ggml.c 584 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #include <sys/types.h>
  78. #include <sys/stat.h>
  79. #include <unistd.h>
  80. #endif
  81. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  82. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  83. #ifndef __FMA__
  84. #define __FMA__
  85. #endif
  86. #ifndef __F16C__
  87. #define __F16C__
  88. #endif
  89. #ifndef __SSE3__
  90. #define __SSE3__
  91. #endif
  92. #endif
  93. #ifdef __HAIKU__
  94. #define static_assert(cond, msg) _Static_assert(cond, msg)
  95. #endif
  96. /*#define GGML_PERF*/
  97. #define GGML_DEBUG 0
  98. #define GGML_GELU_FP16
  99. #define GGML_GELU_QUICK_FP16
  100. #define GGML_SILU_FP16
  101. #define GGML_SOFT_MAX_UNROLL 4
  102. #define GGML_VEC_DOT_UNROLL 2
  103. //
  104. // logging
  105. //
  106. #if (GGML_DEBUG >= 1)
  107. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG(...)
  110. #endif
  111. #if (GGML_DEBUG >= 5)
  112. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  113. #else
  114. #define GGML_PRINT_DEBUG_5(...)
  115. #endif
  116. #if (GGML_DEBUG >= 10)
  117. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  118. #else
  119. #define GGML_PRINT_DEBUG_10(...)
  120. #endif
  121. #define GGML_PRINT(...) printf(__VA_ARGS__)
  122. #ifdef GGML_USE_ACCELERATE
  123. // uncomment to use vDSP for soft max computation
  124. // note: not sure if it is actually faster
  125. //#define GGML_SOFT_MAX_ACCELERATE
  126. #endif
  127. #if UINTPTR_MAX == 0xFFFFFFFF
  128. #define GGML_MEM_ALIGN 4
  129. #else
  130. #define GGML_MEM_ALIGN 16
  131. #endif
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. //
  152. // end of logging block
  153. //
  154. #if defined(_MSC_VER) || defined(__MINGW32__)
  155. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  156. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  157. #else
  158. inline static void* ggml_aligned_malloc(size_t size) {
  159. void* aligned_memory = NULL;
  160. #ifdef GGML_USE_METAL
  161. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  162. #else
  163. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  164. #endif
  165. if (result != 0) {
  166. // Handle allocation failure
  167. const char *error_desc = "unknown allocation error";
  168. switch (result) {
  169. case EINVAL:
  170. error_desc = "invalid alignment value";
  171. break;
  172. case ENOMEM:
  173. error_desc = "insufficient memory";
  174. break;
  175. }
  176. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  177. __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #include <cblas.h>
  209. #elif defined(GGML_USE_CUBLAS)
  210. #include "ggml-cuda.h"
  211. #elif defined(GGML_USE_CLBLAST)
  212. #include "ggml-opencl.h"
  213. #endif
  214. #undef MIN
  215. #undef MAX
  216. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  217. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  218. // floating point type used to accumulate sums
  219. typedef double ggml_float;
  220. // 16-bit float
  221. // on Arm, we use __fp16
  222. // on x86, we use uint16_t
  223. #ifdef __ARM_NEON
  224. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  225. //
  226. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  227. //
  228. #include <arm_neon.h>
  229. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  230. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  231. #define GGML_FP16_TO_FP32(x) ((float) (x))
  232. #define GGML_FP32_TO_FP16(x) (x)
  233. #else
  234. #ifdef __wasm_simd128__
  235. #include <wasm_simd128.h>
  236. #else
  237. #ifdef __POWER9_VECTOR__
  238. #include <altivec.h>
  239. #undef bool
  240. #define bool _Bool
  241. #else
  242. #if defined(_MSC_VER) || defined(__MINGW32__)
  243. #include <intrin.h>
  244. #else
  245. #if !defined(__riscv)
  246. #include <immintrin.h>
  247. #endif
  248. #endif
  249. #endif
  250. #endif
  251. #ifdef __F16C__
  252. #ifdef _MSC_VER
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  255. #else
  256. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  257. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  258. #endif
  259. #elif defined(__POWER9_VECTOR__)
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. /* the inline asm below is about 12% faster than the lookup method */
  263. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  264. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  265. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  266. register float f;
  267. register double d;
  268. __asm__(
  269. "mtfprd %0,%2\n"
  270. "xscvhpdp %0,%0\n"
  271. "frsp %1,%0\n" :
  272. /* temp */ "=d"(d),
  273. /* out */ "=f"(f):
  274. /* in */ "r"(h));
  275. return f;
  276. }
  277. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  278. register double d;
  279. register ggml_fp16_t r;
  280. __asm__( /* xscvdphp can work on double or single precision */
  281. "xscvdphp %0,%2\n"
  282. "mffprd %1,%0\n" :
  283. /* temp */ "=d"(d),
  284. /* out */ "=r"(r):
  285. /* in */ "f"(f));
  286. return r;
  287. }
  288. #else
  289. // FP16 <-> FP32
  290. // ref: https://github.com/Maratyszcza/FP16
  291. static inline float fp32_from_bits(uint32_t w) {
  292. union {
  293. uint32_t as_bits;
  294. float as_value;
  295. } fp32;
  296. fp32.as_bits = w;
  297. return fp32.as_value;
  298. }
  299. static inline uint32_t fp32_to_bits(float f) {
  300. union {
  301. float as_value;
  302. uint32_t as_bits;
  303. } fp32;
  304. fp32.as_value = f;
  305. return fp32.as_bits;
  306. }
  307. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  308. const uint32_t w = (uint32_t) h << 16;
  309. const uint32_t sign = w & UINT32_C(0x80000000);
  310. const uint32_t two_w = w + w;
  311. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  312. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  313. const float exp_scale = 0x1.0p-112f;
  314. #else
  315. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  316. #endif
  317. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  318. const uint32_t magic_mask = UINT32_C(126) << 23;
  319. const float magic_bias = 0.5f;
  320. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  321. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  322. const uint32_t result = sign |
  323. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  324. return fp32_from_bits(result);
  325. }
  326. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  327. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  328. const float scale_to_inf = 0x1.0p+112f;
  329. const float scale_to_zero = 0x1.0p-110f;
  330. #else
  331. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  332. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  333. #endif
  334. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  335. const uint32_t w = fp32_to_bits(f);
  336. const uint32_t shl1_w = w + w;
  337. const uint32_t sign = w & UINT32_C(0x80000000);
  338. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  339. if (bias < UINT32_C(0x71000000)) {
  340. bias = UINT32_C(0x71000000);
  341. }
  342. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  343. const uint32_t bits = fp32_to_bits(base);
  344. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  345. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  346. const uint32_t nonsign = exp_bits + mantissa_bits;
  347. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  348. }
  349. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  350. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  351. #endif // __F16C__
  352. #endif // __ARM_NEON
  353. //
  354. // global data
  355. //
  356. // precomputed gelu table for f16 (128 KB)
  357. static ggml_fp16_t table_gelu_f16[1 << 16];
  358. // precomputed quick gelu table for f16 (128 KB)
  359. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  360. // precomputed silu table for f16 (128 KB)
  361. static ggml_fp16_t table_silu_f16[1 << 16];
  362. // precomputed exp table for f16 (128 KB)
  363. static ggml_fp16_t table_exp_f16[1 << 16];
  364. // precomputed f32 table for f16 (256 KB)
  365. static float table_f32_f16[1 << 16];
  366. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  367. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  368. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  369. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  370. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  371. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  372. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  373. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  374. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  375. // precomputed tables for expanding 8bits to 8 bytes:
  376. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  377. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  378. #endif
  379. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  380. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  381. // This is also true for POWER9.
  382. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  383. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  384. uint16_t s;
  385. memcpy(&s, &f, sizeof(uint16_t));
  386. return table_f32_f16[s];
  387. }
  388. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  389. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  390. #endif
  391. // note: do not use these inside ggml.c
  392. // these are meant to be used via the ggml.h API
  393. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  394. return (float) GGML_FP16_TO_FP32(x);
  395. }
  396. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  397. return GGML_FP32_TO_FP16(x);
  398. }
  399. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  400. for (int i = 0; i < n; i++) {
  401. y[i] = GGML_FP16_TO_FP32(x[i]);
  402. }
  403. }
  404. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  405. int i = 0;
  406. #if defined(__F16C__)
  407. for (; i + 7 < n; i += 8) {
  408. __m256 x_vec = _mm256_loadu_ps(x + i);
  409. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  410. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  411. }
  412. for(; i + 3 < n; i += 4) {
  413. __m128 x_vec = _mm_loadu_ps(x + i);
  414. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  415. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  416. }
  417. #endif
  418. for (; i < n; i++) {
  419. y[i] = GGML_FP32_TO_FP16(x[i]);
  420. }
  421. }
  422. //
  423. // timing
  424. //
  425. #if defined(_MSC_VER) || defined(__MINGW32__)
  426. static int64_t timer_freq, timer_start;
  427. void ggml_time_init(void) {
  428. LARGE_INTEGER t;
  429. QueryPerformanceFrequency(&t);
  430. timer_freq = t.QuadPart;
  431. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  432. // and the uptime is high enough.
  433. // We subtract the program start time to reduce the likelihood of that happening.
  434. QueryPerformanceCounter(&t);
  435. timer_start = t.QuadPart;
  436. }
  437. int64_t ggml_time_ms(void) {
  438. LARGE_INTEGER t;
  439. QueryPerformanceCounter(&t);
  440. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  441. }
  442. int64_t ggml_time_us(void) {
  443. LARGE_INTEGER t;
  444. QueryPerformanceCounter(&t);
  445. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  446. }
  447. #else
  448. void ggml_time_init(void) {}
  449. int64_t ggml_time_ms(void) {
  450. struct timespec ts;
  451. clock_gettime(CLOCK_MONOTONIC, &ts);
  452. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  453. }
  454. int64_t ggml_time_us(void) {
  455. struct timespec ts;
  456. clock_gettime(CLOCK_MONOTONIC, &ts);
  457. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  458. }
  459. #endif
  460. int64_t ggml_cycles(void) {
  461. return clock();
  462. }
  463. int64_t ggml_cycles_per_ms(void) {
  464. return CLOCKS_PER_SEC/1000;
  465. }
  466. #ifdef GGML_PERF
  467. #define ggml_perf_time_ms() ggml_time_ms()
  468. #define ggml_perf_time_us() ggml_time_us()
  469. #define ggml_perf_cycles() ggml_cycles()
  470. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  471. #else
  472. #define ggml_perf_time_ms() 0
  473. #define ggml_perf_time_us() 0
  474. #define ggml_perf_cycles() 0
  475. #define ggml_perf_cycles_per_ms() 0
  476. #endif
  477. //
  478. // cache line
  479. //
  480. #if defined(__cpp_lib_hardware_interference_size)
  481. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  482. #else
  483. #if defined(__POWER9_VECTOR__)
  484. #define CACHE_LINE_SIZE 128
  485. #else
  486. #define CACHE_LINE_SIZE 64
  487. #endif
  488. #endif
  489. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  490. //
  491. // quantization
  492. //
  493. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  494. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  495. // multiply int8_t, add results pairwise twice
  496. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  497. // Get absolute values of x vectors
  498. const __m128i ax = _mm_sign_epi8(x, x);
  499. // Sign the values of the y vectors
  500. const __m128i sy = _mm_sign_epi8(y, x);
  501. // Perform multiplication and create 16-bit values
  502. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  503. const __m128i ones = _mm_set1_epi16(1);
  504. return _mm_madd_epi16(ones, dot);
  505. }
  506. #if __AVX__ || __AVX2__ || __AVX512F__
  507. // horizontally add 8 floats
  508. static inline float hsum_float_8(const __m256 x) {
  509. __m128 res = _mm256_extractf128_ps(x, 1);
  510. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  511. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  512. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  513. return _mm_cvtss_f32(res);
  514. }
  515. // horizontally add 8 int32_t
  516. static inline int hsum_i32_8(const __m256i a) {
  517. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  518. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  519. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  520. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  521. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  522. }
  523. // horizontally add 4 int32_t
  524. static inline int hsum_i32_4(const __m128i a) {
  525. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  526. const __m128i sum64 = _mm_add_epi32(hi64, a);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. #if defined(__AVX2__) || defined(__AVX512F__)
  531. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  532. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  533. uint32_t x32;
  534. memcpy(&x32, x, sizeof(uint32_t));
  535. const __m256i shuf_mask = _mm256_set_epi64x(
  536. 0x0303030303030303, 0x0202020202020202,
  537. 0x0101010101010101, 0x0000000000000000);
  538. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  539. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  540. bytes = _mm256_or_si256(bytes, bit_mask);
  541. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  542. }
  543. // Unpack 32 4-bit fields into 32 bytes
  544. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  545. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  546. {
  547. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  548. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  549. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  550. return _mm256_and_si256(lowMask, bytes);
  551. }
  552. // add int16_t pairwise and return as float vector
  553. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  554. const __m256i ones = _mm256_set1_epi16(1);
  555. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  556. return _mm256_cvtepi32_ps(summed_pairs);
  557. }
  558. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  559. #if __AVXVNNI__
  560. const __m256i zero = _mm256_setzero_si256();
  561. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  562. return _mm256_cvtepi32_ps(summed_pairs);
  563. #else
  564. // Perform multiplication and create 16-bit values
  565. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  566. return sum_i16_pairs_float(dot);
  567. #endif
  568. }
  569. // multiply int8_t, add results pairwise twice and return as float vector
  570. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  571. #if __AVXVNNIINT8__
  572. const __m256i zero = _mm256_setzero_si256();
  573. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  574. return _mm256_cvtepi32_ps(summed_pairs);
  575. #else
  576. // Get absolute values of x vectors
  577. const __m256i ax = _mm256_sign_epi8(x, x);
  578. // Sign the values of the y vectors
  579. const __m256i sy = _mm256_sign_epi8(y, x);
  580. return mul_sum_us8_pairs_float(ax, sy);
  581. #endif
  582. }
  583. static inline __m128i packNibbles( __m256i bytes )
  584. {
  585. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  586. #if __AVX512F__
  587. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  588. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  589. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  590. #else
  591. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  592. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  593. __m256i low = _mm256_and_si256( lowByte, bytes );
  594. high = _mm256_srli_epi16( high, 4 );
  595. bytes = _mm256_or_si256( low, high );
  596. // Compress uint16_t lanes into bytes
  597. __m128i r0 = _mm256_castsi256_si128( bytes );
  598. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  599. return _mm_packus_epi16( r0, r1 );
  600. #endif
  601. }
  602. #elif defined(__AVX__)
  603. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  604. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  605. uint32_t x32;
  606. memcpy(&x32, x, sizeof(uint32_t));
  607. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  608. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  609. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  610. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  611. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  612. bytesl = _mm_or_si128(bytesl, bit_mask);
  613. bytesh = _mm_or_si128(bytesh, bit_mask);
  614. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  615. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  616. return MM256_SET_M128I(bytesh, bytesl);
  617. }
  618. // Unpack 32 4-bit fields into 32 bytes
  619. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  620. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  621. {
  622. // Load 16 bytes from memory
  623. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  624. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  625. const __m128i lowMask = _mm_set1_epi8(0xF);
  626. tmpl = _mm_and_si128(lowMask, tmpl);
  627. tmph = _mm_and_si128(lowMask, tmph);
  628. return MM256_SET_M128I(tmph, tmpl);
  629. }
  630. // add int16_t pairwise and return as float vector
  631. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  632. const __m128i ones = _mm_set1_epi16(1);
  633. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  634. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  635. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  636. return _mm256_cvtepi32_ps(summed_pairs);
  637. }
  638. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  639. const __m128i axl = _mm256_castsi256_si128(ax);
  640. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  641. const __m128i syl = _mm256_castsi256_si128(sy);
  642. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  643. // Perform multiplication and create 16-bit values
  644. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  645. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  646. return sum_i16_pairs_float(doth, dotl);
  647. }
  648. // multiply int8_t, add results pairwise twice and return as float vector
  649. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  650. const __m128i xl = _mm256_castsi256_si128(x);
  651. const __m128i xh = _mm256_extractf128_si256(x, 1);
  652. const __m128i yl = _mm256_castsi256_si128(y);
  653. const __m128i yh = _mm256_extractf128_si256(y, 1);
  654. // Get absolute values of x vectors
  655. const __m128i axl = _mm_sign_epi8(xl, xl);
  656. const __m128i axh = _mm_sign_epi8(xh, xh);
  657. // Sign the values of the y vectors
  658. const __m128i syl = _mm_sign_epi8(yl, xl);
  659. const __m128i syh = _mm_sign_epi8(yh, xh);
  660. // Perform multiplication and create 16-bit values
  661. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  662. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  663. return sum_i16_pairs_float(doth, dotl);
  664. }
  665. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  666. {
  667. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  668. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  669. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  670. __m128i low = _mm_and_si128( lowByte, bytes1 );
  671. high = _mm_srli_epi16( high, 4 );
  672. bytes1 = _mm_or_si128( low, high );
  673. high = _mm_andnot_si128( lowByte, bytes2 );
  674. low = _mm_and_si128( lowByte, bytes2 );
  675. high = _mm_srli_epi16( high, 4 );
  676. bytes2 = _mm_or_si128( low, high );
  677. return _mm_packus_epi16( bytes1, bytes2);
  678. }
  679. #endif
  680. #elif defined(__SSSE3__)
  681. // horizontally add 4x4 floats
  682. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  683. __m128 res_0 =_mm_hadd_ps(a, b);
  684. __m128 res_1 =_mm_hadd_ps(c, d);
  685. __m128 res =_mm_hadd_ps(res_0, res_1);
  686. res =_mm_hadd_ps(res, res);
  687. res =_mm_hadd_ps(res, res);
  688. return _mm_cvtss_f32(res);
  689. }
  690. #endif // __AVX__ || __AVX2__ || __AVX512F__
  691. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  692. #if defined(__ARM_NEON)
  693. #if !defined(__aarch64__)
  694. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  695. return
  696. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  697. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  698. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  699. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  700. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  701. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  702. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  703. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  704. }
  705. inline static int16_t vaddvq_s8(int8x16_t v) {
  706. return
  707. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  708. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  709. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  710. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  711. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  712. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  713. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  714. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  715. }
  716. inline static int32_t vaddvq_s16(int16x8_t v) {
  717. return
  718. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  719. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  720. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  721. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  722. }
  723. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  724. return
  725. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  726. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  727. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  728. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  729. }
  730. inline static int32_t vaddvq_s32(int32x4_t v) {
  731. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  732. }
  733. inline static float vaddvq_f32(float32x4_t v) {
  734. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  735. }
  736. inline static float vminvq_f32(float32x4_t v) {
  737. return
  738. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  739. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  740. }
  741. inline static float vmaxvq_f32(float32x4_t v) {
  742. return
  743. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  744. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  745. }
  746. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  747. int32x4_t res;
  748. res[0] = roundf(vgetq_lane_f32(v, 0));
  749. res[1] = roundf(vgetq_lane_f32(v, 1));
  750. res[2] = roundf(vgetq_lane_f32(v, 2));
  751. res[3] = roundf(vgetq_lane_f32(v, 3));
  752. return res;
  753. }
  754. #endif
  755. #endif
  756. #define QK4_0 32
  757. typedef struct {
  758. ggml_fp16_t d; // delta
  759. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  760. } block_q4_0;
  761. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  762. #define QK4_1 32
  763. typedef struct {
  764. ggml_fp16_t d; // delta
  765. ggml_fp16_t m; // min
  766. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  767. } block_q4_1;
  768. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  769. #define QK5_0 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. uint8_t qh[4]; // 5-th bit of quants
  773. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  774. } block_q5_0;
  775. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  776. #define QK5_1 32
  777. typedef struct {
  778. ggml_fp16_t d; // delta
  779. ggml_fp16_t m; // min
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  782. } block_q5_1;
  783. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  784. #define QK8_0 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. int8_t qs[QK8_0]; // quants
  788. } block_q8_0;
  789. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  790. #define QK8_1 32
  791. typedef struct {
  792. float d; // delta
  793. float s; // d * sum(qs[i])
  794. int8_t qs[QK8_1]; // quants
  795. } block_q8_1;
  796. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  797. // reference implementation for deterministic creation of model files
  798. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  799. static const int qk = QK4_0;
  800. assert(k % qk == 0);
  801. const int nb = k / qk;
  802. for (int i = 0; i < nb; i++) {
  803. float amax = 0.0f; // absolute max
  804. float max = 0.0f;
  805. for (int j = 0; j < qk; j++) {
  806. const float v = x[i*qk + j];
  807. if (amax < fabsf(v)) {
  808. amax = fabsf(v);
  809. max = v;
  810. }
  811. }
  812. const float d = max / -8;
  813. const float id = d ? 1.0f/d : 0.0f;
  814. y[i].d = GGML_FP32_TO_FP16(d);
  815. for (int j = 0; j < qk/2; ++j) {
  816. const float x0 = x[i*qk + 0 + j]*id;
  817. const float x1 = x[i*qk + qk/2 + j]*id;
  818. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  819. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  820. y[i].qs[j] = xi0;
  821. y[i].qs[j] |= xi1 << 4;
  822. }
  823. }
  824. }
  825. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  826. quantize_row_q4_0_reference(x, y, k);
  827. }
  828. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  829. const int qk = QK4_1;
  830. assert(k % qk == 0);
  831. const int nb = k / qk;
  832. for (int i = 0; i < nb; i++) {
  833. float min = FLT_MAX;
  834. float max = -FLT_MAX;
  835. for (int j = 0; j < qk; j++) {
  836. const float v = x[i*qk + j];
  837. if (v < min) min = v;
  838. if (v > max) max = v;
  839. }
  840. const float d = (max - min) / ((1 << 4) - 1);
  841. const float id = d ? 1.0f/d : 0.0f;
  842. y[i].d = GGML_FP32_TO_FP16(d);
  843. y[i].m = GGML_FP32_TO_FP16(min);
  844. for (int j = 0; j < qk/2; ++j) {
  845. const float x0 = (x[i*qk + 0 + j] - min)*id;
  846. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  847. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  848. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  849. y[i].qs[j] = xi0;
  850. y[i].qs[j] |= xi1 << 4;
  851. }
  852. }
  853. }
  854. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  855. quantize_row_q4_1_reference(x, y, k);
  856. }
  857. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  858. static const int qk = QK5_0;
  859. assert(k % qk == 0);
  860. const int nb = k / qk;
  861. for (int i = 0; i < nb; i++) {
  862. float amax = 0.0f; // absolute max
  863. float max = 0.0f;
  864. for (int j = 0; j < qk; j++) {
  865. const float v = x[i*qk + j];
  866. if (amax < fabsf(v)) {
  867. amax = fabsf(v);
  868. max = v;
  869. }
  870. }
  871. const float d = max / -16;
  872. const float id = d ? 1.0f/d : 0.0f;
  873. y[i].d = GGML_FP32_TO_FP16(d);
  874. uint32_t qh = 0;
  875. for (int j = 0; j < qk/2; ++j) {
  876. const float x0 = x[i*qk + 0 + j]*id;
  877. const float x1 = x[i*qk + qk/2 + j]*id;
  878. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  879. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  880. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  881. // get the 5-th bit and store it in qh at the right position
  882. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  883. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  884. }
  885. memcpy(&y[i].qh, &qh, sizeof(qh));
  886. }
  887. }
  888. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  889. quantize_row_q5_0_reference(x, y, k);
  890. }
  891. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  892. const int qk = QK5_1;
  893. assert(k % qk == 0);
  894. const int nb = k / qk;
  895. for (int i = 0; i < nb; i++) {
  896. float min = FLT_MAX;
  897. float max = -FLT_MAX;
  898. for (int j = 0; j < qk; j++) {
  899. const float v = x[i*qk + j];
  900. if (v < min) min = v;
  901. if (v > max) max = v;
  902. }
  903. const float d = (max - min) / ((1 << 5) - 1);
  904. const float id = d ? 1.0f/d : 0.0f;
  905. y[i].d = GGML_FP32_TO_FP16(d);
  906. y[i].m = GGML_FP32_TO_FP16(min);
  907. uint32_t qh = 0;
  908. for (int j = 0; j < qk/2; ++j) {
  909. const float x0 = (x[i*qk + 0 + j] - min)*id;
  910. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  911. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  912. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  913. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  914. // get the 5-th bit and store it in qh at the right position
  915. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  916. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  917. }
  918. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  919. }
  920. }
  921. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  922. quantize_row_q5_1_reference(x, y, k);
  923. }
  924. // reference implementation for deterministic creation of model files
  925. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  926. assert(k % QK8_0 == 0);
  927. const int nb = k / QK8_0;
  928. for (int i = 0; i < nb; i++) {
  929. float amax = 0.0f; // absolute max
  930. for (int j = 0; j < QK8_0; j++) {
  931. const float v = x[i*QK8_0 + j];
  932. amax = MAX(amax, fabsf(v));
  933. }
  934. const float d = amax / ((1 << 7) - 1);
  935. const float id = d ? 1.0f/d : 0.0f;
  936. y[i].d = GGML_FP32_TO_FP16(d);
  937. for (int j = 0; j < QK8_0; ++j) {
  938. const float x0 = x[i*QK8_0 + j]*id;
  939. y[i].qs[j] = roundf(x0);
  940. }
  941. }
  942. }
  943. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  944. assert(QK8_0 == 32);
  945. assert(k % QK8_0 == 0);
  946. const int nb = k / QK8_0;
  947. block_q8_0 * restrict y = vy;
  948. #if defined(__ARM_NEON)
  949. for (int i = 0; i < nb; i++) {
  950. float32x4_t srcv [8];
  951. float32x4_t asrcv[8];
  952. float32x4_t amaxv[8];
  953. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  954. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  955. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  956. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  957. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  958. const float amax = vmaxvq_f32(amaxv[0]);
  959. const float d = amax / ((1 << 7) - 1);
  960. const float id = d ? 1.0f/d : 0.0f;
  961. y[i].d = GGML_FP32_TO_FP16(d);
  962. for (int j = 0; j < 8; j++) {
  963. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  964. const int32x4_t vi = vcvtnq_s32_f32(v);
  965. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  966. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  967. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  968. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  969. }
  970. }
  971. #elif defined(__wasm_simd128__)
  972. for (int i = 0; i < nb; i++) {
  973. v128_t srcv [8];
  974. v128_t asrcv[8];
  975. v128_t amaxv[8];
  976. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  977. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  978. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  979. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  980. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  981. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  982. wasm_f32x4_extract_lane(amaxv[0], 1)),
  983. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  984. wasm_f32x4_extract_lane(amaxv[0], 3)));
  985. const float d = amax / ((1 << 7) - 1);
  986. const float id = d ? 1.0f/d : 0.0f;
  987. y[i].d = GGML_FP32_TO_FP16(d);
  988. for (int j = 0; j < 8; j++) {
  989. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  990. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  991. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  992. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  993. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  994. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  995. }
  996. }
  997. #elif defined(__AVX2__) || defined(__AVX__)
  998. for (int i = 0; i < nb; i++) {
  999. // Load elements into 4 AVX vectors
  1000. __m256 v0 = _mm256_loadu_ps( x );
  1001. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1002. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1003. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1004. x += 32;
  1005. // Compute max(abs(e)) for the block
  1006. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1007. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1008. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1009. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1010. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1011. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1012. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1013. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1014. const float maxScalar = _mm_cvtss_f32( max4 );
  1015. // Quantize these floats
  1016. const float d = maxScalar / 127.f;
  1017. y[i].d = GGML_FP32_TO_FP16(d);
  1018. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1019. const __m256 mul = _mm256_set1_ps( id );
  1020. // Apply the multiplier
  1021. v0 = _mm256_mul_ps( v0, mul );
  1022. v1 = _mm256_mul_ps( v1, mul );
  1023. v2 = _mm256_mul_ps( v2, mul );
  1024. v3 = _mm256_mul_ps( v3, mul );
  1025. // Round to nearest integer
  1026. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1027. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1028. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1029. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1030. // Convert floats to integers
  1031. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1032. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1033. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1034. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1035. #if defined(__AVX2__)
  1036. // Convert int32 to int16
  1037. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1038. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1039. // Convert int16 to int8
  1040. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1041. // We got our precious signed bytes, but the order is now wrong
  1042. // These AVX2 pack instructions process 16-byte pieces independently
  1043. // The following instruction is fixing the order
  1044. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1045. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1046. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1047. #else
  1048. // Since we don't have in AVX some necessary functions,
  1049. // we split the registers in half and call AVX2 analogs from SSE
  1050. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1051. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1052. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1053. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1054. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1055. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1056. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1057. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1058. // Convert int32 to int16
  1059. ni0 = _mm_packs_epi32( ni0, ni1 );
  1060. ni2 = _mm_packs_epi32( ni2, ni3 );
  1061. ni4 = _mm_packs_epi32( ni4, ni5 );
  1062. ni6 = _mm_packs_epi32( ni6, ni7 );
  1063. // Convert int16 to int8
  1064. ni0 = _mm_packs_epi16( ni0, ni2 );
  1065. ni4 = _mm_packs_epi16( ni4, ni6 );
  1066. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1067. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1068. #endif
  1069. }
  1070. #else
  1071. // scalar
  1072. quantize_row_q8_0_reference(x, y, k);
  1073. #endif
  1074. }
  1075. // reference implementation for deterministic creation of model files
  1076. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1077. assert(QK8_1 == 32);
  1078. assert(k % QK8_1 == 0);
  1079. const int nb = k / QK8_1;
  1080. for (int i = 0; i < nb; i++) {
  1081. float amax = 0.0f; // absolute max
  1082. for (int j = 0; j < QK8_1; j++) {
  1083. const float v = x[i*QK8_1 + j];
  1084. amax = MAX(amax, fabsf(v));
  1085. }
  1086. const float d = amax / ((1 << 7) - 1);
  1087. const float id = d ? 1.0f/d : 0.0f;
  1088. y[i].d = d;
  1089. int sum = 0;
  1090. for (int j = 0; j < QK8_1/2; ++j) {
  1091. const float v0 = x[i*QK8_1 + j]*id;
  1092. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1093. y[i].qs[ j] = roundf(v0);
  1094. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1095. sum += y[i].qs[ j];
  1096. sum += y[i].qs[QK8_1/2 + j];
  1097. }
  1098. y[i].s = sum*d;
  1099. }
  1100. }
  1101. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1102. assert(k % QK8_1 == 0);
  1103. const int nb = k / QK8_1;
  1104. block_q8_1 * restrict y = vy;
  1105. #if defined(__ARM_NEON)
  1106. for (int i = 0; i < nb; i++) {
  1107. float32x4_t srcv [8];
  1108. float32x4_t asrcv[8];
  1109. float32x4_t amaxv[8];
  1110. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1111. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1112. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1113. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1114. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1115. const float amax = vmaxvq_f32(amaxv[0]);
  1116. const float d = amax / ((1 << 7) - 1);
  1117. const float id = d ? 1.0f/d : 0.0f;
  1118. y[i].d = d;
  1119. int32x4_t accv = vdupq_n_s32(0);
  1120. for (int j = 0; j < 8; j++) {
  1121. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1122. const int32x4_t vi = vcvtnq_s32_f32(v);
  1123. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1124. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1125. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1126. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1127. accv = vaddq_s32(accv, vi);
  1128. }
  1129. y[i].s = d * vaddvq_s32(accv);
  1130. }
  1131. #elif defined(__wasm_simd128__)
  1132. for (int i = 0; i < nb; i++) {
  1133. v128_t srcv [8];
  1134. v128_t asrcv[8];
  1135. v128_t amaxv[8];
  1136. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1137. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1138. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1139. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1140. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1141. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1142. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1143. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1144. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1145. const float d = amax / ((1 << 7) - 1);
  1146. const float id = d ? 1.0f/d : 0.0f;
  1147. y[i].d = d;
  1148. v128_t accv = wasm_i32x4_splat(0);
  1149. for (int j = 0; j < 8; j++) {
  1150. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1151. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1152. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1153. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1154. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1155. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1156. accv = wasm_i32x4_add(accv, vi);
  1157. }
  1158. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1159. wasm_i32x4_extract_lane(accv, 1) +
  1160. wasm_i32x4_extract_lane(accv, 2) +
  1161. wasm_i32x4_extract_lane(accv, 3));
  1162. }
  1163. #elif defined(__AVX2__) || defined(__AVX__)
  1164. for (int i = 0; i < nb; i++) {
  1165. // Load elements into 4 AVX vectors
  1166. __m256 v0 = _mm256_loadu_ps( x );
  1167. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1168. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1169. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1170. x += 32;
  1171. // Compute max(abs(e)) for the block
  1172. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1173. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1174. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1175. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1176. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1177. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1178. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1179. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1180. const float maxScalar = _mm_cvtss_f32( max4 );
  1181. // Quantize these floats
  1182. const float d = maxScalar / 127.f;
  1183. y[i].d = d;
  1184. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1185. const __m256 mul = _mm256_set1_ps( id );
  1186. // Apply the multiplier
  1187. v0 = _mm256_mul_ps( v0, mul );
  1188. v1 = _mm256_mul_ps( v1, mul );
  1189. v2 = _mm256_mul_ps( v2, mul );
  1190. v3 = _mm256_mul_ps( v3, mul );
  1191. // Round to nearest integer
  1192. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1193. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1194. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1195. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1196. // Convert floats to integers
  1197. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1198. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1199. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1200. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1201. #if defined(__AVX2__)
  1202. // Compute the sum of the quants and set y[i].s
  1203. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1204. // Convert int32 to int16
  1205. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1206. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1207. // Convert int16 to int8
  1208. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1209. // We got our precious signed bytes, but the order is now wrong
  1210. // These AVX2 pack instructions process 16-byte pieces independently
  1211. // The following instruction is fixing the order
  1212. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1213. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1214. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1215. #else
  1216. // Since we don't have in AVX some necessary functions,
  1217. // we split the registers in half and call AVX2 analogs from SSE
  1218. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1219. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1220. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1221. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1222. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1223. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1224. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1225. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1226. // Compute the sum of the quants and set y[i].s
  1227. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1228. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1229. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1230. // Convert int32 to int16
  1231. ni0 = _mm_packs_epi32( ni0, ni1 );
  1232. ni2 = _mm_packs_epi32( ni2, ni3 );
  1233. ni4 = _mm_packs_epi32( ni4, ni5 );
  1234. ni6 = _mm_packs_epi32( ni6, ni7 );
  1235. // Convert int16 to int8
  1236. ni0 = _mm_packs_epi16( ni0, ni2 );
  1237. ni4 = _mm_packs_epi16( ni4, ni6 );
  1238. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1239. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1240. #endif
  1241. }
  1242. #else
  1243. // scalar
  1244. quantize_row_q8_1_reference(x, y, k);
  1245. #endif
  1246. }
  1247. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1248. static const int qk = QK4_0;
  1249. assert(k % qk == 0);
  1250. const int nb = k / qk;
  1251. for (int i = 0; i < nb; i++) {
  1252. const float d = GGML_FP16_TO_FP32(x[i].d);
  1253. for (int j = 0; j < qk/2; ++j) {
  1254. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1255. const int x1 = (x[i].qs[j] >> 4) - 8;
  1256. y[i*qk + j + 0 ] = x0*d;
  1257. y[i*qk + j + qk/2] = x1*d;
  1258. }
  1259. }
  1260. }
  1261. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1262. static const int qk = QK4_1;
  1263. assert(k % qk == 0);
  1264. const int nb = k / qk;
  1265. for (int i = 0; i < nb; i++) {
  1266. const float d = GGML_FP16_TO_FP32(x[i].d);
  1267. const float m = GGML_FP16_TO_FP32(x[i].m);
  1268. for (int j = 0; j < qk/2; ++j) {
  1269. const int x0 = (x[i].qs[j] & 0x0F);
  1270. const int x1 = (x[i].qs[j] >> 4);
  1271. y[i*qk + j + 0 ] = x0*d + m;
  1272. y[i*qk + j + qk/2] = x1*d + m;
  1273. }
  1274. }
  1275. }
  1276. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1277. static const int qk = QK5_0;
  1278. assert(k % qk == 0);
  1279. const int nb = k / qk;
  1280. for (int i = 0; i < nb; i++) {
  1281. const float d = GGML_FP16_TO_FP32(x[i].d);
  1282. uint32_t qh;
  1283. memcpy(&qh, x[i].qh, sizeof(qh));
  1284. for (int j = 0; j < qk/2; ++j) {
  1285. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1286. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1287. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1288. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1289. y[i*qk + j + 0 ] = x0*d;
  1290. y[i*qk + j + qk/2] = x1*d;
  1291. }
  1292. }
  1293. }
  1294. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1295. static const int qk = QK5_1;
  1296. assert(k % qk == 0);
  1297. const int nb = k / qk;
  1298. for (int i = 0; i < nb; i++) {
  1299. const float d = GGML_FP16_TO_FP32(x[i].d);
  1300. const float m = GGML_FP16_TO_FP32(x[i].m);
  1301. uint32_t qh;
  1302. memcpy(&qh, x[i].qh, sizeof(qh));
  1303. for (int j = 0; j < qk/2; ++j) {
  1304. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1305. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1306. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1307. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1308. y[i*qk + j + 0 ] = x0*d + m;
  1309. y[i*qk + j + qk/2] = x1*d + m;
  1310. }
  1311. }
  1312. }
  1313. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1314. static const int qk = QK8_0;
  1315. assert(k % qk == 0);
  1316. const int nb = k / qk;
  1317. const block_q8_0 * restrict x = vx;
  1318. for (int i = 0; i < nb; i++) {
  1319. const float d = GGML_FP16_TO_FP32(x[i].d);
  1320. for (int j = 0; j < qk; ++j) {
  1321. y[i*qk + j] = x[i].qs[j]*d;
  1322. }
  1323. }
  1324. }
  1325. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1326. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1327. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1328. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1329. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1330. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1331. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1332. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1333. [GGML_TYPE_F32] = {
  1334. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1335. .vec_dot_type = GGML_TYPE_F32,
  1336. },
  1337. [GGML_TYPE_F16] = {
  1338. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1339. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1340. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1341. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1342. .vec_dot_type = GGML_TYPE_F16,
  1343. },
  1344. [GGML_TYPE_Q4_0] = {
  1345. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1346. .from_float = quantize_row_q4_0,
  1347. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1348. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1349. .vec_dot_type = GGML_TYPE_Q8_0,
  1350. },
  1351. [GGML_TYPE_Q4_1] = {
  1352. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1353. .from_float = quantize_row_q4_1,
  1354. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1355. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1356. .vec_dot_type = GGML_TYPE_Q8_1,
  1357. },
  1358. [GGML_TYPE_Q5_0] = {
  1359. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1360. .from_float = quantize_row_q5_0,
  1361. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1362. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1363. .vec_dot_type = GGML_TYPE_Q8_0,
  1364. },
  1365. [GGML_TYPE_Q5_1] = {
  1366. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1367. .from_float = quantize_row_q5_1,
  1368. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1369. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1370. .vec_dot_type = GGML_TYPE_Q8_1,
  1371. },
  1372. [GGML_TYPE_Q8_0] = {
  1373. .to_float = dequantize_row_q8_0,
  1374. .from_float = quantize_row_q8_0,
  1375. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1376. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1377. .vec_dot_type = GGML_TYPE_Q8_0,
  1378. },
  1379. [GGML_TYPE_Q8_1] = {
  1380. .from_float = quantize_row_q8_1,
  1381. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1382. .vec_dot_type = GGML_TYPE_Q8_1,
  1383. },
  1384. #ifdef GGML_USE_K_QUANTS
  1385. [GGML_TYPE_Q2_K] = {
  1386. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1387. .from_float = quantize_row_q2_K,
  1388. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1389. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1390. .vec_dot_type = GGML_TYPE_Q8_K,
  1391. },
  1392. [GGML_TYPE_Q3_K] = {
  1393. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1394. .from_float = quantize_row_q3_K,
  1395. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1396. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1397. .vec_dot_type = GGML_TYPE_Q8_K,
  1398. },
  1399. [GGML_TYPE_Q4_K] = {
  1400. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1401. .from_float = quantize_row_q4_K,
  1402. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1403. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1404. .vec_dot_type = GGML_TYPE_Q8_K,
  1405. },
  1406. [GGML_TYPE_Q5_K] = {
  1407. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1408. .from_float = quantize_row_q5_K,
  1409. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1410. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1411. .vec_dot_type = GGML_TYPE_Q8_K,
  1412. },
  1413. [GGML_TYPE_Q6_K] = {
  1414. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1415. .from_float = quantize_row_q6_K,
  1416. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1417. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1418. .vec_dot_type = GGML_TYPE_Q8_K,
  1419. },
  1420. [GGML_TYPE_Q8_K] = {
  1421. .from_float = quantize_row_q8_K,
  1422. }
  1423. #endif
  1424. };
  1425. // For internal test use
  1426. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1427. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1428. return type_traits[i];
  1429. }
  1430. //
  1431. // simd mappings
  1432. //
  1433. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1434. // we then implement the fundamental computation operations below using only these macros
  1435. // adding support for new architectures requires to define the corresponding SIMD macros
  1436. //
  1437. // GGML_F32_STEP / GGML_F16_STEP
  1438. // number of elements to process in a single step
  1439. //
  1440. // GGML_F32_EPR / GGML_F16_EPR
  1441. // number of elements to fit in a single register
  1442. //
  1443. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1444. #define GGML_SIMD
  1445. // F32 NEON
  1446. #define GGML_F32_STEP 16
  1447. #define GGML_F32_EPR 4
  1448. #define GGML_F32x4 float32x4_t
  1449. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1450. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1451. #define GGML_F32x4_LOAD vld1q_f32
  1452. #define GGML_F32x4_STORE vst1q_f32
  1453. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1454. #define GGML_F32x4_ADD vaddq_f32
  1455. #define GGML_F32x4_MUL vmulq_f32
  1456. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1457. #define GGML_F32x4_REDUCE(res, x) \
  1458. { \
  1459. int offset = GGML_F32_ARR >> 1; \
  1460. for (int i = 0; i < offset; ++i) { \
  1461. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1462. } \
  1463. offset >>= 1; \
  1464. for (int i = 0; i < offset; ++i) { \
  1465. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1466. } \
  1467. offset >>= 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1472. }
  1473. #define GGML_F32_VEC GGML_F32x4
  1474. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1475. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1476. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1477. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1478. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1479. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1480. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1481. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1482. // F16 NEON
  1483. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1484. #define GGML_F16_STEP 32
  1485. #define GGML_F16_EPR 8
  1486. #define GGML_F16x8 float16x8_t
  1487. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1488. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1489. #define GGML_F16x8_LOAD vld1q_f16
  1490. #define GGML_F16x8_STORE vst1q_f16
  1491. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1492. #define GGML_F16x8_ADD vaddq_f16
  1493. #define GGML_F16x8_MUL vmulq_f16
  1494. #define GGML_F16x8_REDUCE(res, x) \
  1495. { \
  1496. int offset = GGML_F16_ARR >> 1; \
  1497. for (int i = 0; i < offset; ++i) { \
  1498. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1499. } \
  1500. offset >>= 1; \
  1501. for (int i = 0; i < offset; ++i) { \
  1502. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1503. } \
  1504. offset >>= 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1509. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1510. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1511. }
  1512. #define GGML_F16_VEC GGML_F16x8
  1513. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1514. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1515. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1516. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1517. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1518. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1519. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1520. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1521. #else
  1522. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1523. // and take advantage of the vcvt_ functions to convert to/from FP16
  1524. #define GGML_F16_STEP 16
  1525. #define GGML_F16_EPR 4
  1526. #define GGML_F32Cx4 float32x4_t
  1527. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1528. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1529. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1530. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1531. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1532. #define GGML_F32Cx4_ADD vaddq_f32
  1533. #define GGML_F32Cx4_MUL vmulq_f32
  1534. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1535. #define GGML_F16_VEC GGML_F32Cx4
  1536. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1537. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1538. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1539. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1540. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1541. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1542. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1543. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1544. #endif
  1545. #elif defined(__AVX__)
  1546. #define GGML_SIMD
  1547. // F32 AVX
  1548. #define GGML_F32_STEP 32
  1549. #define GGML_F32_EPR 8
  1550. #define GGML_F32x8 __m256
  1551. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1552. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1553. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1554. #define GGML_F32x8_STORE _mm256_storeu_ps
  1555. #if defined(__FMA__)
  1556. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1557. #else
  1558. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1559. #endif
  1560. #define GGML_F32x8_ADD _mm256_add_ps
  1561. #define GGML_F32x8_MUL _mm256_mul_ps
  1562. #define GGML_F32x8_REDUCE(res, x) \
  1563. { \
  1564. int offset = GGML_F32_ARR >> 1; \
  1565. for (int i = 0; i < offset; ++i) { \
  1566. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1567. } \
  1568. offset >>= 1; \
  1569. for (int i = 0; i < offset; ++i) { \
  1570. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1571. } \
  1572. offset >>= 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1577. _mm256_extractf128_ps(x[0], 1)); \
  1578. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1579. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1580. }
  1581. // TODO: is this optimal ?
