| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460 |
- #include "utils.hpp"
- #include "arg.h"
- #include "common.h"
- #include "json-schema-to-grammar.h"
- #include "llama.h"
- #include "log.h"
- #include "sampling.h"
- #include "speculative.h"
- // Change JSON_ASSERT from assert() to GGML_ASSERT:
- #define JSON_ASSERT GGML_ASSERT
- #include "json.hpp"
- // mime type for sending response
- #define MIMETYPE_JSON "application/json; charset=utf-8"
- // auto generated files (update with ./deps.sh)
- #include "index.html.hpp"
- #include "completion.js.hpp"
- #include "loading.html.hpp"
- #include "deps_daisyui.min.css.hpp"
- #include "deps_markdown-it.js.hpp"
- #include "deps_tailwindcss.js.hpp"
- #include "deps_vue.esm-browser.js.hpp"
- #include <atomic>
- #include <condition_variable>
- #include <cstddef>
- #include <cinttypes>
- #include <deque>
- #include <memory>
- #include <mutex>
- #include <signal.h>
- #include <thread>
- #include <unordered_map>
- #include <unordered_set>
- using json = nlohmann::ordered_json;
- enum stop_type {
- STOP_TYPE_FULL,
- STOP_TYPE_PARTIAL,
- };
- // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
- enum slot_state {
- SLOT_STATE_IDLE,
- SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
- SLOT_STATE_PROCESSING_PROMPT,
- SLOT_STATE_DONE_PROMPT,
- SLOT_STATE_GENERATING,
- };
- enum server_state {
- SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
- SERVER_STATE_READY, // Server is ready and model is loaded
- };
- enum server_task_type {
- SERVER_TASK_TYPE_INFERENCE,
- SERVER_TASK_TYPE_CANCEL,
- SERVER_TASK_TYPE_NEXT_RESPONSE,
- SERVER_TASK_TYPE_METRICS,
- SERVER_TASK_TYPE_SLOT_SAVE,
- SERVER_TASK_TYPE_SLOT_RESTORE,
- SERVER_TASK_TYPE_SLOT_ERASE,
- SERVER_TASK_TYPE_SET_LORA,
- };
- enum server_task_inf_type {
- SERVER_TASK_INF_TYPE_COMPLETION,
- SERVER_TASK_INF_TYPE_EMBEDDING,
- SERVER_TASK_INF_TYPE_RERANK,
- SERVER_TASK_INF_TYPE_INFILL,
- };
- struct server_task {
- int id = -1; // to be filled by server_queue
- int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL
- llama_tokens prompt_tokens;
- server_task_type type;
- json data;
- server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
- // utility function
- static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
- std::unordered_set<int> ids(tasks.size());
- for (size_t i = 0; i < tasks.size(); i++) {
- ids.insert(tasks[i].id);
- }
- return ids;
- }
- };
- struct server_task_result {
- int id = -1;
- json data;
- bool stop;
- bool error;
- };
- struct server_static_file {
- const unsigned char * data;
- unsigned int size;
- const char * mime_type;
- };
- struct slot_params {
- bool stream = true;
- bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
- int32_t n_predict = -1; // new tokens to predict
- int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
- int64_t t_max_prompt_ms = -1; // TODO: implement
- int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
- std::vector<std::string> antiprompt;
- struct common_params_sampling sampling;
- struct common_params_speculative speculative;
- };
- struct server_slot {
- int id;
- int id_task = -1;
- llama_batch batch_spec;
- llama_context * ctx_dft = nullptr;
- common_speculative * spec = nullptr;
- // the index relative to completion multi-task request
- size_t index = 0;
- struct slot_params params;
- slot_state state = SLOT_STATE_IDLE;
- // used to determine the slot that has been used the longest
- int64_t t_last_used = -1;
- // generation props
- int32_t n_ctx = 0; // context size per slot
- int32_t n_past = 0;
- int32_t n_decoded = 0;
- int32_t n_remaining = -1;
- int32_t i_batch = -1;
- int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
- // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
- int32_t n_prompt_tokens = 0;
- int32_t n_prompt_tokens_processed = 0;
- // input prompt tokens
- llama_tokens prompt_tokens;
- size_t last_nl_pos = 0;
- std::string generated_text;
- llama_tokens cache_tokens;
- std::vector<completion_token_output> generated_token_probs;
- server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
- bool has_next_token = true;
- bool has_new_line = false;
- bool truncated = false;
- bool stopped_eos = false;
- bool stopped_word = false;
- bool stopped_limit = false;
- bool timings_per_token = false;
- bool oaicompat = false;
- std::string oaicompat_model;
- std::string stopping_word;
- // sampling
- json json_schema;
- struct common_sampler * smpl = nullptr;
- llama_token sampled;
- // stats
- size_t n_sent_text = 0; // number of sent text character
- size_t n_sent_token_probs = 0;
- int64_t t_start_process_prompt;
- int64_t t_start_generation;
- double t_prompt_processing; // ms
- double t_token_generation; // ms
- std::function<void(int)> callback_on_release;
- void reset() {
- SLT_DBG(*this, "%s", "\n");
- n_prompt_tokens = 0;
- last_nl_pos = 0;
- generated_text = "";
- has_new_line = false;
- truncated = false;
- stopped_eos = false;
- stopped_word = false;
- stopped_limit = false;
- stopping_word = "";
- n_past = 0;
- n_sent_text = 0;
- n_sent_token_probs = 0;
- inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
- generated_token_probs.clear();
- }
- bool has_budget(const common_params & global_params) {
- if (params.n_predict == -1 && global_params.n_predict == -1) {
- return true; // limitless
- }
- n_remaining = -1;
- if (params.n_predict != -1) {
- n_remaining = params.n_predict - n_decoded;
- } else if (global_params.n_predict != -1) {
- n_remaining = global_params.n_predict - n_decoded;
- }
- return n_remaining > 0; // no budget
- }
- bool is_processing() const {
- return state != SLOT_STATE_IDLE;
- }
- bool can_speculate() const {
- return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
- }
- void add_token(const completion_token_output & token) {
- if (!is_processing()) {
- SLT_WRN(*this, "%s", "slot is not processing\n");
- return;
- }
- generated_token_probs.push_back(token);
- }
- void release() {
- if (is_processing()) {
- SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
- t_last_used = ggml_time_us();
- t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
- state = SLOT_STATE_IDLE;
- callback_on_release(id);
- }
- }
- json get_formated_timings() const {
- return json {
- {"prompt_n", n_prompt_tokens_processed},
- {"prompt_ms", t_prompt_processing},
- {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
- {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
- {"predicted_n", n_decoded},
- {"predicted_ms", t_token_generation},
- {"predicted_per_token_ms", t_token_generation / n_decoded},
- {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
- };
- }
- size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
- size_t stop_pos = std::string::npos;
- for (const std::string & word : params.antiprompt) {
- size_t pos;
- if (type == STOP_TYPE_FULL) {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- } else {
- pos = find_partial_stop_string(word, text);
- }
- if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
- if (type == STOP_TYPE_FULL) {
- stopped_word = true;
- stopping_word = word;
- has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- void print_timings() const {
- const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
- const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
- const double t_gen = t_token_generation / n_decoded;
- const double n_gen_second = 1e3 / t_token_generation * n_decoded;
- SLT_INF(*this,
- "\n"
- "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
- "\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
- "\r total time = %10.2f ms / %5d tokens\n",
- t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
- t_token_generation, n_decoded, t_gen, n_gen_second,
- t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
- }
- };
- struct server_metrics {
- int64_t t_start = 0;
- uint64_t n_prompt_tokens_processed_total = 0;
- uint64_t t_prompt_processing_total = 0;
- uint64_t n_tokens_predicted_total = 0;
- uint64_t t_tokens_generation_total = 0;
- uint64_t n_prompt_tokens_processed = 0;
- uint64_t t_prompt_processing = 0;
- uint64_t n_tokens_predicted = 0;
- uint64_t t_tokens_generation = 0;
- uint64_t n_decode_total = 0;
- uint64_t n_busy_slots_total = 0;
- void init() {
- t_start = ggml_time_us();
- }
- void on_prompt_eval(const server_slot & slot) {
- n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
- n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
- t_prompt_processing += slot.t_prompt_processing;
- t_prompt_processing_total += slot.t_prompt_processing;
- }
- void on_prediction(const server_slot & slot) {
- n_tokens_predicted_total += slot.n_decoded;
- n_tokens_predicted += slot.n_decoded;
- t_tokens_generation += slot.t_token_generation;
- t_tokens_generation_total += slot.t_token_generation;
- }
- void on_decoded(const std::vector<server_slot> & slots) {
- n_decode_total++;
- for (const auto & slot : slots) {
- if (slot.is_processing()) {
- n_busy_slots_total++;
- }
- }
- }
- void reset_bucket() {
- n_prompt_tokens_processed = 0;
- t_prompt_processing = 0;
- n_tokens_predicted = 0;
- t_tokens_generation = 0;
- }
- };
- struct server_queue {
- int id = 0;
- bool running;
- // queues
- std::deque<server_task> queue_tasks;
- std::deque<server_task> queue_tasks_deferred;
- std::mutex mutex_tasks;
- std::condition_variable condition_tasks;
- // callback functions
- std::function<void(server_task)> callback_new_task;
- std::function<void(void)> callback_update_slots;
- // Add a new task to the end of the queue
- int post(server_task task, bool front = false) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- if (task.id == -1) {
- task.id = id++;
- }
- QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
- if (front) {
- queue_tasks.push_front(std::move(task));
- } else {
- queue_tasks.push_back(std::move(task));
- }
- condition_tasks.notify_one();
- return task.id;
- }
- // multi-task version of post()
- int post(std::vector<server_task> & tasks, bool front = false) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- for (auto & task : tasks) {
- if (task.id == -1) {
- task.id = id++;
- }
- QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
- if (front) {
- queue_tasks.push_front(std::move(task));
- } else {
- queue_tasks.push_back(std::move(task));
- }
- }
- condition_tasks.notify_one();
- return 0;
- }
- // Add a new task, but defer until one slot is available
- void defer(server_task task) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- QUE_DBG("defer task, id = %d\n", task.id);
- queue_tasks_deferred.push_back(std::move(task));
- condition_tasks.notify_one();
- }
- // Get the next id for creating a new task
- int get_new_id() {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- int new_id = id++;
- return new_id;
- }
- // Register function to process a new task
- void on_new_task(std::function<void(server_task)> callback) {
- callback_new_task = std::move(callback);
- }
- // Register the function to be called when all slots data is ready to be processed
- void on_update_slots(std::function<void(void)> callback) {
- callback_update_slots = std::move(callback);
- }
- // Call when the state of one slot is changed, it will move one task from deferred to main queue
- void pop_deferred_task() {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- if (!queue_tasks_deferred.empty()) {
- queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
- queue_tasks_deferred.pop_front();
- }
- condition_tasks.notify_one();
- }
- // end the start_loop routine
- void terminate() {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- running = false;
- condition_tasks.notify_all();
- }
- /**
- * Main loop consists of these steps:
- * - Wait until a new task arrives
- * - Process the task (i.e. maybe copy data into slot)
- * - Check if multitask is finished
- * - Update all slots
- */
- void start_loop() {
- running = true;
- while (true) {
- QUE_DBG("%s", "processing new tasks\n");
- while (true) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- if (queue_tasks.empty()) {
- lock.unlock();
- break;
- }
- server_task task = queue_tasks.front();
- queue_tasks.pop_front();
- lock.unlock();
- QUE_DBG("processing task, id = %d\n", task.id);
- callback_new_task(std::move(task));
- }
- // all tasks in the current loop is processed, slots data is now ready
- QUE_DBG("%s", "update slots\n");
- callback_update_slots();
- QUE_DBG("%s", "waiting for new tasks\n");
- {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- if (queue_tasks.empty()) {
- if (!running) {
- QUE_DBG("%s", "terminate\n");
- return;
- }
- condition_tasks.wait(lock, [&]{
- return (!queue_tasks.empty() || !running);
- });
- }
- }
- }
- }
- };
- struct server_response {
- // for keeping track of all tasks waiting for the result
- std::unordered_set<int> waiting_task_ids;
- // the main result queue
- std::vector<server_task_result> queue_results;
- std::mutex mutex_results;
- std::condition_variable condition_results;
