ggml-rpc.cpp 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include <cinttypes>
  5. #include <string>
  6. #include <vector>
  7. #include <memory>
  8. #include <mutex>
  9. #include <unordered_map>
  10. #include <unordered_set>
  11. #ifdef _WIN32
  12. # define WIN32_LEAN_AND_MEAN
  13. # ifndef NOMINMAX
  14. # define NOMINMAX
  15. # endif
  16. # include <windows.h>
  17. # include <winsock2.h>
  18. #else
  19. # include <arpa/inet.h>
  20. # include <sys/socket.h>
  21. # include <sys/types.h>
  22. # include <netinet/in.h>
  23. # include <netinet/tcp.h>
  24. # include <netdb.h>
  25. # include <unistd.h>
  26. #endif
  27. #include <cstring>
  28. #ifdef _WIN32
  29. typedef SOCKET sockfd_t;
  30. using ssize_t = __int64;
  31. #else
  32. typedef int sockfd_t;
  33. #endif
  34. // cross-platform socket
  35. struct socket_t {
  36. sockfd_t fd;
  37. socket_t(sockfd_t fd) : fd(fd) {}
  38. ~socket_t() {
  39. GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
  40. #ifdef _WIN32
  41. closesocket(this->fd);
  42. #else
  43. close(this->fd);
  44. #endif
  45. }
  46. };
  47. // all RPC structures must be packed
  48. #pragma pack(push, 1)
  49. // ggml_tensor is serialized into rpc_tensor
  50. struct rpc_tensor {
  51. uint64_t id;
  52. uint32_t type;
  53. uint64_t buffer;
  54. uint32_t ne[GGML_MAX_DIMS];
  55. uint32_t nb[GGML_MAX_DIMS];
  56. uint32_t op;
  57. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  58. int32_t flags;
  59. uint64_t src[GGML_MAX_SRC];
  60. uint64_t view_src;
  61. uint64_t view_offs;
  62. uint64_t data;
  63. char name[GGML_MAX_NAME];
  64. char padding[4];
  65. };
  66. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  67. // RPC commands
  68. enum rpc_cmd {
  69. RPC_CMD_ALLOC_BUFFER = 0,
  70. RPC_CMD_GET_ALIGNMENT,
  71. RPC_CMD_GET_MAX_SIZE,
  72. RPC_CMD_BUFFER_GET_BASE,
  73. RPC_CMD_FREE_BUFFER,
  74. RPC_CMD_BUFFER_CLEAR,
  75. RPC_CMD_SET_TENSOR,
  76. RPC_CMD_GET_TENSOR,
  77. RPC_CMD_COPY_TENSOR,
  78. RPC_CMD_GRAPH_COMPUTE,
  79. RPC_CMD_GET_DEVICE_MEMORY,
  80. RPC_CMD_INIT_TENSOR,
  81. RPC_CMD_GET_ALLOC_SIZE,
  82. RPC_CMD_COUNT,
  83. };
  84. struct rpc_msg_get_alloc_size_req {
  85. rpc_tensor tensor;
  86. };
  87. struct rpc_msg_get_alloc_size_rsp {
  88. uint64_t alloc_size;
  89. };
  90. struct rpc_msg_init_tensor_req {
  91. rpc_tensor tensor;
  92. };
  93. struct rpc_msg_alloc_buffer_req {
  94. uint64_t size;
  95. };
  96. struct rpc_msg_alloc_buffer_rsp {
  97. uint64_t remote_ptr;
  98. uint64_t remote_size;
  99. };
  100. struct rpc_msg_get_alignment_rsp {
  101. uint64_t alignment;
  102. };
  103. struct rpc_msg_get_max_size_rsp {
  104. uint64_t max_size;
  105. };
  106. struct rpc_msg_buffer_get_base_req {
  107. uint64_t remote_ptr;
  108. };
  109. struct rpc_msg_buffer_get_base_rsp {
  110. uint64_t base_ptr;
  111. };
  112. struct rpc_msg_free_buffer_req {
  113. uint64_t remote_ptr;
  114. };
  115. struct rpc_msg_buffer_clear_req {
  116. uint64_t remote_ptr;
  117. uint8_t value;
  118. };
  119. struct rpc_msg_get_tensor_req {
  120. rpc_tensor tensor;
  121. uint64_t offset;
  122. uint64_t size;
  123. };
  124. struct rpc_msg_copy_tensor_req {
  125. rpc_tensor src;
  126. rpc_tensor dst;
  127. };
  128. struct rpc_msg_copy_tensor_rsp {
  129. uint8_t result;
  130. };
  131. struct rpc_msg_graph_compute_rsp {
  132. uint8_t result;
  133. };
  134. struct rpc_msg_get_device_memory_rsp {
  135. uint64_t free_mem;
  136. uint64_t total_mem;
  137. };
  138. #pragma pack(pop)
  139. // RPC data structures
  140. static ggml_guid_t ggml_backend_rpc_guid() {
  141. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  142. return &guid;
  143. }
  144. struct ggml_backend_rpc_buffer_type_context {
  145. std::string endpoint;
  146. std::string name;
  147. size_t alignment;
  148. size_t max_size;
  149. };
  150. struct ggml_backend_rpc_context {
  151. std::string endpoint;
  152. std::string name;
  153. };
  154. struct ggml_backend_rpc_buffer_context {
  155. std::shared_ptr<socket_t> sock;
  156. void * base_ptr;
  157. uint64_t remote_ptr;
  158. };
  159. // RPC helper functions
  160. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  161. #ifdef _WIN32
  162. if (fd == INVALID_SOCKET) {
  163. return nullptr;
  164. }
  165. #else
  166. if (fd < 0) {
  167. return nullptr;
  168. }
  169. #endif
  170. return std::make_shared<socket_t>(fd);
  171. }
  172. static bool set_no_delay(sockfd_t sockfd) {
  173. int flag = 1;
  174. // set TCP_NODELAY to disable Nagle's algorithm
  175. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  176. return ret == 0;
