ggml.h 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__) && !defined(__clang__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. // TODO: convert to enum https://github.com/ggml-org/llama.cpp/pull/16187#discussion_r2388538726
  228. #define GGML_ROPE_TYPE_NORMAL 0
  229. #define GGML_ROPE_TYPE_NEOX 2
  230. #define GGML_ROPE_TYPE_MROPE 8
  231. #define GGML_ROPE_TYPE_VISION 24
  232. #define GGML_ROPE_TYPE_IMROPE 40 // binary: 101000
  233. #define GGML_MROPE_SECTIONS 4
  234. #define GGML_UNUSED(x) (void)(x)
  235. #ifdef __CUDACC__
  236. template<typename... Args>
  237. __host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
  238. #define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
  239. #else
  240. #define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
  241. #endif // __CUDACC__
  242. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  243. #ifndef NDEBUG
  244. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  245. #elif defined(__GNUC__)
  246. # define GGML_UNREACHABLE() __builtin_unreachable()
  247. #elif defined(_MSC_VER)
  248. # define GGML_UNREACHABLE() __assume(0)
  249. #else
  250. # define GGML_UNREACHABLE() ((void) 0)
  251. #endif
  252. #ifdef __cplusplus
  253. # define GGML_NORETURN [[noreturn]]
  254. #elif defined(_MSC_VER)
  255. # define GGML_NORETURN __declspec(noreturn)
  256. #else
  257. # define GGML_NORETURN _Noreturn
  258. #endif
  259. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  260. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  261. // used to copy the number of elements and stride in bytes of tensors into local variables.
  262. // main purpose is to reduce code duplication and improve readability.
  263. //
  264. // example:
  265. //
  266. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  267. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  268. //
  269. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  270. const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
  271. GGML_UNUSED(prefix##0);
  272. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  273. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  274. const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
  275. GGML_UNUSED(prefix##1);
  276. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  277. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  278. const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
  279. GGML_UNUSED(prefix##2);
  280. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  281. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  282. const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
  283. GGML_UNUSED(prefix##3);
  284. #define GGML_TENSOR_UNARY_OP_LOCALS \
  285. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  286. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  287. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  289. #define GGML_TENSOR_BINARY_OP_LOCALS \
  290. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  291. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  292. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  293. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  294. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  295. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  296. #define GGML_TENSOR_TERNARY_OP_LOCALS \
  297. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  298. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  299. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  300. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  301. GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
  302. GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
  303. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  304. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  305. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  306. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  307. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  308. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  309. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  310. #ifdef __cplusplus
  311. extern "C" {
  312. #endif
  313. // Function type used in fatal error callbacks
  314. typedef void (*ggml_abort_callback_t)(const char * error_message);
  315. // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
  316. // Returns the old callback for chaining
  317. GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
  318. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  319. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  320. enum ggml_status {
  321. GGML_STATUS_ALLOC_FAILED = -2,
  322. GGML_STATUS_FAILED = -1,
  323. GGML_STATUS_SUCCESS = 0,
  324. GGML_STATUS_ABORTED = 1,
  325. };
  326. // get ggml_status name string
  327. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  328. // ieee 754-2008 half-precision float16
  329. // todo: make this not an integral type
  330. typedef uint16_t ggml_fp16_t;
  331. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  332. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  333. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  334. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  335. // google brain half-precision bfloat16
  336. typedef struct { uint16_t bits; } ggml_bf16_t;
  337. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  338. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  339. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  340. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  341. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  342. struct ggml_object;
  343. struct ggml_context;
  344. struct ggml_cgraph;
  345. // NOTE: always add types at the end of the enum to keep backward compatibility
  346. enum ggml_type {
  347. GGML_TYPE_F32 = 0,
  348. GGML_TYPE_F16 = 1,
  349. GGML_TYPE_Q4_0 = 2,
  350. GGML_TYPE_Q4_1 = 3,
  351. // GGML_TYPE_Q4_2 = 4, support has been removed
  352. // GGML_TYPE_Q4_3 = 5, support has been removed
  353. GGML_TYPE_Q5_0 = 6,
  354. GGML_TYPE_Q5_1 = 7,
  355. GGML_TYPE_Q8_0 = 8,
  356. GGML_TYPE_Q8_1 = 9,
  357. GGML_TYPE_Q2_K = 10,
  358. GGML_TYPE_Q3_K = 11,
  359. GGML_TYPE_Q4_K = 12,
  360. GGML_TYPE_Q5_K = 13,
  361. GGML_TYPE_Q6_K = 14,
  362. GGML_TYPE_Q8_K = 15,
  363. GGML_TYPE_IQ2_XXS = 16,
  364. GGML_TYPE_IQ2_XS = 17,
  365. GGML_TYPE_IQ3_XXS = 18,
  366. GGML_TYPE_IQ1_S = 19,
  367. GGML_TYPE_IQ4_NL = 20,
  368. GGML_TYPE_IQ3_S = 21,
  369. GGML_TYPE_IQ2_S = 22,
  370. GGML_TYPE_IQ4_XS = 23,
  371. GGML_TYPE_I8 = 24,
  372. GGML_TYPE_I16 = 25,
  373. GGML_TYPE_I32 = 26,
  374. GGML_TYPE_I64 = 27,
  375. GGML_TYPE_F64 = 28,
  376. GGML_TYPE_IQ1_M = 29,
  377. GGML_TYPE_BF16 = 30,
  378. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  379. // GGML_TYPE_Q4_0_4_8 = 32,
  380. // GGML_TYPE_Q4_0_8_8 = 33,
  381. GGML_TYPE_TQ1_0 = 34,
  382. GGML_TYPE_TQ2_0 = 35,
  383. // GGML_TYPE_IQ4_NL_4_4 = 36,
  384. // GGML_TYPE_IQ4_NL_4_8 = 37,
  385. // GGML_TYPE_IQ4_NL_8_8 = 38,
  386. GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
  387. GGML_TYPE_COUNT = 40,
  388. };
  389. // precision
  390. enum ggml_prec {
  391. GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
  392. GGML_PREC_F32 = 10,
  393. };
  394. // model file types
  395. enum ggml_ftype {
  396. GGML_FTYPE_UNKNOWN = -1,
  397. GGML_FTYPE_ALL_F32 = 0,
  398. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  399. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  400. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  401. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  402. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  403. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  404. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  405. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  406. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  407. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  408. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  409. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  410. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  411. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  412. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  413. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  414. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  415. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  416. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  417. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  418. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  419. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  420. GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
  421. };
  422. // available tensor operations:
  423. enum ggml_op {
  424. GGML_OP_NONE = 0,
  425. GGML_OP_DUP,
  426. GGML_OP_ADD,
  427. GGML_OP_ADD_ID,
  428. GGML_OP_ADD1,
  429. GGML_OP_ACC,
  430. GGML_OP_SUB,
  431. GGML_OP_MUL,
  432. GGML_OP_DIV,
  433. GGML_OP_SQR,
  434. GGML_OP_SQRT,
  435. GGML_OP_LOG,
  436. GGML_OP_SIN,
  437. GGML_OP_COS,
  438. GGML_OP_SUM,
  439. GGML_OP_SUM_ROWS,
  440. GGML_OP_MEAN,
  441. GGML_OP_ARGMAX,
  442. GGML_OP_COUNT_EQUAL,
  443. GGML_OP_REPEAT,
  444. GGML_OP_REPEAT_BACK,
  445. GGML_OP_CONCAT,
  446. GGML_OP_SILU_BACK,
  447. GGML_OP_NORM, // normalize
  448. GGML_OP_RMS_NORM,
  449. GGML_OP_RMS_NORM_BACK,
  450. GGML_OP_GROUP_NORM,
  451. GGML_OP_L2_NORM,
  452. GGML_OP_MUL_MAT,
  453. GGML_OP_MUL_MAT_ID,
  454. GGML_OP_OUT_PROD,
  455. GGML_OP_SCALE,
  456. GGML_OP_SET,
  457. GGML_OP_CPY,
  458. GGML_OP_CONT,
  459. GGML_OP_RESHAPE,
  460. GGML_OP_VIEW,
  461. GGML_OP_PERMUTE,
  462. GGML_OP_TRANSPOSE,
  463. GGML_OP_GET_ROWS,
  464. GGML_OP_GET_ROWS_BACK,
  465. GGML_OP_SET_ROWS,
  466. GGML_OP_DIAG,
  467. GGML_OP_DIAG_MASK_INF,
  468. GGML_OP_DIAG_MASK_ZERO,
  469. GGML_OP_SOFT_MAX,
  470. GGML_OP_SOFT_MAX_BACK,
  471. GGML_OP_ROPE,
  472. GGML_OP_ROPE_BACK,
  473. GGML_OP_CLAMP,
  474. GGML_OP_CONV_TRANSPOSE_1D,