- // add the id_task to the list of tasks waiting for response
- void add_waiting_task_id(int id_task) {
- SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
- std::unique_lock<std::mutex> lock(mutex_results);
- waiting_task_ids.insert(id_task);
- }
- void add_waiting_tasks(const std::vector<server_task> & tasks) {
- std::unique_lock<std::mutex> lock(mutex_results);
- for (const auto & task : tasks) {
- SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
- waiting_task_ids.insert(task.id);
- }
- }
- // when the request is finished, we can remove task associated with it
- void remove_waiting_task_id(int id_task) {
- SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
- std::unique_lock<std::mutex> lock(mutex_results);
- waiting_task_ids.erase(id_task);
- }
- void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
- std::unique_lock<std::mutex> lock(mutex_results);
- for (const auto & id_task : id_tasks) {
- SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
- waiting_task_ids.erase(id_task);
- }
- }
- // This function blocks the thread until there is a response for one of the id_tasks
- server_task_result recv(const std::unordered_set<int> & id_tasks) {
- while (true) {
- std::unique_lock<std::mutex> lock(mutex_results);
- condition_results.wait(lock, [&]{
- return !queue_results.empty();
- });
- for (int i = 0; i < (int) queue_results.size(); i++) {
- if (id_tasks.find(queue_results[i].id) != id_tasks.end()) {
- server_task_result res = queue_results[i];
- queue_results.erase(queue_results.begin() + i);
- return res;
- }
- }
- }
- // should never reach here
- }
- // single-task version of recv()
- server_task_result recv(int id_task) {
- std::unordered_set<int> id_tasks = {id_task};
- return recv(id_tasks);
- }
- // Send a new result to a waiting id_task
- void send(server_task_result & result) {
- SRV_DBG("sending result for task id = %d\n", result.id);
- std::unique_lock<std::mutex> lock(mutex_results);
- for (const auto & id_task : waiting_task_ids) {
- if (result.id == id_task) {
- SRV_DBG("task id = %d moved to result queue\n", result.id);
- queue_results.push_back(std::move(result));
- condition_results.notify_all();
- return;
- }
- }
- }
- };
- struct server_context {
- common_params params_base;
- llama_model * model = nullptr;
- llama_context * ctx = nullptr;
- std::vector<common_lora_adapter_container> loras;
- llama_model * model_dft = nullptr;
- llama_context_params cparams_dft;
- llama_batch batch = {};
- bool clean_kv_cache = true;
- bool add_bos_token = true;
- bool has_eos_token = false;
- int32_t n_ctx; // total context for all clients / slots
- // slots / clients
- std::vector<server_slot> slots;
- json default_generation_settings_for_props;
- server_queue queue_tasks;
- server_response queue_results;
- server_metrics metrics;
- // Necessary similarity of prompt for slot selection
- float slot_prompt_similarity = 0.0f;
- ~server_context() {
- if (ctx) {
- llama_free(ctx);
- ctx = nullptr;
- }
- if (model) {
- llama_free_model(model);
- model = nullptr;
- }
- if (model_dft) {
- llama_free_model(model_dft);
- model_dft = nullptr;
- }
- // Clear any sampling context
- for (server_slot & slot : slots) {
- common_sampler_free(slot.smpl);
- slot.smpl = nullptr;
- llama_free(slot.ctx_dft);
- slot.ctx_dft = nullptr;
- common_speculative_free(slot.spec);
- slot.spec = nullptr;
- llama_batch_free(slot.batch_spec);
- }
- llama_batch_free(batch);
- }
- bool load_model(const common_params & params) {
- SRV_INF("loading model '%s'\n", params.model.c_str());
- params_base = params;
- common_init_result llama_init = common_init_from_params(params_base);
- model = llama_init.model;
- ctx = llama_init.context;
- loras = llama_init.lora_adapters;
- if (model == nullptr) {
- SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
- return false;
- }
- n_ctx = llama_n_ctx(ctx);
- add_bos_token = llama_add_bos_token(model);
- has_eos_token = !llama_add_eos_token(model);
- if (!params_base.speculative.model.empty()) {
- SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
- auto params_dft = params_base;
- params_dft.devices = params_base.speculative.devices;
- params_dft.model = params_base.speculative.model;
- params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
- params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
- params_dft.n_parallel = 1;
- common_init_result llama_init_dft = common_init_from_params(params_dft);
- model_dft = llama_init_dft.model;
- if (model_dft == nullptr) {
- SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
- return false;
- }
- if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
- SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
- llama_free (llama_init_dft.context);
- llama_free_model(llama_init_dft.model);
- return false;
- }
- const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
- cparams_dft = common_context_params_to_llama(params_dft);
- cparams_dft.n_batch = n_ctx_dft;
- // force F16 KV cache for the draft model for extra performance
- cparams_dft.type_k = GGML_TYPE_F16;
- cparams_dft.type_v = GGML_TYPE_F16;
- // the context is not needed - we will create one for each slot
- llama_free(llama_init_dft.context);
- }
- return true;
- }
- bool validate_model_chat_template() const {
- std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
- std::string template_key = "tokenizer.chat_template";
- int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
- if (res >= 0) {
- llama_chat_message chat[] = {{"user", "test"}};
- std::string tmpl = std::string(model_template.data(), model_template.size());
- int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
- return chat_res > 0;
- }
- return false;
- }
- void init() {
- const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
- SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
- for (int i = 0; i < params_base.n_parallel; i++) {
- server_slot slot;
- slot.id = i;
- slot.n_ctx = n_ctx_slot;
- slot.n_predict = params_base.n_predict;
- if (model_dft) {
- slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
- slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
- if (slot.ctx_dft == nullptr) {
- SRV_ERR("%s", "failed to create draft context\n");
- return;
- }
- slot.spec = common_speculative_init(slot.ctx_dft);
- if (slot.spec == nullptr) {
- SRV_ERR("%s", "failed to create speculator\n");
- return;
- }
- }
- SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
- slot.params.sampling = params_base.sampling;
- slot.callback_on_release = [this](int) {
- queue_tasks.pop_deferred_task();
- };
- slot.reset();
- slots.push_back(slot);
- }
- default_generation_settings_for_props = get_formated_generation(slots.front());
- default_generation_settings_for_props["seed"] = -1;
- // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
- // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
- {
- const int32_t n_batch = llama_n_batch(ctx);
- // only a single seq_id per token is needed
- batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
- }
- metrics.init();
- }
- server_slot * get_slot_by_id(int id) {
- for (server_slot & slot : slots) {
- if (slot.id == id) {
- return &slot;
- }
- }
- return nullptr;
- }
- server_slot * get_available_slot(const server_task & task) {
- server_slot * ret = nullptr;
- // find the slot that has at least n% prompt similarity
- if (ret == nullptr && slot_prompt_similarity != 0.0f) {
- int lcs_len = 0;
- float similarity = 0;
- for (server_slot & slot : slots) {
- // skip the slot if it is not available
- if (slot.is_processing()) {
- continue;
- }
- // skip the slot if it does not contains cached tokens
- if (slot.cache_tokens.empty()) {
- continue;
- }
- // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
- int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
- // fraction of the common subsequence length compared to the current slot's prompt length
- float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
- // select the current slot if the criteria match
- if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
- lcs_len = cur_lcs_len;
- similarity = cur_similarity;
- ret = &slot;
- }
- }
- if (ret != nullptr) {
- SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
- }
- }
- // find the slot that has been least recently used
- if (ret == nullptr) {
- int64_t t_last = ggml_time_us();
- for (server_slot & slot : slots) {
- // skip the slot if it is not available
- if (slot.is_processing()) {
- continue;
- }
- // select the current slot if the criteria match
- if (slot.t_last_used < t_last) {
- t_last = slot.t_last_used;
- ret = &slot;
- }
- }
- if (ret != nullptr) {
- SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
- }
- }
- return ret;
- }
- bool launch_slot_with_task(server_slot & slot, const server_task & task) {
- // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
- slot_params defaults;
- defaults.sampling = params_base.sampling;
- defaults.speculative = params_base.speculative;
- const auto & data = task.data;
- if (data.count("__oaicompat") != 0) {
- slot.oaicompat = true;
- slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
- } else {
- slot.oaicompat = false;
- slot.oaicompat_model = "";
- }
- slot.timings_per_token = json_value(data, "timings_per_token", false);
- slot.params.stream = json_value(data, "stream", false);
- slot.params.cache_prompt = json_value(data, "cache_prompt", true);
- slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
- slot.params.n_indent = json_value(data, "n_indent", defaults.n_indent);
- slot.params.n_keep = json_value(data, "n_keep", defaults.n_keep);
- slot.params.n_discard = json_value(data, "n_discard", defaults.n_discard);
- //slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
- slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
- slot.params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
- slot.params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
- slot.params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
- slot.params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
- slot.params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
- slot.params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
- slot.params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
- slot.params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
- slot.params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
- slot.params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
- slot.params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
- slot.params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
- slot.params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
- slot.params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
- slot.params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
- slot.params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
- slot.params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
- slot.params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
- slot.params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
- slot.params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
- slot.params.sampling.penalize_nl = json_value(data, "penalize_nl", defaults.sampling.penalize_nl);
- slot.params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
- slot.params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
- slot.params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
- slot.params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
- slot.params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
- slot.params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
- slot.params.speculative.n_min = std::min(slot.params.speculative.n_max, slot.params.speculative.n_min);
- if (slot.params.sampling.dry_base < 1.0f) {
- slot.params.sampling.dry_base = defaults.sampling.dry_base;
- }
- // sequence breakers for DRY
- {
- // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
- // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
- if (data.contains("dry_sequence_breakers")) {
- slot.params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
- if (slot.params.sampling.dry_sequence_breakers.empty()) {
- send_error(task, "Error: dry_sequence_breakers must be a non-empty array of strings", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- }
- }
- // process "json_schema" and "grammar"
- if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
- send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- if (data.contains("json_schema") && !data.contains("grammar")) {
- try {
- auto schema = json_value(data, "json_schema", json::object());
- slot.params.sampling.grammar = json_schema_to_grammar(schema);
- } catch (const std::exception & e) {
- send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- } else {
- slot.params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
- }
- if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
- // Might be better to reject the request with a 400 ?