  177. }
  178. static bool set_reuse_addr(sockfd_t sockfd) {
  179. int flag = 1;
  180. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  181. return ret == 0;
  182. }
  183. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  184. struct sockaddr_in addr;
  185. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  186. auto sock_ptr = make_socket(sockfd);
  187. if (sock_ptr == nullptr) {
  188. return nullptr;
  189. }
  190. if (!set_no_delay(sockfd)) {
  191. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  192. return nullptr;
  193. }
  194. addr.sin_family = AF_INET;
  195. addr.sin_port = htons(port);
  196. struct hostent * server = gethostbyname(host);
  197. if (server == NULL) {
  198. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  199. return nullptr;
  200. }
  201. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  202. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  203. return nullptr;
  204. }
  205. return sock_ptr;
  206. }
  207. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  208. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  209. auto client_socket = make_socket(client_socket_fd);
  210. if (client_socket == nullptr) {
  211. return nullptr;
  212. }
  213. if (!set_no_delay(client_socket_fd)) {
  214. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  215. return nullptr;
  216. }
  217. return client_socket;
  218. }
  219. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  220. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  221. auto sock = make_socket(sockfd);
  222. if (sock == nullptr) {
  223. return nullptr;
  224. }
  225. if (!set_reuse_addr(sockfd)) {
  226. fprintf(stderr, "Failed to set SO_REUSEADDR\n");
  227. return nullptr;
  228. }
  229. if (inet_addr(host) == INADDR_NONE) {
  230. fprintf(stderr, "Invalid host address: %s\n", host);
  231. return nullptr;
  232. }
  233. struct sockaddr_in serv_addr;
  234. serv_addr.sin_family = AF_INET;
  235. serv_addr.sin_addr.s_addr = inet_addr(host);
  236. serv_addr.sin_port = htons(port);
  237. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  238. return nullptr;
  239. }
  240. if (listen(sockfd, 1) < 0) {
  241. return nullptr;
  242. }
  243. return sock;
  244. }
  245. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  246. size_t bytes_sent = 0;
  247. while (bytes_sent < size) {
  248. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  249. if (n < 0) {
  250. return false;
  251. }
  252. bytes_sent += n;
  253. }
  254. return true;
  255. }
  256. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  257. size_t bytes_recv = 0;
  258. while (bytes_recv < size) {
  259. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  260. if (n <= 0) {
  261. return false;
  262. }
  263. bytes_recv += n;
  264. }
  265. return true;
  266. }
  267. static bool send_msg(sockfd_t sockfd, const void * msg, size_t msg_size) {
  268. if (!send_data(sockfd, &msg_size, sizeof(msg_size))) {
  269. return false;
  270. }
  271. return send_data(sockfd, msg, msg_size);
  272. }
  273. static bool recv_msg(sockfd_t sockfd, void * msg, size_t msg_size) {
  274. uint64_t size;
  275. if (!recv_data(sockfd, &size, sizeof(size))) {
  276. return false;
  277. }
  278. if (size != msg_size) {
  279. return false;
  280. }
  281. return recv_data(sockfd, msg, msg_size);
  282. }
  283. static bool recv_msg(sockfd_t sockfd, std::vector<uint8_t> & input) {
  284. uint64_t size;
  285. if (!recv_data(sockfd, &size, sizeof(size))) {
  286. return false;
  287. }
  288. try {
  289. input.resize(size);
  290. } catch (const std::bad_alloc & e) {
  291. fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", size);
  292. return false;
  293. }
  294. return recv_data(sockfd, input.data(), size);
  295. }
  296. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  297. size_t pos = endpoint.find(':');
  298. if (pos == std::string::npos) {
  299. return false;
  300. }
  301. host = endpoint.substr(0, pos);
  302. port = std::stoi(endpoint.substr(pos + 1));
  303. return true;
  304. }
  305. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  306. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  307. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
  308. uint8_t cmd_byte = cmd;
  309. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  310. return false;
  311. }
  312. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  313. return false;
  314. }
  315. if (!send_data(sock->fd, input, input_size)) {
  316. return false;
  317. }
  318. // TODO: currently the output_size is always known, do we need support for commands with variable output size?