  475. GGML_OP_IM2COL,
  476. GGML_OP_IM2COL_BACK,
  477. GGML_OP_IM2COL_3D,
  478. GGML_OP_CONV_2D,
  479. GGML_OP_CONV_3D,
  480. GGML_OP_CONV_2D_DW,
  481. GGML_OP_CONV_TRANSPOSE_2D,
  482. GGML_OP_POOL_1D,
  483. GGML_OP_POOL_2D,
  484. GGML_OP_POOL_2D_BACK,
  485. GGML_OP_UPSCALE,
  486. GGML_OP_PAD,
  487. GGML_OP_PAD_REFLECT_1D,
  488. GGML_OP_ROLL,
  489. GGML_OP_ARANGE,
  490. GGML_OP_TIMESTEP_EMBEDDING,
  491. GGML_OP_ARGSORT,
  492. GGML_OP_LEAKY_RELU,
  493. GGML_OP_FLASH_ATTN_EXT,
  494. GGML_OP_FLASH_ATTN_BACK,
  495. GGML_OP_SSM_CONV,
  496. GGML_OP_SSM_SCAN,
  497. GGML_OP_WIN_PART,
  498. GGML_OP_WIN_UNPART,
  499. GGML_OP_GET_REL_POS,
  500. GGML_OP_ADD_REL_POS,
  501. GGML_OP_RWKV_WKV6,
  502. GGML_OP_GATED_LINEAR_ATTN,
  503. GGML_OP_RWKV_WKV7,
  504. GGML_OP_UNARY,
  505. GGML_OP_MAP_CUSTOM1,
  506. GGML_OP_MAP_CUSTOM2,
  507. GGML_OP_MAP_CUSTOM3,
  508. GGML_OP_CUSTOM,
  509. GGML_OP_CROSS_ENTROPY_LOSS,
  510. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  511. GGML_OP_OPT_STEP_ADAMW,
  512. GGML_OP_OPT_STEP_SGD,
  513. GGML_OP_GLU,
  514. GGML_OP_COUNT,
  515. };
  516. enum ggml_unary_op {
  517. GGML_UNARY_OP_ABS,
  518. GGML_UNARY_OP_SGN,
  519. GGML_UNARY_OP_NEG,
  520. GGML_UNARY_OP_STEP,
  521. GGML_UNARY_OP_TANH,
  522. GGML_UNARY_OP_ELU,
  523. GGML_UNARY_OP_RELU,
  524. GGML_UNARY_OP_SIGMOID,
  525. GGML_UNARY_OP_GELU,
  526. GGML_UNARY_OP_GELU_QUICK,
  527. GGML_UNARY_OP_SILU,
  528. GGML_UNARY_OP_HARDSWISH,
  529. GGML_UNARY_OP_HARDSIGMOID,
  530. GGML_UNARY_OP_EXP,
  531. GGML_UNARY_OP_GELU_ERF,
  532. GGML_UNARY_OP_XIELU,
  533. GGML_UNARY_OP_FLOOR,
  534. GGML_UNARY_OP_CEIL,
  535. GGML_UNARY_OP_ROUND,
  536. GGML_UNARY_OP_TRUNC,
  537. GGML_UNARY_OP_COUNT,
  538. };
  539. enum ggml_glu_op {
  540. GGML_GLU_OP_REGLU,
  541. GGML_GLU_OP_GEGLU,
  542. GGML_GLU_OP_SWIGLU,
  543. GGML_GLU_OP_SWIGLU_OAI,
  544. GGML_GLU_OP_GEGLU_ERF,
  545. GGML_GLU_OP_GEGLU_QUICK,
  546. GGML_GLU_OP_COUNT,
  547. };
  548. enum ggml_object_type {
  549. GGML_OBJECT_TYPE_TENSOR,
  550. GGML_OBJECT_TYPE_GRAPH,
  551. GGML_OBJECT_TYPE_WORK_BUFFER
  552. };
  553. enum ggml_log_level {
  554. GGML_LOG_LEVEL_NONE = 0,
  555. GGML_LOG_LEVEL_DEBUG = 1,
  556. GGML_LOG_LEVEL_INFO = 2,
  557. GGML_LOG_LEVEL_WARN = 3,
  558. GGML_LOG_LEVEL_ERROR = 4,
  559. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  560. };
  561. // this tensor...
  562. enum ggml_tensor_flag {
  563. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  564. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  565. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  566. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  567. };
  568. struct ggml_init_params {
  569. // memory pool
  570. size_t mem_size; // bytes
  571. void * mem_buffer; // if NULL, memory will be allocated internally
  572. bool no_alloc; // don't allocate memory for the tensor data
  573. };
  574. // n-dimensional tensor
  575. struct ggml_tensor {
  576. enum ggml_type type;
  577. struct ggml_backend_buffer * buffer;
  578. int64_t ne[GGML_MAX_DIMS]; // number of elements
  579. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  580. // nb[0] = ggml_type_size(type)
  581. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  582. // nb[i] = nb[i-1] * ne[i-1]
  583. // compute data
  584. enum ggml_op op;
  585. // op params - allocated as int32_t for alignment
  586. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  587. int32_t flags;
  588. struct ggml_tensor * src[GGML_MAX_SRC];
  589. // source tensor and offset for views
  590. struct ggml_tensor * view_src;
  591. size_t view_offs;
  592. void * data;
  593. char name[GGML_MAX_NAME];
  594. void * extra; // extra things e.g. for ggml-cuda.cu
  595. char padding[8];
  596. };
  597. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  598. // Abort callback
  599. // If not NULL, called before ggml computation
  600. // If it returns true, the computation is aborted
  601. typedef bool (*ggml_abort_callback)(void * data);
  602. //
  603. // GUID
  604. //
  605. // GUID types
  606. typedef uint8_t ggml_guid[16];
  607. typedef ggml_guid * ggml_guid_t;
  608. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  609. // misc
  610. GGML_API const char * ggml_version(void);
  611. GGML_API const char * ggml_commit(void);
  612. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  613. GGML_API int64_t ggml_time_ms(void);
  614. GGML_API int64_t ggml_time_us(void);
  615. GGML_API int64_t ggml_cycles(void);
  616. GGML_API int64_t ggml_cycles_per_ms(void);
  617. // accepts a UTF-8 path, even on Windows
  618. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  619. GGML_API void ggml_print_object (const struct ggml_object * obj);
  620. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  621. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  622. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  623. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  624. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  625. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  626. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  627. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  628. GGML_DEPRECATED(
  629. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  630. "use ggml_row_size() instead");
  631. GGML_API const char * ggml_type_name(enum ggml_type type);
  632. GGML_API const char * ggml_op_name (enum ggml_op op);
  633. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  634. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  635. GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
  636. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  637. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  638. GGML_API bool ggml_is_quantized(enum ggml_type type);
  639. // TODO: temporary until model loading of ggml examples is refactored
  640. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  641. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  642. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  643. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  644. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  645. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  646. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  647. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  648. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  649. // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
  650. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  651. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  652. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  653. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  654. // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
  655. GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
  656. // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
  657. GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
  658. // true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
  659. GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
  660. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  661. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  662. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  663. // use this to compute the memory overhead of a tensor
  664. GGML_API size_t ggml_tensor_overhead(void);
  665. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  666. // main
  667. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  668. GGML_API void ggml_reset(struct ggml_context * ctx);
  669. GGML_API void ggml_free (struct ggml_context * ctx);
  670. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  671. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  672. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  673. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  674. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  675. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  676. GGML_API struct ggml_tensor * ggml_new_tensor(
  677. struct ggml_context * ctx,
  678. enum ggml_type type,
  679. int n_dims,
  680. const int64_t *ne);
  681. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  682. struct ggml_context * ctx,
  683. enum ggml_type type,
  684. int64_t ne0);
  685. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  686. struct ggml_context * ctx,
  687. enum ggml_type type,
  688. int64_t ne0,
  689. int64_t ne1);
  690. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  691. struct ggml_context * ctx,
  692. enum ggml_type type,
  693. int64_t ne0,
  694. int64_t ne1,
  695. int64_t ne2);
  696. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  697. struct ggml_context * ctx,
  698. enum ggml_type type,
  699. int64_t ne0,
  700. int64_t ne1,
  701. int64_t ne2,
  702. int64_t ne3);
  703. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  704. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  705. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  706. // Context tensor enumeration and lookup
  707. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  708. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  709. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  710. // Converts a flat index into coordinates
  711. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  712. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  713. GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
  714. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  715. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  716. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  717. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  718. GGML_ATTRIBUTE_FORMAT(2, 3)
  719. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  720. // Tensor flags
  721. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  722. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  723. GGML_API void ggml_set_param(struct ggml_tensor * tensor);
  724. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  725. //
