convert_hf_to_gguf.py 474 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. else:
  173. weight_map = {}
  174. else:
  175. weight_map = {}
  176. for part_name in part_names:
  177. logger.info(f"gguf: indexing model part '{part_name}'")
  178. ctx: ContextManager[Any]
  179. if is_safetensors:
  180. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  181. else:
  182. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  183. with ctx as model_part:
  184. assert model_part is not None
  185. for name in model_part.keys():
  186. if is_safetensors:
  187. data: gguf.utility.LocalTensor = model_part[name]
  188. if self.lazy:
  189. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  190. else:
  191. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  192. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  193. else:
  194. data_torch: Tensor = model_part[name]
  195. if self.lazy:
  196. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  197. else:
  198. data_gen = lambda data=data_torch: data # noqa: E731
  199. tensors[name] = data_gen
  200. # verify tensor name presence and identify potentially missing files
  201. if len(tensor_names_from_index) > 0:
  202. tensor_names_from_parts = set(tensors.keys())
  203. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  204. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  205. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  206. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  207. if len(extra) == 0 and len(missing_files) > 0:
  208. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  209. f"Missing tensors: {missing}")
  210. else:
  211. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  212. f"Missing tensors: {missing}\n"
  213. f"Extra tensors: {extra}")
  214. return tensors
  215. def dequant_model(self):
  216. tensors_to_remove: list[str] = []
  217. new_tensors: dict[str, Callable[[], Tensor]] = {}
  218. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  219. quant_method = quant_config.get("quant_method")
  220. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  221. weight = weight.view(torch.uint8)
  222. orig_shape = weight.shape
  223. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  224. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  225. data = data & 3
  226. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  227. # The scale is inverted
  228. return data / scale.float()
  229. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  230. scale = scale.float()
  231. if block_size is not None:
  232. for i, size in enumerate(block_size):
  233. scale = scale.repeat_interleave(size, i)
  234. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  235. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  236. return weight.float() * scale
  237. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  238. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  239. bits = quant_config["bits"]
  240. assert bits in (2, 3, 4, 8)
  241. assert qweight.dtype == qzeros.dtype
  242. maxq = (2 ** bits) - 1
  243. weight = None
  244. zeros = None
  245. pack_dtype_bits = qweight.dtype.itemsize * 8
  246. if bits in [2, 4, 8]:
  247. pack_factor = pack_dtype_bits // bits
  248. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  249. if self.lazy:
  250. wf = LazyTorchTensor.from_eager(wf)
  251. zeros = torch.bitwise_right_shift(
  252. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  253. wf.unsqueeze(0)
  254. ).to(torch.int16 if bits == 8 else torch.int8)
  255. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  256. weight = torch.bitwise_and(
  257. torch.bitwise_right_shift(
  258. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  259. wf.unsqueeze(-1)
  260. ).to(torch.int16 if bits == 8 else torch.int8),
  261. maxq
  262. )
  263. elif bits == 3:
  264. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  265. assert weight is not None
  266. assert zeros is not None
  267. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  268. # gptq_v2 doesn't need to offset zeros
  269. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  270. zeros += 1
  271. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  272. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  273. assert w.dtype == torch.int32
  274. shape = tuple(shape_tensor.tolist())
  275. assert len(shape) == 2
  276. mask = (1 << num_bits) - 1
  277. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  278. if self.lazy:
  279. shifts = LazyTorchTensor.from_eager(shifts)
  280. if zero_point is None:
  281. offset = 1 << (num_bits - 1)
  282. else:
  283. assert len(zero_point.shape) == 2
  284. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  285. offset = offset.reshape(-1, zero_point.shape[1])
  286. # trim padding, and prepare for broadcast
  287. # NOTE: the zero-point is packed along dim 0
  288. offset = offset[:shape[0], :].unsqueeze(-1)
  289. # extract values
  290. # NOTE: the weights are packed along dim 1
  291. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  292. unpacked = unpacked.reshape(shape[0], -1)
  293. # trim padding
  294. unpacked = unpacked[:, :shape[1]]
  295. # prepare for broadcast of the scale
  296. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  297. unpacked = unpacked - offset
  298. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  299. if quant_method == "bitnet":
  300. for name in self.model_tensors.keys():
  301. if name.endswith(".weight_scale"):
  302. weight_name = name.removesuffix("_scale")
  303. w = self.model_tensors[weight_name]
  304. s = self.model_tensors[name]
  305. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  306. tensors_to_remove.append(name)
  307. elif quant_method == "fp8":
  308. block_size = quant_config.get("weight_block_size")
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale_inv"):
  311. weight_name = name.removesuffix("_scale_inv")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  315. tensors_to_remove.append(name)
  316. elif quant_method == "gptq":
  317. for name in self.model_tensors.keys():
  318. if name.endswith(".qweight"):
  319. base_name = name.removesuffix(".qweight")
  320. g_idx = self.model_tensors[base_name + ".g_idx"]
  321. qweight = self.model_tensors[base_name + ".qweight"]
  322. qzeros = self.model_tensors[base_name + ".qzeros"]
  323. scales = self.model_tensors[base_name + ".scales"]
  324. new_tensors[base_name + ".weight"] = (
  325. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  326. g(), w(), z(), s()
  327. )
  328. )
  329. tensors_to_remove += [
  330. base_name + n
  331. for n in (
  332. ".g_idx",
  333. ".qzeros",
  334. ".qweight",
  335. ".scales",
  336. )
  337. ]
  338. elif quant_method == "compressed-tensors":
  339. quant_format = quant_config["format"]
  340. groups = quant_config["config_groups"]
  341. if len(groups) > 1:
  342. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  343. weight_config = tuple(groups.values())[0]["weights"]
  344. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  345. block_size = weight_config.get("block_structure", None)
  346. strategy = weight_config.get("strategy")
  347. assert strategy == "channel" or strategy == "block"
  348. assert weight_config.get("group_size") is None # didn't find a model using this yet
  349. for name in self.model_tensors.keys():
  350. if name.endswith(".weight_scale"):
  351. weight_name = name.removesuffix("_scale")
  352. w = self.model_tensors[weight_name]
  353. s = self.model_tensors[name]
  354. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  355. tensors_to_remove.append(name)
  356. elif quant_format == "pack-quantized":
  357. assert weight_config.get("strategy") == "group"
  358. assert weight_config.get("type", "int") == "int"
  359. num_bits = weight_config.get("num_bits")
  360. group_size = weight_config.get("group_size")
  361. assert isinstance(num_bits, int)
  362. assert isinstance(group_size, int)
  363. for name in self.model_tensors.keys():
  364. if name.endswith(".weight_packed"):
  365. base_name = name.removesuffix("_packed")
  366. w = self.model_tensors[name]
  367. scale = self.model_tensors[base_name + "_scale"]
  368. shape = self.model_tensors[base_name + "_shape"]
  369. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  370. new_tensors[base_name] = (
  371. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  372. w(), scale(), shape(), zero_point(), num_bits, group_size,
  373. )
  374. )
  375. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  376. if (base_name + "_zero_point") in self.model_tensors:
  377. tensors_to_remove.append(base_name + "_zero_point")
  378. else:
  379. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  380. else:
  381. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  382. for name in tensors_to_remove:
  383. if name in self.model_tensors:
  384. del self.model_tensors[name]
  385. for name, value in new_tensors.items():
  386. self.model_tensors[name] = value
  387. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  388. for name, gen in self.model_tensors.items():
  389. yield name, gen()
  390. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  391. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  392. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  393. name: str = gguf.TENSOR_NAMES[key]
  394. if "{bid}" in name:
  395. assert bid is not None
  396. name = name.format(bid=bid)
  397. return name + suffix
  398. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  399. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  400. return False
  401. key_name: str = gguf.TENSOR_NAMES[key]
  402. if "{bid}" in key_name:
  403. if bid is None:
  404. return False
  405. key_name = key_name.format(bid=bid)
  406. else:
  407. if bid is not None:
  408. return False
  409. return name == (key_name + suffix)
  410. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  411. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  412. if new_name is None:
  413. raise ValueError(f"Can not map tensor {name!r}")
  414. return new_name
  415. def set_gguf_parameters(self):
  416. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  418. del bid # unused
  419. return [(self.map_tensor_name(name), data_torch)]
  420. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  421. del name, new_name, bid, n_dims # unused
  422. return False
  423. # some models need extra generated tensors (like rope_freqs)
  424. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  425. return ()
  426. def prepare_tensors(self):
  427. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  428. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  429. # we don't need these
  430. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  431. continue
  432. old_dtype = data_torch.dtype
  433. # convert any unsupported data types to float32
  434. if data_torch.dtype not in (torch.float16, torch.float32):
  435. data_torch = data_torch.to(torch.float32)
  436. # use the first number-like part of the tensor name as the block id
  437. bid = None
  438. for part in name.split("."):
  439. if part.isdecimal():
  440. bid = int(part)
  441. break
  442. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  443. # TODO: why do we squeeze here?
  444. # data = data_torch.squeeze().numpy()
  445. data = data_torch.numpy()
  446. n_dims = len(data.shape)
  447. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  448. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  449. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  450. data_qtype = gguf.GGMLQuantizationType.F32
  451. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  452. # Some tensor types are always in float32
  453. if data_qtype is False and (
  454. any(
  455. self.match_model_tensor_name(new_name, key, bid)
  456. for key in (
  457. gguf.MODEL_TENSOR.FFN_GATE_INP,
  458. gguf.MODEL_TENSOR.POS_EMBD,
  459. gguf.MODEL_TENSOR.TOKEN_TYPES,
  460. gguf.MODEL_TENSOR.SSM_CONV1D,
  461. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  462. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  463. gguf.MODEL_TENSOR.TIME_MIX_W1,
  464. gguf.MODEL_TENSOR.TIME_MIX_W2,
  465. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  466. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  467. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  468. gguf.MODEL_TENSOR.POSNET_NORM1,
  469. gguf.MODEL_TENSOR.POSNET_NORM2,
  470. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  471. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  472. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  473. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  474. )
  475. )
  476. or not new_name.endswith(".weight")
  477. ):
  478. data_qtype = gguf.GGMLQuantizationType.F32
  479. if data_qtype is False and any(
  480. self.match_model_tensor_name(new_name, key, bid)
  481. for key in (
  482. gguf.MODEL_TENSOR.TOKEN_EMBD,
  483. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  484. gguf.MODEL_TENSOR.OUTPUT,
  485. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  486. gguf.MODEL_TENSOR.LAUREL_L,
  487. gguf.MODEL_TENSOR.LAUREL_R,
  488. )
  489. ):
  490. if self.ftype in (
  491. gguf.LlamaFileType.MOSTLY_TQ1_0,
  492. gguf.LlamaFileType.MOSTLY_TQ2_0,
  493. ):
  494. # TODO: use Q4_K and Q6_K
  495. data_qtype = gguf.GGMLQuantizationType.F16
  496. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  497. if isinstance(data_qtype, bool):
  498. if self.ftype == gguf.LlamaFileType.ALL_F32:
  499. data_qtype = gguf.GGMLQuantizationType.F32
  500. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  501. data_qtype = gguf.GGMLQuantizationType.F16
  502. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  503. data_qtype = gguf.GGMLQuantizationType.BF16
  504. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  505. data_qtype = gguf.GGMLQuantizationType.Q8_0
  506. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  507. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  508. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  509. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  510. else:
  511. raise ValueError(f"Unknown file type: {self.ftype.name}")
  512. try:
  513. data = gguf.quants.quantize(data, data_qtype)
  514. except gguf.QuantError as e:
  515. logger.warning("%s, %s", e, "falling back to F16")
  516. data_qtype = gguf.GGMLQuantizationType.F16
  517. data = gguf.quants.quantize(data, data_qtype)
  518. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  519. # reverse shape to make it similar to the internal ggml dimension order
  520. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  521. # n_dims is implicit in the shape
  522. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  523. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  524. def set_type(self):
  525. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  526. def prepare_metadata(self, vocab_only: bool):
  527. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  528. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  529. # If we are using HF model id, set the metadata name to the model id
  530. if self.remote_hf_model_id:
  531. self.metadata.name = self.remote_hf_model_id
  532. # Fallback to model directory name if metadata name is still missing
  533. if self.metadata.name is None:
  534. self.metadata.name = self.dir_model.name
  535. # Generate parameter weight class (useful for leader boards) if not yet determined
  536. if self.metadata.size_label is None and total_params > 0:
  537. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  538. self.set_type()
  539. logger.info("Set meta model")
  540. self.metadata.set_gguf_meta_model(self.gguf_writer)
  541. logger.info("Set model parameters")
  542. self.set_gguf_parameters()
  543. logger.info("Set model quantization version")
  544. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  545. def write_vocab(self):
  546. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  547. def write(self):
  548. self.prepare_tensors()
  549. self.prepare_metadata(vocab_only=False)
  550. self.gguf_writer.write_header_to_file(path=self.fname_out)
  551. self.gguf_writer.write_kv_data_to_file()
  552. self.gguf_writer.write_tensors_to_file(progress=True)
  553. self.gguf_writer.close()
  554. @staticmethod
  555. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  556. part_names: list[str] = []
  557. for filename in os.listdir(dir_model):
  558. if filename.startswith(prefix) and filename.endswith(suffix):
  559. part_names.append(filename)
  560. part_names.sort()
  561. return part_names
  562. @staticmethod
  563. def load_hparams(dir_model: Path, is_mistral_format: bool):
  564. if is_mistral_format:
  565. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  566. config = json.load(f)
  567. return config
  568. try:
  569. # for security reason, we don't allow loading remote code by default
  570. # if a model need remote code, we will fallback to config.json
  571. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  572. except Exception as e:
  573. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  574. logger.warning("Trying to load config.json instead")
  575. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  576. config = json.load(f)
  577. if "llm_config" in config:
  578. # rename for InternVL
  579. config["text_config"] = config["llm_config"]
  580. if "thinker_config" in config:
  581. # rename for Qwen2.5-Omni
  582. config["text_config"] = config["thinker_config"]["text_config"]
  583. return config
  584. @classmethod
  585. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  586. assert names
  587. def func(modelcls: AnyModel) -> AnyModel:
  588. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  589. for name in names:
  590. cls._model_classes[model_type][name] = modelcls
  591. return modelcls
  592. return func
  593. @classmethod
  594. def print_registered_models(cls):
  595. for model_type, model_classes in cls._model_classes.items():
  596. logger.error(f"{model_type.name} models:")
  597. for name in sorted(model_classes.keys()):
  598. logger.error(f" - {name}")
  599. @classmethod
  600. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  601. try:
  602. return cls._model_classes[model_type][arch]
  603. except KeyError:
  604. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  605. class TextModel(ModelBase):
  606. model_type = ModelType.TEXT
  607. hf_arch: str
  608. def __init__(self, *args, **kwargs):
  609. super().__init__(*args, **kwargs)
  610. if not self.is_mistral_format:
  611. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  612. else:
  613. self.hf_arch = ""
  614. if "text_config" in self.hparams:
  615. # move the text_config to the root level
  616. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  617. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  618. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  619. @classmethod
  620. def __init_subclass__(cls):
  621. # can't use an abstract property, because overriding it without type errors
  622. # would require using decorated functions instead of simply defining the property
  623. if "model_arch" not in cls.__dict__:
  624. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  625. def set_vocab(self):
  626. self._set_vocab_gpt2()
  627. def prepare_metadata(self, vocab_only: bool):
  628. super().prepare_metadata(vocab_only=vocab_only)
  629. total_params = self.gguf_writer.get_total_parameter_count()[0]
  630. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  631. output_type: str = self.ftype.name.partition("_")[2]
  632. # Filename Output
  633. if self.fname_out.is_dir():
  634. # Generate default filename based on model specification and available metadata
  635. if not vocab_only:
  636. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  637. else:
  638. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  639. # Use the default filename
  640. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  641. else:
  642. # Output path is a custom defined templated filename
  643. # Note: `not is_dir()` is used because `.is_file()` will not detect
  644. # file template strings as it doesn't actually exist as a file
  645. # Process templated file name with the output ftype, useful with the "auto" ftype
  646. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  647. logger.info("Set model tokenizer")
  648. self.set_vocab()
  649. def set_gguf_parameters(self):
  650. self.gguf_writer.add_block_count(self.block_count)
  651. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  652. self.gguf_writer.add_context_length(n_ctx)
  653. logger.info(f"gguf: context length = {n_ctx}")
  654. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  655. self.gguf_writer.add_embedding_length(n_embd)
  656. logger.info(f"gguf: embedding length = {n_embd}")
  657. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  658. self.gguf_writer.add_feed_forward_length(n_ff)
  659. logger.info(f"gguf: feed forward length = {n_ff}")
  660. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  661. self.gguf_writer.add_head_count(n_head)
  662. logger.info(f"gguf: head count = {n_head}")
  663. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  664. self.gguf_writer.add_head_count_kv(n_head_kv)
  665. logger.info(f"gguf: key-value head count = {n_head_kv}")
  666. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  667. self.gguf_writer.add_rope_freq_base(rope_theta)
  668. logger.info(f"gguf: rope theta = {rope_theta}")
  669. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  670. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  671. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  672. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  673. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  674. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  675. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  676. self.gguf_writer.add_expert_count(n_experts)
  677. logger.info(f"gguf: expert count = {n_experts}")
  678. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  679. self.gguf_writer.add_expert_used_count(n_experts_used)
  680. logger.info(f"gguf: experts used count = {n_experts_used}")
  681. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  682. self.gguf_writer.add_expert_group_count(n_expert_groups)
  683. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  684. if (n_group_used := self.hparams.get("topk_group")) is not None:
  685. self.gguf_writer.add_expert_group_used_count(n_group_used)
  686. logger.info(f"gguf: expert groups used count = {n_group_used}")
  687. if (head_dim := self.hparams.get("head_dim")) is not None:
  688. self.gguf_writer.add_key_length(head_dim)
  689. self.gguf_writer.add_value_length(head_dim)
  690. self.gguf_writer.add_file_type(self.ftype)
  691. logger.info(f"gguf: file type = {self.ftype}")
  692. def write_vocab(self):
  693. if len(self.gguf_writer.tensors) != 1:
  694. raise ValueError('Splitting the vocabulary is not supported')
  695. self.prepare_metadata(vocab_only=True)
  696. self.gguf_writer.write_header_to_file(path=self.fname_out)
  697. self.gguf_writer.write_kv_data_to_file()
  698. self.gguf_writer.close()
  699. def does_token_look_special(self, token: str | bytes) -> bool:
  700. if isinstance(token, (bytes, bytearray)):
  701. token_text = token.decode(encoding="utf-8")
  702. elif isinstance(token, memoryview):
  703. token_text = token.tobytes().decode(encoding="utf-8")
  704. else:
  705. token_text = token
  706. # Some models mark some added tokens which ought to be control tokens as not special.
  707. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  708. seems_special = token_text in (
  709. "<pad>", # deepseek-coder
  710. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  711. )
  712. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  713. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  714. # TODO: should these be marked as UNUSED instead? (maybe not)
  715. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  716. return seems_special
  717. # used for GPT-2 BPE and WordPiece vocabs
  718. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  719. tokens: list[str] = []
  720. toktypes: list[int] = []
  721. from transformers import AutoTokenizer
  722. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  723. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  724. assert max(tokenizer.vocab.values()) < vocab_size
  725. tokpre = self.get_vocab_base_pre(tokenizer)
  726. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  727. added_vocab = tokenizer.get_added_vocab()
  728. added_tokens_decoder = tokenizer.added_tokens_decoder
  729. for i in range(vocab_size):
  730. if i not in reverse_vocab:
  731. tokens.append(f"[PAD{i}]")
  732. toktypes.append(gguf.TokenType.UNUSED)
  733. else:
  734. token: str = reverse_vocab[i]
  735. if token in added_vocab:
  736. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  737. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  738. if not added_tokens_decoder[i].normalized:
  739. previous_token = token
  740. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  741. if previous_token != token:
  742. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  743. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  744. toktypes.append(gguf.TokenType.CONTROL)
  745. else:
  746. # NOTE: this was added for Gemma.
  747. # Encoding and decoding the tokens above isn't sufficient for this case.
  748. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  749. toktypes.append(gguf.TokenType.USER_DEFINED)
  750. else:
  751. toktypes.append(gguf.TokenType.NORMAL)
  752. tokens.append(token)
  753. return tokens, toktypes, tokpre
  754. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  755. # do not modify it manually!
  756. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  757. # Marker: Start get_vocab_base_pre
  758. def get_vocab_base_pre(self, tokenizer) -> str:
  759. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  760. # is specific for the BPE pre-tokenizer used by the model
  761. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  762. # use in llama.cpp to implement the same pre-tokenizer
  763. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  764. chktok = tokenizer.encode(chktxt)
  765. chkhsh = sha256(str(chktok).encode()).hexdigest()
  766. logger.debug(f"chktok: {chktok}")
  767. logger.debug(f"chkhsh: {chkhsh}")
  768. res = None
  769. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  770. # or pull the latest version of the model from Huggingface
  771. # don't edit the hashes manually!
  772. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  773. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  774. res = "chatglm-bpe"
  775. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  776. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  777. res = "chatglm-bpe"
  778. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  779. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  780. res = "glm4"
  781. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  782. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  783. res = "glm4"
  784. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  785. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  786. res = "minerva-7b"
  787. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  788. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  789. res = "hunyuan"
  790. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  791. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  792. res = "hunyuan-dense"
  793. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  794. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  795. res = "falcon-h1"
  796. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  797. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  798. res = "falcon-h1"
  799. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  800. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  801. res = "falcon-h1"
  802. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  803. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  804. res = "falcon-h1"
  805. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  806. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  807. res = "kimi-k2"
  808. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  809. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  810. res = "qwen2"
  811. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  812. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  813. res = "grok-2"
  814. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  815. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  816. res = "llama-bpe"
  817. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  818. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  819. res = "deepseek-llm"
  820. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  821. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  822. res = "deepseek-coder"
  823. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  824. # ref: https://huggingface.co/tiiuae/falcon-7b
  825. res = "falcon"
  826. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  827. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  828. res = "bert-bge"
  829. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  830. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  831. res = "falcon3"
  832. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  833. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  834. res = "bert-bge-large"
  835. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  836. # ref: https://huggingface.co/mosaicml/mpt-7b
  837. res = "mpt"
  838. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  839. # ref: https://huggingface.co/bigcode/starcoder2-3b
  840. res = "starcoder"
  841. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  842. # ref: https://huggingface.co/openai-community/gpt2
  843. res = "gpt-2"
  844. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  845. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  846. res = "stablelm2"
  847. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  848. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  849. res = "refact"
  850. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  851. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  852. res = "command-r"
  853. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  854. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  855. res = "qwen2"
  856. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  857. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  858. res = "olmo"
  859. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  860. # ref: https://huggingface.co/databricks/dbrx-base
  861. res = "dbrx"
  862. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  863. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  864. res = "jina-v1-en"
  865. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  866. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  867. res = "jina-v2-en"
  868. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  869. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  870. res = "jina-v2-es"
  871. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  872. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  873. res = "jina-v2-de"
  874. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  875. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  876. res = "smaug-bpe"
  877. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  878. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  879. res = "poro-chat"
  880. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  881. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  882. res = "jina-v2-code"
  883. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  884. # ref: https://huggingface.co/LumiOpen/Viking-7B
  885. res = "viking"
  886. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  887. # ref: https://huggingface.co/core42/jais-13b
  888. res = "jais"
  889. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  890. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  891. res = "codeshell"
  892. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  893. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  894. res = "tekken"
  895. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  896. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  897. res = "smollm"
  898. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  899. # ref: https://huggingface.co/bigscience/bloom
  900. res = "bloom"
  901. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  902. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  903. res = "gpt3-finnish"
  904. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  905. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  906. res = "exaone"
  907. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  908. # ref: https://huggingface.co/microsoft/phi-2
  909. res = "phi-2"
  910. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  911. # ref: https://huggingface.co/facebook/chameleon-7b
  912. res = "chameleon"
  913. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  914. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  915. res = "roberta-bpe"
  916. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  917. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  918. res = "gigachat"
  919. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  920. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  921. res = "megrez"
  922. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  923. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  924. res = "deepseek-v3"
  925. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  926. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  927. res = "deepseek-r1-qwen"
  928. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  929. # ref: https://huggingface.co/Xenova/gpt-4o
  930. res = "gpt-4o"
  931. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  932. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  933. res = "superbpe"
  934. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  935. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  936. res = "trillion"
  937. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  938. # ref: https://huggingface.co/inclusionAI/Ling-lite
  939. res = "bailingmoe"
  940. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  941. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  942. res = "llama4"
  943. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  944. # ref: https://huggingface.co/mistral-community/pixtral-12b
  945. res = "pixtral"
  946. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  947. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  948. res = "seed-coder"
  949. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  950. # ref: https://huggingface.co/skt/A.X-4.0
  951. res = "a.x-4.0"
  952. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  953. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  954. res = "midm-2.0"
  955. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  956. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  957. res = "lfm2"
  958. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  959. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  960. res = "exaone4"
  961. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  962. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  963. res = "mellum"
  964. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  965. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  966. res = "bailingmoe2"
  967. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  968. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  969. res = "granite-docling"
  970. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  971. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  972. res = "minimax-m2"
  973. if res is None:
  974. logger.warning("\n")
  975. logger.warning("**************************************************************************************")
  976. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  977. logger.warning("** There are 2 possible reasons for this:")
  978. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  979. logger.warning("** - the pre-tokenization config has changed upstream")
  980. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  981. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  982. logger.warning("**")
  983. logger.warning(f"** chkhsh: {chkhsh}")
  984. logger.warning("**************************************************************************************")
  985. logger.warning("\n")
  986. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  987. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  988. logger.debug(f"chkhsh: {chkhsh}")
  989. return res
  990. # Marker: End get_vocab_base_pre
  991. def _set_vocab_none(self) -> None:
  992. self.gguf_writer.add_tokenizer_model("none")
  993. def _set_vocab_gpt2(self) -> None:
  994. tokens, toktypes, tokpre = self.get_vocab_base()
  995. self.gguf_writer.add_tokenizer_model("gpt2")
  996. self.gguf_writer.add_tokenizer_pre(tokpre)
  997. self.gguf_writer.add_token_list(tokens)
  998. self.gguf_writer.add_token_types(toktypes)
  999. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1000. special_vocab.add_to_gguf(self.gguf_writer)
  1001. def _set_vocab_qwen(self):
  1002. dir_model = self.dir_model
  1003. hparams = self.hparams
  1004. tokens: list[str] = []
  1005. toktypes: list[int] = []
  1006. from transformers import AutoTokenizer
  1007. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1008. vocab_size = hparams["vocab_size"]
  1009. assert max(tokenizer.get_vocab().values()) < vocab_size
  1010. tokpre = self.get_vocab_base_pre(tokenizer)
  1011. merges = []
  1012. vocab = {}
  1013. mergeable_ranks = tokenizer.mergeable_ranks
  1014. for token, rank in mergeable_ranks.items():
  1015. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1016. if len(token) == 1:
  1017. continue
  1018. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1019. assert len(merged) == 2
  1020. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1021. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1022. added_vocab = tokenizer.special_tokens
  1023. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1024. for i in range(vocab_size):
  1025. if i not in reverse_vocab:
  1026. tokens.append(f"[PAD{i}]")
  1027. toktypes.append(gguf.TokenType.UNUSED)
  1028. elif reverse_vocab[i] in added_vocab:
  1029. tokens.append(reverse_vocab[i])
  1030. toktypes.append(gguf.TokenType.CONTROL)
  1031. else:
  1032. tokens.append(reverse_vocab[i])
  1033. toktypes.append(gguf.TokenType.NORMAL)
  1034. self.gguf_writer.add_tokenizer_model("gpt2")
  1035. self.gguf_writer.add_tokenizer_pre(tokpre)
  1036. self.gguf_writer.add_token_list(tokens)
  1037. self.gguf_writer.add_token_types(toktypes)
  1038. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1039. special_vocab.merges = merges
  1040. # only add special tokens when they were not already loaded from config.json
  1041. if len(special_vocab.special_token_ids) == 0:
  1042. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1043. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1044. # this one is usually not in config.json anyway
  1045. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1046. special_vocab.add_to_gguf(self.gguf_writer)
  1047. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1048. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1049. self.gguf_writer.add_tokenizer_model("llama")
  1050. self.gguf_writer.add_tokenizer_pre("default")
  1051. self.gguf_writer.add_token_list(tokens)
  1052. self.gguf_writer.add_token_scores(scores)
  1053. self.gguf_writer.add_token_types(toktypes)
  1054. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1055. special_vocab.add_to_gguf(self.gguf_writer)
  1056. def _create_vocab_sentencepiece(self):
  1057. from sentencepiece import SentencePieceProcessor
  1058. tokenizer_path = self.dir_model / 'tokenizer.model'
  1059. if not tokenizer_path.is_file():
  1060. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1061. tokenizer = SentencePieceProcessor()
  1062. tokenizer.LoadFromFile(str(tokenizer_path))
  1063. vocab_size = self.find_hparam([
  1064. "vocab_size_per_layer_input", # gemma3n
  1065. "vocab_size",
  1066. ], optional=True) or tokenizer.vocab_size()
  1067. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1068. scores: list[float] = [-10000.0] * vocab_size
  1069. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1070. for token_id in range(tokenizer.vocab_size()):
  1071. if token_id >= vocab_size:
  1072. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1073. break
  1074. piece = tokenizer.IdToPiece(token_id)
  1075. text = piece.encode("utf-8")
  1076. score = tokenizer.GetScore(token_id)
  1077. toktype = SentencePieceTokenTypes.NORMAL
  1078. if tokenizer.IsUnknown(token_id):
  1079. toktype = SentencePieceTokenTypes.UNKNOWN
  1080. elif tokenizer.IsControl(token_id):
  1081. toktype = SentencePieceTokenTypes.CONTROL
  1082. elif tokenizer.IsUnused(token_id):
  1083. toktype = SentencePieceTokenTypes.UNUSED
  1084. elif tokenizer.IsByte(token_id):
  1085. toktype = SentencePieceTokenTypes.BYTE
  1086. tokens[token_id] = text
  1087. scores[token_id] = score
  1088. toktypes[token_id] = toktype
  1089. added_tokens_file = self.dir_model / 'added_tokens.json'
  1090. if added_tokens_file.is_file():
  1091. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1092. added_tokens_json = json.load(f)
  1093. for key in added_tokens_json:
  1094. token_id = added_tokens_json[key]
  1095. if token_id >= vocab_size:
  1096. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1097. continue
  1098. tokens[token_id] = key.encode("utf-8")
  1099. scores[token_id] = -1000.0
  1100. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1101. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1102. if tokenizer_config_file.is_file():
  1103. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1104. tokenizer_config_json = json.load(f)
  1105. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1106. for token_id, token_data in added_tokens_decoder.items():
  1107. token_id = int(token_id)
  1108. token: str = token_data["content"]
  1109. if token_id >= vocab_size:
  1110. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1111. continue
  1112. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1113. if tokens[token_id] != token.encode("utf-8"):
  1114. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1115. if token_data.get("special") or self.does_token_look_special(token):
  1116. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1117. else:
  1118. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1119. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1120. scores[token_id] = -1000.0
  1121. tokens[token_id] = token.encode("utf-8")
  1122. if vocab_size > len(tokens):
  1123. pad_count = vocab_size - len(tokens)
  1124. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1125. for i in range(1, pad_count + 1):
  1126. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1127. scores.append(-1000.0)
  1128. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1129. return tokens, scores, toktypes
  1130. def _set_vocab_llama_hf(self):
  1131. vocab = gguf.LlamaHfVocab(self.dir_model)
  1132. tokens = []
  1133. scores = []
  1134. toktypes = []
  1135. for text, score, toktype in vocab.all_tokens():
  1136. tokens.append(text)
  1137. scores.append(score)
  1138. toktypes.append(toktype)
  1139. assert len(tokens) == vocab.vocab_size
  1140. self.gguf_writer.add_tokenizer_model("llama")
  1141. self.gguf_writer.add_tokenizer_pre("default")
  1142. self.gguf_writer.add_token_list(tokens)
  1143. self.gguf_writer.add_token_scores(scores)
  1144. self.gguf_writer.add_token_types(toktypes)
  1145. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1146. special_vocab.add_to_gguf(self.gguf_writer)
  1147. def _set_vocab_rwkv_world(self):
  1148. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1149. vocab_size = self.hparams.get("vocab_size", 65536)
  1150. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1151. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1152. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1153. lines = f.readlines()
  1154. for line in lines:
  1155. parts = line.split(' ')
  1156. assert len(parts) >= 3
  1157. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1158. token = token.encode("utf-8") if isinstance(token, str) else token
  1159. assert isinstance(token, bytes)
  1160. assert len(token) == token_len
  1161. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1162. tokens.append(token_text.encode("utf-8"))
  1163. toktypes.append(gguf.TokenType.NORMAL)
  1164. remainder = vocab_size - len(tokens)
  1165. assert remainder >= 0
  1166. for i in range(len(tokens), vocab_size):
  1167. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1168. toktypes.append(gguf.TokenType.UNUSED)
  1169. self.gguf_writer.add_tokenizer_model("rwkv")
  1170. self.gguf_writer.add_token_list(tokens)
  1171. self.gguf_writer.add_token_types(toktypes)
  1172. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1173. if special_vocab.chat_template is None:
  1174. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1175. if template_path.is_file():
  1176. with open(template_path, "r", encoding="utf-8") as f:
  1177. template = f.read()
  1178. else:
  1179. template = "rwkv-world"
  1180. special_vocab.chat_template = template
  1181. # hack: Add '\n\n' as the EOT token to make it chat normally
  1182. special_vocab._set_special_token("eot", 261)
  1183. # hack: Override these as they have already been set (incorrectly)
  1184. special_vocab.special_token_ids["bos"] = 0
  1185. special_vocab.special_token_ids["eos"] = 0
  1186. special_vocab.add_to_gguf(self.gguf_writer)
  1187. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1188. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1189. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1190. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1191. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1192. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1193. assert field # tokenizer model
  1194. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1195. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1196. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1197. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1198. assert field # token list
  1199. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1200. if model_name == "llama-spm":
  1201. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1202. assert field # token scores
  1203. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1204. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1205. assert field # token types
  1206. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1207. if model_name != "llama-spm":
  1208. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1209. assert field # token merges
  1210. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1211. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1212. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1213. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1214. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1215. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1216. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1217. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1218. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1219. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1220. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1221. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1222. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1223. def _try_set_pooling_type(self) -> None:
  1224. # get pooling path
  1225. pooling_path = None
  1226. module_path = self.dir_model / "modules.json"
  1227. if module_path.is_file():
  1228. with open(module_path, encoding="utf-8") as f:
  1229. modules = json.load(f)
  1230. for mod in modules:
  1231. if mod["type"] == "sentence_transformers.models.Pooling":
  1232. pooling_path = mod["path"]
  1233. break
  1234. # get pooling type
  1235. if pooling_path is not None:
  1236. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1237. pooling = json.load(f)
  1238. if pooling["pooling_mode_mean_tokens"]:
  1239. pooling_type = gguf.PoolingType.MEAN
  1240. elif pooling["pooling_mode_cls_token"]:
  1241. pooling_type = gguf.PoolingType.CLS
  1242. elif pooling["pooling_mode_lasttoken"]:
  1243. pooling_type = gguf.PoolingType.LAST
  1244. else:
  1245. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1246. self.gguf_writer.add_pooling_type(pooling_type)
  1247. def _set_vocab_interns1(self):
  1248. tokens: list[str] = []
  1249. toktypes: list[int] = []
  1250. from transformers import AutoTokenizer
  1251. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1252. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1253. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1254. assert max(vocab.values()) < vocab_size
  1255. tokpre = self.get_vocab_base_pre(tokenizer)
  1256. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1257. added_vocab = tokenizer.get_added_vocab()
  1258. added_tokens_decoder = tokenizer.added_tokens_decoder
  1259. for i in range(vocab_size):
  1260. if i not in reverse_vocab:
  1261. tokens.append(f"[PAD{i}]")
  1262. toktypes.append(gguf.TokenType.UNUSED)
  1263. else:
  1264. token: str = reverse_vocab[i]
  1265. if token in added_vocab:
  1266. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1267. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1268. if not added_tokens_decoder[i].normalized:
  1269. previous_token = token
  1270. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1271. if previous_token != token:
  1272. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1273. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1274. toktypes.append(gguf.TokenType.CONTROL)
  1275. else:
  1276. toktypes.append(gguf.TokenType.USER_DEFINED)
  1277. else:
  1278. toktypes.append(gguf.TokenType.NORMAL)
  1279. tokens.append(token)
  1280. self.gguf_writer.add_tokenizer_model("gpt2")
  1281. self.gguf_writer.add_tokenizer_pre(tokpre)
  1282. self.gguf_writer.add_token_list(tokens)
  1283. self.gguf_writer.add_token_types(toktypes)
  1284. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1285. special_vocab._set_special_token("bos", 151643)
  1286. special_vocab.add_to_gguf(self.gguf_writer)
  1287. class MmprojModel(ModelBase):
  1288. model_type = ModelType.MMPROJ
  1289. model_arch = gguf.MODEL_ARCH.MMPROJ
  1290. preprocessor_config: dict[str, Any]
  1291. global_config: dict[str, Any]
  1292. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1293. has_vision_encoder: bool = True # by default
  1294. has_audio_encoder: bool = False
  1295. # for models having multiple encoders, we need to separate their hparams
  1296. hparams_vision: dict[str, Any] | None = None
  1297. hparams_audio: dict[str, Any] | None = None
  1298. def __init__(self, *args, **kwargs):
  1299. super().__init__(*args, **kwargs)
  1300. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1301. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1302. # get n_embd of the text model
  1303. if not self.is_mistral_format:
  1304. if "text_config" not in self.hparams:
  1305. self.hparams["text_config"] = {}
  1306. if "audio_config" not in self.hparams:
  1307. self.hparams["audio_config"] = {}
  1308. text_config = {**self.hparams, **self.hparams["text_config"]}
  1309. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1310. else:
  1311. text_config = {
  1312. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1313. }
  1314. self.n_embd_text = text_config.get("hidden_dim", 0)
  1315. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1316. # move vision config to the top level, while preserving the original hparams in global_config
  1317. import copy
  1318. self.global_config = copy.deepcopy(self.hparams)
  1319. self.hparams_vision = self.get_vision_config()
  1320. self.hparams_audio = self.get_audio_config()
  1321. if self.hparams_vision is None and self.hparams_audio is None:
  1322. raise ValueError("vision_config / audio_config not found in hparams")
  1323. # for compat with vision-only models
  1324. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1325. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1326. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1327. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1328. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1329. # load preprocessor config
  1330. self.preprocessor_config = {}
  1331. if not self.is_mistral_format:
  1332. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1333. self.preprocessor_config = json.load(f)
  1334. def get_vision_config(self) -> dict[str, Any] | None:
  1335. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1336. return self.global_config.get(config_name)
  1337. def get_audio_config(self) -> dict[str, Any] | None:
  1338. return self.global_config.get("audio_config")
  1339. def set_type(self):
  1340. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1341. def prepare_metadata(self, vocab_only: bool):
  1342. super().prepare_metadata(vocab_only=vocab_only)
  1343. output_type: str = self.ftype.name.partition("_")[2]
  1344. if self.fname_out.is_dir():
  1345. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1346. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1347. else:
  1348. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1349. def set_gguf_parameters(self):
  1350. self.gguf_writer.add_file_type(self.ftype)
  1351. if self.has_vision_encoder:
  1352. self.gguf_writer.add_clip_has_vision_encoder(True)
  1353. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1354. # vision config
  1355. self.image_size = self.find_vparam(["image_size"])
  1356. self.gguf_writer.add_vision_image_size(self.image_size)
  1357. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1358. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1359. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1360. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1361. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1362. # preprocessor config
  1363. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1364. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1365. self.gguf_writer.add_vision_image_mean(image_mean)
  1366. self.gguf_writer.add_vision_image_std(image_std)
  1367. if self.has_audio_encoder:
  1368. self.gguf_writer.add_clip_has_audio_encoder(True)
  1369. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1370. # audio config
  1371. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1372. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1373. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1374. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1375. if not self.has_vision_encoder and not self.has_audio_encoder:
  1376. raise ValueError("MmprojModel must have either vision or audio encoder")
  1377. def write_vocab(self):
  1378. raise ValueError("MmprojModel does not support vocab writing")
  1379. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1380. assert self.hparams_vision is not None
  1381. return self._find_param(self.hparams_vision, keys, optional)
  1382. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1383. assert self.hparams_audio is not None
  1384. return self._find_param(self.hparams_audio, keys, optional)
  1385. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1386. key = next((k for k in keys if k in obj), None)
  1387. if key is not None:
  1388. return obj[key]
  1389. if optional:
  1390. return None
  1391. raise KeyError(f"could not find any of: {keys}")
  1392. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1393. del bid, name, n_dims # unused
  1394. if ".patch_embd.weight" in new_name:
  1395. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1396. return False
  1397. @ModelBase.register("GPTNeoXForCausalLM")
  1398. class GPTNeoXModel(TextModel):
  1399. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1400. def set_gguf_parameters(self):
  1401. block_count = self.hparams["num_hidden_layers"]
  1402. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1403. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1404. self.gguf_writer.add_block_count(block_count)
  1405. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1406. self.gguf_writer.add_rope_dimension_count(
  1407. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1408. )
  1409. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1410. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1411. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1412. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1413. del bid # unused
  1414. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1415. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1416. tensors: list[tuple[str, Tensor]] = []
  1417. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1418. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1419. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1420. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1421. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1422. data_torch = torch.cat(
  1423. (
  1424. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1425. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1426. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1427. ),
  1428. dim=0,
  1429. )
  1430. logger.info("re-format attention.linear_qkv.weight")
  1431. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1432. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1433. data_torch = torch.cat(
  1434. (
  1435. qkv_bias[:, 0, :].reshape((n_embed,)),
  1436. qkv_bias[:, 1, :].reshape((n_embed,)),
  1437. qkv_bias[:, 2, :].reshape((n_embed,)),
  1438. ),
  1439. dim=0,
  1440. )
  1441. logger.info("re-format attention.linear_qkv.bias")
  1442. tensors.append((self.map_tensor_name(name), data_torch))
  1443. return tensors
  1444. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1445. class BloomModel(TextModel):
  1446. model_arch = gguf.MODEL_ARCH.BLOOM
  1447. def set_gguf_parameters(self):
  1448. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1449. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1450. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1451. self.gguf_writer.add_embedding_length(n_embed)
  1452. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1453. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1454. self.gguf_writer.add_head_count(n_head)
  1455. self.gguf_writer.add_head_count_kv(n_head)
  1456. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1457. self.gguf_writer.add_file_type(self.ftype)
  1458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1459. del bid # unused
  1460. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1461. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1462. name = re.sub(r'transformer\.', '', name)
  1463. tensors: list[tuple[str, Tensor]] = []
  1464. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1465. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1466. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1467. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1468. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1469. data_torch = torch.cat(
  1470. (
  1471. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1472. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1473. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1474. ),
  1475. dim=0,
  1476. )
  1477. logger.info("re-format attention.linear_qkv.weight")
  1478. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1479. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1480. data_torch = torch.cat(
  1481. (
  1482. qkv_bias[:, 0, :].reshape((n_embed,)),
  1483. qkv_bias[:, 1, :].reshape((n_embed,)),
  1484. qkv_bias[:, 2, :].reshape((n_embed,)),
  1485. ),
  1486. dim=0,
  1487. )
  1488. logger.info("re-format attention.linear_qkv.bias")
  1489. tensors.append((self.map_tensor_name(name), data_torch))
  1490. return tensors
  1491. @ModelBase.register("MPTForCausalLM")
  1492. class MPTModel(TextModel):
  1493. model_arch = gguf.MODEL_ARCH.MPT
  1494. def set_vocab(self):
  1495. try:
  1496. self._set_vocab_gpt2()
  1497. except Exception:
  1498. # Fallback for SEA-LION model
  1499. self._set_vocab_sentencepiece()
  1500. self.gguf_writer.add_add_bos_token(False)
  1501. self.gguf_writer.add_pad_token_id(3)
  1502. self.gguf_writer.add_eos_token_id(1)
  1503. self.gguf_writer.add_unk_token_id(0)
  1504. def set_gguf_parameters(self):
  1505. block_count = self.hparams["n_layers"]
  1506. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1507. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1508. self.gguf_writer.add_block_count(block_count)
  1509. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1510. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1511. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1512. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1513. self.gguf_writer.add_layer_norm_eps(1e-5)
  1514. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1515. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1516. if self.hparams["attn_config"]["alibi"]:
  1517. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1518. else:
  1519. self.gguf_writer.add_max_alibi_bias(0.0)
  1520. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1521. del bid # unused
  1522. if "scales" in name:
  1523. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1524. new_name = new_name.replace("scales", "act.scales")
  1525. else:
  1526. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1527. return [(new_name, data_torch)]
  1528. @ModelBase.register("OrionForCausalLM")
  1529. class OrionModel(TextModel):
  1530. model_arch = gguf.MODEL_ARCH.ORION
  1531. def set_vocab(self):
  1532. self._set_vocab_sentencepiece()
  1533. def set_gguf_parameters(self):
  1534. block_count = self.hparams["num_hidden_layers"]
  1535. head_count = self.hparams["num_attention_heads"]
  1536. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1537. ctx_length = 0
  1538. if "max_sequence_length" in self.hparams:
  1539. ctx_length = self.hparams["max_sequence_length"]
  1540. elif "max_position_embeddings" in self.hparams:
  1541. ctx_length = self.hparams["max_position_embeddings"]
  1542. elif "model_max_length" in self.hparams:
  1543. ctx_length = self.hparams["model_max_length"]
  1544. else:
  1545. raise ValueError("gguf: can not find ctx length parameter.")