  319. // even if we do, we can skip sending output_size from the server for commands with known output size
  320. uint64_t out_size;
  321. if (!recv_data(sock->fd, &out_size, sizeof(out_size))) {
  322. return false;
  323. }
  324. if (out_size != output_size) {
  325. return false;
  326. }
  327. if (!recv_data(sock->fd, output, output_size)) {
  328. return false;
  329. }
  330. return true;
  331. }
  332. // RPC client-side implementation
  333. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  334. static std::mutex mutex;
  335. std::lock_guard<std::mutex> lock(mutex);
  336. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  337. static bool initialized = false;
  338. auto it = sockets.find(endpoint);
  339. if (it != sockets.end()) {
  340. if (auto sock = it->second.lock()) {
  341. return sock;
  342. }
  343. }
  344. std::string host;
  345. int port;
  346. if (!parse_endpoint(endpoint, host, port)) {
  347. return nullptr;
  348. }
  349. #ifdef _WIN32
  350. if (!initialized) {
  351. WSADATA wsaData;
  352. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  353. if (res != 0) {
  354. return nullptr;
  355. }
  356. initialized = true;
  357. }
  358. #else
  359. GGML_UNUSED(initialized);
  360. #endif
  361. auto sock = socket_connect(host.c_str(), port);
  362. if (sock == nullptr) {
  363. return nullptr;
  364. }
  365. GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  366. sockets[endpoint] = sock;
  367. return sock;
  368. }
  369. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  370. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  371. rpc_msg_free_buffer_req request = {ctx->remote_ptr};
  372. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
  373. GGML_ASSERT(status);
  374. delete ctx;
  375. }
  376. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  377. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  378. if (ctx->base_ptr != nullptr) {
  379. return ctx->base_ptr;
  380. }
  381. rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
  382. rpc_msg_buffer_get_base_rsp response;
  383. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
  384. GGML_ASSERT(status);
  385. ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
  386. return ctx->base_ptr;
  387. }
  388. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  389. rpc_tensor result;
  390. result.id = reinterpret_cast<uint64_t>(tensor);
  391. result.type = tensor->type;
  392. if (tensor->buffer) {
  393. ggml_backend_buffer_t buffer = tensor->buffer;
  394. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  395. result.buffer = ctx->remote_ptr;
  396. } else {
  397. result.buffer = 0;
  398. }
  399. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  400. result.ne[i] = tensor->ne[i];
  401. result.nb[i] = tensor->nb[i];
  402. }
  403. result.op = tensor->op;
  404. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  405. result.op_params[i] = tensor->op_params[i];
  406. }
  407. result.flags = tensor->flags;
  408. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  409. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  410. }
  411. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  412. result.view_offs = tensor->view_offs;
  413. result.data = reinterpret_cast<uint64_t>(tensor->data);
  414. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  415. return result;
  416. }
  417. static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  418. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  419. // CUDA backend on the server pads everything to 512 due to CUDA limitations.
  420. // Due to bandwidth constraints, we only call the server init tensor functions if necessary.
  421. // In particular, only quantized tensors need padding
  422. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  423. rpc_msg_init_tensor_req request;
  424. request.tensor = serialize_tensor(tensor);
  425. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
  426. GGML_ASSERT(status);
  427. }
  428. }
  429. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  430. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  431. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  432. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  433. std::vector<uint8_t> input(input_size, 0);
  434. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  435. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  436. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  437. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  438. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size(), nullptr, 0);
  439. GGML_ASSERT(status);
  440. }
  441. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  442. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  443. rpc_msg_get_tensor_req request;
  444. request.tensor = serialize_tensor(tensor);
  445. request.offset = offset;
  446. request.size = size;
  447. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
  448. GGML_ASSERT(status);
  449. }
  450. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  451. // check if src and dst are on the same server
  452. ggml_backend_buffer_t src_buffer = src->buffer;
  453. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  454. ggml_backend_buffer_t dst_buffer = dst->buffer;
  455. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  456. if (src_ctx->sock != dst_ctx->sock) {
  457. return false;
  458. }
  459. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  460. rpc_msg_copy_tensor_req request;
  461. request.src = serialize_tensor(src);
  462. request.dst = serialize_tensor(dst);
  463. rpc_msg_copy_tensor_rsp response;
  464. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
  465. GGML_ASSERT(status);
  466. return response.result;
  467. }
  468. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  469. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  470. rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
  471. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
  472. GGML_ASSERT(status);
  473. }
  474. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  475. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  476. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  477. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  478. /* .memset_tensor = */ NULL,
  479. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  480. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  481. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  482. /* .clear = */ ggml_backend_rpc_buffer_clear,
  483. /* .reset = */ NULL,
  484. };
  485. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  486. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  487. return buft_ctx->name.c_str();
  488. }
  489. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  490. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  491. rpc_msg_alloc_buffer_req request = {size};
  492. rpc_msg_alloc_buffer_rsp response;
  493. auto sock = get_socket(buft_ctx->endpoint);
  494. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
  495. GGML_ASSERT(status);
  496. if (response.remote_ptr != 0) {
  497. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  498. ggml_backend_rpc_buffer_interface,
  499. new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
  500. response.remote_size);
  501. return buffer;
  502. } else {
  503. return nullptr;
  504. }
  505. }
  506. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  507. rpc_msg_get_alignment_rsp response;
  508. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
  509. GGML_ASSERT(status);
  510. return response.alignment;
  511. }
  512. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  513. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  514. return buft_ctx->alignment;
  515. }
  516. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  517. rpc_msg_get_max_size_rsp response;
  518. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
  519. GGML_ASSERT(status);
  520. return response.max_size;
  521. }
  522. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  523. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  524. return buft_ctx->max_size;
  525. }
  526. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  527. // See comments in init_tensor.