  1582. #define GGML_F32_VEC GGML_F32x8
  1583. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1584. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1585. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1586. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1587. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1588. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1589. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1590. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1591. // F16 AVX
  1592. #define GGML_F16_STEP 32
  1593. #define GGML_F16_EPR 8
  1594. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1595. #define GGML_F32Cx8 __m256
  1596. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1597. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1598. #if defined(__F16C__)
  1599. // the _mm256_cvt intrinsics require F16C
  1600. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1601. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1602. #else
  1603. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1604. float tmp[8];
  1605. for (int i = 0; i < 8; i++) {
  1606. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1607. }
  1608. return _mm256_loadu_ps(tmp);
  1609. }
  1610. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1611. float arr[8];
  1612. _mm256_storeu_ps(arr, y);
  1613. for (int i = 0; i < 8; i++)
  1614. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1615. }
  1616. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1617. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1618. #endif
  1619. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1620. #define GGML_F32Cx8_ADD _mm256_add_ps
  1621. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1622. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1623. #define GGML_F16_VEC GGML_F32Cx8
  1624. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1625. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1626. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1627. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1628. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1629. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1630. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1631. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1632. #elif defined(__POWER9_VECTOR__)
  1633. #define GGML_SIMD
  1634. // F32 POWER9
  1635. #define GGML_F32_STEP 32
  1636. #define GGML_F32_EPR 4
  1637. #define GGML_F32x4 vector float
  1638. #define GGML_F32x4_ZERO 0.0f
  1639. #define GGML_F32x4_SET1 vec_splats
  1640. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1641. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1642. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1643. #define GGML_F32x4_ADD vec_add
  1644. #define GGML_F32x4_MUL vec_mul
  1645. #define GGML_F32x4_REDUCE(res, x) \
  1646. { \
  1647. int offset = GGML_F32_ARR >> 1; \
  1648. for (int i = 0; i < offset; ++i) { \
  1649. x[i] = vec_add(x[i], x[offset+i]); \
  1650. } \
  1651. offset >>= 1; \
  1652. for (int i = 0; i < offset; ++i) { \
  1653. x[i] = vec_add(x[i], x[offset+i]); \
  1654. } \
  1655. offset >>= 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. res = vec_extract(x[0], 0) + \
  1660. vec_extract(x[0], 1) + \
  1661. vec_extract(x[0], 2) + \
  1662. vec_extract(x[0], 3); \
  1663. }
  1664. #define GGML_F32_VEC GGML_F32x4
  1665. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1666. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1667. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1668. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1669. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1670. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1671. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1672. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1673. // F16 POWER9
  1674. #define GGML_F16_STEP GGML_F32_STEP
  1675. #define GGML_F16_EPR GGML_F32_EPR
  1676. #define GGML_F16_VEC GGML_F32x4
  1677. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1678. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1679. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1680. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1682. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1683. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1684. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1685. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1686. #define GGML_F16_VEC_STORE(p, r, i) \
  1687. if (i & 0x1) \
  1688. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1689. r[i - GGML_ENDIAN_BYTE(0)]), \
  1690. 0, p - GGML_F16_EPR)
  1691. #elif defined(__wasm_simd128__)
  1692. #define GGML_SIMD
  1693. // F32 WASM
  1694. #define GGML_F32_STEP 16
  1695. #define GGML_F32_EPR 4
  1696. #define GGML_F32x4 v128_t
  1697. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1698. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1699. #define GGML_F32x4_LOAD wasm_v128_load
  1700. #define GGML_F32x4_STORE wasm_v128_store
  1701. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1702. #define GGML_F32x4_ADD wasm_f32x4_add
  1703. #define GGML_F32x4_MUL wasm_f32x4_mul
  1704. #define GGML_F32x4_REDUCE(res, x) \
  1705. { \
  1706. int offset = GGML_F32_ARR >> 1; \
  1707. for (int i = 0; i < offset; ++i) { \
  1708. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1709. } \
  1710. offset >>= 1; \
  1711. for (int i = 0; i < offset; ++i) { \
  1712. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1713. } \
  1714. offset >>= 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1719. wasm_f32x4_extract_lane(x[0], 1) + \
  1720. wasm_f32x4_extract_lane(x[0], 2) + \
  1721. wasm_f32x4_extract_lane(x[0], 3); \
  1722. }
  1723. #define GGML_F32_VEC GGML_F32x4
  1724. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1725. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1726. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1727. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1728. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1729. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1730. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1731. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1732. // F16 WASM
  1733. #define GGML_F16_STEP 16
  1734. #define GGML_F16_EPR 4
  1735. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1736. float tmp[4];
  1737. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1738. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1739. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1740. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1741. return wasm_v128_load(tmp);
  1742. }
  1743. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1744. float tmp[4];
  1745. wasm_v128_store(tmp, x);
  1746. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1747. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1748. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1749. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1750. }
  1751. #define GGML_F16x4 v128_t
  1752. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1753. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1754. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1755. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1756. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1757. #define GGML_F16x4_ADD wasm_f32x4_add
  1758. #define GGML_F16x4_MUL wasm_f32x4_mul
  1759. #define GGML_F16x4_REDUCE(res, x) \
  1760. { \
  1761. int offset = GGML_F16_ARR >> 1; \
  1762. for (int i = 0; i < offset; ++i) { \
  1763. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1764. } \
  1765. offset >>= 1; \
  1766. for (int i = 0; i < offset; ++i) { \
  1767. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1768. } \
  1769. offset >>= 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1774. wasm_f32x4_extract_lane(x[0], 1) + \
  1775. wasm_f32x4_extract_lane(x[0], 2) + \
  1776. wasm_f32x4_extract_lane(x[0], 3); \
  1777. }
  1778. #define GGML_F16_VEC GGML_F16x4
  1779. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1780. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1781. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1782. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1783. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1784. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1785. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1786. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1787. #elif defined(__SSE3__)
  1788. #define GGML_SIMD
  1789. // F32 SSE
  1790. #define GGML_F32_STEP 32
  1791. #define GGML_F32_EPR 4
  1792. #define GGML_F32x4 __m128
  1793. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1794. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1795. #define GGML_F32x4_LOAD _mm_loadu_ps
  1796. #define GGML_F32x4_STORE _mm_storeu_ps
  1797. #if defined(__FMA__)
  1798. // TODO: Does this work?
  1799. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1800. #else
  1801. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1802. #endif
  1803. #define GGML_F32x4_ADD _mm_add_ps
  1804. #define GGML_F32x4_MUL _mm_mul_ps
  1805. #define GGML_F32x4_REDUCE(res, x) \
  1806. { \
  1807. int offset = GGML_F32_ARR >> 1; \
  1808. for (int i = 0; i < offset; ++i) { \
  1809. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1810. } \
  1811. offset >>= 1; \
  1812. for (int i = 0; i < offset; ++i) { \
  1813. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1814. } \
  1815. offset >>= 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1820. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1821. }
  1822. // TODO: is this optimal ?
  1823. #define GGML_F32_VEC GGML_F32x4
  1824. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1825. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1826. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1827. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1828. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1829. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1830. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1831. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1832. // F16 SSE
  1833. #define GGML_F16_STEP 32
  1834. #define GGML_F16_EPR 4
  1835. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1836. float tmp[4];
  1837. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1838. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1839. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1840. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1841. return _mm_loadu_ps(tmp);
  1842. }
  1843. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1844. float arr[4];
  1845. _mm_storeu_ps(arr, y);
  1846. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1847. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1848. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1849. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1850. }
  1851. #define GGML_F32Cx4 __m128
  1852. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1853. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1854. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1855. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1856. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1857. #define GGML_F32Cx4_ADD _mm_add_ps
  1858. #define GGML_F32Cx4_MUL _mm_mul_ps
  1859. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1860. #define GGML_F16_VEC GGML_F32Cx4
  1861. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1862. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1863. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1864. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1865. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1866. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1867. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1868. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1869. #endif
  1870. // GGML_F32_ARR / GGML_F16_ARR
  1871. // number of registers to use per step
  1872. #ifdef GGML_SIMD
  1873. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1874. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1875. #endif
  1876. //
  1877. // fundamental operations
  1878. //
  1879. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1880. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1881. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1882. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1883. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1884. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1885. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1886. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1887. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1888. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1889. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1890. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1891. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1892. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1893. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1894. #ifdef GGML_SIMD
  1895. float sumf = 0.0f;
  1896. const int np = (n & ~(GGML_F32_STEP - 1));
  1897. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1898. GGML_F32_VEC ax[GGML_F32_ARR];
  1899. GGML_F32_VEC ay[GGML_F32_ARR];
  1900. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1901. for (int j = 0; j < GGML_F32_ARR; j++) {
  1902. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1903. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1904. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1905. }
  1906. }
  1907. // reduce sum0..sum3 to sum0
  1908. GGML_F32_VEC_REDUCE(sumf, sum);
  1909. // leftovers
  1910. for (int i = np; i < n; ++i) {
  1911. sumf += x[i]*y[i];
  1912. }
  1913. #else
  1914. // scalar
  1915. ggml_float sumf = 0.0;
  1916. for (int i = 0; i < n; ++i) {
  1917. sumf += (ggml_float)(x[i]*y[i]);
  1918. }
  1919. #endif
  1920. *s = sumf;
  1921. }
  1922. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1923. ggml_float sumf = 0.0;
  1924. #if defined(GGML_SIMD)
  1925. const int np = (n & ~(GGML_F16_STEP - 1));
  1926. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1927. GGML_F16_VEC ax[GGML_F16_ARR];
  1928. GGML_F16_VEC ay[GGML_F16_ARR];
  1929. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1930. for (int j = 0; j < GGML_F16_ARR; j++) {
  1931. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1932. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1933. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1934. }
  1935. }
  1936. // reduce sum0..sum3 to sum0
  1937. GGML_F16_VEC_REDUCE(sumf, sum);
  1938. // leftovers
  1939. for (int i = np; i < n; ++i) {
  1940. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1941. }
  1942. #else
  1943. for (int i = 0; i < n; ++i) {
  1944. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1945. }
  1946. #endif
  1947. *s = sumf;
  1948. }
  1949. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1950. const int qk = QK8_0;
  1951. const int nb = n / qk;
  1952. assert(n % qk == 0);
  1953. assert(nb % 2 == 0);
  1954. const block_q4_0 * restrict x = vx;
  1955. const block_q8_0 * restrict y = vy;
  1956. #if defined(__ARM_NEON)
  1957. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1958. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1959. for (int i = 0; i < nb; i += 2) {
  1960. const block_q4_0 * restrict x0 = &x[i + 0];
  1961. const block_q4_0 * restrict x1 = &x[i + 1];
  1962. const block_q8_0 * restrict y0 = &y[i + 0];
  1963. const block_q8_0 * restrict y1 = &y[i + 1];
  1964. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1965. const int8x16_t s8b = vdupq_n_s8(0x8);
  1966. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1967. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1968. // 4-bit -> 8-bit
  1969. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1970. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1971. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1972. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1973. // sub 8
  1974. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1975. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1976. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1977. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1978. // load y
  1979. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1980. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1981. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1982. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1983. #if defined(__ARM_FEATURE_DOTPROD)
  1984. // dot product into int32x4_t
  1985. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1986. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1987. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1988. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1989. #else
  1990. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1991. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1992. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1993. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1994. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1995. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1996. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1997. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1998. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1999. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2000. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2001. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2002. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2003. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2004. #endif
  2005. }
  2006. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2007. #elif defined(__AVX2__)
  2008. // Initialize accumulator with zeros
  2009. __m256 acc = _mm256_setzero_ps();
  2010. // Main loop
  2011. for (int i = 0; i < nb; ++i) {
  2012. /* Compute combined scale for the block */
  2013. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2014. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2015. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2016. const __m256i off = _mm256_set1_epi8( 8 );
  2017. bx = _mm256_sub_epi8( bx, off );
  2018. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2019. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2020. /* Multiply q with scale and accumulate */
  2021. acc = _mm256_fmadd_ps( d, q, acc );
  2022. }
  2023. *s = hsum_float_8(acc);
  2024. #elif defined(__AVX__)
  2025. // Initialize accumulator with zeros
  2026. __m256 acc = _mm256_setzero_ps();
  2027. // Main loop
  2028. for (int i = 0; i < nb; ++i) {
  2029. // Compute combined scale for the block
  2030. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2031. const __m128i lowMask = _mm_set1_epi8(0xF);
  2032. const __m128i off = _mm_set1_epi8(8);
  2033. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2034. __m128i bx = _mm_and_si128(lowMask, tmp);
  2035. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2036. bx = _mm_sub_epi8(bx, off);
  2037. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2038. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2039. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2040. bx = _mm_sub_epi8(bx, off);
  2041. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2042. // Convert int32_t to float
  2043. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2044. // Apply the scale, and accumulate
  2045. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2046. }
  2047. *s = hsum_float_8(acc);
  2048. #elif defined(__SSSE3__)
  2049. // set constants
  2050. const __m128i lowMask = _mm_set1_epi8(0xF);
  2051. const __m128i off = _mm_set1_epi8(8);
  2052. // Initialize accumulator with zeros
  2053. __m128 acc_0 = _mm_setzero_ps();
  2054. __m128 acc_1 = _mm_setzero_ps();
  2055. __m128 acc_2 = _mm_setzero_ps();
  2056. __m128 acc_3 = _mm_setzero_ps();
  2057. // First round without accumulation
  2058. {
  2059. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2060. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2061. // Compute combined scale for the block 0 and 1
  2062. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2063. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2064. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2065. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2066. bx_0 = _mm_sub_epi8(bx_0, off);
  2067. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2068. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2069. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2070. bx_1 = _mm_sub_epi8(bx_1, off);
  2071. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2072. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2073. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2074. // Compute combined scale for the block 2 and 3
  2075. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2076. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2077. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2078. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2079. bx_2 = _mm_sub_epi8(bx_2, off);
  2080. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2081. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2082. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2083. bx_3 = _mm_sub_epi8(bx_3, off);
  2084. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2085. // Convert int32_t to float
  2086. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2087. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2088. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2089. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2090. // Apply the scale
  2091. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2092. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2093. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2094. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2095. }
  2096. // Main loop
  2097. for (int i = 2; i < nb; i+=2) {
  2098. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2099. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2100. // Compute combined scale for the block 0 and 1
  2101. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2102. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2103. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2104. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2105. bx_0 = _mm_sub_epi8(bx_0, off);
  2106. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2107. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2108. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2109. bx_1 = _mm_sub_epi8(bx_1, off);
  2110. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2111. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2112. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2113. // Compute combined scale for the block 2 and 3
  2114. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2115. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2116. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2117. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2118. bx_2 = _mm_sub_epi8(bx_2, off);
  2119. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2120. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2121. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2122. bx_3 = _mm_sub_epi8(bx_3, off);
  2123. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2124. // Convert int32_t to float
  2125. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2126. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2127. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2128. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2129. // Apply the scale
  2130. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2131. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2132. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2133. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2134. // Acummulate
  2135. acc_0 = _mm_add_ps(p0_d, acc_0);
  2136. acc_1 = _mm_add_ps(p1_d, acc_1);
  2137. acc_2 = _mm_add_ps(p2_d, acc_2);
  2138. acc_3 = _mm_add_ps(p3_d, acc_3);
  2139. }
  2140. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2141. #else
  2142. // scalar
  2143. float sumf = 0.0;
  2144. for (int i = 0; i < nb; i++) {
  2145. int sumi = 0;
  2146. for (int j = 0; j < qk/2; ++j) {
  2147. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2148. const int v1 = (x[i].qs[j] >> 4) - 8;
  2149. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2150. }
  2151. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2152. }
  2153. *s = sumf;
  2154. #endif
  2155. }
  2156. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2157. const int qk = QK8_1;
  2158. const int nb = n / qk;
  2159. assert(n % qk == 0);
  2160. assert(nb % 2 == 0);
  2161. const block_q4_1 * restrict x = vx;
  2162. const block_q8_1 * restrict y = vy;
  2163. // TODO: add WASM SIMD
  2164. #if defined(__ARM_NEON)
  2165. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2166. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2167. float summs = 0;
  2168. for (int i = 0; i < nb; i += 2) {
  2169. const block_q4_1 * restrict x0 = &x[i + 0];
  2170. const block_q4_1 * restrict x1 = &x[i + 1];
  2171. const block_q8_1 * restrict y0 = &y[i + 0];
  2172. const block_q8_1 * restrict y1 = &y[i + 1];
  2173. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2174. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2175. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2176. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2177. // 4-bit -> 8-bit
  2178. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2179. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2180. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2181. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2182. // load y
  2183. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2184. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2185. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2186. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2187. #if defined(__ARM_FEATURE_DOTPROD)
  2188. // dot product into int32x4_t
  2189. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2190. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2191. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2192. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2193. #else
  2194. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2195. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2196. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2197. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2198. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2199. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2200. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2201. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2202. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2203. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2204. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2205. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2206. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2207. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2208. #endif
  2209. }
  2210. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2211. #elif defined(__AVX2__) || defined(__AVX__)
  2212. // Initialize accumulator with zeros
  2213. __m256 acc = _mm256_setzero_ps();
  2214. float summs = 0;
  2215. // Main loop
  2216. for (int i = 0; i < nb; ++i) {
  2217. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2218. const float d1 = y[i].d;
  2219. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2220. const __m256 d0v = _mm256_set1_ps( d0 );
  2221. const __m256 d1v = _mm256_set1_ps( d1 );
  2222. // Compute combined scales
  2223. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2224. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2225. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2226. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2227. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2228. // Accumulate d0*d1*x*y
  2229. #if defined(__AVX2__)
  2230. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2231. #else
  2232. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2233. #endif
  2234. }
  2235. *s = hsum_float_8(acc) + summs;
  2236. #else
  2237. // scalar
  2238. float sumf = 0.0;
  2239. for (int i = 0; i < nb; i++) {
  2240. int sumi = 0;
  2241. for (int j = 0; j < qk/2; ++j) {
  2242. const int v0 = (x[i].qs[j] & 0x0F);
  2243. const int v1 = (x[i].qs[j] >> 4);
  2244. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2245. }
  2246. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2247. }
  2248. *s = sumf;
  2249. #endif
  2250. }
  2251. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2252. const int qk = QK8_0;
  2253. const int nb = n / qk;
  2254. assert(n % qk == 0);
  2255. assert(nb % 2 == 0);
  2256. assert(qk == QK5_0);
  2257. const block_q5_0 * restrict x = vx;
  2258. const block_q8_0 * restrict y = vy;
  2259. #if defined(__ARM_NEON)
  2260. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2261. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2262. uint32_t qh0;
  2263. uint32_t qh1;
  2264. uint64_t tmp0[4];
  2265. uint64_t tmp1[4];
  2266. for (int i = 0; i < nb; i += 2) {
  2267. const block_q5_0 * restrict x0 = &x[i];
  2268. const block_q5_0 * restrict x1 = &x[i + 1];
  2269. const block_q8_0 * restrict y0 = &y[i];
  2270. const block_q8_0 * restrict y1 = &y[i + 1];
  2271. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2272. // extract the 5th bit via lookup table ((!b) << 4)
  2273. memcpy(&qh0, x0->qh, sizeof(qh0));
  2274. memcpy(&qh1, x1->qh, sizeof(qh1));
  2275. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2276. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2277. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2278. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2279. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2280. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2281. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2282. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2283. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2284. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2285. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2286. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2287. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2288. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2289. // 4-bit -> 8-bit
  2290. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2291. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2292. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2293. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2294. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2295. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2296. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2297. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2298. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2299. // load y
  2300. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2301. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2302. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2303. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2304. #if defined(__ARM_FEATURE_DOTPROD)
  2305. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2306. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2307. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2308. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2309. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2310. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2311. #else
  2312. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2313. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2314. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2315. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2316. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2317. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2318. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2319. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2320. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2321. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2322. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2323. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2324. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2325. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2326. #endif
  2327. }
  2328. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2329. #elif defined(__wasm_simd128__)
  2330. v128_t sumv = wasm_f32x4_splat(0.0f);
  2331. uint32_t qh;
  2332. uint64_t tmp[4];
  2333. // TODO: check if unrolling this is better
  2334. for (int i = 0; i < nb; ++i) {
  2335. const block_q5_0 * restrict x0 = &x[i];
  2336. const block_q8_0 * restrict y0 = &y[i];
  2337. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2338. // extract the 5th bit
  2339. memcpy(&qh, x0->qh, sizeof(qh));
  2340. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2341. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2342. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2343. tmp[3] = table_b2b_1[(qh >> 24) ];
  2344. const v128_t qhl = wasm_v128_load(tmp + 0);
  2345. const v128_t qhh = wasm_v128_load(tmp + 2);
  2346. const v128_t v0 = wasm_v128_load(x0->qs);
  2347. // 4-bit -> 8-bit
  2348. const v128_t v0l = wasm_v128_and (v0, m4b);
  2349. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2350. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2351. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2352. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2353. // load y
  2354. const v128_t v1l = wasm_v128_load(y0->qs);
  2355. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2356. // int8x16 -> int16x8
  2357. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2358. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2359. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2360. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2361. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2362. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2363. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2364. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2365. // dot product
  2366. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2367. wasm_i32x4_add(
  2368. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2369. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2370. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2371. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2372. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2373. }
  2374. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2375. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2376. #elif defined(__AVX2__)
  2377. // Initialize accumulator with zeros
  2378. __m256 acc = _mm256_setzero_ps();
  2379. // Main loop
  2380. for (int i = 0; i < nb; i++) {
  2381. /* Compute combined scale for the block */
  2382. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2383. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2384. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2385. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2386. bx = _mm256_or_si256(bx, bxhi);
  2387. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2388. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2389. /* Multiply q with scale and accumulate */
  2390. acc = _mm256_fmadd_ps(d, q, acc);
  2391. }
  2392. *s = hsum_float_8(acc);
  2393. #elif defined(__AVX__)
  2394. // Initialize accumulator with zeros
  2395. __m256 acc = _mm256_setzero_ps();
  2396. __m128i mask = _mm_set1_epi8((char)0xF0);
  2397. // Main loop
  2398. for (int i = 0; i < nb; i++) {
  2399. /* Compute combined scale for the block */
  2400. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2401. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2402. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2403. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2404. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2405. bxhil = _mm_andnot_si128(bxhil, mask);
  2406. bxhih = _mm_andnot_si128(bxhih, mask);
  2407. __m128i bxl = _mm256_castsi256_si128(bx);
  2408. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2409. bxl = _mm_or_si128(bxl, bxhil);
  2410. bxh = _mm_or_si128(bxh, bxhih);
  2411. bx = MM256_SET_M128I(bxh, bxl);
  2412. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2413. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2414. /* Multiply q with scale and accumulate */
  2415. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2416. }
  2417. *s = hsum_float_8(acc);
  2418. #else
  2419. // scalar
  2420. float sumf = 0.0;
  2421. for (int i = 0; i < nb; i++) {
  2422. uint32_t qh;
  2423. memcpy(&qh, x[i].qh, sizeof(qh));
  2424. int sumi = 0;
  2425. for (int j = 0; j < qk/2; ++j) {
  2426. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2427. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2428. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2429. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2430. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2431. }
  2432. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2433. }
  2434. *s = sumf;
  2435. #endif
  2436. }
  2437. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2438. const int qk = QK8_1;
  2439. const int nb = n / qk;
  2440. assert(n % qk == 0);
  2441. assert(nb % 2 == 0);
  2442. assert(qk == QK5_1);
  2443. const block_q5_1 * restrict x = vx;
  2444. const block_q8_1 * restrict y = vy;
  2445. #if defined(__ARM_NEON)
  2446. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2447. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2448. float summs0 = 0.0f;
  2449. float summs1 = 0.0f;
  2450. uint32_t qh0;
  2451. uint32_t qh1;
  2452. uint64_t tmp0[4];
  2453. uint64_t tmp1[4];
  2454. for (int i = 0; i < nb; i += 2) {
  2455. const block_q5_1 * restrict x0 = &x[i];
  2456. const block_q5_1 * restrict x1 = &x[i + 1];
  2457. const block_q8_1 * restrict y0 = &y[i];
  2458. const block_q8_1 * restrict y1 = &y[i + 1];
  2459. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2460. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2461. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2462. // extract the 5th bit via lookup table ((b) << 4)
  2463. memcpy(&qh0, x0->qh, sizeof(qh0));
  2464. memcpy(&qh1, x1->qh, sizeof(qh1));
  2465. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2466. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2467. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2468. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2469. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2470. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2471. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2472. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2473. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2474. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2475. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2476. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2477. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2478. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2479. // 4-bit -> 8-bit
  2480. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2481. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2482. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2483. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2484. // add high bit
  2485. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2486. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2487. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2488. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2489. // load y
  2490. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2491. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2492. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2493. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2494. #if defined(__ARM_FEATURE_DOTPROD)
  2495. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2496. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2497. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2498. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2499. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2500. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2501. #else
  2502. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2503. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2504. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2505. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2506. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2507. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2508. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2509. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2510. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2511. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2512. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2513. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2514. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2515. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2516. #endif
  2517. }
  2518. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2519. #elif defined(__wasm_simd128__)
  2520. v128_t sumv = wasm_f32x4_splat(0.0f);
  2521. float summs = 0.0f;
  2522. uint32_t qh;
  2523. uint64_t tmp[4];
  2524. // TODO: check if unrolling this is better
  2525. for (int i = 0; i < nb; ++i) {
  2526. const block_q5_1 * restrict x0 = &x[i];
  2527. const block_q8_1 * restrict y0 = &y[i];
  2528. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2529. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2530. // extract the 5th bit
  2531. memcpy(&qh, x0->qh, sizeof(qh));
  2532. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2533. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2534. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2535. tmp[3] = table_b2b_0[(qh >> 24) ];
  2536. const v128_t qhl = wasm_v128_load(tmp + 0);
  2537. const v128_t qhh = wasm_v128_load(tmp + 2);
  2538. const v128_t v0 = wasm_v128_load(x0->qs);
  2539. // 4-bit -> 8-bit
  2540. const v128_t v0l = wasm_v128_and (v0, m4b);
  2541. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2542. // add high bit
  2543. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2544. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2545. // load y
  2546. const v128_t v1l = wasm_v128_load(y0->qs);
  2547. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2548. // int8x16 -> int16x8
  2549. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2550. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2551. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2552. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2553. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2554. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2555. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2556. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2557. // dot product
  2558. sumv = wasm_f32x4_add(sumv,
  2559. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2560. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2561. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2562. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2563. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2564. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2565. }