- slot.params.n_predict = slot.n_predict;
- SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
- }
- {
- slot.params.sampling.logit_bias.clear();
- if (json_value(data, "ignore_eos", false) && has_eos_token) {
- slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
- }
- const auto & logit_bias = data.find("logit_bias");
- if (logit_bias != data.end() && logit_bias->is_array()) {
- const int n_vocab = llama_n_vocab(model);
- for (const auto & el : *logit_bias) {
- // TODO: we may want to throw errors here, in case "el" is incorrect
- if (el.is_array() && el.size() == 2) {
- float bias;
- if (el[1].is_number()) {
- bias = el[1].get<float>();
- } else if (el[1].is_boolean() && !el[1].get<bool>()) {
- bias = -INFINITY;
- } else {
- continue;
- }
- if (el[0].is_number_integer()) {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab) {
- slot.params.sampling.logit_bias.push_back({tok, bias});
- }
- } else if (el[0].is_string()) {
- auto toks = common_tokenize(model, el[0].get<std::string>(), false);
- for (auto tok : toks) {
- slot.params.sampling.logit_bias.push_back({tok, bias});
- }
- }
- }
- }
- }
- }
- {
- slot.params.antiprompt.clear();
- const auto & stop = data.find("stop");
- if (stop != data.end() && stop->is_array()) {
- for (const auto & word : *stop) {
- if (!word.empty()) {
- slot.params.antiprompt.push_back(word);
- }
- }
- }
- }
- {
- const auto & samplers = data.find("samplers");
- if (samplers != data.end()) {
- if (samplers->is_array()) {
- std::vector<std::string> sampler_names;
- for (const auto & name : *samplers) {
- if (name.is_string()) {
- sampler_names.emplace_back(name);
- }
- }
- slot.params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
- } else if (samplers->is_string()){
- std::string sampler_string;
- for (const auto & name : *samplers) {
- sampler_string += name;
- }
- slot.params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
- }
- } else {
- slot.params.sampling.samplers = defaults.sampling.samplers;
- }
- }
- {
- if (slot.smpl != nullptr) {
- common_sampler_free(slot.smpl);
- }
- slot.smpl = common_sampler_init(model, slot.params.sampling);
- if (slot.smpl == nullptr) {
- // for now, the only error that may happen here is invalid grammar
- send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- }
- if (slot.ctx_dft) {
- llama_batch_free(slot.batch_spec);
- slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
- }
- slot.state = SLOT_STATE_STARTED;
- SLT_INF(slot, "%s", "processing task\n");
- return true;
- }
- void kv_cache_clear() {
- SRV_DBG("%s", "clearing KV cache\n");
- // clear the entire KV cache
- llama_kv_cache_clear(ctx);
- clean_kv_cache = false;
- }
- bool process_token(completion_token_output & result, server_slot & slot) {
- // remember which tokens were sampled - used for repetition penalties during sampling
- const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special);
- slot.sampled = result.tok;
- // search stop word and delete it
- slot.generated_text += token_str;
- slot.has_next_token = true;
- // check if there is incomplete UTF-8 character at the end
- bool incomplete = false;
- for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
- unsigned char c = slot.generated_text[slot.generated_text.size() - i];
- if ((c & 0xC0) == 0x80) {
- // continuation byte: 10xxxxxx
- continue;
- }
- if ((c & 0xE0) == 0xC0) {
- // 2-byte character: 110xxxxx ...
- incomplete = i < 2;
- } else if ((c & 0xF0) == 0xE0) {
- // 3-byte character: 1110xxxx ...
- incomplete = i < 3;
- } else if ((c & 0xF8) == 0xF0) {
- // 4-byte character: 11110xxx ...
- incomplete = i < 4;
- }
- // else 1-byte character or invalid byte
- break;
- }
- if (!incomplete) {
- size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
- const std::string str_test = slot.generated_text.substr(pos);
- bool send_text = true;
- size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
- if (stop_pos != std::string::npos) {
- slot.generated_text.erase(
- slot.generated_text.begin() + pos + stop_pos,
- slot.generated_text.end());
- pos = std::min(slot.n_sent_text, slot.generated_text.size());
- } else if (slot.has_next_token) {
- stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
- send_text = stop_pos == std::string::npos;
- }
- // check if there is any token to predict
- if (send_text) {
- // no send the stop word in the response
- result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
- slot.n_sent_text += result.text_to_send.size();
- // add the token to slot queue and cache
- }
- slot.add_token(result);
- if (slot.params.stream) {
- send_partial_response(slot, result);
- }
- }
- if (incomplete) {
- slot.has_next_token = true;
- }
- // check the limits
- if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
- slot.stopped_limit = true;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
- }
- if (slot.has_new_line) {
- // if we have already seen a new line, we stop after a certain time limit
- if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
- slot.stopped_limit = true;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
- }
- // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
- if (slot.params.n_indent > 0) {
- // check the current indentation
- // TODO: improve by not doing it more than once for each new line
- if (slot.last_nl_pos > 0) {
- size_t pos = slot.last_nl_pos;
- int n_indent = 0;
- while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
- n_indent++;
- pos++;
- }
- if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
- slot.stopped_limit = true;
- slot.has_next_token = false;
- // cut the last line
- slot.generated_text.erase(pos, std::string::npos);
- SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
- }
- }
- // find the next new line
- {
- const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
- if (pos != std::string::npos) {
- slot.last_nl_pos = pos + 1;
- }
- }
- }
- }
- // check if there is a new line in the generated text
- if (result.text_to_send.find('\n') != std::string::npos) {
- slot.has_new_line = true;
- }
- // if context shift is disabled, we stop when it reaches the context limit
- if (slot.n_past >= slot.n_ctx) {
- slot.truncated = true;
- slot.stopped_limit = true;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
- slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
- }
- if (llama_token_is_eog(model, result.tok)) {
- slot.stopped_eos = true;
- slot.has_next_token = false;
- SLT_DBG(slot, "%s", "stopped by EOS\n");
- }
- const auto n_ctx_train = llama_n_ctx_train(model);
- if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
- slot.truncated = true;
- slot.stopped_limit = true;
- slot.has_next_token = false; // stop prediction
- SLT_WRN(slot,
- "n_predict (%d) is set for infinite generation. "
- "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
- slot.params.n_predict, n_ctx_train);
- }
- SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
- return slot.has_next_token; // continue
- }
- json get_formated_generation(const server_slot & slot) const {
- std::vector<std::string> samplers;
- samplers.reserve(slot.params.sampling.samplers.size());
- for (const auto & sampler : slot.params.sampling.samplers) {
- samplers.emplace_back(common_sampler_type_to_str(sampler));
- }
- return json {
- {"n_ctx", slot.n_ctx},
- {"n_predict", slot.n_predict}, // Server configured n_predict
- {"model", params_base.model_alias},
- {"seed", slot.params.sampling.seed},
- {"seed_cur", slot.smpl ? common_sampler_get_seed(slot.smpl) : 0},
- {"temperature", slot.params.sampling.temp},
- {"dynatemp_range", slot.params.sampling.dynatemp_range},
- {"dynatemp_exponent", slot.params.sampling.dynatemp_exponent},
- {"top_k", slot.params.sampling.top_k},
- {"top_p", slot.params.sampling.top_p},
- {"min_p", slot.params.sampling.min_p},
- {"xtc_probability", slot.params.sampling.xtc_probability},
- {"xtc_threshold", slot.params.sampling.xtc_threshold},
- {"typical_p", slot.params.sampling.typ_p},
- {"repeat_last_n", slot.params.sampling.penalty_last_n},
- {"repeat_penalty", slot.params.sampling.penalty_repeat},
- {"presence_penalty", slot.params.sampling.penalty_present},
- {"frequency_penalty", slot.params.sampling.penalty_freq},
- {"dry_multiplier", slot.params.sampling.dry_multiplier},
- {"dry_base", slot.params.sampling.dry_base},
- {"dry_allowed_length", slot.params.sampling.dry_allowed_length},
- {"dry_penalty_last_n", slot.params.sampling.dry_penalty_last_n},
- {"dry_sequence_breakers", slot.params.sampling.dry_sequence_breakers},
- {"mirostat", slot.params.sampling.mirostat},
- {"mirostat_tau", slot.params.sampling.mirostat_tau},
- {"mirostat_eta", slot.params.sampling.mirostat_eta},
- {"penalize_nl", slot.params.sampling.penalize_nl},
- {"stop", slot.params.antiprompt},
- {"max_tokens", slot.params.n_predict}, // User configured n_predict
- {"n_keep", slot.params.n_keep},
- {"n_discard", slot.params.n_discard},
- {"ignore_eos", slot.params.sampling.ignore_eos},
- {"stream", slot.params.stream},
- //{"logit_bias", slot.params.sampling.logit_bias},
- {"n_probs", slot.params.sampling.n_probs},
- {"min_keep", slot.params.sampling.min_keep},
- {"grammar", slot.params.sampling.grammar},
- {"samplers", samplers},
- {"speculative", slot.can_speculate()},
- {"speculative.n_max", slot.params.speculative.n_max},
- {"speculative.n_min", slot.params.speculative.n_min},
- {"speculative.p_min", slot.params.speculative.p_min},
- {"timings_per_token", slot.timings_per_token},
- };
- }
- void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- send_error(task.id, error, type);
- }
- void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- send_error(slot.id_task, error, type);
- }
- void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
- server_task_result res;
- res.id = id_task;
- res.stop = false;
- res.error = true;
- res.data = format_error_response(error, type);
- queue_results.send(res);
- }
- void send_partial_response(server_slot & slot, completion_token_output tkn) {
- server_task_result res;
- res.id = slot.id_task;
- res.error = false;
- res.stop = false;
- res.data = json {
- {"content", tkn.text_to_send},
- {"stop", false},
- {"id_slot", slot.id},
- {"multimodal", false},
- {"index", slot.index},
- };