  528. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  529. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  530. auto sock = get_socket(buft_ctx->endpoint);
  531. rpc_msg_get_alloc_size_req request;
  532. request.tensor = serialize_tensor(tensor);
  533. rpc_msg_get_alloc_size_rsp response;
  534. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
  535. GGML_ASSERT(status);
  536. return response.alloc_size;
  537. } else {
  538. return ggml_nbytes(tensor);
  539. }
  540. }
  541. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  542. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  543. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  544. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  545. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  546. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  547. /* .is_host = */ NULL,
  548. };
  549. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  550. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  551. return rpc_ctx->name.c_str();
  552. }
  553. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  554. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  555. delete rpc_ctx;
  556. delete backend;
  557. }
  558. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  559. GGML_UNUSED(backend);
  560. // this is no-op because we don't have any async operations
  561. }
  562. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  563. if (tensor == nullptr) {
  564. return;
  565. }
  566. if (visited.find(tensor) != visited.end()) {
  567. return;
  568. }
  569. visited.insert(tensor);
  570. for (int i = 0; i < GGML_MAX_SRC; i++) {
  571. add_tensor(tensor->src[i], tensors, visited);
  572. }
  573. add_tensor(tensor->view_src, tensors, visited);
  574. tensors.push_back(serialize_tensor(tensor));
  575. }
  576. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  577. uint32_t n_nodes = cgraph->n_nodes;
  578. std::vector<rpc_tensor> tensors;
  579. std::unordered_set<ggml_tensor*> visited;
  580. for (uint32_t i = 0; i < n_nodes; i++) {
  581. add_tensor(cgraph->nodes[i], tensors, visited);
  582. }
  583. // serialization format:
  584. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  585. uint32_t n_tensors = tensors.size();
  586. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  587. output.resize(output_size, 0);
  588. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  589. for (uint32_t i = 0; i < n_nodes; i++) {
  590. memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  591. }
  592. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  593. *out_ntensors = n_tensors;
  594. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  595. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  596. }
  597. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  598. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  599. std::vector<uint8_t> input;
  600. serialize_graph(cgraph, input);
  601. rpc_msg_graph_compute_rsp response;
  602. auto sock = get_socket(rpc_ctx->endpoint);
  603. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
  604. GGML_ASSERT(status);
  605. return (enum ggml_status)response.result;
  606. }
  607. static ggml_backend_i ggml_backend_rpc_interface = {
  608. /* .get_name = */ ggml_backend_rpc_name,
  609. /* .free = */ ggml_backend_rpc_free,
  610. /* .set_tensor_async = */ NULL,
  611. /* .get_tensor_async = */ NULL,
  612. /* .cpy_tensor_async = */ NULL,
  613. /* .synchronize = */ ggml_backend_rpc_synchronize,
  614. /* .graph_plan_create = */ NULL,
  615. /* .graph_plan_free = */ NULL,
  616. /* .graph_plan_update = */ NULL,
  617. /* .graph_plan_compute = */ NULL,
  618. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  619. /* .event_record = */ NULL,
  620. /* .event_wait = */ NULL,
  621. };
  622. ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  623. static std::mutex mutex;
  624. std::lock_guard<std::mutex> lock(mutex);
  625. // NOTE: buffer types are allocated and never freed; this is by design
  626. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  627. auto it = buft_map.find(endpoint);
  628. if (it != buft_map.end()) {
  629. return it->second;
  630. }
  631. auto sock = get_socket(endpoint);
  632. if (sock == nullptr) {
  633. fprintf(stderr, "Failed to connect to %s\n", endpoint);
  634. return nullptr;
  635. }
  636. size_t alignment = get_alignment(sock);
  637. size_t max_size = get_max_size(sock);
  638. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  639. /* .endpoint = */ endpoint,
  640. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  641. /* .alignment = */ alignment,
  642. /* .max_size = */ max_size
  643. };
  644. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  645. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  646. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  647. /* .context = */ buft_ctx
  648. };
  649. buft_map[endpoint] = buft;
  650. return buft;
  651. }
  652. ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  653. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  654. /* .endpoint = */ endpoint,
  655. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  656. };
  657. ggml_backend_t backend = new ggml_backend {
  658. /* .guid = */ ggml_backend_rpc_guid(),
  659. /* .interface = */ ggml_backend_rpc_interface,
  660. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  661. /* .context = */ ctx
  662. };
  663. return backend;
  664. }
  665. bool ggml_backend_is_rpc(ggml_backend_t backend) {
  666. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  667. }
  668. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  669. rpc_msg_get_device_memory_rsp response;
  670. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
  671. GGML_ASSERT(status);
  672. *free = response.free_mem;
  673. *total = response.total_mem;
  674. }
  675. void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  676. auto sock = get_socket(endpoint);
  677. if (sock == nullptr) {
  678. *free = 0;
  679. *total = 0;
  680. return;
  681. }
  682. get_device_memory(sock, free, total);
  683. }
  684. // RPC server-side implementation
  685. class rpc_server {
  686. public:
  687. rpc_server(ggml_backend_t backend) : backend(backend) {}
  688. ~rpc_server();
  689. void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
  690. void get_alignment(rpc_msg_get_alignment_rsp & response);
  691. void get_max_size(rpc_msg_get_max_size_rsp & response);
  692. bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
  693. bool free_buffer(const rpc_msg_free_buffer_req & request);
  694. bool buffer_clear(const rpc_msg_buffer_clear_req & request);
  695. bool set_tensor(const std::vector<uint8_t> & input);
  696. bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
  697. bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
  698. bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
  699. bool init_tensor(const rpc_msg_init_tensor_req & request);
  700. bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
  701. private:
  702. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  703. ggml_tensor * create_node(uint64_t id,
  704. struct ggml_context * ctx,
  705. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  706. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  707. ggml_backend_t backend;
  708. std::unordered_set<ggml_backend_buffer_t> buffers;
  709. };
  710. bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
  711. ggml_backend_buffer_type_t buft;
  712. struct ggml_init_params params {
  713. /*.mem_size =*/ ggml_tensor_overhead(),
  714. /*.mem_buffer =*/ NULL,
  715. /*.no_alloc =*/ true,
  716. };
  717. struct ggml_context * ctx = ggml_init(params);
  718. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  719. if (tensor == nullptr) {
  720. GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
  721. ggml_free(ctx);
  722. return false;
  723. }
  724. if (tensor->buffer == nullptr) {
  725. //No buffer allocated.