  2566. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2567. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2568. #elif defined(__AVX2__)
  2569. // Initialize accumulator with zeros
  2570. __m256 acc = _mm256_setzero_ps();
  2571. float summs = 0.0f;
  2572. // Main loop
  2573. for (int i = 0; i < nb; i++) {
  2574. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2575. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2576. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2577. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2578. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2579. bx = _mm256_or_si256(bx, bxhi);
  2580. const __m256 dy = _mm256_set1_ps(y[i].d);
  2581. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2582. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2583. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2584. }
  2585. *s = hsum_float_8(acc) + summs;
  2586. #elif defined(__AVX__)
  2587. // Initialize accumulator with zeros
  2588. __m256 acc = _mm256_setzero_ps();
  2589. __m128i mask = _mm_set1_epi8(0x10);
  2590. float summs = 0.0f;
  2591. // Main loop
  2592. for (int i = 0; i < nb; i++) {
  2593. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2594. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2595. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2596. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2597. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2598. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2599. bxhil = _mm_and_si128(bxhil, mask);
  2600. bxhih = _mm_and_si128(bxhih, mask);
  2601. __m128i bxl = _mm256_castsi256_si128(bx);
  2602. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2603. bxl = _mm_or_si128(bxl, bxhil);
  2604. bxh = _mm_or_si128(bxh, bxhih);
  2605. bx = MM256_SET_M128I(bxh, bxl);
  2606. const __m256 dy = _mm256_set1_ps(y[i].d);
  2607. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2608. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2609. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2610. }
  2611. *s = hsum_float_8(acc) + summs;
  2612. #else
  2613. // scalar
  2614. float sumf = 0.0;
  2615. for (int i = 0; i < nb; i++) {
  2616. uint32_t qh;
  2617. memcpy(&qh, x[i].qh, sizeof(qh));
  2618. int sumi = 0;
  2619. for (int j = 0; j < qk/2; ++j) {
  2620. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2621. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2622. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2623. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2624. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2625. }
  2626. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2627. }
  2628. *s = sumf;
  2629. #endif
  2630. }
  2631. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2632. const int qk = QK8_0;
  2633. const int nb = n / qk;
  2634. assert(n % qk == 0);
  2635. assert(nb % 2 == 0);
  2636. const block_q8_0 * restrict x = vx;
  2637. const block_q8_0 * restrict y = vy;
  2638. #if defined(__ARM_NEON)
  2639. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2640. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2641. for (int i = 0; i < nb; i += 2) {
  2642. const block_q8_0 * restrict x0 = &x[i + 0];
  2643. const block_q8_0 * restrict x1 = &x[i + 1];
  2644. const block_q8_0 * restrict y0 = &y[i + 0];
  2645. const block_q8_0 * restrict y1 = &y[i + 1];
  2646. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2647. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2648. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2649. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2650. // load y
  2651. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2652. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2653. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2654. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2655. #if defined(__ARM_FEATURE_DOTPROD)
  2656. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2657. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2658. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2659. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2660. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2661. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2662. #else
  2663. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2664. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2665. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2666. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2667. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2668. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2669. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2670. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2671. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2672. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2673. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2674. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2675. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2676. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2677. #endif
  2678. }
  2679. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2680. #elif defined(__AVX2__) || defined(__AVX__)
  2681. // Initialize accumulator with zeros
  2682. __m256 acc = _mm256_setzero_ps();
  2683. // Main loop
  2684. for (int i = 0; i < nb; ++i) {
  2685. // Compute combined scale for the block
  2686. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2687. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2688. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2689. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2690. // Multiply q with scale and accumulate
  2691. #if defined(__AVX2__)
  2692. acc = _mm256_fmadd_ps( d, q, acc );
  2693. #else
  2694. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2695. #endif
  2696. }
  2697. *s = hsum_float_8(acc);
  2698. #else
  2699. // scalar
  2700. float sumf = 0.0;
  2701. for (int i = 0; i < nb; i++) {
  2702. int sumi = 0;
  2703. for (int j = 0; j < qk; j++) {
  2704. sumi += x[i].qs[j]*y[i].qs[j];
  2705. }
  2706. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2707. }
  2708. *s = sumf;
  2709. #endif
  2710. }
  2711. // compute GGML_VEC_DOT_UNROLL dot products at once
  2712. // xs - x row stride in bytes
  2713. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2714. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2715. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2716. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2717. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2718. }
  2719. #if defined(GGML_SIMD)
  2720. const int np = (n & ~(GGML_F16_STEP - 1));
  2721. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2722. GGML_F16_VEC ax[GGML_F16_ARR];
  2723. GGML_F16_VEC ay[GGML_F16_ARR];
  2724. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2725. for (int j = 0; j < GGML_F16_ARR; j++) {
  2726. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2727. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2728. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2729. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2730. }
  2731. }
  2732. }
  2733. // reduce sum0..sum3 to sum0
  2734. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2735. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2736. }
  2737. // leftovers
  2738. for (int i = np; i < n; ++i) {
  2739. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2740. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2741. }
  2742. }
  2743. #else
  2744. for (int i = 0; i < n; ++i) {
  2745. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2746. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2747. }
  2748. }
  2749. #endif
  2750. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2751. s[i] = sumf[i];
  2752. }
  2753. }
  2754. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2755. #if defined(GGML_SIMD)
  2756. const int np = (n & ~(GGML_F32_STEP - 1));
  2757. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2758. GGML_F32_VEC ax[GGML_F32_ARR];
  2759. GGML_F32_VEC ay[GGML_F32_ARR];
  2760. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2761. for (int j = 0; j < GGML_F32_ARR; j++) {
  2762. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2763. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2764. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2765. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2766. }
  2767. }
  2768. // leftovers
  2769. for (int i = np; i < n; ++i) {
  2770. y[i] += x[i]*v;
  2771. }
  2772. #else
  2773. // scalar
  2774. for (int i = 0; i < n; ++i) {
  2775. y[i] += x[i]*v;
  2776. }
  2777. #endif
  2778. }
  2779. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2780. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2781. #if defined(GGML_SIMD)
  2782. const int np = (n & ~(GGML_F32_STEP - 1));
  2783. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2784. GGML_F32_VEC ay[GGML_F32_ARR];
  2785. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2786. for (int j = 0; j < GGML_F32_ARR; j++) {
  2787. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2788. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2789. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2790. }
  2791. }
  2792. // leftovers
  2793. for (int i = np; i < n; ++i) {
  2794. y[i] *= v;
  2795. }
  2796. #else
  2797. // scalar
  2798. for (int i = 0; i < n; ++i) {
  2799. y[i] *= v;
  2800. }
  2801. #endif
  2802. }
  2803. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2804. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2805. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2806. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2807. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2808. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2809. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2810. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2811. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2812. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2813. static const float GELU_COEF_A = 0.044715f;
  2814. static const float GELU_QUICK_COEF = -1.702f;
  2815. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2816. inline static float ggml_gelu_f32(float x) {
  2817. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2818. }
  2819. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2820. const uint16_t * i16 = (const uint16_t *) x;
  2821. for (int i = 0; i < n; ++i) {
  2822. y[i] = table_gelu_f16[i16[i]];
  2823. }
  2824. }
  2825. #ifdef GGML_GELU_FP16
  2826. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2827. uint16_t t;
  2828. for (int i = 0; i < n; ++i) {
  2829. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2830. memcpy(&t, &fp16, sizeof(uint16_t));
  2831. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2832. }
  2833. }
  2834. #else
  2835. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2836. for (int i = 0; i < n; ++i) {
  2837. y[i] = ggml_gelu_f32(x[i]);
  2838. }
  2839. }
  2840. #endif
  2841. inline static float ggml_gelu_quick_f32(float x) {
  2842. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2843. }
  2844. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2845. // const uint16_t * i16 = (const uint16_t *) x;
  2846. // for (int i = 0; i < n; ++i) {
  2847. // y[i] = table_gelu_quick_f16[i16[i]];
  2848. // }
  2849. //}
  2850. #ifdef GGML_GELU_QUICK_FP16
  2851. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2852. uint16_t t;
  2853. for (int i = 0; i < n; ++i) {
  2854. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2855. memcpy(&t, &fp16, sizeof(uint16_t));
  2856. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2857. }
  2858. }
  2859. #else
  2860. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2861. for (int i = 0; i < n; ++i) {
  2862. y[i] = ggml_gelu_quick_f32(x[i]);
  2863. }
  2864. }
  2865. #endif
  2866. // Sigmoid Linear Unit (SiLU) function
  2867. inline static float ggml_silu_f32(float x) {
  2868. return x/(1.0f + expf(-x));
  2869. }
  2870. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2871. // const uint16_t * i16 = (const uint16_t *) x;
  2872. // for (int i = 0; i < n; ++i) {
  2873. // y[i] = table_silu_f16[i16[i]];
  2874. // }
  2875. //}
  2876. #ifdef GGML_SILU_FP16
  2877. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2878. uint16_t t;
  2879. for (int i = 0; i < n; ++i) {
  2880. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2881. memcpy(&t, &fp16, sizeof(uint16_t));
  2882. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2883. }
  2884. }
  2885. #else
  2886. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2887. for (int i = 0; i < n; ++i) {
  2888. y[i] = ggml_silu_f32(x[i]);
  2889. }
  2890. }
  2891. #endif
  2892. inline static float ggml_silu_backward_f32(float x, float dy) {
  2893. const float s = 1.0f/(1.0f + expf(-x));
  2894. return dy*s*(1.0f + x*(1.0f - s));
  2895. }
  2896. #ifdef GGML_SILU_FP16
  2897. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2898. for (int i = 0; i < n; ++i) {
  2899. // we did not use x[i] to compute forward silu but its f16 equivalent
  2900. // take derivative at f16 of x[i]:
  2901. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2902. float usedx = GGML_FP16_TO_FP32(fp16);
  2903. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2904. }
  2905. }
  2906. #else
  2907. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2908. for (int i = 0; i < n; ++i) {
  2909. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2910. }
  2911. }
  2912. #endif
  2913. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2914. #ifndef GGML_USE_ACCELERATE
  2915. ggml_float sum = 0.0;
  2916. for (int i = 0; i < n; ++i) {
  2917. sum += (ggml_float)x[i];
  2918. }
  2919. *s = sum;
  2920. #else
  2921. vDSP_sve(x, 1, s, n);
  2922. #endif
  2923. }
  2924. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2925. ggml_float sum = 0.0;
  2926. for (int i = 0; i < n; ++i) {
  2927. sum += (ggml_float)x[i];
  2928. }
  2929. *s = sum;
  2930. }
  2931. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2932. #ifndef GGML_USE_ACCELERATE
  2933. float max = -INFINITY;
  2934. for (int i = 0; i < n; ++i) {
  2935. max = MAX(max, x[i]);
  2936. }
  2937. *s = max;
  2938. #else
  2939. vDSP_maxv(x, 1, s, n);
  2940. #endif
  2941. }
  2942. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2943. ggml_vec_norm_f32(n, s, x);
  2944. *s = 1.f/(*s);
  2945. }
  2946. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2947. float max = -INFINITY;
  2948. int idx = 0;
  2949. for (int i = 0; i < n; ++i) {
  2950. max = MAX(max, x[i]);
  2951. if (max == x[i]) { idx = i; }
  2952. }
  2953. *s = idx;
  2954. }
  2955. //
  2956. // data types
  2957. //
  2958. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2959. [GGML_TYPE_F32] = 1,
  2960. [GGML_TYPE_F16] = 1,
  2961. [GGML_TYPE_Q4_0] = QK4_0,
  2962. [GGML_TYPE_Q4_1] = QK4_1,
  2963. [GGML_TYPE_Q5_0] = QK5_0,
  2964. [GGML_TYPE_Q5_1] = QK5_1,
  2965. [GGML_TYPE_Q8_0] = QK8_0,
  2966. [GGML_TYPE_Q8_1] = QK8_1,
  2967. #ifdef GGML_USE_K_QUANTS
  2968. [GGML_TYPE_Q2_K] = QK_K,
  2969. [GGML_TYPE_Q3_K] = QK_K,
  2970. [GGML_TYPE_Q4_K] = QK_K,
  2971. [GGML_TYPE_Q5_K] = QK_K,
  2972. [GGML_TYPE_Q6_K] = QK_K,
  2973. [GGML_TYPE_Q8_K] = QK_K,
  2974. #endif
  2975. [GGML_TYPE_I8] = 1,
  2976. [GGML_TYPE_I16] = 1,
  2977. [GGML_TYPE_I32] = 1,
  2978. };
  2979. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2980. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2981. [GGML_TYPE_F32] = sizeof(float),
  2982. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2983. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2984. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2985. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2986. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2987. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2988. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2989. #ifdef GGML_USE_K_QUANTS
  2990. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2991. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2992. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2993. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2994. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2995. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2996. #endif
  2997. [GGML_TYPE_I8] = sizeof(int8_t),
  2998. [GGML_TYPE_I16] = sizeof(int16_t),
  2999. [GGML_TYPE_I32] = sizeof(int32_t),
  3000. };
  3001. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3002. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3003. [GGML_TYPE_F32] = "f32",
  3004. [GGML_TYPE_F16] = "f16",
  3005. [GGML_TYPE_Q4_0] = "q4_0",
  3006. [GGML_TYPE_Q4_1] = "q4_1",
  3007. [GGML_TYPE_Q5_0] = "q5_0",
  3008. [GGML_TYPE_Q5_1] = "q5_1",
  3009. [GGML_TYPE_Q8_0] = "q8_0",
  3010. [GGML_TYPE_Q8_1] = "q8_1",
  3011. [GGML_TYPE_Q2_K] = "q2_K",
  3012. [GGML_TYPE_Q3_K] = "q3_K",
  3013. [GGML_TYPE_Q4_K] = "q4_K",
  3014. [GGML_TYPE_Q5_K] = "q5_K",
  3015. [GGML_TYPE_Q6_K] = "q6_K",
  3016. [GGML_TYPE_Q8_K] = "q8_K",
  3017. [GGML_TYPE_I8] = "i8",
  3018. [GGML_TYPE_I16] = "i16",
  3019. [GGML_TYPE_I32] = "i32",
  3020. };
  3021. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3022. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3023. [GGML_TYPE_F32] = false,
  3024. [GGML_TYPE_F16] = false,
  3025. [GGML_TYPE_Q4_0] = true,
  3026. [GGML_TYPE_Q4_1] = true,
  3027. [GGML_TYPE_Q5_0] = true,
  3028. [GGML_TYPE_Q5_1] = true,
  3029. [GGML_TYPE_Q8_0] = true,
  3030. [GGML_TYPE_Q8_1] = true,
  3031. [GGML_TYPE_Q2_K] = true,
  3032. [GGML_TYPE_Q3_K] = true,
  3033. [GGML_TYPE_Q4_K] = true,
  3034. [GGML_TYPE_Q5_K] = true,
  3035. [GGML_TYPE_Q6_K] = true,
  3036. [GGML_TYPE_Q8_K] = true,
  3037. [GGML_TYPE_I8] = false,
  3038. [GGML_TYPE_I16] = false,
  3039. [GGML_TYPE_I32] = false,
  3040. };
  3041. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3042. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3043. "NONE",
  3044. "DUP",
  3045. "ADD",
  3046. "ADD1",
  3047. "ACC",
  3048. "SUB",
  3049. "MUL",
  3050. "DIV",
  3051. "SQR",
  3052. "SQRT",
  3053. "LOG",
  3054. "SUM",
  3055. "SUM_ROWS",
  3056. "MEAN",
  3057. "ARGMAX",
  3058. "REPEAT",
  3059. "REPEAT_BACK",
  3060. "ABS",
  3061. "SGN",
  3062. "NEG",
  3063. "STEP",
  3064. "TANH",
  3065. "ELU",
  3066. "RELU",
  3067. "GELU",
  3068. "GELU_QUICK",
  3069. "SILU",
  3070. "SILU_BACK",
  3071. "NORM",
  3072. "RMS_NORM",
  3073. "RMS_NORM_BACK",
  3074. "MUL_MAT",
  3075. "OUT_PROD",
  3076. "SCALE",
  3077. "SET",
  3078. "CPY",
  3079. "CONT",
  3080. "RESHAPE",
  3081. "VIEW",
  3082. "PERMUTE",
  3083. "TRANSPOSE",
  3084. "GET_ROWS",
  3085. "GET_ROWS_BACK",
  3086. "DIAG",
  3087. "DIAG_MASK_INF",
  3088. "DIAG_MASK_ZERO",
  3089. "SOFT_MAX",
  3090. "SOFT_MAX_BACK",
  3091. "ROPE",
  3092. "ROPE_BACK",
  3093. "ALIBI",
  3094. "CLAMP",
  3095. "CONV_1D",
  3096. "CONV_2D",
  3097. "FLASH_ATTN",
  3098. "FLASH_FF",
  3099. "FLASH_ATTN_BACK",
  3100. "WIN_PART",
  3101. "WIN_UNPART",
  3102. "MAP_UNARY",
  3103. "MAP_BINARY",
  3104. "MAP_CUSTOM1",
  3105. "MAP_CUSTOM2",
  3106. "MAP_CUSTOM3",
  3107. "CROSS_ENTROPY_LOSS",
  3108. "CROSS_ENTROPY_LOSS_BACK",
  3109. };
  3110. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3111. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3112. "none",
  3113. "x",
  3114. "x+y",
  3115. "x+y",
  3116. "view(x,nb,offset)+=y->x",
  3117. "x-y",
  3118. "x*y",
  3119. "x/y",
  3120. "x^2",
  3121. "√x",
  3122. "log(x)",
  3123. "Σx",
  3124. "Σx_k",
  3125. "Σx/n",
  3126. "argmax(x)",
  3127. "repeat(x)",
  3128. "repeat_back(x)",
  3129. "abs(x)",
  3130. "sgn(x)",
  3131. "-x",
  3132. "step(x)",
  3133. "tanh(x)",
  3134. "elu(x)",
  3135. "relu(x)",
  3136. "gelu(x)",
  3137. "gelu_quick(x)",
  3138. "silu(x)",
  3139. "silu_back(x)",
  3140. "norm(x)",
  3141. "rms_norm(x)",
  3142. "rms_norm_back(x)",
  3143. "X*Y",
  3144. "X*Y",
  3145. "x*v",
  3146. "y-\\>view(x)",
  3147. "x-\\>y",
  3148. "cont(x)",
  3149. "reshape(x)",
  3150. "view(x)",
  3151. "permute(x)",
  3152. "transpose(x)",
  3153. "get_rows(x)",
  3154. "get_rows_back(x)",
  3155. "diag(x)",
  3156. "diag_mask_inf(x)",
  3157. "diag_mask_zero(x)",
  3158. "soft_max(x)",
  3159. "soft_max_back(x)",
  3160. "rope(x)",
  3161. "rope_back(x)",
  3162. "alibi(x)",
  3163. "clamp(x)",
  3164. "conv_1d(x)",
  3165. "conv_2d(x)",
  3166. "flash_attn(x)",
  3167. "flash_ff(x)",
  3168. "flash_attn_back(x)",
  3169. "win_part(x)",
  3170. "win_unpart(x)",
  3171. "f(x)",
  3172. "f(x,y)",
  3173. "custom(x)",
  3174. "custom(x,y)",
  3175. "custom(x,y,z)",
  3176. "cross_entropy_loss(x,y)",
  3177. "cross_entropy_loss_back(x,y)",
  3178. };
  3179. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3180. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3181. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3182. // WARN:
  3183. // Mis-confguration can lead to problem that's hard to reason about:
  3184. // * At best it crash or talks nosense.
  3185. // * At worst it talks slightly difference but hard to perceive.
  3186. //
  3187. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3188. // Take care about compile options (e.g., GGML_USE_xxx).
  3189. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3190. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3191. static void ggml_setup_op_has_task_pass(void) {
  3192. { // INIT
  3193. bool * p = GGML_OP_HAS_INIT;
  3194. p[GGML_OP_ACC ] = true;
  3195. p[GGML_OP_MUL_MAT ] = true;
  3196. p[GGML_OP_OUT_PROD ] = true;
  3197. p[GGML_OP_SET ] = true;
  3198. p[GGML_OP_GET_ROWS_BACK ] = true;
  3199. p[GGML_OP_DIAG_MASK_INF ] = true;
  3200. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3201. p[GGML_OP_CONV_1D ] = true;
  3202. p[GGML_OP_CONV_2D ] = true;
  3203. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3204. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3205. }
  3206. { // FINALIZE
  3207. bool * p = GGML_OP_HAS_FINALIZE;
  3208. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3209. }
  3210. }
  3211. //
  3212. // ggml context
  3213. //
  3214. struct ggml_context {
  3215. size_t mem_size;
  3216. void * mem_buffer;
  3217. bool mem_buffer_owned;
  3218. bool no_alloc;
  3219. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3220. int n_objects;
  3221. struct ggml_object * objects_begin;
  3222. struct ggml_object * objects_end;
  3223. struct ggml_scratch scratch;
  3224. struct ggml_scratch scratch_save;
  3225. };
  3226. struct ggml_context_container {
  3227. bool used;
  3228. struct ggml_context context;
  3229. };
  3230. //
  3231. // NUMA support
  3232. //
  3233. #define GGML_NUMA_MAX_NODES 8
  3234. #define GGML_NUMA_MAX_CPUS 512
  3235. struct ggml_numa_node {
  3236. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3237. uint32_t n_cpus;
  3238. };
  3239. struct ggml_numa_nodes {
  3240. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3241. uint32_t n_nodes;
  3242. uint32_t total_cpus; // hardware threads on system
  3243. };
  3244. //
  3245. // ggml state
  3246. //
  3247. struct ggml_state {
  3248. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3249. struct ggml_numa_nodes numa;
  3250. };
  3251. // global state
  3252. static struct ggml_state g_state;
  3253. static atomic_int g_state_barrier = 0;
  3254. // barrier via spin lock
  3255. inline static void ggml_critical_section_start(void) {
  3256. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3257. while (processing > 0) {
  3258. // wait for other threads to finish
  3259. atomic_fetch_sub(&g_state_barrier, 1);
  3260. sched_yield(); // TODO: reconsider this
  3261. processing = atomic_fetch_add(&g_state_barrier, 1);
  3262. }
  3263. }
  3264. // TODO: make this somehow automatically executed
  3265. // some sort of "sentry" mechanism
  3266. inline static void ggml_critical_section_end(void) {
  3267. atomic_fetch_sub(&g_state_barrier, 1);
  3268. }
  3269. void ggml_numa_init(void) {
  3270. if (g_state.numa.n_nodes > 0) {
  3271. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3272. return;
  3273. }
  3274. #ifdef __linux__
  3275. struct stat st;
  3276. char path[256];
  3277. int rv;
  3278. // enumerate nodes
  3279. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3280. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3281. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3282. if (stat(path, &st) != 0) { break; }
  3283. ++g_state.numa.n_nodes;
  3284. }
  3285. // enumerate CPUs
  3286. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3287. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3288. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3289. if (stat(path, &st) != 0) { break; }
  3290. ++g_state.numa.total_cpus;
  3291. }
  3292. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3293. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3294. g_state.numa.n_nodes = 0;
  3295. return;
  3296. }
  3297. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3298. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3299. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3300. node->n_cpus = 0;
  3301. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3302. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3303. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3304. if (stat(path, &st) == 0) {
  3305. node->cpus[node->n_cpus++] = c;
  3306. GGML_PRINT_DEBUG(" %u", c);
  3307. }
  3308. }
  3309. GGML_PRINT_DEBUG("\n");
  3310. }
  3311. if (ggml_is_numa()) {
  3312. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3313. if (fptr != NULL) {
  3314. char buf[42];
  3315. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3316. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3317. }
  3318. fclose(fptr);
  3319. }
  3320. }
  3321. #else
  3322. // TODO
  3323. #endif
  3324. }
  3325. bool ggml_is_numa(void) {
  3326. return g_state.numa.n_nodes > 1;
  3327. }
  3328. ////////////////////////////////////////////////////////////////////////////////
  3329. void ggml_print_object(const struct ggml_object * obj) {
  3330. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3331. obj->offs, obj->size, (const void *) obj->next);
  3332. }
  3333. void ggml_print_objects(const struct ggml_context * ctx) {
  3334. struct ggml_object * obj = ctx->objects_begin;
  3335. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3336. while (obj != NULL) {
  3337. ggml_print_object(obj);
  3338. obj = obj->next;
  3339. }
  3340. GGML_PRINT("%s: --- end ---\n", __func__);
  3341. }
  3342. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3343. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3344. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3345. }
  3346. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3348. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3349. }
  3350. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. // this should handle cases where the tensor is not contiguous in memory
  3353. // probaby just:
  3354. //
  3355. // return tensor->ne[3]*tensor->nb[3]
  3356. //
  3357. // is enough, but just in case, adding the second part
  3358. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3359. }
  3360. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3361. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3362. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3363. }
  3364. int ggml_blck_size(enum ggml_type type) {
  3365. return GGML_BLCK_SIZE[type];
  3366. }
  3367. size_t ggml_type_size(enum ggml_type type) {
  3368. return GGML_TYPE_SIZE[type];
  3369. }
  3370. float ggml_type_sizef(enum ggml_type type) {
  3371. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3372. }
  3373. const char * ggml_type_name(enum ggml_type type) {
  3374. return GGML_TYPE_NAME[type];
  3375. }
  3376. const char * ggml_op_name(enum ggml_op op) {
  3377. return GGML_OP_NAME[op];
  3378. }
  3379. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3380. return GGML_TYPE_SIZE[tensor->type];
  3381. }
  3382. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3383. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3384. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3385. }
  3386. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3389. }
  3390. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3391. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3392. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3393. }
  3394. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3395. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3396. return
  3397. (t0->ne[0] == t1->ne[0]) &&
  3398. (t0->ne[2] == t1->ne[2]) &&
  3399. (t0->ne[3] == t1->ne[3]);
  3400. }
  3401. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3402. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3403. return
  3404. (t0->ne[1] == t1->ne[1]) &&
  3405. (t0->ne[2] == t1->ne[2]) &&
  3406. (t0->ne[3] == t1->ne[3]);
  3407. }
  3408. bool ggml_is_quantized(enum ggml_type type) {
  3409. return GGML_IS_QUANTIZED[type];
  3410. }
  3411. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3412. enum ggml_type wtype = GGML_TYPE_COUNT;
  3413. switch (ftype) {
  3414. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3415. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3416. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3417. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3418. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3419. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3420. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3421. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3422. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3423. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3424. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3425. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3426. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3427. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3428. }
  3429. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3430. return wtype;
  3431. }
  3432. size_t ggml_tensor_overhead(void) {
  3433. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3434. }
  3435. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3436. return tensor->nb[0] > tensor->nb[1];
  3437. }
  3438. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3439. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3440. return
  3441. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3442. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3443. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3444. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3445. }
  3446. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3447. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3448. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3449. }
  3450. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return
  3453. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3454. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3455. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3456. }
  3457. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3458. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3459. return
  3460. (t0->ne[0] == t1->ne[0] ) &&
  3461. (t0->ne[1] == t1->ne[1] ) &&
  3462. (t0->ne[2] == t1->ne[2] ) &&
  3463. (t0->ne[3] == t1->ne[3] );
  3464. }
  3465. // check if t1 can be represented as a repeatition of t0
  3466. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3467. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3468. return
  3469. (t1->ne[0]%t0->ne[0] == 0) &&
  3470. (t1->ne[1]%t0->ne[1] == 0) &&
  3471. (t1->ne[2]%t0->ne[2] == 0) &&
  3472. (t1->ne[3]%t0->ne[3] == 0);
  3473. }
  3474. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3475. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3476. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3477. }
  3478. static inline int ggml_up32(int n) {
  3479. return (n + 31) & ~31;
  3480. }
  3481. //static inline int ggml_up64(int n) {
  3482. // return (n + 63) & ~63;
  3483. //}
  3484. static inline int ggml_up(int n, int m) {
  3485. // assert m is a power of 2
  3486. GGML_ASSERT((m & (m - 1)) == 0);
  3487. return (n + m - 1) & ~(m - 1);
  3488. }
  3489. // assert that pointer is aligned to GGML_MEM_ALIGN
  3490. #define ggml_assert_aligned(ptr) \
  3491. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3492. ////////////////////////////////////////////////////////////////////////////////
  3493. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3494. // make this function thread safe
  3495. ggml_critical_section_start();
  3496. static bool is_first_call = true;
  3497. if (is_first_call) {
  3498. // initialize time system (required on Windows)
  3499. ggml_time_init();
  3500. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3501. {
  3502. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3503. ggml_fp16_t ii;
  3504. for (int i = 0; i < (1 << 16); ++i) {
  3505. uint16_t ui = i;
  3506. memcpy(&ii, &ui, sizeof(ii));
  3507. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3508. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3509. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3510. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3511. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3512. }
  3513. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3514. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3515. }
  3516. // initialize g_state
  3517. {
  3518. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3519. g_state = (struct ggml_state) {
  3520. /*.contexts =*/ { { 0 } },
  3521. /*.numa =*/ {
  3522. .n_nodes = 0,
  3523. .total_cpus = 0,
  3524. },
  3525. };
  3526. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3527. g_state.contexts[i].used = false;
  3528. }
  3529. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3530. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3531. }
  3532. #if defined(GGML_USE_CUBLAS)
  3533. ggml_init_cublas();
  3534. #elif defined(GGML_USE_CLBLAST)
  3535. ggml_cl_init();
  3536. #endif
  3537. ggml_setup_op_has_task_pass();
  3538. is_first_call = false;
  3539. }
  3540. // find non-used context in g_state
  3541. struct ggml_context * ctx = NULL;
  3542. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3543. if (!g_state.contexts[i].used) {
  3544. g_state.contexts[i].used = true;
  3545. ctx = &g_state.contexts[i].context;
  3546. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3547. break;
  3548. }
  3549. }
  3550. if (ctx == NULL) {
  3551. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3552. ggml_critical_section_end();
  3553. return NULL;
  3554. }
  3555. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3556. *ctx = (struct ggml_context) {
  3557. /*.mem_size =*/ mem_size,
  3558. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3559. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3560. /*.no_alloc =*/ params.no_alloc,
  3561. /*.no_alloc_save =*/ params.no_alloc,
  3562. /*.n_objects =*/ 0,
  3563. /*.objects_begin =*/ NULL,
  3564. /*.objects_end =*/ NULL,
  3565. /*.scratch =*/ { 0, 0, NULL, },
  3566. /*.scratch_save =*/ { 0, 0, NULL, },
  3567. };
  3568. GGML_ASSERT(ctx->mem_buffer != NULL);
  3569. ggml_assert_aligned(ctx->mem_buffer);
  3570. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3571. ggml_critical_section_end();
  3572. return ctx;
  3573. }
  3574. void ggml_free(struct ggml_context * ctx) {
  3575. // make this function thread safe
  3576. ggml_critical_section_start();
  3577. bool found = false;
  3578. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3579. if (&g_state.contexts[i].context == ctx) {
  3580. g_state.contexts[i].used = false;
  3581. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3582. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3583. if (ctx->mem_buffer_owned) {
  3584. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3585. }
  3586. found = true;
  3587. break;
  3588. }
  3589. }
  3590. if (!found) {
  3591. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3592. }
  3593. ggml_critical_section_end();
  3594. }
  3595. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3596. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3597. }
  3598. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3599. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3600. ctx->scratch = scratch;
  3601. return result;
  3602. }
  3603. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3604. ctx->no_alloc = no_alloc;
  3605. }
  3606. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3607. return ctx->mem_buffer;
  3608. }
  3609. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3610. return ctx->mem_size;
  3611. }
  3612. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3613. size_t max_size = 0;
  3614. struct ggml_object * obj = ctx->objects_begin;
  3615. while (obj != NULL) {
  3616. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3617. const size_t size = ggml_nbytes(tensor);
  3618. if (max_size < size) {
  3619. max_size = size;
  3620. }
  3621. obj = obj->next;
  3622. }
  3623. return max_size;
  3624. }
  3625. // IMPORTANT:
  3626. // when creating "opt" tensors, always save and load the scratch buffer
  3627. // this is an error prone process, but it is necessary to support inplace
  3628. // operators when using scratch buffers
  3629. // TODO: implement a better way
  3630. void ggml_scratch_save(struct ggml_context * ctx) {
  3631. // this is needed to allow opt tensors to store their data
  3632. // TODO: again, need to find a better way
  3633. ctx->no_alloc_save = ctx->no_alloc;
  3634. ctx->no_alloc = false;
  3635. ctx->scratch_save = ctx->scratch;
  3636. ctx->scratch.data = NULL;
  3637. }
  3638. void ggml_scratch_load(struct ggml_context * ctx) {
  3639. ctx->no_alloc = ctx->no_alloc_save;
  3640. ctx->scratch = ctx->scratch_save;
  3641. }
  3642. ////////////////////////////////////////////////////////////////////////////////
  3643. struct ggml_tensor * ggml_new_tensor_impl(
  3644. struct ggml_context * ctx,
  3645. enum ggml_type type,
  3646. int n_dims,
  3647. const int64_t* ne,
  3648. void* data) {
  3649. // always insert objects at the end of the context's memory pool
  3650. struct ggml_object * obj_cur = ctx->objects_end;
  3651. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3652. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3653. const size_t cur_end = cur_offs + cur_size;
  3654. size_t size_needed = 0;
  3655. if (data == NULL && !ctx->no_alloc) {
  3656. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3657. for (int i = 1; i < n_dims; i++) {
  3658. size_needed *= ne[i];
  3659. }
  3660. // align to GGML_MEM_ALIGN
  3661. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3662. }
  3663. char * const mem_buffer = ctx->mem_buffer;
  3664. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3665. if (ctx->scratch.data == NULL || data != NULL) {
  3666. size_needed += GGML_TENSOR_SIZE;
  3667. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3668. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3669. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3670. assert(false);
  3671. return NULL;
  3672. }
  3673. *obj_new = (struct ggml_object) {
  3674. .offs = cur_end + GGML_OBJECT_SIZE,
  3675. .size = size_needed,
  3676. .next = NULL,
  3677. };
  3678. } else {
  3679. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3680. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3681. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3682. assert(false);
  3683. return NULL;
  3684. }
  3685. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3686. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3687. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3688. assert(false);
  3689. return NULL;
  3690. }
  3691. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3692. *obj_new = (struct ggml_object) {
  3693. .offs = cur_end + GGML_OBJECT_SIZE,
  3694. .size = GGML_TENSOR_SIZE,
  3695. .next = NULL,
  3696. };
  3697. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3698. ctx->scratch.offs += size_needed;
  3699. }
  3700. if (obj_cur != NULL) {
  3701. obj_cur->next = obj_new;
  3702. } else {
  3703. // this is the first object in this context
  3704. ctx->objects_begin = obj_new;
  3705. }
  3706. ctx->objects_end = obj_new;
  3707. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3708. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3709. ggml_assert_aligned(result);
  3710. *result = (struct ggml_tensor) {
  3711. /*.type =*/ type,
  3712. /*.backend =*/ GGML_BACKEND_CPU,
  3713. /*.n_dims =*/ n_dims,
  3714. /*.ne =*/ { 1, 1, 1, 1 },
  3715. /*.nb =*/ { 0, 0, 0, 0 },
  3716. /*.op =*/ GGML_OP_NONE,
  3717. /*.is_param =*/ false,
  3718. /*.grad =*/ NULL,
  3719. /*.src0 =*/ NULL,
  3720. /*.src1 =*/ NULL,
  3721. /*.opt =*/ { NULL },
  3722. /*.perf_runs =*/ 0,
  3723. /*.perf_cycles =*/ 0,
  3724. /*.perf_time_us =*/ 0,
  3725. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3726. /*.name =*/ { 0 },
  3727. /*.extra =*/ NULL,
  3728. /*.padding =*/ { 0 },
  3729. };
  3730. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3731. //ggml_assert_aligned(result->data);
  3732. for (int i = 0; i < n_dims; i++) {
  3733. result->ne[i] = ne[i];
  3734. }
  3735. result->nb[0] = GGML_TYPE_SIZE[type];
  3736. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3737. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3738. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3739. }
  3740. ctx->n_objects++;
  3741. return result;
  3742. }
  3743. struct ggml_tensor * ggml_new_tensor(
  3744. struct ggml_context * ctx,
  3745. enum ggml_type type,
  3746. int n_dims,
  3747. const int64_t * ne) {
  3748. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3749. }
  3750. struct ggml_tensor * ggml_new_tensor_1d(
  3751. struct ggml_context * ctx,
  3752. enum ggml_type type,
  3753. int64_t ne0) {
  3754. return ggml_new_tensor(ctx, type, 1, &ne0);
  3755. }
  3756. struct ggml_tensor * ggml_new_tensor_2d(
  3757. struct ggml_context * ctx,
  3758. enum ggml_type type,
  3759. int64_t ne0,
  3760. int64_t ne1) {
  3761. const int64_t ne[2] = { ne0, ne1 };
  3762. return ggml_new_tensor(ctx, type, 2, ne);
  3763. }
  3764. struct ggml_tensor * ggml_new_tensor_3d(
  3765. struct ggml_context * ctx,
  3766. enum ggml_type type,
  3767. int64_t ne0,
  3768. int64_t ne1,
  3769. int64_t ne2) {
  3770. const int64_t ne[3] = { ne0, ne1, ne2 };
  3771. return ggml_new_tensor(ctx, type, 3, ne);
  3772. }
  3773. struct ggml_tensor * ggml_new_tensor_4d(
  3774. struct ggml_context * ctx,
  3775. enum ggml_type type,
  3776. int64_t ne0,
  3777. int64_t ne1,
  3778. int64_t ne2,
  3779. int64_t ne3) {
  3780. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3781. return ggml_new_tensor(ctx, type, 4, ne);
  3782. }
  3783. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3784. ggml_scratch_save(ctx);
  3785. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3786. ggml_scratch_load(ctx);
  3787. ggml_set_i32(result, value);
  3788. return result;
  3789. }
  3790. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3791. ggml_scratch_save(ctx);
  3792. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3793. ggml_scratch_load(ctx);
  3794. ggml_set_f32(result, value);
  3795. return result;
  3796. }
  3797. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3798. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3799. }