- if (slot.params.sampling.n_probs > 0) {
- const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
- const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
- const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
- std::vector<completion_token_output> probs_output;
- if (probs_pos < probs_stop_pos) {
- probs_output = std::vector<completion_token_output>(
- slot.generated_token_probs.begin() + probs_pos,
- slot.generated_token_probs.begin() + probs_stop_pos);
- }
- slot.n_sent_token_probs = probs_stop_pos;
- res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
- }
- if (slot.oaicompat) {
- res.data["oaicompat_token_ctr"] = slot.n_decoded;
- res.data["model"] = slot.oaicompat_model;
- }
- if (slot.timings_per_token) {
- res.data["timings"] = slot.get_formated_timings();
- }
- queue_results.send(res);
- }
- void send_final_response(const server_slot & slot) {
- server_task_result res;
- res.id = slot.id_task;
- res.error = false;
- res.stop = true;
- res.data = json {
- {"content", !slot.params.stream ? slot.generated_text : ""},
- {"id_slot", slot.id},
- {"stop", true},
- {"model", params_base.model_alias},
- {"tokens_predicted", slot.n_decoded},
- {"tokens_evaluated", slot.n_prompt_tokens},
- {"generation_settings", get_formated_generation(slot)},
- {"prompt", common_detokenize(ctx, slot.prompt_tokens)},
- {"has_new_line", slot.has_new_line},
- {"truncated", slot.truncated},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- {"tokens_cached", slot.n_past},
- {"timings", slot.get_formated_timings()},
- {"index", slot.index},
- };
- if (slot.params.sampling.n_probs > 0) {
- std::vector<completion_token_output> probs;
- if (!slot.params.stream && slot.stopped_word) {
- const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
- size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
- probs = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end() - safe_offset);
- } else {
- probs = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end());
- }
- res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
- }
- if (slot.oaicompat) {
- res.data["oaicompat_token_ctr"] = slot.n_decoded;
- res.data["model"] = slot.oaicompat_model;
- }
- queue_results.send(res);
- }
- void send_embedding(const server_slot & slot, const llama_batch & batch) {
- server_task_result res;
- res.id = slot.id_task;
- res.error = false;
- res.stop = true;
- const int n_embd = llama_n_embd(model);
- std::vector<float> embd_res(n_embd, 0.0f);
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- }
- if (embd == NULL) {
- SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
- res.data = json {
- {"embedding", std::vector<float>(n_embd, 0.0f)},
- {"index", slot.index},
- };
- continue;
- }
- common_embd_normalize(embd, embd_res.data(), n_embd);
- res.data = json {
- {"embedding", embd_res},
- {"index", slot.index},
- };
- }
- SLT_DBG(slot, "%s", "sending embeddings\n");
- queue_results.send(res);
- }
- void send_rerank(const server_slot & slot, const llama_batch & batch) {
- server_task_result res;
- res.id = slot.id_task;
- res.error = false;
- res.stop = true;
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- }
- if (embd == NULL) {
- SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
- res.data = json {
- {"index", slot.index},
- {"score", -1e6},
- };
- continue;
- }
- res.data = json {
- {"index", slot.index},
- {"score", embd[0]},
- };
- }
- SLT_DBG(slot, "sending rerank result, res = '%s'\n", res.data.dump().c_str());
- queue_results.send(res);
- }
- //
- // Functions to create new task(s) and receive result(s)
- //
- // break the input "prompt" into multiple tasks if needed, then format and tokenize the input prompt(s)
- std::vector<server_task> create_tasks_inference(json data, server_task_inf_type inf_type) {
- std::vector<server_task> tasks;
- auto create_task = [&](json & task_data, llama_tokens & prompt_tokens) {
- SRV_DBG("create task, n_tokens = %d\n", (int) prompt_tokens.size());
- server_task task;
- task.id = queue_tasks.get_new_id();
- task.inf_type = inf_type;
- task.type = SERVER_TASK_TYPE_INFERENCE;
- task.data = task_data;
- task.prompt_tokens = std::move(prompt_tokens);
- tasks.push_back(std::move(task));
- };
- static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts";
- if (!data.contains("prompt")) {
- throw std::runtime_error(error_msg);
- }
- // because llama_tokenize api is thread-safe, we can tokenize the prompt from HTTP thread
- bool add_special = inf_type != SERVER_TASK_INF_TYPE_RERANK && inf_type != SERVER_TASK_INF_TYPE_INFILL;
- std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx, data.at("prompt"), add_special, true);
- switch (inf_type) {
- case SERVER_TASK_INF_TYPE_RERANK:
- {
- // prompts[0] is the question
- // the rest are the answers/documents
- GGML_ASSERT(tokenized_prompts.size() > 1);
- SRV_DBG("creating rerank tasks, n_prompts = %d\n", (int) tokenized_prompts.size() - 1);
- for (size_t i = 1; i < tokenized_prompts.size(); i++) {
- data["index"] = i - 1;
- auto tokens = format_rerank(model, tokenized_prompts[0], tokenized_prompts[i]);
- create_task(data, tokens);
- }
- } break;
- case SERVER_TASK_INF_TYPE_INFILL:
- {
- SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
- for (size_t i = 0; i < tokenized_prompts.size(); i++) {
- data["index"] = i;
- auto tokens = format_infill(
- ctx,
- data.at("input_prefix"),
- data.at("input_suffix"),
- data.at("input_extra"),
- params_base.n_batch,
- params_base.n_predict,
- slots[0].n_ctx, // TODO: there should be a better way
- params_base.spm_infill,
- tokenized_prompts[i]
- );
- create_task(data, tokens);
- }
- } break;
- default:
- {
- SRV_DBG("creating multi-prompt tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
- for (size_t i = 0; i < tokenized_prompts.size(); i++) {
- data["index"] = i;
- create_task(data, tokenized_prompts[i]);
- }
- }
- }
- return tasks;
- }
- void cancel_tasks(const std::unordered_set<int> & id_tasks) {
- std::vector<server_task> cancel_tasks;
- cancel_tasks.reserve(id_tasks.size());
- for (const auto & id_task : id_tasks) {
- SRV_WRN("cancel task, id_task = %d\n", id_task);
- server_task task;
- task.type = SERVER_TASK_TYPE_CANCEL;
- task.id_target = id_task;
- cancel_tasks.push_back(task);
- queue_results.remove_waiting_task_id(id_task);
- }
- // push to beginning of the queue, so it has highest priority
- queue_tasks.post(cancel_tasks, true);
- }
- // receive the results from task(s) created by create_tasks_inference
- void receive_cmpl_results(
- const std::unordered_set<int> & id_tasks,
- const std::function<void(std::vector<server_task_result>&)> & result_handler,
- const std::function<void(json)> & error_handler) {
- // TODO: currently, there is no way to detect the client has cancelled the request
- std::vector<server_task_result> results(id_tasks.size());
- for (size_t i = 0; i < id_tasks.size(); i++) {
- server_task_result result = queue_results.recv(id_tasks);
- if (result.error) {
- error_handler(result.data);
- cancel_tasks(id_tasks);
- return;
- }
- const size_t idx = result.data["index"];
- GGML_ASSERT(idx < results.size() && "index out of range");
- results[idx] = result;
- }
- result_handler(results);
- }
- // receive the results from task(s) created by create_tasks_inference, in stream mode
- void receive_cmpl_results_stream(
- const std::unordered_set<int> & id_tasks, const
- std::function<bool(server_task_result&)> & result_handler, const
- std::function<void(json)> & error_handler) {
- size_t n_finished = 0;
- while (true) {
- server_task_result result = queue_results.recv(id_tasks);
- if (!result_handler(result)) {
- cancel_tasks(id_tasks);
- break;
- }
- if (result.error) {
- error_handler(result.data);
- cancel_tasks(id_tasks);
- break;
- }
- if (result.stop) {
- if (++n_finished == id_tasks.size()) {
- break;
- }
- }
- }
- }
- //
- // Functions to process the task
- //
- void process_single_task(server_task task) {
- switch (task.type) {
- case SERVER_TASK_TYPE_INFERENCE:
- {
- const int id_slot = json_value(task.data, "id_slot", -1);
- server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
- if (slot == nullptr) {
- // if no slot is available, we defer this task for processing later
- SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(task);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(task);
- break;
- }
- slot->reset();
- slot->id_task = task.id;
- slot->inf_type = task.inf_type;
- slot->index = json_value(task.data, "index", 0);
- slot->prompt_tokens = std::move(task.prompt_tokens);
- if (!launch_slot_with_task(*slot, task)) {
- SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
- break;
- }
- } break;
- case SERVER_TASK_TYPE_CANCEL:
- {
- // release slot linked with the task id
- for (auto & slot : slots) {
- if (slot.id_task == task.id_target) {
- slot.release();
- break;
- }
- }
- } break;
- case SERVER_TASK_TYPE_NEXT_RESPONSE:
- {
- // do nothing
- } break;
- case SERVER_TASK_TYPE_METRICS:
- {
- json slots_data = json::array();
- int n_idle_slots = 0;
- int n_processing_slots = 0;
- for (server_slot & slot : slots) {
- json slot_data = get_formated_generation(slot);
- slot_data["id"] = slot.id;
- slot_data["id_task"] = slot.id_task;
- slot_data["is_processing"] = slot.is_processing();
- slot_data["prompt"] = common_detokenize(ctx, slot.prompt_tokens);
- slot_data["next_token"] = {
- {"has_next_token", slot.has_next_token},
- {"has_new_line", slot.has_new_line},
- {"n_remain", slot.n_remaining},
- {"n_decoded", slot.n_decoded},
- {"stopped_eos", slot.stopped_eos},
- {"stopped_word", slot.stopped_word},
- {"stopped_limit", slot.stopped_limit},
- {"stopping_word", slot.stopping_word},
- };
- if (slot.is_processing()) {
- n_processing_slots++;
- } else {
- n_idle_slots++;
- }
- slots_data.push_back(slot_data);
- }
- SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
- server_task_result res;
- res.id = task.id;
- res.stop = true;
- res.error = false;
- res.data = {
- { "idle", n_idle_slots },
- { "processing", n_processing_slots },
- { "deferred", queue_tasks.queue_tasks_deferred.size() },
- { "t_start", metrics.t_start},
- { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
- { "t_tokens_generation_total", metrics.t_tokens_generation_total},
- { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
- { "t_prompt_processing_total", metrics.t_prompt_processing_total},
- { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
- { "t_prompt_processing", metrics.t_prompt_processing},
- { "n_tokens_predicted", metrics.n_tokens_predicted},
- { "t_tokens_generation", metrics.t_tokens_generation},
- { "n_decode_total", metrics.n_decode_total},
- { "n_busy_slots_total", metrics.n_busy_slots_total},
- { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
- { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
- { "slots", slots_data },
- };
- if (json_value(task.data, "reset_bucket", false)) {
- metrics.reset_bucket();
- }
- queue_results.send(res);
- } break;
- case SERVER_TASK_TYPE_SLOT_SAVE:
- {
- int id_slot = task.data.at("id_slot");
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(task);
- break;
- }
- const size_t token_count = slot->cache_tokens.size();
- const int64_t t_start = ggml_time_us();
- std::string filename = task.data.at("filename");
- std::string filepath = task.data.at("filepath");
- const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
- const int64_t t_end = ggml_time_us();
- const double t_save_ms = (t_end - t_start) / 1000.0;
- server_task_result result;
- result.id = task.id;
- result.stop = true;
- result.error = false;
- result.data = json {
- { "id_slot", id_slot },
- { "filename", filename },
- { "n_saved", token_count }, // tokens saved
- { "n_written", nwrite }, // bytes written
- { "timings", {
- { "save_ms", t_save_ms }
- } }
- };
- queue_results.send(result);
- } break;
- case SERVER_TASK_TYPE_SLOT_RESTORE:
- {
- int id_slot = task.data.at("id_slot");
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(task);
- break;
- }
- const int64_t t_start = ggml_time_us();
- std::string filename = task.data.at("filename");
- std::string filepath = task.data.at("filepath");
- slot->cache_tokens.resize(slot->n_ctx);
- size_t token_count = 0;
- size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
- if (nread == 0) {
- slot->cache_tokens.resize(0);
- send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- slot->cache_tokens.resize(token_count);
- const int64_t t_end = ggml_time_us();
- const double t_restore_ms = (t_end - t_start) / 1000.0;
- server_task_result result;
- result.id = task.id;
- result.stop = true;
- result.error = false;
- result.data = json {
- { "id_slot", id_slot },
- { "filename", filename },
- { "n_restored", token_count }, // tokens restored
- { "n_read", nread }, // bytes read
- { "timings", {
- { "restore_ms", t_restore_ms }
- } }
- };
- queue_results.send(result);
- } break;
- case SERVER_TASK_TYPE_SLOT_ERASE:
- {
- int id_slot = task.data.at("id_slot");
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(task);
- break;
- }
- // Erase token cache
- const size_t n_erased = slot->cache_tokens.size();
- llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
- slot->cache_tokens.clear();
- server_task_result result;
- result.id = task.id;
- result.stop = true;
- result.error = false;
- result.data = json {
- { "id_slot", id_slot },
- { "n_erased", n_erased }
- };
- queue_results.send(result);
- } break;
- case SERVER_TASK_TYPE_SET_LORA:
- {
- common_lora_adapters_apply(ctx, loras);
- server_task_result result;
- result.id = task.id;
- result.stop = true;
- result.error = false;
- result.data = json{{ "success", true }};
- queue_results.send(result);
- } break;
- }
- }
- void update_slots() {
- // check if all slots are idle
- {
- bool all_idle = true;
- for (auto & slot : slots) {
- if (slot.is_processing()) {
- all_idle = false;
- break;
- }
- }
- if (all_idle) {
- SRV_INF("%s", "all slots are idle\n");
- if (clean_kv_cache) {
- kv_cache_clear();
- }
- return;
- }
- }
- {
- SRV_DBG("%s", "posting NEXT_RESPONSE\n");
- server_task task;
- task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
- task.id_target = -1;
- queue_tasks.post(task);
- }
- // apply context-shift if needed
- // TODO: simplify and improve
- for (server_slot & slot : slots) {
- if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
- if (!params_base.ctx_shift) {
- // this check is redundant (for good)
- // we should never get here, because generation should already stopped in process_token()
- slot.release();
- send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
- continue;
- }
- // Shift context
- const int n_keep = slot.params.n_keep + add_bos_token;
- const int n_left = slot.n_past - n_keep;
- const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
- SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
- llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
- llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
- if (slot.params.cache_prompt) {
- for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
- slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
- }
- slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
- }
- slot.n_past -= n_discard;
- slot.truncated = true;
- }
- }
- // start populating the batch for this iteration
- common_batch_clear(batch);
- // frist, add sampled tokens from any ongoing sequences
- for (auto & slot : slots) {
- if (slot.state != SLOT_STATE_GENERATING) {
- continue;
- }
- slot.i_batch = batch.n_tokens;
- common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
- slot.n_past += 1;
- if (slot.params.cache_prompt) {
- slot.cache_tokens.push_back(slot.sampled);
- }
- SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
- slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
- }
- // process in chunks of params.n_batch
- int32_t n_batch = llama_n_batch(ctx);
- int32_t n_ubatch = llama_n_ubatch(ctx);
- // track if this is an embedding or non-embedding batch
- // if we've added sampled tokens above, we are in non-embedding mode
- // -1: none, 0: non-embedding, 1: embedding
- // TODO: make enum
- int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
- // next, batch any pending prompts without exceeding n_batch
- if (params_base.cont_batching || batch.n_tokens == 0) {
- for (auto & slot : slots) {
- // this slot still has a prompt to be processed
- if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
- auto & prompt_tokens = slot.prompt_tokens;
- // TODO: maybe move branch to outside of this loop in the future
- if (slot.state == SLOT_STATE_STARTED) {
- slot.t_start_process_prompt = ggml_time_us();
- slot.t_start_generation = 0;
- slot.n_past = 0;
- slot.n_prompt_tokens = prompt_tokens.size();
- slot.state = SLOT_STATE_PROCESSING_PROMPT;
- SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
- // print prompt tokens (for debugging)
- if (1) {
- // first 16 tokens (avoid flooding logs)
- for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
- SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
- }
- } else {
- // all
- for (int i = 0; i < (int) prompt_tokens.size(); i++) {
- SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
- }
- }
- // empty prompt passed -> release the slot and send empty response
- if (prompt_tokens.empty()) {
- SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- continue;
- }
- if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
- if (slot.n_prompt_tokens > n_ubatch) {
- slot.release();
- send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
- continue;
- }
- if (slot.n_prompt_tokens > slot.n_ctx) {
- slot.release();
- send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
- continue;
- }
- } else {
- if (!params_base.ctx_shift) {
- // if context shift is disabled, we make sure prompt size is smaller than KV size
- // TODO: there should be a separate parameter that control prompt truncation
- // context shift should be applied only during the generation phase
- if (slot.n_prompt_tokens >= slot.n_ctx) {
- slot.release();
- send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
- continue;
- }
- }
- if (slot.params.n_keep < 0) {
- slot.params.n_keep = slot.n_prompt_tokens;
- }
- slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
- // if input prompt is too big, truncate it
- if (slot.n_prompt_tokens >= slot.n_ctx) {
- const int n_left = slot.n_ctx - slot.params.n_keep;
- const int n_block_size = n_left / 2;
- const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
- llama_tokens new_tokens(
- prompt_tokens.begin(),
- prompt_tokens.begin() + slot.params.n_keep);
- new_tokens.insert(
- new_tokens.end(),
- prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
- prompt_tokens.end());
- prompt_tokens = std::move(new_tokens);
- slot.truncated = true;
- slot.n_prompt_tokens = prompt_tokens.size();
- SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
- GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
- }
- if (slot.params.cache_prompt) {
- // reuse any previously computed tokens that are common with the new prompt
- slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
- // reuse chunks from the cached prompt by shifting their KV cache in the new position
- if (params_base.n_cache_reuse > 0) {
- size_t head_c = slot.n_past; // cache
- size_t head_p = slot.n_past; // current prompt
- SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
- while (head_c < slot.cache_tokens.size() &&
- head_p < prompt_tokens.size()) {
- size_t n_match = 0;
- while (head_c + n_match < slot.cache_tokens.size() &&
- head_p + n_match < prompt_tokens.size() &&
- slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
- n_match++;
- }
- if (n_match >= (size_t) params_base.n_cache_reuse) {
- SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
- //for (size_t i = head_p; i < head_p + n_match; i++) {
- // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
- //}
- const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
- llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
- llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
- for (size_t i = 0; i < n_match; i++) {
- slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
- slot.n_past++;
- }
- head_c += n_match;
- head_p += n_match;
- } else {
- head_c += 1;
- }
- }
- SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
- }
- }
- }
- if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
- // we have to evaluate at least 1 token to generate logits.
- SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
- slot.n_past--;
- }
- slot.n_prompt_tokens_processed = 0;
- }
- // non-causal tasks require to fit the entire prompt in the physical batch
- if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
- // cannot fit the prompt in the current batch - will try next iter
- if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
- continue;
- }
- }
- // check that we are in the right batch_type, if not defer the slot
- const bool slot_type =
- slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING ||
- slot.inf_type == SERVER_TASK_INF_TYPE_RERANK ? 1 : 0;
- if (batch_type == -1) {
- batch_type = slot_type;
- } else if (batch_type != slot_type) {
- continue;
- }
- // keep only the common part
- if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
- // could not partially delete (likely using a non-Transformer model)
- llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
- // there is no common part left
- slot.n_past = 0;
- }
- SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
- // remove the non-common part from the cache
- slot.cache_tokens.resize(slot.n_past);
- // add prompt tokens for processing in the current batch
- while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
- common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false);
- if (slot.params.cache_prompt) {
- slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
- }
- slot.n_prompt_tokens_processed++;
- slot.n_past++;
- }
- SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
- // entire prompt has been processed
- if (slot.n_past == slot.n_prompt_tokens) {
- slot.state = SLOT_STATE_DONE_PROMPT;
- GGML_ASSERT(batch.n_tokens > 0);
- common_sampler_reset(slot.smpl);
- // Process all prompt tokens through sampler system
- for (int i = 0; i < slot.n_prompt_tokens; ++i) {
- common_sampler_accept(slot.smpl, prompt_tokens[i], false);
- }
- // extract the logits only for the last token
- batch.logits[batch.n_tokens - 1] = true;
- slot.n_decoded = 0;
- slot.i_batch = batch.n_tokens - 1;
- SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
- }
- }
- if (batch.n_tokens >= n_batch) {
- break;
- }
- }
- }
- if (batch.n_tokens == 0) {
- SRV_WRN("%s", "no tokens to decode\n");
- return;
- }
- SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
- // make sure we're in the right embedding mode
- llama_set_embeddings(ctx, batch_type == 1);
- // process the created batch of tokens
- for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
- const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- };
- const int ret = llama_decode(ctx, batch_view);
- metrics.on_decoded(slots);
- if (ret != 0) {
- if (n_batch == 1 || ret < 0) {
- // if you get here, it means the KV cache is full - try increasing it via the context size
- SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
- for (auto & slot : slots) {
- slot.release();
- send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
- }
- break; // break loop of n_batch
- }
- // retry with half the batch size to try to find a free slot in the KV cache
- n_batch /= 2;
- i -= n_batch;
- SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
- continue; // continue loop of n_batch
- }
- for (auto & slot : slots) {
- if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
- continue; // continue loop of slots
- }
- if (slot.state == SLOT_STATE_DONE_PROMPT) {
- if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING) {
- // prompt evaluated for embedding
- send_embedding(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue; // continue loop of slots
- }
- if (slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
- send_rerank(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue; // continue loop of slots
- }
- // prompt evaluated for next-token prediction
- slot.state = SLOT_STATE_GENERATING;
- } else if (slot.state != SLOT_STATE_GENERATING) {
- continue; // continue loop of slots
- }
- llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
- slot.i_batch = -1;
- common_sampler_accept(slot.smpl, id, true);
- slot.n_decoded += 1;
- const int64_t t_current = ggml_time_us();
- if (slot.n_decoded == 1) {
- slot.t_start_generation = t_current;
- slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
- metrics.on_prompt_eval(slot);
- }
- slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
- completion_token_output result;
- result.tok = id;
- const auto * cur_p = common_sampler_get_candidates(slot.smpl);
- for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) {
- result.probs.push_back({
- cur_p->data[i].id,
- i >= cur_p->size ? 0.0f : cur_p->data[i].p,
- });
- }
- if (!process_token(result, slot)) {
- // release slot because of stop condition
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- continue;
- }
- }
- // do speculative decoding
- for (auto & slot : slots) {
- if (!slot.is_processing() || !slot.can_speculate()) {
- continue;
- }
- if (slot.state != SLOT_STATE_GENERATING) {
- continue;
- }
- llama_token id = slot.sampled;
- struct common_speculative_params params_spec;
- params_spec.n_draft = slot.params.speculative.n_max;
- params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
- params_spec.p_min = slot.params.speculative.p_min;
- llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
- // ignore small drafts
- if (slot.params.speculative.n_min > (int) draft.size()) {
- continue;
- }
- // construct the speculation batch
- common_batch_clear(slot.batch_spec);
- common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
- for (size_t i = 0; i < draft.size(); ++i) {
- common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
- }
- llama_decode(ctx, slot.batch_spec);
- // the accepted tokens from the speculation
- const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
- slot.n_past += ids.size();
- slot.n_decoded += ids.size();
- slot.cache_tokens.push_back(id);
- slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
- llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
- for (size_t i = 0; i < ids.size(); ++i) {
- completion_token_output result;
- result.tok = ids[i];
- if (!process_token(result, slot)) {
- // release slot because of stop condition
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- break;
- }
- }
- SRV_DBG("accepted %d/%d draft tokens\n", (int) ids.size() - 1, (int) draft.size());
- }
- }
- SRV_DBG("%s", "run slots completed\n");
- }
- json model_meta() const {
- return json {
- {"vocab_type", llama_vocab_type (model)},
- {"n_vocab", llama_n_vocab (model)},
- {"n_ctx_train", llama_n_ctx_train (model)},
- {"n_embd", llama_n_embd (model)},
- {"n_params", llama_model_n_params(model)},
- {"size", llama_model_size (model)},
- };
- }
- };
- static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
- // skip GH copilot requests when using default port
- if (req.path == "/v1/health" || req.path == "/v1/completions") {
- return;
- }
- LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
- LOG_DBG("request: %s\n", req.body.c_str());
- LOG_DBG("response: %s\n", res.body.c_str());
- }
- std::function<void(int)> shutdown_handler;
- std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
- inline void signal_handler(int signal) {
- if (is_terminating.test_and_set()) {
- // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
- // this is for better developer experience, we can remove when the server is stable enough
- fprintf(stderr, "Received second interrupt, terminating immediately.\n");
- exit(1);
- }
- shutdown_handler(signal);
- }
- int main(int argc, char ** argv) {
- // own arguments required by this example
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
- return 1;
- }
- common_init();
- // enabling this will output extra debug information in the HTTP responses from the server
- // see format_final_response_oaicompat()
- const bool verbose = params.verbosity > 9;
- // struct that contains llama context and inference
- server_context ctx_server;
- if (params.model_alias == "unknown") {
- params.model_alias = params.model;
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- LOG_INF("\n");
- // static files
- std::map<std::string, server_static_file> static_files = {
- { "/", { index_html, index_html_len, "text/html; charset=utf-8" }},
- { "/completion.js", { completion_js, completion_js_len, "text/javascript; charset=utf-8" }},
- { "/deps_daisyui.min.css", { deps_daisyui_min_css, deps_daisyui_min_css_len, "text/css; charset=utf-8" }},
- { "/deps_markdown-it.js", { deps_markdown_it_js, deps_markdown_it_js_len, "text/javascript; charset=utf-8" }},
- { "/deps_tailwindcss.js", { deps_tailwindcss_js, deps_tailwindcss_js_len, "text/javascript; charset=utf-8" }},
- { "/deps_vue.esm-browser.js", { deps_vue_esm_browser_js, deps_vue_esm_browser_js_len, "text/javascript; charset=utf-8" }},
- };
- std::unique_ptr<httplib::Server> svr;
- #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
- if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
- LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
- svr.reset(
- new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
- );
- } else {
- LOG_INF("Running without SSL\n");
- svr.reset(new httplib::Server());
- }
- #else
- if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
- LOG_ERR("Server is built without SSL support\n");
- return 1;
- }
- svr.reset(new httplib::Server());
- #endif
- std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
- svr->set_default_headers({{"Server", "llama.cpp"}});
- svr->set_logger(log_server_request);
- auto res_error = [](httplib::Response & res, const json & error_data) {
- json final_response {{"error", error_data}};
- res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
- res.status = json_value(error_data, "code", 500);
- };
- auto res_ok = [](httplib::Response & res, const json & data) {
- res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
- res.status = 200;
- };
- svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
- std::string message;
- try {
- std::rethrow_exception(ep);
- } catch (std::exception & e) {
- message = e.what();
- } catch (...) {
- message = "Unknown Exception";
- }
- json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
- LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
- res_error(res, formatted_error);
- });
- svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
- if (res.status == 404) {
- res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
- }
- // for other error codes, we skip processing here because it's already done by res_error()
- });
- // set timeouts and change hostname and port
- svr->set_read_timeout (params.timeout_read);
- svr->set_write_timeout(params.timeout_write);
- std::unordered_map<std::string, std::string> log_data;
- log_data["hostname"] = params.hostname;
- log_data["port"] = std::to_string(params.port);
- if (params.api_keys.size() == 1) {
- auto key = params.api_keys[0];
- log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
- } else if (params.api_keys.size() > 1) {
- log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
- }
- // Necessary similarity of prompt for slot selection
- ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
- //
- // Middlewares
- //
- auto middleware_validate_api_key = [¶ms, &res_error, &static_files](const httplib::Request & req, httplib::Response & res) {
- static const std::unordered_set<std::string> public_endpoints = {
- "/health",
- "/models",
- "/v1/models",
- };
- // If API key is not set, skip validation
- if (params.api_keys.empty()) {
- return true;
- }
- // If path is public or is static file, skip validation
- if (public_endpoints.find(req.path) != public_endpoints.end() || static_files.find(req.path) != static_files.end()) {
- return true;
- }
- // Check for API key in the header
- auto auth_header = req.get_header_value("Authorization");
- std::string prefix = "Bearer ";
- if (auth_header.substr(0, prefix.size()) == prefix) {
- std::string received_api_key = auth_header.substr(prefix.size());
- if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
- return true; // API key is valid
- }
- }
- // API key is invalid or not provided
- res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
- LOG_WRN("Unauthorized: Invalid API Key\n");
- return false;
- };
- auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
- server_state current_state = state.load();
- if (current_state == SERVER_STATE_LOADING_MODEL) {
- auto tmp = string_split<std::string>(req.path, '.');