  1546. self.gguf_writer.add_file_type(self.ftype)
  1547. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1548. self.gguf_writer.add_context_length(ctx_length)
  1549. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1550. self.gguf_writer.add_block_count(block_count)
  1551. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1552. self.gguf_writer.add_head_count(head_count)
  1553. self.gguf_writer.add_head_count_kv(head_count_kv)
  1554. # note: config provides rms norm but it is actually layer norm
  1555. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1556. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1557. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1558. class BaichuanModel(TextModel):
  1559. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1560. def set_vocab(self):
  1561. self._set_vocab_sentencepiece()
  1562. def set_gguf_parameters(self):
  1563. block_count = self.hparams["num_hidden_layers"]
  1564. head_count = self.hparams["num_attention_heads"]
  1565. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1566. ctx_length = 0
  1567. if "max_sequence_length" in self.hparams:
  1568. ctx_length = self.hparams["max_sequence_length"]
  1569. elif "max_position_embeddings" in self.hparams:
  1570. ctx_length = self.hparams["max_position_embeddings"]
  1571. elif "model_max_length" in self.hparams:
  1572. ctx_length = self.hparams["model_max_length"]
  1573. else:
  1574. raise ValueError("gguf: can not find ctx length parameter.")
  1575. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1576. self.gguf_writer.add_context_length(ctx_length)
  1577. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1578. self.gguf_writer.add_block_count(block_count)
  1579. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1580. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1581. self.gguf_writer.add_head_count(head_count)
  1582. self.gguf_writer.add_head_count_kv(head_count_kv)
  1583. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1584. self.gguf_writer.add_file_type(self.ftype)
  1585. rope_scaling = self.hparams.get("rope_scaling") or {}
  1586. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1587. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1588. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1590. head_count = self.hparams["num_attention_heads"]
  1591. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1592. tensors: list[tuple[str, Tensor]] = []
  1593. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1594. logger.info(f"Unpacking and permuting layer {bid}")
  1595. tensors = [
  1596. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1597. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1598. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1599. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1600. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1601. self._reverse_hf_part(data_torch, 2)),
  1602. ]
  1603. else:
  1604. tensors = [(self.map_tensor_name(name), data_torch)]
  1605. return tensors
  1606. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1607. if n_kv_head is not None and n_head != n_kv_head:
  1608. n_head //= n_kv_head
  1609. return (
  1610. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1611. .swapaxes(1, 2)
  1612. .reshape(weights.shape)
  1613. )
  1614. def _reverse_hf_permute_part(
  1615. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1616. ) -> Tensor:
  1617. r = weights.shape[0] // 3
  1618. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1619. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1620. r = weights.shape[0] // 3
  1621. return weights[r * n_part:r * n_part + r, ...]
  1622. @ModelBase.register("XverseForCausalLM")
  1623. class XverseModel(TextModel):
  1624. model_arch = gguf.MODEL_ARCH.XVERSE
  1625. def set_vocab(self):
  1626. assert (self.dir_model / "tokenizer.json").is_file()
  1627. dir_model = self.dir_model
  1628. hparams = self.hparams
  1629. tokens: list[bytes] = []
  1630. toktypes: list[int] = []
  1631. from transformers import AutoTokenizer
  1632. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1633. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1634. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1635. # because vocab_size is the count of items, and indexes start at 0.
  1636. max_vocab_index = max(tokenizer.get_vocab().values())
  1637. if max_vocab_index >= vocab_size:
  1638. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1639. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1640. added_vocab = tokenizer.get_added_vocab()
  1641. for token_id in range(vocab_size):
  1642. token_text = reverse_vocab[token_id].encode('utf-8')
  1643. # replace "\x00" to string with length > 0
  1644. if token_text == b"\x00":
  1645. toktype = gguf.TokenType.BYTE # special
  1646. token_text = f"<{token_text}>".encode('utf-8')
  1647. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1648. toktype = gguf.TokenType.BYTE # special
  1649. elif reverse_vocab[token_id] in added_vocab:
  1650. if tokenizer.added_tokens_decoder[token_id].special:
  1651. toktype = gguf.TokenType.CONTROL
  1652. else:
  1653. toktype = gguf.TokenType.USER_DEFINED
  1654. else:
  1655. toktype = gguf.TokenType.NORMAL
  1656. tokens.append(token_text)
  1657. toktypes.append(toktype)
  1658. self.gguf_writer.add_tokenizer_model("llama")
  1659. self.gguf_writer.add_tokenizer_pre("default")
  1660. self.gguf_writer.add_token_list(tokens)
  1661. self.gguf_writer.add_token_types(toktypes)
  1662. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1663. special_vocab.add_to_gguf(self.gguf_writer)
  1664. def set_gguf_parameters(self):
  1665. block_count = self.hparams["num_hidden_layers"]
  1666. head_count = self.hparams["num_attention_heads"]
  1667. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1668. ctx_length = 0
  1669. if "max_sequence_length" in self.hparams:
  1670. ctx_length = self.hparams["max_sequence_length"]
  1671. elif "max_position_embeddings" in self.hparams:
  1672. ctx_length = self.hparams["max_position_embeddings"]
  1673. elif "model_max_length" in self.hparams:
  1674. ctx_length = self.hparams["model_max_length"]
  1675. else:
  1676. raise ValueError("gguf: can not find ctx length parameter.")
  1677. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1678. self.gguf_writer.add_context_length(ctx_length)
  1679. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1680. self.gguf_writer.add_block_count(block_count)
  1681. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1682. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1683. self.gguf_writer.add_head_count(head_count)
  1684. self.gguf_writer.add_head_count_kv(head_count_kv)
  1685. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1686. self.gguf_writer.add_file_type(self.ftype)
  1687. rope_scaling = self.hparams.get("rope_scaling") or {}
  1688. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1689. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1690. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1691. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1692. del bid # unused
  1693. head_count = self.hparams["num_attention_heads"]
  1694. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1695. # HF models permute some of the tensors, so we need to undo that
  1696. if name.endswith("q_proj.weight"):
  1697. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1698. if name.endswith("k_proj.weight"):
  1699. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1700. return [(self.map_tensor_name(name), data_torch)]
  1701. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1702. if n_kv_head is not None and n_head != n_kv_head:
  1703. n_head //= n_kv_head
  1704. return (
  1705. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1706. .swapaxes(1, 2)
  1707. .reshape(weights.shape)
  1708. )
  1709. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1710. class FalconModel(TextModel):
  1711. model_arch = gguf.MODEL_ARCH.FALCON
  1712. def set_gguf_parameters(self):
  1713. block_count = self.hparams.get("num_hidden_layers")
  1714. if block_count is None:
  1715. block_count = self.hparams["n_layer"] # old name
  1716. n_head = self.hparams.get("num_attention_heads")
  1717. if n_head is None:
  1718. n_head = self.hparams["n_head"] # old name
  1719. n_head_kv = self.hparams.get("num_kv_heads")
  1720. if n_head_kv is None:
  1721. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1722. self.gguf_writer.add_context_length(2048) # not in config.json
  1723. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1724. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1725. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1726. self.gguf_writer.add_block_count(block_count)
  1727. self.gguf_writer.add_head_count(n_head)
  1728. self.gguf_writer.add_head_count_kv(n_head_kv)
  1729. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1730. self.gguf_writer.add_file_type(self.ftype)
  1731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1732. del bid # unused
  1733. # QKV tensor transform
  1734. # The original query_key_value tensor contains n_head_kv "kv groups",
  1735. # each consisting of n_head/n_head_kv query weights followed by one key
  1736. # and one value weight (shared by all query heads in the kv group).
  1737. # This layout makes it a big pain to work with in GGML.
  1738. # So we rearrange them here,, so that we have n_head query weights
  1739. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1740. # in contiguous fashion.
  1741. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1742. if "query_key_value" in name:
  1743. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1744. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1745. head_dim = self.hparams["hidden_size"] // n_head
  1746. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1747. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1748. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1749. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1750. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1751. return [(self.map_tensor_name(name), data_torch)]
  1752. @ModelBase.register("GPTBigCodeForCausalLM")
  1753. class StarCoderModel(TextModel):
  1754. model_arch = gguf.MODEL_ARCH.STARCODER
  1755. def set_gguf_parameters(self):
  1756. block_count = self.hparams["n_layer"]
  1757. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1758. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1759. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1760. self.gguf_writer.add_block_count(block_count)
  1761. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1762. self.gguf_writer.add_head_count_kv(1)
  1763. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1764. self.gguf_writer.add_file_type(self.ftype)
  1765. @ModelBase.register("GPTRefactForCausalLM")
  1766. class RefactModel(TextModel):
  1767. model_arch = gguf.MODEL_ARCH.REFACT
  1768. def set_vocab(self):
  1769. super().set_vocab()
  1770. # TODO: how to determine special FIM tokens automatically?
  1771. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1772. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1773. special_vocab._set_special_token("prefix", 1)
  1774. special_vocab._set_special_token("suffix", 3)
  1775. special_vocab._set_special_token("middle", 2)
  1776. special_vocab.chat_template = None # do not add it twice
  1777. special_vocab.add_to_gguf(self.gguf_writer)
  1778. def set_gguf_parameters(self):
  1779. hidden_dim = self.hparams["n_embd"]
  1780. inner_dim = 4 * hidden_dim
  1781. hidden_dim = int(2 * inner_dim / 3)
  1782. multiple_of = 256
  1783. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1784. block_count = self.hparams["n_layer"]
  1785. # refact uses Alibi. So this is from config.json which might be used by training.
  1786. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1787. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1788. self.gguf_writer.add_feed_forward_length(ff_dim)
  1789. self.gguf_writer.add_block_count(block_count)
  1790. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1791. self.gguf_writer.add_head_count_kv(1)
  1792. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1793. self.gguf_writer.add_file_type(self.ftype)
  1794. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1795. hidden_dim = self.hparams["n_embd"]
  1796. inner_dim = 4 * hidden_dim
  1797. hidden_dim = int(2 * inner_dim / 3)
  1798. multiple_of = 256
  1799. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1800. n_head = self.hparams["n_head"]
  1801. n_head_kv = 1
  1802. head_dim = self.hparams["n_embd"] // n_head
  1803. tensors: list[tuple[str, Tensor]] = []
  1804. if bid is not None:
  1805. if name == f"transformer.h.{bid}.attn.kv.weight":
  1806. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1807. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1808. elif name == f"transformer.h.{bid}.attn.q.weight":
  1809. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1810. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1811. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1812. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1813. if len(tensors) == 0:
  1814. tensors.append((self.map_tensor_name(name), data_torch))
  1815. return tensors
  1816. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1817. class StableLMModel(TextModel):
  1818. model_arch = gguf.MODEL_ARCH.STABLELM
  1819. def set_vocab(self):
  1820. if (self.dir_model / "tokenizer.json").is_file():
  1821. self._set_vocab_gpt2()
  1822. else:
  1823. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1824. self._set_vocab_qwen()
  1825. def set_gguf_parameters(self):
  1826. hparams = self.hparams
  1827. block_count = hparams["num_hidden_layers"]
  1828. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1829. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1830. self.gguf_writer.add_block_count(block_count)
  1831. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1832. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1833. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1834. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1835. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1836. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1837. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1838. self.gguf_writer.add_file_type(self.ftype)
  1839. _q_norms: list[dict[str, Tensor]] | None = None
  1840. _k_norms: list[dict[str, Tensor]] | None = None
  1841. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1842. n_head = self.hparams["num_attention_heads"]
  1843. n_kv_head = self.hparams["num_key_value_heads"]
  1844. if name.find("q_layernorm.norms") != -1:
  1845. assert bid is not None
  1846. if self._q_norms is None:
  1847. self._q_norms = [{} for _ in range(self.block_count)]
  1848. self._q_norms[bid][name] = data_torch
  1849. if len(self._q_norms[bid]) >= n_head:
  1850. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1851. else:
  1852. return []
  1853. if name.find("k_layernorm.norms") != -1:
  1854. assert bid is not None
  1855. if self._k_norms is None:
  1856. self._k_norms = [{} for _ in range(self.block_count)]
  1857. self._k_norms[bid][name] = data_torch
  1858. if len(self._k_norms[bid]) >= n_kv_head:
  1859. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1860. else:
  1861. return []
  1862. return [(self.map_tensor_name(name), data_torch)]
  1863. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1864. datas: list[Tensor] = []
  1865. # extract the norms in order
  1866. for xid in range(n_head):
  1867. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1868. datas.append(norms[ename])
  1869. del norms[ename]
  1870. data_torch = torch.stack(datas, dim=0)
  1871. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1872. new_name = self.map_tensor_name(merged_name)
  1873. return [(new_name, data_torch)]
  1874. def prepare_tensors(self):
  1875. super().prepare_tensors()
  1876. if self._q_norms is not None or self._k_norms is not None:
  1877. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1878. norms = (
  1879. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1880. ) + (
  1881. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1882. )
  1883. if len(norms) > 0:
  1884. raise ValueError(f"Unprocessed norms: {norms}")
  1885. @ModelBase.register(
  1886. "LLaMAForCausalLM",
  1887. "LlamaForCausalLM",
  1888. "MistralForCausalLM",
  1889. "MixtralForCausalLM",
  1890. "VLlama3ForCausalLM",
  1891. "LlavaForConditionalGeneration",
  1892. "VoxtralForConditionalGeneration",
  1893. "LlamaModel")
  1894. class LlamaModel(TextModel):
  1895. model_arch = gguf.MODEL_ARCH.LLAMA
  1896. undo_permute = True
  1897. def __init__(self, *args, **kwargs):
  1898. super().__init__(*args, **kwargs)
  1899. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1900. if self.hf_arch == "VLlama3ForCausalLM":
  1901. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1902. def _set_vocab_mistral(self):
  1903. if not _mistral_common_installed:
  1904. raise ImportError(_mistral_import_error_msg)
  1905. vocab = MistralVocab(self.dir_model)
  1906. logger.info(
  1907. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1908. )
  1909. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1910. tokens = []
  1911. scores = []
  1912. toktypes = []
  1913. for text, score, toktype in vocab.all_tokens():
  1914. tokens.append(text)
  1915. scores.append(score)
  1916. toktypes.append(toktype)
  1917. assert len(tokens) == vocab.vocab_size, (
  1918. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1919. )
  1920. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1921. self.gguf_writer.add_tokenizer_pre("tekken")
  1922. self.gguf_writer.add_token_merges(
  1923. vocab.extract_vocab_merges_from_model()
  1924. )
  1925. logger.info(
  1926. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1927. )
  1928. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1929. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1930. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1931. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1932. self.gguf_writer.add_token_list(tokens)
  1933. self.gguf_writer.add_token_scores(scores)
  1934. self.gguf_writer.add_token_types(toktypes)
  1935. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1936. self.gguf_writer.add_add_bos_token(True)
  1937. self.gguf_writer.add_add_eos_token(False)
  1938. template_dir = Path(__file__).parent / "models/templates/"
  1939. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1940. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1941. if self.is_mistral_format:
  1942. logger.info(
  1943. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1944. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1945. )
  1946. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1947. self.gguf_writer.add_chat_template(template)
  1948. else:
  1949. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1950. def set_vocab(self):
  1951. if self.is_mistral_format:
  1952. return self._set_vocab_mistral()
  1953. path_tekken_json = self.dir_model / "tekken.json"
  1954. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1955. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1956. self._set_vocab_mistral()
  1957. try:
  1958. self._set_vocab_sentencepiece()
  1959. except FileNotFoundError:
  1960. try:
  1961. self._set_vocab_llama_hf()
  1962. except (FileNotFoundError, TypeError):
  1963. # Llama 3
  1964. self._set_vocab_gpt2()
  1965. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1966. if self.hparams.get("vocab_size", 32000) == 32016:
  1967. special_vocab = gguf.SpecialVocab(
  1968. self.dir_model, load_merges=False,
  1969. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1970. )
  1971. special_vocab._set_special_token("prefix", 32007)
  1972. special_vocab._set_special_token("suffix", 32008)
  1973. special_vocab._set_special_token("middle", 32009)
  1974. special_vocab._set_special_token("eot", 32010)
  1975. special_vocab.add_to_gguf(self.gguf_writer)
  1976. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1977. if tokenizer_config_file.is_file():
  1978. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1979. tokenizer_config_json = json.load(f)
  1980. if "add_prefix_space" in tokenizer_config_json:
  1981. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1982. # Apply to granite small models only
  1983. if self.hparams.get("vocab_size", 32000) == 49152:
  1984. self.gguf_writer.add_add_bos_token(False)
  1985. def set_gguf_parameters(self):
  1986. super().set_gguf_parameters()
  1987. hparams = self.hparams
  1988. if not self.is_mistral_format:
  1989. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1990. if (rope_dim := hparams.get("head_dim")) is None:
  1991. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1992. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1993. rope_scaling = self.hparams.get("rope_scaling") or {}
  1994. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1995. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1996. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1997. @staticmethod
  1998. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1999. if n_head_kv is not None and n_head != n_head_kv:
  2000. n_head = n_head_kv
  2001. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2002. .swapaxes(1, 2)
  2003. .reshape(weights.shape))
  2004. _experts: list[dict[str, Tensor]] | None = None
  2005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2006. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2007. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2008. vision_prefixes = [
  2009. "vision_encoder.",
  2010. "vision_language_adapter.",
  2011. "patch_merger.",
  2012. "pre_mm_projector_norm",
  2013. ]
  2014. is_multimodal_tensor = "vision_tower" in name \
  2015. or "vision_model" in name \
  2016. or "audio_tower" in name \
  2017. or "model.connector" in name \
  2018. or "multi_modal_projector" in name \
  2019. or any(
  2020. name.startswith(prefix)
  2021. for prefix in vision_prefixes
  2022. )
  2023. if is_multimodal_tensor:
  2024. return [] # skip vision tensors
  2025. elif self.hf_arch == "LlamaModel":
  2026. name = "model." + name
  2027. elif name.startswith("model.text_model"):
  2028. name = name.replace("text_model.", "") # for SmolVLM
  2029. elif name.startswith("language_model."):
  2030. name = name.replace("language_model.", "") # for the rest
  2031. if self.undo_permute:
  2032. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2033. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2034. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2035. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2036. # process the experts separately
  2037. if name.find("block_sparse_moe.experts") != -1:
  2038. n_experts = self.hparams["num_local_experts"]
  2039. assert bid is not None
  2040. if self._experts is None:
  2041. self._experts = [{} for _ in range(self.block_count)]
  2042. self._experts[bid][name] = data_torch
  2043. if len(self._experts[bid]) >= n_experts * 3:
  2044. tensors: list[tuple[str, Tensor]] = []
  2045. # merge the experts into a single 3d tensor
  2046. for wid in ["w1", "w2", "w3"]:
  2047. datas: list[Tensor] = []
  2048. for xid in range(n_experts):
  2049. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2050. datas.append(self._experts[bid][ename])
  2051. del self._experts[bid][ename]
  2052. data_torch = torch.stack(datas, dim=0)
  2053. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2054. new_name = self.map_tensor_name(merged_name)
  2055. tensors.append((new_name, data_torch))
  2056. return tensors
  2057. else:
  2058. return []
  2059. return [(self.map_tensor_name(name), data_torch)]
  2060. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2061. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2062. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2063. base = self.hparams.get("rope_theta", 10000.0)
  2064. if (dim := self.hparams.get("head_dim")) is None:
  2065. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2066. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2067. factor = rope_scaling.get("factor", 8.0)
  2068. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2069. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2070. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2071. low_freq_wavelen = old_context_len / low_freq_factor
  2072. high_freq_wavelen = old_context_len / high_freq_factor
  2073. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2074. rope_factors = []
  2075. for freq in freqs:
  2076. wavelen = 2 * math.pi / freq
  2077. if wavelen < high_freq_wavelen:
  2078. rope_factors.append(1)
  2079. elif wavelen > low_freq_wavelen:
  2080. rope_factors.append(factor)
  2081. else:
  2082. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2083. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2084. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2085. def prepare_tensors(self):
  2086. super().prepare_tensors()
  2087. if self._experts is not None:
  2088. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2089. experts = [k for d in self._experts for k in d.keys()]
  2090. if len(experts) > 0:
  2091. raise ValueError(f"Unprocessed experts: {experts}")
  2092. @ModelBase.register("ArceeForCausalLM")
  2093. class ArceeModel(LlamaModel):
  2094. model_arch = gguf.MODEL_ARCH.ARCEE
  2095. def set_gguf_parameters(self):
  2096. super().set_gguf_parameters()
  2097. self._try_set_pooling_type()
  2098. rope_scaling = self.hparams.get("rope_scaling") or {}
  2099. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2100. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2101. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2102. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2103. @ModelBase.register(
  2104. "LlavaForConditionalGeneration", # pixtral
  2105. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2106. )
  2107. class LlavaVisionModel(MmprojModel):
  2108. img_break_tok_id = -1
  2109. use_break_tok = True
  2110. def __init__(self, *args, **kwargs):
  2111. super().__init__(*args, **kwargs)
  2112. if self.hparams.get("model_type") == "pixtral":
  2113. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2114. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2115. if self.use_break_tok:
  2116. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2117. elif self.is_mistral_format:
  2118. # hparams is already vision config here so norm_eps is only defined in global_config.