  3800. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3801. memset(tensor->data, 0, ggml_nbytes(tensor));
  3802. return tensor;
  3803. }
  3804. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3805. const int n = ggml_nrows(tensor);
  3806. const int nc = tensor->ne[0];
  3807. const size_t n1 = tensor->nb[1];
  3808. char * const data = tensor->data;
  3809. switch (tensor->type) {
  3810. case GGML_TYPE_I8:
  3811. {
  3812. assert(tensor->nb[0] == sizeof(int8_t));
  3813. for (int i = 0; i < n; i++) {
  3814. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3815. }
  3816. } break;
  3817. case GGML_TYPE_I16:
  3818. {
  3819. assert(tensor->nb[0] == sizeof(int16_t));
  3820. for (int i = 0; i < n; i++) {
  3821. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3822. }
  3823. } break;
  3824. case GGML_TYPE_I32:
  3825. {
  3826. assert(tensor->nb[0] == sizeof(int32_t));
  3827. for (int i = 0; i < n; i++) {
  3828. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3829. }
  3830. } break;
  3831. case GGML_TYPE_F16:
  3832. {
  3833. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3834. for (int i = 0; i < n; i++) {
  3835. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3836. }
  3837. } break;
  3838. case GGML_TYPE_F32:
  3839. {
  3840. assert(tensor->nb[0] == sizeof(float));
  3841. for (int i = 0; i < n; i++) {
  3842. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3843. }
  3844. } break;
  3845. default:
  3846. {
  3847. GGML_ASSERT(false);
  3848. } break;
  3849. }
  3850. return tensor;
  3851. }
  3852. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3853. const int n = ggml_nrows(tensor);
  3854. const int nc = tensor->ne[0];
  3855. const size_t n1 = tensor->nb[1];
  3856. char * const data = tensor->data;
  3857. switch (tensor->type) {
  3858. case GGML_TYPE_I8:
  3859. {
  3860. assert(tensor->nb[0] == sizeof(int8_t));
  3861. for (int i = 0; i < n; i++) {
  3862. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3863. }
  3864. } break;
  3865. case GGML_TYPE_I16:
  3866. {
  3867. assert(tensor->nb[0] == sizeof(int16_t));
  3868. for (int i = 0; i < n; i++) {
  3869. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3870. }
  3871. } break;
  3872. case GGML_TYPE_I32:
  3873. {
  3874. assert(tensor->nb[0] == sizeof(int32_t));
  3875. for (int i = 0; i < n; i++) {
  3876. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3877. }
  3878. } break;
  3879. case GGML_TYPE_F16:
  3880. {
  3881. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3882. for (int i = 0; i < n; i++) {
  3883. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3884. }
  3885. } break;
  3886. case GGML_TYPE_F32:
  3887. {
  3888. assert(tensor->nb[0] == sizeof(float));
  3889. for (int i = 0; i < n; i++) {
  3890. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3891. }
  3892. } break;
  3893. default:
  3894. {
  3895. GGML_ASSERT(false);
  3896. } break;
  3897. }
  3898. return tensor;
  3899. }
  3900. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3901. switch (tensor->type) {
  3902. case GGML_TYPE_I8:
  3903. {
  3904. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3905. return ((int8_t *)(tensor->data))[i];
  3906. } break;
  3907. case GGML_TYPE_I16:
  3908. {
  3909. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3910. return ((int16_t *)(tensor->data))[i];
  3911. } break;
  3912. case GGML_TYPE_I32:
  3913. {
  3914. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3915. return ((int32_t *)(tensor->data))[i];
  3916. } break;
  3917. case GGML_TYPE_F16:
  3918. {
  3919. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3920. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3921. } break;
  3922. case GGML_TYPE_F32:
  3923. {
  3924. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3925. return ((float *)(tensor->data))[i];
  3926. } break;
  3927. default:
  3928. {
  3929. GGML_ASSERT(false);
  3930. } break;
  3931. }
  3932. return 0.0f;
  3933. }
  3934. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3935. switch (tensor->type) {
  3936. case GGML_TYPE_I8:
  3937. {
  3938. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3939. ((int8_t *)(tensor->data))[i] = value;
  3940. } break;
  3941. case GGML_TYPE_I16:
  3942. {
  3943. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3944. ((int16_t *)(tensor->data))[i] = value;
  3945. } break;
  3946. case GGML_TYPE_I32:
  3947. {
  3948. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3949. ((int32_t *)(tensor->data))[i] = value;
  3950. } break;
  3951. case GGML_TYPE_F16:
  3952. {
  3953. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3954. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3955. } break;
  3956. case GGML_TYPE_F32:
  3957. {
  3958. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3959. ((float *)(tensor->data))[i] = value;
  3960. } break;
  3961. default:
  3962. {
  3963. GGML_ASSERT(false);
  3964. } break;
  3965. }
  3966. }
  3967. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3968. switch (tensor->type) {
  3969. case GGML_TYPE_I8:
  3970. {
  3971. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3972. return ((int8_t *)(tensor->data))[i];
  3973. } break;
  3974. case GGML_TYPE_I16:
  3975. {
  3976. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3977. return ((int16_t *)(tensor->data))[i];
  3978. } break;
  3979. case GGML_TYPE_I32:
  3980. {
  3981. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3982. return ((int32_t *)(tensor->data))[i];
  3983. } break;
  3984. case GGML_TYPE_F16:
  3985. {
  3986. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3987. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3988. } break;
  3989. case GGML_TYPE_F32:
  3990. {
  3991. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3992. return ((float *)(tensor->data))[i];
  3993. } break;
  3994. default:
  3995. {
  3996. GGML_ASSERT(false);
  3997. } break;
  3998. }
  3999. return 0.0f;
  4000. }
  4001. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4002. switch (tensor->type) {
  4003. case GGML_TYPE_I8:
  4004. {
  4005. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4006. ((int8_t *)(tensor->data))[i] = value;
  4007. } break;
  4008. case GGML_TYPE_I16:
  4009. {
  4010. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4011. ((int16_t *)(tensor->data))[i] = value;
  4012. } break;
  4013. case GGML_TYPE_I32:
  4014. {
  4015. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4016. ((int32_t *)(tensor->data))[i] = value;
  4017. } break;
  4018. case GGML_TYPE_F16:
  4019. {
  4020. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4021. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4022. } break;
  4023. case GGML_TYPE_F32:
  4024. {
  4025. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4026. ((float *)(tensor->data))[i] = value;
  4027. } break;
  4028. default:
  4029. {
  4030. GGML_ASSERT(false);
  4031. } break;
  4032. }
  4033. }
  4034. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4035. return tensor->data;
  4036. }
  4037. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4038. assert(tensor->type == GGML_TYPE_F32);
  4039. return (float *)(tensor->data);
  4040. }
  4041. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4042. return tensor->name;
  4043. }
  4044. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4045. strncpy(tensor->name, name, sizeof(tensor->name));
  4046. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4047. return tensor;
  4048. }
  4049. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4050. va_list args;
  4051. va_start(args, fmt);
  4052. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4053. va_end(args);
  4054. return tensor;
  4055. }
  4056. struct ggml_tensor * ggml_view_tensor(
  4057. struct ggml_context * ctx,
  4058. const struct ggml_tensor * src) {
  4059. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4060. ggml_format_name(result, "%s (view)", src->name);
  4061. result->nb[0] = src->nb[0];
  4062. result->nb[1] = src->nb[1];
  4063. result->nb[2] = src->nb[2];
  4064. result->nb[3] = src->nb[3];
  4065. return result;
  4066. }
  4067. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4068. struct ggml_object * obj = ctx->objects_begin;
  4069. char * const mem_buffer = ctx->mem_buffer;
  4070. while (obj != NULL) {
  4071. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4072. if (strcmp(cur->name, name) == 0) {
  4073. return cur;
  4074. }
  4075. obj = obj->next;
  4076. }
  4077. return NULL;
  4078. }
  4079. ////////////////////////////////////////////////////////////////////////////////
  4080. // ggml_dup
  4081. struct ggml_tensor * ggml_dup_impl(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. bool inplace) {
  4085. bool is_node = false;
  4086. if (!inplace && (a->grad)) {
  4087. is_node = true;
  4088. }
  4089. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4090. result->op = GGML_OP_DUP;
  4091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4092. result->src0 = a;
  4093. result->src1 = NULL;
  4094. return result;
  4095. }
  4096. struct ggml_tensor * ggml_dup(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a) {
  4099. return ggml_dup_impl(ctx, a, false);
  4100. }
  4101. struct ggml_tensor * ggml_dup_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a) {
  4104. return ggml_dup_impl(ctx, a, true);
  4105. }
  4106. // ggml_add
  4107. struct ggml_tensor * ggml_add_impl(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. struct ggml_tensor * b,
  4111. bool inplace) {
  4112. GGML_ASSERT(ggml_are_same_shape(a, b));
  4113. bool is_node = false;
  4114. if (a->grad || b->grad) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4118. result->op = GGML_OP_ADD;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src0 = a;
  4121. result->src1 = b;
  4122. return result;
  4123. }
  4124. struct ggml_tensor * ggml_add(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b) {
  4128. return ggml_add_impl(ctx, a, b, false);
  4129. }
  4130. struct ggml_tensor * ggml_add_inplace(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a,
  4133. struct ggml_tensor * b) {
  4134. return ggml_add_impl(ctx, a, b, true);
  4135. }
  4136. // ggml_add1
  4137. struct ggml_tensor * ggml_add1_impl(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a,
  4140. struct ggml_tensor * b,
  4141. bool inplace) {
  4142. GGML_ASSERT(ggml_is_scalar(b));
  4143. GGML_ASSERT(ggml_is_padded_1d(a));
  4144. bool is_node = false;
  4145. if (a->grad || b->grad) {
  4146. is_node = true;
  4147. }
  4148. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4149. result->op = GGML_OP_ADD1;
  4150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4151. result->src0 = a;
  4152. result->src1 = b;
  4153. return result;
  4154. }
  4155. struct ggml_tensor * ggml_add1(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b) {
  4159. return ggml_add1_impl(ctx, a, b, false);
  4160. }
  4161. struct ggml_tensor * ggml_add1_inplace(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. struct ggml_tensor * b) {
  4165. return ggml_add1_impl(ctx, a, b, true);
  4166. }
  4167. // ggml_acc
  4168. struct ggml_tensor * ggml_acc_impl(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * b,
  4172. size_t nb1,
  4173. size_t nb2,
  4174. size_t nb3,
  4175. size_t offset,
  4176. bool inplace) {
  4177. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4178. GGML_ASSERT(ggml_is_contiguous(a));
  4179. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4180. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4181. bool is_node = false;
  4182. if (!inplace && (a->grad || b->grad)) {
  4183. is_node = true;
  4184. }
  4185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4186. ggml_scratch_save(ctx);
  4187. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4188. ((int32_t *) c->data)[0] = nb1;
  4189. ((int32_t *) c->data)[1] = nb2;
  4190. ((int32_t *) c->data)[2] = nb3;
  4191. ((int32_t *) c->data)[3] = offset;
  4192. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4193. ggml_scratch_load(ctx);
  4194. result->op = GGML_OP_ACC;
  4195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4196. result->src0 = a;
  4197. result->src1 = b;
  4198. result->opt[0] = c;
  4199. return result;
  4200. }
  4201. struct ggml_tensor * ggml_acc(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. struct ggml_tensor * b,
  4205. size_t nb1,
  4206. size_t nb2,
  4207. size_t nb3,
  4208. size_t offset) {
  4209. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4210. }
  4211. struct ggml_tensor * ggml_acc_inplace(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. size_t nb1,
  4216. size_t nb2,
  4217. size_t nb3,
  4218. size_t offset) {
  4219. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4220. }
  4221. // ggml_sub
  4222. struct ggml_tensor * ggml_sub_impl(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. bool inplace) {
  4227. GGML_ASSERT(ggml_are_same_shape(a, b));
  4228. bool is_node = false;
  4229. if (!inplace && (a->grad || b->grad)) {
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. result->op = GGML_OP_SUB;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src0 = a;
  4236. result->src1 = b;
  4237. return result;
  4238. }
  4239. struct ggml_tensor * ggml_sub(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. struct ggml_tensor * b) {
  4243. return ggml_sub_impl(ctx, a, b, false);
  4244. }
  4245. struct ggml_tensor * ggml_sub_inplace(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. struct ggml_tensor * b) {
  4249. return ggml_sub_impl(ctx, a, b, true);
  4250. }
  4251. // ggml_mul
  4252. struct ggml_tensor * ggml_mul_impl(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b,
  4256. bool inplace) {
  4257. // TODO: support less-strict constraint
  4258. // GGML_ASSERT(ggml_can_repeat(b, a));
  4259. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4260. bool is_node = false;
  4261. if (!inplace && (a->grad || b->grad)) {
  4262. // TODO: support backward pass for broadcasting
  4263. GGML_ASSERT(ggml_are_same_shape(a, b));
  4264. is_node = true;
  4265. }
  4266. if (inplace) {
  4267. GGML_ASSERT(is_node == false);
  4268. }
  4269. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4270. result->op = GGML_OP_MUL;
  4271. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4272. result->src0 = a;
  4273. result->src1 = b;
  4274. return result;
  4275. }
  4276. struct ggml_tensor * ggml_mul(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. struct ggml_tensor * b) {
  4280. return ggml_mul_impl(ctx, a, b, false);
  4281. }
  4282. struct ggml_tensor * ggml_mul_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. struct ggml_tensor * b) {
  4286. return ggml_mul_impl(ctx, a, b, true);
  4287. }
  4288. // ggml_div
  4289. struct ggml_tensor * ggml_div_impl(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * b,
  4293. bool inplace) {
  4294. GGML_ASSERT(ggml_are_same_shape(a, b));
  4295. bool is_node = false;
  4296. if (!inplace && (a->grad || b->grad)) {
  4297. is_node = true;
  4298. }
  4299. if (inplace) {
  4300. GGML_ASSERT(is_node == false);
  4301. }
  4302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4303. result->op = GGML_OP_DIV;
  4304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4305. result->src0 = a;
  4306. result->src1 = b;
  4307. return result;
  4308. }
  4309. struct ggml_tensor * ggml_div(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. return ggml_div_impl(ctx, a, b, false);
  4314. }
  4315. struct ggml_tensor * ggml_div_inplace(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. struct ggml_tensor * b) {
  4319. return ggml_div_impl(ctx, a, b, true);
  4320. }
  4321. // ggml_sqr
  4322. struct ggml_tensor * ggml_sqr_impl(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. bool inplace) {
  4326. bool is_node = false;
  4327. if (!inplace && (a->grad)) {
  4328. is_node = true;
  4329. }
  4330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4331. result->op = GGML_OP_SQR;
  4332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4333. result->src0 = a;
  4334. result->src1 = NULL;
  4335. return result;
  4336. }
  4337. struct ggml_tensor * ggml_sqr(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a) {
  4340. return ggml_sqr_impl(ctx, a, false);
  4341. }
  4342. struct ggml_tensor * ggml_sqr_inplace(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a) {
  4345. return ggml_sqr_impl(ctx, a, true);
  4346. }
  4347. // ggml_sqrt
  4348. struct ggml_tensor * ggml_sqrt_impl(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. bool inplace) {
  4352. bool is_node = false;
  4353. if (!inplace && (a->grad)) {
  4354. is_node = true;
  4355. }
  4356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4357. result->op = GGML_OP_SQRT;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src0 = a;
  4360. result->src1 = NULL;
  4361. return result;
  4362. }
  4363. struct ggml_tensor * ggml_sqrt(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a) {
  4366. return ggml_sqrt_impl(ctx, a, false);
  4367. }
  4368. struct ggml_tensor * ggml_sqrt_inplace(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a) {
  4371. return ggml_sqrt_impl(ctx, a, true);
  4372. }
  4373. // ggml_log
  4374. struct ggml_tensor * ggml_log_impl(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. bool inplace) {
  4378. bool is_node = false;
  4379. if (!inplace && (a->grad)) {
  4380. is_node = true;
  4381. }
  4382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4383. result->op = GGML_OP_LOG;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src0 = a;
  4386. result->src1 = NULL;
  4387. return result;
  4388. }
  4389. struct ggml_tensor * ggml_log(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a) {
  4392. return ggml_log_impl(ctx, a, false);
  4393. }
  4394. struct ggml_tensor * ggml_log_inplace(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a) {
  4397. return ggml_log_impl(ctx, a, true);
  4398. }
  4399. // ggml_sum
  4400. struct ggml_tensor * ggml_sum(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a) {
  4403. bool is_node = false;
  4404. if (a->grad) {
  4405. is_node = true;
  4406. }
  4407. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4408. result->op = GGML_OP_SUM;
  4409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4410. result->src0 = a;
  4411. result->src1 = NULL;
  4412. return result;
  4413. }
  4414. // ggml_sum_rows
  4415. struct ggml_tensor * ggml_sum_rows(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a) {
  4418. bool is_node = false;
  4419. if (a->grad) {
  4420. is_node = true;
  4421. }
  4422. int64_t ne[4] = {1,1,1,1};
  4423. for (int i=1; i<a->n_dims; ++i) {
  4424. ne[i] = a->ne[i];
  4425. }
  4426. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4427. result->op = GGML_OP_SUM_ROWS;
  4428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4429. result->src0 = a;
  4430. result->src1 = NULL;
  4431. return result;
  4432. }
  4433. // ggml_mean
  4434. struct ggml_tensor * ggml_mean(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a) {
  4437. bool is_node = false;
  4438. if (a->grad) {
  4439. GGML_ASSERT(false); // TODO: implement
  4440. is_node = true;
  4441. }
  4442. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4443. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4444. result->op = GGML_OP_MEAN;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src0 = a;
  4447. result->src1 = NULL;
  4448. return result;
  4449. }
  4450. // ggml_argmax
  4451. struct ggml_tensor * ggml_argmax(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a) {
  4454. GGML_ASSERT(ggml_is_matrix(a));
  4455. bool is_node = false;
  4456. if (a->grad) {
  4457. GGML_ASSERT(false);
  4458. is_node = true;
  4459. }
  4460. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4461. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4462. result->op = GGML_OP_ARGMAX;
  4463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4464. result->src0 = a;
  4465. result->src1 = NULL;
  4466. return result;
  4467. }
  4468. // ggml_repeat
  4469. struct ggml_tensor * ggml_repeat(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b) {
  4473. GGML_ASSERT(ggml_can_repeat(a, b));
  4474. bool is_node = false;
  4475. if (a->grad) {
  4476. is_node = true;
  4477. }
  4478. if (ggml_are_same_shape(a, b) && !is_node) {
  4479. return a;
  4480. }
  4481. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4482. result->op = GGML_OP_REPEAT;
  4483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4484. result->src0 = a;
  4485. result->src1 = b;
  4486. return result;
  4487. }
  4488. // ggml_repeat_back
  4489. struct ggml_tensor * ggml_repeat_back(
  4490. struct ggml_context * ctx,
  4491. struct ggml_tensor * a,
  4492. struct ggml_tensor * b) {
  4493. GGML_ASSERT(ggml_can_repeat(b, a));
  4494. bool is_node = false;
  4495. if (a->grad) {
  4496. is_node = true;
  4497. }
  4498. if (ggml_are_same_shape(a, b) && !is_node) {
  4499. return a;
  4500. }
  4501. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4502. result->op = GGML_OP_REPEAT_BACK;
  4503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4504. result->src0 = a;
  4505. result->src1 = b;
  4506. return result;
  4507. }
  4508. // ggml_abs
  4509. struct ggml_tensor * ggml_abs_impl(
  4510. struct ggml_context * ctx,
  4511. struct ggml_tensor * a,
  4512. bool inplace) {
  4513. bool is_node = false;
  4514. if (!inplace && (a->grad)) {
  4515. is_node = true;
  4516. }
  4517. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4518. result->op = GGML_OP_ABS;
  4519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4520. result->src0 = a;
  4521. result->src1 = NULL;
  4522. return result;
  4523. }
  4524. struct ggml_tensor * ggml_abs(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a) {
  4527. return ggml_abs_impl(ctx, a, false);
  4528. }
  4529. struct ggml_tensor * ggml_abs_inplace(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a) {
  4532. return ggml_abs_impl(ctx, a, true);
  4533. }
  4534. // ggml_sgn
  4535. struct ggml_tensor * ggml_sgn_impl(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * a,
  4538. bool inplace) {
  4539. bool is_node = false;
  4540. if (!inplace && (a->grad)) {
  4541. is_node = true;
  4542. }
  4543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4544. result->op = GGML_OP_SGN;
  4545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4546. result->src0 = a;
  4547. result->src1 = NULL;
  4548. return result;
  4549. }
  4550. struct ggml_tensor * ggml_sgn(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a) {
  4553. return ggml_sgn_impl(ctx, a, false);
  4554. }
  4555. struct ggml_tensor * ggml_sgn_inplace(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a) {
  4558. return ggml_sgn_impl(ctx, a, true);
  4559. }
  4560. // ggml_neg
  4561. struct ggml_tensor * ggml_neg_impl(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. bool inplace) {
  4565. bool is_node = false;
  4566. if (!inplace && (a->grad)) {
  4567. is_node = true;
  4568. }
  4569. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4570. result->op = GGML_OP_NEG;
  4571. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4572. result->src0 = a;
  4573. result->src1 = NULL;
  4574. return result;
  4575. }
  4576. struct ggml_tensor * ggml_neg(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a) {
  4579. return ggml_neg_impl(ctx, a, false);
  4580. }
  4581. struct ggml_tensor * ggml_neg_inplace(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a) {
  4584. return ggml_neg_impl(ctx, a, true);
  4585. }
  4586. // ggml_step
  4587. struct ggml_tensor * ggml_step_impl(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. bool inplace) {
  4591. bool is_node = false;
  4592. if (!inplace && (a->grad)) {
  4593. is_node = true;
  4594. }
  4595. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4596. result->op = GGML_OP_STEP;
  4597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4598. result->src0 = a;
  4599. result->src1 = NULL;
  4600. return result;
  4601. }
  4602. struct ggml_tensor * ggml_step(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a) {
  4605. return ggml_step_impl(ctx, a, false);
  4606. }
  4607. struct ggml_tensor * ggml_step_inplace(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a) {
  4610. return ggml_step_impl(ctx, a, true);
  4611. }
  4612. // ggml_tanh
  4613. struct ggml_tensor * ggml_tanh_impl(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a,
  4616. bool inplace) {
  4617. bool is_node = false;
  4618. if (!inplace && (a->grad)) {
  4619. is_node = true;
  4620. }
  4621. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4622. result->op = GGML_OP_TANH;
  4623. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4624. result->src0 = a;
  4625. result->src1 = NULL;
  4626. return result;
  4627. }
  4628. struct ggml_tensor * ggml_tanh(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a) {
  4631. return ggml_tanh_impl(ctx, a, false);
  4632. }
  4633. struct ggml_tensor * ggml_tanh_inplace(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a) {
  4636. return ggml_tanh_impl(ctx, a, true);
  4637. }
  4638. // ggml_elu
  4639. struct ggml_tensor * ggml_elu_impl(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a,
  4642. bool inplace) {
  4643. bool is_node = false;
  4644. if (!inplace && (a->grad)) {
  4645. is_node = true;
  4646. }
  4647. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4648. result->op = GGML_OP_ELU;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src0 = a;
  4651. result->src1 = NULL;
  4652. return result;
  4653. }
  4654. struct ggml_tensor * ggml_elu(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a) {
  4657. return ggml_elu_impl(ctx, a, false);
  4658. }
  4659. struct ggml_tensor * ggml_elu_inplace(
  4660. struct ggml_context * ctx,
  4661. struct ggml_tensor * a) {
  4662. return ggml_elu_impl(ctx, a, true);
  4663. }
  4664. // ggml_relu
  4665. struct ggml_tensor * ggml_relu_impl(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. bool inplace) {
  4669. bool is_node = false;
  4670. if (!inplace && (a->grad)) {
  4671. is_node = true;
  4672. }
  4673. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4674. result->op = GGML_OP_RELU;
  4675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4676. result->src0 = a;
  4677. result->src1 = NULL;
  4678. return result;
  4679. }
  4680. struct ggml_tensor * ggml_relu(
  4681. struct ggml_context * ctx,
  4682. struct ggml_tensor * a) {
  4683. return ggml_relu_impl(ctx, a, false);
  4684. }
  4685. struct ggml_tensor * ggml_relu_inplace(
  4686. struct ggml_context * ctx,
  4687. struct ggml_tensor * a) {
  4688. return ggml_relu_impl(ctx, a, true);
  4689. }
  4690. // ggml_gelu
  4691. struct ggml_tensor * ggml_gelu_impl(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. bool inplace) {
  4695. bool is_node = false;
  4696. if (!inplace && (a->grad)) {
  4697. is_node = true;
  4698. }
  4699. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4700. result->op = GGML_OP_GELU;
  4701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4702. result->src0 = a;
  4703. result->src1 = NULL;
  4704. return result;
  4705. }
  4706. struct ggml_tensor * ggml_gelu(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a) {
  4709. return ggml_gelu_impl(ctx, a, false);
  4710. }
  4711. struct ggml_tensor * ggml_gelu_inplace(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a) {
  4714. return ggml_gelu_impl(ctx, a, true);
  4715. }
  4716. // ggml_gelu_quick
  4717. struct ggml_tensor * ggml_gelu_quick_impl(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a,
  4720. bool inplace) {
  4721. bool is_node = false;
  4722. if (!inplace && (a->grad)) {
  4723. is_node = true;
  4724. }
  4725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4726. result->op = GGML_OP_GELU_QUICK;
  4727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4728. result->src0 = a;
  4729. result->src1 = NULL;
  4730. return result;
  4731. }
  4732. struct ggml_tensor * ggml_gelu_quick(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a) {
  4735. return ggml_gelu_quick_impl(ctx, a, false);
  4736. }
  4737. struct ggml_tensor * ggml_gelu_quick_inplace(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a) {
  4740. return ggml_gelu_quick_impl(ctx, a, true);
  4741. }
  4742. // ggml_silu
  4743. struct ggml_tensor * ggml_silu_impl(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. bool inplace) {
  4747. bool is_node = false;
  4748. if (!inplace && (a->grad)) {
  4749. is_node = true;
  4750. }
  4751. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4752. result->op = GGML_OP_SILU;
  4753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4754. result->src0 = a;
  4755. result->src1 = NULL;
  4756. return result;
  4757. }
  4758. struct ggml_tensor * ggml_silu(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a) {
  4761. return ggml_silu_impl(ctx, a, false);
  4762. }
  4763. struct ggml_tensor * ggml_silu_inplace(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a) {
  4766. return ggml_silu_impl(ctx, a, true);
  4767. }
  4768. // ggml_silu_back
  4769. struct ggml_tensor * ggml_silu_back(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. struct ggml_tensor * b) {
  4773. bool is_node = false;
  4774. if (a->grad || b->grad) {
  4775. // TODO: implement backward
  4776. is_node = true;
  4777. }
  4778. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4779. result->op = GGML_OP_SILU_BACK;
  4780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4781. result->src0 = a;
  4782. result->src1 = b;
  4783. return result;
  4784. }
  4785. // ggml_norm
  4786. struct ggml_tensor * ggml_norm_impl(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a,
  4789. bool inplace) {
  4790. bool is_node = false;
  4791. if (!inplace && (a->grad)) {
  4792. GGML_ASSERT(false); // TODO: implement backward
  4793. is_node = true;
  4794. }
  4795. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4796. result->op = GGML_OP_NORM;
  4797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4798. result->src0 = a;
  4799. result->src1 = NULL; // TODO: maybe store epsilon here?
  4800. return result;
  4801. }
  4802. struct ggml_tensor * ggml_norm(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a) {
  4805. return ggml_norm_impl(ctx, a, false);
  4806. }
  4807. struct ggml_tensor * ggml_norm_inplace(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a) {
  4810. return ggml_norm_impl(ctx, a, true);
  4811. }
  4812. struct ggml_tensor * ggml_rms_norm_impl(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. bool inplace) {
  4816. bool is_node = false;
  4817. if (!inplace && (a->grad)) {
  4818. is_node = true;
  4819. }
  4820. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4821. result->op = GGML_OP_RMS_NORM;
  4822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4823. result->src0 = a;
  4824. result->src1 = NULL; // TODO: maybe store epsilon here?
  4825. return result;
  4826. }
  4827. struct ggml_tensor * ggml_rms_norm(
  4828. struct ggml_context * ctx,
  4829. struct ggml_tensor * a) {
  4830. return ggml_rms_norm_impl(ctx, a, false);
  4831. }
  4832. struct ggml_tensor * ggml_rms_norm_inplace(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a) {
  4835. return ggml_rms_norm_impl(ctx, a, true);
  4836. }
  4837. struct ggml_tensor * ggml_rms_norm_back(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. struct ggml_tensor * b) {
  4841. bool is_node = false;
  4842. if (a->grad) {
  4843. // TODO: implement backward
  4844. is_node = true;
  4845. }
  4846. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4847. result->op = GGML_OP_RMS_NORM_BACK;
  4848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4849. result->src0 = a;
  4850. result->src1 = b;
  4851. return result;
  4852. }
  4853. // ggml_mul_mat
  4854. struct ggml_tensor * ggml_mul_mat(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. struct ggml_tensor * b) {
  4858. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4859. GGML_ASSERT(!ggml_is_transposed(a));
  4860. bool is_node = false;
  4861. if (a->grad || b->grad) {
  4862. is_node = true;
  4863. }
  4864. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4865. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4866. result->op = GGML_OP_MUL_MAT;
  4867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4868. result->src0 = a;
  4869. result->src1 = b;
  4870. return result;
  4871. }
  4872. // ggml_out_prod
  4873. struct ggml_tensor * ggml_out_prod(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. struct ggml_tensor * b) {
  4877. GGML_ASSERT(ggml_can_out_prod(a, b));
  4878. GGML_ASSERT(!ggml_is_transposed(a));
  4879. bool is_node = false;
  4880. if (a->grad || b->grad) {
  4881. is_node = true;
  4882. }
  4883. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4884. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4885. result->op = GGML_OP_OUT_PROD;
  4886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4887. result->src0 = a;
  4888. result->src1 = b;
  4889. return result;
  4890. }
  4891. // ggml_scale
  4892. struct ggml_tensor * ggml_scale_impl(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. struct ggml_tensor * b,
  4896. bool inplace) {
  4897. GGML_ASSERT(ggml_is_scalar(b));
  4898. GGML_ASSERT(ggml_is_padded_1d(a));
  4899. bool is_node = false;
  4900. if (a->grad || b->grad) {
  4901. is_node = true;
  4902. }
  4903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4904. result->op = GGML_OP_SCALE;
  4905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4906. result->src0 = a;
  4907. result->src1 = b;
  4908. return result;
  4909. }
  4910. struct ggml_tensor * ggml_scale(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. struct ggml_tensor * b) {
  4914. return ggml_scale_impl(ctx, a, b, false);
  4915. }
  4916. struct ggml_tensor * ggml_scale_inplace(
  4917. struct ggml_context * ctx,
  4918. struct ggml_tensor * a,
  4919. struct ggml_tensor * b) {
  4920. return ggml_scale_impl(ctx, a, b, true);
  4921. }
  4922. // ggml_set
  4923. struct ggml_tensor * ggml_set_impl(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. struct ggml_tensor * b,
  4927. size_t nb1,
  4928. size_t nb2,
  4929. size_t nb3,
  4930. size_t offset,
  4931. bool inplace) {
  4932. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4933. bool is_node = false;
  4934. if (a->grad || b->grad) {
  4935. is_node = true;
  4936. }
  4937. // make a view of the destination
  4938. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4939. ggml_scratch_save(ctx);
  4940. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4941. (( int32_t * ) c->data)[0] = nb1;
  4942. (( int32_t * ) c->data)[1] = nb2;
  4943. (( int32_t * ) c->data)[2] = nb3;
  4944. (( int32_t * ) c->data)[3] = offset;
  4945. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4946. ggml_scratch_load(ctx);
  4947. result->op = GGML_OP_SET;
  4948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4949. result->src0 = a;
  4950. result->src1 = b;
  4951. result->opt[0] = c;
  4952. return result;
  4953. }
  4954. struct ggml_tensor * ggml_set(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b,
  4958. size_t nb1,
  4959. size_t nb2,
  4960. size_t nb3,
  4961. size_t offset) {
  4962. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4963. }
  4964. struct ggml_tensor * ggml_set_inplace(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b,
  4968. size_t nb1,
  4969. size_t nb2,
  4970. size_t nb3,
  4971. size_t offset) {
  4972. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4973. }
  4974. struct ggml_tensor * ggml_set_1d(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. struct ggml_tensor * b,
  4978. size_t offset) {
  4979. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4980. }
  4981. struct ggml_tensor * ggml_set_1d_inplace(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. struct ggml_tensor * b,
  4985. size_t offset) {
  4986. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4987. }
  4988. struct ggml_tensor * ggml_set_2d(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a,
  4991. struct ggml_tensor * b,
  4992. size_t nb1,
  4993. size_t offset) {
  4994. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4995. }
  4996. struct ggml_tensor * ggml_set_2d_inplace(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. struct ggml_tensor * b,
  5000. size_t nb1,
  5001. size_t offset) {
  5002. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5003. }
  5004. // ggml_cpy
  5005. struct ggml_tensor * ggml_cpy_impl(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a,
  5008. struct ggml_tensor * b,
  5009. bool inplace) {
  5010. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5011. bool is_node = false;
  5012. if (!inplace && (a->grad || b->grad)) {
  5013. is_node = true;
  5014. }
  5015. // make a view of the destination
  5016. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5017. if (strlen(b->name) > 0) {
  5018. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5019. } else {
  5020. ggml_format_name(result, "%s (copy)", a->name);
  5021. }
  5022. result->op = GGML_OP_CPY;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src0 = a;
  5025. result->src1 = b;
  5026. return result;
  5027. }
  5028. struct ggml_tensor * ggml_cpy(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. struct ggml_tensor * b) {
  5032. return ggml_cpy_impl(ctx, a, b, false);
  5033. }
  5034. struct ggml_tensor * ggml_cpy_inplace(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. struct ggml_tensor * b) {
  5038. return ggml_cpy_impl(ctx, a, b, true);
  5039. }
  5040. // ggml_cont
  5041. struct ggml_tensor * ggml_cont_impl(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a,
  5044. bool inplace) {
  5045. bool is_node = false;
  5046. if (!inplace && a->grad) {
  5047. is_node = true;
  5048. }
  5049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5050. ggml_format_name(result, "%s (cont)", a->name);
  5051. result->op = GGML_OP_CONT;
  5052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5053. result->src0 = a;
  5054. result->src1 = NULL;
  5055. return result;
  5056. }
  5057. struct ggml_tensor * ggml_cont(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a) {
  5060. return ggml_cont_impl(ctx, a, false);
  5061. }
  5062. struct ggml_tensor * ggml_cont_inplace(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a) {
  5065. return ggml_cont_impl(ctx, a, true);
  5066. }
  5067. // ggml_reshape
  5068. struct ggml_tensor * ggml_reshape(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. struct ggml_tensor * b) {
  5072. GGML_ASSERT(ggml_is_contiguous(a));
  5073. GGML_ASSERT(ggml_is_contiguous(b));
  5074. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5075. bool is_node = false;
  5076. if (a->grad) {
  5077. is_node = true;
  5078. }
  5079. if (b->grad) {
  5080. // gradient propagation is not supported
  5081. //GGML_ASSERT(false);
  5082. }
  5083. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5084. ggml_format_name(result, "%s (reshaped)", a->name);
  5085. result->op = GGML_OP_RESHAPE;
  5086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5087. result->src0 = a;
  5088. result->src1 = NULL;
  5089. return result;
  5090. }
  5091. struct ggml_tensor * ggml_reshape_1d(
  5092. struct ggml_context * ctx,
  5093. struct ggml_tensor * a,
  5094. int64_t ne0) {
  5095. GGML_ASSERT(ggml_is_contiguous(a));
  5096. GGML_ASSERT(ggml_nelements(a) == ne0);
  5097. bool is_node = false;
  5098. if (a->grad) {
  5099. is_node = true;
  5100. }
  5101. const int64_t ne[1] = { ne0 };
  5102. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5103. ggml_format_name(result, "%s (reshaped)", a->name);
  5104. result->op = GGML_OP_RESHAPE;
  5105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5106. result->src0 = a;
  5107. result->src1 = NULL;
  5108. return result;
  5109. }
  5110. struct ggml_tensor * ggml_reshape_2d(
  5111. struct ggml_context * ctx,
  5112. struct ggml_tensor * a,
  5113. int64_t ne0,
  5114. int64_t ne1) {
  5115. GGML_ASSERT(ggml_is_contiguous(a));
  5116. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5117. bool is_node = false;
  5118. if (a->grad) {
  5119. is_node = true;
  5120. }
  5121. const int64_t ne[2] = { ne0, ne1 };
  5122. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5123. ggml_format_name(result, "%s (reshaped)", a->name);
  5124. result->op = GGML_OP_RESHAPE;
  5125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5126. result->src0 = a;
  5127. result->src1 = NULL;
  5128. return result;
  5129. }
  5130. struct ggml_tensor * ggml_reshape_3d(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a,
  5133. int64_t ne0,
  5134. int64_t ne1,
  5135. int64_t ne2) {
  5136. GGML_ASSERT(ggml_is_contiguous(a));
  5137. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5138. bool is_node = false;
  5139. if (a->grad) {
  5140. is_node = true;
  5141. }
  5142. const int64_t ne[3] = { ne0, ne1, ne2 };
  5143. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5144. ggml_format_name(result, "%s (reshaped)", a->name);
  5145. result->op = GGML_OP_RESHAPE;
  5146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5147. result->src0 = a;
  5148. result->src1 = NULL;
  5149. return result;
  5150. }
  5151. struct ggml_tensor * ggml_reshape_4d(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. int64_t ne0,
  5155. int64_t ne1,
  5156. int64_t ne2,
  5157. int64_t ne3) {
  5158. GGML_ASSERT(ggml_is_contiguous(a));
  5159. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5160. bool is_node = false;
  5161. if (a->grad) {
  5162. is_node = true;
  5163. }
  5164. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5165. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5166. ggml_format_name(result, "%s (reshaped)", a->name);
  5167. result->op = GGML_OP_RESHAPE;
  5168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5169. result->src0 = a;
  5170. result->src1 = NULL;
  5171. return result;
  5172. }
  5173. // ggml_view_1d
  5174. struct ggml_tensor * ggml_view_1d(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * a,
  5177. int64_t ne0,
  5178. size_t offset) {
  5179. bool is_node = false;
  5180. if (a->grad) {
  5181. is_node = true;
  5182. }
  5183. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5184. ggml_format_name(result, "%s (view)", a->name);
  5185. ggml_scratch_save(ctx);
  5186. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5187. ggml_set_name(offs, "offset");
  5188. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5189. ggml_scratch_load(ctx);
  5190. result->op = GGML_OP_VIEW;
  5191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5192. result->src0 = a;
  5193. result->src1 = NULL;
  5194. result->opt[0] = offs;
  5195. return result;
  5196. }
  5197. // ggml_view_2d
  5198. struct ggml_tensor * ggml_view_2d(
  5199. struct ggml_context * ctx,
  5200. struct ggml_tensor * a,
  5201. int64_t ne0,
  5202. int64_t ne1,
  5203. size_t nb1,
  5204. size_t offset) {
  5205. bool is_node = false;
  5206. if (a->grad) {
  5207. is_node = true;
  5208. }
  5209. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5210. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5211. ggml_format_name(result, "%s (view)", a->name);
  5212. ggml_scratch_save(ctx);
  5213. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5214. ggml_set_name(offs, "offset");
  5215. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5216. ggml_scratch_load(ctx);
  5217. result->nb[1] = nb1;
  5218. result->nb[2] = result->nb[1]*ne1;