  726. // operations on tensors with backpropagation
  727. //
  728. GGML_API struct ggml_tensor * ggml_dup(
  729. struct ggml_context * ctx,
  730. struct ggml_tensor * a);
  731. // in-place, returns view(a)
  732. GGML_API struct ggml_tensor * ggml_dup_inplace(
  733. struct ggml_context * ctx,
  734. struct ggml_tensor * a);
  735. GGML_API struct ggml_tensor * ggml_add(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. struct ggml_tensor * b);
  739. GGML_API struct ggml_tensor * ggml_add_inplace(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a,
  742. struct ggml_tensor * b);
  743. GGML_API struct ggml_tensor * ggml_add_cast(
  744. struct ggml_context * ctx,
  745. struct ggml_tensor * a,
  746. struct ggml_tensor * b,
  747. enum ggml_type type);
  748. // dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
  749. GGML_API struct ggml_tensor * ggml_add_id(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a,
  752. struct ggml_tensor * b,
  753. struct ggml_tensor * ids);
  754. GGML_API struct ggml_tensor * ggml_add1(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a,
  757. struct ggml_tensor * b);
  758. GGML_API struct ggml_tensor * ggml_add1_inplace(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a,
  761. struct ggml_tensor * b);
  762. // dst = a
  763. // view(dst, nb1, nb2, nb3, offset) += b
  764. // return dst
  765. GGML_API struct ggml_tensor * ggml_acc(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a,
  768. struct ggml_tensor * b,
  769. size_t nb1,
  770. size_t nb2,
  771. size_t nb3,
  772. size_t offset);
  773. GGML_API struct ggml_tensor * ggml_acc_inplace(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a,
  776. struct ggml_tensor * b,
  777. size_t nb1,
  778. size_t nb2,
  779. size_t nb3,
  780. size_t offset);
  781. GGML_API struct ggml_tensor * ggml_sub(
  782. struct ggml_context * ctx,
  783. struct ggml_tensor * a,
  784. struct ggml_tensor * b);
  785. GGML_API struct ggml_tensor * ggml_sub_inplace(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a,
  788. struct ggml_tensor * b);
  789. GGML_API struct ggml_tensor * ggml_mul(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a,
  792. struct ggml_tensor * b);
  793. GGML_API struct ggml_tensor * ggml_mul_inplace(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a,
  796. struct ggml_tensor * b);
  797. GGML_API struct ggml_tensor * ggml_div(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a,
  800. struct ggml_tensor * b);
  801. GGML_API struct ggml_tensor * ggml_div_inplace(
  802. struct ggml_context * ctx,
  803. struct ggml_tensor * a,
  804. struct ggml_tensor * b);
  805. GGML_API struct ggml_tensor * ggml_sqr(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * a);
  808. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  809. struct ggml_context * ctx,
  810. struct ggml_tensor * a);
  811. GGML_API struct ggml_tensor * ggml_sqrt(
  812. struct ggml_context * ctx,
  813. struct ggml_tensor * a);
  814. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  815. struct ggml_context * ctx,
  816. struct ggml_tensor * a);
  817. GGML_API struct ggml_tensor * ggml_log(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a);
  820. GGML_API struct ggml_tensor * ggml_log_inplace(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a);
  823. GGML_API struct ggml_tensor * ggml_sin(
  824. struct ggml_context * ctx,
  825. struct ggml_tensor * a);
  826. GGML_API struct ggml_tensor * ggml_sin_inplace(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a);
  829. GGML_API struct ggml_tensor * ggml_cos(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. GGML_API struct ggml_tensor * ggml_cos_inplace(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a);
  835. // return scalar
  836. GGML_API struct ggml_tensor * ggml_sum(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a);
  839. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  840. GGML_API struct ggml_tensor * ggml_sum_rows(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a);
  843. // mean along rows
  844. GGML_API struct ggml_tensor * ggml_mean(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a);
  847. // argmax along rows
  848. GGML_API struct ggml_tensor * ggml_argmax(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a);
  851. // count number of equal elements in a and b
  852. GGML_API struct ggml_tensor * ggml_count_equal(
  853. struct ggml_context * ctx,
  854. struct ggml_tensor * a,
  855. struct ggml_tensor * b);
  856. // if a is the same shape as b, and a is not parameter, return a
  857. // otherwise, return a new tensor: repeat(a) to fit in b
  858. GGML_API struct ggml_tensor * ggml_repeat(
  859. struct ggml_context * ctx,
  860. struct ggml_tensor * a,
  861. struct ggml_tensor * b);
  862. // repeat a to the specified shape
  863. GGML_API struct ggml_tensor * ggml_repeat_4d(
  864. struct ggml_context * ctx,
  865. struct ggml_tensor * a,
  866. int64_t ne0,
  867. int64_t ne1,
  868. int64_t ne2,
  869. int64_t ne3);
  870. // sums repetitions in a into shape of b
  871. GGML_API struct ggml_tensor * ggml_repeat_back(
  872. struct ggml_context * ctx,
  873. struct ggml_tensor * a,
  874. struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
  875. // concat a and b along dim
  876. // used in stable-diffusion
  877. GGML_API struct ggml_tensor * ggml_concat(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a,
  880. struct ggml_tensor * b,
  881. int dim);
  882. GGML_API struct ggml_tensor * ggml_abs(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a);
  885. GGML_API struct ggml_tensor * ggml_abs_inplace(
  886. struct ggml_context * ctx,
  887. struct ggml_tensor * a);
  888. GGML_API struct ggml_tensor * ggml_sgn(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a);
  891. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  892. struct ggml_context * ctx,
  893. struct ggml_tensor * a);
  894. GGML_API struct ggml_tensor * ggml_neg(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a);
  897. GGML_API struct ggml_tensor * ggml_neg_inplace(
  898. struct ggml_context * ctx,
  899. struct ggml_tensor * a);
  900. GGML_API struct ggml_tensor * ggml_step(
  901. struct ggml_context * ctx,
  902. struct ggml_tensor * a);
  903. GGML_API struct ggml_tensor * ggml_step_inplace(
  904. struct ggml_context * ctx,
  905. struct ggml_tensor * a);
  906. GGML_API struct ggml_tensor * ggml_tanh(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a);
  909. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  910. struct ggml_context * ctx,
  911. struct ggml_tensor * a);
  912. GGML_API struct ggml_tensor * ggml_elu(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a);
  915. GGML_API struct ggml_tensor * ggml_elu_inplace(
  916. struct ggml_context * ctx,
  917. struct ggml_tensor * a);
  918. GGML_API struct ggml_tensor * ggml_relu(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a);
  921. GGML_API struct ggml_tensor * ggml_leaky_relu(
  922. struct ggml_context * ctx,
  923. struct ggml_tensor * a, float negative_slope, bool inplace);
  924. GGML_API struct ggml_tensor * ggml_relu_inplace(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a);
  927. GGML_API struct ggml_tensor * ggml_sigmoid(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a);
  930. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  931. struct ggml_context * ctx,
  932. struct ggml_tensor * a);
  933. GGML_API struct ggml_tensor * ggml_gelu(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a);
  936. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a);
  939. // GELU using erf (error function) when possible
  940. // some backends may fallback to approximation based on Abramowitz and Stegun formula
  941. GGML_API struct ggml_tensor * ggml_gelu_erf(
  942. struct ggml_context * ctx,
  943. struct ggml_tensor * a);
  944. GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a);
  947. GGML_API struct ggml_tensor * ggml_gelu_quick(
  948. struct ggml_context * ctx,
  949. struct ggml_tensor * a);
  950. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  951. struct ggml_context * ctx,
  952. struct ggml_tensor * a);
  953. GGML_API struct ggml_tensor * ggml_silu(
  954. struct ggml_context * ctx,
  955. struct ggml_tensor * a);
  956. GGML_API struct ggml_tensor * ggml_silu_inplace(
  957. struct ggml_context * ctx,
  958. struct ggml_tensor * a);
  959. // a - x
  960. // b - dy
  961. GGML_API struct ggml_tensor * ggml_silu_back(
  962. struct ggml_context * ctx,
  963. struct ggml_tensor * a,
  964. struct ggml_tensor * b);
  965. // hardswish(x) = x * relu6(x + 3) / 6
  966. GGML_API struct ggml_tensor * ggml_hardswish(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a);
  969. // hardsigmoid(x) = relu6(x + 3) / 6
  970. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a);
  973. GGML_API struct ggml_tensor * ggml_exp(
  974. struct ggml_context * ctx,
  975. struct ggml_tensor * a);
  976. GGML_API struct ggml_tensor * ggml_exp_inplace(
  977. struct ggml_context * ctx,
  978. struct ggml_tensor * a);
  979. GGML_API struct ggml_tensor * ggml_floor(
  980. struct ggml_context * ctx,
  981. struct ggml_tensor * a);
  982. GGML_API struct ggml_tensor * ggml_floor_inplace(
  983. struct ggml_context * ctx,
  984. struct ggml_tensor * a);
  985. GGML_API struct ggml_tensor * ggml_ceil(
  986. struct ggml_context * ctx,
  987. struct ggml_tensor * a);
  988. GGML_API struct ggml_tensor * ggml_ceil_inplace(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * a);
  991. GGML_API struct ggml_tensor * ggml_round(
  992. struct ggml_context * ctx,
  993. struct ggml_tensor * a);
  994. GGML_API struct ggml_tensor * ggml_round_inplace(
  995. struct ggml_context * ctx,
  996. struct ggml_tensor * a);
  997. /**
  998. * Truncates the fractional part of each element in the tensor (towards zero).
  999. * For example: trunc(3.7) = 3.0, trunc(-2.9) = -2.0
  1000. * Similar to std::trunc in C/C++.