  2119. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2120. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2121. if self.use_break_tok:
  2122. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2123. else:
  2124. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2125. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2126. def get_token_id(self, token: str) -> int:
  2127. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2128. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2129. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2130. for id_, token_data in added_tokens_decoder.items():
  2131. if token_data["content"] == token:
  2132. return int(id_)
  2133. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2134. def set_gguf_parameters(self):
  2135. super().set_gguf_parameters()
  2136. hparams = self.hparams
  2137. if hparams.get("model_type") == "pixtral":
  2138. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2139. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2140. # hidden_act
  2141. if hparams["hidden_act"] == "silu":
  2142. self.gguf_writer.add_vision_use_silu(True)
  2143. elif hparams["hidden_act"] == "gelu":
  2144. self.gguf_writer.add_vision_use_gelu(True)
  2145. else:
  2146. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2147. # spatial_merge_size
  2148. if "spatial_merge_size" in self.global_config:
  2149. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2151. del bid # unused
  2152. n_head = (
  2153. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2154. )
  2155. n_kv_head = n_head
  2156. valid_prefixes = (
  2157. "multi_modal_projector.",
  2158. "vision_tower.",
  2159. "vision_encoder.",
  2160. "vision_language_adapter.",
  2161. "patch_merger.",
  2162. "pre_mm_projector_norm",
  2163. )
  2164. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2165. # process vision tensors
  2166. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2167. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2168. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2169. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2170. return [(self.map_tensor_name(name), data_torch)]
  2171. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2172. if self.img_break_tok_id > 0 and embed_key in name:
  2173. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2174. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2175. img_break_embd = data_torch[self.img_break_tok_id]
  2176. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2177. return [(self.map_tensor_name(name), img_break_embd)]
  2178. return [] # skip other tensors
  2179. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2180. class SmolVLMModel(MmprojModel):
  2181. def __init__(self, *args, **kwargs):
  2182. super().__init__(*args, **kwargs)
  2183. if self.hparams["model_type"] == "smolvlm_vision":
  2184. # fix for SmolVLM2, missing some keys in config.json
  2185. # default values are taken from transformers code
  2186. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2187. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2188. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2189. def set_gguf_parameters(self):
  2190. super().set_gguf_parameters()
  2191. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2192. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2193. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2194. self.gguf_writer.add_vision_use_gelu(True)
  2195. # Add the preprocessor longest edge size
  2196. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2197. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2198. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2199. if ".embeddings." in name:
  2200. return gguf.GGMLQuantizationType.F32
  2201. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2202. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2203. del bid # unused
  2204. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2205. if is_vision_tensor:
  2206. return [(self.map_tensor_name(name), data_torch)]
  2207. return [] # skip other tensors
  2208. @ModelBase.register(
  2209. "Llama4ForConditionalGeneration",
  2210. "Llama4ForCausalLM",
  2211. )
  2212. class Llama4Model(LlamaModel):
  2213. model_arch = gguf.MODEL_ARCH.LLAMA4
  2214. undo_permute = False
  2215. def __init__(self, *args, **kwargs):
  2216. super().__init__(*args, **kwargs)
  2217. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2218. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2219. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2220. def set_vocab(self):
  2221. self._set_vocab_gpt2()
  2222. def set_gguf_parameters(self):
  2223. super().set_gguf_parameters()
  2224. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2225. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2226. if "layer_types" in self.hparams:
  2227. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2228. # all layers are full attention (for MobileLLM), disable swa
  2229. self.gguf_writer.add_sliding_window(0)
  2230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2231. if name.startswith("language_model."):
  2232. name = name.replace("language_model.", "")
  2233. # split the gate_up into gate and up
  2234. if "gate_up_proj" in name:
  2235. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2236. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2237. dim_half = data_torch.shape[-1] // 2
  2238. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2239. return [
  2240. (self.map_tensor_name(name_gate), gate_proj_weight),
  2241. (self.map_tensor_name(name_up), up_proj_weight)
  2242. ]
  2243. if name.endswith("down_proj"):
  2244. name += ".weight"
  2245. data_torch = data_torch.transpose(-1, -2)
  2246. if "multi_modal_projector" in name or "vision_model" in name:
  2247. return []
  2248. return super().modify_tensors(data_torch, name, bid)
  2249. @ModelBase.register("Llama4ForConditionalGeneration")
  2250. class Llama4VisionModel(MmprojModel):
  2251. def set_gguf_parameters(self):
  2252. super().set_gguf_parameters()
  2253. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2254. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2255. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2256. assert self.hparams["hidden_act"] == "gelu"
  2257. self.gguf_writer.add_vision_use_gelu(True)
  2258. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2259. del bid # unused
  2260. if "multi_modal_projector" in name or "vision_model" in name:
  2261. # process vision tensors
  2262. if "positional_embedding_vlm" in name and ".weight" not in name:
  2263. name += ".weight"
  2264. if "multi_modal_projector.linear_1" in name:
  2265. # despite the name with number postfix, this is a single fully connected layer
  2266. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2267. return [(self.map_tensor_name(name), data_torch)]
  2268. return []
  2269. @ModelBase.register("Mistral3ForConditionalGeneration")
  2270. class Mistral3Model(LlamaModel):
  2271. model_arch = gguf.MODEL_ARCH.LLAMA
  2272. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2273. name = name.replace("language_model.", "")
  2274. if "multi_modal_projector" in name or "vision_tower" in name:
  2275. return []
  2276. return super().modify_tensors(data_torch, name, bid)
  2277. @ModelBase.register("DeciLMForCausalLM")
  2278. class DeciModel(TextModel):
  2279. model_arch = gguf.MODEL_ARCH.DECI
  2280. @staticmethod
  2281. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2282. # DeciLM-specific code
  2283. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2284. return DeciModel._find_multiple(intermediate_size, 256)
  2285. @staticmethod
  2286. def _find_multiple(n: int, k: int) -> int:
  2287. # DeciLM-specific code
  2288. if n % k == 0:
  2289. return n
  2290. return n + k - (n % k)
  2291. def __init__(self, *args, **kwargs):
  2292. super().__init__(*args, **kwargs)
  2293. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2294. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2295. assert self.block_count == len(_block_configs)
  2296. self._num_kv_heads = list()
  2297. self._num_heads = list()
  2298. _ffn_multipliers = list()
  2299. # ***linear attention layer***
  2300. # if n_heads_in_group is None and replace_with_linear is True
  2301. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2302. # ***attention-free layer***
  2303. # if n_heads_in_group is None and replace_with_linear is False
  2304. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2305. # ***normal attention-layer***
  2306. # if n_heads_in_group is not None, then
  2307. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2308. # _num_heads[il] is num_attention_head
  2309. # ***dummy layer*** for nemotron 253B
  2310. # if n_heads_in_group is None and ffn_mult is None
  2311. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2312. for il in range(len(_block_configs)):
  2313. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2314. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2315. self._num_kv_heads.append(0)
  2316. self._num_heads.append(self.hparams["num_attention_heads"])
  2317. else:
  2318. self._num_kv_heads.append(0)
  2319. self._num_heads.append(0)
  2320. else:
  2321. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2322. self._num_heads.append(self.hparams["num_attention_heads"])
  2323. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2324. _ffn_multipliers.append(0.0)
  2325. else:
  2326. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2327. assert self.block_count == len(self._num_kv_heads)
  2328. assert self.block_count == len(self._num_heads)
  2329. assert self.block_count == len(_ffn_multipliers)
  2330. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2331. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2332. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2333. self._ffn_dims: list[int] = [
  2334. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2335. for multiplier in _ffn_multipliers
  2336. ]
  2337. def set_vocab(self):
  2338. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2339. # eos_token from '|eot_id|' to '|end_of_text|'
  2340. if self.hparams.get("vocab_size", 128256) == 128256:
  2341. tokens, toktypes, tokpre = self.get_vocab_base()
  2342. self.gguf_writer.add_tokenizer_model("gpt2")
  2343. self.gguf_writer.add_tokenizer_pre(tokpre)
  2344. self.gguf_writer.add_token_list(tokens)
  2345. self.gguf_writer.add_token_types(toktypes)
  2346. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2347. special_vocab.add_to_gguf(self.gguf_writer)
  2348. else:
  2349. # DeciLM-7B
  2350. self._set_vocab_llama_hf()
  2351. def set_gguf_parameters(self):
  2352. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2353. assert self.block_count == len(self._num_kv_heads)
  2354. assert self.block_count == len(self._num_heads)
  2355. assert self.block_count == len(self._ffn_dims)
  2356. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2357. self.gguf_writer.add_rope_freq_base(rope_theta)
  2358. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2359. self.gguf_writer.add_head_count(self._num_heads)
  2360. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2361. self.gguf_writer.add_block_count(self.block_count)
  2362. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2363. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2364. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2365. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2366. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2367. self.gguf_writer.add_file_type(self.ftype)
  2368. else: # DeciLM-7B
  2369. super().set_gguf_parameters()
  2370. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2371. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2372. assert self.block_count == len(self._num_kv_heads)
  2373. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2374. hparams = self.hparams
  2375. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2376. if (rope_dim := hparams.get("head_dim")) is None:
  2377. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2378. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2379. rope_scaling = self.hparams.get("rope_scaling") or {}
  2380. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2381. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2382. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2383. @staticmethod
  2384. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2385. if n_head_kv is not None and n_head != n_head_kv:
  2386. n_head = n_head_kv
  2387. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2388. .swapaxes(1, 2)
  2389. .reshape(weights.shape))
  2390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2391. n_head = self.hparams["num_attention_heads"]
  2392. if bid is not None:
  2393. if "num_key_value_heads_per_layer" in self.hparams:
  2394. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2395. elif "block_configs" in self.hparams:
  2396. n_kv_head = self._num_kv_heads[bid]
  2397. n_head = self._num_heads[bid]
  2398. else:
  2399. n_kv_head = self.hparams.get("num_key_value_heads")
  2400. else:
  2401. n_kv_head = self.hparams.get("num_key_value_heads")
  2402. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2403. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2404. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2405. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2406. return [(self.map_tensor_name(name), data_torch)]
  2407. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2408. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2409. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2410. base = self.hparams.get("rope_theta", 10000.0)
  2411. if (dim := self.hparams.get("head_dim")) is None:
  2412. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2413. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2414. factor = rope_scaling.get("factor", 8.0)
  2415. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2416. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2417. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2418. low_freq_wavelen = old_context_len / low_freq_factor
  2419. high_freq_wavelen = old_context_len / high_freq_factor
  2420. assert low_freq_wavelen != high_freq_wavelen
  2421. rope_factors = []
  2422. for freq in freqs:
  2423. wavelen = 2 * math.pi / freq
  2424. if wavelen < high_freq_wavelen:
  2425. rope_factors.append(1)
  2426. elif wavelen > low_freq_wavelen:
  2427. rope_factors.append(factor)
  2428. else:
  2429. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2430. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2431. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2432. def prepare_tensors(self):
  2433. super().prepare_tensors()
  2434. @ModelBase.register("BitnetForCausalLM")
  2435. class BitnetModel(TextModel):
  2436. model_arch = gguf.MODEL_ARCH.BITNET
  2437. def set_vocab(self):
  2438. self._set_vocab_sentencepiece()
  2439. def set_gguf_parameters(self):
  2440. super().set_gguf_parameters()
  2441. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2442. self.gguf_writer.add_rope_scaling_factor(1.0)
  2443. def weight_quant(self, weight: Tensor) -> Tensor:
  2444. dtype = weight.dtype
  2445. weight = weight.float()
  2446. scale = weight.abs().mean().clamp(min=1e-5)
  2447. iscale = 1 / scale
  2448. # TODO: multiply by the scale directly instead of inverting it twice
  2449. # (this is also unnecessarily doubly inverted upstream)
  2450. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2451. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2452. return result.type(dtype)
  2453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2454. new_name = self.map_tensor_name(name)
  2455. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2456. gguf.MODEL_TENSOR.ATTN_Q,
  2457. gguf.MODEL_TENSOR.ATTN_K,
  2458. gguf.MODEL_TENSOR.ATTN_V,
  2459. gguf.MODEL_TENSOR.ATTN_OUT,
  2460. gguf.MODEL_TENSOR.FFN_UP,
  2461. gguf.MODEL_TENSOR.FFN_DOWN,
  2462. gguf.MODEL_TENSOR.FFN_GATE,
  2463. ]):
  2464. # transform weight into 1/0/-1 (in fp32)
  2465. data_torch = self.weight_quant(data_torch)
  2466. yield (new_name, data_torch)
  2467. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2468. class GrokModel(TextModel):
  2469. model_arch = gguf.MODEL_ARCH.GROK
  2470. def set_vocab(self):
  2471. if (self.dir_model / 'tokenizer.model').is_file():
  2472. self._set_vocab_sentencepiece()
  2473. return
  2474. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2475. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2476. sys.exit(1)
  2477. self._set_vocab_gpt2()
  2478. def __init__(self, *args, **kwargs):
  2479. super().__init__(*args, **kwargs)
  2480. def set_gguf_parameters(self):
  2481. super().set_gguf_parameters()
  2482. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2483. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2484. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2485. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2486. if (rope_dim := self.hparams.get("head_dim")) is None:
  2487. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2488. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2489. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2490. # Treat "original" as "yarn", seems to have been a mistake
  2491. if self.hparams.get("rope_type") in ("yarn", "original"):
  2492. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2493. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2494. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2495. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2496. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2497. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2498. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2499. if temp_len := self.hparams.get("attn_temperature_len"):
  2500. self.gguf_writer.add_attn_temperature_length(temp_len)
  2501. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2502. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2503. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2504. _experts: list[dict[str, list[Tensor]]] | None = None
  2505. _cur_expert = ""
  2506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2507. tensors: list[tuple[str, Tensor]] = []
  2508. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2509. if not is_expert:
  2510. tensors.append((self.map_tensor_name(name), data_torch))
  2511. # process the experts separately
  2512. if is_expert or self._cur_expert:
  2513. n_experts = self.hparams["num_local_experts"]
  2514. assert bid is not None
  2515. if self._experts is None:
  2516. self._experts = [{} for _ in range(self.block_count)]
  2517. # concatenate split tensors
  2518. if name in self._experts[bid]:
  2519. self._cur_expert = name
  2520. self._experts[bid][name].append(data_torch)
  2521. return []
  2522. elif is_expert:
  2523. self._cur_expert = name
  2524. self._experts[bid][name] = [data_torch]
  2525. return []
  2526. else:
  2527. self._cur_expert = ""
  2528. for bid in range(self.block_count):
  2529. if len(self._experts[bid]) >= n_experts * 3:
  2530. # merge the experts into a single 3d tensor
  2531. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2532. datas: list[Tensor] = []
  2533. for xid in range(n_experts):
  2534. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2535. if ename not in self._experts[bid]:
  2536. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2537. tensor_list = self._experts[bid][ename]
  2538. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2539. del self._experts[bid][ename]
  2540. data_torch = torch.stack(datas, dim=0)
  2541. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2542. new_name = self.map_tensor_name(merged_name)
  2543. yield (new_name, data_torch)
  2544. yield from tensors
  2545. @ModelBase.register("DbrxForCausalLM")
  2546. class DbrxModel(TextModel):
  2547. model_arch = gguf.MODEL_ARCH.DBRX
  2548. def set_gguf_parameters(self):
  2549. ffn_config = self.hparams["ffn_config"]
  2550. attn_config = self.hparams["attn_config"]
  2551. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2552. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2553. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2554. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2555. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2556. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2557. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2558. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2559. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2560. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2561. self.gguf_writer.add_layer_norm_eps(1e-5)
  2562. self.gguf_writer.add_file_type(self.ftype)
  2563. logger.info(f"gguf: file type = {self.ftype}")
  2564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2565. del bid # unused
  2566. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2567. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2568. n_embd = self.hparams["d_model"]
  2569. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2570. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2571. # But llama.cpp moe graph works differently
  2572. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2573. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2574. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2575. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2576. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2577. experts = False
  2578. for exp_tensor_name in exp_tensor_names.keys():
  2579. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2580. experts = True
  2581. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2582. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2583. data_torch = data_torch.permute(*permute_tensor)
  2584. break
  2585. # map tensor names
  2586. # In MoE models the ffn tensors are typically most of the model weights,
  2587. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2588. # Every other model has the weight names ending in .weight,
  2589. # let's assume that is the convention which is not the case for dbrx:
  2590. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2591. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2592. return [(new_name, data_torch)]
  2593. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2594. del name, new_name, bid # unused
  2595. return n_dims > 1
  2596. @ModelBase.register("MiniCPMForCausalLM")
  2597. class MiniCPMModel(TextModel):
  2598. model_arch = gguf.MODEL_ARCH.MINICPM
  2599. def set_gguf_parameters(self):
  2600. super().set_gguf_parameters()
  2601. embedding_scale = float(self.hparams["scale_emb"])
  2602. self.gguf_writer.add_embedding_scale(embedding_scale)
  2603. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2604. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2605. self.gguf_writer.add_residual_scale(residual_scale)
  2606. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2607. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2608. self.gguf_writer.add_logit_scale(logit_scale)
  2609. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2610. rope_scaling = self.hparams.get("rope_scaling") or {}
  2611. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2612. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2613. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2614. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2615. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2616. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2617. if rope_scaling is not None:
  2618. long_factors = rope_scaling.get('long_factor', None)
  2619. short_factors = rope_scaling.get('short_factor', None)
  2620. if long_factors is None or short_factors is None:
  2621. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2622. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2623. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2624. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2625. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2626. def set_vocab(self):
  2627. self._set_vocab_sentencepiece()
  2628. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2629. del bid # unused
  2630. n_head = self.hparams["num_attention_heads"]
  2631. n_kv_head = self.hparams.get("num_key_value_heads")
  2632. # HF models permute some of the tensors, so we need to undo that
  2633. if name.endswith(("q_proj.weight")):
  2634. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2635. if name.endswith(("k_proj.weight")):
  2636. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2637. return [(self.map_tensor_name(name), data_torch)]
  2638. @ModelBase.register("MiniCPM3ForCausalLM")
  2639. class MiniCPM3Model(TextModel):
  2640. model_arch = gguf.MODEL_ARCH.MINICPM3
  2641. def set_gguf_parameters(self):
  2642. hparams = self.hparams
  2643. self.gguf_writer.add_file_type(self.ftype)
  2644. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2645. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2646. self.gguf_writer.add_block_count(self.block_count)
  2647. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2648. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2649. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2650. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2651. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2652. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2653. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2654. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2655. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2656. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2657. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2658. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2659. if rope_scaling is not None:
  2660. rope_dims = self.hparams["qk_rope_head_dim"]
  2661. long_factors = rope_scaling.get('long_factor', None)
  2662. short_factors = rope_scaling.get('short_factor', None)
  2663. if long_factors is None or short_factors is None:
  2664. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2665. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2666. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2667. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2668. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2669. def set_vocab(self):
  2670. self._set_vocab_sentencepiece()
  2671. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2672. if n_kv_head is not None and n_head != n_kv_head:
  2673. n_head //= n_kv_head
  2674. return (
  2675. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2676. .swapaxes(1, 2)
  2677. .reshape(weights.shape)
  2678. )
  2679. @ModelBase.register("QWenLMHeadModel")
  2680. class QwenModel(TextModel):
  2681. model_arch = gguf.MODEL_ARCH.QWEN
  2682. @staticmethod
  2683. def token_bytes_to_string(b):
  2684. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2685. byte_encoder = bytes_to_unicode()
  2686. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2687. @staticmethod
  2688. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2689. parts = [bytes([b]) for b in token]
  2690. while True:
  2691. min_idx = None
  2692. min_rank = None
  2693. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2694. rank = mergeable_ranks.get(pair[0] + pair[1])
  2695. if rank is not None and (min_rank is None or rank < min_rank):
  2696. min_idx = i
  2697. min_rank = rank
  2698. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2699. break
  2700. assert min_idx is not None
  2701. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2702. return parts
  2703. def set_vocab(self):
  2704. self._set_vocab_qwen()
  2705. def set_gguf_parameters(self):
  2706. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2707. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2708. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2709. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2710. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2711. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2712. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2713. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2714. self.gguf_writer.add_file_type(self.ftype)
  2715. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2716. class Qwen2Model(TextModel):
  2717. model_arch = gguf.MODEL_ARCH.QWEN2
  2718. def set_vocab(self):
  2719. try:
  2720. self._set_vocab_sentencepiece()
  2721. except FileNotFoundError:
  2722. self._set_vocab_gpt2()
  2723. def set_gguf_parameters(self):
  2724. super().set_gguf_parameters()
  2725. self._try_set_pooling_type()
  2726. rope_scaling = self.hparams.get("rope_scaling") or {}
  2727. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2728. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2729. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2730. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2732. if self.hf_arch == "Qwen2Model":
  2733. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2734. if "language_model." in name:
  2735. name = name.replace("language_model.", "") # for InternVL
  2736. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2737. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2738. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2739. # skip vision and audio tensors
  2740. return []
  2741. yield from super().modify_tensors(data_torch, name, bid)
  2742. @ModelBase.register("DreamModel")
  2743. class DreamModel(TextModel):
  2744. model_arch = gguf.MODEL_ARCH.DREAM
  2745. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2746. tokens: list[str] = []
  2747. toktypes: list[int] = []
  2748. from transformers import AutoTokenizer
  2749. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2750. vocab_dict = tokenizer.get_vocab()
  2751. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2752. assert max(vocab_dict.values()) < vocab_size
  2753. tokpre = self.get_vocab_base_pre(tokenizer)
  2754. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2755. added_vocab = tokenizer.get_added_vocab()
  2756. for i in range(vocab_size):
  2757. if i not in reverse_vocab:
  2758. tokens.append(f"[PAD{i}]")
  2759. toktypes.append(gguf.TokenType.UNUSED)
  2760. elif reverse_vocab[i] in added_vocab:
  2761. tokens.append(reverse_vocab[i])
  2762. # Check if it's a special token - treat special tokens as CONTROL tokens
  2763. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2764. if tokenizer.added_tokens_decoder[i].special:
  2765. toktypes.append(gguf.TokenType.CONTROL)
  2766. else:
  2767. toktypes.append(gguf.TokenType.USER_DEFINED)
  2768. else:
  2769. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2770. toktypes.append(gguf.TokenType.CONTROL)
  2771. else:
  2772. tokens.append(reverse_vocab[i])
  2773. toktypes.append(gguf.TokenType.NORMAL)
  2774. return tokens, toktypes, tokpre
  2775. def set_vocab(self):
  2776. try:
  2777. self._set_vocab_sentencepiece()
  2778. except FileNotFoundError:
  2779. self._set_vocab_gpt2()
  2780. def set_gguf_parameters(self):
  2781. super().set_gguf_parameters()
  2782. self._try_set_pooling_type()
  2783. # Dream models use non-causal attention for diffusion
  2784. self.gguf_writer.add_causal_attention(False)
  2785. # Handle RoPE scaling similar to Qwen2
  2786. rope_scaling = self.hparams.get("rope_scaling") or {}
  2787. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2788. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2789. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2790. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2791. # Add Dream-specific parameters
  2792. mask_token_id = self.hparams.get("mask_token_id")
  2793. if mask_token_id is not None:
  2794. self.gguf_writer.add_mask_token_id(mask_token_id)
  2795. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2796. # Dream model tensors should be mapped directly since it's the base model
  2797. yield from super().modify_tensors(data_torch, name, bid)
  2798. @ModelBase.register("LLaDAModelLM")
  2799. class LLaDAModel(TextModel):
  2800. model_arch = gguf.MODEL_ARCH.LLADA
  2801. undo_permute = True
  2802. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2803. tokens: list[str] = []
  2804. toktypes: list[int] = []
  2805. from transformers import AutoTokenizer
  2806. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2807. vocab_dict = tokenizer.get_vocab()
  2808. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2809. assert max(vocab_dict.values()) < vocab_size
  2810. tokpre = self.get_vocab_base_pre(tokenizer)
  2811. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2812. added_vocab = tokenizer.get_added_vocab()
  2813. for i in range(vocab_size):
  2814. if i not in reverse_vocab:
  2815. tokens.append(f"[PAD{i}]")
  2816. toktypes.append(gguf.TokenType.UNUSED)
  2817. elif reverse_vocab[i] in added_vocab:
  2818. tokens.append(reverse_vocab[i])
  2819. # Check if it's a special token - treat special tokens as CONTROL tokens
  2820. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2821. if tokenizer.added_tokens_decoder[i].special:
  2822. toktypes.append(gguf.TokenType.CONTROL)
  2823. else:
  2824. toktypes.append(gguf.TokenType.USER_DEFINED)
  2825. else:
  2826. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2827. toktypes.append(gguf.TokenType.CONTROL)
  2828. else:
  2829. tokens.append(reverse_vocab[i])
  2830. toktypes.append(gguf.TokenType.NORMAL)
  2831. return tokens, toktypes, tokpre
  2832. def set_vocab(self):
  2833. self._set_vocab_gpt2()
  2834. # LLaDA specific parameters
  2835. self.gguf_writer.add_add_bos_token(True)
  2836. def set_gguf_parameters(self):
  2837. super().set_gguf_parameters()
  2838. self._try_set_pooling_type()
  2839. # Add parameters similar to LlamaModel
  2840. hparams = self.hparams
  2841. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2842. if (rope_dim := hparams.get("head_dim")) is None:
  2843. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2844. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2845. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2846. # Set context length for LLaDA
  2847. context_length = self.hparams.get("max_sequence_length", 4096)
  2848. self.gguf_writer.add_context_length(context_length)
  2849. # Set embedding length (dimension size)
  2850. embedding_length = self.hparams.get("d_model", 4096)
  2851. self.gguf_writer.add_embedding_length(embedding_length)
  2852. # Set feed forward length (MLP hidden size)
  2853. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2854. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2855. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2856. self.gguf_writer.add_causal_attention(False)
  2857. # LLaDA models don't shift their logits
  2858. self.gguf_writer.add_diffusion_shift_logits(False)
  2859. @staticmethod
  2860. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2861. if n_head_kv is not None and n_head != n_head_kv:
  2862. n_head = n_head_kv
  2863. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2864. .swapaxes(1, 2)
  2865. .reshape(weights.shape))
  2866. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2867. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2868. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2869. if self.undo_permute:
  2870. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2871. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2872. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2873. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2874. # LLaDA model tensors should be mapped directly since it's the base model
  2875. yield from super().modify_tensors(data_torch, name, bid)
  2876. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2877. class Ernie4_5Model(TextModel):
  2878. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2879. def set_vocab(self):
  2880. self._set_vocab_sentencepiece()
  2881. def set_gguf_parameters(self):
  2882. super().set_gguf_parameters()
  2883. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2884. num_heads = self.hparams["num_attention_heads"]
  2885. num_kv_heads = self.hparams["num_key_value_heads"]
  2886. if (head_dim := self.hparams.get("head_dim")) is None:
  2887. head_dim = self.hparams["hidden_size"] // num_heads
  2888. if "ernie." in name:
  2889. name = name.replace("ernie.", "model.")
  2890. # split the qkv weights
  2891. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2892. if "qkv_proj" in name:
  2893. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2894. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2895. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2896. total_q_dim = num_heads * head_dim
  2897. total_k_dim = num_kv_heads * head_dim
  2898. total_v_dim = num_kv_heads * head_dim
  2899. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2900. return [
  2901. (self.map_tensor_name(name_q), q_proj_weight),
  2902. (self.map_tensor_name(name_k), k_proj_weight),
  2903. (self.map_tensor_name(name_v), v_proj_weight)
  2904. ]
  2905. # split the up_gate_proj into gate and up
  2906. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2907. if "up_gate_proj" in name:
  2908. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2909. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2910. dim_half = data_torch.shape[0] // 2
  2911. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2912. return [
  2913. (self.map_tensor_name(name_gate), gate_proj_weight),
  2914. (self.map_tensor_name(name_up), up_proj_weight)
  2915. ]
  2916. return [(self.map_tensor_name(name), data_torch)]
  2917. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2918. class Ernie4_5MoeModel(Ernie4_5Model):
  2919. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2920. _experts: list[dict[str, Tensor]] | None = None
  2921. def __init__(self, *args, **kwargs):
  2922. super().__init__(*args, **kwargs)
  2923. self._experts = [{} for _ in range(self.block_count)]
  2924. def set_gguf_parameters(self):
  2925. super().set_gguf_parameters()
  2926. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2927. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2928. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2929. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2930. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2931. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2932. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2933. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2934. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2935. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2937. # Modify correction bias name as in DeepseekV2
  2938. if name.endswith("e_score_correction_bias"):
  2939. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2940. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2941. match = re.match(r"model.mtp_block.(\d+)", name)
  2942. if match:
  2943. return []
  2944. # skip all other MTP tensors for now
  2945. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2946. if match:
  2947. return []
  2948. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2949. if match:
  2950. return []
  2951. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2952. if match:
  2953. return []
  2954. # process the experts separately
  2955. if name.find("mlp.experts") != -1:
  2956. n_experts = self.hparams["moe_num_experts"]
  2957. assert bid is not None
  2958. if self._experts is None:
  2959. self._experts = [{} for _ in range(self.block_count)]
  2960. self._experts[bid][name] = data_torch
  2961. if len(self._experts[bid]) >= n_experts * 3:
  2962. tensors: list[tuple[str, Tensor]] = []
  2963. # merge the experts into a single 3d tensor
  2964. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2965. datas: list[Tensor] = []
  2966. for xid in range(n_experts):
  2967. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2968. datas.append(self._experts[bid][ename_to_retrieve])
  2969. del self._experts[bid][ename_to_retrieve]
  2970. data_torch = torch.stack(datas, dim=0)
  2971. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2972. new_name = self.map_tensor_name(merged_name)
  2973. tensors.append((new_name, data_torch))
  2974. return tensors
  2975. else:
  2976. return []
  2977. return [(self.map_tensor_name(name), data_torch)]
  2978. def prepare_tensors(self):
  2979. super().prepare_tensors()
  2980. if self._experts is not None:
  2981. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2982. experts = [k for d in self._experts for k in d.keys()]
  2983. if len(experts) > 0:
  2984. raise ValueError(f"Unprocessed experts: {experts}")
  2985. @ModelBase.register(
  2986. "Qwen2VLModel",
  2987. "Qwen2VLForConditionalGeneration",
  2988. "Qwen2_5_VLForConditionalGeneration",
  2989. "Qwen2_5OmniModel",
  2990. )
  2991. class Qwen2VLModel(TextModel):
  2992. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2993. def set_gguf_parameters(self):
  2994. super().set_gguf_parameters()
  2995. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2996. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2997. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2998. def set_vocab(self):
  2999. try:
  3000. self._set_vocab_sentencepiece()
  3001. except FileNotFoundError:
  3002. self._set_vocab_gpt2()
  3003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3004. del bid # unused
  3005. if name.startswith("thinker."):
  3006. name = name.replace("thinker.", "")
  3007. if name.startswith("visual") or name.startswith("audio") or \
  3008. name.startswith("talker") or name.startswith("token2wav"):
  3009. # skip multimodal tensors
  3010. return []
  3011. return [(self.map_tensor_name(name), data_torch)]
  3012. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3013. class Qwen2VLVisionModel(MmprojModel):
  3014. def __init__(self, *args, **kwargs):
  3015. super().__init__(*args, **kwargs)
  3016. assert self.hparams_vision is not None
  3017. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3018. # rename config.json values
  3019. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3020. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3021. if "embed_dim" in self.hparams_vision: # qwen2vl
  3022. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3023. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3024. def set_gguf_parameters(self):
  3025. super().set_gguf_parameters()
  3026. assert self.hparams_vision is not None
  3027. hparams = self.hparams_vision
  3028. model_type = self.global_config['model_type']
  3029. if model_type == 'qwen2_vl':
  3030. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3031. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3032. if model_type == 'qwen2_5_omni':
  3033. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3034. else:
  3035. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3036. self.gguf_writer.add_vision_use_silu(True)
  3037. # find n_wa_pattern (window attention pattern)
  3038. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3039. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3040. n_wa_pattern = fullatt_block_indexes[0] + 1
  3041. # validate n_wa_pattern
  3042. for i in range(1, len(fullatt_block_indexes)):
  3043. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3044. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3045. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3046. else:
  3047. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3048. # default values below are taken from HF tranformers code
  3049. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3050. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3051. if ".position_embd." in new_name:
  3052. return gguf.GGMLQuantizationType.F32
  3053. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3054. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3055. del bid # unused
  3056. if name.startswith("visual."):
  3057. # process visual tensors
  3058. # split QKV tensors if needed
  3059. if ".qkv." in name:
  3060. if data_torch.ndim == 2: # weight
  3061. c3, _ = data_torch.shape
  3062. else: # bias
  3063. c3 = data_torch.shape[0]
  3064. assert c3 % 3 == 0
  3065. c = c3 // 3
  3066. wq = data_torch[:c]
  3067. wk = data_torch[c: c * 2]
  3068. wv = data_torch[c * 2:]
  3069. return [
  3070. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3071. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3072. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3073. ]
  3074. elif 'patch_embed.proj.weight' in name:
  3075. # split Conv3D into Conv2Ds
  3076. c1, c2, kt, kh, kw = data_torch.shape
  3077. del c1, c2, kh, kw # unused
  3078. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3079. return [
  3080. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3081. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3082. ]
  3083. else:
  3084. return [(self.map_tensor_name(name), data_torch)]
  3085. return [] # skip other tensors
  3086. @ModelBase.register("Qwen2_5OmniModel")
  3087. class Qwen25OmniModel(Qwen2VLVisionModel):
  3088. has_vision_encoder = True
  3089. has_audio_encoder = True
  3090. def __init__(self, *args, **kwargs):
  3091. super().__init__(*args, **kwargs)
  3092. assert self.hparams_audio is not None
  3093. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3094. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3095. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3096. def set_gguf_parameters(self):
  3097. super().set_gguf_parameters()
  3098. assert self.hparams_audio is not None
  3099. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3100. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3101. def get_vision_config(self) -> dict[str, Any] | None:
  3102. return self.global_config["thinker_config"].get("vision_config")
  3103. def get_audio_config(self) -> dict[str, Any] | None:
  3104. return self.global_config["thinker_config"].get("audio_config")
  3105. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3106. # SinusoidsPositionEmbedding
  3107. assert self.hparams_audio is not None
  3108. max_timescale = 10000
  3109. length = 1500
  3110. channels = self.hparams_audio["hidden_size"]
  3111. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3112. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3113. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3114. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3115. yield ("audio_tower.embed_positions.weight", pos_embd)
  3116. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3117. if ".conv" in name and ".weight" in name:
  3118. return gguf.GGMLQuantizationType.F16
  3119. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3120. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3121. if name.startswith("thinker."):
  3122. name = name.replace("thinker.", "")
  3123. if name.startswith("audio_tower"):
  3124. # process audio tensors
  3125. if "conv1.bias" in name or "conv2.bias" in name:
  3126. # transpose conv1 and conv2 bias
  3127. data_torch = data_torch.unsqueeze(-1)
  3128. if "audio_bos_eos_token" in name:
  3129. # this tensor is left unused in transformers code
  3130. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3131. return []
  3132. return [(self.map_tensor_name(name), data_torch)]
  3133. return super().modify_tensors(data_torch, name, bid)
  3134. @ModelBase.register("InternVisionModel")
  3135. class InternVisionModel(MmprojModel):
  3136. def set_gguf_parameters(self):
  3137. assert self.hparams_vision is not None
  3138. if isinstance(self.hparams_vision['image_size'], list):
  3139. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3140. if isinstance(self.hparams_vision['patch_size'], list):
  3141. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3142. super().set_gguf_parameters()
  3143. hparams = self.hparams
  3144. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3145. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3146. # hidden_act
  3147. if hparams["hidden_act"] == "silu":
  3148. self.gguf_writer.add_vision_use_silu(True)
  3149. elif hparams["hidden_act"] == "gelu":
  3150. self.gguf_writer.add_vision_use_gelu(True)
  3151. else:
  3152. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3153. # downsample_ratio
  3154. downsample_ratio = self.global_config.get("downsample_ratio")
  3155. assert downsample_ratio is not None
  3156. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3157. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3158. if ".position_embd." in new_name:
  3159. return gguf.GGMLQuantizationType.F32
  3160. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3161. def _mapping_interns1_name(self, name):
  3162. names_map = {
  3163. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3164. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3165. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3166. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3167. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3168. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3169. }
  3170. if name in names_map:
  3171. name = names_map[name]
  3172. return name
  3173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3174. del bid # unused
  3175. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3176. # deal with intern-s1 special case
  3177. name = self._mapping_interns1_name(name)
  3178. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3179. # process visual tensors
  3180. # correct name
  3181. if name.startswith("vision_model"):
  3182. name = "vision_tower." + name
  3183. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3184. name += ".weight"
  3185. # split QKV tensors if needed
  3186. if ".qkv." in name:
  3187. if data_torch.ndim == 2: # weight
  3188. c3, _ = data_torch.shape
  3189. else: # bias
  3190. c3 = data_torch.shape[0]
  3191. assert c3 % 3 == 0
  3192. c = c3 // 3
  3193. wq = data_torch[:c]
  3194. wk = data_torch[c: c * 2]
  3195. wv = data_torch[c * 2:]
  3196. return [
  3197. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3198. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3199. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3200. ]
  3201. return [(self.map_tensor_name(name), data_torch)]
  3202. return [] # skip other tensors
  3203. @ModelBase.register("WavTokenizerDec")
  3204. class WavTokenizerDecModel(TextModel):
  3205. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3207. del bid # unused
  3208. if \
  3209. name.endswith("codebook.cluster_size") or \
  3210. name.endswith("codebook.embed_avg") or \
  3211. name.endswith("codebook.inited"):
  3212. logger.debug(f"Skipping {name!r}")
  3213. return []
  3214. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3215. return [(self.map_tensor_name(name), data_torch)]
  3216. def set_vocab(self):
  3217. self._set_vocab_none()
  3218. def set_gguf_parameters(self):
  3219. super().set_gguf_parameters()
  3220. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3221. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3222. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3223. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3224. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3225. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3226. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3227. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3228. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3229. self.gguf_writer.add_causal_attention(False)
  3230. @ModelBase.register("Qwen2MoeForCausalLM")
  3231. class Qwen2MoeModel(TextModel):
  3232. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3233. def set_gguf_parameters(self):
  3234. super().set_gguf_parameters()
  3235. if (n_experts := self.hparams.get("num_experts")) is not None:
  3236. self.gguf_writer.add_expert_count(n_experts)
  3237. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3238. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3239. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3240. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3241. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3242. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3243. # YaRN is not enabled by default
  3244. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3245. rope_scaling = self.hparams.get("rope_scaling") or {}
  3246. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3247. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3248. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3249. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3250. _experts: list[dict[str, Tensor]] | None = None
  3251. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3252. # process the experts separately
  3253. name = name.replace("language_model.", "") # InternVL
  3254. # handle aggregated expert tensors
  3255. # GGUF stores dimensions reversed from PyTorch, so:
  3256. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3257. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3258. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3259. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3260. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3261. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3262. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3263. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3264. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3265. permuted = data_torch.permute(0, 2, 1).contiguous()
  3266. return [(self.map_tensor_name(mapped), permuted)]
  3267. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3268. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3269. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3270. split_dim = data_torch.shape[-1] // 2
  3271. gate = data_torch[..., :split_dim].contiguous()
  3272. up = data_torch[..., split_dim:].contiguous()
  3273. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3274. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3275. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3276. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3277. base_name = name.removesuffix(".weight")
  3278. base = base_name.rsplit('.', 1)[0]
  3279. mapped_gate = f"{base}.gate_proj.weight"
  3280. mapped_up = f"{base}.up_proj.weight"
  3281. perm_gate = gate.permute(0, 2, 1).contiguous()
  3282. perm_up = up.permute(0, 2, 1).contiguous()
  3283. return [
  3284. (self.map_tensor_name(mapped_gate), perm_gate),
  3285. (self.map_tensor_name(mapped_up), perm_up),
  3286. ]
  3287. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3288. # skip visual tensors
  3289. return []
  3290. if name.find("experts") != -1:
  3291. n_experts = self.hparams["num_experts"]
  3292. assert bid is not None
  3293. if self._experts is None:
  3294. self._experts = [{} for _ in range(self.block_count)]
  3295. self._experts[bid][name] = data_torch
  3296. if len(self._experts[bid]) >= n_experts * 3:
  3297. tensors: list[tuple[str, Tensor]] = []
  3298. # merge the experts into a single 3d tensor
  3299. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3300. datas: list[Tensor] = []
  3301. for xid in range(n_experts):
  3302. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3303. datas.append(self._experts[bid][ename])
  3304. del self._experts[bid][ename]
  3305. data_torch = torch.stack(datas, dim=0)
  3306. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3307. new_name = self.map_tensor_name(merged_name)
  3308. tensors.append((new_name, data_torch))
  3309. return tensors
  3310. else:
  3311. return []
  3312. return [(self.map_tensor_name(name), data_torch)]
  3313. def prepare_tensors(self):
  3314. super().prepare_tensors()
  3315. if self._experts is not None:
  3316. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3317. experts = [k for d in self._experts for k in d.keys()]
  3318. if len(experts) > 0:
  3319. raise ValueError(f"Unprocessed experts: {experts}")
  3320. @ModelBase.register("Qwen3ForCausalLM")
  3321. class Qwen3Model(Qwen2Model):
  3322. model_arch = gguf.MODEL_ARCH.QWEN3
  3323. # extra logic for rerank models
  3324. is_rerank: bool = False
  3325. is_tied_embeddings: bool = False
  3326. token_false_id: int | None = None
  3327. token_true_id: int | None = None
  3328. def __init__(self, *args, **kwargs):
  3329. super().__init__(*args, **kwargs)
  3330. # track for intern-s1-mini
  3331. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3332. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3333. # a bit hacky, but currently the only way to detect if this is a rerank model
  3334. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3335. readme_path = self.dir_model / "README.md"
  3336. readme_text = ""
  3337. if readme_path.exists():
  3338. with readme_path.open("r", encoding="utf-8") as f:
  3339. readme_text = f.read()
  3340. if "# Qwen3-Reranker" in readme_text:
  3341. self._find_rerank_config()
  3342. def set_vocab(self):
  3343. # deal with intern-s1-mini
  3344. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3345. self._set_vocab_interns1()
  3346. return
  3347. super().set_vocab()
  3348. def _find_rerank_config(self):
  3349. from transformers import AutoTokenizer
  3350. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3351. self.is_rerank = True
  3352. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3353. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3354. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3355. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3356. assert self.token_false_id is not None and self.token_true_id is not None
  3357. def set_gguf_parameters(self):
  3358. super().set_gguf_parameters()
  3359. if self.is_rerank:
  3360. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3361. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3362. self.gguf_writer.add_chat_template([{
  3363. "name": "rerank",
  3364. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3365. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3366. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3367. }])
  3368. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3369. # extract "yes" and "no" tokens from the output lm_head tensor
  3370. false_row = data_torch[self.token_false_id]
  3371. true_row = data_torch[self.token_true_id]
  3372. return torch.stack([true_row, false_row], dim=0)
  3373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3374. if "model.vision_" in name:
  3375. # skip multimodal tensors
  3376. return []
  3377. if self.is_rerank:
  3378. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3379. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3380. if is_tied_head or is_real_head:
  3381. cls_out_head = (
  3382. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3383. self._get_cls_out_tensor(data_torch),
  3384. )
  3385. if is_tied_head:
  3386. embed = (self.map_tensor_name(name), data_torch)
  3387. return [cls_out_head, embed]
  3388. if is_real_head:
  3389. return [cls_out_head]
  3390. return super().modify_tensors(data_torch, name, bid)
  3391. @ModelBase.register("Qwen3MoeForCausalLM")
  3392. class Qwen3MoeModel(Qwen2MoeModel):
  3393. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3394. def __init__(self, *args, **kwargs):
  3395. super().__init__(*args, **kwargs)
  3396. hparams = ModelBase.load_hparams(self.dir_model, False)
  3397. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3398. def set_vocab(self):
  3399. # deal with intern-s1
  3400. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3401. self._set_vocab_interns1()
  3402. return
  3403. super().set_vocab()
  3404. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3405. class Qwen3VLVisionModel(MmprojModel):
  3406. def __init__(self, *args, **kwargs):
  3407. super().__init__(*args, **kwargs)
  3408. assert self.hparams_vision is not None
  3409. # Compute image_size if not present
  3410. if "image_size" not in self.hparams_vision:
  3411. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3412. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3413. patch_size = self.hparams_vision.get("patch_size", 16)
  3414. # num_position_embeddings = (image_size / patch_size) ** 2
  3415. # So image_size = sqrt(num_position_embeddings) * patch_size
  3416. image_size = int(num_pos**0.5 * patch_size)
  3417. self.hparams_vision["image_size"] = image_size
  3418. # Rename config values for compatibility
  3419. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3420. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3421. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3422. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3423. self.is_deepstack_layers[idx] = True
  3424. def set_gguf_parameters(self):
  3425. super().set_gguf_parameters()
  3426. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3427. self.gguf_writer.add_vision_use_gelu(True)
  3428. if self.hparams_vision is not None:
  3429. merge_size = self.hparams_vision.get("spatial_merge_size")
  3430. if merge_size is not None:
  3431. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3432. # Use text config's rms_norm_eps for vision attention layernorm eps
  3433. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3434. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3435. if self.is_deepstack_layers:
  3436. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3438. assert self.hparams_vision is not None
  3439. # Skip text model tensors - they go in the text model file
  3440. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3441. return []
  3442. if name.startswith("model.visual."):
  3443. name = name.replace("model.visual.", "visual.", 1)
  3444. if name.startswith("visual.deepstack_merger_list."):
  3445. prefix, rest = name.split(".", maxsplit=3)[2:]
  3446. # prefix is the layer index, convert to absolute clip layer index!
