient
  9690. {
  9691. ggml_opt_set_params(np, ps, x);
  9692. ggml_graph_reset (gf);
  9693. ggml_set_f32 (f->grad, 1.0f);
  9694. ggml_graph_compute(ctx, gb);
  9695. ggml_opt_get_grad(np, ps, g);
  9696. fx = ggml_get_f32_1d(f, 0);
  9697. }
  9698. if (pf) {
  9699. pf[0] = fx;
  9700. }
  9701. float fx_best = fx;
  9702. // search direction = -gradient
  9703. ggml_vec_neg_f32(nx, d, g);
  9704. // ||x||, ||g||
  9705. ggml_vec_norm_f32(nx, &xnorm, x);
  9706. ggml_vec_norm_f32(nx, &gnorm, g);
  9707. if (xnorm < 1.0f) {
  9708. xnorm = 1.0f;
  9709. }
  9710. // already optimized
  9711. if (gnorm/xnorm <= params.lbfgs.eps) {
  9712. return GGML_OPT_OK;
  9713. }
  9714. // initial step
  9715. ggml_vec_norm_inv_f32(nx, &step, d);
  9716. int j = 0;
  9717. int k = 1;
  9718. int ls = 0;
  9719. int end = 0;
  9720. int bound = 0;
  9721. int n_no_improvement = 0;
  9722. float ys = 0.0f;
  9723. float yy = 0.0f;
  9724. float beta = 0.0f;
  9725. while (true) {
  9726. // store the current position and gradient vectors
  9727. ggml_vec_cpy_f32(nx, xp, x);
  9728. ggml_vec_cpy_f32(nx, gp, g);
  9729. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9730. if (ls < 0) {
  9731. // linesearch failed - go back to the previous point and return
  9732. ggml_vec_cpy_f32(nx, x, xp);
  9733. ggml_vec_cpy_f32(nx, g, gp);
  9734. return ls;
  9735. }
  9736. ggml_vec_norm_f32(nx, &xnorm, x);
  9737. ggml_vec_norm_f32(nx, &gnorm, g);
  9738. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9739. if (xnorm < 1.0f) {
  9740. xnorm = 1.0f;
  9741. }
  9742. if (gnorm/xnorm <= params.lbfgs.eps) {
  9743. // converged
  9744. return GGML_OPT_OK;
  9745. }
  9746. // delta-based convergence test
  9747. if (pf != NULL) {
  9748. // need at least params.past iterations to start checking for convergence
  9749. if (params.past <= k) {
  9750. const float rate = (pf[k%params.past] - fx)/fx;
  9751. if (fabsf(rate) < params.delta) {
  9752. return GGML_OPT_OK;
  9753. }
  9754. }
  9755. pf[k%params.past] = fx;
  9756. }
  9757. // check for improvement
  9758. if (params.max_no_improvement > 0) {
  9759. if (fx < fx_best) {
  9760. fx_best = fx;
  9761. n_no_improvement = 0;
  9762. } else {
  9763. n_no_improvement++;
  9764. if (n_no_improvement >= params.max_no_improvement) {
  9765. return GGML_OPT_OK;
  9766. }
  9767. }
  9768. }
  9769. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9770. // reached the maximum number of iterations
  9771. return GGML_OPT_DID_NOT_CONVERGE;
  9772. }
  9773. // update vectors s and y:
  9774. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9775. // y_{k+1} = g_{k+1} - g_{k}.
  9776. //
  9777. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9778. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9779. // compute scalars ys and yy:
  9780. // ys = y^t \cdot s -> 1 / \rho.
  9781. // yy = y^t \cdot y.