- if (req.path == "/" || tmp.back() == "html") {
- res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
- res.status = 503;
- } else {
- res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
- }
- return false;
- }
- return true;
- };
- // register server middlewares
- svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- // If this is OPTIONS request, skip validation because browsers don't include Authorization header
- if (req.method == "OPTIONS") {
- res.set_header("Access-Control-Allow-Credentials", "true");
- res.set_header("Access-Control-Allow-Methods", "GET, POST");
- res.set_header("Access-Control-Allow-Headers", "*");
- res.set_content("", "text/html"); // blank response, no data
- return httplib::Server::HandlerResponse::Handled; // skip further processing
- }
- if (!middleware_server_state(req, res)) {
- return httplib::Server::HandlerResponse::Handled;
- }
- if (!middleware_validate_api_key(req, res)) {
- return httplib::Server::HandlerResponse::Handled;
- }
- return httplib::Server::HandlerResponse::Unhandled;
- });
- //
- // Route handlers (or controllers)
- //
- const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
- // error and loading states are handled by middleware
- json health = {{"status", "ok"}};
- res_ok(res, health);
- };
- const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
- if (!params.endpoint_slots) {
- res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- // request slots data using task queue
- server_task task;
- task.id = ctx_server.queue_tasks.get_new_id();
- task.type = SERVER_TASK_TYPE_METRICS;
- ctx_server.queue_results.add_waiting_task_id(task.id);
- ctx_server.queue_tasks.post(task, true); // high-priority task
- // get the result
- server_task_result result = ctx_server.queue_results.recv(task.id);
- ctx_server.queue_results.remove_waiting_task_id(task.id);
- // optionally return "fail_on_no_slot" error
- const int n_idle_slots = result.data.at("idle");
- if (req.has_param("fail_on_no_slot")) {
- if (n_idle_slots == 0) {
- res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
- return;
- }
- }
- res_ok(res, result.data.at("slots"));
- };
- const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
- if (!params.endpoint_metrics) {
- res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- // request slots data using task queue
- server_task task;
- task.id = ctx_server.queue_tasks.get_new_id();
- task.id_target = -1;
- task.type = SERVER_TASK_TYPE_METRICS;
- task.data.push_back({{"reset_bucket", true}});
- ctx_server.queue_results.add_waiting_task_id(task.id);
- ctx_server.queue_tasks.post(task, true); // high-priority task
- // get the result
- server_task_result result = ctx_server.queue_results.recv(task.id);
- ctx_server.queue_results.remove_waiting_task_id(task.id);
- json data = result.data;
- const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
- const uint64_t t_prompt_processing = data.at("t_prompt_processing");
- const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
- const uint64_t t_tokens_generation = data.at("t_tokens_generation");
- const uint64_t n_decode_total = data.at("n_decode_total");
- const uint64_t n_busy_slots_total = data.at("n_busy_slots_total");
- const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
- // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
- json all_metrics_def = json {
- {"counter", {{
- {"name", "prompt_tokens_total"},
- {"help", "Number of prompt tokens processed."},
- {"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
- }, {
- {"name", "prompt_seconds_total"},
- {"help", "Prompt process time"},
- {"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
- }, {
- {"name", "tokens_predicted_total"},
- {"help", "Number of generation tokens processed."},
- {"value", (uint64_t) data.at("n_tokens_predicted_total")}
- }, {
- {"name", "tokens_predicted_seconds_total"},
- {"help", "Predict process time"},
- {"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
- }, {
- {"name", "n_decode_total"},
- {"help", "Total number of llama_decode() calls"},
- {"value", n_decode_total}
- }, {
- {"name", "n_busy_slots_per_decode"},
- {"help", "Average number of busy slots per llama_decode() call"},
- {"value", (float) n_busy_slots_total / (float) n_decode_total}
- }}},
- {"gauge", {{
- {"name", "prompt_tokens_seconds"},
- {"help", "Average prompt throughput in tokens/s."},
- {"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
- },{
- {"name", "predicted_tokens_seconds"},
- {"help", "Average generation throughput in tokens/s."},
- {"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
- },{
- {"name", "kv_cache_usage_ratio"},
- {"help", "KV-cache usage. 1 means 100 percent usage."},
- {"value", 1. * kv_cache_used_cells / params.n_ctx}
- },{
- {"name", "kv_cache_tokens"},
- {"help", "KV-cache tokens."},
- {"value", (uint64_t) data.at("kv_cache_tokens_count")}
- },{
- {"name", "requests_processing"},
- {"help", "Number of request processing."},
- {"value", (uint64_t) data.at("processing")}
- },{
- {"name", "requests_deferred"},
- {"help", "Number of request deferred."},
- {"value", (uint64_t) data.at("deferred")}
- }}}
- };
- std::stringstream prometheus;
- for (const auto & el : all_metrics_def.items()) {
- const auto & type = el.key();
- const auto & metrics_def = el.value();
- for (const auto & metric_def : metrics_def) {
- const std::string name = metric_def.at("name");
- const std::string help = metric_def.at("help");
- auto value = json_value(metric_def, "value", 0.);
- prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
- << "# TYPE llamacpp:" << name << " " << type << "\n"
- << "llamacpp:" << name << " " << value << "\n";
- }
- }
- const int64_t t_start = data.at("t_start");
- res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
- res.set_content(prometheus.str(), "text/plain; version=0.0.4");
- res.status = 200; // HTTP OK
- };
- const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
- json request_data = json::parse(req.body);
- std::string filename = request_data.at("filename");
- if (!fs_validate_filename(filename)) {
- res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::string filepath = params.slot_save_path + filename;
- server_task task;
- task.type = SERVER_TASK_TYPE_SLOT_SAVE;
- task.data = {
- { "id_slot", id_slot },
- { "filename", filename },
- { "filepath", filepath },
- };
- const int id_task = ctx_server.queue_tasks.post(task);
- ctx_server.queue_results.add_waiting_task_id(id_task);
- server_task_result result = ctx_server.queue_results.recv(id_task);
- ctx_server.queue_results.remove_waiting_task_id(id_task);
- if (result.error) {
- res_error(res, result.data);
- } else {
- res_ok(res, result.data);
- }
- };
- const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
- json request_data = json::parse(req.body);
- std::string filename = request_data.at("filename");
- if (!fs_validate_filename(filename)) {
- res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::string filepath = params.slot_save_path + filename;
- server_task task;
- task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
- task.data = {
- { "id_slot", id_slot },
- { "filename", filename },
- { "filepath", filepath },
- };
- const int id_task = ctx_server.queue_tasks.post(task);
- ctx_server.queue_results.add_waiting_task_id(id_task);
- server_task_result result = ctx_server.queue_results.recv(id_task);
- ctx_server.queue_results.remove_waiting_task_id(id_task);
- if (result.error) {
- res_error(res, result.data);
- } else {
- res_ok(res, result.data);
- }
- };
- const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
- server_task task;
- task.type = SERVER_TASK_TYPE_SLOT_ERASE;
- task.data = {
- { "id_slot", id_slot },
- };
- const int id_task = ctx_server.queue_tasks.post(task);
- ctx_server.queue_results.add_waiting_task_id(id_task);
- server_task_result result = ctx_server.queue_results.recv(id_task);
- ctx_server.queue_results.remove_waiting_task_id(id_task);
- if (result.error) {
- res_error(res, result.data);
- } else {
- res_ok(res, result.data);
- }
- };
- const auto handle_slots_action = [¶ms, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
- if (params.slot_save_path.empty()) {
- res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- std::string id_slot_str = req.path_params.at("id_slot");
- int id_slot;
- try {
- id_slot = std::stoi(id_slot_str);
- } catch (const std::exception &) {
- res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::string action = req.get_param_value("action");
- if (action == "save") {
- handle_slots_save(req, res, id_slot);
- } else if (action == "restore") {
- handle_slots_restore(req, res, id_slot);
- } else if (action == "erase") {
- handle_slots_erase(req, res, id_slot);
- } else {
- res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
- }
- };
- const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
- json data = {
- { "default_generation_settings", ctx_server.default_generation_settings_for_props },
- { "total_slots", ctx_server.params_base.n_parallel },
- { "chat_template", llama_get_chat_template(ctx_server.model) },
- };
- res_ok(res, data);
- };
- const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
- if (!ctx_server.params_base.endpoint_props) {
- res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- json data = json::parse(req.body);
- // update any props here
- res_ok(res, {{ "success", true }});
- };
- const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_inf_type inf_type, json & data, httplib::Response & res) {
- if (ctx_server.params_base.embedding) {
- res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, inf_type);
- ctx_server.queue_results.add_waiting_tasks(tasks);
- ctx_server.queue_tasks.post(tasks);
- bool stream = json_value(data, "stream", false);
- const auto task_ids = server_task::get_list_id(tasks);
- if (!stream) {
- ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
- if (results.size() == 1) {
- // single result
- res_ok(res, results[0].data);
- } else {
- // multiple results (multitask)
- json arr = json::array();
- for (const auto & res : results) {
- arr.push_back(res.data);
- }
- res_ok(res, arr);
- }
- }, [&](const json & error_data) {
- res_error(res, error_data);
- });
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- } else {
- const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) {
- ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
- return server_sent_event(sink, "data", result.data);
- }, [&](const json & error_data) {
- server_sent_event(sink, "error", error_data);
- });
- sink.done();
- return false;
- };
- auto on_complete = [task_ids, &ctx_server] (bool) {
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- };
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- }
- };
- const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
- json data = json::parse(req.body);
- return handle_completions_generic(SERVER_TASK_INF_TYPE_COMPLETION, data, res);
- };
- const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
- // check model compatibility
- std::string err;
- if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
- err += "prefix token is missing. ";
- }
- if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
- err += "suffix token is missing. ";
- }
- if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
- err += "middle token is missing. ";
- }
- if (!err.empty()) {
- res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- json data = json::parse(req.body);
- // validate input
- if (!data.contains("input_prefix")) {
- res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
- }
- if (!data.contains("input_suffix")) {
- res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
- }
- if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
- res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- json input_extra = json_value(data, "input_extra", json::array());
- for (const auto & chunk : input_extra) {
- // { "text": string, "filename": string }
- if (!chunk.contains("text") || !chunk.at("text").is_string()) {
- res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- // filename is optional
- if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
- res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- }
- data["input_extra"] = input_extra; // default to empty array if it's not exist
- return handle_completions_generic(SERVER_TASK_INF_TYPE_INFILL, data, res);
- };
- // TODO: maybe merge this function with "handle_completions_generic"