  726. buft = ggml_backend_get_default_buffer_type(backend);
  727. } else {
  728. buft = tensor->buffer->buft;
  729. }
  730. response.alloc_size = ggml_backend_buft_get_alloc_size(buft,tensor);
  731. ggml_free(ctx);
  732. return true;
  733. }
  734. void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
  735. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  736. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
  737. response.remote_ptr = 0;
  738. response.remote_size = 0;
  739. if (buffer != nullptr) {
  740. response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
  741. response.remote_size = buffer->size;
  742. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
  743. buffers.insert(buffer);
  744. } else {
  745. GGML_LOG_ERROR("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
  746. }
  747. }
  748. void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
  749. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  750. size_t alignment = ggml_backend_buft_get_alignment(buft);
  751. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  752. response.alignment = alignment;
  753. }
  754. void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
  755. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  756. size_t max_size = ggml_backend_buft_get_max_size(buft);
  757. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  758. response.max_size = max_size;
  759. }
  760. bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
  761. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  762. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  763. if (buffers.find(buffer) == buffers.end()) {
  764. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  765. return false;
  766. }
  767. void * base = ggml_backend_buffer_get_base(buffer);
  768. response.base_ptr = reinterpret_cast<uint64_t>(base);
  769. return true;
  770. }
  771. bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) {
  772. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  773. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  774. if (buffers.find(buffer) == buffers.end()) {
  775. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  776. return false;
  777. }
  778. ggml_backend_buffer_free(buffer);
  779. buffers.erase(buffer);
  780. return true;
  781. }
  782. bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
  783. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value);
  784. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  785. if (buffers.find(buffer) == buffers.end()) {
  786. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  787. return false;
  788. }
  789. ggml_backend_buffer_clear(buffer, request.value);
  790. return true;
  791. }
  792. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  793. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  794. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  795. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  796. result->nb[i] = tensor->nb[i];
  797. }
  798. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  799. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  800. result->buffer = nullptr;
  801. }
  802. if (result->buffer) {
  803. // require that the tensor data does not go beyond the buffer end
  804. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  805. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  806. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  807. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  808. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  809. }
  810. result->op = (ggml_op) tensor->op;
  811. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  812. result->op_params[i] = tensor->op_params[i];
  813. }
  814. result->flags = tensor->flags;
  815. result->data = reinterpret_cast<void *>(tensor->data);
  816. ggml_set_name(result, tensor->name);
  817. return result;
  818. }
  819. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  820. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  821. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  822. return false;
  823. }
  824. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  825. uint64_t offset;
  826. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  827. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  828. struct ggml_init_params params {
  829. /*.mem_size =*/ ggml_tensor_overhead(),
  830. /*.mem_buffer =*/ NULL,
  831. /*.no_alloc =*/ true,
  832. };
  833. struct ggml_context * ctx = ggml_init(params);
  834. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  835. if (tensor == nullptr) {
  836. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  837. ggml_free(ctx);
  838. return false;
  839. }
  840. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  841. // sanitize tensor->data
  842. {
  843. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  844. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  845. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  846. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  847. }
  848. }
  849. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  850. ggml_backend_tensor_set(tensor, data, offset, size);
  851. ggml_free(ctx);
  852. return true;
  853. }
  854. bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
  855. struct ggml_init_params params {
  856. /*.mem_size =*/ ggml_tensor_overhead(),
  857. /*.mem_buffer =*/ NULL,
  858. /*.no_alloc =*/ true,
  859. };
  860. struct ggml_context * ctx = ggml_init(params);
  861. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  862. if (tensor == nullptr) {
  863. GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n");
  864. ggml_free(ctx);
  865. return false;
  866. }
  867. // Call the backend's buffer_init_tensor function
  868. ggml_backend_buffer_t buffer = tensor->buffer;
  869. if (buffer && buffer->iface.init_tensor) {
  870. buffer->iface.init_tensor(buffer, tensor);
  871. } else {
  872. GGML_LOG_ERROR("Null buffer for tensor passed to init_tensor function\n");
  873. }
  874. if (tensor->extra != nullptr) {
  875. // This pointer can either be passed around client/server, or probably better stored server-side and kept track of.