  3447. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3448. target = rest
  3449. tensor_type: gguf.MODEL_TENSOR
  3450. if target.startswith("norm."):
  3451. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3452. suffix = target.split(".", 1)[1]
  3453. elif target.startswith("linear_fc1."):
  3454. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3455. suffix = target.split(".", 1)[1]
  3456. elif target.startswith("linear_fc2."):
  3457. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3458. suffix = target.split(".", 1)[1]
  3459. else:
  3460. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3461. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3462. return [(new_name, data_torch)]
  3463. if name.startswith("visual.merger."):
  3464. suffix = name.split(".", 2)[2]
  3465. if suffix.startswith("linear_fc"):
  3466. fc_idx_str, tail = suffix.split(".", 1)
  3467. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3468. # Qwen3VL has linear_fc1 and linear_fc2
  3469. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3470. if fc_num == 1:
  3471. fc_idx = 0
  3472. elif fc_num == 2:
  3473. fc_idx = 2
  3474. else:
  3475. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3476. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3477. elif suffix.startswith("norm."):
  3478. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3479. else:
  3480. raise ValueError(f"Unexpected merger tensor: {name}")
  3481. return [(new_name, data_torch)]
  3482. if name == "visual.patch_embed.proj.weight":
  3483. # split Conv3D into Conv2Ds along temporal dimension
  3484. c1, c2, kt, _, _ = data_torch.shape
  3485. del c1, c2
  3486. if kt != 2:
  3487. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3488. return [
  3489. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3490. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3491. ]
  3492. if name == "visual.patch_embed.proj.bias":
  3493. # Include the bias - it's used by the C++ code
  3494. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3495. if name.startswith("visual."):
  3496. return [(self.map_tensor_name(name), data_torch)]
  3497. # Fall back to parent class for other tensors
  3498. return super().modify_tensors(data_torch, name, bid)
  3499. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3500. class Qwen3VLTextModel(Qwen3Model):
  3501. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3502. def set_gguf_parameters(self):
  3503. super().set_gguf_parameters()
  3504. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3505. text_config = self.hparams.get("text_config", {})
  3506. # rope_scaling is deprecated in V5, use rope_parameters instead
  3507. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3508. if rope_scaling.get("mrope_section"):
  3509. # mrope_section contains [time, height, width] dimensions
  3510. mrope_section = rope_scaling["mrope_section"]
  3511. # Pad to 4 dimensions [time, height, width, extra]
  3512. while len(mrope_section) < 4:
  3513. mrope_section.append(0)
  3514. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3515. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3516. vision_config = self.hparams.get("vision_config", {})
  3517. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3518. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3519. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3520. # Skip vision tensors - they go in the mmproj file
  3521. if name.startswith("model.visual."):
  3522. return []
  3523. return super().modify_tensors(data_torch, name, bid)
  3524. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3525. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3526. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3527. def set_gguf_parameters(self):
  3528. super().set_gguf_parameters()
  3529. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3530. text_config = self.hparams.get("text_config", {})
  3531. # rope_scaling is deprecated in V5, use rope_parameters instead
  3532. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3533. if rope_scaling.get("mrope_section"):
  3534. # mrope_section contains [time, height, width] dimensions
  3535. mrope_section = rope_scaling["mrope_section"]
  3536. # Pad to 4 dimensions [time, height, width, extra]
  3537. while len(mrope_section) < 4:
  3538. mrope_section.append(0)
  3539. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3540. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3541. vision_config = self.hparams.get("vision_config", {})
  3542. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3543. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3545. # Skip vision tensors - they go in the mmproj file
  3546. if name.startswith("model.visual."):
  3547. return []
  3548. return super().modify_tensors(data_torch, name, bid)
  3549. @ModelBase.register("GPT2LMHeadModel")
  3550. class GPT2Model(TextModel):
  3551. model_arch = gguf.MODEL_ARCH.GPT2
  3552. def set_gguf_parameters(self):
  3553. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3554. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3555. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3556. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3557. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3558. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3559. self.gguf_writer.add_file_type(self.ftype)
  3560. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3561. del bid # unused
  3562. tensors: list[tuple[str, Tensor]] = []
  3563. # we don't need these
  3564. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3565. return tensors
  3566. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3567. data_torch = data_torch.transpose(1, 0)
  3568. new_name = self.map_tensor_name(name)
  3569. tensors.append((new_name, data_torch))
  3570. return tensors
  3571. @ModelBase.register("PhiForCausalLM")
  3572. class Phi2Model(TextModel):
  3573. model_arch = gguf.MODEL_ARCH.PHI2
  3574. def set_gguf_parameters(self):
  3575. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3576. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3577. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3578. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3579. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3580. self.gguf_writer.add_embedding_length(n_embd)
  3581. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3582. self.gguf_writer.add_block_count(block_count)
  3583. self.gguf_writer.add_head_count(n_head)
  3584. self.gguf_writer.add_head_count_kv(n_head)
  3585. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3586. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3587. self.gguf_writer.add_file_type(self.ftype)
  3588. self.gguf_writer.add_add_bos_token(False)
  3589. @ModelBase.register("Phi3ForCausalLM")
  3590. class Phi3MiniModel(TextModel):
  3591. model_arch = gguf.MODEL_ARCH.PHI3
  3592. def set_vocab(self):
  3593. # Phi-4 model uses GPT2Tokenizer
  3594. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3595. if tokenizer_config_file.is_file():
  3596. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3597. tokenizer_config_json = json.load(f)
  3598. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3599. if tokenizer_class == 'GPT2Tokenizer':
  3600. return self._set_vocab_gpt2()
  3601. from sentencepiece import SentencePieceProcessor
  3602. tokenizer_path = self.dir_model / 'tokenizer.model'
  3603. if not tokenizer_path.is_file():
  3604. raise ValueError(f'Error: Missing {tokenizer_path}')
  3605. tokenizer = SentencePieceProcessor()
  3606. tokenizer.LoadFromFile(str(tokenizer_path))
  3607. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3608. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3609. scores: list[float] = [-10000.0] * vocab_size
  3610. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3611. for token_id in range(tokenizer.vocab_size()):
  3612. piece = tokenizer.IdToPiece(token_id)
  3613. text = piece.encode("utf-8")
  3614. score = tokenizer.GetScore(token_id)
  3615. toktype = SentencePieceTokenTypes.NORMAL
  3616. if tokenizer.IsUnknown(token_id):
  3617. toktype = SentencePieceTokenTypes.UNKNOWN
  3618. elif tokenizer.IsControl(token_id):
  3619. toktype = SentencePieceTokenTypes.CONTROL
  3620. elif tokenizer.IsUnused(token_id):
  3621. toktype = SentencePieceTokenTypes.UNUSED
  3622. elif tokenizer.IsByte(token_id):
  3623. toktype = SentencePieceTokenTypes.BYTE
  3624. tokens[token_id] = text
  3625. scores[token_id] = score
  3626. toktypes[token_id] = toktype
  3627. added_tokens_file = self.dir_model / 'added_tokens.json'
  3628. if added_tokens_file.is_file():
  3629. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3630. added_tokens_json = json.load(f)
  3631. for key in added_tokens_json:
  3632. token_id = added_tokens_json[key]
  3633. if token_id >= vocab_size:
  3634. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3635. continue
  3636. tokens[token_id] = key.encode("utf-8")
  3637. scores[token_id] = -1000.0
  3638. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3639. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3640. if tokenizer_config_file.is_file():
  3641. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3642. tokenizer_config_json = json.load(f)
  3643. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3644. for token_id, foken_data in added_tokens_decoder.items():
  3645. token_id = int(token_id)
  3646. token = foken_data["content"].encode("utf-8")
  3647. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3648. if tokens[token_id] != token:
  3649. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3650. tokens[token_id] = token
  3651. scores[token_id] = -1000.0
  3652. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3653. if foken_data.get("special"):
  3654. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3655. tokenizer_file = self.dir_model / 'tokenizer.json'
  3656. if tokenizer_file.is_file():
  3657. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3658. tokenizer_json = json.load(f)
  3659. added_tokens = tokenizer_json.get("added_tokens", [])
  3660. for foken_data in added_tokens:
  3661. token_id = int(foken_data["id"])
  3662. token = foken_data["content"].encode("utf-8")
  3663. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3664. if tokens[token_id] != token:
  3665. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3666. tokens[token_id] = token
  3667. scores[token_id] = -1000.0
  3668. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3669. if foken_data.get("special"):
  3670. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3671. self.gguf_writer.add_tokenizer_model("llama")
  3672. self.gguf_writer.add_tokenizer_pre("default")
  3673. self.gguf_writer.add_token_list(tokens)
  3674. self.gguf_writer.add_token_scores(scores)
  3675. self.gguf_writer.add_token_types(toktypes)
  3676. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3677. special_vocab.add_to_gguf(self.gguf_writer)
  3678. def set_gguf_parameters(self):
  3679. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3680. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3681. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3682. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3683. rms_eps = self.find_hparam(["rms_norm_eps"])
  3684. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3685. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3686. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3687. rope_dims = int(rot_pct * n_embd) // n_head
  3688. self.gguf_writer.add_context_length(max_pos_embds)
  3689. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3690. self.gguf_writer.add_embedding_length(n_embd)
  3691. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3692. self.gguf_writer.add_block_count(block_count)
  3693. self.gguf_writer.add_head_count(n_head)
  3694. self.gguf_writer.add_head_count_kv(n_head_kv)
  3695. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3696. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3697. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3698. self.gguf_writer.add_file_type(self.ftype)
  3699. sliding_window = self.hparams.get("sliding_window")
  3700. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3701. if sliding_window is None:
  3702. sliding_window = 0
  3703. self.gguf_writer.add_sliding_window(sliding_window)
  3704. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3705. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3706. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3707. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3708. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3709. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3710. rope_dims = int(rot_pct * n_embd) // n_head
  3711. # write rope scaling for long context (128k) model
  3712. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3713. if rope_scaling is None:
  3714. return
  3715. scale = max_pos_embds / orig_max_pos_embds
  3716. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3717. if len(rope_scaling_type) == 0:
  3718. raise KeyError('Missing the required key rope_scaling.type')
  3719. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3720. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3721. elif rope_scaling_type == 'yarn':
  3722. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3723. else:
  3724. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3725. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3726. long_factors = rope_scaling.get('long_factor', None)
  3727. short_factors = rope_scaling.get('short_factor', None)
  3728. if long_factors is None or short_factors is None:
  3729. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3730. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3731. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3732. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3733. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3734. @ModelBase.register("PhiMoEForCausalLM")
  3735. class PhiMoeModel(Phi3MiniModel):
  3736. model_arch = gguf.MODEL_ARCH.PHIMOE
  3737. _experts: list[dict[str, Tensor]] | None = None
  3738. def set_gguf_parameters(self):
  3739. super().set_gguf_parameters()
  3740. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3741. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3743. # process the experts separately
  3744. if name.find("block_sparse_moe.experts") != -1:
  3745. n_experts = self.hparams["num_local_experts"]
  3746. assert bid is not None
  3747. if self._experts is None:
  3748. self._experts = [{} for _ in range(self.block_count)]
  3749. self._experts[bid][name] = data_torch
  3750. if len(self._experts[bid]) >= n_experts * 3:
  3751. tensors: list[tuple[str, Tensor]] = []
  3752. # merge the experts into a single 3d tensor
  3753. for w_name in ["w1", "w2", "w3"]:
  3754. datas: list[Tensor] = []
  3755. for xid in range(n_experts):
  3756. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3757. datas.append(self._experts[bid][ename])
  3758. del self._experts[bid][ename]
  3759. data_torch = torch.stack(datas, dim=0)
  3760. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3761. new_name = self.map_tensor_name(merged_name)
  3762. tensors.append((new_name, data_torch))
  3763. return tensors
  3764. else:
  3765. return []
  3766. return [(self.map_tensor_name(name), data_torch)]
  3767. def prepare_tensors(self):
  3768. super().prepare_tensors()
  3769. if self._experts is not None:
  3770. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3771. experts = [k for d in self._experts for k in d.keys()]
  3772. if len(experts) > 0:
  3773. raise ValueError(f"Unprocessed experts: {experts}")
  3774. @ModelBase.register("PlamoForCausalLM")
  3775. class PlamoModel(TextModel):
  3776. model_arch = gguf.MODEL_ARCH.PLAMO
  3777. def set_vocab(self):
  3778. self._set_vocab_sentencepiece()
  3779. def set_gguf_parameters(self):
  3780. hparams = self.hparams
  3781. block_count = hparams["num_hidden_layers"]
  3782. self.gguf_writer.add_context_length(4096) # not in config.json
  3783. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3784. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3785. self.gguf_writer.add_block_count(block_count)
  3786. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3787. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3788. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3789. self.gguf_writer.add_file_type(self.ftype)
  3790. def shuffle_attn_q_weight(self, data_torch):
  3791. assert data_torch.size() == (5120, 5120)
  3792. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3793. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3794. data_torch = torch.reshape(data_torch, (5120, 5120))
  3795. return data_torch
  3796. def shuffle_attn_output_weight(self, data_torch):
  3797. assert data_torch.size() == (5120, 5120)
  3798. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3799. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3800. data_torch = torch.reshape(data_torch, (5120, 5120))
  3801. return data_torch
  3802. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3803. del bid # unused
  3804. new_name = self.map_tensor_name(name)
  3805. # shuffle for broadcasting of gqa in ggml_mul_mat
  3806. if new_name.endswith("attn_q.weight"):
  3807. data_torch = self.shuffle_attn_q_weight(data_torch)
  3808. elif new_name.endswith("attn_output.weight"):
  3809. data_torch = self.shuffle_attn_output_weight(data_torch)
  3810. return [(new_name, data_torch)]
  3811. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3812. class Plamo2Model(TextModel):
  3813. model_arch = gguf.MODEL_ARCH.PLAMO2
  3814. def set_vocab(self):
  3815. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3816. # We need to handle this specially
  3817. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3818. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3819. if not tokenizer_jsonl_path.is_file():
  3820. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3821. # Load tokenizer config
  3822. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3823. tokenizer_config = json.load(f)
  3824. # Load tokens from JSONL file (actually a list format)
  3825. tokens = []
  3826. scores = []
  3827. toktypes = []
  3828. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3829. for line_num, line in enumerate(f):
  3830. if line.strip():
  3831. token_data = json.loads(line)
  3832. # Format: [token, score, type, ?, ?, ?, ?]
  3833. token = token_data[0].encode("utf-8")
  3834. score = float(token_data[1])
  3835. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3836. tokens.append(token)
  3837. scores.append(score)
  3838. # Map token type strings to GGUF token types
  3839. if token_type_str == "UNKNOWN":
  3840. toktypes.append(gguf.TokenType.UNKNOWN)
  3841. elif token_type_str == "CONTROL":
  3842. toktypes.append(gguf.TokenType.CONTROL)
  3843. elif token_type_str == "BYTE":
  3844. toktypes.append(gguf.TokenType.BYTE)
  3845. else:
  3846. # Check for PLaMo-2 special tokens
  3847. token_str = token_data[0]
  3848. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3849. toktypes.append(gguf.TokenType.CONTROL)
  3850. else:
  3851. toktypes.append(gguf.TokenType.NORMAL)
  3852. vocab_size = self.hparams["vocab_size"]
  3853. if vocab_size > len(tokens):
  3854. pad_count = vocab_size - len(tokens)
  3855. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3856. for i in range(1, pad_count + 1):
  3857. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3858. scores.append(-1000.0)
  3859. toktypes.append(gguf.TokenType.UNUSED)
  3860. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3861. self.gguf_writer.add_tokenizer_model("plamo2")
  3862. self.gguf_writer.add_tokenizer_pre("default")
  3863. self.gguf_writer.add_token_list(tokens)
  3864. self.gguf_writer.add_token_scores(scores)
  3865. self.gguf_writer.add_token_types(toktypes)
  3866. # Add special tokens from config
  3867. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3868. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3869. self.gguf_writer.add_bos_token_id(token_id)
  3870. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3871. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3872. self.gguf_writer.add_eos_token_id(token_id)
  3873. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3874. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3875. self.gguf_writer.add_pad_token_id(token_id)
  3876. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3877. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3878. self.gguf_writer.add_sep_token_id(token_id)
  3879. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3880. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3881. self.gguf_writer.add_unk_token_id(token_id)
  3882. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3883. self.gguf_writer.add_eot_token_id(4)
  3884. self.gguf_writer.add_add_space_prefix(False)
  3885. def set_gguf_parameters(self):
  3886. hparams = self.hparams
  3887. block_count = hparams["num_hidden_layers"]
  3888. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3889. # Which layers are Mamba layers
  3890. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3891. # This logic matches modeling_plamo.py's is_mamba function
  3892. mamba_step = hparams.get("mamba_step", 2)
  3893. mamba_enabled = hparams.get("mamba_enabled", True)
  3894. num_key_value_heads = []
  3895. num_attention_heads = []
  3896. if mamba_enabled:
  3897. for i in range(block_count):
  3898. if block_count <= (mamba_step // 2):
  3899. # use attention in last layer
  3900. is_mamba = (i != block_count - 1)
  3901. else:
  3902. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3903. if is_mamba:
  3904. num_key_value_heads.append(0)
  3905. num_attention_heads.append(0)
  3906. else:
  3907. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3908. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3909. if num_key_value_heads and num_attention_heads:
  3910. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3911. self.gguf_writer.add_head_count(num_attention_heads)
  3912. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3913. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3914. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3915. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3916. self.gguf_writer.add_block_count(block_count)
  3917. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3918. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3919. # Mamba parameters
  3920. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3921. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3922. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3923. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3924. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3925. self.gguf_writer.add_ssm_group_count(0)
  3926. # MLP feed forward parameters (for attention layers)
  3927. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3928. self.gguf_writer.add_file_type(self.ftype)
  3929. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3930. del bid # unused
  3931. if name.endswith(".A_log"):
  3932. data_torch = -torch.exp(data_torch)
  3933. elif name.endswith(".dt_bias"):
  3934. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3935. elif name.endswith(".dt_norm_weight"):
  3936. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3937. elif name.endswith(".B_norm_weight"):
  3938. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3939. elif name.endswith(".C_norm_weight"):
  3940. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3941. elif name.endswith(".k_weight"):
  3942. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3943. elif name.endswith(".q_weight"):
  3944. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3945. elif name.endswith(".conv1d.weight"):
  3946. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3947. assert data_torch.ndim == 2
  3948. elif name.endswith(".pre_mixer_norm.weight"):
  3949. data_torch += 1.0
  3950. elif name.endswith(".post_mixer_norm.weight"):
  3951. data_torch += 1.0 / 5
  3952. elif name.endswith(".pre_mlp_norm.weight"):
  3953. data_torch += 1.0
  3954. elif name.endswith(".post_mlp_norm.weight"):
  3955. data_torch += 1.0 / (5**1.5)
  3956. elif name.endswith(".norm.weight"):
  3957. data_torch += 1.0
  3958. new_name = self.map_tensor_name(name)
  3959. return [(new_name, data_torch)]
  3960. @ModelBase.register("CodeShellForCausalLM")
  3961. class CodeShellModel(TextModel):
  3962. model_arch = gguf.MODEL_ARCH.CODESHELL
  3963. def set_gguf_parameters(self):
  3964. block_count = self.hparams["n_layer"]
  3965. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3966. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3967. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3968. self.gguf_writer.add_block_count(block_count)
  3969. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3970. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3971. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3972. self.gguf_writer.add_file_type(self.ftype)
  3973. self.gguf_writer.add_rope_freq_base(10000.0)
  3974. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3975. self.gguf_writer.add_rope_scaling_factor(1.0)
  3976. @ModelBase.register("InternLM2ForCausalLM")
  3977. class InternLM2Model(TextModel):
  3978. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3979. def set_vocab(self):
  3980. # (TODO): Is there a better way?
  3981. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3982. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3983. # recognized as an empty string in C++.
  3984. from sentencepiece import SentencePieceProcessor
  3985. from sentencepiece import sentencepiece_model_pb2 as model
  3986. tokenizer_path = self.dir_model / 'tokenizer.model'
  3987. tokens: list[bytes] = []
  3988. scores: list[float] = []
  3989. toktypes: list[int] = []
  3990. if not tokenizer_path.is_file():
  3991. logger.error(f'Error: Missing {tokenizer_path}')
  3992. sys.exit(1)
  3993. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3994. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3995. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3996. tokenizer = SentencePieceProcessor()
  3997. tokenizer.LoadFromFile(str(tokenizer_path))
  3998. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3999. for token_id in range(vocab_size):
  4000. piece = tokenizer.IdToPiece(token_id)
  4001. text = piece.encode("utf-8")
  4002. score = tokenizer.GetScore(token_id)
  4003. if text == b"\x00":
  4004. # (TODO): fixme
  4005. # Hack here and replace the \x00 characters.
  4006. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4007. text = "🐉".encode("utf-8")
  4008. toktype = SentencePieceTokenTypes.NORMAL
  4009. if tokenizer.IsUnknown(token_id):
  4010. toktype = SentencePieceTokenTypes.UNKNOWN
  4011. elif tokenizer.IsControl(token_id):
  4012. toktype = SentencePieceTokenTypes.CONTROL
  4013. elif tokenizer.IsUnused(token_id):
  4014. toktype = SentencePieceTokenTypes.UNUSED
  4015. elif tokenizer.IsByte(token_id):
  4016. toktype = SentencePieceTokenTypes.BYTE
  4017. # take care of ununsed raw token
  4018. if piece.startswith('[UNUSED'):
  4019. toktype = SentencePieceTokenTypes.UNUSED
  4020. tokens.append(text)
  4021. scores.append(score)
  4022. toktypes.append(toktype)
  4023. added_tokens_file = self.dir_model / 'added_tokens.json'
  4024. if added_tokens_file.is_file():
  4025. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4026. added_tokens_json = json.load(f)
  4027. for key in added_tokens_json:
  4028. tokens.append(key.encode("utf-8"))
  4029. scores.append(-1000.0)
  4030. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4031. chat_eos_token = '<|im_end|>'
  4032. chat_eos_token_id = None
  4033. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4034. if tokenizer_config_file.is_file():
  4035. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4036. tokenizer_config_json = json.load(f)
  4037. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4038. for token_id, foken_data in added_tokens_decoder.items():
  4039. token_id = int(token_id)
  4040. token = foken_data["content"]
  4041. if token == chat_eos_token:
  4042. chat_eos_token_id = token_id
  4043. token = token.encode("utf-8")
  4044. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4045. if tokens[token_id] != token:
  4046. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4047. tokens[token_id] = token
  4048. scores[token_id] = -1000.0
  4049. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4050. if foken_data.get("special"):
  4051. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4052. tokenizer_file = self.dir_model / 'tokenizer.json'
  4053. if tokenizer_file.is_file():
  4054. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4055. tokenizer_json = json.load(f)
  4056. added_tokens = tokenizer_json.get("added_tokens", [])
  4057. for foken_data in added_tokens:
  4058. token_id = int(foken_data["id"])
  4059. token = foken_data["content"]
  4060. if token == chat_eos_token:
  4061. chat_eos_token_id = token_id
  4062. token = token.encode("utf-8")
  4063. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4064. if tokens[token_id] != token:
  4065. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4066. tokens[token_id] = token
  4067. scores[token_id] = -1000.0
  4068. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4069. if foken_data.get("special"):
  4070. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4071. self.gguf_writer.add_tokenizer_model("llama")
  4072. self.gguf_writer.add_tokenizer_pre("default")
  4073. self.gguf_writer.add_token_list(tokens)
  4074. self.gguf_writer.add_token_scores(scores)
  4075. self.gguf_writer.add_token_types(toktypes)
  4076. self.gguf_writer.add_add_space_prefix(add_prefix)
  4077. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4078. old_eos = special_vocab.special_token_ids["eos"]
  4079. if chat_eos_token_id is not None:
  4080. # For the chat model, we replace the eos with '<|im_end|>'.
  4081. # TODO: this is a hack, should be fixed
  4082. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4083. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4084. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4085. " in chat mode so that the conversation can end normally.")
  4086. special_vocab.add_to_gguf(self.gguf_writer)
  4087. def set_gguf_parameters(self):
  4088. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  4089. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  4090. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  4091. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4092. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  4093. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4094. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4095. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  4096. self.gguf_writer.add_file_type(self.ftype)
  4097. rope_scaling = self.hparams.get("rope_scaling") or {}
  4098. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4099. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4100. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4102. num_heads = self.hparams["num_attention_heads"]
  4103. num_kv_heads = self.hparams["num_key_value_heads"]
  4104. n_embd = self.hparams["hidden_size"]
  4105. q_per_kv = num_heads // num_kv_heads
  4106. head_dim = n_embd // num_heads
  4107. num_groups = num_heads // q_per_kv
  4108. name = name.replace("language_model.", "") # InternVL
  4109. if name.startswith("mlp") or name.startswith("vision_model"):
  4110. # skip visual tensors
  4111. return []
  4112. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4113. qkv = data_torch
  4114. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4115. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4116. # The model weights of q and k equire additional reshape.
  4117. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4118. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4119. v = v.reshape((-1, v.shape[-1]))
  4120. return [
  4121. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4122. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4123. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4124. ]
  4125. else:
  4126. return [(self.map_tensor_name(name), data_torch)]
  4127. @ModelBase.register("InternLM3ForCausalLM")
  4128. class InternLM3Model(TextModel):
  4129. model_arch = gguf.MODEL_ARCH.LLAMA
  4130. def set_vocab(self):
  4131. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4132. self.gguf_writer.add_tokenizer_model("llama")
  4133. self.gguf_writer.add_tokenizer_pre("default")
  4134. self.gguf_writer.add_token_list(tokens)
  4135. self.gguf_writer.add_token_scores(scores)
  4136. self.gguf_writer.add_token_types(toktypes)
  4137. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4138. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4139. if tokenizer_config_file.is_file():
  4140. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4141. tokenizer_config_json = json.load(f)
  4142. if "add_prefix_space" in tokenizer_config_json:
  4143. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4144. if "added_tokens_decoder" in tokenizer_config_json:
  4145. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4146. if token_data.get("special"):
  4147. token_id = int(token_id)
  4148. token = token_data["content"]
  4149. special_vocab._set_special_token(token, token_id)
  4150. # update eos token
  4151. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4152. special_vocab.special_token_ids["eos"] = token_id
  4153. special_vocab.add_to_gguf(self.gguf_writer)
  4154. def set_gguf_parameters(self):
  4155. super().set_gguf_parameters()
  4156. hparams = self.hparams
  4157. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4158. if (rope_dim := hparams.get("head_dim")) is None:
  4159. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4160. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4161. rope_scaling = self.hparams.get("rope_scaling") or {}
  4162. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4163. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4164. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4166. n_head = self.hparams["num_attention_heads"]
  4167. n_kv_head = self.hparams.get("num_key_value_heads")
  4168. name = name.replace("language_model.", "") # InternVL
  4169. if name.startswith("mlp") or name.startswith("vision_model"):
  4170. # skip visual tensors
  4171. return []
  4172. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4173. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4174. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4175. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4176. return [(self.map_tensor_name(name), data_torch)]
  4177. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4178. class BertModel(TextModel):
  4179. model_arch = gguf.MODEL_ARCH.BERT
  4180. def __init__(self, *args, **kwargs):
  4181. super().__init__(*args, **kwargs)
  4182. self.vocab_size = None
  4183. if cls_out_labels := self.hparams.get("id2label"):
  4184. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4185. # Remove dummy labels added by AutoConfig
  4186. cls_out_labels = None
  4187. self.cls_out_labels = cls_out_labels
  4188. def set_gguf_parameters(self):
  4189. super().set_gguf_parameters()
  4190. self.gguf_writer.add_causal_attention(False)
  4191. self._try_set_pooling_type()
  4192. if self.cls_out_labels:
  4193. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4194. def set_vocab(self):
  4195. tokens, toktypes, tokpre = self.get_vocab_base()
  4196. self.vocab_size = len(tokens)
  4197. # we need this to validate the size of the token_type embeddings
  4198. # though currently we are passing all zeros to the token_type embeddings
  4199. # "Sequence A" or "Sequence B"
  4200. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4201. # convert to phantom space vocab
  4202. def phantom(tok):
  4203. if tok.startswith("[") and tok.endswith("]"):
  4204. return tok
  4205. if tok.startswith("##"):
  4206. return tok[2:]
  4207. return "\u2581" + tok
  4208. tokens = list(map(phantom, tokens))
  4209. # add vocab to gguf
  4210. self.gguf_writer.add_tokenizer_model("bert")
  4211. self.gguf_writer.add_tokenizer_pre(tokpre)
  4212. self.gguf_writer.add_token_list(tokens)
  4213. self.gguf_writer.add_token_types(toktypes)
  4214. # handle special tokens
  4215. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4216. special_vocab.add_to_gguf(self.gguf_writer)
  4217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4218. del bid # unused
  4219. if name.startswith("bert."):
  4220. name = name[5:]
  4221. if name.endswith(".gamma"):
  4222. name = name[:-6] + ".weight"
  4223. if name.endswith(".beta"):
  4224. name = name[:-5] + ".bias"
  4225. # we are only using BERT for embeddings so we don't need the pooling layer
  4226. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4227. return [] # we don't need these
  4228. if name.startswith("cls.predictions"):
  4229. return []
  4230. if name.startswith("cls.seq_relationship"):
  4231. return []
  4232. if self.cls_out_labels:
  4233. # For BertForSequenceClassification (direct projection layer)
  4234. if name == "classifier.weight":
  4235. name = "classifier.out_proj.weight"
  4236. if name == "classifier.bias":
  4237. name = "classifier.out_proj.bias"
  4238. return [(self.map_tensor_name(name), data_torch)]
  4239. def _xlmroberta_tokenizer_init(self) -> None:
  4240. # we need the pad_token_id to know how to chop down position_embd matrix
  4241. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4242. self._position_offset = 1 + pad_token_id
  4243. if "max_position_embeddings" in self.hparams:
  4244. self.hparams["max_position_embeddings"] -= self._position_offset
  4245. else:
  4246. self._position_offset = None
  4247. def _xlmroberta_set_vocab(self) -> None:
  4248. # to avoid TypeError: Descriptors cannot be created directly
  4249. # exception when importing sentencepiece_model_pb2
  4250. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4251. from sentencepiece import SentencePieceProcessor
  4252. from sentencepiece import sentencepiece_model_pb2 as model
  4253. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4254. tokenizer_json = {}
  4255. tokenizer_config_json = {}
  4256. if not tokenizer_path.is_file():
  4257. tokenizer_path = self.dir_model / 'tokenizer.json'
  4258. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4259. if not tokenizer_path.is_file():
  4260. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4261. from base64 import b64decode
  4262. from transformers import AutoTokenizer
  4263. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4264. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4265. tokenizer_json = json.load(fp)
  4266. if tokenizer_config_path.is_file():
  4267. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4268. tokenizer_config_json = json.load(fp)
  4269. add_prefix = tokenizer.add_prefix_space
  4270. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4271. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4272. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4273. else:
  4274. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4275. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4276. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4277. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4278. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4279. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4280. tokenizer = SentencePieceProcessor()
  4281. tokenizer.LoadFromFile(str(tokenizer_path))
  4282. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4283. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4284. scores: list[float] = [-10000.0] * vocab_size
  4285. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4286. if isinstance(tokenizer, SentencePieceProcessor):
  4287. for token_id in range(tokenizer.vocab_size()):
  4288. piece = tokenizer.IdToPiece(token_id)
  4289. text = piece.encode("utf-8")
  4290. score = tokenizer.GetScore(token_id)
  4291. toktype = SentencePieceTokenTypes.NORMAL
  4292. if tokenizer.IsUnknown(token_id):
  4293. toktype = SentencePieceTokenTypes.UNKNOWN
  4294. elif tokenizer.IsControl(token_id):
  4295. toktype = SentencePieceTokenTypes.CONTROL
  4296. elif tokenizer.IsUnused(token_id):
  4297. toktype = SentencePieceTokenTypes.UNUSED
  4298. elif tokenizer.IsByte(token_id):
  4299. toktype = SentencePieceTokenTypes.BYTE
  4300. tokens[token_id] = text
  4301. scores[token_id] = score
  4302. toktypes[token_id] = toktype
  4303. else:
  4304. added_vocab = tokenizer.get_added_vocab()
  4305. unk_token = tokenizer_config_json.get("unk_token")
  4306. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4307. for token_id in range(tokenizer.vocab_size):
  4308. piece = tokenizer._convert_id_to_token(token_id)
  4309. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4310. text = piece.encode("utf-8")
  4311. score = tokenizer_json["model"]["vocab"][token_id][1]
  4312. toktype = SentencePieceTokenTypes.NORMAL
  4313. if token_id == unk_token_id:
  4314. toktype = SentencePieceTokenTypes.UNKNOWN
  4315. elif token_id in tokenizer.all_special_ids:
  4316. toktype = SentencePieceTokenTypes.CONTROL
  4317. elif token_id in added_vocab.values():
  4318. toktype = SentencePieceTokenTypes.USER_DEFINED
  4319. # No reliable way to detect this, but jina doesn't have any
  4320. # elif tokenizer.IsByte(token_id):
  4321. # toktype = SentencePieceTokenTypes.BYTE
  4322. tokens[token_id] = text
  4323. scores[token_id] = score
  4324. toktypes[token_id] = toktype
  4325. if isinstance(tokenizer, SentencePieceProcessor):
  4326. # realign tokens (see HF tokenizer code)
  4327. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4328. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4329. toktypes = [
  4330. SentencePieceTokenTypes.CONTROL,
  4331. SentencePieceTokenTypes.CONTROL,
  4332. SentencePieceTokenTypes.CONTROL,
  4333. SentencePieceTokenTypes.UNKNOWN,
  4334. ] + toktypes[3:-1]
  4335. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4336. # Add mask token missing from sentencepiece.bpe.model
  4337. tokens[250001] = b'<mask>'
  4338. scores[250001] = 0.0
  4339. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4340. self.gguf_writer.add_tokenizer_model("t5")
  4341. self.gguf_writer.add_tokenizer_pre("default")
  4342. self.gguf_writer.add_token_list(tokens)
  4343. self.gguf_writer.add_token_scores(scores)
  4344. self.gguf_writer.add_token_types(toktypes)
  4345. self.gguf_writer.add_add_space_prefix(add_prefix)
  4346. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4347. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4348. if precompiled_charsmap:
  4349. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4350. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4351. special_vocab.add_to_gguf(self.gguf_writer)
  4352. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4353. class DistilBertModel(BertModel):
  4354. model_arch = gguf.MODEL_ARCH.BERT
  4355. def set_gguf_parameters(self):
  4356. self.gguf_writer.add_layer_norm_eps(1e-12)
  4357. logger.info("gguf: layer norm epsilon = 1e-12")
  4358. super().set_gguf_parameters()
  4359. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4360. if name.startswith("distilbert."):
  4361. name = name[11:]
  4362. # These layers act as MLM head, so we don't need them
  4363. if name.startswith("vocab_"):
  4364. return []
  4365. return super().modify_tensors(data_torch, name, bid)
  4366. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4367. class RobertaModel(BertModel):
  4368. model_arch = gguf.MODEL_ARCH.BERT
  4369. def __init__(self, *args, **kwargs):
  4370. super().__init__(*args, **kwargs)
  4371. # we need the pad_token_id to know how to chop down position_embd matrix
  4372. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4373. self._position_offset = 1 + pad_token_id
  4374. if "max_position_embeddings" in self.hparams:
  4375. self.hparams["max_position_embeddings"] -= self._position_offset
  4376. else:
  4377. self._position_offset = None
  4378. def set_vocab(self):
  4379. """Support BPE tokenizers for roberta models"""
  4380. bpe_tok_path = self.dir_model / "tokenizer.json"
  4381. if bpe_tok_path.exists():
  4382. self._set_vocab_gpt2()
  4383. # we need this to validate the size of the token_type embeddings
  4384. # though currently we are passing all zeros to the token_type embeddings
  4385. # "Sequence A" or "Sequence B"
  4386. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4387. else:
  4388. return super().set_vocab()
  4389. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4390. # if name starts with "roberta.", remove the prefix
  4391. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4392. if name.startswith("roberta."):
  4393. name = name[8:]
  4394. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4395. if name == "embeddings.position_embeddings.weight":
  4396. if self._position_offset is not None:
  4397. data_torch = data_torch[self._position_offset:,:]
  4398. return super().modify_tensors(data_torch, name, bid)
  4399. @ModelBase.register("NomicBertModel")
  4400. class NomicBertModel(BertModel):
  4401. model_arch = gguf.MODEL_ARCH.BERT
  4402. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4403. hparams = kwargs.pop("hparams", None)
  4404. if hparams is None:
  4405. hparams = ModelBase.load_hparams(dir_model, False)
  4406. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4407. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4408. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4409. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4410. if self._tokenizer_is_xlmroberta:
  4411. self._xlmroberta_tokenizer_init()
  4412. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4413. if npos == 8192 and mtp == 2048:
  4414. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4415. elif npos == 2048 and mtp == 2048:
  4416. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4417. else:
  4418. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4419. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4420. # this doesn't do anything in the HF version
  4421. assert self.hparams["causal"] is False
  4422. # no bias tensors unless MoE
  4423. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4424. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4425. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4426. # norm at end of layer
  4427. assert self.hparams["prenorm"] is False
  4428. # standard RoPE
  4429. assert self.hparams["rotary_emb_fraction"] == 1.0
  4430. assert self.hparams["rotary_emb_interleaved"] is False
  4431. assert self.hparams["rotary_emb_scale_base"] is None
  4432. def set_vocab(self) -> None:
  4433. if self._tokenizer_is_xlmroberta:
  4434. return self._xlmroberta_set_vocab()
  4435. return super().set_vocab()
  4436. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4437. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4438. if "mlp.experts.bias" in name:
  4439. return [] # Explicitly return an empty list.