  5219. result->nb[3] = result->nb[2];
  5220. result->op = GGML_OP_VIEW;
  5221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5222. result->src0 = a;
  5223. result->src1 = NULL;
  5224. result->opt[0] = offs;
  5225. return result;
  5226. }
  5227. // ggml_view_3d
  5228. struct ggml_tensor * ggml_view_3d(
  5229. struct ggml_context * ctx,
  5230. struct ggml_tensor * a,
  5231. int64_t ne0,
  5232. int64_t ne1,
  5233. int64_t ne2,
  5234. size_t nb1,
  5235. size_t nb2,
  5236. size_t offset) {
  5237. bool is_node = false;
  5238. if (a->grad) {
  5239. is_node = true;
  5240. }
  5241. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5242. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5243. ggml_format_name(result, "%s (view)", a->name);
  5244. ggml_scratch_save(ctx);
  5245. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5246. ggml_set_name(offs, "offset");
  5247. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5248. ggml_scratch_load(ctx);
  5249. result->nb[1] = nb1;
  5250. result->nb[2] = nb2;
  5251. result->nb[3] = result->nb[2]*ne2;
  5252. result->op = GGML_OP_VIEW;
  5253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5254. result->src0 = a;
  5255. result->src1 = NULL;
  5256. result->opt[0] = offs;
  5257. return result;
  5258. }
  5259. // ggml_view_4d
  5260. struct ggml_tensor * ggml_view_4d(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. int64_t ne0,
  5264. int64_t ne1,
  5265. int64_t ne2,
  5266. int64_t ne3,
  5267. size_t nb1,
  5268. size_t nb2,
  5269. size_t nb3,
  5270. size_t offset) {
  5271. bool is_node = false;
  5272. if (a->grad) {
  5273. is_node = true;
  5274. }
  5275. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5276. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5277. ggml_format_name(result, "%s (view)", a->name);
  5278. ggml_scratch_save(ctx);
  5279. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5280. ggml_set_name(offs, "offset");
  5281. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5282. ggml_scratch_load(ctx);
  5283. result->nb[1] = nb1;
  5284. result->nb[2] = nb2;
  5285. result->nb[3] = nb3;
  5286. result->op = GGML_OP_VIEW;
  5287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5288. result->src0 = a;
  5289. result->src1 = NULL;
  5290. result->opt[0] = offs;
  5291. return result;
  5292. }
  5293. // ggml_permute
  5294. struct ggml_tensor * ggml_permute(
  5295. struct ggml_context * ctx,
  5296. struct ggml_tensor * a,
  5297. int axis0,
  5298. int axis1,
  5299. int axis2,
  5300. int axis3) {
  5301. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5302. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5303. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5304. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5305. GGML_ASSERT(axis0 != axis1);
  5306. GGML_ASSERT(axis0 != axis2);
  5307. GGML_ASSERT(axis0 != axis3);
  5308. GGML_ASSERT(axis1 != axis2);
  5309. GGML_ASSERT(axis1 != axis3);
  5310. GGML_ASSERT(axis2 != axis3);
  5311. bool is_node = false;
  5312. if (a->grad) {
  5313. is_node = true;
  5314. }
  5315. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5316. ggml_format_name(result, "%s (permuted)", a->name);
  5317. int ne[GGML_MAX_DIMS];
  5318. int nb[GGML_MAX_DIMS];
  5319. ne[axis0] = a->ne[0];
  5320. ne[axis1] = a->ne[1];
  5321. ne[axis2] = a->ne[2];
  5322. ne[axis3] = a->ne[3];
  5323. nb[axis0] = a->nb[0];
  5324. nb[axis1] = a->nb[1];
  5325. nb[axis2] = a->nb[2];
  5326. nb[axis3] = a->nb[3];
  5327. result->ne[0] = ne[0];
  5328. result->ne[1] = ne[1];
  5329. result->ne[2] = ne[2];
  5330. result->ne[3] = ne[3];
  5331. result->nb[0] = nb[0];
  5332. result->nb[1] = nb[1];
  5333. result->nb[2] = nb[2];
  5334. result->nb[3] = nb[3];
  5335. result->op = GGML_OP_PERMUTE;
  5336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5337. result->src0 = a;
  5338. result->src1 = NULL;
  5339. if (is_node) {
  5340. ggml_scratch_save(ctx);
  5341. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5342. ((int32_t *) b->data)[0] = axis0;
  5343. ((int32_t *) b->data)[1] = axis1;
  5344. ((int32_t *) b->data)[2] = axis2;
  5345. ((int32_t *) b->data)[3] = axis3;
  5346. ggml_scratch_load(ctx);
  5347. result->opt[0] = b;
  5348. }
  5349. return result;
  5350. }
  5351. // ggml_transpose
  5352. struct ggml_tensor * ggml_transpose(
  5353. struct ggml_context * ctx,
  5354. struct ggml_tensor * a) {
  5355. bool is_node = false;
  5356. if (a->grad) {
  5357. is_node = true;
  5358. }
  5359. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5360. ggml_format_name(result, "%s (transposed)", a->name);
  5361. result->ne[0] = a->ne[1];
  5362. result->ne[1] = a->ne[0];
  5363. result->nb[0] = a->nb[1];
  5364. result->nb[1] = a->nb[0];
  5365. result->op = GGML_OP_TRANSPOSE;
  5366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5367. result->src0 = a;
  5368. result->src1 = NULL;
  5369. return result;
  5370. }
  5371. // ggml_get_rows
  5372. struct ggml_tensor * ggml_get_rows(
  5373. struct ggml_context * ctx,
  5374. struct ggml_tensor * a,
  5375. struct ggml_tensor * b) {
  5376. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5377. bool is_node = false;
  5378. if (a->grad || b->grad) {
  5379. is_node = true;
  5380. }
  5381. // TODO: implement non F32 return
  5382. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5383. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5384. result->op = GGML_OP_GET_ROWS;
  5385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5386. result->src0 = a;
  5387. result->src1 = b;
  5388. return result;
  5389. }
  5390. // ggml_get_rows_back
  5391. struct ggml_tensor * ggml_get_rows_back(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * a,
  5394. struct ggml_tensor * b,
  5395. struct ggml_tensor * c) {
  5396. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5397. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5398. bool is_node = false;
  5399. if (a->grad || b->grad) {
  5400. is_node = true;
  5401. }
  5402. // TODO: implement non F32 return
  5403. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5404. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5405. result->op = GGML_OP_GET_ROWS_BACK;
  5406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5407. result->src0 = a;
  5408. result->src1 = b;
  5409. result->opt[0] = c;
  5410. return result;
  5411. }
  5412. // ggml_diag
  5413. struct ggml_tensor * ggml_diag(
  5414. struct ggml_context * ctx,
  5415. struct ggml_tensor * a) {
  5416. GGML_ASSERT(a->ne[1] == 1);
  5417. bool is_node = false;
  5418. if (a->grad) {
  5419. is_node = true;
  5420. }
  5421. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5422. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5423. result->op = GGML_OP_DIAG;
  5424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5425. result->src0 = a;
  5426. result->src1 = NULL;
  5427. return result;
  5428. }
  5429. // ggml_diag_mask_inf
  5430. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. int n_past,
  5434. bool inplace) {
  5435. bool is_node = false;
  5436. if (a->grad) {
  5437. is_node = true;
  5438. }
  5439. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5440. ggml_scratch_save(ctx);
  5441. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5442. ((int32_t *) b->data)[0] = n_past;
  5443. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5444. ggml_scratch_load(ctx);
  5445. result->op = GGML_OP_DIAG_MASK_INF;
  5446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5447. result->src0 = a;
  5448. result->src1 = b;
  5449. return result;
  5450. }
  5451. struct ggml_tensor * ggml_diag_mask_inf(
  5452. struct ggml_context * ctx,
  5453. struct ggml_tensor * a,
  5454. int n_past) {
  5455. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5456. }
  5457. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. int n_past) {
  5461. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5462. }
  5463. // ggml_diag_mask_zero
  5464. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. int n_past,
  5468. bool inplace) {
  5469. bool is_node = false;
  5470. if (a->grad) {
  5471. is_node = true;
  5472. }
  5473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5474. ggml_scratch_save(ctx);
  5475. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5476. ggml_set_name(b, "n_past, inplace");
  5477. ((int32_t *) b->data)[0] = n_past;
  5478. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5479. ggml_scratch_load(ctx);
  5480. result->op = GGML_OP_DIAG_MASK_ZERO;
  5481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5482. result->src0 = a;
  5483. result->src1 = b;
  5484. return result;
  5485. }
  5486. struct ggml_tensor * ggml_diag_mask_zero(
  5487. struct ggml_context * ctx,
  5488. struct ggml_tensor * a,
  5489. int n_past) {
  5490. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5491. }
  5492. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5493. struct ggml_context * ctx,
  5494. struct ggml_tensor * a,
  5495. int n_past) {
  5496. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5497. }
  5498. // ggml_soft_max
  5499. struct ggml_tensor * ggml_soft_max_impl(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. bool inplace) {
  5503. bool is_node = false;
  5504. if (a->grad) {
  5505. is_node = true;
  5506. }
  5507. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5508. result->op = GGML_OP_SOFT_MAX;
  5509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5510. result->src0 = a;
  5511. result->src1 = NULL;
  5512. return result;
  5513. }
  5514. struct ggml_tensor * ggml_soft_max(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a) {
  5517. return ggml_soft_max_impl(ctx, a, false);
  5518. }
  5519. struct ggml_tensor * ggml_soft_max_inplace(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a) {
  5522. return ggml_soft_max_impl(ctx, a, true);
  5523. }
  5524. // ggml_soft_max_back
  5525. struct ggml_tensor * ggml_soft_max_back_impl(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a,
  5528. struct ggml_tensor * b,
  5529. bool inplace) {
  5530. bool is_node = false;
  5531. if (a->grad || b->grad) {
  5532. is_node = true; // TODO : implement backward pass
  5533. }
  5534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5535. result->op = GGML_OP_SOFT_MAX_BACK;
  5536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5537. result->src0 = a;
  5538. result->src1 = b;
  5539. return result;
  5540. }
  5541. struct ggml_tensor * ggml_soft_max_back(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a,
  5544. struct ggml_tensor * b) {
  5545. return ggml_soft_max_back_impl(ctx, a, b, false);
  5546. }
  5547. struct ggml_tensor * ggml_soft_max_back_inplace(
  5548. struct ggml_context * ctx,
  5549. struct ggml_tensor * a,
  5550. struct ggml_tensor * b) {
  5551. return ggml_soft_max_back_impl(ctx, a, b, true);
  5552. }
  5553. // ggml_rope
  5554. struct ggml_tensor * ggml_rope_impl(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. int n_past,
  5558. int n_dims,
  5559. int mode,
  5560. int n_ctx,
  5561. bool inplace) {
  5562. GGML_ASSERT(n_past >= 0);
  5563. bool is_node = false;
  5564. if (a->grad) {
  5565. is_node = true;
  5566. }
  5567. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5568. ggml_scratch_save(ctx);
  5569. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5570. ((int32_t *) b->data)[0] = n_past;
  5571. ((int32_t *) b->data)[1] = n_dims;
  5572. ((int32_t *) b->data)[2] = mode;
  5573. ((int32_t *) b->data)[3] = n_ctx;
  5574. ggml_scratch_load(ctx);
  5575. result->op = GGML_OP_ROPE;
  5576. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5577. result->src0 = a;
  5578. result->src1 = b;
  5579. return result;
  5580. }
  5581. struct ggml_tensor * ggml_rope(
  5582. struct ggml_context * ctx,
  5583. struct ggml_tensor * a,
  5584. int n_past,
  5585. int n_dims,
  5586. int mode,
  5587. int n_ctx) {
  5588. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5589. }
  5590. struct ggml_tensor * ggml_rope_inplace(
  5591. struct ggml_context * ctx,
  5592. struct ggml_tensor * a,
  5593. int n_past,
  5594. int n_dims,
  5595. int mode,
  5596. int n_ctx) {
  5597. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5598. }
  5599. // ggml_rope_back
  5600. struct ggml_tensor * ggml_rope_back(
  5601. struct ggml_context * ctx,
  5602. struct ggml_tensor * a,
  5603. int n_past,
  5604. int n_dims,
  5605. int mode) {
  5606. GGML_ASSERT(n_past >= 0);
  5607. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5608. bool is_node = false;
  5609. if (a->grad) {
  5610. is_node = false; // TODO: implement backward
  5611. }
  5612. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5613. ggml_scratch_save(ctx);
  5614. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5615. ggml_set_name(b, "n_past, n_dims, mode");
  5616. ((int32_t *) b->data)[0] = n_past;
  5617. ((int32_t *) b->data)[1] = n_dims;
  5618. ((int32_t *) b->data)[2] = mode;
  5619. ggml_scratch_load(ctx);
  5620. result->op = GGML_OP_ROPE_BACK;
  5621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5622. result->src0 = a;
  5623. result->src1 = b;
  5624. return result;
  5625. }
  5626. // ggml_alibi
  5627. struct ggml_tensor * ggml_alibi(
  5628. struct ggml_context * ctx,
  5629. struct ggml_tensor * a,
  5630. int n_past,
  5631. int n_head,
  5632. float bias_max) {
  5633. GGML_ASSERT(n_past >= 0);
  5634. bool is_node = false;
  5635. if (a->grad) {
  5636. GGML_ASSERT(false); // TODO: implement backward
  5637. is_node = true;
  5638. }
  5639. // TODO: when implement backward, fix this:
  5640. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5641. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5642. ggml_scratch_save(ctx);
  5643. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5644. ((int32_t *) b->data)[0] = n_past;
  5645. ((int32_t *) b->data)[1] = n_head;
  5646. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5647. (((float *) b->data)[2]) = bias_max;
  5648. ggml_scratch_load(ctx);
  5649. result->op = GGML_OP_ALIBI;
  5650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5651. result->src0 = a;
  5652. result->src1 = b;
  5653. return result;
  5654. }
  5655. // ggml_clamp
  5656. struct ggml_tensor * ggml_clamp(
  5657. struct ggml_context * ctx,
  5658. struct ggml_tensor * a,
  5659. float min,
  5660. float max) {
  5661. bool is_node = false;
  5662. if (a->grad) {
  5663. GGML_ASSERT(false); // TODO: implement backward
  5664. is_node = true;
  5665. }
  5666. // TODO: when implement backward, fix this:
  5667. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5668. ggml_scratch_save(ctx);
  5669. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5670. ((float *) b->data)[0] = min;
  5671. ((float *) b->data)[1] = max;
  5672. ggml_scratch_load(ctx);
  5673. result->op = GGML_OP_CLAMP;
  5674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5675. result->src0 = a;
  5676. result->src1 = b;
  5677. return result;
  5678. }
  5679. // ggml_conv_1d
  5680. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5681. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5682. }
  5683. GGML_API struct ggml_tensor * ggml_conv_1d(
  5684. struct ggml_context * ctx,
  5685. struct ggml_tensor * a,
  5686. struct ggml_tensor * b,
  5687. int s0,
  5688. int p0,
  5689. int d0) {
  5690. GGML_ASSERT(ggml_is_matrix(b));
  5691. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5692. bool is_node = false;
  5693. if (a->grad || b->grad) {
  5694. GGML_ASSERT(false); // TODO: implement backward
  5695. is_node = true;
  5696. }
  5697. const int64_t ne[4] = {
  5698. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5699. a->ne[2], 1, 1,
  5700. };
  5701. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5702. ggml_scratch_save(ctx);
  5703. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5704. ((int32_t*)c->data)[0] = s0;
  5705. ((int32_t*)c->data)[1] = p0;
  5706. ((int32_t*)c->data)[2] = d0;
  5707. ggml_scratch_load(ctx);
  5708. result->op = GGML_OP_CONV_1D;
  5709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5710. result->src0 = a;
  5711. result->src1 = b;
  5712. result->opt[0] = c;
  5713. return result;
  5714. }
  5715. // ggml_conv_2d
  5716. struct ggml_tensor* ggml_conv_2d(
  5717. struct ggml_context* ctx,
  5718. struct ggml_tensor * a,
  5719. struct ggml_tensor * b,
  5720. int s0,
  5721. int s1,
  5722. int p0,
  5723. int p1,
  5724. int d0,
  5725. int d1) {
  5726. GGML_ASSERT(b->ne[3] == 1);
  5727. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5728. bool is_node = false;
  5729. if (a->grad || b->grad) {
  5730. GGML_ASSERT(false); // TODO: implement backward
  5731. is_node = true;
  5732. }
  5733. const int64_t ne[4] = {
  5734. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5735. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5736. a->ne[3], 1,
  5737. };
  5738. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5739. ggml_scratch_save(ctx);
  5740. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5741. ((int32_t*)c->data)[0] = s0;
  5742. ((int32_t*)c->data)[1] = s1;
  5743. ((int32_t*)c->data)[2] = p0;
  5744. ((int32_t*)c->data)[3] = p1;
  5745. ((int32_t*)c->data)[4] = d0;
  5746. ((int32_t*)c->data)[5] = d1;
  5747. ggml_scratch_load(ctx);
  5748. result->op = GGML_OP_CONV_2D;
  5749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5750. result->src0 = a;
  5751. result->src1 = b;
  5752. result->opt[0] = c;
  5753. return result;
  5754. }
  5755. // ggml_conv_1d_ph
  5756. struct ggml_tensor* ggml_conv_1d_ph(
  5757. struct ggml_context * ctx,
  5758. struct ggml_tensor * a,
  5759. struct ggml_tensor * b,
  5760. int s,
  5761. int d) {
  5762. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5763. }
  5764. // ggml_flash_attn
  5765. struct ggml_tensor * ggml_flash_attn(
  5766. struct ggml_context * ctx,
  5767. struct ggml_tensor * q,
  5768. struct ggml_tensor * k,
  5769. struct ggml_tensor * v,
  5770. bool masked) {
  5771. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5772. // TODO: check if vT can be multiplied by (k*qT)
  5773. bool is_node = false;
  5774. if (q->grad || k->grad || v->grad) {
  5775. is_node = true;
  5776. }
  5777. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5778. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5779. result->op = GGML_OP_FLASH_ATTN;
  5780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5781. result->src0 = q;
  5782. result->src1 = k;
  5783. result->opt[0] = v;
  5784. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5785. return result;
  5786. }
  5787. // ggml_flash_ff
  5788. struct ggml_tensor * ggml_flash_ff(
  5789. struct ggml_context * ctx,
  5790. struct ggml_tensor * a,
  5791. struct ggml_tensor * b0,
  5792. struct ggml_tensor * b1,
  5793. struct ggml_tensor * c0,
  5794. struct ggml_tensor * c1) {
  5795. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5796. // TODO: more checks
  5797. bool is_node = false;
  5798. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5799. is_node = true;
  5800. }
  5801. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5802. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5803. result->op = GGML_OP_FLASH_FF;
  5804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5805. result->src0 = a;
  5806. result->src1 = b0;
  5807. result->opt[0] = b1;
  5808. result->opt[1] = c0;
  5809. result->opt[2] = c1;
  5810. return result;
  5811. }
  5812. // ggml_flash_attn_back
  5813. struct ggml_tensor * ggml_flash_attn_back(
  5814. struct ggml_context * ctx,
  5815. struct ggml_tensor * q,
  5816. struct ggml_tensor * k,
  5817. struct ggml_tensor * v,
  5818. struct ggml_tensor * d,
  5819. bool masked) {
  5820. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5821. // TODO: check if vT can be multiplied by (k*qT)
  5822. // d shape [D,N,ne2,ne3]
  5823. // q shape [D,N,ne2,ne3]
  5824. // k shape [D,M,ne2,ne3]
  5825. // v shape [M,D,ne2,ne3]
  5826. const int64_t D = q->ne[0];
  5827. const int64_t N = q->ne[1];
  5828. const int64_t M = k->ne[1];
  5829. const int64_t ne2 = q->ne[2];
  5830. const int64_t ne3 = q->ne[3];
  5831. GGML_ASSERT(k->ne[0] == D);
  5832. GGML_ASSERT(v->ne[0] == M);
  5833. GGML_ASSERT(v->ne[1] == D);
  5834. GGML_ASSERT(d->ne[0] == D);
  5835. GGML_ASSERT(d->ne[1] == N);
  5836. GGML_ASSERT(k->ne[2] == ne2);
  5837. GGML_ASSERT(k->ne[3] == ne3);
  5838. GGML_ASSERT(v->ne[2] == ne2);
  5839. GGML_ASSERT(v->ne[3] == ne3);
  5840. GGML_ASSERT(d->ne[2] == ne2);
  5841. GGML_ASSERT(d->ne[3] == ne3);
  5842. bool is_node = false;
  5843. if (q->grad || k->grad || v->grad) {
  5844. // when using this operation (in backwards pass) these grads are set.
  5845. // we don't want to create (big) grad of our result, so is_node is false.
  5846. is_node = false;
  5847. }
  5848. // store gradients of q, k and v as continuous tensors concatenated in result.
  5849. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5850. // gradq->data = result->data
  5851. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5852. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5853. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5854. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5855. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5856. result->op = GGML_OP_FLASH_ATTN_BACK;
  5857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5858. result->src0 = q;
  5859. result->src1 = k;
  5860. result->opt[0] = v;
  5861. result->opt[1] = d;
  5862. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5863. return result;
  5864. }
  5865. // ggml_win_part
  5866. struct ggml_tensor * ggml_win_part(
  5867. struct ggml_context * ctx,
  5868. struct ggml_tensor * a,
  5869. int w) {
  5870. GGML_ASSERT(a->ne[3] == 1);
  5871. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5872. bool is_node = false;
  5873. if (a->grad) {
  5874. GGML_ASSERT(false); // TODO: implement backward
  5875. is_node = true;
  5876. }
  5877. // padding
  5878. const int px = (w - a->ne[1]%w)%w;
  5879. const int py = (w - a->ne[2]%w)%w;
  5880. const int npx = (px + a->ne[1])/w;
  5881. const int npy = (py + a->ne[2])/w;
  5882. const int np = npx*npy;
  5883. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5884. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5885. ggml_scratch_save(ctx);
  5886. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5887. ((int32_t *) b->data)[0] = npx;
  5888. ((int32_t *) b->data)[1] = npy;
  5889. ((int32_t *) b->data)[2] = w;
  5890. ggml_scratch_load(ctx);
  5891. result->op = GGML_OP_WIN_PART;
  5892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5893. result->src0 = a;
  5894. result->src1 = NULL;
  5895. result->opt[0] = b;
  5896. return result;
  5897. }
  5898. // ggml_win_unpart
  5899. struct ggml_tensor * ggml_win_unpart(
  5900. struct ggml_context * ctx,
  5901. struct ggml_tensor * a,
  5902. int w0,
  5903. int h0,
  5904. int w) {
  5905. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5906. bool is_node = false;
  5907. if (a->grad) {
  5908. GGML_ASSERT(false); // TODO: implement backward
  5909. is_node = true;
  5910. }
  5911. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5912. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5913. ggml_scratch_save(ctx);
  5914. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5915. ((int32_t *) b->data)[0] = w;
  5916. ggml_scratch_load(ctx);
  5917. result->op = GGML_OP_WIN_UNPART;
  5918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5919. result->src0 = a;
  5920. result->src1 = NULL;
  5921. result->opt[0] = b;
  5922. return result;
  5923. }
  5924. // ggml_map_unary
  5925. struct ggml_tensor * ggml_map_unary_impl_f32(
  5926. struct ggml_context * ctx,
  5927. struct ggml_tensor * a,
  5928. const ggml_unary_op_f32_t fun,
  5929. bool inplace) {
  5930. bool is_node = false;
  5931. if (!inplace && a->grad) {
  5932. is_node = true;
  5933. }
  5934. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5935. ggml_scratch_save(ctx);
  5936. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5937. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5938. ggml_scratch_load(ctx);
  5939. result->op = GGML_OP_MAP_UNARY;
  5940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5941. result->src0 = a;
  5942. result->opt[0] = addr_tensor;
  5943. return result;
  5944. }
  5945. struct ggml_tensor * ggml_map_unary_f32(
  5946. struct ggml_context * ctx,
  5947. struct ggml_tensor * a,
  5948. const ggml_unary_op_f32_t fun) {
  5949. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5950. }
  5951. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5952. struct ggml_context * ctx,
  5953. struct ggml_tensor * a,
  5954. const ggml_unary_op_f32_t fun) {
  5955. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5956. }
  5957. // ggml_map_binary
  5958. struct ggml_tensor * ggml_map_binary_impl_f32(
  5959. struct ggml_context * ctx,
  5960. struct ggml_tensor * a,
  5961. struct ggml_tensor * b,
  5962. const ggml_binary_op_f32_t fun,
  5963. bool inplace) {
  5964. GGML_ASSERT(ggml_are_same_shape(a, b));
  5965. bool is_node = false;
  5966. if (!inplace && (a->grad || b->grad)) {
  5967. is_node = true;
  5968. }
  5969. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5970. ggml_scratch_save(ctx);
  5971. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5972. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5973. ggml_scratch_load(ctx);
  5974. result->op = GGML_OP_MAP_BINARY;
  5975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5976. result->src0 = a;
  5977. result->src1 = b;
  5978. result->opt[0] = addr_tensor;
  5979. return result;
  5980. }
  5981. struct ggml_tensor * ggml_map_binary_f32(
  5982. struct ggml_context * ctx,
  5983. struct ggml_tensor * a,
  5984. struct ggml_tensor * b,
  5985. const ggml_binary_op_f32_t fun) {
  5986. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5987. }
  5988. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5989. struct ggml_context * ctx,
  5990. struct ggml_tensor * a,
  5991. struct ggml_tensor * b,
  5992. const ggml_binary_op_f32_t fun) {
  5993. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5994. }
  5995. // ggml_map_custom1
  5996. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5997. struct ggml_context * ctx,
  5998. struct ggml_tensor * a,
  5999. const ggml_custom1_op_f32_t fun,
  6000. bool inplace) {
  6001. bool is_node = false;
  6002. if (!inplace && a->grad) {
  6003. is_node = true;
  6004. }
  6005. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6006. ggml_scratch_save(ctx);
  6007. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6008. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6009. ggml_scratch_load(ctx);
  6010. result->op = GGML_OP_MAP_CUSTOM1;
  6011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6012. result->src0 = a;
  6013. result->opt[0] = addr_tensor;
  6014. return result;
  6015. }
  6016. struct ggml_tensor * ggml_map_custom1_f32(
  6017. struct ggml_context * ctx,
  6018. struct ggml_tensor * a,
  6019. const ggml_custom1_op_f32_t fun) {
  6020. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6021. }
  6022. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6023. struct ggml_context * ctx,
  6024. struct ggml_tensor * a,
  6025. const ggml_custom1_op_f32_t fun) {
  6026. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6027. }
  6028. // ggml_map_custom2
  6029. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6030. struct ggml_context * ctx,
  6031. struct ggml_tensor * a,
  6032. struct ggml_tensor * b,
  6033. const ggml_custom2_op_f32_t fun,
  6034. bool inplace) {
  6035. bool is_node = false;
  6036. if (!inplace && (a->grad || b->grad)) {
  6037. is_node = true;
  6038. }
  6039. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6040. ggml_scratch_save(ctx);
  6041. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6042. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6043. ggml_scratch_load(ctx);
  6044. result->op = GGML_OP_MAP_CUSTOM2;
  6045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6046. result->src0 = a;
  6047. result->src1 = b;
  6048. result->opt[0] = addr_tensor;
  6049. return result;
  6050. }
  6051. struct ggml_tensor * ggml_map_custom2_f32(
  6052. struct ggml_context * ctx,
  6053. struct ggml_tensor * a,
  6054. struct ggml_tensor * b,
  6055. const ggml_custom2_op_f32_t fun) {
  6056. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6057. }
  6058. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. struct ggml_tensor * b,
  6062. const ggml_custom2_op_f32_t fun) {
  6063. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6064. }
  6065. // ggml_map_custom3
  6066. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6067. struct ggml_context * ctx,
  6068. struct ggml_tensor * a,
  6069. struct ggml_tensor * b,
  6070. struct ggml_tensor * c,
  6071. const ggml_custom3_op_f32_t fun,
  6072. bool inplace) {
  6073. bool is_node = false;
  6074. if (!inplace && (a->grad || b->grad || c->grad)) {
  6075. is_node = true;
  6076. }
  6077. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6078. ggml_scratch_save(ctx);
  6079. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6080. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6081. ggml_scratch_load(ctx);
  6082. result->op = GGML_OP_MAP_CUSTOM3;
  6083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6084. result->src0 = a;
  6085. result->src1 = b;
  6086. result->opt[0] = addr_tensor;
  6087. result->opt[1] = c;
  6088. return result;
  6089. }
  6090. struct ggml_tensor * ggml_map_custom3_f32(
  6091. struct ggml_context * ctx,
  6092. struct ggml_tensor * a,
  6093. struct ggml_tensor * b,
  6094. struct ggml_tensor * c,
  6095. const ggml_custom3_op_f32_t fun) {
  6096. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6097. }
  6098. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6099. struct ggml_context * ctx,
  6100. struct ggml_tensor * a,
  6101. struct ggml_tensor * b,
  6102. struct ggml_tensor * c,
  6103. const ggml_custom3_op_f32_t fun) {
  6104. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6105. }
  6106. // ggml_cross_entropy_loss
  6107. struct ggml_tensor * ggml_cross_entropy_loss(
  6108. struct ggml_context * ctx,
  6109. struct ggml_tensor * a,
  6110. struct ggml_tensor * b) {
  6111. GGML_ASSERT(ggml_are_same_shape(a, b));
  6112. bool is_node = false;
  6113. if (a->grad || b->grad) {
  6114. is_node = true;
  6115. }
  6116. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6117. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6119. result->src0 = a;
  6120. result->src1 = b;
  6121. return result;
  6122. }
  6123. // ggml_cross_entropy_loss_back
  6124. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6125. struct ggml_context * ctx,
  6126. struct ggml_tensor * a,
  6127. struct ggml_tensor * b,
  6128. struct ggml_tensor * c) {
  6129. GGML_ASSERT(ggml_are_same_shape(a, b));
  6130. GGML_ASSERT(ggml_is_scalar(c));
  6131. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6132. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6133. result->grad = NULL;
  6134. result->src0 = a;
  6135. result->src1 = b;
  6136. result->opt[0] = c;
  6137. return result;
  6138. }
  6139. ////////////////////////////////////////////////////////////////////////////////
  6140. void ggml_set_param(
  6141. struct ggml_context * ctx,
  6142. struct ggml_tensor * tensor) {
  6143. tensor->is_param = true;
  6144. GGML_ASSERT(tensor->grad == NULL);
  6145. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6146. }
  6147. // ggml_compute_forward_dup
  6148. static void ggml_compute_forward_dup_same_cont(
  6149. const struct ggml_compute_params * params,
  6150. const struct ggml_tensor * src0,
  6151. struct ggml_tensor * dst) {
  6152. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6153. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6154. GGML_ASSERT(src0->type == dst->type);
  6155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6156. return;
  6157. }
  6158. const size_t nb00 = src0->nb[0];
  6159. const size_t nb0 = dst->nb[0];
  6160. const int ith = params->ith; // thread index
  6161. const int nth = params->nth; // number of threads
  6162. // parallelize by elements
  6163. const int ne = ggml_nelements(dst);
  6164. const int dr = (ne + nth - 1) / nth;
  6165. const int ie0 = dr * ith;
  6166. const int ie1 = MIN(ie0 + dr, ne);
  6167. if (ie0 < ie1) {
  6168. memcpy(
  6169. ((char *) dst->data + ie0*nb0),
  6170. ((char *) src0->data + ie0*nb00),
  6171. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6172. }
  6173. }
  6174. static void ggml_compute_forward_dup_f16(
  6175. const struct ggml_compute_params * params,
  6176. const struct ggml_tensor * src0,
  6177. struct ggml_tensor * dst) {
  6178. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6180. return;
  6181. }
  6182. GGML_TENSOR_UNARY_OP_LOCALS;
  6183. const int ith = params->ith; // thread index
  6184. const int nth = params->nth; // number of threads
  6185. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6186. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6187. return;
  6188. }
  6189. // parallelize by rows
  6190. const int nr = ne01;
  6191. // number of rows per thread
  6192. const int dr = (nr + nth - 1) / nth;
  6193. // row range for this thread
  6194. const int ir0 = dr * ith;
  6195. const int ir1 = MIN(ir0 + dr, nr);
  6196. if (src0->type == dst->type &&
  6197. ne00 == ne0 &&
  6198. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6199. // copy by rows
  6200. const size_t rs = ne00*nb00;
  6201. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6202. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6203. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6204. memcpy(
  6205. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6206. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6207. rs);
  6208. }
  6209. }
  6210. }
  6211. return;
  6212. }
  6213. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6214. if (ggml_is_contiguous(dst)) {
  6215. if (nb00 == sizeof(ggml_fp16_t)) {
  6216. if (dst->type == GGML_TYPE_F16) {
  6217. size_t id = 0;
  6218. const size_t rs = ne00 * nb00;
  6219. char * dst_ptr = (char *) dst->data;
  6220. for (int i03 = 0; i03 < ne03; i03++) {
  6221. for (int i02 = 0; i02 < ne02; i02++) {
  6222. id += rs * ir0;
  6223. for (int i01 = ir0; i01 < ir1; i01++) {
  6224. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6225. memcpy(dst_ptr + id, src0_ptr, rs);
  6226. id += rs;
  6227. }
  6228. id += rs * (ne01 - ir1);
  6229. }
  6230. }
  6231. } else if (dst->type == GGML_TYPE_F32) {
  6232. size_t id = 0;
  6233. float * dst_ptr = (float *) dst->data;
  6234. for (int i03 = 0; i03 < ne03; i03++) {
  6235. for (int i02 = 0; i02 < ne02; i02++) {
  6236. id += ne00 * ir0;
  6237. for (int i01 = ir0; i01 < ir1; i01++) {
  6238. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6239. for (int i00 = 0; i00 < ne00; i00++) {
  6240. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6241. id++;
  6242. }
  6243. }
  6244. id += ne00 * (ne01 - ir1);
  6245. }
  6246. }
  6247. } else if (type_traits[dst->type].from_float) {
  6248. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6249. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6250. size_t id = 0;
  6251. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6252. char * dst_ptr = (char *) dst->data;
  6253. for (int i03 = 0; i03 < ne03; i03++) {
  6254. for (int i02 = 0; i02 < ne02; i02++) {
  6255. id += rs * ir0;
  6256. for (int i01 = ir0; i01 < ir1; i01++) {
  6257. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6258. for (int i00 = 0; i00 < ne00; i00++) {
  6259. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6260. }
  6261. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6262. id += rs;
  6263. }
  6264. id += rs * (ne01 - ir1);
  6265. }
  6266. }
  6267. } else {
  6268. GGML_ASSERT(false); // TODO: implement
  6269. }
  6270. } else {
  6271. //printf("%s: this is not optimal - fix me\n", __func__);
  6272. if (dst->type == GGML_TYPE_F32) {
  6273. size_t id = 0;
  6274. float * dst_ptr = (float *) dst->data;
  6275. for (int i03 = 0; i03 < ne03; i03++) {
  6276. for (int i02 = 0; i02 < ne02; i02++) {
  6277. id += ne00 * ir0;
  6278. for (int i01 = ir0; i01 < ir1; i01++) {
  6279. for (int i00 = 0; i00 < ne00; i00++) {
  6280. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6281. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6282. id++;
  6283. }
  6284. }
  6285. id += ne00 * (ne01 - ir1);
  6286. }
  6287. }
  6288. } else if (dst->type == GGML_TYPE_F16) {
  6289. size_t id = 0;
  6290. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6291. for (int i03 = 0; i03 < ne03; i03++) {
  6292. for (int i02 = 0; i02 < ne02; i02++) {
  6293. id += ne00 * ir0;
  6294. for (int i01 = ir0; i01 < ir1; i01++) {
  6295. for (int i00 = 0; i00 < ne00; i00++) {
  6296. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6297. dst_ptr[id] = *src0_ptr;
  6298. id++;
  6299. }
  6300. }
  6301. id += ne00 * (ne01 - ir1);
  6302. }
  6303. }
  6304. } else {
  6305. GGML_ASSERT(false); // TODO: implement
  6306. }
  6307. }
  6308. return;
  6309. }
  6310. // dst counters
  6311. int64_t i10 = 0;
  6312. int64_t i11 = 0;
  6313. int64_t i12 = 0;
  6314. int64_t i13 = 0;
  6315. if (dst->type == GGML_TYPE_F16) {
  6316. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6317. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6318. i10 += ne00 * ir0;
  6319. while (i10 >= ne0) {
  6320. i10 -= ne0;
  6321. if (++i11 == ne1) {
  6322. i11 = 0;
  6323. if (++i12 == ne2) {
  6324. i12 = 0;
  6325. if (++i13 == ne3) {
  6326. i13 = 0;
  6327. }
  6328. }
  6329. }
  6330. }
  6331. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6332. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6333. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6334. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6335. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6336. if (++i10 == ne00) {
  6337. i10 = 0;
  6338. if (++i11 == ne01) {
  6339. i11 = 0;
  6340. if (++i12 == ne02) {
  6341. i12 = 0;
  6342. if (++i13 == ne03) {
  6343. i13 = 0;
  6344. }
  6345. }
  6346. }
  6347. }
  6348. }
  6349. }
  6350. i10 += ne00 * (ne01 - ir1);
  6351. while (i10 >= ne0) {
  6352. i10 -= ne0;
  6353. if (++i11 == ne1) {
  6354. i11 = 0;
  6355. if (++i12 == ne2) {
  6356. i12 = 0;
  6357. if (++i13 == ne3) {
  6358. i13 = 0;
  6359. }
  6360. }
  6361. }
  6362. }
  6363. }
  6364. }
  6365. } else if (dst->type == GGML_TYPE_F32) {
  6366. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6367. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6368. i10 += ne00 * ir0;
  6369. while (i10 >= ne0) {
  6370. i10 -= ne0;
  6371. if (++i11 == ne1) {
  6372. i11 = 0;
  6373. if (++i12 == ne2) {
  6374. i12 = 0;
  6375. if (++i13 == ne3) {
  6376. i13 = 0;
  6377. }
  6378. }
  6379. }
  6380. }
  6381. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6382. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6383. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6384. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6385. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6386. if (++i10 == ne0) {
  6387. i10 = 0;
  6388. if (++i11 == ne1) {
  6389. i11 = 0;
  6390. if (++i12 == ne2) {
  6391. i12 = 0;
  6392. if (++i13 == ne3) {
  6393. i13 = 0;
  6394. }
  6395. }
  6396. }
  6397. }
  6398. }
  6399. }
  6400. i10 += ne00 * (ne01 - ir1);
  6401. while (i10 >= ne0) {
  6402. i10 -= ne0;
  6403. if (++i11 == ne1) {
  6404. i11 = 0;
  6405. if (++i12 == ne2) {
  6406. i12 = 0;
  6407. if (++i13 == ne3) {
  6408. i13 = 0;
  6409. }
  6410. }
  6411. }
  6412. }
  6413. }
  6414. }
  6415. } else {
  6416. GGML_ASSERT(false); // TODO: implement
  6417. }
  6418. }
  6419. static void ggml_compute_forward_dup_f32(
  6420. const struct ggml_compute_params * params,
  6421. const struct ggml_tensor * src0,
  6422. struct ggml_tensor * dst) {
  6423. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6425. return;
  6426. }
  6427. GGML_TENSOR_UNARY_OP_LOCALS;
  6428. const int ith = params->ith; // thread index
  6429. const int nth = params->nth; // number of threads
  6430. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6431. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6432. return;
  6433. }
  6434. // parallelize by rows
  6435. const int nr = ne01;
  6436. // number of rows per thread
  6437. const int dr = (nr + nth - 1) / nth;
  6438. // row range for this thread
  6439. const int ir0 = dr * ith;
  6440. const int ir1 = MIN(ir0 + dr, nr);
  6441. if (src0->type == dst->type &&
  6442. ne00 == ne0 &&
  6443. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6444. // copy by rows
  6445. const size_t rs = ne00*nb00;
  6446. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6447. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6448. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6449. memcpy(
  6450. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6451. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6452. rs);
  6453. }
  6454. }
  6455. }
  6456. return;
  6457. }
  6458. if (ggml_is_contiguous(dst)) {
  6459. // TODO: simplify
  6460. if (nb00 == sizeof(float)) {
  6461. if (dst->type == GGML_TYPE_F32) {
  6462. size_t id = 0;
  6463. const size_t rs = ne00 * nb00;
  6464. char * dst_ptr = (char *) dst->data;
  6465. for (int i03 = 0; i03 < ne03; i03++) {
  6466. for (int i02 = 0; i02 < ne02; i02++) {
  6467. id += rs * ir0;
  6468. for (int i01 = ir0; i01 < ir1; i01++) {
  6469. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6470. memcpy(dst_ptr + id, src0_ptr, rs);
  6471. id += rs;
  6472. }
  6473. id += rs * (ne01 - ir1);
  6474. }
  6475. }
  6476. } else if (type_traits[dst->type].from_float) {
  6477. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6478. size_t id = 0;
  6479. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6480. char * dst_ptr = (char *) dst->data;
  6481. for (int i03 = 0; i03 < ne03; i03++) {
  6482. for (int i02 = 0; i02 < ne02; i02++) {
  6483. id += rs * ir0;
  6484. for (int i01 = ir0; i01 < ir1; i01++) {
  6485. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6486. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6487. id += rs;
  6488. }
  6489. id += rs * (ne01 - ir1);
  6490. }
  6491. }
  6492. } else {
  6493. GGML_ASSERT(false); // TODO: implement
  6494. }
  6495. } else {
  6496. //printf("%s: this is not optimal - fix me\n", __func__);
  6497. if (dst->type == GGML_TYPE_F32) {
  6498. size_t id = 0;
  6499. float * dst_ptr = (float *) dst->data;
  6500. for (int i03 = 0; i03 < ne03; i03++) {
  6501. for (int i02 = 0; i02 < ne02; i02++) {
  6502. id += ne00 * ir0;
  6503. for (int i01 = ir0; i01 < ir1; i01++) {
  6504. for (int i00 = 0; i00 < ne00; i00++) {
  6505. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6506. dst_ptr[id] = *src0_ptr;
  6507. id++;
  6508. }
  6509. }
  6510. id += ne00 * (ne01 - ir1);
  6511. }
  6512. }
  6513. } else if (dst->type == GGML_TYPE_F16) {
  6514. size_t id = 0;
  6515. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6516. for (int i03 = 0; i03 < ne03; i03++) {
  6517. for (int i02 = 0; i02 < ne02; i02++) {
  6518. id += ne00 * ir0;
  6519. for (int i01 = ir0; i01 < ir1; i01++) {
  6520. for (int i00 = 0; i00 < ne00; i00++) {
  6521. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6522. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6523. id++;
  6524. }
  6525. }
  6526. id += ne00 * (ne01 - ir1);
  6527. }
  6528. }
  6529. } else {
  6530. GGML_ASSERT(false); // TODO: implement