  9782. //
  9783. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9784. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9785. lm[end].ys = ys;
  9786. // find new search direction
  9787. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9788. bound = (m <= k) ? m : k;
  9789. k++;
  9790. end = (end + 1)%m;
  9791. // initialize search direction with -g
  9792. ggml_vec_neg_f32(nx, d, g);
  9793. j = end;
  9794. for (int i = 0; i < bound; ++i) {
  9795. j = (j + m - 1) % m;
  9796. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9797. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9798. lm[j].alpha /= lm[j].ys;
  9799. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9800. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9801. }
  9802. ggml_vec_scale_f32(nx, d, ys/yy);
  9803. for (int i = 0; i < bound; ++i) {
  9804. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9805. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9806. beta /= lm[j].ys;
  9807. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9808. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9809. j = (j + 1)%m;
  9810. }
  9811. step = 1.0;
  9812. }
  9813. return GGML_OPT_DID_NOT_CONVERGE;
  9814. }
  9815. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9816. struct ggml_opt_params result;
  9817. switch (type) {
  9818. case GGML_OPT_ADAM:
  9819. {
  9820. result = (struct ggml_opt_params) {
  9821. .type = GGML_OPT_ADAM,
  9822. .n_threads = 1,
  9823. .past = 0,
  9824. .delta = 1e-5f,
  9825. .max_no_improvement = 100,
  9826. .print_forward_graph = true,
  9827. .print_backward_graph = true,
  9828. .adam = {
  9829. .n_iter = 10000,
  9830. .alpha = 0.001f,
  9831. .beta1 = 0.9f,
  9832. .beta2 = 0.999f,
  9833. .eps = 1e-8f,
  9834. .eps_f = 1e-5f,
  9835. .eps_g = 1e-3f,
  9836. },
  9837. };
  9838. } break;
  9839. case GGML_OPT_LBFGS:
  9840. {
  9841. result = (struct ggml_opt_params) {
  9842. .type = GGML_OPT_LBFGS,
  9843. .n_threads = 1,
  9844. .past = 0,
  9845. .delta = 1e-5f,
  9846. .max_no_improvement = 0,
  9847. .print_forward_graph = true,
  9848. .print_backward_graph = true,
  9849. .lbfgs = {
  9850. .m = 6,
  9851. .n_iter = 100,
  9852. .max_linesearch = 20,
  9853. .eps = 1e-5f,
  9854. .ftol = 1e-4f,
  9855. .wolfe = 0.9f,
  9856. .min_step = 1e-20f,
  9857. .max_step = 1e+20f,
  9858. .linesearch = GGML_LINESEARCH_DEFAULT,
  9859. },
  9860. };
  9861. } break;
  9862. }
  9863. return result;
  9864. }
  9865. enum ggml_opt_result ggml_opt(
  9866. struct ggml_context * ctx,
  9867. struct ggml_opt_params params,
  9868. struct ggml_tensor * f) {
  9869. bool free_ctx = false;
  9870. if (ctx == NULL) {
  9871. struct ggml_init_params params_ctx = {
  9872. .mem_size = 16*1024*1024,
  9873. .mem_buffer = NULL,
  9874. .no_alloc = false,
  9875. };
  9876. ctx = ggml_init(params_ctx);
  9877. if (ctx == NULL) {
  9878. return GGML_OPT_NO_CONTEXT;
  9879. }
  9880. free_ctx = true;
  9881. }
  9882. enum ggml_opt_result result = GGML_OPT_OK;
  9883. // build forward + backward compute graphs
  9884. struct ggml_cgraph gf = ggml_build_forward (f);
  9885. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9886. switch (params.type) {
  9887. case GGML_OPT_ADAM:
  9888. {
  9889. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9890. } break;
  9891. case GGML_OPT_LBFGS:
  9892. {
  9893. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9894. } break;
  9895. }
  9896. if (params.print_forward_graph) {
  9897. ggml_graph_print (&gf);
  9898. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9899. }
  9900. if (params.print_backward_graph) {
  9901. ggml_graph_print (&gb);
  9902. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9903. }
  9904. if (free_ctx) {
  9905. ggml_free(ctx);
  9906. }
  9907. return result;
  9908. }
  9909. ////////////////////////////////////////////////////////////////////////////////
  9910. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9911. assert(k % QK4_0 == 0);
  9912. const int nb = k / QK4_0;
  9913. for (int j = 0; j < n; j += k) {
  9914. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9915. quantize_row_q4_0_reference(src + j, y, k);
  9916. for (int i = 0; i < nb; i++) {
  9917. for (int l = 0; l < QK4_0; l += 2) {
  9918. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9919. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9920. hist[vi0]++;
  9921. hist[vi1]++;
  9922. }
  9923. }
  9924. }
  9925. return (n/QK4_0*sizeof(block_q4_0));
  9926. }
  9927. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9928. assert(k % QK4_1 == 0);
  9929. const int nb = k / QK4_1;
  9930. for (int j = 0; j < n; j += k) {
  9931. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9932. quantize_row_q4_1_reference(src + j, y, k);
  9933. for (int i = 0; i < nb; i++) {
  9934. for (int l = 0; l < QK4_1; l += 2) {
  9935. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9936. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9937. hist[vi0]++;