  1001. */
  1002. GGML_API struct ggml_tensor * ggml_trunc(
  1003. struct ggml_context * ctx,
  1004. struct ggml_tensor * a);
  1005. GGML_API struct ggml_tensor * ggml_trunc_inplace(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a);
  1008. // xIELU activation function
  1009. // x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
  1010. // where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
  1011. // that constrain the positive and negative source alpha values respectively
  1012. GGML_API struct ggml_tensor * ggml_xielu(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a,
  1015. float alpha_n,
  1016. float alpha_p,
  1017. float beta,
  1018. float eps);
  1019. // gated linear unit ops
  1020. // A: n columns, r rows,
  1021. // result is n / 2 columns, r rows,
  1022. // expects gate in second half of row, unless swapped is true
  1023. GGML_API struct ggml_tensor * ggml_glu(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. enum ggml_glu_op op,
  1027. bool swapped);
  1028. GGML_API struct ggml_tensor * ggml_reglu(
  1029. struct ggml_context * ctx,
  1030. struct ggml_tensor * a);
  1031. GGML_API struct ggml_tensor * ggml_reglu_swapped(
  1032. struct ggml_context * ctx,
  1033. struct ggml_tensor * a);
  1034. GGML_API struct ggml_tensor * ggml_geglu(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a);
  1037. GGML_API struct ggml_tensor * ggml_geglu_swapped(
  1038. struct ggml_context * ctx,
  1039. struct ggml_tensor * a);
  1040. GGML_API struct ggml_tensor * ggml_swiglu(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a);
  1043. GGML_API struct ggml_tensor * ggml_swiglu_swapped(
  1044. struct ggml_context * ctx,
  1045. struct ggml_tensor * a);
  1046. GGML_API struct ggml_tensor * ggml_geglu_erf(
  1047. struct ggml_context * ctx,
  1048. struct ggml_tensor * a);
  1049. GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a);
  1052. GGML_API struct ggml_tensor * ggml_geglu_quick(
  1053. struct ggml_context * ctx,
  1054. struct ggml_tensor * a);
  1055. GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
  1056. struct ggml_context * ctx,
  1057. struct ggml_tensor * a);
  1058. // A: n columns, r rows,
  1059. // B: n columns, r rows,
  1060. GGML_API struct ggml_tensor * ggml_glu_split(
  1061. struct ggml_context * ctx,
  1062. struct ggml_tensor * a,
  1063. struct ggml_tensor * b,
  1064. enum ggml_glu_op op);
  1065. GGML_API struct ggml_tensor * ggml_reglu_split(
  1066. struct ggml_context * ctx,
  1067. struct ggml_tensor * a,
  1068. struct ggml_tensor * b);
  1069. GGML_API struct ggml_tensor * ggml_geglu_split(
  1070. struct ggml_context * ctx,
  1071. struct ggml_tensor * a,
  1072. struct ggml_tensor * b);
  1073. GGML_API struct ggml_tensor * ggml_swiglu_split(
  1074. struct ggml_context * ctx,
  1075. struct ggml_tensor * a,
  1076. struct ggml_tensor * b);
  1077. GGML_API struct ggml_tensor * ggml_geglu_erf_split(
  1078. struct ggml_context * ctx,
  1079. struct ggml_tensor * a,
  1080. struct ggml_tensor * b);
  1081. GGML_API struct ggml_tensor * ggml_geglu_quick_split(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. struct ggml_tensor * b);
  1085. GGML_API struct ggml_tensor * ggml_swiglu_oai(
  1086. struct ggml_context * ctx,
  1087. struct ggml_tensor * a,
  1088. struct ggml_tensor * b,
  1089. float alpha,
  1090. float limit);
  1091. // normalize along rows
  1092. GGML_API struct ggml_tensor * ggml_norm(
  1093. struct ggml_context * ctx,
  1094. struct ggml_tensor * a,
  1095. float eps);
  1096. GGML_API struct ggml_tensor * ggml_norm_inplace(
  1097. struct ggml_context * ctx,
  1098. struct ggml_tensor * a,
  1099. float eps);
  1100. GGML_API struct ggml_tensor * ggml_rms_norm(
  1101. struct ggml_context * ctx,
  1102. struct ggml_tensor * a,
  1103. float eps);
  1104. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  1105. struct ggml_context * ctx,
  1106. struct ggml_tensor * a,
  1107. float eps);
  1108. // group normalize along ne0*ne1*n_groups
  1109. // used in stable-diffusion
  1110. GGML_API struct ggml_tensor * ggml_group_norm(
  1111. struct ggml_context * ctx,
  1112. struct ggml_tensor * a,
  1113. int n_groups,
  1114. float eps);
  1115. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  1116. struct ggml_context * ctx,
  1117. struct ggml_tensor * a,
  1118. int n_groups,
  1119. float eps);
  1120. // l2 normalize along rows
  1121. // used in rwkv v7
  1122. GGML_API struct ggml_tensor * ggml_l2_norm(
  1123. struct ggml_context * ctx,
  1124. struct ggml_tensor * a,
  1125. float eps);
  1126. GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
  1127. struct ggml_context * ctx,
  1128. struct ggml_tensor * a,
  1129. float eps);
  1130. // a - x
  1131. // b - dy
  1132. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  1133. struct ggml_context * ctx,
  1134. struct ggml_tensor * a,
  1135. struct ggml_tensor * b,
  1136. float eps);
  1137. // A: k columns, n rows => [ne03, ne02, n, k]
  1138. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  1139. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  1140. GGML_API struct ggml_tensor * ggml_mul_mat(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a,
  1143. struct ggml_tensor * b);
  1144. // change the precision of a matrix multiplication
  1145. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  1146. GGML_API void ggml_mul_mat_set_prec(
  1147. struct ggml_tensor * a,
  1148. enum ggml_prec prec);
  1149. // indirect matrix multiplication
  1150. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  1151. struct ggml_context * ctx,
  1152. struct ggml_tensor * as,
  1153. struct ggml_tensor * b,
  1154. struct ggml_tensor * ids);
  1155. // A: m columns, n rows,
  1156. // B: p columns, n rows,
  1157. // result is m columns, p rows
  1158. GGML_API struct ggml_tensor * ggml_out_prod(
  1159. struct ggml_context * ctx,
  1160. struct ggml_tensor * a,
  1161. struct ggml_tensor * b);
  1162. //
  1163. // operations on tensors without backpropagation
  1164. //
  1165. GGML_API struct ggml_tensor * ggml_scale(
  1166. struct ggml_context * ctx,
  1167. struct ggml_tensor * a,
  1168. float s);
  1169. // in-place, returns view(a)
  1170. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1171. struct ggml_context * ctx,
  1172. struct ggml_tensor * a,
  1173. float s);
  1174. // x = s * a + b
  1175. GGML_API struct ggml_tensor * ggml_scale_bias(
  1176. struct ggml_context * ctx,
  1177. struct ggml_tensor * a,
  1178. float s,
  1179. float b);
  1180. GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
  1181. struct ggml_context * ctx,
  1182. struct ggml_tensor * a,
  1183. float s,
  1184. float b);
  1185. // b -> view(a,offset,nb1,nb2,3), return modified a
  1186. GGML_API struct ggml_tensor * ggml_set(
  1187. struct ggml_context * ctx,
  1188. struct ggml_tensor * a,
  1189. struct ggml_tensor * b,
  1190. size_t nb1,
  1191. size_t nb2,
  1192. size_t nb3,
  1193. size_t offset); // in bytes
  1194. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1195. GGML_API struct ggml_tensor * ggml_set_inplace(
  1196. struct ggml_context * ctx,
  1197. struct ggml_tensor * a,
  1198. struct ggml_tensor * b,
  1199. size_t nb1,
  1200. size_t nb2,
  1201. size_t nb3,
  1202. size_t offset); // in bytes
  1203. GGML_API struct ggml_tensor * ggml_set_1d(
  1204. struct ggml_context * ctx,
  1205. struct ggml_tensor * a,
  1206. struct ggml_tensor * b,
  1207. size_t offset); // in bytes
  1208. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1209. struct ggml_context * ctx,
  1210. struct ggml_tensor * a,
  1211. struct ggml_tensor * b,
  1212. size_t offset); // in bytes
  1213. // b -> view(a,offset,nb1,nb2,3), return modified a
  1214. GGML_API struct ggml_tensor * ggml_set_2d(
  1215. struct ggml_context * ctx,
  1216. struct ggml_tensor * a,
  1217. struct ggml_tensor * b,
  1218. size_t nb1,
  1219. size_t offset); // in bytes
  1220. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1221. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1222. struct ggml_context * ctx,
  1223. struct ggml_tensor * a,
  1224. struct ggml_tensor * b,
  1225. size_t nb1,
  1226. size_t offset); // in bytes
  1227. // a -> b, return view(b)
  1228. GGML_API struct ggml_tensor * ggml_cpy(
  1229. struct ggml_context * ctx,
  1230. struct ggml_tensor * a,
  1231. struct ggml_tensor * b);
  1232. // note: casting from f32 to i32 will discard the fractional part
  1233. GGML_API struct ggml_tensor * ggml_cast(
  1234. struct ggml_context * ctx,
  1235. struct ggml_tensor * a,
  1236. enum ggml_type type);
  1237. // make contiguous
  1238. GGML_API struct ggml_tensor * ggml_cont(
  1239. struct ggml_context * ctx,
  1240. struct ggml_tensor * a);
  1241. // make contiguous, with new shape
  1242. GGML_API struct ggml_tensor * ggml_cont_1d(
  1243. struct ggml_context * ctx,