  6531. }
  6532. }
  6533. return;
  6534. }
  6535. // dst counters
  6536. int64_t i10 = 0;
  6537. int64_t i11 = 0;
  6538. int64_t i12 = 0;
  6539. int64_t i13 = 0;
  6540. if (dst->type == GGML_TYPE_F32) {
  6541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6543. i10 += ne00 * ir0;
  6544. while (i10 >= ne0) {
  6545. i10 -= ne0;
  6546. if (++i11 == ne1) {
  6547. i11 = 0;
  6548. if (++i12 == ne2) {
  6549. i12 = 0;
  6550. if (++i13 == ne3) {
  6551. i13 = 0;
  6552. }
  6553. }
  6554. }
  6555. }
  6556. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6557. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6558. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6559. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6560. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6561. if (++i10 == ne0) {
  6562. i10 = 0;
  6563. if (++i11 == ne1) {
  6564. i11 = 0;
  6565. if (++i12 == ne2) {
  6566. i12 = 0;
  6567. if (++i13 == ne3) {
  6568. i13 = 0;
  6569. }
  6570. }
  6571. }
  6572. }
  6573. }
  6574. }
  6575. i10 += ne00 * (ne01 - ir1);
  6576. while (i10 >= ne0) {
  6577. i10 -= ne0;
  6578. if (++i11 == ne1) {
  6579. i11 = 0;
  6580. if (++i12 == ne2) {
  6581. i12 = 0;
  6582. if (++i13 == ne3) {
  6583. i13 = 0;
  6584. }
  6585. }
  6586. }
  6587. }
  6588. }
  6589. }
  6590. } else if (dst->type == GGML_TYPE_F16) {
  6591. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6592. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6593. i10 += ne00 * ir0;
  6594. while (i10 >= ne0) {
  6595. i10 -= ne0;
  6596. if (++i11 == ne1) {
  6597. i11 = 0;
  6598. if (++i12 == ne2) {
  6599. i12 = 0;
  6600. if (++i13 == ne3) {
  6601. i13 = 0;
  6602. }
  6603. }
  6604. }
  6605. }
  6606. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6607. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6608. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6609. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6610. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6611. if (++i10 == ne0) {
  6612. i10 = 0;
  6613. if (++i11 == ne1) {
  6614. i11 = 0;
  6615. if (++i12 == ne2) {
  6616. i12 = 0;
  6617. if (++i13 == ne3) {
  6618. i13 = 0;
  6619. }
  6620. }
  6621. }
  6622. }
  6623. }
  6624. }
  6625. i10 += ne00 * (ne01 - ir1);
  6626. while (i10 >= ne0) {
  6627. i10 -= ne0;
  6628. if (++i11 == ne1) {
  6629. i11 = 0;
  6630. if (++i12 == ne2) {
  6631. i12 = 0;
  6632. if (++i13 == ne3) {
  6633. i13 = 0;
  6634. }
  6635. }
  6636. }
  6637. }
  6638. }
  6639. }
  6640. } else {
  6641. GGML_ASSERT(false); // TODO: implement
  6642. }
  6643. }
  6644. static void ggml_compute_forward_dup(
  6645. const struct ggml_compute_params * params,
  6646. const struct ggml_tensor * src0,
  6647. struct ggml_tensor * dst) {
  6648. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6649. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6650. return;
  6651. }
  6652. switch (src0->type) {
  6653. case GGML_TYPE_F16:
  6654. {
  6655. ggml_compute_forward_dup_f16(params, src0, dst);
  6656. } break;
  6657. case GGML_TYPE_F32:
  6658. {
  6659. ggml_compute_forward_dup_f32(params, src0, dst);
  6660. } break;
  6661. default:
  6662. {
  6663. GGML_ASSERT(false);
  6664. } break;
  6665. }
  6666. }
  6667. // ggml_compute_forward_add
  6668. static void ggml_compute_forward_add_f32(
  6669. const struct ggml_compute_params * params,
  6670. const struct ggml_tensor * src0,
  6671. const struct ggml_tensor * src1,
  6672. struct ggml_tensor * dst) {
  6673. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6674. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6675. return;
  6676. }
  6677. const int ith = params->ith;
  6678. const int nth = params->nth;
  6679. const int nr = ggml_nrows(src0);
  6680. GGML_TENSOR_BINARY_OP_LOCALS;
  6681. GGML_ASSERT( nb0 == sizeof(float));
  6682. GGML_ASSERT(nb00 == sizeof(float));
  6683. // rows per thread
  6684. const int dr = (nr + nth - 1)/nth;
  6685. // row range for this thread
  6686. const int ir0 = dr*ith;
  6687. const int ir1 = MIN(ir0 + dr, nr);
  6688. if (nb10 == sizeof(float)) {
  6689. for (int ir = ir0; ir < ir1; ++ir) {
  6690. // src0, src1 and dst are same shape => same indices
  6691. const int i3 = ir/(ne2*ne1);
  6692. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6693. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6694. #ifdef GGML_USE_ACCELERATE
  6695. vDSP_vadd(
  6696. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6697. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6698. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6699. ne0);
  6700. #else
  6701. ggml_vec_add_f32(ne0,
  6702. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6703. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6704. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6705. #endif
  6706. // }
  6707. // }
  6708. }
  6709. } else {
  6710. // src1 is not contiguous
  6711. for (int ir = ir0; ir < ir1; ++ir) {
  6712. // src0, src1 and dst are same shape => same indices
  6713. const int i3 = ir/(ne2*ne1);
  6714. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6715. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6716. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6717. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6718. for (int i0 = 0; i0 < ne0; i0++) {
  6719. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6720. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6721. }
  6722. }
  6723. }
  6724. }
  6725. static void ggml_compute_forward_add_f16_f32(
  6726. const struct ggml_compute_params * params,
  6727. const struct ggml_tensor * src0,
  6728. const struct ggml_tensor * src1,
  6729. struct ggml_tensor * dst) {
  6730. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6732. return;
  6733. }
  6734. const int ith = params->ith;
  6735. const int nth = params->nth;
  6736. const int nr = ggml_nrows(src0);
  6737. GGML_TENSOR_BINARY_OP_LOCALS;
  6738. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6739. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6740. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6741. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6742. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6743. // rows per thread
  6744. const int dr = (nr + nth - 1)/nth;
  6745. // row range for this thread
  6746. const int ir0 = dr*ith;
  6747. const int ir1 = MIN(ir0 + dr, nr);
  6748. if (nb10 == sizeof(float)) {
  6749. for (int ir = ir0; ir < ir1; ++ir) {
  6750. // src0, src1 and dst are same shape => same indices
  6751. const int i3 = ir/(ne2*ne1);
  6752. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6753. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6754. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6755. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6756. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6757. for (int i = 0; i < ne0; i++) {
  6758. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6759. }
  6760. }
  6761. }
  6762. else {
  6763. // src1 is not contiguous
  6764. GGML_ASSERT(false);
  6765. }
  6766. }
  6767. static void ggml_compute_forward_add_f16_f16(
  6768. const struct ggml_compute_params * params,
  6769. const struct ggml_tensor * src0,
  6770. const struct ggml_tensor * src1,
  6771. struct ggml_tensor * dst) {
  6772. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6774. return;
  6775. }
  6776. const int ith = params->ith;
  6777. const int nth = params->nth;
  6778. const int nr = ggml_nrows(src0);
  6779. GGML_TENSOR_BINARY_OP_LOCALS;
  6780. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6781. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6782. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6783. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6784. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6785. // rows per thread
  6786. const int dr = (nr + nth - 1)/nth;
  6787. // row range for this thread
  6788. const int ir0 = dr*ith;
  6789. const int ir1 = MIN(ir0 + dr, nr);
  6790. if (nb10 == sizeof(ggml_fp16_t)) {
  6791. for (int ir = ir0; ir < ir1; ++ir) {
  6792. // src0, src1 and dst are same shape => same indices
  6793. const int i3 = ir/(ne2*ne1);
  6794. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6795. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6796. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6797. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6798. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6799. for (int i = 0; i < ne0; i++) {
  6800. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6801. }
  6802. }
  6803. }
  6804. else {
  6805. // src1 is not contiguous
  6806. GGML_ASSERT(false);
  6807. }
  6808. }
  6809. static void ggml_compute_forward_add_q_f32(
  6810. const struct ggml_compute_params * params,
  6811. const struct ggml_tensor * src0,
  6812. const struct ggml_tensor * src1,
  6813. struct ggml_tensor * dst) {
  6814. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6816. return;
  6817. }
  6818. const int nr = ggml_nrows(src0);
  6819. GGML_TENSOR_BINARY_OP_LOCALS;
  6820. const int ith = params->ith;
  6821. const int nth = params->nth;
  6822. const enum ggml_type type = src0->type;
  6823. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6824. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6825. // we don't support permuted src0 or src1
  6826. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6827. GGML_ASSERT(nb10 == sizeof(float));
  6828. // dst cannot be transposed or permuted
  6829. GGML_ASSERT(nb0 <= nb1);
  6830. GGML_ASSERT(nb1 <= nb2);
  6831. GGML_ASSERT(nb2 <= nb3);
  6832. GGML_ASSERT(ggml_is_quantized(src0->type));
  6833. GGML_ASSERT(dst->type == src0->type);
  6834. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6835. // rows per thread
  6836. const int dr = (nr + nth - 1)/nth;
  6837. // row range for this thread
  6838. const int ir0 = dr*ith;
  6839. const int ir1 = MIN(ir0 + dr, nr);
  6840. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6841. for (int ir = ir0; ir < ir1; ++ir) {
  6842. // src0 indices
  6843. const int i03 = ir/(ne02*ne01);
  6844. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6845. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6846. // src1 and dst are same shape as src0 => same indices
  6847. const int i13 = i03;
  6848. const int i12 = i02;
  6849. const int i11 = i01;
  6850. const int i3 = i03;
  6851. const int i2 = i02;
  6852. const int i1 = i01;
  6853. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6854. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6855. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6856. assert(ne00 % 32 == 0);
  6857. // unquantize row from src0 to temp buffer
  6858. dequantize_row_q(src0_row, wdata, ne00);
  6859. // add src1
  6860. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6861. // quantize row to dst
  6862. quantize_row_q(wdata, dst_row, ne00);
  6863. }
  6864. }
  6865. static void ggml_compute_forward_add(
  6866. const struct ggml_compute_params * params,
  6867. const struct ggml_tensor * src0,
  6868. const struct ggml_tensor * src1,
  6869. struct ggml_tensor * dst) {
  6870. switch (src0->type) {
  6871. case GGML_TYPE_F32:
  6872. {
  6873. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6874. } break;
  6875. case GGML_TYPE_F16:
  6876. {
  6877. if (src1->type == GGML_TYPE_F16) {
  6878. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6879. }
  6880. else if (src1->type == GGML_TYPE_F32) {
  6881. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6882. }
  6883. else {
  6884. GGML_ASSERT(false);
  6885. }
  6886. } break;
  6887. case GGML_TYPE_Q4_0:
  6888. case GGML_TYPE_Q4_1:
  6889. case GGML_TYPE_Q5_0:
  6890. case GGML_TYPE_Q5_1:
  6891. case GGML_TYPE_Q8_0:
  6892. case GGML_TYPE_Q2_K:
  6893. case GGML_TYPE_Q3_K:
  6894. case GGML_TYPE_Q4_K:
  6895. case GGML_TYPE_Q5_K:
  6896. case GGML_TYPE_Q6_K:
  6897. {
  6898. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6899. } break;
  6900. default:
  6901. {
  6902. GGML_ASSERT(false);
  6903. } break;
  6904. }
  6905. }
  6906. // ggml_compute_forward_add1
  6907. static void ggml_compute_forward_add1_f32(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. const struct ggml_tensor * src1,
  6911. struct ggml_tensor * dst) {
  6912. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6913. GGML_ASSERT(ggml_is_scalar(src1));
  6914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6915. return;
  6916. }
  6917. const int ith = params->ith;
  6918. const int nth = params->nth;
  6919. const int nr = ggml_nrows(src0);
  6920. GGML_TENSOR_UNARY_OP_LOCALS;
  6921. GGML_ASSERT( nb0 == sizeof(float));
  6922. GGML_ASSERT(nb00 == sizeof(float));
  6923. // rows per thread
  6924. const int dr = (nr + nth - 1)/nth;
  6925. // row range for this thread
  6926. const int ir0 = dr*ith;
  6927. const int ir1 = MIN(ir0 + dr, nr);
  6928. for (int ir = ir0; ir < ir1; ++ir) {
  6929. // src0 and dst are same shape => same indices
  6930. const int i3 = ir/(ne2*ne1);
  6931. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6932. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6933. #ifdef GGML_USE_ACCELERATE
  6934. UNUSED(ggml_vec_add1_f32);
  6935. vDSP_vadd(
  6936. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6937. (float *) ((char *) src1->data), 0,
  6938. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6939. ne0);
  6940. #else
  6941. ggml_vec_add1_f32(ne0,
  6942. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6943. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6944. *(float *) src1->data);
  6945. #endif
  6946. }
  6947. }
  6948. static void ggml_compute_forward_add1_f16_f32(
  6949. const struct ggml_compute_params * params,
  6950. const struct ggml_tensor * src0,
  6951. const struct ggml_tensor * src1,
  6952. struct ggml_tensor * dst) {
  6953. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6954. GGML_ASSERT(ggml_is_scalar(src1));
  6955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6956. return;
  6957. }
  6958. // scalar to add
  6959. const float v = *(float *) src1->data;
  6960. const int ith = params->ith;
  6961. const int nth = params->nth;
  6962. const int nr = ggml_nrows(src0);
  6963. GGML_TENSOR_UNARY_OP_LOCALS;
  6964. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6965. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6966. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6967. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6968. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6969. // rows per thread
  6970. const int dr = (nr + nth - 1)/nth;
  6971. // row range for this thread
  6972. const int ir0 = dr*ith;
  6973. const int ir1 = MIN(ir0 + dr, nr);
  6974. for (int ir = ir0; ir < ir1; ++ir) {
  6975. // src0 and dst are same shape => same indices
  6976. const int i3 = ir/(ne2*ne1);
  6977. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6978. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6979. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6980. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6981. for (int i = 0; i < ne0; i++) {
  6982. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6983. }
  6984. }
  6985. }
  6986. static void ggml_compute_forward_add1_f16_f16(
  6987. const struct ggml_compute_params * params,
  6988. const struct ggml_tensor * src0,
  6989. const struct ggml_tensor * src1,
  6990. struct ggml_tensor * dst) {
  6991. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6992. GGML_ASSERT(ggml_is_scalar(src1));
  6993. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6994. return;
  6995. }
  6996. // scalar to add
  6997. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6998. const int ith = params->ith;
  6999. const int nth = params->nth;
  7000. const int nr = ggml_nrows(src0);
  7001. GGML_TENSOR_UNARY_OP_LOCALS;
  7002. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7003. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7004. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7005. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7006. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7007. // rows per thread
  7008. const int dr = (nr + nth - 1)/nth;
  7009. // row range for this thread
  7010. const int ir0 = dr*ith;
  7011. const int ir1 = MIN(ir0 + dr, nr);
  7012. for (int ir = ir0; ir < ir1; ++ir) {
  7013. // src0 and dst are same shape => same indices
  7014. const int i3 = ir/(ne2*ne1);
  7015. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7016. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7017. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7018. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7019. for (int i = 0; i < ne0; i++) {
  7020. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7021. }
  7022. }
  7023. }
  7024. static void ggml_compute_forward_add1_q_f32(
  7025. const struct ggml_compute_params * params,
  7026. const struct ggml_tensor * src0,
  7027. const struct ggml_tensor * src1,
  7028. struct ggml_tensor * dst) {
  7029. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7030. GGML_ASSERT(ggml_is_scalar(src1));
  7031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7032. return;
  7033. }
  7034. // scalar to add
  7035. const float v = *(float *) src1->data;
  7036. const int ith = params->ith;
  7037. const int nth = params->nth;
  7038. const int nr = ggml_nrows(src0);
  7039. GGML_TENSOR_UNARY_OP_LOCALS;
  7040. const enum ggml_type type = src0->type;
  7041. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7042. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7043. // we don't support permuted src0
  7044. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7045. // dst cannot be transposed or permuted
  7046. GGML_ASSERT(nb0 <= nb1);
  7047. GGML_ASSERT(nb1 <= nb2);
  7048. GGML_ASSERT(nb2 <= nb3);
  7049. GGML_ASSERT(ggml_is_quantized(src0->type));
  7050. GGML_ASSERT(dst->type == src0->type);
  7051. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7052. // rows per thread
  7053. const int dr = (nr + nth - 1)/nth;
  7054. // row range for this thread
  7055. const int ir0 = dr*ith;
  7056. const int ir1 = MIN(ir0 + dr, nr);
  7057. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7058. for (int ir = ir0; ir < ir1; ++ir) {
  7059. // src0 and dst are same shape => same indices
  7060. const int i3 = ir/(ne2*ne1);
  7061. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7062. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7063. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7064. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7065. assert(ne0 % 32 == 0);
  7066. // unquantize row from src0 to temp buffer
  7067. dequantize_row_q(src0_row, wdata, ne0);
  7068. // add src1
  7069. ggml_vec_acc1_f32(ne0, wdata, v);
  7070. // quantize row to dst
  7071. quantize_row_q(wdata, dst_row, ne0);
  7072. }
  7073. }
  7074. static void ggml_compute_forward_add1(
  7075. const struct ggml_compute_params * params,
  7076. const struct ggml_tensor * src0,
  7077. const struct ggml_tensor * src1,
  7078. struct ggml_tensor * dst) {
  7079. switch (src0->type) {
  7080. case GGML_TYPE_F32:
  7081. {
  7082. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7083. } break;
  7084. case GGML_TYPE_F16:
  7085. {
  7086. if (src1->type == GGML_TYPE_F16) {
  7087. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7088. }
  7089. else if (src1->type == GGML_TYPE_F32) {
  7090. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7091. }
  7092. else {
  7093. GGML_ASSERT(false);
  7094. }
  7095. } break;
  7096. case GGML_TYPE_Q4_0:
  7097. case GGML_TYPE_Q4_1:
  7098. case GGML_TYPE_Q5_0:
  7099. case GGML_TYPE_Q5_1:
  7100. case GGML_TYPE_Q8_0:
  7101. case GGML_TYPE_Q8_1:
  7102. case GGML_TYPE_Q2_K:
  7103. case GGML_TYPE_Q3_K:
  7104. case GGML_TYPE_Q4_K:
  7105. case GGML_TYPE_Q5_K:
  7106. case GGML_TYPE_Q6_K:
  7107. {
  7108. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7109. } break;
  7110. default:
  7111. {
  7112. GGML_ASSERT(false);
  7113. } break;
  7114. }
  7115. }
  7116. // ggml_compute_forward_acc
  7117. static void ggml_compute_forward_acc_f32(
  7118. const struct ggml_compute_params * params,
  7119. const struct ggml_tensor * src0,
  7120. const struct ggml_tensor * src1,
  7121. const struct ggml_tensor * opt0,
  7122. struct ggml_tensor * dst) {
  7123. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7124. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7125. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7126. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7127. // view src0 and dst with these strides and data offset inbytes during acc
  7128. // nb0 is implicitely element_size because src0 and dst are contiguous
  7129. size_t nb1 = ((int32_t *) opt0->data)[0];
  7130. size_t nb2 = ((int32_t *) opt0->data)[1];
  7131. size_t nb3 = ((int32_t *) opt0->data)[2];
  7132. size_t offset = ((int32_t *) opt0->data)[3];
  7133. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7134. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7135. // memcpy needs to be synchronized across threads to avoid race conditions.
  7136. // => do it in INIT phase
  7137. memcpy(
  7138. ((char *) dst->data),
  7139. ((char *) src0->data),
  7140. ggml_nbytes(dst));
  7141. }
  7142. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7143. return;
  7144. }
  7145. const int ith = params->ith;
  7146. const int nth = params->nth;
  7147. const int nr = ggml_nrows(src1);
  7148. const int nc = src1->ne[0];
  7149. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7150. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7151. // src0 and dst as viewed during acc
  7152. const size_t nb0 = ggml_element_size(src0);
  7153. const size_t nb00 = nb0;
  7154. const size_t nb01 = nb1;
  7155. const size_t nb02 = nb2;
  7156. const size_t nb03 = nb3;
  7157. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7158. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7159. GGML_ASSERT(nb10 == sizeof(float));
  7160. // rows per thread
  7161. const int dr = (nr + nth - 1)/nth;
  7162. // row range for this thread
  7163. const int ir0 = dr*ith;
  7164. const int ir1 = MIN(ir0 + dr, nr);
  7165. for (int ir = ir0; ir < ir1; ++ir) {
  7166. // src0 and dst are viewed with shape of src1 and offset
  7167. // => same indices
  7168. const int i3 = ir/(ne12*ne11);
  7169. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7170. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7171. #ifdef GGML_USE_ACCELERATE
  7172. vDSP_vadd(
  7173. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7174. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7175. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7176. #else
  7177. ggml_vec_add_f32(nc,
  7178. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7179. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7180. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7181. #endif
  7182. }
  7183. }
  7184. static void ggml_compute_forward_acc(
  7185. const struct ggml_compute_params * params,
  7186. const struct ggml_tensor * src0,
  7187. const struct ggml_tensor * src1,
  7188. const struct ggml_tensor * opt0,
  7189. struct ggml_tensor * dst) {
  7190. switch (src0->type) {
  7191. case GGML_TYPE_F32:
  7192. {
  7193. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7194. } break;
  7195. case GGML_TYPE_F16:
  7196. case GGML_TYPE_Q4_0:
  7197. case GGML_TYPE_Q4_1:
  7198. case GGML_TYPE_Q5_0:
  7199. case GGML_TYPE_Q5_1:
  7200. case GGML_TYPE_Q8_0:
  7201. case GGML_TYPE_Q8_1:
  7202. case GGML_TYPE_Q2_K:
  7203. case GGML_TYPE_Q3_K:
  7204. case GGML_TYPE_Q4_K:
  7205. case GGML_TYPE_Q5_K:
  7206. case GGML_TYPE_Q6_K:
  7207. default:
  7208. {
  7209. GGML_ASSERT(false);
  7210. } break;
  7211. }
  7212. }
  7213. // ggml_compute_forward_sub
  7214. static void ggml_compute_forward_sub_f32(
  7215. const struct ggml_compute_params * params,
  7216. const struct ggml_tensor * src0,
  7217. const struct ggml_tensor * src1,
  7218. struct ggml_tensor * dst) {
  7219. assert(params->ith == 0);
  7220. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7222. return;
  7223. }
  7224. const int nr = ggml_nrows(src0);
  7225. GGML_TENSOR_BINARY_OP_LOCALS;
  7226. GGML_ASSERT( nb0 == sizeof(float));
  7227. GGML_ASSERT(nb00 == sizeof(float));
  7228. if (nb10 == sizeof(float)) {
  7229. for (int ir = 0; ir < nr; ++ir) {
  7230. // src0, src1 and dst are same shape => same indices
  7231. const int i3 = ir/(ne2*ne1);
  7232. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7233. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7234. #ifdef GGML_USE_ACCELERATE
  7235. vDSP_vsub(
  7236. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7237. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7238. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7239. ne0);
  7240. #else
  7241. ggml_vec_sub_f32(ne0,
  7242. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7243. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7244. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7245. #endif
  7246. // }
  7247. // }
  7248. }
  7249. } else {
  7250. // src1 is not contiguous
  7251. for (int ir = 0; ir < nr; ++ir) {
  7252. // src0, src1 and dst are same shape => same indices
  7253. const int i3 = ir/(ne2*ne1);
  7254. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7255. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7256. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7257. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7258. for (int i0 = 0; i0 < ne0; i0++) {
  7259. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7260. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7261. }
  7262. }
  7263. }
  7264. }
  7265. static void ggml_compute_forward_sub(
  7266. const struct ggml_compute_params * params,
  7267. const struct ggml_tensor * src0,
  7268. const struct ggml_tensor * src1,
  7269. struct ggml_tensor * dst) {
  7270. switch (src0->type) {
  7271. case GGML_TYPE_F32:
  7272. {
  7273. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7274. } break;
  7275. default:
  7276. {
  7277. GGML_ASSERT(false);
  7278. } break;
  7279. }
  7280. }
  7281. // ggml_compute_forward_mul
  7282. static void ggml_compute_forward_mul_f32(
  7283. const struct ggml_compute_params * params,
  7284. const struct ggml_tensor * src0,
  7285. const struct ggml_tensor * src1,
  7286. struct ggml_tensor * dst) {
  7287. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7288. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7289. return;
  7290. }
  7291. const int ith = params->ith;
  7292. const int nth = params->nth;
  7293. #ifdef GGML_USE_CLBLAST
  7294. if (src1->backend == GGML_BACKEND_GPU) {
  7295. if (ith == 0) {
  7296. ggml_cl_mul(src0, src1, dst);
  7297. }
  7298. return;
  7299. }
  7300. #endif
  7301. const int64_t nr = ggml_nrows(src0);
  7302. GGML_TENSOR_BINARY_OP_LOCALS;
  7303. GGML_ASSERT( nb0 == sizeof(float));
  7304. GGML_ASSERT(nb00 == sizeof(float));
  7305. GGML_ASSERT(ne00 == ne10);
  7306. if (nb10 == sizeof(float)) {
  7307. for (int64_t ir = ith; ir < nr; ir += nth) {
  7308. // src0 and dst are same shape => same indices
  7309. const int64_t i03 = ir/(ne02*ne01);
  7310. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7311. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7312. const int64_t i13 = i03 % ne13;
  7313. const int64_t i12 = i02 % ne12;
  7314. const int64_t i11 = i01 % ne11;
  7315. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7316. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7317. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7318. #ifdef GGML_USE_ACCELERATE
  7319. UNUSED(ggml_vec_mul_f32);
  7320. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7321. #else
  7322. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7323. #endif
  7324. // }
  7325. // }
  7326. }
  7327. } else {
  7328. // src1 is not contiguous
  7329. for (int64_t ir = ith; ir < nr; ir += nth) {
  7330. // src0 and dst are same shape => same indices
  7331. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7332. const int64_t i03 = ir/(ne02*ne01);
  7333. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7334. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7335. const int64_t i13 = i03 % ne13;
  7336. const int64_t i12 = i02 % ne12;
  7337. const int64_t i11 = i01 % ne11;
  7338. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7339. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7340. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7341. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7342. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7343. }
  7344. }
  7345. }
  7346. }
  7347. static void ggml_compute_forward_mul(
  7348. const struct ggml_compute_params * params,
  7349. const struct ggml_tensor * src0,
  7350. const struct ggml_tensor * src1,
  7351. struct ggml_tensor * dst) {
  7352. switch (src0->type) {
  7353. case GGML_TYPE_F32:
  7354. {
  7355. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7356. } break;
  7357. default:
  7358. {
  7359. GGML_ASSERT(false);
  7360. } break;
  7361. }
  7362. }
  7363. // ggml_compute_forward_div
  7364. static void ggml_compute_forward_div_f32(
  7365. const struct ggml_compute_params * params,
  7366. const struct ggml_tensor * src0,
  7367. const struct ggml_tensor * src1,
  7368. struct ggml_tensor * dst) {
  7369. assert(params->ith == 0);
  7370. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7371. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7372. return;
  7373. }
  7374. const int nr = ggml_nrows(src0);
  7375. GGML_TENSOR_BINARY_OP_LOCALS;
  7376. GGML_ASSERT( nb0 == sizeof(float));
  7377. GGML_ASSERT(nb00 == sizeof(float));
  7378. if (nb10 == sizeof(float)) {
  7379. for (int ir = 0; ir < nr; ++ir) {
  7380. // src0, src1 and dst are same shape => same indices
  7381. const int i3 = ir/(ne2*ne1);
  7382. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7383. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7384. #ifdef GGML_USE_ACCELERATE
  7385. vDSP_vdiv(
  7386. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7387. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7388. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7389. ne0);
  7390. #else
  7391. ggml_vec_div_f32(ne0,
  7392. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7393. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7394. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7395. #endif
  7396. // }
  7397. // }
  7398. }
  7399. } else {
  7400. // src1 is not contiguous
  7401. for (int ir = 0; ir < nr; ++ir) {
  7402. // src0, src1 and dst are same shape => same indices
  7403. const int i3 = ir/(ne2*ne1);
  7404. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7405. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7406. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7407. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7408. for (int i0 = 0; i0 < ne0; i0++) {
  7409. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7410. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7411. }
  7412. }
  7413. }
  7414. }
  7415. static void ggml_compute_forward_div(
  7416. const struct ggml_compute_params * params,
  7417. const struct ggml_tensor * src0,
  7418. const struct ggml_tensor * src1,
  7419. struct ggml_tensor * dst) {
  7420. switch (src0->type) {
  7421. case GGML_TYPE_F32:
  7422. {
  7423. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7424. } break;
  7425. default:
  7426. {
  7427. GGML_ASSERT(false);
  7428. } break;
  7429. }
  7430. }
  7431. // ggml_compute_forward_sqr
  7432. static void ggml_compute_forward_sqr_f32(
  7433. const struct ggml_compute_params * params,
  7434. const struct ggml_tensor * src0,
  7435. struct ggml_tensor * dst) {
  7436. assert(params->ith == 0);
  7437. assert(ggml_are_same_shape(src0, dst));
  7438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7439. return;
  7440. }
  7441. const int n = ggml_nrows(src0);
  7442. const int nc = src0->ne[0];
  7443. assert( dst->nb[0] == sizeof(float));
  7444. assert(src0->nb[0] == sizeof(float));
  7445. for (int i = 0; i < n; i++) {
  7446. ggml_vec_sqr_f32(nc,
  7447. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7448. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7449. }
  7450. }
  7451. static void ggml_compute_forward_sqr(
  7452. const struct ggml_compute_params * params,
  7453. const struct ggml_tensor * src0,
  7454. struct ggml_tensor * dst) {
  7455. switch (src0->type) {
  7456. case GGML_TYPE_F32:
  7457. {
  7458. ggml_compute_forward_sqr_f32(params, src0, dst);
  7459. } break;
  7460. default:
  7461. {
  7462. GGML_ASSERT(false);
  7463. } break;
  7464. }
  7465. }
  7466. // ggml_compute_forward_sqrt
  7467. static void ggml_compute_forward_sqrt_f32(
  7468. const struct ggml_compute_params * params,
  7469. const struct ggml_tensor * src0,
  7470. struct ggml_tensor * dst) {
  7471. assert(params->ith == 0);
  7472. assert(ggml_are_same_shape(src0, dst));
  7473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7474. return;
  7475. }
  7476. const int n = ggml_nrows(src0);
  7477. const int nc = src0->ne[0];
  7478. assert( dst->nb[0] == sizeof(float));
  7479. assert(src0->nb[0] == sizeof(float));
  7480. for (int i = 0; i < n; i++) {
  7481. ggml_vec_sqrt_f32(nc,
  7482. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7483. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7484. }
  7485. }
  7486. static void ggml_compute_forward_sqrt(
  7487. const struct ggml_compute_params * params,
  7488. const struct ggml_tensor * src0,
  7489. struct ggml_tensor * dst) {
  7490. switch (src0->type) {
  7491. case GGML_TYPE_F32:
  7492. {
  7493. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7494. } break;
  7495. default:
  7496. {
  7497. GGML_ASSERT(false);
  7498. } break;
  7499. }
  7500. }
  7501. // ggml_compute_forward_log
  7502. static void ggml_compute_forward_log_f32(
  7503. const struct ggml_compute_params * params,
  7504. const struct ggml_tensor * src0,
  7505. struct ggml_tensor * dst) {
  7506. GGML_ASSERT(params->ith == 0);
  7507. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7509. return;
  7510. }
  7511. const int n = ggml_nrows(src0);
  7512. const int nc = src0->ne[0];
  7513. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7514. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7515. for (int i = 0; i < n; i++) {
  7516. ggml_vec_log_f32(nc,
  7517. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7518. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7519. }
  7520. }
  7521. static void ggml_compute_forward_log(
  7522. const struct ggml_compute_params * params,
  7523. const struct ggml_tensor * src0,
  7524. struct ggml_tensor * dst) {
  7525. switch (src0->type) {
  7526. case GGML_TYPE_F32:
  7527. {
  7528. ggml_compute_forward_log_f32(params, src0, dst);
  7529. } break;
  7530. default:
  7531. {
  7532. GGML_ASSERT(false);
  7533. } break;
  7534. }
  7535. }
  7536. // ggml_compute_forward_sum
  7537. static void ggml_compute_forward_sum_f32(
  7538. const struct ggml_compute_params * params,
  7539. const struct ggml_tensor * src0,
  7540. struct ggml_tensor * dst) {
  7541. assert(params->ith == 0);
  7542. assert(ggml_is_scalar(dst));
  7543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7544. return;
  7545. }
  7546. assert(ggml_is_scalar(dst));
  7547. assert(src0->nb[0] == sizeof(float));
  7548. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7549. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7550. ggml_float sum = 0;
  7551. ggml_float row_sum = 0;
  7552. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7553. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7554. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7555. ggml_vec_sum_ggf(ne00,
  7556. &row_sum,
  7557. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7558. sum += row_sum;
  7559. }
  7560. }
  7561. }
  7562. ((float *) dst->data)[0] = sum;
  7563. }
  7564. static void ggml_compute_forward_sum(
  7565. const struct ggml_compute_params * params,
  7566. const struct ggml_tensor * src0,
  7567. struct ggml_tensor * dst) {
  7568. switch (src0->type) {
  7569. case GGML_TYPE_F32:
  7570. {
  7571. ggml_compute_forward_sum_f32(params, src0, dst);
  7572. } break;
  7573. default:
  7574. {
  7575. GGML_ASSERT(false);
  7576. } break;
  7577. }
  7578. }
  7579. // ggml_compute_forward_sum_rows
  7580. static void ggml_compute_forward_sum_rows_f32(
  7581. const struct ggml_compute_params * params,
  7582. const struct ggml_tensor * src0,
  7583. struct ggml_tensor * dst) {
  7584. GGML_ASSERT(params->ith == 0);
  7585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7586. return;
  7587. }
  7588. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7589. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7590. GGML_TENSOR_UNARY_OP_LOCALS;
  7591. GGML_ASSERT(ne0 == 1);
  7592. GGML_ASSERT(ne1 == ne01);
  7593. GGML_ASSERT(ne2 == ne02);
  7594. GGML_ASSERT(ne3 == ne03);
  7595. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7596. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7597. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7598. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7599. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7600. float row_sum = 0;
  7601. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7602. dst_row[0] = row_sum;
  7603. }
  7604. }
  7605. }
  7606. }
  7607. static void ggml_compute_forward_sum_rows(
  7608. const struct ggml_compute_params * params,
  7609. const struct ggml_tensor * src0,
  7610. struct ggml_tensor * dst) {
  7611. switch (src0->type) {
  7612. case GGML_TYPE_F32:
  7613. {
  7614. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7615. } break;
  7616. default:
  7617. {
  7618. GGML_ASSERT(false);
  7619. } break;
  7620. }
  7621. }
  7622. // ggml_compute_forward_mean
  7623. static void ggml_compute_forward_mean_f32(
  7624. const struct ggml_compute_params * params,
  7625. const struct ggml_tensor * src0,
  7626. struct ggml_tensor * dst) {
  7627. assert(params->ith == 0);
  7628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7629. return;
  7630. }
  7631. assert(src0->nb[0] == sizeof(float));
  7632. GGML_TENSOR_UNARY_OP_LOCALS;
  7633. assert(ne0 == 1);
  7634. assert(ne1 == ne01);
  7635. assert(ne2 == ne02);
  7636. assert(ne3 == ne03);
  7637. UNUSED(ne0);
  7638. UNUSED(ne1);
  7639. UNUSED(ne2);
  7640. UNUSED(ne3);
  7641. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7642. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7643. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7644. ggml_vec_sum_f32(ne00,
  7645. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7646. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7647. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7648. }
  7649. }
  7650. }
  7651. }
  7652. static void ggml_compute_forward_mean(
  7653. const struct ggml_compute_params * params,
  7654. const struct ggml_tensor * src0,
  7655. struct ggml_tensor * dst) {
  7656. switch (src0->type) {
  7657. case GGML_TYPE_F32:
  7658. {
  7659. ggml_compute_forward_mean_f32(params, src0, dst);
  7660. } break;
  7661. default:
  7662. {
  7663. GGML_ASSERT(false);
  7664. } break;
  7665. }
  7666. }
  7667. // ggml_compute_forward_argmax
  7668. static void ggml_compute_forward_argmax_f32(
  7669. const struct ggml_compute_params * params,
  7670. const struct ggml_tensor * src0,
  7671. struct ggml_tensor * dst) {
  7672. assert(params->ith == 0);
  7673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7674. return;
  7675. }
  7676. assert(src0->nb[0] == sizeof(float));
  7677. assert(dst->nb[0] == sizeof(float));
  7678. const int64_t ne00 = src0->ne[0];
  7679. const int64_t ne01 = src0->ne[1];
  7680. const size_t nb01 = src0->nb[1];
  7681. const size_t nb0 = dst->nb[0];
  7682. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7683. float * src = (float *) ((char *) src0->data + i1*nb01);
  7684. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7685. int v = 0;
  7686. ggml_vec_argmax_f32(ne00, &v, src);
  7687. dst_[0] = v;
  7688. }
  7689. }
  7690. static void ggml_compute_forward_argmax(
  7691. const struct ggml_compute_params * params,
  7692. const struct ggml_tensor * src0,
  7693. struct ggml_tensor * dst) {
  7694. switch (src0->type) {
  7695. case GGML_TYPE_F32:
  7696. {
  7697. ggml_compute_forward_argmax_f32(params, src0, dst);
  7698. } break;
  7699. default:
  7700. {
  7701. GGML_ASSERT(false);
  7702. } break;
  7703. }
  7704. }
  7705. // ggml_compute_forward_repeat
  7706. static void ggml_compute_forward_repeat_f32(
  7707. const struct ggml_compute_params * params,
  7708. const struct ggml_tensor * src0,
  7709. struct ggml_tensor * dst) {
  7710. GGML_ASSERT(params->ith == 0);
  7711. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7713. return;
  7714. }
  7715. GGML_TENSOR_UNARY_OP_LOCALS;
  7716. // guaranteed to be an integer due to the check in ggml_can_repeat
  7717. const int nr0 = (int)(ne0/ne00);
  7718. const int nr1 = (int)(ne1/ne01);
  7719. const int nr2 = (int)(ne2/ne02);
  7720. const int nr3 = (int)(ne3/ne03);
  7721. // TODO: support for transposed / permuted tensors
  7722. GGML_ASSERT(nb0 == sizeof(float));
  7723. GGML_ASSERT(nb00 == sizeof(float));
  7724. // TODO: maybe this is not optimal?
  7725. for (int i3 = 0; i3 < nr3; i3++) {
  7726. for (int k3 = 0; k3 < ne03; k3++) {
  7727. for (int i2 = 0; i2 < nr2; i2++) {
  7728. for (int k2 = 0; k2 < ne02; k2++) {
  7729. for (int i1 = 0; i1 < nr1; i1++) {
  7730. for (int k1 = 0; k1 < ne01; k1++) {
  7731. for (int i0 = 0; i0 < nr0; i0++) {
  7732. ggml_vec_cpy_f32(ne00,
  7733. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7734. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7735. }
  7736. }
  7737. }
  7738. }
  7739. }
  7740. }
  7741. }
  7742. }
  7743. static void ggml_compute_forward_repeat(
  7744. const struct ggml_compute_params * params,
  7745. const struct ggml_tensor * src0,
  7746. struct ggml_tensor * dst) {
  7747. switch (src0->type) {
  7748. case GGML_TYPE_F32:
  7749. {
  7750. ggml_compute_forward_repeat_f32(params, src0, dst);
  7751. } break;
  7752. default:
  7753. {
  7754. GGML_ASSERT(false);
  7755. } break;
  7756. }
  7757. }
  7758. // ggml_compute_forward_repeat_back
  7759. static void ggml_compute_forward_repeat_back_f32(
  7760. const struct ggml_compute_params * params,
  7761. const struct ggml_tensor * src0,
  7762. struct ggml_tensor * dst) {
  7763. GGML_ASSERT(params->ith == 0);
  7764. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7766. return;
  7767. }
  7768. GGML_TENSOR_UNARY_OP_LOCALS;
  7769. // guaranteed to be an integer due to the check in ggml_can_repeat
  7770. const int nr0 = (int)(ne00/ne0);
  7771. const int nr1 = (int)(ne01/ne1);
  7772. const int nr2 = (int)(ne02/ne2);
  7773. const int nr3 = (int)(ne03/ne3);
  7774. // TODO: support for transposed / permuted tensors
  7775. GGML_ASSERT(nb0 == sizeof(float));
  7776. GGML_ASSERT(nb00 == sizeof(float));
  7777. if (ggml_is_contiguous(dst)) {
  7778. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7779. } else {
  7780. for (int k3 = 0; k3 < ne3; k3++) {
  7781. for (int k2 = 0; k2 < ne2; k2++) {
  7782. for (int k1 = 0; k1 < ne1; k1++) {
  7783. ggml_vec_set_f32(ne0,
  7784. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7785. 0);
  7786. }
  7787. }
  7788. }
  7789. }
  7790. // TODO: maybe this is not optimal?