  9938. hist[vi1]++;
  9939. }
  9940. }
  9941. }
  9942. return (n/QK4_1*sizeof(block_q4_1));
  9943. }
  9944. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9945. assert(k % QK4_2 == 0);
  9946. const int nb = k / QK4_2;
  9947. for (int j = 0; j < n; j += k) {
  9948. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9949. //quantize_row_q4_2_reference(src + j, y, k);
  9950. quantize_row_q4_2_rmse(src + j, y, k);
  9951. for (int i = 0; i < nb; i++) {
  9952. for (int l = 0; l < QK4_2; l += 2) {
  9953. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9954. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9955. hist[vi0]++;
  9956. hist[vi1]++;
  9957. }
  9958. }
  9959. }
  9960. return (n/QK4_2*sizeof(block_q4_2));
  9961. }
  9962. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9963. assert(k % QK4_3 == 0);
  9964. const int nb = k / QK4_3;
  9965. for (int j = 0; j < n; j += k) {
  9966. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9967. quantize_row_q4_3_reference(src + j, y, k);
  9968. for (int i = 0; i < nb; i++) {
  9969. for (int l = 0; l < QK4_3; l += 2) {
  9970. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9971. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9972. hist[vi0]++;
  9973. hist[vi1]++;
  9974. }
  9975. }
  9976. }
  9977. return (n/QK4_3*sizeof(block_q4_3));
  9978. }
  9979. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9980. size_t result = 0;
  9981. switch (type) {
  9982. case GGML_TYPE_Q4_0:
  9983. {
  9984. GGML_ASSERT(start % QK4_0 == 0);
  9985. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9986. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9987. } break;
  9988. case GGML_TYPE_Q4_1:
  9989. {
  9990. GGML_ASSERT(start % QK4_1 == 0);
  9991. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9992. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9993. } break;
  9994. case GGML_TYPE_Q4_2:
  9995. {
  9996. GGML_ASSERT(start % QK4_2 == 0);
  9997. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9998. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9999. } break;
  10000. case GGML_TYPE_Q4_3:
  10001. {
  10002. GGML_ASSERT(start % QK4_3 == 0);
  10003. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10004. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10005. } break;
  10006. default:
  10007. assert(false);
  10008. }
  10009. return result;
  10010. }
  10011. ////////////////////////////////////////////////////////////////////////////////
  10012. int ggml_cpu_has_avx(void) {
  10013. #if defined(__AVX__)
  10014. return 1;
  10015. #else
  10016. return 0;
  10017. #endif
  10018. }
  10019. int ggml_cpu_has_avx2(void) {
  10020. #if defined(__AVX2__)
  10021. return 1;
  10022. #else
  10023. return 0;
  10024. #endif
  10025. }
  10026. int ggml_cpu_has_avx512(void) {
  10027. #if defined(__AVX512F__)
  10028. return 1;
  10029. #else
  10030. return 0;
  10031. #endif
  10032. }
  10033. int ggml_cpu_has_avx512_vbmi(void) {
  10034. #if defined(__AVX512VBMI__)
  10035. return 1;
  10036. #else
  10037. return 0;
  10038. #endif
  10039. }
  10040. int ggml_cpu_has_avx512_vnni(void) {
  10041. #if defined(__AVX512VNNI__)
  10042. return 1;
  10043. #else
  10044. return 0;
  10045. #endif
  10046. }
  10047. int ggml_cpu_has_fma(void) {
  10048. #if defined(__FMA__)
  10049. return 1;
  10050. #else
  10051. return 0;
  10052. #endif
  10053. }
  10054. int ggml_cpu_has_neon(void) {
  10055. #if defined(__ARM_NEON)
  10056. return 1;
  10057. #else
  10058. return 0;
  10059. #endif
  10060. }
  10061. int ggml_cpu_has_arm_fma(void) {
  10062. #if defined(__ARM_FEATURE_FMA)
  10063. return 1;
  10064. #else
  10065. return 0;
  10066. #endif
  10067. }
  10068. int ggml_cpu_has_f16c(void) {
  10069. #if defined(__F16C__)
  10070. return 1;
  10071. #else
  10072. return 0;
  10073. #endif
  10074. }
  10075. int ggml_cpu_has_fp16_va(void) {
  10076. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10077. return 1;
  10078. #else
  10079. return 0;
  10080. #endif
  10081. }
  10082. int ggml_cpu_has_wasm_simd(void) {
  10083. #if defined(__wasm_simd128__)
  10084. return 1;
  10085. #else
  10086. return 0;
  10087. #endif
  10088. }
  10089. int ggml_cpu_has_blas(void) {
  10090. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10091. return 1;
  10092. #else
  10093. return 0;
  10094. #endif
  10095. }
  10096. int ggml_cpu_has_cublas(void) {
  10097. #if defined(GGML_USE_CUBLAS)
  10098. return 1;
  10099. #else
  10100. return 0;
  10101. #endif
  10102. }
  10103. int ggml_cpu_has_sse3(void) {
  10104. #if defined(__SSE3__)
  10105. return 1;
  10106. #else
  10107. return 0;
  10108. #endif
  10109. }
  10110. int ggml_cpu_has_vsx(void) {
  10111. #if defined(__POWER9_VECTOR__)
  10112. return 1;
  10113. #else
  10114. return 0;
  10115. #endif
  10116. }
  10117. ////////////////////////////////////////////////////////////////////////////////