  1244. struct ggml_tensor * a,
  1245. int64_t ne0);
  1246. GGML_API struct ggml_tensor * ggml_cont_2d(
  1247. struct ggml_context * ctx,
  1248. struct ggml_tensor * a,
  1249. int64_t ne0,
  1250. int64_t ne1);
  1251. GGML_API struct ggml_tensor * ggml_cont_3d(
  1252. struct ggml_context * ctx,
  1253. struct ggml_tensor * a,
  1254. int64_t ne0,
  1255. int64_t ne1,
  1256. int64_t ne2);
  1257. GGML_API struct ggml_tensor * ggml_cont_4d(
  1258. struct ggml_context * ctx,
  1259. struct ggml_tensor * a,
  1260. int64_t ne0,
  1261. int64_t ne1,
  1262. int64_t ne2,
  1263. int64_t ne3);
  1264. // return view(a), b specifies the new shape
  1265. // TODO: when we start computing gradient, make a copy instead of view
  1266. GGML_API struct ggml_tensor * ggml_reshape(
  1267. struct ggml_context * ctx,
  1268. struct ggml_tensor * a,
  1269. struct ggml_tensor * b);
  1270. // return view(a)
  1271. // TODO: when we start computing gradient, make a copy instead of view
  1272. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1273. struct ggml_context * ctx,
  1274. struct ggml_tensor * a,
  1275. int64_t ne0);
  1276. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1277. struct ggml_context * ctx,
  1278. struct ggml_tensor * a,
  1279. int64_t ne0,
  1280. int64_t ne1);
  1281. // return view(a)
  1282. // TODO: when we start computing gradient, make a copy instead of view
  1283. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1284. struct ggml_context * ctx,
  1285. struct ggml_tensor * a,
  1286. int64_t ne0,
  1287. int64_t ne1,
  1288. int64_t ne2);
  1289. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1290. struct ggml_context * ctx,
  1291. struct ggml_tensor * a,
  1292. int64_t ne0,
  1293. int64_t ne1,
  1294. int64_t ne2,
  1295. int64_t ne3);
  1296. // offset in bytes
  1297. GGML_API struct ggml_tensor * ggml_view_1d(
  1298. struct ggml_context * ctx,
  1299. struct ggml_tensor * a,
  1300. int64_t ne0,
  1301. size_t offset);
  1302. GGML_API struct ggml_tensor * ggml_view_2d(
  1303. struct ggml_context * ctx,
  1304. struct ggml_tensor * a,
  1305. int64_t ne0,
  1306. int64_t ne1,
  1307. size_t nb1, // row stride in bytes
  1308. size_t offset);
  1309. GGML_API struct ggml_tensor * ggml_view_3d(
  1310. struct ggml_context * ctx,
  1311. struct ggml_tensor * a,
  1312. int64_t ne0,
  1313. int64_t ne1,
  1314. int64_t ne2,
  1315. size_t nb1, // row stride in bytes
  1316. size_t nb2, // slice stride in bytes
  1317. size_t offset);
  1318. GGML_API struct ggml_tensor * ggml_view_4d(
  1319. struct ggml_context * ctx,
  1320. struct ggml_tensor * a,
  1321. int64_t ne0,
  1322. int64_t ne1,
  1323. int64_t ne2,
  1324. int64_t ne3,
  1325. size_t nb1, // row stride in bytes
  1326. size_t nb2, // slice stride in bytes
  1327. size_t nb3,
  1328. size_t offset);
  1329. GGML_API struct ggml_tensor * ggml_permute(
  1330. struct ggml_context * ctx,
  1331. struct ggml_tensor * a,
  1332. int axis0,
  1333. int axis1,
  1334. int axis2,
  1335. int axis3);
  1336. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1337. GGML_API struct ggml_tensor * ggml_transpose(
  1338. struct ggml_context * ctx,
  1339. struct ggml_tensor * a);
  1340. // supports 4D a:
  1341. // a [n_embd, ne1, ne2, ne3]
  1342. // b I32 [n_rows, ne2, ne3, 1]
  1343. //
  1344. // return [n_embd, n_rows, ne2, ne3]
  1345. GGML_API struct ggml_tensor * ggml_get_rows(
  1346. struct ggml_context * ctx,
  1347. struct ggml_tensor * a, // data
  1348. struct ggml_tensor * b); // row indices
  1349. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1350. struct ggml_context * ctx,
  1351. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1352. struct ggml_tensor * b, // row indices
  1353. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1354. // a TD [n_embd, ne1, ne2, ne3]
  1355. // b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
  1356. // c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
  1357. //
  1358. // undefined behavior if destination rows overlap
  1359. //
  1360. // broadcast:
  1361. // ne2 % ne11 == 0
  1362. // ne3 % ne12 == 0
  1363. //
  1364. // return view(a)
  1365. GGML_API struct ggml_tensor * ggml_set_rows(
  1366. struct ggml_context * ctx,
  1367. struct ggml_tensor * a, // destination
  1368. struct ggml_tensor * b, // source
  1369. struct ggml_tensor * c); // row indices
  1370. GGML_API struct ggml_tensor * ggml_diag(
  1371. struct ggml_context * ctx,
  1372. struct ggml_tensor * a);
  1373. // set elements above the diagonal to -INF
  1374. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1375. struct ggml_context * ctx,
  1376. struct ggml_tensor * a,
  1377. int n_past);
  1378. // in-place, returns view(a)
  1379. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1380. struct ggml_context * ctx,
  1381. struct ggml_tensor * a,
  1382. int n_past);
  1383. // set elements above the diagonal to 0
  1384. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1385. struct ggml_context * ctx,
  1386. struct ggml_tensor * a,
  1387. int n_past);
  1388. // in-place, returns view(a)
  1389. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1390. struct ggml_context * ctx,
  1391. struct ggml_tensor * a,
  1392. int n_past);
  1393. GGML_API struct ggml_tensor * ggml_soft_max(
  1394. struct ggml_context * ctx,
  1395. struct ggml_tensor * a);
  1396. // in-place, returns view(a)
  1397. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1398. struct ggml_context * ctx,
  1399. struct ggml_tensor * a);
  1400. // a [ne0, ne01, ne02, ne03]
  1401. // mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
  1402. //
  1403. // broadcast:
  1404. // ne02 % ne12 == 0
  1405. // ne03 % ne13 == 0
  1406. //
  1407. // fused soft_max(a*scale + mask*(ALiBi slope))
  1408. // max_bias = 0.0f for no ALiBi
  1409. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1410. struct ggml_context * ctx,
  1411. struct ggml_tensor * a,
  1412. struct ggml_tensor * mask,
  1413. float scale,
  1414. float max_bias);
  1415. GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
  1416. struct ggml_context * ctx,
  1417. struct ggml_tensor * a,
  1418. struct ggml_tensor * mask,
  1419. float scale,
  1420. float max_bias);
  1421. GGML_API void ggml_soft_max_add_sinks(
  1422. struct ggml_tensor * a,
  1423. struct ggml_tensor * sinks);
  1424. GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
  1425. struct ggml_context * ctx,
  1426. struct ggml_tensor * a,
  1427. struct ggml_tensor * b,
  1428. float scale,
  1429. float max_bias);
  1430. // in-place, returns view(a)
  1431. GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
  1432. struct ggml_context * ctx,
  1433. struct ggml_tensor * a,
  1434. struct ggml_tensor * b,
  1435. float scale,
  1436. float max_bias);
  1437. // rotary position embedding
  1438. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1439. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1440. //
  1441. // b is an int32 vector with size a->ne[2], it contains the positions
  1442. GGML_API struct ggml_tensor * ggml_rope(
  1443. struct ggml_context * ctx,
  1444. struct ggml_tensor * a,
  1445. struct ggml_tensor * b,
  1446. int n_dims,
  1447. int mode);
  1448. // in-place, returns view(a)
  1449. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1450. struct ggml_context * ctx,
  1451. struct ggml_tensor * a,
  1452. struct ggml_tensor * b,
  1453. int n_dims,
  1454. int mode);
  1455. // custom RoPE
  1456. // c is freq factors (e.g. phi3-128k), (optional)
  1457. GGML_API struct ggml_tensor * ggml_rope_ext(
  1458. struct ggml_context * ctx,
  1459. struct ggml_tensor * a,
  1460. struct ggml_tensor * b,
  1461. struct ggml_tensor * c,
  1462. int n_dims,
  1463. int mode,
  1464. int n_ctx_orig,
  1465. float freq_base,
  1466. float freq_scale,
  1467. float ext_factor,
  1468. float attn_factor,
  1469. float beta_fast,
  1470. float beta_slow);
  1471. GGML_API struct ggml_tensor * ggml_rope_multi(
  1472. struct ggml_context * ctx,
  1473. struct ggml_tensor * a,
  1474. struct ggml_tensor * b,
  1475. struct ggml_tensor * c,
  1476. int n_dims,
  1477. int sections[GGML_MROPE_SECTIONS],
  1478. int mode,
  1479. int n_ctx_orig,
  1480. float freq_base,
  1481. float freq_scale,
  1482. float ext_factor,
  1483. float attn_factor,
  1484. float beta_fast,
  1485. float beta_slow);
  1486. // in-place, returns view(a)
  1487. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1488. struct ggml_context * ctx,
  1489. struct ggml_tensor * a,
  1490. struct ggml_tensor * b,
  1491. struct ggml_tensor * c,
  1492. int n_dims,
  1493. int mode,
  1494. int n_ctx_orig,
  1495. float freq_base,
  1496. float freq_scale,
  1497. float ext_factor,
  1498. float attn_factor,
  1499. float beta_fast,
  1500. float beta_slow);
  1501. GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