  7791. for (int i3 = 0; i3 < nr3; i3++) {
  7792. for (int k3 = 0; k3 < ne3; k3++) {
  7793. for (int i2 = 0; i2 < nr2; i2++) {
  7794. for (int k2 = 0; k2 < ne2; k2++) {
  7795. for (int i1 = 0; i1 < nr1; i1++) {
  7796. for (int k1 = 0; k1 < ne1; k1++) {
  7797. for (int i0 = 0; i0 < nr0; i0++) {
  7798. ggml_vec_acc_f32(ne0,
  7799. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7800. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7801. }
  7802. }
  7803. }
  7804. }
  7805. }
  7806. }
  7807. }
  7808. }
  7809. static void ggml_compute_forward_repeat_back(
  7810. const struct ggml_compute_params * params,
  7811. const struct ggml_tensor * src0,
  7812. struct ggml_tensor * dst) {
  7813. switch (src0->type) {
  7814. case GGML_TYPE_F32:
  7815. {
  7816. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7817. } break;
  7818. default:
  7819. {
  7820. GGML_ASSERT(false);
  7821. } break;
  7822. }
  7823. }
  7824. // ggml_compute_forward_abs
  7825. static void ggml_compute_forward_abs_f32(
  7826. const struct ggml_compute_params * params,
  7827. const struct ggml_tensor * src0,
  7828. struct ggml_tensor * dst) {
  7829. assert(params->ith == 0);
  7830. assert(ggml_are_same_shape(src0, dst));
  7831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7832. return;
  7833. }
  7834. const int n = ggml_nrows(src0);
  7835. const int nc = src0->ne[0];
  7836. assert(dst->nb[0] == sizeof(float));
  7837. assert(src0->nb[0] == sizeof(float));
  7838. for (int i = 0; i < n; i++) {
  7839. ggml_vec_abs_f32(nc,
  7840. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7841. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7842. }
  7843. }
  7844. static void ggml_compute_forward_abs(
  7845. const struct ggml_compute_params * params,
  7846. const struct ggml_tensor * src0,
  7847. struct ggml_tensor * dst) {
  7848. switch (src0->type) {
  7849. case GGML_TYPE_F32:
  7850. {
  7851. ggml_compute_forward_abs_f32(params, src0, dst);
  7852. } break;
  7853. default:
  7854. {
  7855. GGML_ASSERT(false);
  7856. } break;
  7857. }
  7858. }
  7859. // ggml_compute_forward_sgn
  7860. static void ggml_compute_forward_sgn_f32(
  7861. const struct ggml_compute_params * params,
  7862. const struct ggml_tensor * src0,
  7863. struct ggml_tensor * dst) {
  7864. assert(params->ith == 0);
  7865. assert(ggml_are_same_shape(src0, dst));
  7866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7867. return;
  7868. }
  7869. const int n = ggml_nrows(src0);
  7870. const int nc = src0->ne[0];
  7871. assert(dst->nb[0] == sizeof(float));
  7872. assert(src0->nb[0] == sizeof(float));
  7873. for (int i = 0; i < n; i++) {
  7874. ggml_vec_sgn_f32(nc,
  7875. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7876. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7877. }
  7878. }
  7879. static void ggml_compute_forward_sgn(
  7880. const struct ggml_compute_params * params,
  7881. const struct ggml_tensor * src0,
  7882. struct ggml_tensor * dst) {
  7883. switch (src0->type) {
  7884. case GGML_TYPE_F32:
  7885. {
  7886. ggml_compute_forward_sgn_f32(params, src0, dst);
  7887. } break;
  7888. default:
  7889. {
  7890. GGML_ASSERT(false);
  7891. } break;
  7892. }
  7893. }
  7894. // ggml_compute_forward_neg
  7895. static void ggml_compute_forward_neg_f32(
  7896. const struct ggml_compute_params * params,
  7897. const struct ggml_tensor * src0,
  7898. struct ggml_tensor * dst) {
  7899. assert(params->ith == 0);
  7900. assert(ggml_are_same_shape(src0, dst));
  7901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7902. return;
  7903. }
  7904. const int n = ggml_nrows(src0);
  7905. const int nc = src0->ne[0];
  7906. assert(dst->nb[0] == sizeof(float));
  7907. assert(src0->nb[0] == sizeof(float));
  7908. for (int i = 0; i < n; i++) {
  7909. ggml_vec_neg_f32(nc,
  7910. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7911. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7912. }
  7913. }
  7914. static void ggml_compute_forward_neg(
  7915. const struct ggml_compute_params * params,
  7916. const struct ggml_tensor * src0,
  7917. struct ggml_tensor * dst) {
  7918. switch (src0->type) {
  7919. case GGML_TYPE_F32:
  7920. {
  7921. ggml_compute_forward_neg_f32(params, src0, dst);
  7922. } break;
  7923. default:
  7924. {
  7925. GGML_ASSERT(false);
  7926. } break;
  7927. }
  7928. }
  7929. // ggml_compute_forward_step
  7930. static void ggml_compute_forward_step_f32(
  7931. const struct ggml_compute_params * params,
  7932. const struct ggml_tensor * src0,
  7933. struct ggml_tensor * dst) {
  7934. assert(params->ith == 0);
  7935. assert(ggml_are_same_shape(src0, dst));
  7936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7937. return;
  7938. }
  7939. const int n = ggml_nrows(src0);
  7940. const int nc = src0->ne[0];
  7941. assert(dst->nb[0] == sizeof(float));
  7942. assert(src0->nb[0] == sizeof(float));
  7943. for (int i = 0; i < n; i++) {
  7944. ggml_vec_step_f32(nc,
  7945. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7946. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7947. }
  7948. }
  7949. static void ggml_compute_forward_step(
  7950. const struct ggml_compute_params * params,
  7951. const struct ggml_tensor * src0,
  7952. struct ggml_tensor * dst) {
  7953. switch (src0->type) {
  7954. case GGML_TYPE_F32:
  7955. {
  7956. ggml_compute_forward_step_f32(params, src0, dst);
  7957. } break;
  7958. default:
  7959. {
  7960. GGML_ASSERT(false);
  7961. } break;
  7962. }
  7963. }
  7964. // ggml_compute_forward_tanh
  7965. static void ggml_compute_forward_tanh_f32(
  7966. const struct ggml_compute_params * params,
  7967. const struct ggml_tensor * src0,
  7968. struct ggml_tensor * dst) {
  7969. assert(params->ith == 0);
  7970. assert(ggml_are_same_shape(src0, dst));
  7971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7972. return;
  7973. }
  7974. const int n = ggml_nrows(src0);
  7975. const int nc = src0->ne[0];
  7976. assert(dst->nb[0] == sizeof(float));
  7977. assert(src0->nb[0] == sizeof(float));
  7978. for (int i = 0; i < n; i++) {
  7979. ggml_vec_tanh_f32(nc,
  7980. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7981. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7982. }
  7983. }
  7984. static void ggml_compute_forward_tanh(
  7985. const struct ggml_compute_params * params,
  7986. const struct ggml_tensor * src0,
  7987. struct ggml_tensor * dst) {
  7988. switch (src0->type) {
  7989. case GGML_TYPE_F32:
  7990. {
  7991. ggml_compute_forward_tanh_f32(params, src0, dst);
  7992. } break;
  7993. default:
  7994. {
  7995. GGML_ASSERT(false);
  7996. } break;
  7997. }
  7998. }
  7999. // ggml_compute_forward_elu
  8000. static void ggml_compute_forward_elu_f32(
  8001. const struct ggml_compute_params * params,
  8002. const struct ggml_tensor * src0,
  8003. struct ggml_tensor * dst) {
  8004. assert(params->ith == 0);
  8005. assert(ggml_are_same_shape(src0, dst));
  8006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8007. return;
  8008. }
  8009. const int n = ggml_nrows(src0);
  8010. const int nc = src0->ne[0];
  8011. assert(dst->nb[0] == sizeof(float));
  8012. assert(src0->nb[0] == sizeof(float));
  8013. for (int i = 0; i < n; i++) {
  8014. ggml_vec_elu_f32(nc,
  8015. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8016. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8017. }
  8018. }
  8019. static void ggml_compute_forward_elu(
  8020. const struct ggml_compute_params * params,
  8021. const struct ggml_tensor * src0,
  8022. struct ggml_tensor * dst) {
  8023. switch (src0->type) {
  8024. case GGML_TYPE_F32:
  8025. {
  8026. ggml_compute_forward_elu_f32(params, src0, dst);
  8027. } break;
  8028. default:
  8029. {
  8030. GGML_ASSERT(false);
  8031. } break;
  8032. }
  8033. }
  8034. // ggml_compute_forward_relu
  8035. static void ggml_compute_forward_relu_f32(
  8036. const struct ggml_compute_params * params,
  8037. const struct ggml_tensor * src0,
  8038. struct ggml_tensor * dst) {
  8039. assert(params->ith == 0);
  8040. assert(ggml_are_same_shape(src0, dst));
  8041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8042. return;
  8043. }
  8044. const int n = ggml_nrows(src0);
  8045. const int nc = src0->ne[0];
  8046. assert(dst->nb[0] == sizeof(float));
  8047. assert(src0->nb[0] == sizeof(float));
  8048. for (int i = 0; i < n; i++) {
  8049. ggml_vec_relu_f32(nc,
  8050. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8051. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8052. }
  8053. }
  8054. static void ggml_compute_forward_relu(
  8055. const struct ggml_compute_params * params,
  8056. const struct ggml_tensor * src0,
  8057. struct ggml_tensor * dst) {
  8058. switch (src0->type) {
  8059. case GGML_TYPE_F32:
  8060. {
  8061. ggml_compute_forward_relu_f32(params, src0, dst);
  8062. } break;
  8063. default:
  8064. {
  8065. GGML_ASSERT(false);
  8066. } break;
  8067. }
  8068. }
  8069. // ggml_compute_forward_gelu
  8070. static void ggml_compute_forward_gelu_f32(
  8071. const struct ggml_compute_params * params,
  8072. const struct ggml_tensor * src0,
  8073. struct ggml_tensor * dst) {
  8074. GGML_ASSERT(ggml_is_contiguous(src0));
  8075. GGML_ASSERT(ggml_is_contiguous(dst));
  8076. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8077. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8078. return;
  8079. }
  8080. const int ith = params->ith;
  8081. const int nth = params->nth;
  8082. const int nc = src0->ne[0];
  8083. const int nr = ggml_nrows(src0);
  8084. // rows per thread
  8085. const int dr = (nr + nth - 1)/nth;
  8086. // row range for this thread
  8087. const int ir0 = dr*ith;
  8088. const int ir1 = MIN(ir0 + dr, nr);
  8089. for (int i1 = ir0; i1 < ir1; i1++) {
  8090. ggml_vec_gelu_f32(nc,
  8091. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8092. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8093. #ifndef NDEBUG
  8094. for (int k = 0; k < nc; k++) {
  8095. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8096. UNUSED(x);
  8097. assert(!isnan(x));
  8098. assert(!isinf(x));
  8099. }
  8100. #endif
  8101. }
  8102. }
  8103. static void ggml_compute_forward_gelu(
  8104. const struct ggml_compute_params * params,
  8105. const struct ggml_tensor * src0,
  8106. struct ggml_tensor * dst) {
  8107. switch (src0->type) {
  8108. case GGML_TYPE_F32:
  8109. {
  8110. ggml_compute_forward_gelu_f32(params, src0, dst);
  8111. } break;
  8112. default:
  8113. {
  8114. GGML_ASSERT(false);
  8115. } break;
  8116. }
  8117. }
  8118. // ggml_compute_forward_gelu_quick
  8119. static void ggml_compute_forward_gelu_quick_f32(
  8120. const struct ggml_compute_params * params,
  8121. const struct ggml_tensor * src0,
  8122. struct ggml_tensor * dst) {
  8123. GGML_ASSERT(ggml_is_contiguous(src0));
  8124. GGML_ASSERT(ggml_is_contiguous(dst));
  8125. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8127. return;
  8128. }
  8129. const int ith = params->ith;
  8130. const int nth = params->nth;
  8131. const int nc = src0->ne[0];
  8132. const int nr = ggml_nrows(src0);
  8133. // rows per thread
  8134. const int dr = (nr + nth - 1)/nth;
  8135. // row range for this thread
  8136. const int ir0 = dr*ith;
  8137. const int ir1 = MIN(ir0 + dr, nr);
  8138. for (int i1 = ir0; i1 < ir1; i1++) {
  8139. ggml_vec_gelu_quick_f32(nc,
  8140. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8141. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8142. #ifndef NDEBUG
  8143. for (int k = 0; k < nc; k++) {
  8144. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8145. UNUSED(x);
  8146. assert(!isnan(x));
  8147. assert(!isinf(x));
  8148. }
  8149. #endif
  8150. }
  8151. }
  8152. static void ggml_compute_forward_gelu_quick(
  8153. const struct ggml_compute_params * params,
  8154. const struct ggml_tensor * src0,
  8155. struct ggml_tensor * dst) {
  8156. switch (src0->type) {
  8157. case GGML_TYPE_F32:
  8158. {
  8159. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8160. } break;
  8161. default:
  8162. {
  8163. GGML_ASSERT(false);
  8164. } break;
  8165. }
  8166. }
  8167. // ggml_compute_forward_silu
  8168. static void ggml_compute_forward_silu_f32(
  8169. const struct ggml_compute_params * params,
  8170. const struct ggml_tensor * src0,
  8171. struct ggml_tensor * dst) {
  8172. GGML_ASSERT(ggml_is_contiguous(src0));
  8173. GGML_ASSERT(ggml_is_contiguous(dst));
  8174. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8176. return;
  8177. }
  8178. const int ith = params->ith;
  8179. const int nth = params->nth;
  8180. const int nc = src0->ne[0];
  8181. const int nr = ggml_nrows(src0);
  8182. // rows per thread
  8183. const int dr = (nr + nth - 1)/nth;
  8184. // row range for this thread
  8185. const int ir0 = dr*ith;
  8186. const int ir1 = MIN(ir0 + dr, nr);
  8187. for (int i1 = ir0; i1 < ir1; i1++) {
  8188. ggml_vec_silu_f32(nc,
  8189. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8190. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8191. #ifndef NDEBUG
  8192. for (int k = 0; k < nc; k++) {
  8193. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8194. UNUSED(x);
  8195. assert(!isnan(x));
  8196. assert(!isinf(x));
  8197. }
  8198. #endif
  8199. }
  8200. }
  8201. static void ggml_compute_forward_silu(
  8202. const struct ggml_compute_params * params,
  8203. const struct ggml_tensor * src0,
  8204. struct ggml_tensor * dst) {
  8205. switch (src0->type) {
  8206. case GGML_TYPE_F32:
  8207. {
  8208. ggml_compute_forward_silu_f32(params, src0, dst);
  8209. } break;
  8210. default:
  8211. {
  8212. GGML_ASSERT(false);
  8213. } break;
  8214. }
  8215. }
  8216. // ggml_compute_forward_silu_back
  8217. static void ggml_compute_forward_silu_back_f32(
  8218. const struct ggml_compute_params * params,
  8219. const struct ggml_tensor * src0,
  8220. const struct ggml_tensor * grad,
  8221. struct ggml_tensor * dst) {
  8222. GGML_ASSERT(ggml_is_contiguous(grad));
  8223. GGML_ASSERT(ggml_is_contiguous(src0));
  8224. GGML_ASSERT(ggml_is_contiguous(dst));
  8225. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8226. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8228. return;
  8229. }
  8230. const int ith = params->ith;
  8231. const int nth = params->nth;
  8232. const int nc = src0->ne[0];
  8233. const int nr = ggml_nrows(src0);
  8234. // rows per thread
  8235. const int dr = (nr + nth - 1)/nth;
  8236. // row range for this thread
  8237. const int ir0 = dr*ith;
  8238. const int ir1 = MIN(ir0 + dr, nr);
  8239. for (int i1 = ir0; i1 < ir1; i1++) {
  8240. ggml_vec_silu_backward_f32(nc,
  8241. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8242. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8243. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8244. #ifndef NDEBUG
  8245. for (int k = 0; k < nc; k++) {
  8246. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8247. UNUSED(x);
  8248. assert(!isnan(x));
  8249. assert(!isinf(x));
  8250. }
  8251. #endif
  8252. }
  8253. }
  8254. static void ggml_compute_forward_silu_back(
  8255. const struct ggml_compute_params * params,
  8256. const struct ggml_tensor * src0,
  8257. const struct ggml_tensor * grad,
  8258. struct ggml_tensor * dst) {
  8259. switch (src0->type) {
  8260. case GGML_TYPE_F32:
  8261. {
  8262. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8263. } break;
  8264. default:
  8265. {
  8266. GGML_ASSERT(false);
  8267. } break;
  8268. }
  8269. }
  8270. // ggml_compute_forward_norm
  8271. static void ggml_compute_forward_norm_f32(
  8272. const struct ggml_compute_params * params,
  8273. const struct ggml_tensor * src0,
  8274. struct ggml_tensor * dst) {
  8275. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8276. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8277. return;
  8278. }
  8279. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8280. const int ith = params->ith;
  8281. const int nth = params->nth;
  8282. GGML_TENSOR_UNARY_OP_LOCALS;
  8283. const float eps = 1e-5f; // TODO: make this a parameter
  8284. // TODO: optimize
  8285. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8286. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8287. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8288. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8289. ggml_float sum = 0.0;
  8290. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8291. sum += (ggml_float)x[i00];
  8292. }
  8293. float mean = sum/ne00;
  8294. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8295. ggml_float sum2 = 0.0;
  8296. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8297. float v = x[i00] - mean;
  8298. y[i00] = v;
  8299. sum2 += (ggml_float)(v*v);
  8300. }
  8301. float variance = sum2/ne00;
  8302. const float scale = 1.0f/sqrtf(variance + eps);
  8303. ggml_vec_scale_f32(ne00, y, scale);
  8304. }
  8305. }
  8306. }
  8307. }
  8308. static void ggml_compute_forward_norm(
  8309. const struct ggml_compute_params * params,
  8310. const struct ggml_tensor * src0,
  8311. struct ggml_tensor * dst) {
  8312. switch (src0->type) {
  8313. case GGML_TYPE_F32:
  8314. {
  8315. ggml_compute_forward_norm_f32(params, src0, dst);
  8316. } break;
  8317. default:
  8318. {
  8319. GGML_ASSERT(false);
  8320. } break;
  8321. }
  8322. }
  8323. static void ggml_compute_forward_rms_norm_f32(
  8324. const struct ggml_compute_params * params,
  8325. const struct ggml_tensor * src0,
  8326. struct ggml_tensor * dst) {
  8327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8329. return;
  8330. }
  8331. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8332. const int ith = params->ith;
  8333. const int nth = params->nth;
  8334. GGML_TENSOR_UNARY_OP_LOCALS;
  8335. const float eps = 1e-6f; // TODO: make this a parameter
  8336. // TODO: optimize
  8337. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8338. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8339. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8340. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8341. ggml_float sum = 0.0;
  8342. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8343. sum += (ggml_float)(x[i00] * x[i00]);
  8344. }
  8345. const float mean = sum/ne00;
  8346. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8347. memcpy(y, x, ne00 * sizeof(float));
  8348. // for (int i00 = 0; i00 < ne00; i00++) {
  8349. // y[i00] = x[i00];
  8350. // }
  8351. const float scale = 1.0f/sqrtf(mean + eps);
  8352. ggml_vec_scale_f32(ne00, y, scale);
  8353. }
  8354. }
  8355. }
  8356. }
  8357. static void ggml_compute_forward_rms_norm(
  8358. const struct ggml_compute_params * params,
  8359. const struct ggml_tensor * src0,
  8360. struct ggml_tensor * dst) {
  8361. switch (src0->type) {
  8362. case GGML_TYPE_F32:
  8363. {
  8364. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8365. } break;
  8366. default:
  8367. {
  8368. GGML_ASSERT(false);
  8369. } break;
  8370. }
  8371. }
  8372. static void ggml_compute_forward_rms_norm_back_f32(
  8373. const struct ggml_compute_params * params,
  8374. const struct ggml_tensor * src0,
  8375. const struct ggml_tensor * src1,
  8376. struct ggml_tensor * dst) {
  8377. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8379. return;
  8380. }
  8381. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8382. const int ith = params->ith;
  8383. const int nth = params->nth;
  8384. GGML_TENSOR_BINARY_OP_LOCALS;
  8385. const float eps = 1e-6f; // TODO: make this a parameter
  8386. // TODO: optimize
  8387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8389. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8390. // src1 is same shape as src0 => same indices
  8391. const int64_t i11 = i01;
  8392. const int64_t i12 = i02;
  8393. const int64_t i13 = i03;
  8394. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8395. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8396. ggml_float sum_xx = 0.0;
  8397. ggml_float sum_xdz = 0.0;
  8398. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8399. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8400. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8401. }
  8402. //const float mean = (float)(sum_xx)/ne00;
  8403. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8404. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8405. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8406. // we could cache rms from forward pass to improve performance.
  8407. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8408. //const float rms = sqrtf(mean_eps);
  8409. const float rrms = 1.0f / sqrtf(mean_eps);
  8410. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8411. {
  8412. // z = rms_norm(x)
  8413. //
  8414. // rms_norm(src0) =
  8415. // scale(
  8416. // src0,
  8417. // div(
  8418. // 1,
  8419. // sqrt(
  8420. // add(
  8421. // scale(
  8422. // sum(
  8423. // sqr(
  8424. // src0)),
  8425. // (1.0/N)),
  8426. // eps))));
  8427. // postorder:
  8428. // ## op args grad
  8429. // 00 param src0 grad[#00]
  8430. // 01 const 1
  8431. // 02 sqr (#00) grad[#02]
  8432. // 03 sum (#02) grad[#03]
  8433. // 04 const 1/N
  8434. // 05 scale (#03, #04) grad[#05]
  8435. // 06 const eps
  8436. // 07 add (#05, #06) grad[#07]
  8437. // 08 sqrt (#07) grad[#08]
  8438. // 09 div (#01,#08) grad[#09]
  8439. // 10 scale (#00,#09) grad[#10]
  8440. //
  8441. // backward pass, given grad[#10]
  8442. // #10: scale
  8443. // grad[#00] += scale(grad[#10],#09)
  8444. // grad[#09] += sum(mul(grad[#10],#00))
  8445. // #09: div
  8446. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8447. // #08: sqrt
  8448. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8449. // #07: add
  8450. // grad[#05] += grad[#07]
  8451. // #05: scale
  8452. // grad[#03] += scale(grad[#05],#04)
  8453. // #03: sum
  8454. // grad[#02] += repeat(grad[#03], #02)
  8455. // #02:
  8456. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8457. //
  8458. // substitute and simplify:
  8459. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8460. // grad[#02] = repeat(grad[#03], #02)
  8461. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8462. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8463. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8464. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8465. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8466. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8467. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8468. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8469. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8470. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8471. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8472. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8473. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8474. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8475. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8476. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8477. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8478. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8479. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8480. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8481. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8482. // a = b*c + d*e
  8483. // a = b*c*f/f + d*e*f/f
  8484. // a = (b*c*f + d*e*f)*(1/f)
  8485. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8486. // a = (b + d*e/c)*c
  8487. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8488. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8489. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8490. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8491. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8492. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8493. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8494. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8495. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8496. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8497. }
  8498. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8499. // post-order:
  8500. // dx := x
  8501. // dx := scale(dx,-mean_xdz/mean_eps)
  8502. // dx := add(dx, dz)
  8503. // dx := scale(dx, rrms)
  8504. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8505. ggml_vec_cpy_f32 (ne00, dx, x);
  8506. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8507. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8508. ggml_vec_acc_f32 (ne00, dx, dz);
  8509. ggml_vec_scale_f32(ne00, dx, rrms);
  8510. }
  8511. }
  8512. }
  8513. }
  8514. static void ggml_compute_forward_rms_norm_back(
  8515. const struct ggml_compute_params * params,
  8516. const struct ggml_tensor * src0,
  8517. const struct ggml_tensor * src1,
  8518. struct ggml_tensor * dst) {
  8519. switch (src0->type) {
  8520. case GGML_TYPE_F32:
  8521. {
  8522. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8523. } break;
  8524. default:
  8525. {
  8526. GGML_ASSERT(false);
  8527. } break;
  8528. }
  8529. }
  8530. // ggml_compute_forward_mul_mat
  8531. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8532. // helper function to determine if it is better to use BLAS or not
  8533. // for large matrices, BLAS is faster
  8534. static bool ggml_compute_forward_mul_mat_use_blas(
  8535. const struct ggml_tensor * src0,
  8536. const struct ggml_tensor * src1,
  8537. struct ggml_tensor * dst) {
  8538. //const int64_t ne00 = src0->ne[0];
  8539. //const int64_t ne01 = src0->ne[1];
  8540. const int64_t ne10 = src1->ne[0];
  8541. const int64_t ne0 = dst->ne[0];
  8542. const int64_t ne1 = dst->ne[1];
  8543. // TODO: find the optimal values for these
  8544. if (ggml_is_contiguous(src0) &&
  8545. ggml_is_contiguous(src1) &&
  8546. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8547. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8548. return true;
  8549. }
  8550. return false;
  8551. }
  8552. #endif
  8553. static void ggml_compute_forward_mul_mat(
  8554. const struct ggml_compute_params * params,
  8555. const struct ggml_tensor * src0,
  8556. const struct ggml_tensor * src1,
  8557. struct ggml_tensor * dst) {
  8558. int64_t t0 = ggml_perf_time_us();
  8559. UNUSED(t0);
  8560. GGML_TENSOR_BINARY_OP_LOCALS;
  8561. const int ith = params->ith;
  8562. const int nth = params->nth;
  8563. GGML_ASSERT(ne02 == ne12);
  8564. GGML_ASSERT(ne03 == ne13);
  8565. GGML_ASSERT(ne2 == ne12);
  8566. GGML_ASSERT(ne3 == ne13);
  8567. const enum ggml_type type = src0->type;
  8568. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8569. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8570. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8571. // we don't support permuted src0 or src1
  8572. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8573. GGML_ASSERT(nb10 == sizeof(float));
  8574. // dst cannot be transposed or permuted
  8575. GGML_ASSERT(nb0 == sizeof(float));
  8576. GGML_ASSERT(nb0 <= nb1);
  8577. GGML_ASSERT(nb1 <= nb2);
  8578. GGML_ASSERT(nb2 <= nb3);
  8579. GGML_ASSERT(ne0 == ne01);
  8580. GGML_ASSERT(ne1 == ne11);
  8581. GGML_ASSERT(ne2 == ne02);
  8582. GGML_ASSERT(ne3 == ne03);
  8583. // nb01 >= nb00 - src0 is not transposed
  8584. // compute by src0 rows
  8585. #if defined(GGML_USE_CLBLAST)
  8586. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8587. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8588. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8589. }
  8590. return;
  8591. }
  8592. #endif
  8593. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8594. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8595. if (params->ith != 0) {
  8596. return;
  8597. }
  8598. if (params->type == GGML_TASK_INIT) {
  8599. return;
  8600. }
  8601. if (params->type == GGML_TASK_FINALIZE) {
  8602. return;
  8603. }
  8604. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8605. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8606. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8607. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8608. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8609. if (type != GGML_TYPE_F32) {
  8610. float * const wdata = params->wdata;
  8611. ggml_to_float_t const to_float = type_traits[type].to_float;
  8612. size_t id = 0;
  8613. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8614. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8615. id += ne00;
  8616. }
  8617. assert(id*sizeof(float) <= params->wsize);
  8618. x = wdata;
  8619. }
  8620. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8621. ne11, ne01, ne10,
  8622. 1.0f, y, ne10,
  8623. x, ne00,
  8624. 0.0f, d, ne01);
  8625. }
  8626. }
  8627. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8628. return;
  8629. }
  8630. #endif
  8631. if (params->type == GGML_TASK_INIT) {
  8632. if (src1->type != vec_dot_type) {
  8633. char * wdata = params->wdata;
  8634. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8635. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8636. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8637. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8638. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8639. wdata += row_size;
  8640. }
  8641. }
  8642. }
  8643. }
  8644. return;
  8645. }
  8646. if (params->type == GGML_TASK_FINALIZE) {
  8647. return;
  8648. }
  8649. // parallelize by src0 rows using ggml_vec_dot_q
  8650. // total rows in src0
  8651. const int nr = ne01*ne02*ne03;
  8652. // rows per thread
  8653. const int dr = (nr + nth - 1)/nth;
  8654. // row range for this thread
  8655. const int ir0 = dr*ith;
  8656. const int ir1 = MIN(ir0 + dr, nr);
  8657. void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8658. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8659. for (int ir = ir0; ir < ir1; ++ir) {
  8660. // src0 indices
  8661. const int i03 = ir/(ne02*ne01);
  8662. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8663. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8664. const int i13 = i03;
  8665. const int i12 = i02;
  8666. const int i0 = i01;
  8667. const int i2 = i02;
  8668. const int i3 = i03;
  8669. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8670. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8671. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8672. for (int64_t ic = 0; ic < ne11; ++ic) {
  8673. vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8674. }
  8675. }
  8676. //int64_t t1 = ggml_time_us();
  8677. //static int64_t acc = 0;
  8678. //acc += t1 - t0;
  8679. //if (t1 - t0 > 10) {
  8680. // printf("\n");
  8681. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8682. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8683. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8684. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8685. //}
  8686. }
  8687. // ggml_compute_forward_out_prod
  8688. static void ggml_compute_forward_out_prod_f32(
  8689. const struct ggml_compute_params * params,
  8690. const struct ggml_tensor * src0,
  8691. const struct ggml_tensor * src1,
  8692. struct ggml_tensor * dst) {
  8693. int64_t t0 = ggml_perf_time_us();
  8694. UNUSED(t0);
  8695. GGML_TENSOR_BINARY_OP_LOCALS;
  8696. const int ith = params->ith;
  8697. const int nth = params->nth;
  8698. GGML_ASSERT(ne02 == ne12);
  8699. GGML_ASSERT(ne03 == ne13);
  8700. GGML_ASSERT(ne2 == ne12);
  8701. GGML_ASSERT(ne3 == ne13);
  8702. // we don't support permuted src0 or src1
  8703. GGML_ASSERT(nb00 == sizeof(float));
  8704. // dst cannot be transposed or permuted
  8705. GGML_ASSERT(nb0 == sizeof(float));
  8706. // GGML_ASSERT(nb0 <= nb1);
  8707. // GGML_ASSERT(nb1 <= nb2);
  8708. // GGML_ASSERT(nb2 <= nb3);
  8709. GGML_ASSERT(ne0 == ne00);
  8710. GGML_ASSERT(ne1 == ne10);
  8711. GGML_ASSERT(ne2 == ne02);
  8712. GGML_ASSERT(ne3 == ne03);
  8713. // nb01 >= nb00 - src0 is not transposed
  8714. // compute by src0 rows
  8715. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8716. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8717. if (params->type == GGML_TASK_INIT) {
  8718. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8719. return;
  8720. }
  8721. if (params->type == GGML_TASK_FINALIZE) {
  8722. return;
  8723. }
  8724. // parallelize by last three dimensions
  8725. // total rows in dst
  8726. const int64_t nr = ne1*ne2*ne3;
  8727. // rows per thread
  8728. const int64_t dr = (nr + nth - 1)/nth;
  8729. // row range for this thread
  8730. const int64_t ir0 = dr*ith;
  8731. const int64_t ir1 = MIN(ir0 + dr, nr);
  8732. // dst[:,:,:,:] = 0
  8733. // for i2,i3:
  8734. // for i1:
  8735. // for i01:
  8736. // for i0:
  8737. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8738. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8739. // dst indices
  8740. const int64_t i3 = ir/(ne2*ne1);
  8741. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8742. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8743. const int64_t i02 = i2;
  8744. const int64_t i03 = i3;
  8745. //const int64_t i10 = i1;
  8746. const int64_t i12 = i2;
  8747. const int64_t i13 = i3;
  8748. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8749. const int64_t i11 = i01;
  8750. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8751. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8752. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8753. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8754. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8755. // d[i0] += s0[i0] * s1[i1];
  8756. // }
  8757. }
  8758. }
  8759. //int64_t t1 = ggml_perf_time_us();
  8760. //static int64_t acc = 0;
  8761. //acc += t1 - t0;
  8762. //if (t1 - t0 > 10) {
  8763. // printf("\n");
  8764. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8765. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8766. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8767. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8768. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8769. //}
  8770. }
  8771. static void ggml_compute_forward_out_prod(
  8772. const struct ggml_compute_params * params,
  8773. const struct ggml_tensor * src0,
  8774. const struct ggml_tensor * src1,
  8775. struct ggml_tensor * dst) {
  8776. switch (src0->type) {
  8777. case GGML_TYPE_Q4_0:
  8778. case GGML_TYPE_Q4_1:
  8779. case GGML_TYPE_Q5_0:
  8780. case GGML_TYPE_Q5_1:
  8781. case GGML_TYPE_Q8_0:
  8782. case GGML_TYPE_Q8_1:
  8783. {
  8784. GGML_ASSERT(false); // todo
  8785. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8786. } break;
  8787. case GGML_TYPE_F16:
  8788. {
  8789. GGML_ASSERT(false); // todo
  8790. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8791. } break;
  8792. case GGML_TYPE_F32:
  8793. {
  8794. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8795. } break;
  8796. default:
  8797. {
  8798. GGML_ASSERT(false);
  8799. } break;
  8800. }
  8801. }
  8802. // ggml_compute_forward_scale
  8803. static void ggml_compute_forward_scale_f32(
  8804. const struct ggml_compute_params * params,
  8805. const struct ggml_tensor * src0,
  8806. const struct ggml_tensor * src1,
  8807. struct ggml_tensor * dst) {
  8808. GGML_ASSERT(ggml_is_contiguous(src0));
  8809. GGML_ASSERT(ggml_is_contiguous(dst));
  8810. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8811. GGML_ASSERT(ggml_is_scalar(src1));
  8812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8813. return;
  8814. }
  8815. // scale factor
  8816. const float v = *(float *) src1->data;
  8817. const int ith = params->ith;
  8818. const int nth = params->nth;
  8819. const int nc = src0->ne[0];
  8820. const int nr = ggml_nrows(src0);
  8821. // rows per thread
  8822. const int dr = (nr + nth - 1)/nth;
  8823. // row range for this thread
  8824. const int ir0 = dr*ith;
  8825. const int ir1 = MIN(ir0 + dr, nr);
  8826. const size_t nb01 = src0->nb[1];
  8827. const size_t nb1 = dst->nb[1];
  8828. for (int i1 = ir0; i1 < ir1; i1++) {
  8829. if (dst->data != src0->data) {
  8830. // src0 is same shape as dst => same indices
  8831. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8832. }
  8833. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8834. }
  8835. }
  8836. static void ggml_compute_forward_scale(
  8837. const struct ggml_compute_params * params,
  8838. const struct ggml_tensor * src0,
  8839. const struct ggml_tensor * src1,
  8840. struct ggml_tensor * dst) {
  8841. switch (src0->type) {
  8842. case GGML_TYPE_F32:
  8843. {
  8844. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8845. } break;
  8846. default:
  8847. {
  8848. GGML_ASSERT(false);
  8849. } break;
  8850. }
  8851. }
  8852. // ggml_compute_forward_set
  8853. static void ggml_compute_forward_set_f32(
  8854. const struct ggml_compute_params * params,
  8855. const struct ggml_tensor * src0,
  8856. const struct ggml_tensor * src1,
  8857. const struct ggml_tensor * opt0,
  8858. struct ggml_tensor * dst) {
  8859. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8860. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8861. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8862. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8863. // view src0 and dst with these strides and data offset inbytes during set
  8864. // nb0 is implicitely element_size because src0 and dst are contiguous
  8865. size_t nb1 = ((int32_t *) opt0->data)[0];
  8866. size_t nb2 = ((int32_t *) opt0->data)[1];
  8867. size_t nb3 = ((int32_t *) opt0->data)[2];
  8868. size_t offset = ((int32_t *) opt0->data)[3];
  8869. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8870. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8871. // memcpy needs to be synchronized across threads to avoid race conditions.