  876. // Currently unimplemented.
  877. GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n");
  878. ggml_free(ctx);
  879. return false;
  880. }
  881. ggml_free(ctx);
  882. return true;
  883. }
  884. bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
  885. struct ggml_init_params params {
  886. /*.mem_size =*/ ggml_tensor_overhead(),
  887. /*.mem_buffer =*/ NULL,
  888. /*.no_alloc =*/ true,
  889. };
  890. struct ggml_context * ctx = ggml_init(params);
  891. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  892. if (tensor == nullptr) {
  893. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  894. ggml_free(ctx);
  895. return false;
  896. }
  897. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
  898. // sanitize tensor->data
  899. {
  900. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  901. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  902. if (request.tensor.data + request.offset < p0 ||
  903. request.tensor.data + request.offset >= p1 ||
  904. request.size > (p1 - request.tensor.data - request.offset)) {
  905. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  906. }
  907. }
  908. response.resize(request.size, 0);
  909. ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
  910. ggml_free(ctx);
  911. return true;
  912. }
  913. bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response) {
  914. struct ggml_init_params params {
  915. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  916. /*.mem_buffer =*/ NULL,
  917. /*.no_alloc =*/ true,
  918. };
  919. struct ggml_context * ctx = ggml_init(params);
  920. ggml_tensor * src = deserialize_tensor(ctx, &request.src);
  921. ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
  922. if (src == nullptr || dst == nullptr) {
  923. GGML_LOG_ERROR("[%s] error deserializing tensors\n", __func__);
  924. ggml_free(ctx);
  925. return false;
  926. }
  927. uint64_t src_size = (uint64_t) ggml_nbytes(src);
  928. uint64_t dst_data = (uint64_t) dst->data;
  929. uint64_t dst_base = (uint64_t) ggml_backend_buffer_get_base(dst->buffer);
  930. uint64_t dst_buf_sz = (uint64_t) ggml_backend_buffer_get_size(dst->buffer);
  931. if (dst_data + src_size > dst_base + dst_buf_sz) {
  932. GGML_PRINT_DEBUG("[%s] out-of-bounds write in rpc_server::copy_tensor:\n"
  933. " write range : [0x%" PRIx64 ", 0x%" PRIx64 "]\n"
  934. " buffer base: [0x%" PRIx64 ", 0x%" PRIx64 "]\n",
  935. __func__,
  936. dst_data,
  937. dst_data + src_size,
  938. dst_base,
  939. dst_base + dst_buf_sz);
  940. ggml_free(ctx);
  941. return false;
  942. }
  943. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n",
  944. __func__, (void*) src->buffer, (void*) dst->buffer);
  945. response.result = ggml_backend_buffer_copy_tensor(src, dst);
  946. ggml_free(ctx);
  947. return true;
  948. }
  949. ggml_tensor * rpc_server::create_node(uint64_t id,
  950. struct ggml_context * ctx,
  951. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  952. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  953. if (id == 0) {
  954. return nullptr;
  955. }
  956. if (tensor_map.find(id) != tensor_map.end()) {
  957. return tensor_map[id];
  958. }
  959. const rpc_tensor * tensor = tensor_ptrs.at(id);
  960. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  961. if (result == nullptr) {
  962. return nullptr;
  963. }
  964. tensor_map[id] = result;
  965. for (int i = 0; i < GGML_MAX_SRC; i++) {
  966. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  967. }
  968. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  969. result->view_offs = tensor->view_offs;
  970. return result;
  971. }
  972. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
  973. // serialization format:
  974. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  975. if (input.size() < sizeof(uint32_t)) {
  976. return false;
  977. }
  978. uint32_t n_nodes;
  979. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  980. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  981. return false;
  982. }
  983. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  984. uint32_t n_tensors;
  985. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  986. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  987. return false;
  988. }
  989. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  990. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  991. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  992. struct ggml_init_params params = {
  993. /*.mem_size =*/ buf_size,
  994. /*.mem_buffer =*/ NULL,
  995. /*.no_alloc =*/ true,
  996. };
  997. struct ggml_context * ctx = ggml_init(params);
  998. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  999. graph->n_nodes = n_nodes;
  1000. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  1001. for (uint32_t i = 0; i < n_tensors; i++) {
  1002. tensor_ptrs[tensors[i].id] = &tensors[i];
  1003. }
  1004. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  1005. for (uint32_t i = 0; i < n_nodes; i++) {
  1006. int64_t id;
  1007. memcpy(&id, &nodes[i], sizeof(id));
  1008. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  1009. }
  1010. ggml_status status = ggml_backend_graph_compute(backend, graph);
  1011. response.result = status;
  1012. ggml_free(ctx);
  1013. return true;
  1014. }
  1015. rpc_server::~rpc_server() {
  1016. for (auto buffer : buffers) {
  1017. ggml_backend_buffer_free(buffer);
  1018. }
  1019. }
  1020. static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  1021. rpc_server server(backend);
  1022. while (true) {
  1023. uint8_t cmd;
  1024. if (!recv_data(sockfd, &cmd, 1)) {