  1502. struct ggml_context * ctx,
  1503. struct ggml_tensor * a,
  1504. struct ggml_tensor * b,
  1505. struct ggml_tensor * c,
  1506. int n_dims,
  1507. int sections[GGML_MROPE_SECTIONS],
  1508. int mode,
  1509. int n_ctx_orig,
  1510. float freq_base,
  1511. float freq_scale,
  1512. float ext_factor,
  1513. float attn_factor,
  1514. float beta_fast,
  1515. float beta_slow);
  1516. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1517. struct ggml_context * ctx,
  1518. struct ggml_tensor * a,
  1519. struct ggml_tensor * b,
  1520. int n_dims,
  1521. int mode,
  1522. int n_ctx_orig,
  1523. float freq_base,
  1524. float freq_scale,
  1525. float ext_factor,
  1526. float attn_factor,
  1527. float beta_fast,
  1528. float beta_slow),
  1529. "use ggml_rope_ext instead");
  1530. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1531. struct ggml_context * ctx,
  1532. struct ggml_tensor * a,
  1533. struct ggml_tensor * b,
  1534. int n_dims,
  1535. int mode,
  1536. int n_ctx_orig,
  1537. float freq_base,
  1538. float freq_scale,
  1539. float ext_factor,
  1540. float attn_factor,
  1541. float beta_fast,
  1542. float beta_slow),
  1543. "use ggml_rope_ext_inplace instead");
  1544. // compute correction dims for YaRN RoPE scaling
  1545. GGML_API void ggml_rope_yarn_corr_dims(
  1546. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1547. // rotary position embedding backward, i.e compute dx from dy
  1548. // a - dy
  1549. GGML_API struct ggml_tensor * ggml_rope_ext_back(
  1550. struct ggml_context * ctx,
  1551. struct ggml_tensor * a, // gradients of ggml_rope result
  1552. struct ggml_tensor * b, // positions
  1553. struct ggml_tensor * c, // freq factors
  1554. int n_dims,
  1555. int mode,
  1556. int n_ctx_orig,
  1557. float freq_base,
  1558. float freq_scale,
  1559. float ext_factor,
  1560. float attn_factor,
  1561. float beta_fast,
  1562. float beta_slow);
  1563. GGML_API struct ggml_tensor * ggml_rope_multi_back(
  1564. struct ggml_context * ctx,
  1565. struct ggml_tensor * a,
  1566. struct ggml_tensor * b,
  1567. struct ggml_tensor * c,
  1568. int n_dims,
  1569. int sections[4],
  1570. int mode,
  1571. int n_ctx_orig,
  1572. float freq_base,
  1573. float freq_scale,
  1574. float ext_factor,
  1575. float attn_factor,
  1576. float beta_fast,
  1577. float beta_slow);
  1578. // clamp
  1579. // in-place, returns view(a)
  1580. GGML_API struct ggml_tensor * ggml_clamp(
  1581. struct ggml_context * ctx,
  1582. struct ggml_tensor * a,
  1583. float min,
  1584. float max);
  1585. // im2col
  1586. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1587. GGML_API struct ggml_tensor * ggml_im2col(
  1588. struct ggml_context * ctx,
  1589. struct ggml_tensor * a, // convolution kernel
  1590. struct ggml_tensor * b, // data
  1591. int s0, // stride dimension 0
  1592. int s1, // stride dimension 1
  1593. int p0, // padding dimension 0
  1594. int p1, // padding dimension 1
  1595. int d0, // dilation dimension 0
  1596. int d1, // dilation dimension 1
  1597. bool is_2D,
  1598. enum ggml_type dst_type);
  1599. GGML_API struct ggml_tensor * ggml_im2col_back(
  1600. struct ggml_context * ctx,
  1601. struct ggml_tensor * a, // convolution kernel
  1602. struct ggml_tensor * b, // gradient of im2col output
  1603. int64_t * ne, // shape of im2col input
  1604. int s0, // stride dimension 0
  1605. int s1, // stride dimension 1
  1606. int p0, // padding dimension 0
  1607. int p1, // padding dimension 1
  1608. int d0, // dilation dimension 0
  1609. int d1, // dilation dimension 1
  1610. bool is_2D);
  1611. GGML_API struct ggml_tensor * ggml_conv_1d(
  1612. struct ggml_context * ctx,
  1613. struct ggml_tensor * a, // convolution kernel
  1614. struct ggml_tensor * b, // data
  1615. int s0, // stride
  1616. int p0, // padding
  1617. int d0); // dilation
  1618. // conv_1d with padding = half
  1619. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1620. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1621. struct ggml_context * ctx,
  1622. struct ggml_tensor * a, // convolution kernel
  1623. struct ggml_tensor * b, // data
  1624. int s, // stride
  1625. int d); // dilation
  1626. // depthwise
  1627. // TODO: this is very likely wrong for some cases! - needs more testing
  1628. GGML_API struct ggml_tensor * ggml_conv_1d_dw(
  1629. struct ggml_context * ctx,
  1630. struct ggml_tensor * a, // convolution kernel
  1631. struct ggml_tensor * b, // data
  1632. int s0, // stride
  1633. int p0, // padding
  1634. int d0); // dilation
  1635. GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
  1636. struct ggml_context * ctx,
  1637. struct ggml_tensor * a, // convolution kernel
  1638. struct ggml_tensor * b, // data
  1639. int s0, // stride
  1640. int d0); // dilation
  1641. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1642. struct ggml_context * ctx,
  1643. struct ggml_tensor * a, // convolution kernel
  1644. struct ggml_tensor * b, // data
  1645. int s0, // stride
  1646. int p0, // padding
  1647. int d0); // dilation
  1648. GGML_API struct ggml_tensor * ggml_conv_2d(
  1649. struct ggml_context * ctx,
  1650. struct ggml_tensor * a, // convolution kernel
  1651. struct ggml_tensor * b, // data
  1652. int s0, // stride dimension 0
  1653. int s1, // stride dimension 1
  1654. int p0, // padding dimension 0
  1655. int p1, // padding dimension 1
  1656. int d0, // dilation dimension 0
  1657. int d1); // dilation dimension 1
  1658. GGML_API struct ggml_tensor * ggml_im2col_3d(
  1659. struct ggml_context * ctx,
  1660. struct ggml_tensor * a,
  1661. struct ggml_tensor * b,
  1662. int64_t IC,
  1663. int s0, // stride width
  1664. int s1, // stride height
  1665. int s2, // stride depth
  1666. int p0, // padding width
  1667. int p1, // padding height
  1668. int p2, // padding depth
  1669. int d0, // dilation width
  1670. int d1, // dilation height
  1671. int d2, // dilation depth
  1672. enum ggml_type dst_type);
  1673. // a: [OC*IC, KD, KH, KW]
  1674. // b: [N*IC, ID, IH, IW]
  1675. // result: [N*OC, OD, OH, OW]
  1676. GGML_API struct ggml_tensor * ggml_conv_3d(
  1677. struct ggml_context * ctx,
  1678. struct ggml_tensor * a,
  1679. struct ggml_tensor * b,
  1680. int64_t IC,
  1681. int s0, // stride width
  1682. int s1, // stride height
  1683. int s2, // stride depth
  1684. int p0, // padding width
  1685. int p1, // padding height
  1686. int p2, // padding depth
  1687. int d0, // dilation width
  1688. int d1, // dilation height
  1689. int d2 // dilation depth
  1690. );
  1691. // kernel size is a->ne[0] x a->ne[1]
  1692. // stride is equal to kernel size
  1693. // padding is zero
  1694. // example:
  1695. // a: 16 16 3 768
  1696. // b: 1024 1024 3 1
  1697. // res: 64 64 768 1
  1698. // used in sam
  1699. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1700. struct ggml_context * ctx,
  1701. struct ggml_tensor * a,
  1702. struct ggml_tensor * b);
  1703. // kernel size is a->ne[0] x a->ne[1]
  1704. // stride is 1
  1705. // padding is half
  1706. // example:
  1707. // a: 3 3 256 256
  1708. // b: 64 64 256 1
  1709. // res: 64 64 256 1
  1710. // used in sam
  1711. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1712. struct ggml_context * ctx,
  1713. struct ggml_tensor * a,
  1714. struct ggml_tensor * b);
  1715. // depthwise (via im2col and mul_mat)
  1716. GGML_API struct ggml_tensor * ggml_conv_2d_dw(
  1717. struct ggml_context * ctx,
  1718. struct ggml_tensor * a, // convolution kernel
  1719. struct ggml_tensor * b, // data
  1720. int s0, // stride dimension 0
  1721. int s1, // stride dimension 1
  1722. int p0, // padding dimension 0
  1723. int p1, // padding dimension 1
  1724. int d0, // dilation dimension 0
  1725. int d1); // dilation dimension 1
  1726. // Depthwise 2D convolution
  1727. // may be faster than ggml_conv_2d_dw, but not available in all backends
  1728. // a: KW KH 1 C convolution kernel
  1729. // b: W H C N input data
  1730. // res: W_out H_out C N
  1731. GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
  1732. struct ggml_context * ctx,
  1733. struct ggml_tensor * a,
  1734. struct ggml_tensor * b,
  1735. int stride0,
  1736. int stride1,
  1737. int pad0,
  1738. int pad1,
  1739. int dilation0,
  1740. int dilation1);
  1741. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1742. struct ggml_context * ctx,
  1743. struct ggml_tensor * a,
  1744. struct ggml_tensor * b,
  1745. int stride);
  1746. GGML_API struct ggml_tensor * ggml_conv_2d_direct(
  1747. struct ggml_context * ctx,
  1748. struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
  1749. struct ggml_tensor * b, // input data [W, H, C, N]
  1750. int s0, // stride dimension 0
  1751. int s1, // stride dimension 1
  1752. int p0, // padding dimension 0
  1753. int p1, // padding dimension 1