  4440. if "mlp.experts.mlp.w1" in name:
  4441. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4442. name += ".weight"
  4443. if "mlp.experts.mlp.w2" in name:
  4444. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4445. data_torch = data_torch.transpose(1, 2)
  4446. name += ".weight"
  4447. return [(self.map_tensor_name(name), data_torch)]
  4448. def set_gguf_parameters(self):
  4449. super().set_gguf_parameters()
  4450. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4451. if self.is_moe:
  4452. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4453. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4454. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4455. def _is_tokenizer_xlmroberta(self) -> bool:
  4456. with open(self.dir_model / "tokenizer.json") as f:
  4457. tokenizer_json = json.load(f)
  4458. toktyp = tokenizer_json["model"]["type"]
  4459. if toktyp == "Unigram":
  4460. return True
  4461. if toktyp == "WordPiece":
  4462. return False
  4463. raise ValueError(f"unknown tokenizer: {toktyp}")
  4464. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4465. class NeoBert(BertModel):
  4466. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4467. def set_gguf_parameters(self):
  4468. super().set_gguf_parameters()
  4469. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4470. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4471. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4472. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4473. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4474. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4475. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4476. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4477. def modify_tensors(self, data_torch, name, bid):
  4478. if name.startswith("decoder."):
  4479. return []
  4480. if name.startswith("model."):
  4481. name = name[6:]
  4482. return super().modify_tensors(data_torch, name, bid)
  4483. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4484. class XLMRobertaModel(BertModel):
  4485. model_arch = gguf.MODEL_ARCH.BERT
  4486. _lora_files = {}
  4487. _lora_names = []
  4488. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4489. hparams = kwargs.pop("hparams", None)
  4490. if hparams is None:
  4491. hparams = ModelBase.load_hparams(dir_model, False)
  4492. if lora_names := hparams.get("lora_adaptations"):
  4493. self._lora_names = lora_names
  4494. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4495. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4496. self._xlmroberta_tokenizer_init()
  4497. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4498. if self._lora_names:
  4499. for name in self._lora_names:
  4500. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4501. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4502. return super().generate_extra_tensors()
  4503. def set_type(self):
  4504. for lora_writer in self._lora_files.values():
  4505. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4506. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4507. super().set_type()
  4508. def set_vocab(self):
  4509. self._xlmroberta_set_vocab()
  4510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4511. # if name starts with "roberta.", remove the prefix
  4512. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4513. if name.startswith("roberta."):
  4514. name = name[8:]
  4515. # jina-embeddings-v3
  4516. if ".parametrizations." in name:
  4517. name = name.replace(".parametrizations.", ".")
  4518. if name.endswith(".original"):
  4519. name = name[:-9]
  4520. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4521. if name == "embeddings.position_embeddings.weight":
  4522. if self._position_offset is not None:
  4523. data_torch = data_torch[self._position_offset:,:]
  4524. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4525. if name.startswith("pooler.dense"):
  4526. return []
  4527. num_loras = data_torch.size(0)
  4528. assert num_loras == len(self._lora_names)
  4529. # Split out each LoRA in their own GGUF
  4530. for i, lora_writer in enumerate(self._lora_files.values()):
  4531. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4532. data = data_torch[i, :, :]
  4533. # Transpose/flip token_embd/types into correct shape
  4534. if new_name == "token_embd.weight.lora_b":
  4535. data = data.T
  4536. elif new_name.startswith("token_types.weight."):
  4537. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4538. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4539. return []
  4540. return super().modify_tensors(data_torch, name, bid)
  4541. def set_gguf_parameters(self):
  4542. super().set_gguf_parameters()
  4543. # jina-embeddings-v3
  4544. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4545. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4546. lora_alpha = self.hparams.get("lora_alpha")
  4547. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4548. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4549. for lora_name, lora_writer in self._lora_files.items():
  4550. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4551. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4552. if lora_prompt_prefixes:
  4553. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4554. def write(self):
  4555. super().write()
  4556. for lora_writer in self._lora_files.values():
  4557. lora_writer.write_header_to_file()
  4558. lora_writer.write_kv_data_to_file()
  4559. lora_writer.write_tensors_to_file(progress=True)
  4560. lora_writer.close()
  4561. @ModelBase.register("GemmaForCausalLM")
  4562. class GemmaModel(TextModel):
  4563. model_arch = gguf.MODEL_ARCH.GEMMA
  4564. def set_vocab(self):
  4565. self._set_vocab_sentencepiece()
  4566. # TODO: these special tokens should be exported only for the CodeGemma family
  4567. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4568. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4569. special_vocab._set_special_token("prefix", 67)
  4570. special_vocab._set_special_token("suffix", 69)
  4571. special_vocab._set_special_token("middle", 68)
  4572. special_vocab._set_special_token("fsep", 70)
  4573. special_vocab._set_special_token("eot", 107)
  4574. special_vocab.chat_template = None # do not add it twice
  4575. special_vocab.add_to_gguf(self.gguf_writer)
  4576. self.gguf_writer.add_add_space_prefix(False)
  4577. def set_gguf_parameters(self):
  4578. hparams = self.hparams
  4579. block_count = hparams["num_hidden_layers"]
  4580. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4581. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4582. self.gguf_writer.add_block_count(block_count)
  4583. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4584. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4585. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4586. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4587. self.gguf_writer.add_key_length(hparams["head_dim"])
  4588. self.gguf_writer.add_value_length(hparams["head_dim"])
  4589. self.gguf_writer.add_file_type(self.ftype)
  4590. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4591. del bid # unused
  4592. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4593. # To prevent errors, skip loading lm_head.weight.
  4594. if name == "lm_head.weight":
  4595. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4596. return []
  4597. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4598. if name.endswith("norm.weight"):
  4599. data_torch = data_torch + 1
  4600. return [(self.map_tensor_name(name), data_torch)]
  4601. @ModelBase.register("Gemma2ForCausalLM")
  4602. class Gemma2Model(TextModel):
  4603. model_arch = gguf.MODEL_ARCH.GEMMA2
  4604. def set_vocab(self):
  4605. self._set_vocab_sentencepiece()
  4606. self.gguf_writer.add_add_space_prefix(False)
  4607. def set_gguf_parameters(self):
  4608. hparams = self.hparams
  4609. block_count = hparams["num_hidden_layers"]
  4610. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4611. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4612. self.gguf_writer.add_block_count(block_count)
  4613. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4614. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4615. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4616. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4617. self.gguf_writer.add_key_length(hparams["head_dim"])
  4618. self.gguf_writer.add_value_length(hparams["head_dim"])
  4619. self.gguf_writer.add_file_type(self.ftype)
  4620. self.gguf_writer.add_attn_logit_softcapping(
  4621. self.hparams["attn_logit_softcapping"]
  4622. )
  4623. self.gguf_writer.add_final_logit_softcapping(
  4624. self.hparams["final_logit_softcapping"]
  4625. )
  4626. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4627. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4628. del bid # unused
  4629. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4630. # To prevent errors, skip loading lm_head.weight.
  4631. if name == "lm_head.weight":
  4632. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4633. return []
  4634. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4635. if name.endswith("norm.weight"):
  4636. data_torch = data_torch + 1
  4637. return [(self.map_tensor_name(name), data_torch)]
  4638. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4639. class Gemma3Model(TextModel):
  4640. model_arch = gguf.MODEL_ARCH.GEMMA3
  4641. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4642. def set_vocab(self):
  4643. self._set_vocab_sentencepiece()
  4644. self.gguf_writer.add_add_space_prefix(False)
  4645. def set_gguf_parameters(self):
  4646. hparams = self.hparams
  4647. block_count = hparams["num_hidden_layers"]
  4648. # some default values are not specified in the hparams
  4649. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4650. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4651. self.gguf_writer.add_block_count(block_count)
  4652. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4653. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4654. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4655. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4656. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4657. self.gguf_writer.add_file_type(self.ftype)
  4658. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4659. # attn_logit_softcapping is removed in Gemma3
  4660. assert hparams.get("attn_logit_softcapping") is None
  4661. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4662. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4663. if hparams.get("rope_scaling") is not None:
  4664. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4665. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4666. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4667. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4668. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4669. del bid # unused
  4670. if "language_model." in name:
  4671. name = name.replace("language_model.", "")
  4672. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4673. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4674. return [] # skip vision tensors
  4675. # remove OOV (out-of-vocabulary) rows in token_embd
  4676. if "embed_tokens.weight" in name:
  4677. vocab = self._create_vocab_sentencepiece()
  4678. tokens = vocab[0]
  4679. data_torch = data_torch[:len(tokens)]
  4680. # ref code in Gemma3RMSNorm
  4681. # output = output * (1.0 + self.weight.float())
  4682. # note: this is not the case on gemma3n
  4683. if name.endswith("norm.weight"):
  4684. data_torch = data_torch + self.norm_shift
  4685. return [(self.map_tensor_name(name), data_torch)]
  4686. @ModelBase.register("Gemma3TextModel")
  4687. class EmbeddingGemma(Gemma3Model):
  4688. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4689. module_paths = []
  4690. dense_features_dims = {}
  4691. def __init__(self, *args, **kwargs):
  4692. super().__init__(*args, **kwargs)
  4693. if self.sentence_transformers_dense_modules:
  4694. # read modules.json to determine if model has Dense layers
  4695. modules_file = self.dir_model / "modules.json"
  4696. if modules_file.is_file():
  4697. with open(modules_file, encoding="utf-8") as modules_json_file:
  4698. mods = json.load(modules_json_file)
  4699. for mod in mods:
  4700. if mod["type"] == "sentence_transformers.models.Dense":
  4701. mod_path = mod["path"]
  4702. # check if model.safetensors file for Dense layer exists
  4703. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4704. if model_tensors_file.is_file():
  4705. self.module_paths.append(mod_path)
  4706. # read config.json of the Dense layer to get in/out features
  4707. mod_conf_file = self.dir_model / mod_path / "config.json"
  4708. if mod_conf_file.is_file():
  4709. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4710. mod_conf = json.load(mod_conf_json_file)
  4711. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4712. prefix = self._get_dense_prefix(mod_path)
  4713. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4714. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4715. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4716. from safetensors.torch import load_file
  4717. module_paths = list(self.module_paths)
  4718. for i, module_path in enumerate(module_paths):
  4719. tensors_file = self.dir_model / module_path / "model.safetensors"
  4720. local_tensors = load_file(tensors_file)
  4721. tensor_name = self._get_dense_prefix(module_path)
  4722. for name, local_tensor in local_tensors.items():
  4723. if not name.endswith(".weight"):
  4724. continue
  4725. orig_name = name.replace("linear", tensor_name)
  4726. name = self.map_tensor_name(orig_name)
  4727. yield name, local_tensor.clone()
  4728. @staticmethod
  4729. def _get_dense_prefix(module_path) -> str:
  4730. """Get the tensor name prefix for the Dense layer from module path."""
  4731. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4732. return tensor_name
  4733. def set_gguf_parameters(self):
  4734. super().set_gguf_parameters()
  4735. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4736. # constructor. We want to use the value from the original model's config.json.
  4737. # ref: https://github.com/huggingface/transformers/pull/40700
  4738. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4739. config = json.load(f)
  4740. orig_sliding_window = config.get("sliding_window")
  4741. if orig_sliding_window is None:
  4742. raise ValueError("sliding_window not found in model config - this is required for the model")
  4743. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4744. f"instead of {self.hparams['sliding_window']}")
  4745. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4746. if self.sentence_transformers_dense_modules:
  4747. for dense, dims in self.dense_features_dims.items():
  4748. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4749. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4750. self._try_set_pooling_type()
  4751. @ModelBase.register("Gemma3ForConditionalGeneration")
  4752. class Gemma3VisionModel(MmprojModel):
  4753. def set_gguf_parameters(self):
  4754. super().set_gguf_parameters()
  4755. hparams = self.hparams
  4756. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4757. # default values below are taken from HF tranformers code
  4758. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4759. self.gguf_writer.add_vision_use_gelu(True)
  4760. # calculate proj_scale_factor (used by tinygemma3 test model)
  4761. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4762. n_per_side = int(image_seq_length ** 0.5)
  4763. image_size = self.hparams["image_size"]
  4764. patch_size = self.hparams["patch_size"]
  4765. proj_scale_factor = (image_size // patch_size) // n_per_side
  4766. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4767. # we only need to write this if it's not the default value
  4768. # in this case, we are converting a test model
  4769. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4770. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4771. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4772. if "input_projection" in name:
  4773. return gguf.GGMLQuantizationType.F16
  4774. if ".embeddings." in name:
  4775. return gguf.GGMLQuantizationType.F32
  4776. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4777. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4778. del bid # unused
  4779. if "vision_model.head." in name:
  4780. return [] # skip redundant tensors for tinygemma3
  4781. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4782. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4783. # process vision tensors
  4784. name = name.replace("_weight", ".weight")
  4785. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4786. # the other norm values are part of SigLIP model, and they are already correct
  4787. # ref code: Gemma3RMSNorm
  4788. if "soft_emb_norm.weight" in name:
  4789. logger.info(f"Correcting norm value for '{name}'")
  4790. data_torch = data_torch + 1
  4791. return [(self.map_tensor_name(name), data_torch)]
  4792. return [] # skip other tensors
  4793. @ModelBase.register("Gemma3nForConditionalGeneration")
  4794. class Gemma3NModel(Gemma3Model):
  4795. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4796. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4797. _altup_proj: list[Tensor] = []
  4798. _altup_unembd: list[Tensor] = []
  4799. def __init__(self, *args, **kwargs):
  4800. super().__init__(*args, **kwargs)
  4801. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4802. self._altup_proj = [
  4803. torch.Tensor(), # to be replaced
  4804. torch.Tensor(), # to be replaced
  4805. torch.Tensor(), # to be replaced
  4806. ]
  4807. self._altup_unembd = [
  4808. torch.Tensor(), # to be replaced
  4809. torch.Tensor(), # to be replaced
  4810. torch.Tensor(), # to be replaced
  4811. ]
  4812. def set_vocab(self):
  4813. super().set_vocab()
  4814. def set_gguf_parameters(self):
  4815. super().set_gguf_parameters()
  4816. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4817. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4818. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4819. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4820. activation_sparsity_scale = []
  4821. for s in self.hparams["activation_sparsity_pattern"]:
  4822. normal_dist = torch.distributions.normal.Normal(0, 1)
  4823. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4824. activation_sparsity_scale.append(std_multiplier.item())
  4825. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4826. sliding_window_pattern = []
  4827. for t in self.hparams["layer_types"]:
  4828. sliding_window_pattern.append(t == "sliding_attention")
  4829. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4830. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4831. has_all = all(m.numel() > 0 for m in matrices)
  4832. if not has_all:
  4833. return None
  4834. else:
  4835. return torch.stack(matrices, dim=0)
  4836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4837. if name.endswith("_scale"):
  4838. name = name + ".weight"
  4839. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4840. if "language_model." not in name:
  4841. return [] # skip non-language model tensors
  4842. if "altup_unembed_projections" in name:
  4843. data_torch = data_torch.to(device="cpu")
  4844. if ".0." in name:
  4845. self._altup_unembd[0] = data_torch
  4846. elif ".1." in name:
  4847. self._altup_unembd[1] = data_torch
  4848. elif ".2." in name:
  4849. self._altup_unembd[2] = data_torch
  4850. else:
  4851. raise ValueError(f"Unknown name: {name}")
  4852. out = self._stack_matrices(self._altup_unembd)
  4853. if out is not None:
  4854. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4855. else:
  4856. return []
  4857. if "altup_projections" in name:
  4858. data_torch = data_torch.to(device="cpu")
  4859. if ".0." in name:
  4860. self._altup_proj[0] = data_torch
  4861. elif ".1." in name:
  4862. self._altup_proj[1] = data_torch
  4863. elif ".2." in name:
  4864. self._altup_proj[2] = data_torch
  4865. else:
  4866. raise ValueError(f"Unknown name: {name}")
  4867. out = self._stack_matrices(self._altup_proj)
  4868. if out is not None:
  4869. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4870. else:
  4871. return []
  4872. return super().modify_tensors(data_torch, name, bid)
  4873. @ModelBase.register("Starcoder2ForCausalLM")
  4874. class StarCoder2Model(TextModel):
  4875. model_arch = gguf.MODEL_ARCH.STARCODER2
  4876. @ModelBase.register("Rwkv6ForCausalLM")
  4877. class Rwkv6Model(TextModel):
  4878. model_arch = gguf.MODEL_ARCH.RWKV6
  4879. def set_vocab(self):
  4880. self._set_vocab_rwkv_world()
  4881. def set_gguf_parameters(self):
  4882. block_count = self.hparams["num_hidden_layers"]
  4883. head_size = self.hparams["head_size"]
  4884. hidden_size = self.hparams["hidden_size"]
  4885. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4886. rescale_every_n_layers = self.hparams["rescale_every"]
  4887. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4888. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4889. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4890. # RWKV isn't context limited
  4891. self.gguf_writer.add_context_length(1048576)
  4892. self.gguf_writer.add_embedding_length(hidden_size)
  4893. self.gguf_writer.add_block_count(block_count)
  4894. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4895. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4896. self.gguf_writer.add_wkv_head_size(head_size)
  4897. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4898. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4899. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4900. self.gguf_writer.add_file_type(self.ftype)
  4901. # required by llama.cpp, unused
  4902. self.gguf_writer.add_head_count(0)
  4903. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4905. new_name = self.map_tensor_name(name)
  4906. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4907. new_name += ".weight"
  4908. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4909. data_torch = data_torch.transpose(0, 1)
  4910. if new_name.endswith("time_mix_w2.weight"):
  4911. data_torch = data_torch.permute(0, 2, 1)
  4912. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4913. data_torch = data_torch.squeeze()
  4914. try:
  4915. rescale_every_n_layers = self.hparams["rescale_every"]
  4916. if rescale_every_n_layers > 0:
  4917. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4918. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4919. except KeyError:
  4920. pass
  4921. # concat time_mix_lerp weights to reduce some cpu overhead
  4922. # also reduces the number of tensors in the model
  4923. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4924. try:
  4925. self.lerp_weights[bid][new_name] = data_torch
  4926. except KeyError:
  4927. self.lerp_weights[bid] = {new_name: data_torch}
  4928. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4929. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4930. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4931. yield (new_name, data)
  4932. return
  4933. yield (new_name, data_torch)
  4934. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4935. class RWKV6Qwen2Model(Rwkv6Model):
  4936. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4937. def set_vocab(self):
  4938. try:
  4939. self._set_vocab_sentencepiece()
  4940. except FileNotFoundError:
  4941. self._set_vocab_gpt2()
  4942. def set_gguf_parameters(self):
  4943. block_count = self.hparams["num_hidden_layers"]
  4944. num_attention_heads = self.hparams["num_attention_heads"]
  4945. num_key_value_heads = self.hparams["num_key_value_heads"]
  4946. hidden_size = self.hparams["hidden_size"]
  4947. head_size = hidden_size // num_attention_heads
  4948. rms_norm_eps = self.hparams["rms_norm_eps"]
  4949. intermediate_size = self.hparams["intermediate_size"]
  4950. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4951. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4952. # RWKV isn't context limited
  4953. self.gguf_writer.add_context_length(1048576)
  4954. self.gguf_writer.add_embedding_length(hidden_size)
  4955. self.gguf_writer.add_block_count(block_count)
  4956. self.gguf_writer.add_wkv_head_size(head_size)
  4957. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4958. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4959. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4960. self.gguf_writer.add_file_type(self.ftype)
  4961. # special parameters for time_mixing in RWKV6QWEN2
  4962. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4963. self.gguf_writer.add_token_shift_count(1)
  4964. # RWKV6QWEN2 use grouped key/value like GQA
  4965. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4966. # required by llama.cpp, unused
  4967. self.gguf_writer.add_head_count(0)
  4968. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4969. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4970. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4971. data = data.view(5, -1, data.shape[-1])
  4972. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4973. # permute them here to avoid code changes
  4974. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4975. if "w2" in new_name:
  4976. data = data.view(5, -1, data.shape[-1])
  4977. yield (new_name, data)
  4978. continue
  4979. yield (new_name, data)
  4980. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4981. class Rwkv7Model(TextModel):
  4982. model_arch = gguf.MODEL_ARCH.RWKV7
  4983. def set_vocab(self):
  4984. self._set_vocab_rwkv_world()
  4985. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4986. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4987. def set_gguf_parameters(self):
  4988. block_count = self.hparams["num_hidden_layers"]
  4989. try:
  4990. head_size = self.hparams["head_size"]
  4991. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4992. except KeyError:
  4993. head_size = self.hparams["head_dim"]
  4994. layer_norm_eps = self.hparams["norm_eps"]
  4995. hidden_size = self.hparams["hidden_size"]
  4996. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4997. # ICLR: In-Context-Learning-Rate
  4998. try:
  4999. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5000. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5001. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5002. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5003. except KeyError:
  5004. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5005. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5006. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5007. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5008. # RWKV isn't context limited
  5009. self.gguf_writer.add_context_length(1048576)
  5010. self.gguf_writer.add_embedding_length(hidden_size)
  5011. self.gguf_writer.add_block_count(block_count)
  5012. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5013. self.gguf_writer.add_wkv_head_size(head_size)
  5014. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5015. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5016. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5017. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5018. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5019. self.gguf_writer.add_file_type(self.ftype)
  5020. # required by llama.cpp, unused
  5021. self.gguf_writer.add_head_count(0)
  5022. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5023. lora_needs_transpose: bool = True
  5024. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5025. # unify tensor names here to make life easier
  5026. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5027. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5028. name = name.replace("time_mixer.", "")
  5029. # lora layer names in fla-hub's impl
  5030. if "_lora.lora" in name:
  5031. self.lora_needs_transpose = False
  5032. name = name.replace("_lora.lora.0.weight", "1.weight")
  5033. name = name.replace("_lora.lora.2.weight", "2.weight")
  5034. name = name.replace("_lora.lora.2.bias", "0.weight")
  5035. name = name.replace("feed_forward_norm", "ln2")
  5036. name = name.replace("g_norm", "ln_x")
  5037. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5038. # some models have dummy v0/v1/v2 on first layer while others don't
  5039. # ignore them all since they are not used
  5040. return
  5041. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5042. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5043. if bid is not None and "attention.x_" in name:
  5044. if "attention.x_x" in name:
  5045. # already concatenated
  5046. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5047. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5048. yield (new_name, data)
  5049. else:
  5050. try:
  5051. self.lerp_weights[bid][name] = data_torch
  5052. except KeyError:
  5053. self.lerp_weights[bid] = {name: data_torch}
  5054. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5055. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5056. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5057. yield (new_name, data)
  5058. return
  5059. else:
  5060. data_torch = data_torch.squeeze()
  5061. new_name = self.map_tensor_name(name)
  5062. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5063. new_name += ".weight"
  5064. if self.lora_needs_transpose and any(
  5065. new_name.endswith(t) for t in [
  5066. "time_mix_w1.weight", "time_mix_w2.weight",
  5067. "time_mix_a1.weight", "time_mix_a2.weight",
  5068. "time_mix_v1.weight", "time_mix_v2.weight",
  5069. "time_mix_g1.weight", "time_mix_g2.weight",
  5070. ]
  5071. ):
  5072. data_torch = data_torch.transpose(0, 1)
  5073. if 'r_k' in new_name:
  5074. data_torch = data_torch.flatten()
  5075. if bid == 0 and "time_mix_a" in new_name:
  5076. # dummy v0/v1/v2 on first layer
  5077. # easist way to make llama happy
  5078. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5079. yield (new_name, data_torch)
  5080. @ModelBase.register("RwkvHybridForCausalLM")
  5081. class ARwkv7Model(Rwkv7Model):
  5082. model_arch = gguf.MODEL_ARCH.ARWKV7
  5083. def set_vocab(self):
  5084. try:
  5085. self._set_vocab_sentencepiece()
  5086. except FileNotFoundError:
  5087. self._set_vocab_gpt2()
  5088. def set_gguf_parameters(self):
  5089. block_count = self.hparams["num_hidden_layers"]
  5090. hidden_size = self.hparams["hidden_size"]
  5091. head_size = self.hparams["head_size"]
  5092. rms_norm_eps = self.hparams["rms_norm_eps"]
  5093. intermediate_size = self.hparams["intermediate_size"]
  5094. wkv_has_gate = self.hparams["wkv_has_gate"]
  5095. assert self.hparams["wkv_version"] == 7
  5096. # ICLR: In-Context-Learning-Rate
  5097. lora_rank_decay = 64
  5098. lora_rank_iclr = 64
  5099. lora_rank_value_residual_mix = 32
  5100. lora_rank_gate = 128 if wkv_has_gate else 0
  5101. # RWKV isn't context limited
  5102. self.gguf_writer.add_context_length(1048576)
  5103. self.gguf_writer.add_embedding_length(hidden_size)
  5104. self.gguf_writer.add_block_count(block_count)
  5105. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5106. self.gguf_writer.add_wkv_head_size(head_size)
  5107. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5108. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5109. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5110. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5111. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5112. self.gguf_writer.add_file_type(self.ftype)
  5113. self.gguf_writer.add_token_shift_count(1)
  5114. # required by llama.cpp, unused
  5115. self.gguf_writer.add_head_count(0)
  5116. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5117. class MambaModel(TextModel):
  5118. model_arch = gguf.MODEL_ARCH.MAMBA
  5119. def __init__(self, dir_model: Path, *args, **kwargs):
  5120. # Avoid using AutoConfig for hparams
  5121. hparams = kwargs.pop("hparams", None)
  5122. if hparams is None:
  5123. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5124. hparams = json.load(f)
  5125. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5126. def set_vocab(self):
  5127. vocab_size = self.hparams["vocab_size"]
  5128. # Round vocab size to next multiple of 8
  5129. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5130. # pad using ceiling division
  5131. # ref: https://stackoverflow.com/a/17511341/22827863
  5132. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5133. self.hparams["vocab_size"] = vocab_size
  5134. if (self.dir_model / "tokenizer.json").is_file():
  5135. self._set_vocab_gpt2()
  5136. elif (self.dir_model / "tokenizer.model").is_file():
  5137. self._set_vocab_sentencepiece()
  5138. else:
  5139. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5140. self._set_vocab_builtin("gpt-neox", vocab_size)
  5141. def set_gguf_parameters(self):
  5142. d_model = self.find_hparam(["hidden_size", "d_model"])
  5143. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5144. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5145. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5146. # ceiling division
  5147. # ref: https://stackoverflow.com/a/17511341/22827863
  5148. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5149. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5150. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5151. use_dt_b_c_norm = False
  5152. # For falconmamba we do apply RMS norm on B / DT and C layers
  5153. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5154. use_dt_b_c_norm = True
  5155. # Fail early for models which don't have a block expansion factor of 2
  5156. assert d_inner == 2 * d_model
  5157. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5158. self.gguf_writer.add_embedding_length(d_model)
  5159. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5160. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5161. self.gguf_writer.add_block_count(self.block_count)
  5162. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5163. self.gguf_writer.add_ssm_inner_size(d_inner)
  5164. self.gguf_writer.add_ssm_state_size(d_state)
  5165. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5166. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5167. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5168. self.gguf_writer.add_file_type(self.ftype)
  5169. _tok_embd = None
  5170. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5171. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5172. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5173. new_name = self.map_tensor_name(name)
  5174. if name.endswith(".A_log"):
  5175. logger.debug("A_log --> A ==> " + new_name)
  5176. data_torch = -torch.exp(data_torch)
  5177. # [4 1 8192 1] -> [4 8192 1 1]
  5178. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5179. data_torch = data_torch.squeeze()
  5180. # assuming token_embd.weight is seen before output.weight
  5181. if self._tok_embd is not None and new_name == output_name:
  5182. if torch.equal(self._tok_embd, data_torch):
  5183. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5184. return []
  5185. elif new_name == tok_embd_name:
  5186. self._tok_embd = data_torch
  5187. return [(new_name, data_torch)]
  5188. @ModelBase.register("Mamba2ForCausalLM")
  5189. class Mamba2Model(TextModel):
  5190. model_arch = gguf.MODEL_ARCH.MAMBA2
  5191. def __init__(self, dir_model: Path, *args, **kwargs):
  5192. # Avoid using AutoConfig for hparams
  5193. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5194. hparams = kwargs.pop("hparams", None)
  5195. if hparams is None:
  5196. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5197. hparams = json.load(f)
  5198. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5199. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5200. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5201. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5202. def set_vocab(self):
  5203. vocab_size = self.hparams["vocab_size"]
  5204. # Round vocab size to next multiple of 16
  5205. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5206. # pad using ceiling division
  5207. # ref: https://stackoverflow.com/a/17511341/22827863
  5208. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5209. self.hparams["vocab_size"] = vocab_size
  5210. if (self.dir_model / "tokenizer.model").is_file():
  5211. self._set_vocab_sentencepiece()
  5212. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5213. # mamba-codestral
  5214. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5215. elif (self.dir_model / "tokenizer.json").is_file():
  5216. self._set_vocab_gpt2()
  5217. else:
  5218. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5219. self._set_vocab_builtin("gpt-neox", vocab_size)
  5220. def set_gguf_parameters(self):
  5221. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5222. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5223. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5224. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5225. # Fail early for models which don't have a block expansion factor of 2
  5226. # TODO: does this really matter?
  5227. # skip the assertion for FalconH1 Model
  5228. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5229. assert self.d_inner == 2 * self.d_model
  5230. assert self.d_inner % head_dim == 0
  5231. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5232. self.gguf_writer.add_embedding_length(self.d_model)
  5233. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5234. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5235. self.gguf_writer.add_block_count(self.block_count)
  5236. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5237. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5238. self.gguf_writer.add_ssm_state_size(d_state)
  5239. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5240. self.gguf_writer.add_ssm_group_count(self.n_group)
  5241. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5242. self.gguf_writer.add_file_type(self.ftype)
  5243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5244. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5245. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5246. name = name.removeprefix("model.")
  5247. if name.endswith(".dt_bias"):
  5248. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5249. new_name = self.map_tensor_name(name)
  5250. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5251. data_torch = data_torch.squeeze()
  5252. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5253. gguf.MODEL_TENSOR.SSM_A,
  5254. gguf.MODEL_TENSOR.SSM_D,
  5255. ]):
  5256. # unsqueeze A to use similar shape semantics as Mamba-1
  5257. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5258. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5259. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5260. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5261. if name.endswith(".A_log"):
  5262. logger.debug("A_log --> A ==> " + new_name)
  5263. data_torch = -torch.exp(data_torch)
  5264. yield (new_name, data_torch)
  5265. @ModelBase.register("JambaForCausalLM")
  5266. class JambaModel(TextModel):
  5267. model_arch = gguf.MODEL_ARCH.JAMBA
  5268. def set_vocab(self):
  5269. if (self.dir_model / "tokenizer.model").is_file():
  5270. self._set_vocab_sentencepiece()
  5271. else:
  5272. self._set_vocab_llama_hf()
  5273. self.gguf_writer.add_add_space_prefix(False)
  5274. def set_gguf_parameters(self):
  5275. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5276. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5277. d_inner = self.hparams["mamba_expand"] * d_model
  5278. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5279. # ceiling division
  5280. # ref: https://stackoverflow.com/a/17511341/22827863
  5281. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5282. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5283. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5284. n_kv_head = self.hparams["num_key_value_heads"]
  5285. attn_offset = self.hparams["attn_layer_offset"]
  5286. attn_period = self.hparams["attn_layer_period"]
  5287. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5288. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5289. ]
  5290. self.gguf_writer.add_block_count(self.block_count)
  5291. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5292. self.gguf_writer.add_embedding_length(d_model)
  5293. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5294. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5295. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5296. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5297. self.gguf_writer.add_ssm_inner_size(d_inner)
  5298. self.gguf_writer.add_ssm_state_size(d_state)
  5299. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5300. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5301. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5302. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5303. self.gguf_writer.add_file_type(self.ftype)
  5304. _experts: list[dict[str, Tensor]] | None = None
  5305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5306. # Mini-Jamba
  5307. name = name.replace(".moe.", ".feed_forward.")
  5308. if bid is not None:
  5309. moe_offset = self.hparams["expert_layer_offset"]
  5310. moe_period = self.hparams["expert_layer_period"]
  5311. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5312. name = name.replace(".experts.0.", ".")