  1025. break;
  1026. }
  1027. if (cmd >= RPC_CMD_COUNT) {
  1028. // fail fast if the command is invalid
  1029. fprintf(stderr, "Unknown command: %d\n", cmd);
  1030. break;
  1031. }
  1032. switch (cmd) {
  1033. case RPC_CMD_ALLOC_BUFFER: {
  1034. rpc_msg_alloc_buffer_req request;
  1035. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1036. return;
  1037. }
  1038. rpc_msg_alloc_buffer_rsp response;
  1039. server.alloc_buffer(request, response);
  1040. if (!send_msg(sockfd, &response, sizeof(response))) {
  1041. return;
  1042. }
  1043. break;
  1044. }
  1045. case RPC_CMD_GET_ALLOC_SIZE: {
  1046. rpc_msg_get_alloc_size_req request;
  1047. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1048. return;
  1049. }
  1050. rpc_msg_get_alloc_size_rsp response;
  1051. server.get_alloc_size(request, response);
  1052. if (!send_msg(sockfd, &response, sizeof(response))) {
  1053. return;
  1054. }
  1055. break;
  1056. }
  1057. case RPC_CMD_GET_ALIGNMENT: {
  1058. if (!recv_msg(sockfd, nullptr, 0)) {
  1059. return;
  1060. }
  1061. rpc_msg_get_alignment_rsp response;
  1062. server.get_alignment(response);
  1063. if (!send_msg(sockfd, &response, sizeof(response))) {
  1064. return;
  1065. }
  1066. break;
  1067. }
  1068. case RPC_CMD_GET_MAX_SIZE: {
  1069. if (!recv_msg(sockfd, nullptr, 0)) {
  1070. return;
  1071. }
  1072. rpc_msg_get_max_size_rsp response;
  1073. server.get_max_size(response);
  1074. if (!send_msg(sockfd, &response, sizeof(response))) {
  1075. return;
  1076. }
  1077. break;
  1078. }
  1079. case RPC_CMD_BUFFER_GET_BASE: {
  1080. rpc_msg_buffer_get_base_req request;
  1081. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1082. return;
  1083. }
  1084. rpc_msg_buffer_get_base_rsp response;
  1085. if (!server.buffer_get_base(request, response)) {
  1086. return;
  1087. }
  1088. if (!send_msg(sockfd, &response, sizeof(response))) {
  1089. return;
  1090. }
  1091. break;
  1092. }
  1093. case RPC_CMD_FREE_BUFFER: {
  1094. rpc_msg_free_buffer_req request;
  1095. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1096. return;
  1097. }
  1098. if (!server.free_buffer(request)) {
  1099. return;
  1100. }
  1101. if (!send_msg(sockfd, nullptr, 0)) {
  1102. return;
  1103. }
  1104. break;
  1105. }
  1106. case RPC_CMD_BUFFER_CLEAR: {
  1107. rpc_msg_buffer_clear_req request;
  1108. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1109. return;
  1110. }
  1111. if (!server.buffer_clear(request)) {
  1112. return;
  1113. }
  1114. if (!send_msg(sockfd, nullptr, 0)) {
  1115. return;
  1116. }
  1117. break;
  1118. }
  1119. case RPC_CMD_SET_TENSOR: {
  1120. std::vector<uint8_t> input;
  1121. if (!recv_msg(sockfd, input)) {
  1122. return;
  1123. }
  1124. if (!server.set_tensor(input)) {
  1125. return;
  1126. }
  1127. if (!send_msg(sockfd, nullptr, 0)) {
  1128. return;
  1129. }
  1130. break;
  1131. }
  1132. case RPC_CMD_INIT_TENSOR: {
  1133. rpc_msg_init_tensor_req request;
  1134. if (!recv_msg(sockfd, &request,sizeof(request))) {
  1135. return;
  1136. }
  1137. if (!server.init_tensor(request)) {
  1138. return;
  1139. }
  1140. if (!send_msg(sockfd, nullptr, 0)) {
  1141. return;
  1142. }
  1143. break;
  1144. }
  1145. case RPC_CMD_GET_TENSOR: {
  1146. rpc_msg_get_tensor_req request;
  1147. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1148. return;
  1149. }
  1150. std::vector<uint8_t> response;
  1151. if (!server.get_tensor(request, response)) {
  1152. return;
  1153. }
  1154. if (!send_msg(sockfd, response.data(), response.size())) {
  1155. return;
  1156. }
  1157. break;
  1158. }
  1159. case RPC_CMD_COPY_TENSOR: {
  1160. rpc_msg_copy_tensor_req request;
  1161. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1162. return;
  1163. }
  1164. rpc_msg_copy_tensor_rsp response;
  1165. if (!server.copy_tensor(request, response)) {
  1166. return;
  1167. }
  1168. if (!send_msg(sockfd, &response, sizeof(response))) {
  1169. return;
  1170. }
  1171. break;
  1172. }
  1173. case RPC_CMD_GRAPH_COMPUTE: {
  1174. std::vector<uint8_t> input;
  1175. if (!recv_msg(sockfd, input)) {
  1176. return;
  1177. }
  1178. rpc_msg_graph_compute_rsp response;
  1179. if (!server.graph_compute(input, response)) {
  1180. return;
  1181. }
  1182. if (!send_msg(sockfd, &response, sizeof(response))) {
  1183. return;
  1184. }
  1185. break;
  1186. }
  1187. case RPC_CMD_GET_DEVICE_MEMORY: {
  1188. if (!recv_msg(sockfd, nullptr, 0)) {
  1189. return;
  1190. }
  1191. rpc_msg_get_device_memory_rsp response;
  1192. response.free_mem = free_mem;
  1193. response.total_mem = total_mem;
  1194. if (!send_msg(sockfd, &response, sizeof(response))) {
  1195. return;
  1196. }
  1197. break;
  1198. }
  1199. default: {
  1200. fprintf(stderr, "Unknown command: %d\n", cmd);
  1201. return;
  1202. }
  1203. }
  1204. }
  1205. }
  1206. void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
  1207. std::string host;
  1208. int port;
  1209. if (!parse_endpoint(endpoint, host, port)) {
  1210. return;
  1211. }
  1212. #ifdef _WIN32
  1213. {
  1214. WSADATA wsaData;
  1215. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1216. if (res != 0) {
  1217. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1218. return;
  1219. }
  1220. }
  1221. #endif
  1222. auto server_socket = create_server_socket(host.c_str(), port);
  1223. if (server_socket == nullptr) {
  1224. fprintf(stderr, "Failed to create server socket\n");
  1225. return;
  1226. }
  1227. while (true) {
  1228. auto client_socket = socket_accept(server_socket->fd);