  1754. int d0, // dilation dimension 0
  1755. int d1); // dilation dimension 1
  1756. GGML_API struct ggml_tensor * ggml_conv_3d_direct(
  1757. struct ggml_context * ctx,
  1758. struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
  1759. struct ggml_tensor * b, // input [W, H, D, C * N]
  1760. int s0, // stride
  1761. int s1,
  1762. int s2,
  1763. int p0, // padding
  1764. int p1,
  1765. int p2,
  1766. int d0, // dilation
  1767. int d1,
  1768. int d2,
  1769. int n_channels,
  1770. int n_batch,
  1771. int n_channels_out);
  1772. enum ggml_op_pool {
  1773. GGML_OP_POOL_MAX,
  1774. GGML_OP_POOL_AVG,
  1775. GGML_OP_POOL_COUNT,
  1776. };
  1777. GGML_API struct ggml_tensor * ggml_pool_1d(
  1778. struct ggml_context * ctx,
  1779. struct ggml_tensor * a,
  1780. enum ggml_op_pool op,
  1781. int k0, // kernel size
  1782. int s0, // stride
  1783. int p0); // padding
  1784. // the result will have 2*p0 padding for the first dimension
  1785. // and 2*p1 padding for the second dimension
  1786. GGML_API struct ggml_tensor * ggml_pool_2d(
  1787. struct ggml_context * ctx,
  1788. struct ggml_tensor * a,
  1789. enum ggml_op_pool op,
  1790. int k0,
  1791. int k1,
  1792. int s0,
  1793. int s1,
  1794. float p0,
  1795. float p1);
  1796. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1797. struct ggml_context * ctx,
  1798. struct ggml_tensor * a,
  1799. struct ggml_tensor * af, // "a"/input used in forward pass
  1800. enum ggml_op_pool op,
  1801. int k0,
  1802. int k1,
  1803. int s0,
  1804. int s1,
  1805. float p0,
  1806. float p1);
  1807. enum ggml_scale_mode {
  1808. GGML_SCALE_MODE_NEAREST = 0,
  1809. GGML_SCALE_MODE_BILINEAR = 1,
  1810. GGML_SCALE_MODE_BICUBIC = 2,
  1811. GGML_SCALE_MODE_COUNT
  1812. };
  1813. enum ggml_scale_flag {
  1814. GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
  1815. };
  1816. // interpolate
  1817. // multiplies ne0 and ne1 by scale factor
  1818. GGML_API struct ggml_tensor * ggml_upscale(
  1819. struct ggml_context * ctx,
  1820. struct ggml_tensor * a,
  1821. int scale_factor,
  1822. enum ggml_scale_mode mode);
  1823. // interpolate
  1824. // interpolate scale to specified dimensions
  1825. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
  1826. struct ggml_context * ctx,
  1827. struct ggml_tensor * a,
  1828. int ne0,
  1829. int ne1,
  1830. int ne2,
  1831. int ne3,
  1832. enum ggml_scale_mode mode),
  1833. "use ggml_interpolate instead");
  1834. // Up- or downsamples the input to the specified size.
  1835. // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
  1836. GGML_API struct ggml_tensor * ggml_interpolate(
  1837. struct ggml_context * ctx,
  1838. struct ggml_tensor * a,
  1839. int64_t ne0,
  1840. int64_t ne1,
  1841. int64_t ne2,
  1842. int64_t ne3,
  1843. uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
  1844. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1845. GGML_API struct ggml_tensor * ggml_pad(
  1846. struct ggml_context * ctx,
  1847. struct ggml_tensor * a,
  1848. int p0,
  1849. int p1,
  1850. int p2,
  1851. int p3);
  1852. GGML_API struct ggml_tensor * ggml_pad_ext(
  1853. struct ggml_context * ctx,
  1854. struct ggml_tensor * a,
  1855. int lp0,
  1856. int rp0,
  1857. int lp1,
  1858. int rp1,
  1859. int lp2,
  1860. int rp2,
  1861. int lp3,
  1862. int rp3
  1863. );
  1864. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1865. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1866. struct ggml_context * ctx,
  1867. struct ggml_tensor * a,
  1868. int p0,
  1869. int p1);
  1870. // Move tensor elements by an offset given for each dimension. Elements that
  1871. // are shifted beyond the last position are wrapped around to the beginning.
  1872. GGML_API struct ggml_tensor * ggml_roll(
  1873. struct ggml_context * ctx,
  1874. struct ggml_tensor * a,
  1875. int shift0,
  1876. int shift1,
  1877. int shift2,
  1878. int shift3);
  1879. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1880. // timesteps: [N,]
  1881. // return: [N, dim]
  1882. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1883. struct ggml_context * ctx,
  1884. struct ggml_tensor * timesteps,
  1885. int dim,
  1886. int max_period);
  1887. // sort rows
  1888. enum ggml_sort_order {
  1889. GGML_SORT_ORDER_ASC,
  1890. GGML_SORT_ORDER_DESC,
  1891. };
  1892. GGML_API struct ggml_tensor * ggml_argsort(
  1893. struct ggml_context * ctx,
  1894. struct ggml_tensor * a,
  1895. enum ggml_sort_order order);
  1896. GGML_API struct ggml_tensor * ggml_arange(
  1897. struct ggml_context * ctx,
  1898. float start,
  1899. float stop,
  1900. float step);
  1901. // top k elements per row
  1902. GGML_API struct ggml_tensor * ggml_top_k(
  1903. struct ggml_context * ctx,
  1904. struct ggml_tensor * a,
  1905. int k);
  1906. #define GGML_KQ_MASK_PAD 64
  1907. // q: [n_embd_k, n_batch, n_head, ne3 ]
  1908. // k: [n_embd_k, n_kv, n_head_kv, ne3 ]
  1909. // v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
  1910. // mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1911. // res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
  1912. //
  1913. // broadcast:
  1914. // n_head % n_head_kv == 0
  1915. // n_head % ne32 == 0
  1916. // ne3 % ne33 == 0
  1917. //
  1918. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1919. struct ggml_context * ctx,
  1920. struct ggml_tensor * q,
  1921. struct ggml_tensor * k,
  1922. struct ggml_tensor * v,
  1923. struct ggml_tensor * mask,
  1924. float scale,
  1925. float max_bias,
  1926. float logit_softcap);
  1927. GGML_API void ggml_flash_attn_ext_set_prec(
  1928. struct ggml_tensor * a,
  1929. enum ggml_prec prec);
  1930. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1931. const struct ggml_tensor * a);
  1932. GGML_API void ggml_flash_attn_ext_add_sinks(
  1933. struct ggml_tensor * a,
  1934. struct ggml_tensor * sinks);
  1935. // TODO: needs to be adapted to ggml_flash_attn_ext
  1936. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1937. struct ggml_context * ctx,
  1938. struct ggml_tensor * q,
  1939. struct ggml_tensor * k,
  1940. struct ggml_tensor * v,
  1941. struct ggml_tensor * d,
  1942. bool masked);
  1943. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1944. struct ggml_context * ctx,
  1945. struct ggml_tensor * sx,
  1946. struct ggml_tensor * c);
  1947. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1948. struct ggml_context * ctx,
  1949. struct ggml_tensor * s,
  1950. struct ggml_tensor * x,
  1951. struct ggml_tensor * dt,
  1952. struct ggml_tensor * A,
  1953. struct ggml_tensor * B,
  1954. struct ggml_tensor * C,
  1955. struct ggml_tensor * ids);
  1956. // partition into non-overlapping windows with padding if needed
  1957. // example:
  1958. // a: 768 64 64 1
  1959. // w: 14
  1960. // res: 768 14 14 25
  1961. // used in sam
  1962. GGML_API struct ggml_tensor * ggml_win_part(
  1963. struct ggml_context * ctx,
  1964. struct ggml_tensor * a,
  1965. int w);
  1966. // reverse of ggml_win_part
  1967. // used in sam
  1968. GGML_API struct ggml_tensor * ggml_win_unpart(
  1969. struct ggml_context * ctx,
  1970. struct ggml_tensor * a,
  1971. int w0,
  1972. int h0,
  1973. int w);
  1974. GGML_API struct ggml_tensor * ggml_unary(
  1975. struct ggml_context * ctx,
  1976. struct ggml_tensor * a,
  1977. enum ggml_unary_op op);
  1978. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1979. struct ggml_context * ctx,
  1980. struct ggml_tensor * a,
  1981. enum ggml_unary_op op);
  1982. // used in sam
  1983. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1984. struct ggml_context * ctx,
  1985. struct ggml_tensor * a,
  1986. int qh,
  1987. int kh);
  1988. // used in sam
  1989. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1990. struct ggml_context * ctx,
  1991. struct ggml_tensor * a,
  1992. struct ggml_tensor * pw,
  1993. struct ggml_tensor * ph);
  1994. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1995. struct ggml_context * ctx,
  1996. struct ggml_tensor * a,
  1997. struct ggml_tensor * pw,
  1998. struct ggml_tensor * ph);
  1999. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  2000. struct ggml_context * ctx,
  2001. struct ggml_tensor * k,
  2002. struct ggml_tensor * v,
  2003. struct ggml_tensor * r,
  2004. struct ggml_tensor * tf,
  2005. struct ggml_tensor * td,
  2006. struct ggml_tensor * state);
  2007. GGML_API struct ggml_tensor * ggml_gated_linear_attn(
  2008. struct ggml_context * ctx,
  2009. struct ggml_tensor * k,
  2010. struct ggml_tensor * v,
  2011. struct ggml_tensor * q,
  2012. struct ggml_tensor * g,
  2013. struct ggml_tensor * state,
  2014. float scale);
  2015. GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
  2016. struct ggml_context * ctx,
  2017. struct ggml_tensor * r,
  2018. struct ggml_tensor * w,
  2019. struct ggml_tensor * k,