  5313. # process the experts separately
  5314. if ".feed_forward.experts." in name:
  5315. n_experts = self.hparams["num_experts"]
  5316. assert bid is not None
  5317. if self._experts is None:
  5318. self._experts = [{} for _ in range(self.block_count)]
  5319. self._experts[bid][name] = data_torch
  5320. if len(self._experts[bid]) >= n_experts * 3:
  5321. # merge the experts into a single 3d tensor
  5322. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5323. datas: list[Tensor] = []
  5324. for xid in range(n_experts):
  5325. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5326. datas.append(self._experts[bid][ename])
  5327. del self._experts[bid][ename]
  5328. data_torch = torch.stack(datas, dim=0)
  5329. # using the same merged name as qwen2moe
  5330. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5331. new_name = self.map_tensor_name(merged_name)
  5332. yield new_name, data_torch
  5333. return
  5334. new_name = self.map_tensor_name(name)
  5335. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5336. data_torch = data_torch.squeeze()
  5337. if name.endswith(".A_log"):
  5338. logger.debug("A_log --> A ==> " + new_name)
  5339. data_torch = -torch.exp(data_torch)
  5340. yield (new_name, data_torch)
  5341. def prepare_tensors(self):
  5342. super().prepare_tensors()
  5343. if self._experts is not None:
  5344. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5345. experts = [k for d in self._experts for k in d.keys()]
  5346. if len(experts) > 0:
  5347. raise ValueError(f"Unprocessed experts: {experts}")
  5348. @ModelBase.register("CohereForCausalLM")
  5349. class CommandR2Model(TextModel):
  5350. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5351. def __init__(self, *args, **kwargs):
  5352. super().__init__(*args, **kwargs)
  5353. # max_position_embeddings = 8192 in config.json but model was actually
  5354. # trained on 128k context length
  5355. # aya-23 models don't have model_max_length specified
  5356. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5357. def set_gguf_parameters(self):
  5358. super().set_gguf_parameters()
  5359. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5360. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5361. @ModelBase.register("Cohere2ForCausalLM")
  5362. class Cohere2Model(TextModel):
  5363. model_arch = gguf.MODEL_ARCH.COHERE2
  5364. def set_gguf_parameters(self):
  5365. super().set_gguf_parameters()
  5366. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5367. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5368. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5369. rotary_pct = self.hparams["rotary_pct"]
  5370. hidden_size = self.hparams["hidden_size"]
  5371. num_attention_heads = self.hparams["num_attention_heads"]
  5372. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5373. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5374. @ModelBase.register("OlmoForCausalLM")
  5375. @ModelBase.register("OLMoForCausalLM")
  5376. class OlmoModel(TextModel):
  5377. model_arch = gguf.MODEL_ARCH.OLMO
  5378. def set_gguf_parameters(self):
  5379. super().set_gguf_parameters()
  5380. self.gguf_writer.add_layer_norm_eps(1e-5)
  5381. clip_qkv = self.hparams.get("clip_qkv")
  5382. if clip_qkv is not None:
  5383. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5384. # Same as super class, but permuting q_proj, k_proj
  5385. # Copied from: LlamaModel
  5386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5387. del bid # unused
  5388. n_head = self.hparams["num_attention_heads"]
  5389. n_kv_head = self.hparams.get("num_key_value_heads")
  5390. if name.endswith("q_proj.weight"):
  5391. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5392. if name.endswith("k_proj.weight"):
  5393. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5394. return [(self.map_tensor_name(name), data_torch)]
  5395. @ModelBase.register("SeedOssForCausalLM")
  5396. class SeedOssModel(TextModel):
  5397. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5398. @ModelBase.register("Olmo2ForCausalLM")
  5399. @ModelBase.register("Olmo3ForCausalLM")
  5400. class Olmo2Model(TextModel):
  5401. model_arch = gguf.MODEL_ARCH.OLMO2
  5402. def set_gguf_parameters(self):
  5403. super().set_gguf_parameters()
  5404. rope_scaling = self.hparams.get("rope_scaling") or {}
  5405. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5406. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5407. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5408. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5409. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5410. if "sliding_window" in self.hparams:
  5411. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5412. sliding_window_pattern = []
  5413. if "layer_types" in self.hparams:
  5414. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5415. else:
  5416. # Olmo2 does not use sliding window attention.
  5417. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5418. for i in range(self.hparams["num_hidden_layers"]):
  5419. sliding_window_pattern.append((i + 1) % 4 != 0)
  5420. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5421. @ModelBase.register("OlmoeForCausalLM")
  5422. class OlmoeModel(TextModel):
  5423. model_arch = gguf.MODEL_ARCH.OLMOE
  5424. def set_gguf_parameters(self):
  5425. super().set_gguf_parameters()
  5426. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5427. if (n_experts := self.hparams.get("num_experts")) is not None:
  5428. self.gguf_writer.add_expert_count(n_experts)
  5429. _experts: list[dict[str, Tensor]] | None = None
  5430. # Copied from: Qwen2MoeModel
  5431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5432. # process the experts separately
  5433. if name.find("experts") != -1:
  5434. n_experts = self.hparams["num_experts"]
  5435. assert bid is not None
  5436. if self._experts is None:
  5437. self._experts = [{} for _ in range(self.block_count)]
  5438. self._experts[bid][name] = data_torch
  5439. if len(self._experts[bid]) >= n_experts * 3:
  5440. tensors: list[tuple[str, Tensor]] = []
  5441. # merge the experts into a single 3d tensor
  5442. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5443. datas: list[Tensor] = []
  5444. for xid in range(n_experts):
  5445. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5446. datas.append(self._experts[bid][ename])
  5447. del self._experts[bid][ename]
  5448. data_torch = torch.stack(datas, dim=0)
  5449. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5450. new_name = self.map_tensor_name(merged_name)
  5451. tensors.append((new_name, data_torch))
  5452. return tensors
  5453. else:
  5454. return []
  5455. return [(self.map_tensor_name(name), data_torch)]
  5456. # Copied from: Qwen2MoeModel
  5457. def prepare_tensors(self):
  5458. super().prepare_tensors()
  5459. if self._experts is not None:
  5460. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5461. experts = [k for d in self._experts for k in d.keys()]
  5462. if len(experts) > 0:
  5463. raise ValueError(f"Unprocessed experts: {experts}")
  5464. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5465. class JinaBertV2Model(BertModel):
  5466. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5467. def set_vocab(self):
  5468. tokenizer_class = 'BertTokenizer'
  5469. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5470. tokenizer_class = json.load(f)['tokenizer_class']
  5471. if tokenizer_class == 'BertTokenizer':
  5472. super().set_vocab()
  5473. elif tokenizer_class == 'RobertaTokenizer':
  5474. self._set_vocab_gpt2()
  5475. self.gguf_writer.add_token_type_count(2)
  5476. else:
  5477. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5478. @ModelBase.register("OpenELMForCausalLM")
  5479. class OpenELMModel(TextModel):
  5480. model_arch = gguf.MODEL_ARCH.OPENELM
  5481. @staticmethod
  5482. def _make_divisible(v: float | int, divisor: int) -> int:
  5483. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5484. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5485. # Make sure that round down does not go down by more than 10%.
  5486. if new_v < 0.9 * v:
  5487. new_v += divisor
  5488. return new_v
  5489. def __init__(self, *args, **kwargs):
  5490. super().__init__(*args, **kwargs)
  5491. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5492. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5493. self._n_embd: int = self.hparams["model_dim"]
  5494. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5495. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5496. self._ffn_dims: list[int] = [
  5497. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5498. for multiplier in ffn_multipliers
  5499. ]
  5500. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5501. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5502. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5503. def set_vocab(self):
  5504. try:
  5505. self._set_vocab_sentencepiece()
  5506. except FileNotFoundError:
  5507. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5508. def set_gguf_parameters(self):
  5509. n_embd = self._n_embd
  5510. head_dim = self.hparams["head_dim"]
  5511. rot_pct = 1.0
  5512. assert self.block_count == len(self._num_kv_heads)
  5513. assert self.block_count == len(self._num_query_heads)
  5514. assert self.block_count == len(self._ffn_dims)
  5515. self.gguf_writer.add_block_count(self.block_count)
  5516. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5517. self.gguf_writer.add_embedding_length(n_embd)
  5518. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5519. self.gguf_writer.add_head_count(self._num_query_heads)
  5520. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5521. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5522. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5523. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5524. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5525. self.gguf_writer.add_key_length(head_dim)
  5526. self.gguf_writer.add_value_length(head_dim)
  5527. self.gguf_writer.add_file_type(self.ftype)
  5528. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5529. if "n_layers" in keys:
  5530. return self.hparams["num_transformer_layers"]
  5531. return super().find_hparam(keys, optional)
  5532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5533. # split ff
  5534. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5535. ff_dim = self._ffn_dims[bid]
  5536. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5537. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5538. return
  5539. yield (self.map_tensor_name(name), data_torch)
  5540. @ModelBase.register("ArcticForCausalLM")
  5541. class ArcticModel(TextModel):
  5542. model_arch = gguf.MODEL_ARCH.ARCTIC
  5543. def set_vocab(self):
  5544. # The reason for using a custom implementation here is that the
  5545. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5546. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5547. from sentencepiece import SentencePieceProcessor
  5548. tokenizer_path = self.dir_model / 'tokenizer.model'
  5549. if not tokenizer_path.is_file():
  5550. logger.error(f'Error: Missing {tokenizer_path}')
  5551. sys.exit(1)
  5552. # Read the whole vocabulary from the tokenizer.model file
  5553. tokenizer = SentencePieceProcessor()
  5554. tokenizer.LoadFromFile(str(tokenizer_path))
  5555. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5556. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5557. scores: list[float] = [-10000.0] * vocab_size
  5558. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5559. for token_id in range(tokenizer.vocab_size()):
  5560. piece = tokenizer.IdToPiece(token_id)
  5561. text = piece.encode("utf-8")
  5562. score = tokenizer.GetScore(token_id)
  5563. toktype = SentencePieceTokenTypes.NORMAL
  5564. if tokenizer.IsUnknown(token_id):
  5565. toktype = SentencePieceTokenTypes.UNKNOWN
  5566. elif tokenizer.IsControl(token_id):
  5567. toktype = SentencePieceTokenTypes.CONTROL
  5568. elif tokenizer.IsUnused(token_id):
  5569. toktype = SentencePieceTokenTypes.UNUSED
  5570. elif tokenizer.IsByte(token_id):
  5571. toktype = SentencePieceTokenTypes.BYTE
  5572. tokens[token_id] = text
  5573. scores[token_id] = score
  5574. toktypes[token_id] = toktype
  5575. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5576. # of information about added/redefined tokens and modify them accordingly.
  5577. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5578. if tokenizer_config_file.is_file():
  5579. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5580. tokenizer_config_json = json.load(f)
  5581. if "added_tokens_decoder" in tokenizer_config_json:
  5582. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5583. for token_id, token_json in added_tokens_decoder.items():
  5584. token_id = int(token_id)
  5585. if token_id >= vocab_size:
  5586. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5587. continue
  5588. token_content = token_json["content"]
  5589. token_type = SentencePieceTokenTypes.USER_DEFINED
  5590. token_score = -10000.0
  5591. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5592. # Set the score to 0.0 as in the original tokenizer.model
  5593. if ("special" in token_json) and token_json["special"]:
  5594. if token_content == tokenizer_config_json["unk_token"]:
  5595. token_type = SentencePieceTokenTypes.UNKNOWN
  5596. else:
  5597. token_type = SentencePieceTokenTypes.CONTROL
  5598. token_score = 0.0
  5599. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5600. tokens[token_id] = token_content.encode("utf-8")
  5601. toktypes[token_id] = token_type
  5602. scores[token_id] = token_score
  5603. self.gguf_writer.add_tokenizer_model("llama")
  5604. self.gguf_writer.add_tokenizer_pre("default")
  5605. self.gguf_writer.add_token_list(tokens)
  5606. self.gguf_writer.add_token_scores(scores)
  5607. self.gguf_writer.add_token_types(toktypes)
  5608. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5609. special_vocab.add_to_gguf(self.gguf_writer)
  5610. def set_gguf_parameters(self):
  5611. super().set_gguf_parameters()
  5612. hparams = self.hparams
  5613. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5614. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5615. _experts: list[dict[str, Tensor]] | None = None
  5616. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5617. n_head = self.hparams["num_attention_heads"]
  5618. n_kv_head = self.hparams.get("num_key_value_heads")
  5619. if name.endswith("q_proj.weight"):
  5620. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5621. if name.endswith("k_proj.weight"):
  5622. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5623. # process the experts separately
  5624. if name.find("block_sparse_moe.experts") != -1:
  5625. n_experts = self.hparams["num_local_experts"]
  5626. assert bid is not None
  5627. if self._experts is None:
  5628. self._experts = [{} for _ in range(self.block_count)]
  5629. self._experts[bid][name] = data_torch
  5630. if len(self._experts[bid]) >= n_experts * 3:
  5631. tensors: list[tuple[str, Tensor]] = []
  5632. # merge the experts into a single 3d tensor
  5633. for wid in ["w1", "w2", "w3"]:
  5634. datas: list[Tensor] = []
  5635. for xid in range(n_experts):
  5636. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5637. datas.append(self._experts[bid][ename])
  5638. del self._experts[bid][ename]
  5639. data_torch = torch.stack(datas, dim=0)
  5640. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5641. new_name = self.map_tensor_name(merged_name)
  5642. tensors.append((new_name, data_torch))
  5643. return tensors
  5644. else:
  5645. return []
  5646. return [(self.map_tensor_name(name), data_torch)]
  5647. def prepare_tensors(self):
  5648. super().prepare_tensors()
  5649. if self._experts is not None:
  5650. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5651. experts = [k for d in self._experts for k in d.keys()]
  5652. if len(experts) > 0:
  5653. raise ValueError(f"Unprocessed experts: {experts}")
  5654. @ModelBase.register("DeepseekForCausalLM")
  5655. class DeepseekModel(TextModel):
  5656. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5657. def set_vocab(self):
  5658. try:
  5659. self._set_vocab_sentencepiece()
  5660. except FileNotFoundError:
  5661. self._set_vocab_gpt2()
  5662. def set_gguf_parameters(self):
  5663. super().set_gguf_parameters()
  5664. hparams = self.hparams
  5665. if (rope_dim := hparams.get("head_dim")) is None:
  5666. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5667. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5668. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5669. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5670. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5671. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5672. self.gguf_writer.add_expert_weights_scale(1.0)
  5673. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5674. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5675. _experts: list[dict[str, Tensor]] | None = None
  5676. @staticmethod
  5677. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5678. if n_head_kv is not None and n_head != n_head_kv:
  5679. n_head = n_head_kv
  5680. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5681. .swapaxes(1, 2)
  5682. .reshape(weights.shape))
  5683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5684. n_head = self.hparams["num_attention_heads"]
  5685. n_kv_head = self.hparams.get("num_key_value_heads")
  5686. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5687. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5688. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5689. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5690. # process the experts separately
  5691. if name.find("mlp.experts") != -1:
  5692. n_experts = self.hparams["n_routed_experts"]
  5693. assert bid is not None
  5694. if self._experts is None:
  5695. self._experts = [{} for _ in range(self.block_count)]
  5696. self._experts[bid][name] = data_torch
  5697. if len(self._experts[bid]) >= n_experts * 3:
  5698. tensors: list[tuple[str, Tensor]] = []
  5699. # merge the experts into a single 3d tensor
  5700. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5701. datas: list[Tensor] = []
  5702. for xid in range(n_experts):
  5703. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5704. datas.append(self._experts[bid][ename])
  5705. del self._experts[bid][ename]
  5706. data_torch = torch.stack(datas, dim=0)
  5707. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5708. new_name = self.map_tensor_name(merged_name)
  5709. tensors.append((new_name, data_torch))
  5710. return tensors
  5711. else:
  5712. return []
  5713. return [(self.map_tensor_name(name), data_torch)]
  5714. def prepare_tensors(self):
  5715. super().prepare_tensors()
  5716. if self._experts is not None:
  5717. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5718. experts = [k for d in self._experts for k in d.keys()]
  5719. if len(experts) > 0:
  5720. raise ValueError(f"Unprocessed experts: {experts}")
  5721. @ModelBase.register(
  5722. "DeepseekV2ForCausalLM",
  5723. "DeepseekV3ForCausalLM",
  5724. "KimiVLForConditionalGeneration",
  5725. )
  5726. class DeepseekV2Model(TextModel):
  5727. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5728. def set_vocab(self):
  5729. try:
  5730. self._set_vocab_gpt2()
  5731. return
  5732. except Exception:
  5733. pass
  5734. from transformers import AutoTokenizer
  5735. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5736. tokpre = self.get_vocab_base_pre(tokenizer)
  5737. if tokpre == "kimi-k2":
  5738. # Build merges list using the approach similar to HunYuanMoE
  5739. merges = []
  5740. vocab = {}
  5741. mergeable_ranks = tokenizer.model._mergeable_ranks
  5742. for token, rank in mergeable_ranks.items():
  5743. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5744. if len(token) == 1:
  5745. continue
  5746. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5747. if len(merged) == 2:
  5748. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5749. # Build token list
  5750. vocab_size = self.hparams["vocab_size"]
  5751. special_tokens = tokenizer.special_tokens
  5752. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5753. tokens: list[str] = []
  5754. toktypes: list[int] = []
  5755. for i in range(vocab_size):
  5756. if i not in reverse_vocab:
  5757. tokens.append(f"[PAD{i}]")
  5758. toktypes.append(gguf.TokenType.UNUSED)
  5759. else:
  5760. token = reverse_vocab[i]
  5761. tokens.append(token)
  5762. if i in special_tokens.values():
  5763. toktypes.append(gguf.TokenType.CONTROL)
  5764. else:
  5765. toktypes.append(gguf.TokenType.NORMAL)
  5766. self.gguf_writer.add_tokenizer_model("gpt2")
  5767. self.gguf_writer.add_tokenizer_pre(tokpre)
  5768. self.gguf_writer.add_token_list(tokens)
  5769. self.gguf_writer.add_token_types(toktypes)
  5770. self.gguf_writer.add_token_merges(merges)
  5771. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5772. special_vocab.add_to_gguf(self.gguf_writer)
  5773. else:
  5774. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5775. def set_gguf_parameters(self):
  5776. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5777. self.hparams["num_key_value_heads"] = 1
  5778. super().set_gguf_parameters()
  5779. hparams = self.hparams
  5780. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5781. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5782. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5783. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5784. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5785. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5786. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5787. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5788. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5789. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5790. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5791. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5792. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5793. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5794. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5795. if hparams["scoring_func"] == "sigmoid":
  5796. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5797. elif hparams["scoring_func"] == "softmax":
  5798. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5799. else:
  5800. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5801. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5802. rope_scaling = self.hparams.get("rope_scaling") or {}
  5803. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5804. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5805. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5806. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5807. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5808. _experts: list[dict[str, Tensor]] | None = None
  5809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5810. # skip vision tensors and remove "language_model." for Kimi-VL
  5811. if "vision_tower" in name or "multi_modal_projector" in name:
  5812. return []
  5813. if name.startswith("language_model."):
  5814. name = name.replace("language_model.", "")
  5815. # rename e_score_correction_bias tensors
  5816. if name.endswith("e_score_correction_bias"):
  5817. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5818. # skip Multi-Token Prediction (MTP) layers
  5819. block_count = self.hparams["num_hidden_layers"]
  5820. match = re.match(r"model.layers.(\d+)", name)
  5821. if match and int(match.group(1)) >= block_count:
  5822. return []
  5823. # process the experts separately
  5824. if name.find("mlp.experts") != -1:
  5825. n_experts = self.hparams["n_routed_experts"]
  5826. assert bid is not None
  5827. if self._experts is None:
  5828. self._experts = [{} for _ in range(self.block_count)]
  5829. self._experts[bid][name] = data_torch
  5830. if len(self._experts[bid]) >= n_experts * 3:
  5831. tensors: list[tuple[str, Tensor]] = []
  5832. # merge the experts into a single 3d tensor
  5833. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5834. datas: list[Tensor] = []
  5835. for xid in range(n_experts):
  5836. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5837. datas.append(self._experts[bid][ename])
  5838. del self._experts[bid][ename]
  5839. data_torch = torch.stack(datas, dim=0)
  5840. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5841. new_name = self.map_tensor_name(merged_name)
  5842. tensors.append((new_name, data_torch))
  5843. return tensors
  5844. else:
  5845. return []
  5846. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5847. if name.endswith("kv_b_proj.weight"):
  5848. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5849. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5850. n_head_kv = self.hparams["num_key_value_heads"]
  5851. v_head_dim = self.hparams["v_head_dim"]
  5852. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5853. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5854. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5855. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5856. k_b = k_b.transpose(1, 2)
  5857. return [
  5858. (self.map_tensor_name(name_kb), k_b),
  5859. (self.map_tensor_name(name_vb), v_b)
  5860. ]
  5861. return [(self.map_tensor_name(name), data_torch)]
  5862. def prepare_tensors(self):
  5863. super().prepare_tensors()
  5864. if self._experts is not None:
  5865. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5866. experts = [k for d in self._experts for k in d.keys()]
  5867. if len(experts) > 0:
  5868. raise ValueError(f"Unprocessed experts: {experts}")
  5869. @ModelBase.register("MiniMaxM2ForCausalLM")
  5870. class MiniMaxM2Model(TextModel):
  5871. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5872. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5873. def __init__(self, *args, **kwargs):
  5874. super().__init__(*args, **kwargs)
  5875. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5876. def set_gguf_parameters(self):
  5877. super().set_gguf_parameters()
  5878. if self.hparams["scoring_func"] == "sigmoid":
  5879. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5880. elif self.hparams["scoring_func"] == "softmax":
  5881. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5882. else:
  5883. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5884. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5885. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5886. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5887. if name.endswith("e_score_correction_bias"):
  5888. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5889. # merge expert weights
  5890. if 'experts' in name:
  5891. n_experts = self.hparams["num_experts"]
  5892. assert bid is not None
  5893. expert_cache = self._experts_cache.setdefault(bid, {})
  5894. expert_cache[name] = data_torch
  5895. expert_weights = ["w1", "w2", "w3"]
  5896. # not enough expert weights to merge
  5897. if len(expert_cache) < n_experts * len(expert_weights):
  5898. return []
  5899. tensors: list[tuple[str, Tensor]] = []
  5900. for w_name in expert_weights:
  5901. datas: list[Tensor] = []
  5902. for xid in range(n_experts):
  5903. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5904. datas.append(expert_cache[ename])
  5905. del expert_cache[ename]
  5906. data_torch = torch.stack(datas, dim=0)
  5907. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5908. new_name = self.map_tensor_name(merged_name)
  5909. tensors.append((new_name, data_torch))
  5910. del self._experts_cache[bid]
  5911. return tensors
  5912. return super().modify_tensors(data_torch, name, bid)
  5913. @ModelBase.register("PanguEmbeddedForCausalLM")
  5914. class PanguEmbeddedModel(TextModel):
  5915. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5916. def set_vocab(self):
  5917. self._set_vocab_sentencepiece()
  5918. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5919. if tokenizer_config_file.is_file():
  5920. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5921. tokenizer_config_json = json.load(f)
  5922. if "add_prefix_space" in tokenizer_config_json:
  5923. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5924. def set_gguf_parameters(self):
  5925. super().set_gguf_parameters()
  5926. hparams = self.hparams
  5927. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5928. # PanguEmbedded's hparam loaded from config.json without head_dim
  5929. if (rope_dim := hparams.get("head_dim")) is None:
  5930. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5931. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5932. if hparams.get("head_dim") is None:
  5933. self.gguf_writer.add_key_length(rope_dim)
  5934. self.gguf_writer.add_value_length(rope_dim)
  5935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5936. if name == "lm_head.weight":
  5937. if self.hparams.get("tie_word_embeddings", False):
  5938. logger.info("Skipping tied output layer 'lm_head.weight'")
  5939. return []
  5940. return [(self.map_tensor_name(name), data_torch)]
  5941. @ModelBase.register("Dots1ForCausalLM")
  5942. class Dots1Model(Qwen2MoeModel):
  5943. model_arch = gguf.MODEL_ARCH.DOTS1
  5944. def __init__(self, *args, **kwargs):
  5945. super().__init__(*args, **kwargs)
  5946. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5947. def set_gguf_parameters(self):
  5948. super().set_gguf_parameters()
  5949. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5950. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5951. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5952. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5953. if self.hparams["scoring_func"] == "noaux_tc":
  5954. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5955. else:
  5956. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5957. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5958. if name.endswith("e_score_correction_bias"):
  5959. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5960. if "shared_experts" in name:
  5961. return [(self.map_tensor_name(name), data_torch)]
  5962. return super().modify_tensors(data_torch, name, bid)
  5963. @ModelBase.register("PLMForCausalLM")
  5964. class PLMModel(TextModel):
  5965. model_arch = gguf.MODEL_ARCH.PLM
  5966. def set_vocab(self):
  5967. self._set_vocab_gpt2()
  5968. def set_gguf_parameters(self):
  5969. super().set_gguf_parameters()
  5970. hparams = self.hparams
  5971. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5972. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5973. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5974. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5975. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5977. return [(self.map_tensor_name(name), data_torch)]
  5978. def prepare_tensors(self):
  5979. super().prepare_tensors()
  5980. @ModelBase.register("T5WithLMHeadModel")
  5981. @ModelBase.register("T5ForConditionalGeneration")
  5982. @ModelBase.register("MT5ForConditionalGeneration")
  5983. @ModelBase.register("UMT5ForConditionalGeneration")
  5984. @ModelBase.register("UMT5Model")
  5985. class T5Model(TextModel):
  5986. model_arch = gguf.MODEL_ARCH.T5
  5987. def __init__(self, *args, **kwargs):
  5988. super().__init__(*args, **kwargs)
  5989. self.shared_token_embeddings_found = False
  5990. def set_vocab(self):
  5991. # to avoid TypeError: Descriptors cannot be created directly
  5992. # exception when importing sentencepiece_model_pb2
  5993. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5994. from sentencepiece import SentencePieceProcessor
  5995. from sentencepiece import sentencepiece_model_pb2 as model
  5996. tokenizer_path = self.dir_model / 'tokenizer.model'
  5997. # many older models use spiece.model tokenizer model filename
  5998. if not tokenizer_path.is_file():
  5999. tokenizer_path = self.dir_model / 'spiece.model'
  6000. if not tokenizer_path.is_file():
  6001. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6002. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6003. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6004. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6005. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6006. # assure the tokenizer model file name is correct
  6007. assert tokenizer_path.name == 'tokenizer.model'
  6008. return self._set_vocab_sentencepiece()
  6009. else:
  6010. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6011. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6012. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6013. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6014. tokenizer = SentencePieceProcessor()
  6015. tokenizer.LoadFromFile(str(tokenizer_path))
  6016. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6017. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6018. scores: list[float] = [-10000.0] * vocab_size
  6019. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6020. for token_id in range(tokenizer.vocab_size()):
  6021. piece = tokenizer.IdToPiece(token_id)
  6022. text = piece.encode("utf-8")
  6023. score = tokenizer.GetScore(token_id)
  6024. toktype = SentencePieceTokenTypes.NORMAL
  6025. if tokenizer.IsUnknown(token_id):
  6026. toktype = SentencePieceTokenTypes.UNKNOWN
  6027. elif tokenizer.IsControl(token_id):
  6028. toktype = SentencePieceTokenTypes.CONTROL
  6029. elif tokenizer.IsUnused(token_id):
  6030. toktype = SentencePieceTokenTypes.UNUSED
  6031. elif tokenizer.IsByte(token_id):
  6032. toktype = SentencePieceTokenTypes.BYTE
  6033. tokens[token_id] = text
  6034. scores[token_id] = score
  6035. toktypes[token_id] = toktype
  6036. added_tokens_file = self.dir_model / 'added_tokens.json'
  6037. if added_tokens_file.is_file():
  6038. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6039. added_tokens_json = json.load(f)
  6040. for key in added_tokens_json:
  6041. token_id = added_tokens_json[key]
  6042. if token_id >= vocab_size:
  6043. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6044. continue
  6045. tokens[token_id] = key.encode("utf-8")
  6046. scores[token_id] = -1000.0
  6047. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6048. if vocab_size > len(tokens):
  6049. pad_count = vocab_size - len(tokens)
  6050. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6051. for i in range(1, pad_count + 1):
  6052. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6053. scores.append(-1000.0)
  6054. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6055. self.gguf_writer.add_tokenizer_model("t5")
  6056. self.gguf_writer.add_tokenizer_pre("default")
  6057. self.gguf_writer.add_token_list(tokens)
  6058. self.gguf_writer.add_token_scores(scores)
  6059. self.gguf_writer.add_token_types(toktypes)
  6060. self.gguf_writer.add_add_space_prefix(add_prefix)
  6061. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6062. if precompiled_charsmap:
  6063. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6064. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6065. special_vocab.add_to_gguf(self.gguf_writer)
  6066. def set_gguf_parameters(self):
  6067. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6068. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6069. n_ctx = 512
  6070. self.gguf_writer.add_context_length(n_ctx)
  6071. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6072. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6073. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  6074. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6075. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6076. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6077. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6078. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6079. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6080. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6081. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6082. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6083. self.gguf_writer.add_file_type(self.ftype)
  6084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6085. del bid # unused
  6086. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6087. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6088. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6089. # and decoder and ignore the remaining ones.
  6090. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6091. if not self.shared_token_embeddings_found:
  6092. name = "shared.weight"
  6093. self.shared_token_embeddings_found = True
  6094. else:
  6095. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6096. return []
  6097. return [(self.map_tensor_name(name), data_torch)]
  6098. @ModelBase.register("T5EncoderModel")
  6099. class T5EncoderModel(TextModel):
  6100. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6101. def __init__(self, *args, **kwargs):
  6102. super().__init__(*args, **kwargs)
  6103. self.shared_token_embeddings_found = False
  6104. def set_vocab(self):
  6105. # to avoid TypeError: Descriptors cannot be created directly
  6106. # exception when importing sentencepiece_model_pb2
  6107. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6108. from sentencepiece import SentencePieceProcessor
  6109. from sentencepiece import sentencepiece_model_pb2 as model
  6110. tokenizer_path = self.dir_model / 'tokenizer.model'
  6111. # many older models use spiece.model tokenizer model filename
  6112. if not tokenizer_path.is_file():
  6113. tokenizer_path = self.dir_model / 'spiece.model'
  6114. if not tokenizer_path.is_file():
  6115. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6116. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6117. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6118. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6119. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6120. # assure the tokenizer model file name is correct
  6121. assert tokenizer_path.name == 'tokenizer.model'
  6122. return self._set_vocab_sentencepiece()
  6123. else:
  6124. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6125. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6126. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6127. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6128. tokenizer = SentencePieceProcessor()
  6129. tokenizer.LoadFromFile(str(tokenizer_path))
  6130. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6131. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6132. scores: list[float] = [-10000.0] * vocab_size
  6133. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6134. for token_id in range(tokenizer.vocab_size()):
  6135. piece = tokenizer.IdToPiece(token_id)
  6136. text = piece.encode("utf-8")
  6137. score = tokenizer.GetScore(token_id)
  6138. toktype = SentencePieceTokenTypes.NORMAL
  6139. if tokenizer.IsUnknown(token_id):
  6140. toktype = SentencePieceTokenTypes.UNKNOWN
  6141. elif tokenizer.IsControl(token_id):
  6142. toktype = SentencePieceTokenTypes.CONTROL
  6143. elif tokenizer.IsUnused(token_id):
  6144. toktype = SentencePieceTokenTypes.UNUSED
  6145. elif tokenizer.IsByte(token_id):
  6146. toktype = SentencePieceTokenTypes.BYTE
  6147. tokens[token_id] = text
  6148. scores[token_id] = score
  6149. toktypes[token_id] = toktype
  6150. added_tokens_file = self.dir_model / 'added_tokens.json'
  6151. if added_tokens_file.is_file():
  6152. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6153. added_tokens_json = json.load(f)
  6154. for key in added_tokens_json:
  6155. token_id = added_tokens_json[key]
  6156. if token_id >= vocab_size:
  6157. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6158. continue
  6159. tokens[token_id] = key.encode("utf-8")
  6160. scores[token_id] = -1000.0
  6161. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6162. if vocab_size > len(tokens):
  6163. pad_count = vocab_size - len(tokens)
  6164. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6165. for i in range(1, pad_count + 1):
  6166. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6167. scores.append(-1000.0)
  6168. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6169. self.gguf_writer.add_tokenizer_model("t5")
  6170. self.gguf_writer.add_tokenizer_pre("default")
  6171. self.gguf_writer.add_token_list(tokens)
  6172. self.gguf_writer.add_token_scores(scores)
  6173. self.gguf_writer.add_token_types(toktypes)
  6174. self.gguf_writer.add_add_space_prefix(add_prefix)
  6175. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6176. if precompiled_charsmap:
  6177. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6178. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6179. special_vocab.add_to_gguf(self.gguf_writer)
  6180. def set_gguf_parameters(self):
  6181. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6182. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6183. n_ctx = 512
  6184. self.gguf_writer.add_context_length(n_ctx)
  6185. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6186. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6187. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  6188. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6189. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6190. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6191. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6192. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6193. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6194. self.gguf_writer.add_file_type(self.ftype)
  6195. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6196. del bid # unused
  6197. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6198. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6199. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6200. # and decoder and ignore the remaining ones.