- const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) {
- if (ctx_server.params_base.embedding) {
- res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
- std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, SERVER_TASK_INF_TYPE_COMPLETION);
- ctx_server.queue_results.add_waiting_tasks(tasks);
- ctx_server.queue_tasks.post(tasks);
- bool stream = json_value(data, "stream", false);
- const auto task_ids = server_task::get_list_id(tasks);
- const auto completion_id = gen_chatcmplid();
- if (!stream) {
- ctx_server.receive_cmpl_results(task_ids, [&](const std::vector<server_task_result> & results) {
- // multitask is never support in chat completion, there is only one result
- json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id, /*.streaming =*/ false, verbose);
- res_ok(res, result_oai);
- }, [&](const json & error_data) {
- res_error(res, error_data);
- });
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- } else {
- const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
- ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
- std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
- for (auto & event_data : result_array) {
- if (event_data.empty()) {
- continue; // skip the stop token
- }
- if (!server_sent_event(sink, "data", event_data)) {
- return false; // connection is closed
- }
- }
- return true; // ok
- }, [&](const json & error_data) {
- server_sent_event(sink, "error", error_data);
- });
- static const std::string ev_done = "data: [DONE]\n\n";
- sink.write(ev_done.data(), ev_done.size());
- sink.done();
- return true;
- };
- auto on_complete = [task_ids, &ctx_server] (bool) {
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- };
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- }
- };
- const auto handle_models = [¶ms, &ctx_server](const httplib::Request &, httplib::Response & res) {
- json models = {
- {"object", "list"},
- {"data", {
- {
- {"id", params.model_alias},
- {"object", "model"},
- {"created", std::time(0)},
- {"owned_by", "llamacpp"},
- {"meta", ctx_server.model_meta()}
- },
- }}
- };
- res.set_content(models.dump(), MIMETYPE_JSON);
- };
- const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
- const json body = json::parse(req.body);
- json tokens_response = json::array();
- if (body.count("content") != 0) {
- const bool add_special = json_value(body, "add_special", false);
- const bool with_pieces = json_value(body, "with_pieces", false);
- llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
- if (with_pieces) {
- for (const auto& token : tokens) {
- std::string piece = common_token_to_piece(ctx_server.ctx, token);
- json piece_json;
- // Check if the piece is valid UTF-8
- if (is_valid_utf8(piece)) {
- piece_json = piece;
- } else {
- // If not valid UTF-8, store as array of byte values
- piece_json = json::array();
- for (unsigned char c : piece) {
- piece_json.push_back(static_cast<int>(c));
- }
- }
- tokens_response.push_back({
- {"id", token},
- {"piece", piece_json}
- });
- }
- } else {
- tokens_response = tokens;
- }
- }
- const json data = format_tokenizer_response(tokens_response);
- res_ok(res, data);
- };
- const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
- const json body = json::parse(req.body);
- std::string content;
- if (body.count("tokens") != 0) {
- const llama_tokens tokens = body.at("tokens");
- content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
- }
- const json data = format_detokenized_response(content);
- res_ok(res, data);
- };
- const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
- const json body = json::parse(req.body);
- bool is_openai = false;
- // an input prompt can be a string or a list of tokens (integer)
- json prompt;
- if (body.count("input") != 0) {
- is_openai = true;
- prompt = body.at("input");
- } else if (body.count("content") != 0) {
- // with "content", we only support single prompt
- prompt = std::vector<std::string>{body.at("content")};
- } else {
- res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- // create and queue the task
- json responses = json::array();
- bool error = false;
- {
- std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_EMBEDDING);
- ctx_server.queue_results.add_waiting_tasks(tasks);
- ctx_server.queue_tasks.post(tasks);
- // get the result
- std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
- ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
- for (const auto & res : results) {
- responses.push_back(res.data);
- }
- }, [&](const json & error_data) {
- res_error(res, error_data);
- error = true;
- });
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- }
- if (error) {
- return;
- }
- // write JSON response
- json root = is_openai
- ? format_embeddings_response_oaicompat(body, responses)
- : responses[0];
- res_ok(res, root);
- };
- const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
- if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
- res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- const json body = json::parse(req.body);
- // TODO: implement
- //int top_n = 1;
- //if (body.count("top_n") != 1) {
- // top_n = body.at("top_n");
- //} else {
- // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- // return;
- //}
- json query;
- if (body.count("query") == 1) {
- query = body.at("query");
- if (!query.is_string()) {
- res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- } else {
- res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
- if (documents.empty()) {
- res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- // construct prompt object: array of ["query", "doc0", "doc1", ...]
- json prompt;
- prompt.push_back(query);
- for (const auto & doc : documents) {
- prompt.push_back(doc);
- }
- LOG_DBG("rerank prompt: %s\n", prompt.dump().c_str());
- // create and queue the task
- json responses = json::array();
- bool error = false;
- {
- std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_RERANK);
- ctx_server.queue_results.add_waiting_tasks(tasks);
- ctx_server.queue_tasks.post(tasks);
- // get the result
- std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
- ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
- for (const auto & res : results) {
- responses.push_back(res.data);
- }
- }, [&](const json & error_data) {
- res_error(res, error_data);
- error = true;
- });
- }
- if (error) {
- return;
- }
- // write JSON response
- json root = format_response_rerank(body, responses);
- res_ok(res, root);
- };
- const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
- json result = json::array();
- for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
- auto & lora = ctx_server.loras[i];
- result.push_back({
- {"id", i},
- {"path", lora.path},
- {"scale", lora.scale},
- });
- }
- res_ok(res, result);
- res.status = 200; // HTTP OK
- };
- const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
- const std::vector<json> body = json::parse(req.body);
- int max_idx = ctx_server.loras.size();
- // clear existing value
- for (auto & lora : ctx_server.loras) {
- lora.scale = 0.0f;
- }
- // set value
- for (auto entry : body) {
- int id = entry.at("id");
- float scale = entry.at("scale");
- if (0 <= id && id < max_idx) {
- ctx_server.loras[id].scale = scale;
- } else {
- throw std::runtime_error("invalid adapter id");
- }
- }
- server_task task;
- task.type = SERVER_TASK_TYPE_SET_LORA;
- const int id_task = ctx_server.queue_tasks.post(task);
- ctx_server.queue_results.add_waiting_task_id(id_task);
- server_task_result result = ctx_server.queue_results.recv(id_task);
- ctx_server.queue_results.remove_waiting_task_id(id_task);
- res_ok(res, result.data);
- res.status = 200; // HTTP OK
- };
- //
- // Router
- //
- // register static assets routes
- if (!params.public_path.empty()) {
- // Set the base directory for serving static files
- bool is_found = svr->set_mount_point("/", params.public_path);
- if (!is_found) {
- LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
- return 1;
- }
- } else {
- // using embedded static files
- for (const auto & it : static_files) {
- const server_static_file & static_file = it.second;
- svr->Get(it.first.c_str(), [&static_file](const httplib::Request &, httplib::Response & res) {
- res.set_content(reinterpret_cast<const char*>(static_file.data), static_file.size, static_file.mime_type);
- return false;
- });
- }
- }
- // register API routes
- svr->Get ("/health", handle_health); // public endpoint (no API key check)
- svr->Get ("/metrics", handle_metrics);
- svr->Get ("/props", handle_props);
- svr->Post("/props", handle_props_change);
- svr->Get ("/models", handle_models); // public endpoint (no API key check)
- svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
- svr->Post("/completion", handle_completions); // legacy
- svr->Post("/completions", handle_completions);
- svr->Post("/v1/completions", handle_completions);
- svr->Post("/chat/completions", handle_chat_completions);
- svr->Post("/v1/chat/completions", handle_chat_completions);
- svr->Post("/infill", handle_infill);
- svr->Post("/embedding", handle_embeddings); // legacy
- svr->Post("/embeddings", handle_embeddings);
- svr->Post("/v1/embeddings", handle_embeddings);
- svr->Post("/rerank", handle_rerank);
- svr->Post("/reranking", handle_rerank);
- svr->Post("/v1/rerank", handle_rerank);
- svr->Post("/v1/reranking", handle_rerank);
- svr->Post("/tokenize", handle_tokenize);
- svr->Post("/detokenize", handle_detokenize);
- // LoRA adapters hotswap
- svr->Get ("/lora-adapters", handle_lora_adapters_list);
- svr->Post("/lora-adapters", handle_lora_adapters_apply);
- // Save & load slots
- svr->Get ("/slots", handle_slots);
- svr->Post("/slots/:id_slot", handle_slots_action);
- //
- // Start the server
- //
- if (params.n_threads_http < 1) {
- // +2 threads for monitoring endpoints
- params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
- }
- log_data["n_threads_http"] = std::to_string(params.n_threads_http);
- svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); };
- // clean up function, to be called before exit
- auto clean_up = [&svr]() {
- svr->stop();
- llama_backend_free();
- };
- // bind HTTP listen port
- bool was_bound = false;
- if (params.port == 0) {
- int bound_port = svr->bind_to_any_port(params.hostname);
- if ((was_bound = (bound_port >= 0))) {
- params.port = bound_port;
- }
- } else {
- was_bound = svr->bind_to_port(params.hostname, params.port);
- }
- if (!was_bound) {
- //LOG_ERROR("couldn't bind HTTP server socket", {
- // {"hostname", params.hostname},
- // {"port", params.port},
- //});
- LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
- clean_up();
- return 1;
- }
- // run the HTTP server in a thread
- std::thread t([&]() { svr->listen_after_bind(); });
- svr->wait_until_ready();
- LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
- // load the model
- LOG_INF("%s: loading model\n", __func__);
- if (!ctx_server.load_model(params)) {
- clean_up();
- t.join();
- LOG_ERR("%s: exiting due to model loading error\n", __func__);
- return 1;
- }
- ctx_server.init();
- state.store(SERVER_STATE_READY);
- LOG_INF("%s: model loaded\n", __func__);
- // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
- if (params.chat_template.empty()) {
- if (!ctx_server.validate_model_chat_template()) {
- LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
- params.chat_template = "chatml";
- }
- }
- // print sample chat example to make it clear which template is used
- LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
- ctx_server.queue_tasks.on_new_task(std::bind(
- &server_context::process_single_task, &ctx_server, std::placeholders::_1));
- ctx_server.queue_tasks.on_update_slots(std::bind(
- &server_context::update_slots, &ctx_server));
- shutdown_handler = [&](int) {
- ctx_server.queue_tasks.terminate();
- };
- LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
- ctx_server.queue_tasks.start_loop();
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- struct sigaction sigint_action;
- sigint_action.sa_handler = signal_handler;
- sigemptyset (&sigint_action.sa_mask);
- sigint_action.sa_flags = 0;
- sigaction(SIGINT, &sigint_action, NULL);
- sigaction(SIGTERM, &sigint_action, NULL);
- #elif defined (_WIN32)
- auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
- return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
- };
- SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
- #endif
- clean_up();
- t.join();
- return 0;
- }
|