  2020. struct ggml_tensor * v,
  2021. struct ggml_tensor * a,
  2022. struct ggml_tensor * b,
  2023. struct ggml_tensor * state);
  2024. // custom operators
  2025. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  2026. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  2027. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  2028. #define GGML_N_TASKS_MAX (-1)
  2029. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  2030. GGML_API struct ggml_tensor * ggml_map_custom1(
  2031. struct ggml_context * ctx,
  2032. struct ggml_tensor * a,
  2033. ggml_custom1_op_t fun,
  2034. int n_tasks,
  2035. void * userdata);
  2036. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  2037. struct ggml_context * ctx,
  2038. struct ggml_tensor * a,
  2039. ggml_custom1_op_t fun,
  2040. int n_tasks,
  2041. void * userdata);
  2042. GGML_API struct ggml_tensor * ggml_map_custom2(
  2043. struct ggml_context * ctx,
  2044. struct ggml_tensor * a,
  2045. struct ggml_tensor * b,
  2046. ggml_custom2_op_t fun,
  2047. int n_tasks,
  2048. void * userdata);
  2049. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  2050. struct ggml_context * ctx,
  2051. struct ggml_tensor * a,
  2052. struct ggml_tensor * b,
  2053. ggml_custom2_op_t fun,
  2054. int n_tasks,
  2055. void * userdata);
  2056. GGML_API struct ggml_tensor * ggml_map_custom3(
  2057. struct ggml_context * ctx,
  2058. struct ggml_tensor * a,
  2059. struct ggml_tensor * b,
  2060. struct ggml_tensor * c,
  2061. ggml_custom3_op_t fun,
  2062. int n_tasks,
  2063. void * userdata);
  2064. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  2065. struct ggml_context * ctx,
  2066. struct ggml_tensor * a,
  2067. struct ggml_tensor * b,
  2068. struct ggml_tensor * c,
  2069. ggml_custom3_op_t fun,
  2070. int n_tasks,
  2071. void * userdata);
  2072. typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
  2073. GGML_API struct ggml_tensor * ggml_custom_4d(
  2074. struct ggml_context * ctx,
  2075. enum ggml_type type,
  2076. int64_t ne0,
  2077. int64_t ne1,
  2078. int64_t ne2,
  2079. int64_t ne3,
  2080. struct ggml_tensor ** args,
  2081. int n_args,
  2082. ggml_custom_op_t fun,
  2083. int n_tasks,
  2084. void * userdata);
  2085. GGML_API struct ggml_tensor * ggml_custom_inplace(
  2086. struct ggml_context * ctx,
  2087. struct ggml_tensor * a,
  2088. struct ggml_tensor ** args,
  2089. int n_args,
  2090. ggml_custom_op_t fun,
  2091. int n_tasks,
  2092. void * userdata);
  2093. // loss function
  2094. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  2095. struct ggml_context * ctx,
  2096. struct ggml_tensor * a, // logits
  2097. struct ggml_tensor * b); // labels
  2098. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  2099. struct ggml_context * ctx,
  2100. struct ggml_tensor * a, // logits
  2101. struct ggml_tensor * b, // labels
  2102. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  2103. // AdamW optimizer step
  2104. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  2105. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  2106. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  2107. struct ggml_context * ctx,
  2108. struct ggml_tensor * a,
  2109. struct ggml_tensor * grad,
  2110. struct ggml_tensor * m,
  2111. struct ggml_tensor * v,
  2112. struct ggml_tensor * adamw_params); // parameters such as the learning rate
  2113. // stochastic gradient descent step (with weight decay)
  2114. GGML_API struct ggml_tensor * ggml_opt_step_sgd(
  2115. struct ggml_context * ctx,
  2116. struct ggml_tensor * a,
  2117. struct ggml_tensor * grad,
  2118. struct ggml_tensor * sgd_params); // alpha, weight decay
  2119. //
  2120. // automatic differentiation
  2121. //
  2122. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2123. GGML_API void ggml_build_backward_expand(
  2124. struct ggml_context * ctx, // context for gradient computation
  2125. struct ggml_cgraph * cgraph,
  2126. struct ggml_tensor ** grad_accs);
  2127. // graph allocation in a context
  2128. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  2129. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  2130. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
  2131. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  2132. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  2133. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  2134. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  2135. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  2136. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  2137. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  2138. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2139. GGML_API size_t ggml_graph_overhead(void);
  2140. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  2141. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  2142. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2143. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2144. // print info and performance information for the graph
  2145. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  2146. // dump the graph into a file using the dot format
  2147. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  2148. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  2149. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  2150. // Set callback for all future logging events.
  2151. // If this is not called, or NULL is supplied, everything is output on stderr.
  2152. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  2153. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  2154. //
  2155. // quantization
  2156. //
  2157. // - ggml_quantize_init can be called multiple times with the same type
  2158. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  2159. // automatically called by ggml_quantize_chunk for convenience
  2160. //
  2161. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  2162. // call this at the end of the program to avoid memory leaks
  2163. //
  2164. // note: these are thread-safe
  2165. //
  2166. GGML_API void ggml_quantize_init(enum ggml_type type);
  2167. GGML_API void ggml_quantize_free(void);
  2168. // some quantization type cannot be used without an importance matrix
  2169. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  2170. // calls ggml_quantize_init internally (i.e. can allocate memory)
  2171. GGML_API size_t ggml_quantize_chunk(
  2172. enum ggml_type type,
  2173. const float * src,
  2174. void * dst,
  2175. int64_t start,
  2176. int64_t nrows,
  2177. int64_t n_per_row,
  2178. const float * imatrix);
  2179. #ifdef __cplusplus
  2180. // restrict not standard in C++
  2181. # if defined(__GNUC__)
  2182. # define GGML_RESTRICT __restrict__
  2183. # elif defined(__clang__)
  2184. # define GGML_RESTRICT __restrict
  2185. # elif defined(_MSC_VER)
  2186. # define GGML_RESTRICT __restrict
  2187. # else
  2188. # define GGML_RESTRICT
  2189. # endif
  2190. #else
  2191. # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
  2192. # define GGML_RESTRICT __restrict
  2193. # else
  2194. # define GGML_RESTRICT restrict
  2195. # endif
  2196. #endif
  2197. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2198. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2199. struct ggml_type_traits {
  2200. const char * type_name;
  2201. int64_t blck_size;
  2202. int64_t blck_size_interleave; // interleave elements in blocks
  2203. size_t type_size;
  2204. bool is_quantized;
  2205. ggml_to_float_t to_float;
  2206. ggml_from_float_t from_float_ref;
  2207. };
  2208. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  2209. // ggml threadpool
  2210. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  2211. // the goal should be to create an API that other backends can use move everything to the ggml base
  2212. // scheduling priorities
  2213. enum ggml_sched_priority {
  2214. GGML_SCHED_PRIO_LOW = -1,
  2215. GGML_SCHED_PRIO_NORMAL,
  2216. GGML_SCHED_PRIO_MEDIUM,
  2217. GGML_SCHED_PRIO_HIGH,
  2218. GGML_SCHED_PRIO_REALTIME
  2219. };
  2220. // threadpool params
  2221. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  2222. struct ggml_threadpool_params {
  2223. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  2224. int n_threads; // number of threads
  2225. enum ggml_sched_priority prio; // thread priority
  2226. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  2227. bool strict_cpu; // strict cpu placement
  2228. bool paused; // start in paused state
  2229. };
  2230. struct ggml_threadpool; // forward declaration, see ggml.c
  2231. typedef struct ggml_threadpool * ggml_threadpool_t;
  2232. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  2233. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  2234. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  2235. #ifdef __cplusplus
  2236. }
  2237. #endif