  6201. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6202. if not self.shared_token_embeddings_found:
  6203. name = "shared.weight"
  6204. self.shared_token_embeddings_found = True
  6205. else:
  6206. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6207. return []
  6208. return [(self.map_tensor_name(name), data_torch)]
  6209. @ModelBase.register("JAISLMHeadModel")
  6210. class JaisModel(TextModel):
  6211. model_arch = gguf.MODEL_ARCH.JAIS
  6212. def __init__(self, *args, **kwargs):
  6213. super().__init__(*args, **kwargs)
  6214. # SwigLU activation
  6215. assert self.hparams["activation_function"] == "swiglu"
  6216. # ALiBi position embedding
  6217. assert self.hparams["position_embedding_type"] == "alibi"
  6218. # Embeddings scale
  6219. self.embeddings_scale = 1.0
  6220. if 'mup_embeddings_scale' in self.hparams:
  6221. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6222. elif 'embeddings_scale' in self.hparams:
  6223. self.embeddings_scale = self.hparams['embeddings_scale']
  6224. else:
  6225. assert False
  6226. self.width_scale = 1.0
  6227. if 'mup_output_alpha' in self.hparams:
  6228. assert 'mup_width_scale' in self.hparams
  6229. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6230. elif 'width_scale' in self.hparams:
  6231. self.width_scale = self.hparams['width_scale']
  6232. else:
  6233. assert False
  6234. self.max_alibi_bias = 8.0
  6235. def set_vocab(self):
  6236. self._set_vocab_gpt2()
  6237. def set_gguf_parameters(self):
  6238. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  6239. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6240. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6241. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6242. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6243. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6244. self.gguf_writer.add_file_type(self.ftype)
  6245. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6246. del bid # unused
  6247. tensors: list[tuple[str, Tensor]] = []
  6248. # we don't need these
  6249. if name.endswith((".attn.bias")):
  6250. return tensors
  6251. if name.endswith(("relative_pe.slopes")):
  6252. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6253. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6254. # but Jais's PyTorch model simply precalculates the slope values and places them
  6255. # in relative_pes.slopes
  6256. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6257. first_val = float(data_torch[0].item())
  6258. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6259. return tensors
  6260. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6261. data_torch = data_torch.transpose(1, 0)
  6262. new_name = self.map_tensor_name(name)
  6263. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6264. tensors.append((new_name, data_torch * self.embeddings_scale))
  6265. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6266. tensors.append((new_name, data_torch * self.width_scale))
  6267. else:
  6268. tensors.append((new_name, data_torch))
  6269. return tensors
  6270. def prepare_tensors(self):
  6271. super().prepare_tensors()
  6272. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6273. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6274. class Glm4Model(TextModel):
  6275. model_arch = gguf.MODEL_ARCH.GLM4
  6276. def set_vocab(self):
  6277. from transformers import AutoTokenizer
  6278. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6279. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6280. tokens, toktypes, tokpre = self.get_vocab_base()
  6281. self.gguf_writer.add_tokenizer_model("gpt2")
  6282. self.gguf_writer.add_tokenizer_pre(tokpre)
  6283. self.gguf_writer.add_token_list(tokens)
  6284. self.gguf_writer.add_token_types(toktypes)
  6285. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6286. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6287. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6288. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6289. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6290. special_vocab.add_to_gguf(self.gguf_writer)
  6291. def set_gguf_parameters(self):
  6292. super().set_gguf_parameters()
  6293. if (rope_dim := self.hparams.get("head_dim")) is None:
  6294. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6295. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6296. rope_scaling = self.hparams.get("rope_scaling") or {}
  6297. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6298. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6299. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6300. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6301. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6302. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6303. return []
  6304. elif name.startswith("model.language_model."):
  6305. name = name.replace("language_model.", "") # for Glm4v
  6306. return super().modify_tensors(data_torch, name, bid)
  6307. @ModelBase.register("Glm4MoeForCausalLM")
  6308. class Glm4MoeModel(TextModel):
  6309. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6310. def __init__(self, *args, **kwargs):
  6311. super().__init__(*args, **kwargs)
  6312. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6313. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6314. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6315. def set_vocab(self):
  6316. from transformers import AutoTokenizer
  6317. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6318. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6319. tokens, toktypes, tokpre = self.get_vocab_base()
  6320. self.gguf_writer.add_tokenizer_model("gpt2")
  6321. self.gguf_writer.add_tokenizer_pre(tokpre)
  6322. self.gguf_writer.add_token_list(tokens)
  6323. self.gguf_writer.add_token_types(toktypes)
  6324. # Special tokens
  6325. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6326. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6327. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6328. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6329. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6330. # Patch broken chat template
  6331. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  6332. special_vocab.chat_template = special_vocab.chat_template.replace(
  6333. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  6334. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  6335. special_vocab.add_to_gguf(self.gguf_writer)
  6336. def set_gguf_parameters(self):
  6337. super().set_gguf_parameters()
  6338. if (rope_dim := self.hparams.get("head_dim")) is None:
  6339. rope_dim = (
  6340. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6341. )
  6342. self.gguf_writer.add_rope_dimension_count(
  6343. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6344. )
  6345. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6346. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6347. self.gguf_writer.add_expert_count(n_routed_experts)
  6348. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6349. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6350. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6351. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6352. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6353. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6354. # Expert gating function (sigmoid for GLM4_MOE)
  6355. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6356. # Routed scaling factor
  6357. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6358. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6359. # Normalise topk probabilities
  6360. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6361. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6362. # NextN/MTP prediction layers
  6363. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6364. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6365. _experts: list[dict[str, Tensor]] | None = None
  6366. def modify_tensors(
  6367. self, data_torch: Tensor, name: str, bid: int | None
  6368. ) -> Iterable[tuple[str, Tensor]]:
  6369. if name.startswith("model.visual."): # ignore visual part
  6370. return []
  6371. elif name.startswith("model.language_model."):
  6372. name = name.replace("language_model.", "") # for multimodal variants
  6373. # Handle main token embedding (but not layer-specific NextN embeddings)
  6374. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6375. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6376. # Handle routed experts
  6377. if name.find("mlp.experts") != -1:
  6378. n_experts = self.hparams["n_routed_experts"]
  6379. assert bid is not None
  6380. if self._experts is None:
  6381. self._experts = [{} for _ in range(self.block_count)]
  6382. self._experts[bid][name] = data_torch
  6383. if len(self._experts[bid]) >= n_experts * 3:
  6384. tensors: list[tuple[str, Tensor]] = []
  6385. # merge the experts into a single 3d tensor
  6386. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6387. datas: list[Tensor] = []
  6388. for xid in range(n_experts):
  6389. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6390. datas.append(self._experts[bid][ename])
  6391. del self._experts[bid][ename]
  6392. data_torch = torch.stack(datas, dim=0)
  6393. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6394. new_name = self.map_tensor_name(merged_name)
  6395. tensors.append((new_name, data_torch))
  6396. return tensors
  6397. else:
  6398. return []
  6399. if name.endswith("e_score_correction_bias"):
  6400. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6401. new_name = self.map_tensor_name(name)
  6402. return [(new_name, data_torch)]
  6403. def prepare_tensors(self):
  6404. super().prepare_tensors()
  6405. if self._experts is not None:
  6406. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6407. experts = [k for d in self._experts for k in d.keys()]
  6408. if len(experts) > 0:
  6409. raise ValueError(f"Unprocessed experts: {experts}")
  6410. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6411. class ChatGLMModel(TextModel):
  6412. model_arch = gguf.MODEL_ARCH.CHATGLM
  6413. def set_vocab_chatglm3(self):
  6414. dir_model = self.dir_model
  6415. hparams = self.hparams
  6416. tokens: list[bytes] = []
  6417. toktypes: list[int] = []
  6418. scores: list[float] = []
  6419. from transformers import AutoTokenizer
  6420. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6421. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6422. assert max(tokenizer.get_vocab().values()) < vocab_size
  6423. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6424. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6425. for token_id in range(vocab_size):
  6426. piece = tokenizer._convert_id_to_token(token_id)
  6427. if token_id == 0:
  6428. piece = "<unk>"
  6429. elif token_id == 1:
  6430. piece = "<bos>"
  6431. elif token_id == 2:
  6432. piece = "<eos>"
  6433. text = piece.encode("utf-8")
  6434. score = 0.0
  6435. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6436. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6437. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6438. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6439. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6440. if piece in special_tokens:
  6441. toktype = SentencePieceTokenTypes.CONTROL
  6442. elif len(piece) == 0:
  6443. text = f"[PAD{token_id}]".encode("utf-8")
  6444. toktype = SentencePieceTokenTypes.UNUSED
  6445. else:
  6446. toktype = SentencePieceTokenTypes.USER_DEFINED
  6447. tokens.append(text)
  6448. scores.append(score)
  6449. toktypes.append(toktype)
  6450. continue
  6451. toktype = SentencePieceTokenTypes.NORMAL
  6452. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6453. toktype = SentencePieceTokenTypes.UNKNOWN
  6454. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6455. toktype = SentencePieceTokenTypes.CONTROL
  6456. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6457. toktype = SentencePieceTokenTypes.UNUSED
  6458. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6459. toktype = SentencePieceTokenTypes.BYTE
  6460. tokens.append(text)
  6461. scores.append(score)
  6462. toktypes.append(toktype)
  6463. self.gguf_writer.add_tokenizer_model("llama")
  6464. # glm3 needs prefix and suffix formatted as:
  6465. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6466. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6467. self.gguf_writer.add_token_list(tokens)
  6468. self.gguf_writer.add_token_scores(scores)
  6469. self.gguf_writer.add_token_types(toktypes)
  6470. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6471. special_vocab.add_to_gguf(self.gguf_writer)
  6472. @staticmethod
  6473. def token_bytes_to_string(b):
  6474. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6475. byte_encoder = bytes_to_unicode()
  6476. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6477. @staticmethod
  6478. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6479. parts = [bytes([b]) for b in token]
  6480. while True:
  6481. min_idx = None
  6482. min_rank = None
  6483. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6484. rank = mergeable_ranks.get(pair[0] + pair[1])
  6485. if rank is not None and (min_rank is None or rank < min_rank):
  6486. min_idx = i
  6487. min_rank = rank
  6488. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6489. break
  6490. assert min_idx is not None
  6491. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6492. return parts
  6493. def set_vocab(self):
  6494. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6495. self.set_vocab_chatglm3()
  6496. return
  6497. dir_model = self.dir_model
  6498. hparams = self.hparams
  6499. tokens: list[str] = []
  6500. toktypes: list[int] = []
  6501. from transformers import AutoTokenizer
  6502. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6503. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6504. assert max(tokenizer.get_vocab().values()) < vocab_size
  6505. tokens, toktypes, tokpre = self.get_vocab_base()
  6506. self.gguf_writer.add_tokenizer_model("gpt2")
  6507. self.gguf_writer.add_tokenizer_pre(tokpre)
  6508. self.gguf_writer.add_token_list(tokens)
  6509. self.gguf_writer.add_token_types(toktypes)
  6510. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6511. # only add special tokens when they were not already loaded from config.json
  6512. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6513. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6514. # this one is usually not in config.json anyway
  6515. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6516. special_vocab.add_to_gguf(self.gguf_writer)
  6517. def set_gguf_parameters(self):
  6518. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6519. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6520. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6521. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6522. self.gguf_writer.add_embedding_length(n_embed)
  6523. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6524. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6525. self.gguf_writer.add_head_count(n_head)
  6526. self.gguf_writer.add_head_count_kv(n_head_kv)
  6527. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6528. self.gguf_writer.add_file_type(self.ftype)
  6529. if "attention_dim" in self.hparams:
  6530. rope_dim = self.hparams["attention_dim"]
  6531. else:
  6532. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6533. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6534. self.gguf_writer.add_add_bos_token(False)
  6535. rope_freq = 10000
  6536. if "rope_ratio" in self.hparams:
  6537. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6538. self.gguf_writer.add_rope_freq_base(rope_freq)
  6539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6540. del bid # unused
  6541. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6542. return []
  6543. name = name.removeprefix("transformer.")
  6544. return [(self.map_tensor_name(name), data_torch)]
  6545. @ModelBase.register("NemotronForCausalLM")
  6546. class NemotronModel(TextModel):
  6547. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6548. def set_vocab(self):
  6549. self._set_vocab_sentencepiece()
  6550. self.gguf_writer.add_pad_token_id(0)
  6551. self.gguf_writer.add_unk_token_id(1)
  6552. def set_gguf_parameters(self):
  6553. super().set_gguf_parameters()
  6554. hparams = self.hparams
  6555. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6556. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6557. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6558. # * Partial RoPE
  6559. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6560. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6561. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6562. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6563. # * RopeScaling for Nemotron
  6564. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6565. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6566. else:
  6567. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6568. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6569. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6570. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6571. # model.layers.{l}.input_layernorm.weight
  6572. # model.layers.{l}.post_attention_layernorm.weight
  6573. # model.norm.weight
  6574. if name.endswith("norm.weight"):
  6575. data_torch = data_torch + 1
  6576. return [(self.map_tensor_name(name), data_torch)]
  6577. @ModelBase.register("ExaoneForCausalLM")
  6578. class ExaoneModel(TextModel):
  6579. model_arch = gguf.MODEL_ARCH.EXAONE
  6580. def set_gguf_parameters(self):
  6581. hparams = self.hparams
  6582. assert (hparams["activation_function"] == "silu")
  6583. max_position_embeddings = hparams["max_position_embeddings"]
  6584. embed_dim = hparams["hidden_size"]
  6585. num_heads = hparams["num_attention_heads"]
  6586. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6587. layer_norm_eps = hparams["layer_norm_epsilon"]
  6588. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6589. num_layers = hparams["num_layers"]
  6590. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6591. # attention_dropout_rate = hparams["attention_dropout"]
  6592. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6593. # embed_dropout_rate = hparams["embed_dropout"]
  6594. self.gguf_writer.add_embedding_length(embed_dim)
  6595. self.gguf_writer.add_head_count(num_heads)
  6596. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6597. self.gguf_writer.add_context_length(max_position_embeddings)
  6598. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6599. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6600. self.gguf_writer.add_block_count(num_layers)
  6601. self.gguf_writer.add_file_type(self.ftype)
  6602. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6603. self.gguf_writer.add_rope_freq_base(rope_theta)
  6604. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6605. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6606. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6607. rope_scaling = self.hparams.get("rope_scaling") or {}
  6608. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6609. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6610. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6611. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6612. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6613. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6614. base = self.hparams.get("rope_theta", 10000.0)
  6615. if (dim := self.hparams.get("head_dim")) is None:
  6616. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6617. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6618. factor = rope_scaling.get("factor", 8.0)
  6619. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6620. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6621. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6622. low_freq_wavelen = old_context_len / low_freq_factor
  6623. high_freq_wavelen = old_context_len / high_freq_factor
  6624. assert low_freq_wavelen != high_freq_wavelen
  6625. rope_factors = []
  6626. for freq in freqs:
  6627. wavelen = 2 * math.pi / freq
  6628. if wavelen < high_freq_wavelen:
  6629. rope_factors.append(1)
  6630. elif wavelen > low_freq_wavelen:
  6631. rope_factors.append(factor)
  6632. else:
  6633. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6634. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6635. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6636. @ModelBase.register("Exaone4ForCausalLM")
  6637. class Exaone4Model(TextModel):
  6638. model_arch = gguf.MODEL_ARCH.EXAONE4
  6639. def set_vocab(self):
  6640. tokens, toktypes, tokpre = self.get_vocab_base()
  6641. self.gguf_writer.add_tokenizer_model("gpt2")
  6642. self.gguf_writer.add_tokenizer_pre(tokpre)
  6643. self.gguf_writer.add_token_list(tokens)
  6644. self.gguf_writer.add_token_types(toktypes)
  6645. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6646. special_vocab.add_to_gguf(self.gguf_writer)
  6647. def set_gguf_parameters(self):
  6648. super().set_gguf_parameters()
  6649. hparams = self.hparams
  6650. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6651. if hparams.get("sliding_window") is not None:
  6652. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6653. if "layer_types" in hparams:
  6654. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6655. elif "sliding_window_pattern" in hparams:
  6656. sliding_window_pattern = []
  6657. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6658. for i in range(hparams["num_hidden_layers"]):
  6659. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6660. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6661. for i in range(hparams["num_hidden_layers"]):
  6662. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6663. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6664. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6665. rope_scaling = self.hparams.get("rope_scaling") or {}
  6666. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6667. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6668. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6669. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6670. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6671. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6672. base = self.hparams.get("rope_theta", 10_000.0)
  6673. if (dim := self.hparams.get("head_dim")) is None:
  6674. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6675. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6676. factor = rope_scaling.get("factor", 16.0)
  6677. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6678. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6679. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6680. low_freq_wavelen = old_context_len / low_freq_factor
  6681. high_freq_wavelen = old_context_len / high_freq_factor
  6682. rope_factors = []
  6683. for freq in freqs:
  6684. wavelen = 2 * math.pi / freq
  6685. if wavelen < high_freq_wavelen:
  6686. rope_factors.append(1)
  6687. elif wavelen > low_freq_wavelen:
  6688. rope_factors.append(factor)
  6689. else:
  6690. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6691. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6692. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6693. @ModelBase.register("GraniteForCausalLM")
  6694. class GraniteModel(LlamaModel):
  6695. """Conversion for IBM's GraniteForCausalLM"""
  6696. model_arch = gguf.MODEL_ARCH.GRANITE
  6697. def set_gguf_parameters(self):
  6698. """Granite uses standard llama parameters with the following differences:
  6699. - No head_dim support
  6700. - New multiplier params:
  6701. - attention_scale
  6702. - embedding_scale
  6703. - residual_scale
  6704. - logits_scaling
  6705. """
  6706. if head_dim := self.hparams.pop("head_dim", None):
  6707. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6708. super().set_gguf_parameters()
  6709. # NOTE: Convert _multiplier params to _scale params for naming
  6710. # consistency
  6711. if attention_scale := self.hparams.get("attention_multiplier"):
  6712. self.gguf_writer.add_attention_scale(attention_scale)
  6713. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6714. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6715. self.gguf_writer.add_embedding_scale(embedding_scale)
  6716. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6717. if residual_scale := self.hparams.get("residual_multiplier"):
  6718. self.gguf_writer.add_residual_scale(residual_scale)
  6719. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6720. if logits_scale := self.hparams.get("logits_scaling"):
  6721. self.gguf_writer.add_logit_scale(logits_scale)
  6722. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6723. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6724. class GraniteMoeModel(GraniteModel):
  6725. """Conversion for IBM's GraniteMoeForCausalLM"""
  6726. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6727. def set_gguf_parameters(self):
  6728. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6729. - shared_intermediate_size
  6730. """
  6731. super().set_gguf_parameters()
  6732. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6733. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6734. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6735. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6736. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6737. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6738. the hidden size that is then split during forward. To keep compatibility
  6739. with existing mixtral support, we pull them apart here.
  6740. """
  6741. if name.endswith("block_sparse_moe.input_linear.weight"):
  6742. ffn_dim = self.hparams["intermediate_size"]
  6743. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6744. gate, up = data_torch.split(ffn_dim, dim=-2)
  6745. return [
  6746. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6747. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6748. ]
  6749. has_experts = bool(self.hparams.get('num_local_experts'))
  6750. if name.endswith("shared_mlp.input_linear.weight"):
  6751. ffn_dim = self.hparams["shared_intermediate_size"]
  6752. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6753. gate, up = data_torch.split(ffn_dim, dim=-2)
  6754. if has_experts:
  6755. return [
  6756. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6757. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6758. ]
  6759. return [
  6760. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6761. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6762. ]
  6763. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6764. return [
  6765. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6766. ]
  6767. return super().modify_tensors(data_torch, name, bid)
  6768. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6769. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6770. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6771. layers and optionally uses MoE w/ a shared expert"""
  6772. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6773. undo_permute = True
  6774. def __init__(self, *args, **kwargs):
  6775. # Hybrid mamba models use a prefix for the mamba-specific params.
  6776. # TODO: Extend this if the prefix(es) need to be configurable
  6777. self.hparam_prefixes = ["mamba"]
  6778. super().__init__(*args, **kwargs)
  6779. # Lists of which layers use ssm vs attention
  6780. self._attn_layers = self.get_attn_layers()
  6781. self._ssm_layers = [
  6782. i for i in range(self.block_count)
  6783. if i not in self._attn_layers
  6784. ]
  6785. # There are some models in this family that are non-hybrid, but keep the
  6786. # same parent class by setting all layers to "attention." If this is the
  6787. # case, the model architecture needs to be updated to a standard
  6788. # "granite" or "granitemoe" model
  6789. if not self._ssm_layers:
  6790. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6791. new_arch = (
  6792. gguf.MODEL_ARCH.GRANITE_MOE
  6793. if has_experts else
  6794. gguf.MODEL_ARCH.GRANITE
  6795. )
  6796. self.model_arch = new_arch
  6797. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6798. self.gguf_writer.add_architecture()
  6799. # n_group and d_inner are used during reshape_tensors for mamba2
  6800. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6801. # disambiguate with top-level head_dim
  6802. # NOTE 2: If needed for future models, this can be isolated in a method
  6803. # to separate the prefix setting and teh keys used
  6804. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6805. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6806. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6807. def get_attn_layers(self):
  6808. # Explicit list of layer type names
  6809. if layer_types := self.hparams.get("layer_types"):
  6810. return [
  6811. i for i, typ in enumerate(layer_types)
  6812. if typ == "attention"
  6813. ]
  6814. # Layer types indicated by index or period
  6815. attn_layers = self.hparams.get("attn_layer_indices", [])
  6816. if not attn_layers:
  6817. attn_period = self.hparams.get("attn_layer_period")
  6818. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6819. attn_offset = self.hparams.get("attn_layer_offset")
  6820. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6821. attn_layers = [
  6822. i for i in range(self.block_count)
  6823. if i % attn_period == attn_offset
  6824. ]
  6825. return attn_layers
  6826. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6827. prefixed = []
  6828. for pfx in self.hparam_prefixes:
  6829. prefixed.extend(
  6830. "_".join([pfx, k])
  6831. for k in keys
  6832. )
  6833. keys = list(keys) + prefixed
  6834. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6835. def modify_tensors(
  6836. self, data_torch: Tensor, name: str, bid: int | None
  6837. ) -> Iterable[tuple[str, Tensor]]:
  6838. if (
  6839. name.endswith("block_sparse_moe.input_linear.weight")
  6840. or "shared_mlp" in name
  6841. ):
  6842. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6843. # Determine whether this is a mamba layer or an attention layer
  6844. if bid in self._ssm_layers:
  6845. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6846. elif bid in self._attn_layers:
  6847. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6848. return [(self.map_tensor_name(name), data_torch)]
  6849. def set_gguf_parameters(self):
  6850. """This method merges params from both parents and some that are
  6851. specific to this model. The result is some duplication of how the params
  6852. get set. The following warnings are expected during conversion:
  6853. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6854. WARNING:Duplicated key name 'granitehybrid.context_length'
  6855. """
  6856. GraniteMoeModel.set_gguf_parameters(self)
  6857. ## Mamba mixer params ##
  6858. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6859. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6860. self.gguf_writer.add_ssm_group_count(self.n_group)
  6861. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6862. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6863. # in llama.cpp
  6864. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6865. ## Attention params ##
  6866. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6867. head_count_kv_vec = [
  6868. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6869. ]
  6870. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6871. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6872. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6873. ## If Bamba or non-hybrid, use rope, otherwise don't
  6874. use_rope = (
  6875. "BambaForCausalLM" in self.hparams["architectures"]
  6876. or not self._ssm_layers
  6877. )
  6878. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6879. if not use_rope:
  6880. self.gguf_writer.add_context_length(2**20)
  6881. ## Validation ##
  6882. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6883. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6884. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6885. def set_vocab(self):
  6886. self.hparams["pad_vocab_size_multiple"] = 8
  6887. Mamba2Model.set_vocab(self)
  6888. @ModelBase.register("NemotronHForCausalLM")
  6889. class NemotronHModel(GraniteHybridModel):
  6890. """Hybrid mamba2/attention model from NVIDIA"""
  6891. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6892. def __init__(self, *args, **kwargs):
  6893. super().__init__(*args, **kwargs)
  6894. # Save the top-level head_dim for later
  6895. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6896. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6897. # Don't use expand to calculate d_inner
  6898. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6899. # Update the ssm / attn / mlp layers
  6900. # M: Mamba2, *: Attention, -: MLP
  6901. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6902. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6903. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6904. def get_attn_layers(self):
  6905. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6906. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6907. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6908. def set_gguf_parameters(self):
  6909. super().set_gguf_parameters()
  6910. self.gguf_writer.add_key_length(self.head_dim)
  6911. self.gguf_writer.add_value_length(self.head_dim)
  6912. # Set feed_forward_length
  6913. # NOTE: This will trigger an override warning. This is preferrable to
  6914. # duplicating all the parent logic
  6915. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6916. self.gguf_writer.add_feed_forward_length([
  6917. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6918. ])
  6919. def set_vocab(self):
  6920. super().set_vocab()
  6921. # The tokenizer _does_ add a BOS token (via post_processor type
  6922. # TemplateProcessing) but does not set add_bos_token to true in the
  6923. # config, so we need to explicitly override it here.
  6924. self.gguf_writer.add_add_bos_token(True)
  6925. @ModelBase.register("BailingMoeForCausalLM")
  6926. class BailingMoeModel(TextModel):
  6927. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6928. def set_vocab(self):
  6929. self._set_vocab_gpt2()
  6930. def set_gguf_parameters(self):
  6931. super().set_gguf_parameters()
  6932. hparams = self.hparams
  6933. if (rope_dim := hparams.get("head_dim")) is None:
  6934. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6935. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6936. rope_scaling = self.hparams.get("rope_scaling") or {}
  6937. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6938. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6939. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6940. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6941. else:
  6942. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6943. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6944. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6945. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6946. self.gguf_writer.add_expert_weights_scale(1.0)
  6947. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6948. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6949. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6950. _experts: list[dict[str, Tensor]] | None = None
  6951. @staticmethod
  6952. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6953. if n_head_kv is not None and n_head != n_head_kv:
  6954. n_head = n_head_kv
  6955. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6956. .swapaxes(1, 2)
  6957. .reshape(weights.shape))
  6958. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6959. n_head = self.hparams["num_attention_heads"]
  6960. n_kv_head = self.hparams.get("num_key_value_heads")
  6961. n_embd = self.hparams["hidden_size"]
  6962. if (head_dim := self.hparams.get("head_dim")) is None:
  6963. head_dim = n_embd // n_head
  6964. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6965. if name.endswith("attention.dense.weight"):
  6966. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6967. elif name.endswith("query_key_value.weight"):
  6968. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6969. return [
  6970. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6971. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6972. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6973. ]
  6974. elif name.find("mlp.experts") != -1:
  6975. n_experts = self.hparams["num_experts"]
  6976. assert bid is not None
  6977. tensors: list[tuple[str, Tensor]] = []
  6978. if self._experts is None:
  6979. self._experts = [{} for _ in range(self.block_count)]
  6980. self._experts[bid][name] = data_torch
  6981. if len(self._experts[bid]) >= n_experts * 3:
  6982. # merge the experts into a single 3d tensor
  6983. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6984. datas: list[Tensor] = []
  6985. for xid in range(n_experts):
  6986. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6987. datas.append(self._experts[bid][ename])
  6988. del self._experts[bid][ename]
  6989. data_torch = torch.stack(datas, dim=0)
  6990. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6991. new_name = self.map_tensor_name(merged_name)
  6992. tensors.append((new_name, data_torch))
  6993. return tensors
  6994. new_name = self.map_tensor_name(name)
  6995. if new_name == output_name and self.hparams.get("norm_head"):
  6996. data_torch = data_torch.float()
  6997. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6998. return [(new_name, data_torch)]
  6999. def prepare_tensors(self):
  7000. super().prepare_tensors()
  7001. if self._experts is not None:
  7002. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7003. experts = [k for d in self._experts for k in d.keys()]
  7004. if len(experts) > 0:
  7005. raise ValueError(f"Unprocessed experts: {experts}")
  7006. @ModelBase.register("BailingMoeV2ForCausalLM")
  7007. class BailingMoeV2Model(TextModel):
  7008. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7009. def __init__(self, *args, **kwargs):
  7010. super().__init__(*args, **kwargs)
  7011. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7012. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7013. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7014. def set_vocab(self):
  7015. self._set_vocab_gpt2()
  7016. def set_gguf_parameters(self):
  7017. super().set_gguf_parameters()
  7018. hparams = self.hparams
  7019. if (rope_dim := hparams.get("head_dim")) is None:
  7020. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7021. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7022. rope_scaling = self.hparams.get("rope_scaling") or {}
  7023. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7024. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7025. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7026. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7027. else:
  7028. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7029. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7030. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7031. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7032. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7033. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7034. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7035. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7036. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7037. if hparams["score_function"] == "sigmoid":
  7038. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7039. elif hparams["score_function"] == "softmax":
  7040. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7041. else:
  7042. raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
  7043. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7044. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7045. _experts: list[dict[str, Tensor]] | None = None
  7046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7047. if "mlp.experts" in name:
  7048. n_experts = self.hparams["num_experts"]
  7049. assert bid is not None
  7050. tensors: list[tuple[str, Tensor]] = []
  7051. if self._experts is None:
  7052. self._experts = [{} for _ in range(self.block_count)]
  7053. self._experts[bid][name] = data_torch
  7054. if len(self._experts[bid]) >= n_experts * 3:
  7055. # merge the experts into a single 3d tensor
  7056. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7057. datas: list[Tensor] = []
  7058. for xid in range(n_experts):
  7059. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7060. datas.append(self._experts[bid][ename])
  7061. del self._experts[bid][ename]
  7062. data_torch = torch.stack(datas, dim=0)
  7063. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7064. new_name = self.map_tensor_name(merged_name)
  7065. tensors.append((new_name, data_torch))
  7066. return tensors
  7067. if name.endswith(".expert_bias"):
  7068. name = name.replace(".expert_bias", ".expert_bias.bias")
  7069. return [(self.map_tensor_name(name), data_torch)]
  7070. def prepare_tensors(self):
  7071. super().prepare_tensors()
  7072. if self._experts is not None:
  7073. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7074. experts = [k for d in self._experts for k in d.keys()]
  7075. if len(experts) > 0:
  7076. raise ValueError(f"Unprocessed experts: {experts}")
  7077. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7078. class GroveMoeModel(TextModel):
  7079. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7080. def set_gguf_parameters(self):
  7081. super().set_gguf_parameters()
  7082. if (n_experts := self.hparams.get("num_experts")) is not None:
  7083. self.gguf_writer.add_expert_count(n_experts)
  7084. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7085. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7086. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7087. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7088. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7089. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7090. self.gguf_writer.add_experts_per_group(2)
  7091. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7092. self.gguf_writer.add_expert_group_scale(0.05)
  7093. # YaRN is not enabled by default
  7094. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7095. rope_scaling = self.hparams.get("rope_scaling") or {}
  7096. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7097. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7098. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7099. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7100. _experts: list[dict[str, Tensor]] | None = None
  7101. _chunk_experts: list[dict[str, Tensor]] | None = None
  7102. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7103. if name.endswith(".expert_bias"):
  7104. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7105. return []
  7106. # process the experts separately
  7107. if name.find("chunk_experts") != -1:
  7108. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7109. assert bid is not None
  7110. if self._chunk_experts is None:
  7111. self._chunk_experts = [{} for _ in range(self.block_count)]
  7112. self._chunk_experts[bid][name] = data_torch
  7113. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7114. tensors: list[tuple[str, Tensor]] = []
  7115. # merge the experts into a single 3d tensor
  7116. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7117. datas: list[Tensor] = []
  7118. for xid in range(n_experts):
  7119. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7120. datas.append(self._chunk_experts[bid][ename])
  7121. del self._chunk_experts[bid][ename]
  7122. data_torch = torch.stack(datas, dim=0)
  7123. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7124. new_name = self.map_tensor_name(merged_name)
  7125. tensors.append((new_name, data_torch))
  7126. return tensors
  7127. else:
  7128. return []
  7129. elif name.find("experts") != -1:
  7130. n_experts = self.hparams["num_experts"]
  7131. assert bid is not None
  7132. if self._experts is None:
  7133. self._experts = [{} for _ in range(self.block_count)]
  7134. self._experts[bid][name] = data_torch
  7135. if len(self._experts[bid]) >= n_experts * 3:
  7136. tensors: list[tuple[str, Tensor]] = []
  7137. # merge the experts into a single 3d tensor
  7138. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7139. datas: list[Tensor] = []
  7140. for xid in range(n_experts):
  7141. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7142. datas.append(self._experts[bid][ename])
  7143. del self._experts[bid][ename]
  7144. data_torch = torch.stack(datas, dim=0)
  7145. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7146. new_name = self.map_tensor_name(merged_name)
  7147. tensors.append((new_name, data_torch))
  7148. return tensors
  7149. else:
  7150. return []
  7151. return [(self.map_tensor_name(name), data_torch)]
  7152. def prepare_tensors(self):
  7153. super().prepare_tensors()
  7154. if self._chunk_experts is not None:
  7155. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7156. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7157. if len(chunk_experts) > 0:
  7158. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7159. if self._experts is not None:
  7160. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7161. experts = [k for d in self._experts for k in d.keys()]
  7162. if len(experts) > 0:
  7163. raise ValueError(f"Unprocessed experts: {experts}")
  7164. @ModelBase.register("ChameleonForConditionalGeneration")
  7165. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7166. class ChameleonModel(TextModel):
  7167. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7168. def set_gguf_parameters(self):
  7169. super().set_gguf_parameters()
  7170. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7171. def set_vocab(self):
  7172. self._set_vocab_gpt2()
  7173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7174. # ignore image tokenizer for now
  7175. # TODO: remove this once image support is implemented for Chameleon
  7176. if name.startswith("model.vqmodel"):
  7177. return []
  7178. n_head = self.hparams["num_attention_heads"]
  7179. n_kv_head = self.hparams.get("num_key_value_heads")
  7180. hidden_dim = self.hparams.get("hidden_size")
  7181. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7182. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7183. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7184. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7185. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7186. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7187. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7188. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7189. return [(self.map_tensor_name(name), data_torch)]
  7190. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7191. @staticmethod
  7192. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7193. head_dim = hidden_dim // n_heads
  7194. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7195. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7196. return data_torch
  7197. @ModelBase.register("UltravoxModel")
  7198. class UltravoxModel(TextModel):
  7199. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7200. def __init__(self, *args, **kwargs):
  7201. super().__init__(*args, **kwargs)
  7202. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7203. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7204. class WhisperEncoderModel(MmprojModel):
  7205. has_vision_encoder = False # no vision encoder
  7206. has_audio_encoder = True
  7207. def __init__(self, *args, **kwargs):
  7208. super().__init__(*args, **kwargs)
  7209. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7210. self.hparams["hidden_size"] = self.hparams["d_model"]
  7211. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7212. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7213. def set_gguf_parameters(self):
  7214. super().set_gguf_parameters()
  7215. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7216. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7217. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7218. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7219. if ".conv" in name and ".weight" in name:
  7220. return gguf.GGMLQuantizationType.F16
  7221. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7223. del bid # unused
  7224. if name.startswith("language_model."):
  7225. # skip language model tensors
  7226. return []
  7227. # prevent clash naming with vision tensors
  7228. if name.startswith("multi_modal_projector"):
  7229. name = "audio." + name
  7230. if "conv1.bias" in name or "conv2.bias" in name:
  7231. # transpose conv1 and conv2 bias
  7232. data_torch = data_torch.unsqueeze(-1)
  7233. return [(self.map_tensor_name(name), data_torch)]
  7234. @ModelBase.register("UltravoxModel")
  7235. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7236. has_vision_encoder = False # no vision encoder
  7237. has_audio_encoder = True
  7238. def set_gguf_parameters(self):
  7239. super().set_gguf_parameters()
  7240. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7241. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7242. @ModelBase.register("VoxtralForConditionalGeneration")
  7243. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7244. has_vision_encoder = False # no vision encoder
  7245. has_audio_encoder = True
  7246. def set_gguf_parameters(self):
  7247. super().set_gguf_parameters()
  7248. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7249. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7250. @ModelBase.register("FalconH1ForCausalLM")
  7251. class FalconH1Model(Mamba2Model):
  7252. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7253. def __init__(self, *args, **kwargs):
  7254. # Set the hparam prefixes for Falcon Mamba2
  7255. self.hparam_prefixes = ["mamba"]
  7256. # Initialize the base Mamba2Model
  7257. super().__init__(*args, **kwargs)
  7258. # Use Llama conversion for attention
  7259. self._transformer_model_class = LlamaModel
  7260. # n_group and d_inner are used during reshape_tensors for mamba2
  7261. self.n_group = self.find_hparam(["n_groups"])
  7262. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7263. self.d_head = self.find_hparam(["d_head"])
  7264. # Initialize any Falcon Mamba2 specific attributes
  7265. self.has_attention = True # Falcon Mamba2 has attention components
  7266. # Load Falcon-H1 multipliers from hyperparameters
  7267. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7268. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7269. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7270. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7271. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7272. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7273. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7274. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7275. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7276. prefixed = []
  7277. for pfx in self.hparam_prefixes:
  7278. prefixed.extend(
  7279. "_".join([pfx, k])
  7280. for k in keys
  7281. )
  7282. keys = list(keys) + prefixed
  7283. return super().find_hparam(keys, *args, **kwargs)
  7284. def set_vocab(self):
  7285. self._set_vocab_gpt2()
  7286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7287. tensors = list(super().modify_tensors(data_torch, name, bid))
  7288. tensor = tensors[0][1]
  7289. if "down_proj" in name:
  7290. tensor = tensor * self.mlp_multipliers[1]
  7291. elif "gate_proj" in name:
  7292. tensor = tensor * self.mlp_multipliers[0]
  7293. elif "k_proj" in name:
  7294. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7295. elif "q_proj" in name:
  7296. tensor = tensor * self.attention_in_multiplier
  7297. elif "v_proj" in name:
  7298. tensor = tensor * self.attention_in_multiplier
  7299. elif "o_proj" in name:
  7300. tensor = tensor * self.attention_out_multiplier
  7301. elif "out_proj" in name:
  7302. tensor = tensor * self.ssm_out_multiplier
  7303. elif "in_proj" in name:
  7304. tensor = tensor * self.ssm_in_multiplier
  7305. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7306. intermediate_size = self.hparams["mamba_d_ssm"]
  7307. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7308. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7309. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7310. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7311. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7312. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7313. elif "lm_head" in name:
  7314. tensor = tensor * self.hparams["lm_head_multiplier"]
  7315. elif "embed_tokens" in name:
  7316. tensor = tensor * self.hparams["embedding_multiplier"]
  7317. elif "mamba.norm" in name:
  7318. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7319. tensors = [(tensors[0][0], tensor)]
  7320. return tensors
  7321. def set_gguf_parameters(self):
  7322. super().set_gguf_parameters()
  7323. ## General Params ##
  7324. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7325. # Override some Mamba2 defaults
  7326. self.gguf_writer.add_block_count(self.block_count)
  7327. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7328. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7329. ## Attention params ##
  7330. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7331. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7332. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7333. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7334. ## Validation ##
  7335. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7336. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7337. # Add any other Falcon Mamba2 specific configuration
  7338. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7339. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7340. class HunYuanMoEModel(TextModel):
  7341. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7342. def set_vocab(self):
  7343. from transformers import AutoTokenizer
  7344. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7345. # 1. Get the pre-tokenizer identifier hash
  7346. tokpre = self.get_vocab_base_pre(tokenizer)
  7347. # 2. Reverse-engineer the merges list from mergeable_ranks
  7348. merges = []
  7349. vocab = {}
  7350. mergeable_ranks = tokenizer.mergeable_ranks
  7351. for token, rank in mergeable_ranks.items():
  7352. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7353. if len(token) == 1:
  7354. continue
  7355. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7356. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7357. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7358. # 3. Generate the tokens and toktypes lists
  7359. vocab_size = self.hparams["vocab_size"]
  7360. assert tokenizer.vocab_size == vocab_size
  7361. special_tokens = tokenizer.special_tokens
  7362. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7363. tokens: list[str] = []
  7364. toktypes: list[int] = []
  7365. for i in range(vocab_size):
  7366. if i not in reverse_vocab:
  7367. tokens.append(f"[PAD{i}]")
  7368. toktypes.append(gguf.TokenType.UNUSED)
  7369. else:
  7370. token = reverse_vocab[i]
  7371. tokens.append(token)
  7372. if i in special_tokens.values():
  7373. toktypes.append(gguf.TokenType.CONTROL)
  7374. else:
  7375. toktypes.append(gguf.TokenType.NORMAL)
  7376. # 4. Write all vocab-related fields to the GGUF writer
  7377. self.gguf_writer.add_tokenizer_model("gpt2")
  7378. self.gguf_writer.add_tokenizer_pre(tokpre)
  7379. self.gguf_writer.add_token_list(tokens)
  7380. self.gguf_writer.add_token_types(toktypes)
  7381. self.gguf_writer.add_token_merges(merges)
  7382. # 5. Add special tokens and chat templates
  7383. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7384. special_vocab.add_to_gguf(self.gguf_writer)
  7385. # FIX for BOS token: Overwrite incorrect id read from config.json
  7386. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7387. def set_gguf_parameters(self):
  7388. super().set_gguf_parameters()
  7389. hparams = self.hparams
  7390. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7391. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7392. moe_intermediate_size = hparams["moe_intermediate_size"]
  7393. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7394. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7395. moe_topk = hparams["moe_topk"]
  7396. assert all(topk == moe_topk[0] for topk in moe_topk)
  7397. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7398. moe_shared_expert = hparams["num_shared_expert"]
  7399. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7400. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7401. # Rope
  7402. rope_scaling = hparams.get("rope_scaling", {})
  7403. if rope_scaling.get("type") == "dynamic":
  7404. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7405. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7406. alpha = rope_scaling.get("alpha", 1000)
  7407. base = hparams.get("rope_theta", 10000.0)
  7408. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7409. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7410. self.gguf_writer.add_rope_freq_base(scaled_base)
  7411. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7412. self.gguf_writer.add_rope_scaling_factor(1)
  7413. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7414. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7415. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7416. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7417. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7418. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7419. _experts: list[dict[str, Tensor]] | None = None
  7420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7421. if name == "lm_head.weight":
  7422. if self.hparams.get("tie_word_embeddings", False):
  7423. logger.info("Skipping tied output layer 'lm_head.weight'")
  7424. return []
  7425. if name.find("mlp.experts") != -1:
  7426. n_experts = self.hparams["num_experts"]
  7427. assert bid is not None
  7428. if self._experts is None:
  7429. self._experts = [{} for _ in range(self.block_count)]
  7430. self._experts[bid][name] = data_torch
  7431. if len(self._experts[bid]) >= n_experts * 3:
  7432. # merge the experts into a single 3d tensor
  7433. tensors: list[tuple[str, Tensor]] = []
  7434. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7435. datas: list[Tensor] = []
  7436. for xid in range(n_experts):
  7437. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7438. datas.append(self._experts[bid][ename])
  7439. del self._experts[bid][ename]
  7440. data_torch = torch.stack(datas, dim=0)
  7441. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7442. new_name = self.map_tensor_name(merged_name)
  7443. tensors.append((new_name, data_torch))
  7444. return tensors
  7445. else:
  7446. return []
  7447. return [(self.map_tensor_name(name), data_torch)]
  7448. def prepare_tensors(self):
  7449. super().prepare_tensors()
  7450. if self._experts is not None:
  7451. experts = [k for d in self._experts for k in d.keys()]
  7452. if len(experts) > 0:
  7453. raise ValueError(f"Unprocessed experts: {experts}")
  7454. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7455. class LLaDAMoEModel(TextModel):
  7456. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7457. def set_gguf_parameters(self):
  7458. super().set_gguf_parameters()
  7459. if (n_experts := self.hparams.get("num_experts")) is not None:
  7460. self.gguf_writer.add_expert_count(n_experts)
  7461. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7462. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7463. # number of experts used per token (top-k)
  7464. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7465. self.gguf_writer.add_expert_used_count(n_experts_used)
  7466. self.gguf_writer.add_mask_token_id(156895)
  7467. self.gguf_writer.add_causal_attention(False)
  7468. self.gguf_writer.add_diffusion_shift_logits(False)
  7469. _experts: list[dict[str, Tensor]] | None = None
  7470. # Copied from: Qwen2MoeModel
  7471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7472. # process the experts separately
  7473. if name.find("experts") != -1:
  7474. n_experts = self.hparams["num_experts"]
  7475. assert bid is not None
  7476. if self._experts is None:
  7477. self._experts = [{} for _ in range(self.block_count)]
  7478. self._experts[bid][name] = data_torch
  7479. if len(self._experts[bid]) >= n_experts * 3:
  7480. tensors: list[tuple[str, Tensor]] = []
  7481. # merge the experts into a single 3d tensor
  7482. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7483. datas: list[Tensor] = []
  7484. for xid in range(n_experts):
  7485. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7486. datas.append(self._experts[bid][ename])
  7487. del self._experts[bid][ename]
  7488. data_torch = torch.stack(datas, dim=0)
  7489. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7490. new_name = self.map_tensor_name(merged_name)
  7491. tensors.append((new_name, data_torch))
  7492. return tensors
  7493. else:
  7494. return []
  7495. return [(self.map_tensor_name(name), data_torch)]
  7496. # Copied from: Qwen2MoeModel
  7497. def prepare_tensors(self):
  7498. super().prepare_tensors()
  7499. if self._experts is not None:
  7500. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7501. experts = [k for d in self._experts for k in d.keys()]
  7502. if len(experts) > 0:
  7503. raise ValueError(f"Unprocessed experts: {experts}")
  7504. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7505. class HunYuanModel(TextModel):
  7506. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7507. def set_vocab(self):
  7508. if (self.dir_model / "tokenizer.json").is_file():
  7509. self._set_vocab_gpt2()
  7510. else:
  7511. from transformers import AutoTokenizer
  7512. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7513. # 1. Get the pre-tokenizer identifier hash
  7514. tokpre = self.get_vocab_base_pre(tokenizer)
  7515. # 2. Reverse-engineer the merges list from mergeable_ranks
  7516. merges = []
  7517. vocab = {}
  7518. mergeable_ranks = tokenizer.mergeable_ranks
  7519. for token, rank in mergeable_ranks.items():
  7520. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7521. if len(token) == 1:
  7522. continue
  7523. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7524. if len(merged) == 2:
  7525. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7526. # 3. Generate the tokens and toktypes lists
  7527. vocab_size = self.hparams["vocab_size"]
  7528. assert tokenizer.vocab_size == vocab_size
  7529. special_tokens = tokenizer.special_tokens
  7530. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7531. tokens: list[str] = []
  7532. toktypes: list[int] = []
  7533. for i in range(vocab_size):
  7534. if i not in reverse_vocab:
  7535. tokens.append(f"[PAD{i}]")
  7536. toktypes.append(gguf.TokenType.UNUSED)
  7537. else:
  7538. token = reverse_vocab[i]
  7539. tokens.append(token)
  7540. if i in special_tokens.values():
  7541. toktypes.append(gguf.TokenType.CONTROL)
  7542. else:
  7543. toktypes.append(gguf.TokenType.NORMAL)
  7544. # 4. Write all vocab-related fields to the GGUF writer
  7545. self.gguf_writer.add_tokenizer_model("gpt2")
  7546. self.gguf_writer.add_tokenizer_pre(tokpre)
  7547. self.gguf_writer.add_token_list(tokens)
  7548. self.gguf_writer.add_token_types(toktypes)
  7549. self.gguf_writer.add_token_merges(merges)
  7550. # 5. Add special tokens and chat templates
  7551. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7552. special_vocab.add_to_gguf(self.gguf_writer)
  7553. # FIX for BOS token: Overwrite incorrect id read from config.json
  7554. if self.hparams['hidden_size'] == 4096:
  7555. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7556. def set_gguf_parameters(self):
  7557. super().set_gguf_parameters()
  7558. hparams = self.hparams
  7559. # Rope
  7560. rope_scaling = hparams.get("rope_scaling", {})
  7561. if rope_scaling.get("type") == "dynamic":
  7562. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7563. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7564. alpha = rope_scaling.get("alpha", 50)
  7565. base = hparams.get("rope_theta", 10000.0)
  7566. dim = hparams["head_dim"]
  7567. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7568. self.gguf_writer.add_rope_freq_base(scaled_base)
  7569. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7570. self.gguf_writer.add_rope_scaling_factor(1)
  7571. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7572. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7573. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7574. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7575. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7576. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7577. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7578. if name == "lm_head.weight":
  7579. if self.hparams.get("tie_word_embeddings", False):
  7580. logger.info("Skipping tied output layer 'lm_head.weight'")
  7581. return []
  7582. return [(self.map_tensor_name(name), data_torch)]
  7583. @ModelBase.register("SmolLM3ForCausalLM")
  7584. class SmolLM3Model(LlamaModel):
  7585. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7586. def set_vocab(self):
  7587. super().set_vocab()
  7588. # remove unsupported array slicing in chat template
  7589. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7590. from transformers import AutoTokenizer
  7591. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7592. if tokenizer.chat_template is not None:
  7593. chat_template = tokenizer.chat_template.replace("[:]", "")
  7594. self.gguf_writer.add_chat_template(chat_template)
  7595. @ModelBase.register("GptOssForCausalLM")
  7596. class GptOssModel(TextModel):
  7597. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7598. # TODO: remove once MXFP4 is supported more generally
  7599. def dequant_model(self):
  7600. quant_config = self.hparams.get("quantization_config")
  7601. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7602. return
  7603. return super().dequant_model()
  7604. def transform_nibble_layout(self, tensor):
  7605. assert tensor.dtype == torch.uint8
  7606. assert tensor.shape[-1] == 16
  7607. # swap nibbles
  7608. t_lo = tensor & 0x0F
  7609. t_hi = tensor & 0xF0
  7610. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7611. tensor = t_swapped
  7612. # transform aaaa...bbbb... to abababab...