  1229. if (client_socket == nullptr) {
  1230. fprintf(stderr, "Failed to accept client connection\n");
  1231. return;
  1232. }
  1233. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  1234. fflush(stdout);
  1235. rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
  1236. printf("Client connection closed\n");
  1237. fflush(stdout);
  1238. }
  1239. #ifdef _WIN32
  1240. WSACleanup();
  1241. #endif
  1242. }
  1243. // device interface
  1244. struct ggml_backend_rpc_device_context {
  1245. std::string endpoint;
  1246. std::string name;
  1247. };
  1248. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1249. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1250. return ctx->name.c_str();
  1251. }
  1252. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1253. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1254. return ctx->name.c_str();
  1255. }
  1256. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1257. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1258. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
  1259. GGML_UNUSED(dev);
  1260. }
  1261. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1262. // TODO: obtain value from the server
  1263. return GGML_BACKEND_DEVICE_TYPE_GPU;
  1264. GGML_UNUSED(dev);
  1265. }
  1266. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1267. props->name = ggml_backend_rpc_device_get_name(dev);
  1268. props->description = ggml_backend_rpc_device_get_description(dev);
  1269. props->type = ggml_backend_rpc_device_get_type(dev);
  1270. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1271. props->caps = {
  1272. /* .async = */ false,
  1273. /* .host_buffer = */ false,
  1274. /* .buffer_from_host_ptr = */ false,
  1275. /* .events = */ false,
  1276. };
  1277. }
  1278. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1279. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1280. return ggml_backend_rpc_init(ctx->endpoint.c_str());
  1281. GGML_UNUSED(params);
  1282. }
  1283. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1284. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1285. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  1286. GGML_UNUSED(dev);
  1287. }
  1288. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1289. GGML_UNUSED(dev);
  1290. GGML_UNUSED(op);
  1291. //TODO: call the remote backend and cache the results
  1292. return true;
  1293. }
  1294. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1295. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1296. return false;
  1297. }
  1298. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1299. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1300. return buft_ctx->endpoint == dev_ctx->endpoint;
  1301. }
  1302. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1303. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1304. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1305. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1306. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1307. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1308. /* .init_backend = */ ggml_backend_rpc_device_init,
  1309. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1310. /* .get_host_buffer_type = */ NULL,
  1311. /* .buffer_from_host_ptr = */ NULL,
  1312. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1313. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1314. /* .offload_op = */ NULL,
  1315. /* .event_new = */ NULL,
  1316. /* .event_free = */ NULL,
  1317. /* .event_synchronize = */ NULL,
  1318. };
  1319. // backend reg interface
  1320. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1321. return "RPC";
  1322. GGML_UNUSED(reg);
  1323. }
  1324. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1325. return 0;
  1326. GGML_UNUSED(reg);
  1327. }
  1328. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1329. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
  1330. GGML_UNUSED(reg);
  1331. GGML_UNUSED(index);
  1332. }
  1333. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1334. if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
  1335. return (void *)ggml_backend_rpc_add_device;
  1336. }
  1337. return NULL;
  1338. GGML_UNUSED(reg);
  1339. }
  1340. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1341. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1342. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1343. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1344. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1345. };
  1346. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1347. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1348. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1349. /* .iface = */ ggml_backend_rpc_reg_i,
  1350. /* .context = */ NULL,
  1351. };
  1352. return &ggml_backend_rpc_reg;
  1353. }
  1354. ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
  1355. static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
  1356. static std::mutex mutex;
  1357. std::lock_guard<std::mutex> lock(mutex);
  1358. if (dev_map.find(endpoint) != dev_map.end()) {
  1359. return dev_map[endpoint];
  1360. }
  1361. ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
  1362. /* .endpoint = */ endpoint,
  1363. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  1364. };
  1365. ggml_backend_dev_t dev = new ggml_backend_device {
  1366. /* .iface = */ ggml_backend_rpc_device_i,
  1367. /* .reg = */ ggml_backend_rpc_reg(),
  1368. /* .context = */ ctx,
  1369. };
  1370. dev_map[endpoint] = dev;
  1371. return dev;
  1372. }
  1373. GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)