  7613. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7614. # get a_
  7615. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7616. blk_a1 = (blk_a << 4).view(-1, 1)
  7617. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7618. # get _b
  7619. blk_b0 = (blk_b >> 4).view(-1, 1)
  7620. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7621. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7622. # swap once more
  7623. out = blk_a | blk_b
  7624. out_h = out & 0xF0
  7625. out_l = out & 0x0F
  7626. out = (out_h >> 4) | (out_l << 4)
  7627. return out
  7628. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7629. assert blocks.dtype == torch.uint8
  7630. assert scales.dtype == torch.uint8
  7631. scales = scales.unsqueeze(-1)
  7632. assert len(blocks.shape) == 4
  7633. assert len(scales.shape) == 4
  7634. blocks = self.transform_nibble_layout(blocks)
  7635. new_data = torch.concat((scales, blocks), dim=-1)
  7636. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7637. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7638. # flatten last dim
  7639. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7640. new_data = new_data.numpy()
  7641. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7642. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7643. blocks0: Tensor = torch.zeros(1)
  7644. blocks1: Tensor = torch.zeros(1)
  7645. # we assume that tensors are loaded in the correct order
  7646. for name, data_torch in self.get_tensors():
  7647. if "mlp.experts.down_proj_blocks" in name:
  7648. blocks0 = data_torch
  7649. elif "mlp.experts.down_proj_scales" in name:
  7650. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7651. self.repack_mxfp4(new_name, blocks0, data_torch)
  7652. elif "mlp.experts.gate_up_proj_blocks" in name:
  7653. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7654. elif "mlp.experts.gate_up_proj_scales" in name:
  7655. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7656. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7657. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7658. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7659. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7660. return []
  7661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7662. del bid # unused
  7663. if "sinks" in name:
  7664. name += ".weight"
  7665. # correct naming for down_proj
  7666. if "down_proj" in name:
  7667. if name.endswith("_bias"):
  7668. name = name.replace("down_proj_bias", "down_proj.bias")
  7669. elif "_blocks" not in name and "_scales" not in name:
  7670. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7671. name = name.replace("down_proj", "down_proj.weight")
  7672. data_torch = data_torch.transpose(-1, -2)
  7673. else:
  7674. # otherwise, it should already be repacked to ggml MXFP4 format
  7675. return []
  7676. # split the gate_up into gate and up
  7677. if "gate_up_proj" in name:
  7678. if name.endswith("_bias"):
  7679. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7680. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7681. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7682. return [
  7683. (self.map_tensor_name(name_gate), gate_proj_bias),
  7684. (self.map_tensor_name(name_up), up_proj_bias)
  7685. ]
  7686. elif "_blocks" not in name and "_scales" not in name:
  7687. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7688. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7689. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7690. data_torch = data_torch.transpose(-1, -2)
  7691. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7692. return [
  7693. (self.map_tensor_name(name_gate), gate_proj_weight),
  7694. (self.map_tensor_name(name_up), up_proj_weight)
  7695. ]
  7696. else:
  7697. # otherwise, it should already be repacked to ggml MXFP4 format
  7698. return []
  7699. return [(self.map_tensor_name(name), data_torch)]
  7700. def set_vocab(self):
  7701. self._set_vocab_gpt2()
  7702. def set_gguf_parameters(self):
  7703. super().set_gguf_parameters()
  7704. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7705. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7706. rope_scaling = self.hparams.get("rope_scaling") or {}
  7707. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7708. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7709. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7710. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7711. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7712. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7713. class LFM2Model(TextModel):
  7714. model_arch = gguf.MODEL_ARCH.LFM2
  7715. def _add_feed_forward_length(self):
  7716. ff_dim = self.hparams["block_ff_dim"]
  7717. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7718. ff_dim = self.hparams["block_ff_dim"]
  7719. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7720. multiple_of = self.hparams["block_multiple_of"]
  7721. if auto_adjust_ff_dim:
  7722. ff_dim = int(2 * ff_dim / 3)
  7723. # custom dim factor multiplier
  7724. if ffn_dim_multiplier is not None:
  7725. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7726. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7727. self.gguf_writer.add_feed_forward_length(ff_dim)
  7728. def set_gguf_parameters(self):
  7729. # set num_key_value_heads only for attention layers
  7730. self.hparams["num_key_value_heads"] = [
  7731. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7732. for layer_type in self.hparams["layer_types"]
  7733. ]
  7734. super().set_gguf_parameters()
  7735. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7736. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7737. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7738. self._add_feed_forward_length()
  7739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7740. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7741. if is_vision_tensor:
  7742. # skip vision tensors
  7743. return []
  7744. name = name.replace("language_model.", "")
  7745. # conv op requires 2d tensor
  7746. if 'conv.conv' in name:
  7747. data_torch = data_torch.squeeze(1)
  7748. return [(self.map_tensor_name(name), data_torch)]
  7749. @ModelBase.register("Lfm2MoeForCausalLM")
  7750. class LFM2MoeModel(TextModel):
  7751. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7752. def set_gguf_parameters(self):
  7753. # set num_key_value_heads only for attention layers
  7754. self.hparams["num_key_value_heads"] = [
  7755. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7756. for layer_type in self.hparams["layer_types"]
  7757. ]
  7758. super().set_gguf_parameters()
  7759. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7760. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7761. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7762. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7763. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7764. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7765. # cache for experts weights for merging
  7766. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7768. # conv op requires 2d tensor
  7769. if 'conv.conv' in name:
  7770. data_torch = data_torch.squeeze(1)
  7771. if name.endswith(".expert_bias"):
  7772. name = name.replace(".expert_bias", ".expert_bias.bias")
  7773. # merge expert weights
  7774. if 'experts' in name:
  7775. n_experts = self.hparams["num_experts"]
  7776. assert bid is not None
  7777. expert_cache = self._experts_cache.setdefault(bid, {})
  7778. expert_cache[name] = data_torch
  7779. expert_weights = ["w1", "w2", "w3"]
  7780. # not enough expert weights to merge
  7781. if len(expert_cache) < n_experts * len(expert_weights):
  7782. return []
  7783. tensors: list[tuple[str, Tensor]] = []
  7784. for w_name in expert_weights:
  7785. datas: list[Tensor] = []
  7786. for xid in range(n_experts):
  7787. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7788. datas.append(expert_cache[ename])
  7789. del expert_cache[ename]
  7790. data_torch = torch.stack(datas, dim=0)
  7791. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7792. new_name = self.map_tensor_name(merged_name)
  7793. tensors.append((new_name, data_torch))
  7794. del self._experts_cache[bid]
  7795. return tensors
  7796. return [(self.map_tensor_name(name), data_torch)]
  7797. def prepare_tensors(self):
  7798. super().prepare_tensors()
  7799. assert not self._experts_cache
  7800. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7801. class LFM2VLModel(MmprojModel):
  7802. def __init__(self, *args, **kwargs):
  7803. super().__init__(*args, **kwargs)
  7804. assert self.hparams_vision is not None
  7805. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7806. self.hparams_vision["image_size"] = 256
  7807. def set_gguf_parameters(self):
  7808. super().set_gguf_parameters()
  7809. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7810. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7811. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7812. self.gguf_writer.add_vision_use_gelu(True)
  7813. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7814. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7815. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7817. del bid # unused
  7818. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7819. if is_vision_tensor:
  7820. # remove "model." prefix
  7821. name = name.replace("model.vision_tower.", "vision_tower.")
  7822. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7823. if "patch_embedding.weight" in name:
  7824. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7825. return [(self.map_tensor_name(name), data_torch)]
  7826. return [] # skip other tensors
  7827. @ModelBase.register("SmallThinkerForCausalLM")
  7828. class SmallThinkerModel(TextModel):
  7829. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7830. def set_gguf_parameters(self):
  7831. super().set_gguf_parameters()
  7832. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7833. self.gguf_writer.add_expert_count(n_experts)
  7834. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7835. self.gguf_writer.add_expert_used_count(n_experts_used)
  7836. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7837. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7838. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7839. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7840. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7841. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7842. else:
  7843. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7844. # YaRN is not enabled by default
  7845. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7846. rope_scaling = self.hparams.get("rope_scaling") or {}
  7847. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7848. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7849. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7850. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7851. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7852. if sliding_window_layout:
  7853. for i in sliding_window_layout:
  7854. if i != 0:
  7855. sliding_window = self.hparams.get("sliding_window_size")
  7856. if sliding_window:
  7857. self.gguf_writer.add_sliding_window(sliding_window)
  7858. break
  7859. _experts: list[dict[str, Tensor]] | None = None
  7860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7861. # process the experts separately
  7862. if name.find("experts") != -1:
  7863. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7864. assert bid is not None
  7865. if self._experts is None:
  7866. self._experts = [{} for _ in range(self.block_count)]
  7867. self._experts[bid][name] = data_torch
  7868. if len(self._experts[bid]) >= n_experts * 3:
  7869. tensors: list[tuple[str, Tensor]] = []
  7870. # merge the experts into a single 3d tensor
  7871. for w_name in ["down", "gate", "up"]:
  7872. datas: list[Tensor] = []
  7873. for xid in range(n_experts):
  7874. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7875. datas.append(self._experts[bid][ename])
  7876. del self._experts[bid][ename]
  7877. data_torch = torch.stack(datas, dim=0)
  7878. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7879. new_name = self.map_tensor_name(merged_name)
  7880. tensors.append((new_name, data_torch))
  7881. return tensors
  7882. else:
  7883. return []
  7884. return [(self.map_tensor_name(name), data_torch)]
  7885. def prepare_tensors(self):
  7886. super().prepare_tensors()
  7887. if self._experts is not None:
  7888. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7889. experts = [k for d in self._experts for k in d.keys()]
  7890. if len(experts) > 0:
  7891. raise ValueError(f"Unprocessed experts: {experts}")
  7892. @ModelBase.register("ApertusForCausalLM")
  7893. class ApertusModel(LlamaModel):
  7894. model_arch = gguf.MODEL_ARCH.APERTUS
  7895. undo_permute = False
  7896. _alpha_n = {}
  7897. _alpha_p = {}
  7898. _beta = {}
  7899. _eps = {}
  7900. def modify_tensors(self, data_torch, name, bid):
  7901. # Handle xIELU activation parameters
  7902. n_layers = self.hparams["num_hidden_layers"]
  7903. if name.endswith(".act_fn.alpha_n"):
  7904. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7905. if (len(self._alpha_n) == n_layers):
  7906. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7907. return []
  7908. if name.endswith(".act_fn.alpha_p"):
  7909. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7910. if (len(self._alpha_p) == n_layers):
  7911. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7912. return []
  7913. if name.endswith(".act_fn.beta"):
  7914. self._beta[bid] = data_torch.to("cpu").float().item()
  7915. if (len(self._beta) == n_layers):
  7916. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7917. return []
  7918. if name.endswith(".act_fn.eps"):
  7919. self._eps[bid] = data_torch.to("cpu").float().item()
  7920. if (len(self._eps) == n_layers):
  7921. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7922. return []
  7923. return super().modify_tensors(data_torch, name, bid)
  7924. class MistralModel(LlamaModel):
  7925. model_arch = gguf.MODEL_ARCH.LLAMA
  7926. model_name = "Mistral"
  7927. hf_arch = ""
  7928. is_mistral_format = True
  7929. undo_permute = False
  7930. @staticmethod
  7931. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7932. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7933. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7934. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7935. )
  7936. if vocab.tokenizer.version == TokenizerVersion.v1:
  7937. return "mistral-v1"
  7938. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7939. return "mistral-v3"
  7940. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7941. return "mistral-v3-tekken"
  7942. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7943. return "mistral-v7"
  7944. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7945. return "mistral-v7-tekken"
  7946. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7947. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7948. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7949. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7950. else:
  7951. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7952. if is_mistral_format:
  7953. err_message += (
  7954. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7955. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7956. )
  7957. raise ValueError(err_message)
  7958. template_path = templates_dir / template_file
  7959. if not template_path.exists():
  7960. raise FileNotFoundError(f"Template file not found: {template_path}")
  7961. with open(template_path, "r", encoding="utf-8") as f:
  7962. template = f.read()
  7963. return template
  7964. class PixtralModel(LlavaVisionModel):
  7965. model_name = "Pixtral"
  7966. hf_arch = ""
  7967. is_mistral_format = True
  7968. def set_gguf_parameters(self):
  7969. super().set_gguf_parameters()
  7970. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7971. self.gguf_writer.add_vision_attention_layernorm_eps(
  7972. self.find_hparam(["norm_eps"])
  7973. )
  7974. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7975. self.gguf_writer.add_vision_use_silu(True)
  7976. # spatial_merge_size
  7977. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7978. self.gguf_writer.add_vision_spatial_merge_size(
  7979. self.find_vparam(["spatial_merge_size"])
  7980. )
  7981. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7982. if name == "vision_language_adapter.w_in.weight":
  7983. return "mm.1.weight"
  7984. elif name == "vision_language_adapter.w_out.weight":
  7985. return "mm.2.weight"
  7986. return super().map_tensor_name(name, try_suffixes)
  7987. @ModelBase.register("LightOnOCRForConditionalGeneration")
  7988. class LightOnOCRVisionModel(LlavaVisionModel):
  7989. is_mistral_format = False
  7990. use_break_tok = False
  7991. def set_gguf_parameters(self):
  7992. super().set_gguf_parameters()
  7993. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  7994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  7995. name = name.replace("model.vision_encoder.", "vision_tower.")
  7996. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  7997. return super().modify_tensors(data_torch, name, bid)
  7998. @ModelBase.register("KimiVLForConditionalGeneration")
  7999. class KimiVLModel(MmprojModel):
  8000. def __init__(self, *args, **kwargs):
  8001. super().__init__(*args, **kwargs)
  8002. assert self.hparams_vision is not None
  8003. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8004. def set_gguf_parameters(self):
  8005. super().set_gguf_parameters()
  8006. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8007. self.gguf_writer.add_vision_use_gelu(True)
  8008. self.gguf_writer.add_vision_projector_scale_factor(2)
  8009. # eps is the same as pytorch's default value
  8010. assert self.hparams_vision is not None
  8011. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8012. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8013. del bid # unused
  8014. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8015. if is_vision_tensor:
  8016. if "pos_emb.weight" in name:
  8017. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8018. elif "wqkv" in name:
  8019. split_dim = 0 if "weight" in name else -1
  8020. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8021. return [
  8022. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8023. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8024. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8025. ]
  8026. return [(self.map_tensor_name(name), data_torch)]
  8027. return [] # skip other tensors
  8028. @ModelBase.register("CogVLMForCausalLM")
  8029. class CogVLMVisionModel(MmprojModel):
  8030. def set_gguf_parameters(self):
  8031. super().set_gguf_parameters()
  8032. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8033. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8034. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8035. del bid # unused
  8036. if not name.startswith("model.vision."):
  8037. return []
  8038. return [(self.map_tensor_name(name), data_torch)]
  8039. @ModelBase.register("CogVLMForCausalLM")
  8040. class CogVLMModel(LlamaModel):
  8041. model_arch = gguf.MODEL_ARCH.COGVLM
  8042. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8043. del bid # unused
  8044. # block vision tensors
  8045. if name.startswith("model.vision."):
  8046. return []
  8047. return [(self.map_tensor_name(name), data_torch)]
  8048. @ModelBase.register("JanusForConditionalGeneration")
  8049. class JanusProModel(LlamaModel):
  8050. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8052. # Skip vision, aligner, and generation tensors
  8053. skip_prefixes = (
  8054. 'model.vision_model.',
  8055. 'model.aligner.',
  8056. 'model.vqmodel.',
  8057. 'model.generation_embeddings.',
  8058. 'model.generation_aligner.',
  8059. 'model.generation_head.',
  8060. )
  8061. if name.startswith(skip_prefixes):
  8062. return []
  8063. if name.startswith('model.language_model.'):
  8064. name = name.replace('model.language_model.', 'model.')
  8065. elif name.startswith('language_model.'):
  8066. name = name.replace('language_model.', '')
  8067. return super().modify_tensors(data_torch, name, bid)
  8068. @ModelBase.register("JanusForConditionalGeneration")
  8069. class JanusProVisionModel(MmprojModel):
  8070. def __init__(self, *args, **kwargs):
  8071. super().__init__(*args, **kwargs)
  8072. assert self.hparams_vision is not None
  8073. if "intermediate_size" not in self.hparams_vision:
  8074. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8075. hidden_size = self.hparams_vision.get("hidden_size")
  8076. if mlp_ratio is not None and hidden_size is not None:
  8077. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8078. def set_gguf_parameters(self):
  8079. super().set_gguf_parameters()
  8080. assert self.hparams_vision is not None
  8081. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8082. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8083. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8084. if hidden_act == "gelu":
  8085. self.gguf_writer.add_vision_use_gelu(True)
  8086. elif hidden_act == "silu":
  8087. self.gguf_writer.add_vision_use_silu(True)
  8088. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8089. """Map aligner tensors to projector format"""
  8090. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8091. if name.startswith("model.aligner."):
  8092. local_name = name[len("model.aligner."):]
  8093. elif name.startswith("aligner."):
  8094. local_name = name[len("aligner."):]
  8095. else:
  8096. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8097. if local_name.startswith("fc1."):
  8098. mm_index = 0
  8099. elif local_name.startswith("hidden_layers."):
  8100. parts = local_name.split(".", 2)
  8101. if len(parts) < 3:
  8102. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8103. mm_index = int(parts[1]) + 1
  8104. else:
  8105. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8106. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8107. return [(tensor_name, data_torch)]
  8108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8109. del bid # unused
  8110. # Skip language model tensors as they will be handled by `JanusProModel`
  8111. if name.startswith(('model.language_model.', 'language_model.')):
  8112. return []
  8113. # Skip generation-related components
  8114. skip_generation_prefixes = (
  8115. 'model.vqmodel.',
  8116. 'vqmodel.',
  8117. 'model.generation_embeddings.',
  8118. 'generation_embeddings.',
  8119. 'model.generation_aligner.',
  8120. 'generation_aligner.',
  8121. 'model.generation_head.',
  8122. 'generation_head.',
  8123. )
  8124. if name.startswith(skip_generation_prefixes):
  8125. return []
  8126. # Handle aligner tensors
  8127. if name.startswith(('model.aligner.', 'aligner.')):
  8128. return list(self._map_aligner_tensor(data_torch, name))
  8129. # Handle vision tensors
  8130. if name.startswith(('model.vision_model.', 'vision_model.')):
  8131. return [(self.map_tensor_name(name), data_torch)]
  8132. return []
  8133. ###### CONVERSION LOGIC ######
  8134. # tree of lazy tensors
  8135. class LazyTorchTensor(gguf.LazyBase):
  8136. _tensor_type = torch.Tensor
  8137. # to keep the type-checker happy
  8138. dtype: torch.dtype
  8139. shape: torch.Size
  8140. # only used when converting a torch.Tensor to a np.ndarray
  8141. _dtype_map: dict[torch.dtype, type] = {
  8142. torch.float16: np.float16,
  8143. torch.float32: np.float32,
  8144. torch.uint8: np.uint8,
  8145. }
  8146. # used for safetensors slices
  8147. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8148. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8149. _dtype_str_map: dict[str, torch.dtype] = {
  8150. "F64": torch.float64,
  8151. "F32": torch.float32,
  8152. "BF16": torch.bfloat16,
  8153. "F16": torch.float16,
  8154. # "U64": torch.uint64,
  8155. "I64": torch.int64,
  8156. # "U32": torch.uint32,
  8157. "I32": torch.int32,
  8158. # "U16": torch.uint16,
  8159. "I16": torch.int16,
  8160. "U8": torch.uint8,
  8161. "I8": torch.int8,
  8162. "BOOL": torch.bool,
  8163. "F8_E4M3": torch.float8_e4m3fn,
  8164. "F8_E5M2": torch.float8_e5m2,
  8165. }
  8166. def numpy(self) -> gguf.LazyNumpyTensor:
  8167. dtype = self._dtype_map[self.dtype]
  8168. return gguf.LazyNumpyTensor(
  8169. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8170. args=(self,),
  8171. func=(lambda s: s.numpy())
  8172. )
  8173. @classmethod
  8174. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8175. return torch.empty(size=shape, dtype=dtype, device="meta")
  8176. @classmethod
  8177. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8178. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8179. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8180. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8181. return cast(torch.Tensor, lazy)
  8182. @classmethod
  8183. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8184. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8185. dtype = cls._dtype_str_map[tensor.dtype]
  8186. return torch.from_numpy(tensor.mmap_bytes()).view(dtype).reshape(tensor.shape)
  8187. dtype = cls._dtype_str_map[t.dtype]
  8188. shape = t.shape
  8189. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8190. return cast(torch.Tensor, lazy)
  8191. @classmethod
  8192. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8193. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8194. shape = remote_tensor.shape
  8195. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8196. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  8197. return cast(torch.Tensor, lazy)
  8198. @classmethod
  8199. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8200. del types # unused
  8201. if kwargs is None:
  8202. kwargs = {}
  8203. if func is torch.Tensor.numpy:
  8204. return args[0].numpy()
  8205. return cls._wrap_fn(func)(*args, **kwargs)
  8206. def parse_args() -> argparse.Namespace:
  8207. parser = argparse.ArgumentParser(
  8208. description="Convert a huggingface model to a GGML compatible file")
  8209. parser.add_argument(
  8210. "--vocab-only", action="store_true",
  8211. help="extract only the vocab",
  8212. )
  8213. parser.add_argument(
  8214. "--outfile", type=Path,
  8215. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8216. )
  8217. parser.add_argument(
  8218. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8219. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8220. )
  8221. parser.add_argument(
  8222. "--bigendian", action="store_true",
  8223. help="model is executed on big endian machine",
  8224. )
  8225. parser.add_argument(
  8226. "model", type=str,
  8227. help="directory containing model file or huggingface repository ID (if --remote)",
  8228. nargs="?",
  8229. )
  8230. parser.add_argument(
  8231. "--use-temp-file", action="store_true",
  8232. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8233. )
  8234. parser.add_argument(
  8235. "--no-lazy", action="store_true",
  8236. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8237. )
  8238. parser.add_argument(
  8239. "--model-name", type=str, default=None,
  8240. help="name of the model",
  8241. )
  8242. parser.add_argument(
  8243. "--verbose", action="store_true",
  8244. help="increase output verbosity",
  8245. )
  8246. parser.add_argument(
  8247. "--split-max-tensors", type=int, default=0,
  8248. help="max tensors in each split",
  8249. )
  8250. parser.add_argument(
  8251. "--split-max-size", type=str, default="0",
  8252. help="max size per split N(M|G)",
  8253. )
  8254. parser.add_argument(
  8255. "--dry-run", action="store_true",
  8256. help="only print out a split plan and exit, without writing any new files",
  8257. )
  8258. parser.add_argument(
  8259. "--no-tensor-first-split", action="store_true",
  8260. help="do not add tensors to the first split (disabled by default)"
  8261. )
  8262. parser.add_argument(
  8263. "--metadata", type=Path,
  8264. help="Specify the path for an authorship metadata override file"
  8265. )
  8266. parser.add_argument(
  8267. "--print-supported-models", action="store_true",
  8268. help="Print the supported models"
  8269. )
  8270. parser.add_argument(
  8271. "--remote", action="store_true",
  8272. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8273. )
  8274. parser.add_argument(
  8275. "--mmproj", action="store_true",
  8276. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8277. )
  8278. parser.add_argument(
  8279. "--mistral-format", action="store_true",
  8280. help="Whether the model is stored following the Mistral format.",
  8281. )
  8282. parser.add_argument(
  8283. "--disable-mistral-community-chat-template", action="store_true",
  8284. help=(
  8285. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8286. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8287. )
  8288. )
  8289. parser.add_argument(
  8290. "--sentence-transformers-dense-modules", action="store_true",
  8291. help=("Whether to include sentence-transformers dense modules."
  8292. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8293. "Default these modules are not included.")
  8294. )
  8295. args = parser.parse_args()
  8296. if not args.print_supported_models and args.model is None:
  8297. parser.error("the following arguments are required: model")
  8298. return args
  8299. def split_str_to_n_bytes(split_str: str) -> int:
  8300. if split_str.endswith("K"):
  8301. n = int(split_str[:-1]) * 1000
  8302. elif split_str.endswith("M"):
  8303. n = int(split_str[:-1]) * 1000 * 1000
  8304. elif split_str.endswith("G"):
  8305. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8306. elif split_str.isnumeric():
  8307. n = int(split_str)
  8308. else:
  8309. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8310. if n < 0:
  8311. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8312. return n
  8313. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8314. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8315. # maybe we should fallback to text model's arch in that case, since not many models have both
  8316. text_config = hparams.get("text_config", {})
  8317. vision_config = hparams.get("vision_config", {})
  8318. arch = None
  8319. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8320. arch = arches[0]
  8321. elif "ssm_cfg" in hparams:
  8322. # For non-hf Mamba and Mamba2 models
  8323. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8324. # if "architectures" is found in the sub-config, use that instead
  8325. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8326. arch = text_config["architectures"][0]
  8327. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8328. arch = vision_config["architectures"][0]
  8329. if arch is None:
  8330. raise ValueError("Failed to detect model architecture")
  8331. return arch
  8332. def main() -> None:
  8333. args = parse_args()
  8334. if args.print_supported_models:
  8335. logger.error("Supported models:")
  8336. ModelBase.print_registered_models()
  8337. sys.exit(0)
  8338. if args.verbose:
  8339. logging.basicConfig(level=logging.DEBUG)
  8340. else:
  8341. logging.basicConfig(level=logging.INFO)
  8342. if args.remote:
  8343. hf_repo_id = args.model
  8344. from huggingface_hub import snapshot_download
  8345. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8346. if args.sentence_transformers_dense_modules:
  8347. # include sentence-transformers dense modules safetensors files
  8348. allowed_patterns.append("*.safetensors")
  8349. local_dir = snapshot_download(
  8350. repo_id=hf_repo_id,
  8351. allow_patterns=allowed_patterns)
  8352. dir_model = Path(local_dir)
  8353. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8354. else:
  8355. hf_repo_id = None
  8356. dir_model = Path(args.model)
  8357. if not dir_model.is_dir():
  8358. logger.error(f'Error: {dir_model} is not a directory')
  8359. sys.exit(1)
  8360. ftype_map: dict[str, gguf.LlamaFileType] = {
  8361. "f32": gguf.LlamaFileType.ALL_F32,
  8362. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8363. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8364. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8365. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8366. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8367. "auto": gguf.LlamaFileType.GUESSED,
  8368. }
  8369. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8370. if args.use_temp_file and is_split:
  8371. logger.error("Error: Cannot use temp file when splitting")
  8372. sys.exit(1)
  8373. if args.outfile is not None:
  8374. fname_out = args.outfile
  8375. elif hf_repo_id:
  8376. # if remote, use the model ID as the output file name
  8377. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8378. else:
  8379. fname_out = dir_model
  8380. logger.info(f"Loading model: {dir_model.name}")
  8381. is_mistral_format = args.mistral_format
  8382. if is_mistral_format and not _mistral_common_installed:
  8383. raise ImportError(_mistral_import_error_msg)
  8384. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8385. with torch.inference_mode():
  8386. output_type = ftype_map[args.outtype]
  8387. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8388. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8389. if not is_mistral_format:
  8390. model_architecture = get_model_architecture(hparams, model_type)
  8391. logger.info(f"Model architecture: {model_architecture}")
  8392. try:
  8393. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8394. except NotImplementedError:
  8395. logger.error(f"Model {model_architecture} is not supported")
  8396. sys.exit(1)
  8397. elif args.mmproj:
  8398. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8399. model_class = PixtralModel
  8400. else:
  8401. model_class = MistralModel
  8402. model_instance = model_class(dir_model, output_type, fname_out,
  8403. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8404. eager=args.no_lazy,
  8405. metadata_override=args.metadata, model_name=args.model_name,
  8406. split_max_tensors=args.split_max_tensors,
  8407. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8408. small_first_shard=args.no_tensor_first_split,
  8409. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8410. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8411. )
  8412. if args.vocab_only:
  8413. logger.info("Exporting model vocab...")
  8414. model_instance.write_vocab()
  8415. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8416. else:
  8417. logger.info("Exporting model...")
  8418. model_instance.write()
  8419. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8420. logger.info(f"Model successfully exported to {out_path}")
  8421. if __name__ == '__main__':
  8422. main()