  8872. // => do it in INIT phase
  8873. memcpy(
  8874. ((char *) dst->data),
  8875. ((char *) src0->data),
  8876. ggml_nbytes(dst));
  8877. }
  8878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8879. return;
  8880. }
  8881. const int ith = params->ith;
  8882. const int nth = params->nth;
  8883. const int nr = ggml_nrows(src1);
  8884. const int nc = src1->ne[0];
  8885. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8886. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8887. // src0 and dst as viewed during set
  8888. const size_t nb0 = ggml_element_size(src0);
  8889. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8890. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8891. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8892. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8893. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8894. GGML_ASSERT(nb10 == sizeof(float));
  8895. // rows per thread
  8896. const int dr = (nr + nth - 1)/nth;
  8897. // row range for this thread
  8898. const int ir0 = dr*ith;
  8899. const int ir1 = MIN(ir0 + dr, nr);
  8900. for (int ir = ir0; ir < ir1; ++ir) {
  8901. // src0 and dst are viewed with shape of src1 and offset
  8902. // => same indices
  8903. const int i3 = ir/(ne12*ne11);
  8904. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8905. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8906. ggml_vec_cpy_f32(nc,
  8907. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8908. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8909. }
  8910. }
  8911. static void ggml_compute_forward_set(
  8912. const struct ggml_compute_params * params,
  8913. const struct ggml_tensor * src0,
  8914. const struct ggml_tensor * src1,
  8915. const struct ggml_tensor * opt0,
  8916. struct ggml_tensor * dst) {
  8917. switch (src0->type) {
  8918. case GGML_TYPE_F32:
  8919. {
  8920. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8921. } break;
  8922. case GGML_TYPE_F16:
  8923. case GGML_TYPE_Q4_0:
  8924. case GGML_TYPE_Q4_1:
  8925. case GGML_TYPE_Q5_0:
  8926. case GGML_TYPE_Q5_1:
  8927. case GGML_TYPE_Q8_0:
  8928. case GGML_TYPE_Q8_1:
  8929. case GGML_TYPE_Q2_K:
  8930. case GGML_TYPE_Q3_K:
  8931. case GGML_TYPE_Q4_K:
  8932. case GGML_TYPE_Q5_K:
  8933. case GGML_TYPE_Q6_K:
  8934. default:
  8935. {
  8936. GGML_ASSERT(false);
  8937. } break;
  8938. }
  8939. }
  8940. // ggml_compute_forward_cpy
  8941. static void ggml_compute_forward_cpy(
  8942. const struct ggml_compute_params * params,
  8943. const struct ggml_tensor * src0,
  8944. struct ggml_tensor * dst) {
  8945. ggml_compute_forward_dup(params, src0, dst);
  8946. }
  8947. // ggml_compute_forward_cont
  8948. static void ggml_compute_forward_cont(
  8949. const struct ggml_compute_params * params,
  8950. const struct ggml_tensor * src0,
  8951. struct ggml_tensor * dst) {
  8952. ggml_compute_forward_dup(params, src0, dst);
  8953. }
  8954. // ggml_compute_forward_reshape
  8955. static void ggml_compute_forward_reshape(
  8956. const struct ggml_compute_params * params,
  8957. const struct ggml_tensor * src0,
  8958. struct ggml_tensor * dst) {
  8959. // NOP
  8960. UNUSED(params);
  8961. UNUSED(src0);
  8962. UNUSED(dst);
  8963. }
  8964. // ggml_compute_forward_view
  8965. static void ggml_compute_forward_view(
  8966. const struct ggml_compute_params * params,
  8967. const struct ggml_tensor * src0) {
  8968. // NOP
  8969. UNUSED(params);
  8970. UNUSED(src0);
  8971. }
  8972. // ggml_compute_forward_permute
  8973. static void ggml_compute_forward_permute(
  8974. const struct ggml_compute_params * params,
  8975. const struct ggml_tensor * src0) {
  8976. // NOP
  8977. UNUSED(params);
  8978. UNUSED(src0);
  8979. }
  8980. // ggml_compute_forward_transpose
  8981. static void ggml_compute_forward_transpose(
  8982. const struct ggml_compute_params * params,
  8983. const struct ggml_tensor * src0) {
  8984. // NOP
  8985. UNUSED(params);
  8986. UNUSED(src0);
  8987. }
  8988. // ggml_compute_forward_get_rows
  8989. static void ggml_compute_forward_get_rows_q(
  8990. const struct ggml_compute_params * params,
  8991. const struct ggml_tensor * src0,
  8992. const struct ggml_tensor * src1,
  8993. struct ggml_tensor * dst) {
  8994. assert(params->ith == 0);
  8995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8996. return;
  8997. }
  8998. const int nc = src0->ne[0];
  8999. const int nr = ggml_nelements(src1);
  9000. const enum ggml_type type = src0->type;
  9001. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9002. assert( dst->ne[0] == nc);
  9003. assert( dst->ne[1] == nr);
  9004. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9005. for (int i = 0; i < nr; ++i) {
  9006. const int r = ((int32_t *) src1->data)[i];
  9007. dequantize_row_q(
  9008. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9009. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9010. }
  9011. }
  9012. static void ggml_compute_forward_get_rows_f16(
  9013. const struct ggml_compute_params * params,
  9014. const struct ggml_tensor * src0,
  9015. const struct ggml_tensor * src1,
  9016. struct ggml_tensor * dst) {
  9017. assert(params->ith == 0);
  9018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9019. return;
  9020. }
  9021. const int nc = src0->ne[0];
  9022. const int nr = ggml_nelements(src1);
  9023. assert( dst->ne[0] == nc);
  9024. assert( dst->ne[1] == nr);
  9025. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9026. for (int i = 0; i < nr; ++i) {
  9027. const int r = ((int32_t *) src1->data)[i];
  9028. for (int j = 0; j < nc; ++j) {
  9029. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9030. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9031. }
  9032. }
  9033. }
  9034. static void ggml_compute_forward_get_rows_f32(
  9035. const struct ggml_compute_params * params,
  9036. const struct ggml_tensor * src0,
  9037. const struct ggml_tensor * src1,
  9038. struct ggml_tensor * dst) {
  9039. assert(params->ith == 0);
  9040. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9041. return;
  9042. }
  9043. const int nc = src0->ne[0];
  9044. const int nr = ggml_nelements(src1);
  9045. assert( dst->ne[0] == nc);
  9046. assert( dst->ne[1] == nr);
  9047. assert(src0->nb[0] == sizeof(float));
  9048. for (int i = 0; i < nr; ++i) {
  9049. const int r = ((int32_t *) src1->data)[i];
  9050. ggml_vec_cpy_f32(nc,
  9051. (float *) ((char *) dst->data + i*dst->nb[1]),
  9052. (float *) ((char *) src0->data + r*src0->nb[1]));
  9053. }
  9054. }
  9055. static void ggml_compute_forward_get_rows(
  9056. const struct ggml_compute_params * params,
  9057. const struct ggml_tensor * src0,
  9058. const struct ggml_tensor * src1,
  9059. struct ggml_tensor * dst) {
  9060. switch (src0->type) {
  9061. case GGML_TYPE_Q4_0:
  9062. case GGML_TYPE_Q4_1:
  9063. case GGML_TYPE_Q5_0:
  9064. case GGML_TYPE_Q5_1:
  9065. case GGML_TYPE_Q8_0:
  9066. case GGML_TYPE_Q8_1:
  9067. case GGML_TYPE_Q2_K:
  9068. case GGML_TYPE_Q3_K:
  9069. case GGML_TYPE_Q4_K:
  9070. case GGML_TYPE_Q5_K:
  9071. case GGML_TYPE_Q6_K:
  9072. {
  9073. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9074. } break;
  9075. case GGML_TYPE_F16:
  9076. {
  9077. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9078. } break;
  9079. case GGML_TYPE_F32:
  9080. {
  9081. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9082. } break;
  9083. default:
  9084. {
  9085. GGML_ASSERT(false);
  9086. } break;
  9087. }
  9088. //static bool first = true;
  9089. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9090. //if (first) {
  9091. // first = false;
  9092. //} else {
  9093. // for (int k = 0; k < dst->ne[1]; ++k) {
  9094. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9095. // for (int i = 0; i < 16; ++i) {
  9096. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9097. // }
  9098. // printf("\n");
  9099. // }
  9100. // printf("\n");
  9101. // }
  9102. // printf("\n");
  9103. // exit(0);
  9104. //}
  9105. }
  9106. // ggml_compute_forward_get_rows_back
  9107. static void ggml_compute_forward_get_rows_back_f32_f16(
  9108. const struct ggml_compute_params * params,
  9109. const struct ggml_tensor * src0,
  9110. const struct ggml_tensor * src1,
  9111. const struct ggml_tensor * opt0,
  9112. struct ggml_tensor * dst) {
  9113. GGML_ASSERT(params->ith == 0);
  9114. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9115. GGML_ASSERT(ggml_is_contiguous(opt0));
  9116. GGML_ASSERT(ggml_is_contiguous(dst));
  9117. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9119. return;
  9120. }
  9121. const int nc = src0->ne[0];
  9122. const int nr = ggml_nelements(src1);
  9123. GGML_ASSERT( dst->ne[0] == nc);
  9124. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9125. for (int i = 0; i < nr; ++i) {
  9126. const int r = ((int32_t *) src1->data)[i];
  9127. for (int j = 0; j < nc; ++j) {
  9128. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9129. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9130. }
  9131. }
  9132. }
  9133. static void ggml_compute_forward_get_rows_back_f32(
  9134. const struct ggml_compute_params * params,
  9135. const struct ggml_tensor * src0,
  9136. const struct ggml_tensor * src1,
  9137. const struct ggml_tensor * opt0,
  9138. struct ggml_tensor * dst) {
  9139. GGML_ASSERT(params->ith == 0);
  9140. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9141. GGML_ASSERT(ggml_is_contiguous(opt0));
  9142. GGML_ASSERT(ggml_is_contiguous(dst));
  9143. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9144. if (params->type == GGML_TASK_INIT) {
  9145. memset(dst->data, 0, ggml_nbytes(dst));
  9146. }
  9147. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9148. return;
  9149. }
  9150. const int nc = src0->ne[0];
  9151. const int nr = ggml_nelements(src1);
  9152. GGML_ASSERT( dst->ne[0] == nc);
  9153. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9154. for (int i = 0; i < nr; ++i) {
  9155. const int r = ((int32_t *) src1->data)[i];
  9156. ggml_vec_add_f32(nc,
  9157. (float *) ((char *) dst->data + r*dst->nb[1]),
  9158. (float *) ((char *) dst->data + r*dst->nb[1]),
  9159. (float *) ((char *) src0->data + i*src0->nb[1]));
  9160. }
  9161. }
  9162. static void ggml_compute_forward_get_rows_back(
  9163. const struct ggml_compute_params * params,
  9164. const struct ggml_tensor * src0,
  9165. const struct ggml_tensor * src1,
  9166. const struct ggml_tensor * opt0,
  9167. struct ggml_tensor * dst) {
  9168. switch (src0->type) {
  9169. case GGML_TYPE_F16:
  9170. {
  9171. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9172. } break;
  9173. case GGML_TYPE_F32:
  9174. {
  9175. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9176. } break;
  9177. default:
  9178. {
  9179. GGML_ASSERT(false);
  9180. } break;
  9181. }
  9182. //static bool first = true;
  9183. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9184. //if (first) {
  9185. // first = false;
  9186. //} else {
  9187. // for (int k = 0; k < dst->ne[1]; ++k) {
  9188. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9189. // for (int i = 0; i < 16; ++i) {
  9190. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9191. // }
  9192. // printf("\n");
  9193. // }
  9194. // printf("\n");
  9195. // }
  9196. // printf("\n");
  9197. // exit(0);
  9198. //}
  9199. }
  9200. // ggml_compute_forward_diag
  9201. static void ggml_compute_forward_diag_f32(
  9202. const struct ggml_compute_params * params,
  9203. const struct ggml_tensor * src0,
  9204. struct ggml_tensor * dst) {
  9205. GGML_ASSERT(params->ith == 0);
  9206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9207. return;
  9208. }
  9209. // TODO: handle transposed/permuted matrices
  9210. GGML_TENSOR_UNARY_OP_LOCALS;
  9211. GGML_ASSERT(ne00 == ne0);
  9212. GGML_ASSERT(ne00 == ne1);
  9213. GGML_ASSERT(ne01 == 1);
  9214. GGML_ASSERT(ne02 == ne2);
  9215. GGML_ASSERT(ne03 == ne3);
  9216. GGML_ASSERT(nb00 == sizeof(float));
  9217. GGML_ASSERT(nb0 == sizeof(float));
  9218. for (int i3 = 0; i3 < ne3; i3++) {
  9219. for (int i2 = 0; i2 < ne2; i2++) {
  9220. for (int i1 = 0; i1 < ne1; i1++) {
  9221. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9222. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9223. for (int i0 = 0; i0 < i1; i0++) {
  9224. d[i0] = 0;
  9225. }
  9226. d[i1] = s[i1];
  9227. for (int i0 = i1+1; i0 < ne0; i0++) {
  9228. d[i0] = 0;
  9229. }
  9230. }
  9231. }
  9232. }
  9233. }
  9234. static void ggml_compute_forward_diag(
  9235. const struct ggml_compute_params * params,
  9236. const struct ggml_tensor * src0,
  9237. struct ggml_tensor * dst) {
  9238. switch (src0->type) {
  9239. case GGML_TYPE_F32:
  9240. {
  9241. ggml_compute_forward_diag_f32(params, src0, dst);
  9242. } break;
  9243. default:
  9244. {
  9245. GGML_ASSERT(false);
  9246. } break;
  9247. }
  9248. }
  9249. // ggml_compute_forward_diag_mask_inf
  9250. static void ggml_compute_forward_diag_mask_f32(
  9251. const struct ggml_compute_params * params,
  9252. const struct ggml_tensor * src0,
  9253. const struct ggml_tensor * src1,
  9254. struct ggml_tensor * dst,
  9255. const float value) {
  9256. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9257. GGML_ASSERT(ggml_nelements(src1) == 2);
  9258. const int ith = params->ith;
  9259. const int nth = params->nth;
  9260. const int n_past = ((int32_t *) src1->data)[0];
  9261. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9262. GGML_ASSERT(n_past >= 0);
  9263. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9264. // memcpy needs to be synchronized across threads to avoid race conditions.
  9265. // => do it in INIT phase
  9266. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9267. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9268. memcpy(
  9269. ((char *) dst->data),
  9270. ((char *) src0->data),
  9271. ggml_nbytes(dst));
  9272. }
  9273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9274. return;
  9275. }
  9276. // TODO: handle transposed/permuted matrices
  9277. const int n = ggml_nrows(src0);
  9278. const int nc = src0->ne[0];
  9279. const int nr = src0->ne[1];
  9280. const int nz = n/nr;
  9281. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9282. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9283. for (int k = 0; k < nz; k++) {
  9284. for (int j = ith; j < nr; j += nth) {
  9285. for (int i = n_past; i < nc; i++) {
  9286. if (i > n_past + j) {
  9287. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9288. }
  9289. }
  9290. }
  9291. }
  9292. }
  9293. static void ggml_compute_forward_diag_mask_inf(
  9294. const struct ggml_compute_params * params,
  9295. const struct ggml_tensor * src0,
  9296. const struct ggml_tensor * src1,
  9297. struct ggml_tensor * dst) {
  9298. switch (src0->type) {
  9299. case GGML_TYPE_F32:
  9300. {
  9301. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9302. } break;
  9303. default:
  9304. {
  9305. GGML_ASSERT(false);
  9306. } break;
  9307. }
  9308. }
  9309. static void ggml_compute_forward_diag_mask_zero(
  9310. const struct ggml_compute_params * params,
  9311. const struct ggml_tensor * src0,
  9312. const struct ggml_tensor * src1,
  9313. struct ggml_tensor * dst) {
  9314. switch (src0->type) {
  9315. case GGML_TYPE_F32:
  9316. {
  9317. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9318. } break;
  9319. default:
  9320. {
  9321. GGML_ASSERT(false);
  9322. } break;
  9323. }
  9324. }
  9325. // ggml_compute_forward_soft_max
  9326. static void ggml_compute_forward_soft_max_f32(
  9327. const struct ggml_compute_params * params,
  9328. const struct ggml_tensor * src0,
  9329. struct ggml_tensor * dst) {
  9330. GGML_ASSERT(ggml_is_contiguous(src0));
  9331. GGML_ASSERT(ggml_is_contiguous(dst));
  9332. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9333. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9334. return;
  9335. }
  9336. // TODO: handle transposed/permuted matrices
  9337. const int ith = params->ith;
  9338. const int nth = params->nth;
  9339. const int nc = src0->ne[0];
  9340. const int nr = ggml_nrows(src0);
  9341. // rows per thread
  9342. const int dr = (nr + nth - 1)/nth;
  9343. // row range for this thread
  9344. const int ir0 = dr*ith;
  9345. const int ir1 = MIN(ir0 + dr, nr);
  9346. for (int i1 = ir0; i1 < ir1; i1++) {
  9347. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9348. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9349. #ifndef NDEBUG
  9350. for (int i = 0; i < nc; ++i) {
  9351. //printf("p[%d] = %f\n", i, p[i]);
  9352. assert(!isnan(sp[i]));
  9353. }
  9354. #endif
  9355. float max = -INFINITY;
  9356. ggml_vec_max_f32(nc, &max, sp);
  9357. ggml_float sum = 0.0;
  9358. uint16_t scvt;
  9359. for (int i = 0; i < nc; i++) {
  9360. if (sp[i] == -INFINITY) {
  9361. dp[i] = 0.0f;
  9362. } else {
  9363. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9364. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9365. memcpy(&scvt, &s, sizeof(scvt));
  9366. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9367. sum += (ggml_float)val;
  9368. dp[i] = val;
  9369. }
  9370. }
  9371. assert(sum > 0.0);
  9372. sum = 1.0/sum;
  9373. ggml_vec_scale_f32(nc, dp, sum);
  9374. #ifndef NDEBUG
  9375. for (int i = 0; i < nc; ++i) {
  9376. assert(!isnan(dp[i]));
  9377. assert(!isinf(dp[i]));
  9378. }
  9379. #endif
  9380. }
  9381. }
  9382. static void ggml_compute_forward_soft_max(
  9383. const struct ggml_compute_params * params,
  9384. const struct ggml_tensor * src0,
  9385. struct ggml_tensor * dst) {
  9386. switch (src0->type) {
  9387. case GGML_TYPE_F32:
  9388. {
  9389. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9390. } break;
  9391. default:
  9392. {
  9393. GGML_ASSERT(false);
  9394. } break;
  9395. }
  9396. }
  9397. // ggml_compute_forward_soft_max_back
  9398. static void ggml_compute_forward_soft_max_back_f32(
  9399. const struct ggml_compute_params * params,
  9400. const struct ggml_tensor * src0,
  9401. const struct ggml_tensor * src1,
  9402. struct ggml_tensor * dst) {
  9403. GGML_ASSERT(ggml_is_contiguous(src0));
  9404. GGML_ASSERT(ggml_is_contiguous(src1));
  9405. GGML_ASSERT(ggml_is_contiguous(dst));
  9406. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9407. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9409. return;
  9410. }
  9411. // TODO: handle transposed/permuted matrices
  9412. const int ith = params->ith;
  9413. const int nth = params->nth;
  9414. const int nc = src0->ne[0];
  9415. const int nr = ggml_nrows(src0);
  9416. // rows per thread
  9417. const int dr = (nr + nth - 1)/nth;
  9418. // row range for this thread
  9419. const int ir0 = dr*ith;
  9420. const int ir1 = MIN(ir0 + dr, nr);
  9421. for (int i1 = ir0; i1 < ir1; i1++) {
  9422. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9423. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9424. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9425. #ifndef NDEBUG
  9426. for (int i = 0; i < nc; ++i) {
  9427. //printf("p[%d] = %f\n", i, p[i]);
  9428. assert(!isnan(dy[i]));
  9429. assert(!isnan(y[i]));
  9430. }
  9431. #endif
  9432. // Jii = yi - yi*yi
  9433. // Jij = -yi*yj
  9434. // J = diag(y)-y.T*y
  9435. // dx = J * dy
  9436. // dxk = sum_i(Jki * dyi)
  9437. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9438. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9439. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9440. // dxk = -yk * dot(y, dy) + yk*dyk
  9441. // dxk = yk * (- dot(y, dy) + dyk)
  9442. // dxk = yk * (dyk - dot(y, dy))
  9443. //
  9444. // post-order:
  9445. // dot_y_dy := dot(y, dy)
  9446. // dx := dy
  9447. // dx := dx - dot_y_dy
  9448. // dx := dx * y
  9449. // linear runtime, no additional memory
  9450. float dot_y_dy = 0;
  9451. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9452. ggml_vec_cpy_f32 (nc, dx, dy);
  9453. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9454. ggml_vec_mul_f32 (nc, dx, dx, y);
  9455. #ifndef NDEBUG
  9456. for (int i = 0; i < nc; ++i) {
  9457. assert(!isnan(dx[i]));
  9458. assert(!isinf(dx[i]));
  9459. }
  9460. #endif
  9461. }
  9462. }
  9463. static void ggml_compute_forward_soft_max_back(
  9464. const struct ggml_compute_params * params,
  9465. const struct ggml_tensor * src0,
  9466. const struct ggml_tensor * src1,
  9467. struct ggml_tensor * dst) {
  9468. switch (src0->type) {
  9469. case GGML_TYPE_F32:
  9470. {
  9471. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9472. } break;
  9473. default:
  9474. {
  9475. GGML_ASSERT(false);
  9476. } break;
  9477. }
  9478. }
  9479. // ggml_compute_forward_alibi
  9480. static void ggml_compute_forward_alibi_f32(
  9481. const struct ggml_compute_params * params,
  9482. const struct ggml_tensor * src0,
  9483. const struct ggml_tensor * src1,
  9484. struct ggml_tensor * dst) {
  9485. assert(params->ith == 0);
  9486. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9487. GGML_ASSERT(ggml_nelements(src1) == 3);
  9488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9489. return;
  9490. }
  9491. const int n_past = ((int32_t *) src1->data)[0];
  9492. const int n_head = ((int32_t *) src1->data)[1];
  9493. const float max_bias = ((float *) src1->data)[2];
  9494. assert(n_past >= 0);
  9495. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9496. const int ne1 = src0->ne[1]; // seq_len_without_past
  9497. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9498. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9499. const int n = ggml_nrows(src0);
  9500. const int ne2_ne3 = n/ne1; // ne2*ne3
  9501. const int nb0 = src0->nb[0];
  9502. const int nb1 = src0->nb[1];
  9503. const int nb2 = src0->nb[2];
  9504. //const int nb3 = src0->nb[3];
  9505. assert(nb0 == sizeof(float));
  9506. assert(ne1 + n_past == ne0); (void) n_past;
  9507. // add alibi to src0 (KQ_scaled)
  9508. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9509. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9510. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9511. for (int i = 0; i < ne0; i++) {
  9512. for (int j = 0; j < ne1; j++) {
  9513. for (int k = 0; k < ne2_ne3; k++) {
  9514. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9515. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9516. // TODO: k*nb2 or k*nb3
  9517. float m_k;
  9518. if (k < n_heads_log2_floor) {
  9519. m_k = powf(m0, k + 1);
  9520. } else {
  9521. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9522. }
  9523. pdst[0] = (i-ne0+1) * m_k + src[0];
  9524. }
  9525. }
  9526. }
  9527. }
  9528. static void ggml_compute_forward_alibi_f16(
  9529. const struct ggml_compute_params * params,
  9530. const struct ggml_tensor * src0,
  9531. const struct ggml_tensor * src1,
  9532. struct ggml_tensor * dst) {
  9533. assert(params->ith == 0);
  9534. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9535. GGML_ASSERT(ggml_nelements(src1) == 3);
  9536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9537. return;
  9538. }
  9539. const int n_past = ((int32_t *) src1->data)[0];
  9540. const int n_head = ((int32_t *) src1->data)[1];
  9541. const float max_bias = ((float *) src1->data)[2];
  9542. assert(n_past >= 0);
  9543. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9544. const int ne1 = src0->ne[1]; // seq_len_without_past
  9545. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9546. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9547. const int n = ggml_nrows(src0);
  9548. const int ne2_ne3 = n/ne1; // ne2*ne3
  9549. const int nb0 = src0->nb[0];
  9550. const int nb1 = src0->nb[1];
  9551. const int nb2 = src0->nb[2];
  9552. //const int nb3 = src0->nb[3];
  9553. assert(nb0 == sizeof(ggml_fp16_t));
  9554. assert(ne1 + n_past == ne0); (void) n_past;
  9555. // add alibi to src0 (KQ_scaled)
  9556. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9557. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9558. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9559. for (int i = 0; i < ne0; i++) {
  9560. for (int j = 0; j < ne1; j++) {
  9561. for (int k = 0; k < ne2_ne3; k++) {
  9562. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9563. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9564. // TODO: k*nb2 or k*nb3
  9565. float m_k;
  9566. if (k < n_heads_log2_floor) {
  9567. m_k = powf(m0, k + 1);
  9568. } else {
  9569. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9570. }
  9571. // we return F32
  9572. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9573. }
  9574. }
  9575. }
  9576. }
  9577. static void ggml_compute_forward_alibi(
  9578. const struct ggml_compute_params * params,
  9579. const struct ggml_tensor * src0,
  9580. const struct ggml_tensor * src1,
  9581. struct ggml_tensor * dst) {
  9582. switch (src0->type) {
  9583. case GGML_TYPE_F16:
  9584. {
  9585. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9586. } break;
  9587. case GGML_TYPE_F32:
  9588. {
  9589. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9590. } break;
  9591. case GGML_TYPE_Q4_0:
  9592. case GGML_TYPE_Q4_1:
  9593. case GGML_TYPE_Q5_0:
  9594. case GGML_TYPE_Q5_1:
  9595. case GGML_TYPE_Q8_0:
  9596. case GGML_TYPE_Q8_1:
  9597. case GGML_TYPE_Q2_K:
  9598. case GGML_TYPE_Q3_K:
  9599. case GGML_TYPE_Q4_K:
  9600. case GGML_TYPE_Q5_K:
  9601. case GGML_TYPE_Q6_K:
  9602. case GGML_TYPE_Q8_K:
  9603. case GGML_TYPE_I8:
  9604. case GGML_TYPE_I16:
  9605. case GGML_TYPE_I32:
  9606. case GGML_TYPE_COUNT:
  9607. {
  9608. GGML_ASSERT(false);
  9609. } break;
  9610. }
  9611. }
  9612. // ggml_compute_forward_clamp
  9613. static void ggml_compute_forward_clamp_f32(
  9614. const struct ggml_compute_params * params,
  9615. const struct ggml_tensor * src0,
  9616. const struct ggml_tensor * src1,
  9617. struct ggml_tensor * dst) {
  9618. assert(params->ith == 0);
  9619. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9620. GGML_ASSERT(ggml_nelements(src1) == 2);
  9621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9622. return;
  9623. }
  9624. const float min = ((float *) src1->data)[0];
  9625. const float max = ((float *) src1->data)[1];
  9626. const int ith = params->ith;
  9627. const int nth = params->nth;
  9628. const int n = ggml_nrows(src0);
  9629. const int nc = src0->ne[0];
  9630. const size_t nb00 = src0->nb[0];
  9631. const size_t nb01 = src0->nb[1];
  9632. const size_t nb0 = dst->nb[0];
  9633. const size_t nb1 = dst->nb[1];
  9634. GGML_ASSERT( nb0 == sizeof(float));
  9635. GGML_ASSERT(nb00 == sizeof(float));
  9636. for (int j = ith; j < n; j += nth) {
  9637. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9638. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9639. for (int i = 0; i < nc; i++) {
  9640. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9641. }
  9642. }
  9643. }
  9644. static void ggml_compute_forward_clamp(
  9645. const struct ggml_compute_params * params,
  9646. const struct ggml_tensor * src0,
  9647. const struct ggml_tensor * src1,
  9648. struct ggml_tensor * dst) {
  9649. switch (src0->type) {
  9650. case GGML_TYPE_F32:
  9651. {
  9652. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9653. } break;
  9654. case GGML_TYPE_F16:
  9655. case GGML_TYPE_Q4_0:
  9656. case GGML_TYPE_Q4_1:
  9657. case GGML_TYPE_Q5_0:
  9658. case GGML_TYPE_Q5_1:
  9659. case GGML_TYPE_Q8_0:
  9660. case GGML_TYPE_Q8_1:
  9661. case GGML_TYPE_Q2_K:
  9662. case GGML_TYPE_Q3_K:
  9663. case GGML_TYPE_Q4_K:
  9664. case GGML_TYPE_Q5_K:
  9665. case GGML_TYPE_Q6_K:
  9666. case GGML_TYPE_Q8_K:
  9667. case GGML_TYPE_I8:
  9668. case GGML_TYPE_I16:
  9669. case GGML_TYPE_I32:
  9670. case GGML_TYPE_COUNT:
  9671. {
  9672. GGML_ASSERT(false);
  9673. } break;
  9674. }
  9675. }
  9676. // ggml_compute_forward_rope
  9677. static void ggml_compute_forward_rope_f32(
  9678. const struct ggml_compute_params * params,
  9679. const struct ggml_tensor * src0,
  9680. const struct ggml_tensor * src1,
  9681. struct ggml_tensor * dst) {
  9682. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9683. GGML_ASSERT(ggml_nelements(src1) == 4);
  9684. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9685. return;
  9686. }
  9687. const int n_past = ((int32_t *) src1->data)[0];
  9688. const int n_dims = ((int32_t *) src1->data)[1];
  9689. const int mode = ((int32_t *) src1->data)[2];
  9690. const int n_ctx = ((int32_t *) src1->data)[3];
  9691. assert(n_past >= 0);
  9692. GGML_TENSOR_UNARY_OP_LOCALS;
  9693. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9694. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9695. GGML_ASSERT(nb00 == sizeof(float));
  9696. const int ith = params->ith;
  9697. const int nth = params->nth;
  9698. const int nr = ggml_nrows(dst);
  9699. GGML_ASSERT(n_dims <= ne0);
  9700. GGML_ASSERT(n_dims % 2 == 0);
  9701. // rows per thread
  9702. const int dr = (nr + nth - 1)/nth;
  9703. // row range for this thread
  9704. const int ir0 = dr*ith;
  9705. const int ir1 = MIN(ir0 + dr, nr);
  9706. // row index used to determine which thread to use
  9707. int ir = 0;
  9708. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9709. const bool is_neox = mode & 2;
  9710. const bool is_glm = mode & 4;
  9711. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9712. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9713. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9714. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9715. if (ir++ < ir0) continue;
  9716. if (ir > ir1) break;
  9717. float theta = (float)p;
  9718. if (is_glm) {
  9719. theta = MIN(p, n_ctx - 2);
  9720. float block_theta = MAX(p - (n_ctx - 2), 0);
  9721. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9722. const float cos_theta = cosf(theta);
  9723. const float sin_theta = sinf(theta);
  9724. const float cos_block_theta = cosf(block_theta);
  9725. const float sin_block_theta = sinf(block_theta);
  9726. theta *= theta_scale;
  9727. block_theta *= theta_scale;
  9728. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9729. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9730. const float x0 = src[0];
  9731. const float x1 = src[n_dims/2];
  9732. const float x2 = src[n_dims];
  9733. const float x3 = src[n_dims/2*3];
  9734. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9735. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9736. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9737. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9738. }
  9739. } else if (!is_neox) {
  9740. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9741. const float cos_theta = cosf(theta);
  9742. const float sin_theta = sinf(theta);
  9743. theta *= theta_scale;
  9744. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9745. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9746. const float x0 = src[0];
  9747. const float x1 = src[1];
  9748. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9749. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9750. }
  9751. } else {
  9752. // TODO: this is probably wrong, but I can't figure it out ..
  9753. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9754. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9755. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9756. const float cos_theta = cosf(theta);
  9757. const float sin_theta = sinf(theta);
  9758. theta *= theta_scale;
  9759. const int64_t i0 = ib*n_dims + ic/2;
  9760. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9761. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9762. const float x0 = src[0];
  9763. const float x1 = src[n_dims/2];
  9764. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9765. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9766. }
  9767. }
  9768. }
  9769. }
  9770. }
  9771. }
  9772. }
  9773. static void ggml_compute_forward_rope_f16(
  9774. const struct ggml_compute_params * params,
  9775. const struct ggml_tensor * src0,
  9776. const struct ggml_tensor * src1,
  9777. struct ggml_tensor * dst) {
  9778. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9779. GGML_ASSERT(ggml_nelements(src1) == 4);
  9780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9781. return;
  9782. }
  9783. const int n_past = ((int32_t *) src1->data)[0];
  9784. const int n_dims = ((int32_t *) src1->data)[1];
  9785. const int mode = ((int32_t *) src1->data)[2];
  9786. const int n_ctx = ((int32_t *) src1->data)[3];
  9787. assert(n_past >= 0);
  9788. GGML_TENSOR_UNARY_OP_LOCALS;
  9789. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9790. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9791. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9792. const int ith = params->ith;
  9793. const int nth = params->nth;
  9794. const int nr = ggml_nrows(dst);
  9795. GGML_ASSERT(n_dims <= ne0);
  9796. GGML_ASSERT(n_dims % 2 == 0);
  9797. // rows per thread
  9798. const int dr = (nr + nth - 1)/nth;
  9799. // row range for this thread
  9800. const int ir0 = dr*ith;
  9801. const int ir1 = MIN(ir0 + dr, nr);
  9802. // row index used to determine which thread to use
  9803. int ir = 0;
  9804. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9805. const bool is_neox = mode & 2;
  9806. const bool is_glm = mode & 4;
  9807. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9808. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9809. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9810. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9811. if (ir++ < ir0) continue;
  9812. if (ir > ir1) break;
  9813. float theta = (float)p;
  9814. if (is_glm) {
  9815. theta = MIN(p, n_ctx - 2);
  9816. float block_theta = MAX(p - (n_ctx - 2), 0);
  9817. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9818. const float cos_theta = cosf(theta);
  9819. const float sin_theta = sinf(theta);
  9820. const float cos_block_theta = cosf(block_theta);
  9821. const float sin_block_theta = sinf(block_theta);
  9822. theta *= theta_scale;
  9823. block_theta *= theta_scale;
  9824. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9825. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9826. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9827. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9828. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9829. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9830. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9831. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9832. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9833. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9834. }
  9835. } if (!is_neox) {
  9836. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9837. const float cos_theta = cosf(theta);
  9838. const float sin_theta = sinf(theta);
  9839. theta *= theta_scale;
  9840. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9841. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9842. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9843. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9844. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9845. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9846. }
  9847. } else {
  9848. // TODO: this is probably wrong, but I can't figure it out ..
  9849. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9850. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9851. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9852. const float cos_theta = cosf(theta);
  9853. const float sin_theta = sinf(theta);
  9854. theta *= theta_scale;
  9855. const int64_t i0 = ib*n_dims + ic/2;
  9856. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9857. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9858. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9859. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9860. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9861. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9862. }
  9863. }
  9864. }
  9865. }
  9866. }
  9867. }
  9868. }
  9869. static void ggml_compute_forward_rope(
  9870. const struct ggml_compute_params * params,
  9871. const struct ggml_tensor * src0,
  9872. const struct ggml_tensor * src1,
  9873. struct ggml_tensor * dst) {
  9874. switch (src0->type) {
  9875. case GGML_TYPE_F16:
  9876. {
  9877. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9878. } break;
  9879. case GGML_TYPE_F32:
  9880. {
  9881. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9882. } break;
  9883. default:
  9884. {
  9885. GGML_ASSERT(false);
  9886. } break;
  9887. }
  9888. }
  9889. // ggml_compute_forward_rope_back
  9890. static void ggml_compute_forward_rope_back_f32(
  9891. const struct ggml_compute_params * params,
  9892. const struct ggml_tensor * src0,
  9893. const struct ggml_tensor * src1,
  9894. struct ggml_tensor * dst) {
  9895. assert(src1->type == GGML_TYPE_I32);
  9896. assert(ggml_nelements(src1) == 3);
  9897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9898. return;
  9899. }
  9900. // y = rope(x, src1)
  9901. // dx = rope_back(dy, src1)
  9902. // src0 is dy, src1 contains options
  9903. const int n_past = ((int32_t *) src1->data)[0];
  9904. const int n_dims = ((int32_t *) src1->data)[1];
  9905. const int mode = ((int32_t *) src1->data)[2];
  9906. assert(n_past >= 0);
  9907. GGML_TENSOR_UNARY_OP_LOCALS;
  9908. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9909. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9910. assert(nb0 == sizeof(float));
  9911. const int ith = params->ith;
  9912. const int nth = params->nth;
  9913. const int nr = ggml_nrows(dst);
  9914. // rows per thread
  9915. const int dr = (nr + nth - 1)/nth;
  9916. // row range for this thread
  9917. const int ir0 = dr*ith;
  9918. const int ir1 = MIN(ir0 + dr, nr);
  9919. // row index used to determine which thread to use
  9920. int ir = 0;
  9921. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9922. const bool is_neox = mode & 2;
  9923. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9924. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9925. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9926. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9927. if (ir++ < ir0) continue;
  9928. if (ir > ir1) break;
  9929. float theta = (float)p;
  9930. if (!is_neox) {
  9931. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9932. const float cos_theta = cosf(theta);
  9933. const float sin_theta = sinf(theta);
  9934. theta *= theta_scale;
  9935. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9936. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9937. const float dy0 = dy[0];
  9938. const float dy1 = dy[1];
  9939. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9940. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9941. }
  9942. } else {
  9943. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9944. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9945. const float cos_theta = cosf(theta);
  9946. const float sin_theta = sinf(theta);
  9947. theta *= theta_scale;
  9948. const int64_t i0 = ib*n_dims + ic/2;
  9949. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9950. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9951. const float dy0 = dy[0];
  9952. const float dy1 = dy[n_dims/2];
  9953. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9954. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9955. }
  9956. }
  9957. }
  9958. }
  9959. }
  9960. }
  9961. }
  9962. static void ggml_compute_forward_rope_back_f16(
  9963. const struct ggml_compute_params * params,
  9964. const struct ggml_tensor * src0,
  9965. const struct ggml_tensor * src1,
  9966. struct ggml_tensor * dst) {
  9967. assert(src1->type == GGML_TYPE_I32);
  9968. assert(ggml_nelements(src1) == 3);
  9969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9970. return;
  9971. }
  9972. // y = rope(x, src1)
  9973. // dx = rope_back(dy, src1)
  9974. // src0 is dy, src1 contains options
  9975. const int n_past = ((int32_t *) src1->data)[0];
  9976. const int n_dims = ((int32_t *) src1->data)[1];
  9977. const int mode = ((int32_t *) src1->data)[2];
  9978. assert(n_past >= 0);
  9979. GGML_TENSOR_UNARY_OP_LOCALS;
  9980. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9981. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9982. assert(nb0 == sizeof(ggml_fp16_t));
  9983. const int ith = params->ith;
  9984. const int nth = params->nth;
  9985. const int nr = ggml_nrows(dst);
  9986. // rows per thread
  9987. const int dr = (nr + nth - 1)/nth;
  9988. // row range for this thread
  9989. const int ir0 = dr*ith;
  9990. const int ir1 = MIN(ir0 + dr, nr);
  9991. // row index used to determine which thread to use
  9992. int ir = 0;
  9993. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9994. const bool is_neox = mode & 2;
  9995. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9996. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9997. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9998. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9999. if (ir++ < ir0) continue;
  10000. if (ir > ir1) break;
  10001. float theta = (float)p;
  10002. if (!is_neox) {
  10003. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10004. const float cos_theta = cosf(theta);
  10005. const float sin_theta = sinf(theta);
  10006. theta *= theta_scale;
  10007. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10008. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10009. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10010. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10011. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10012. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10013. }
  10014. } else {
  10015. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10016. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10017. const float cos_theta = cosf(theta);
  10018. const float sin_theta = sinf(theta);
  10019. theta *= theta_scale;
  10020. const int64_t i0 = ib*n_dims + ic/2;
  10021. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10022. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10023. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10024. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10025. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10026. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10027. }
  10028. }
  10029. }
  10030. }
  10031. }
  10032. }
  10033. }
  10034. static void ggml_compute_forward_rope_back(
  10035. const struct ggml_compute_params * params,
  10036. const struct ggml_tensor * src0,
  10037. const struct ggml_tensor * src1,
  10038. struct ggml_tensor * dst) {
  10039. switch (src0->type) {
  10040. case GGML_TYPE_F16:
  10041. {
  10042. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10043. } break;
  10044. case GGML_TYPE_F32:
  10045. {
  10046. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10047. } break;
  10048. default:
  10049. {
  10050. GGML_ASSERT(false);
  10051. } break;
  10052. }
  10053. }
  10054. // ggml_compute_forward_conv_1d
  10055. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10056. const struct ggml_compute_params * params,
  10057. const struct ggml_tensor * src0,
  10058. const struct ggml_tensor * src1,
  10059. struct ggml_tensor * dst) {
  10060. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10061. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10062. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10063. int64_t t0 = ggml_perf_time_us();
  10064. UNUSED(t0);
  10065. GGML_TENSOR_BINARY_OP_LOCALS;
  10066. const int ith = params->ith;
  10067. const int nth = params->nth;
  10068. const int nk = ne00;
  10069. const int nh = nk/2;
  10070. const int ew0 = ggml_up32(ne01);
  10071. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10072. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10073. GGML_ASSERT(nb10 == sizeof(float));
  10074. if (params->type == GGML_TASK_INIT) {
  10075. // TODO: fix this memset (wsize is overestimated)
  10076. memset(params->wdata, 0, params->wsize);
  10077. // prepare kernel data (src0)
  10078. {
  10079. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10080. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10081. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10082. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10083. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10084. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10085. dst_data[i00*ew0 + i01] = src[i00];
  10086. }
  10087. }
  10088. }
  10089. }
  10090. // prepare source data (src1)
  10091. {
  10092. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10093. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10094. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10095. ggml_fp16_t * dst_data = wdata;
  10096. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10097. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10098. }
  10099. }
  10100. }
  10101. return;
  10102. }
  10103. if (params->type == GGML_TASK_FINALIZE) {
  10104. return;
  10105. }
  10106. // total rows in dst
  10107. const int nr = ne02;
  10108. // rows per thread
  10109. const int dr = (nr + nth - 1)/nth;
  10110. // row range for this thread
  10111. const int ir0 = dr*ith;
  10112. const int ir1 = MIN(ir0 + dr, nr);
  10113. for (int i1 = ir0; i1 < ir1; i1++) {
  10114. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10115. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10116. dst_data[i0] = 0;
  10117. for (int k = -nh; k <= nh; k++) {
  10118. float v = 0.0f;
  10119. ggml_vec_dot_f16(ew0, &v,
  10120. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10121. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10122. dst_data[i0] += v;
  10123. }
  10124. }
  10125. }
  10126. }
  10127. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10128. const struct ggml_compute_params * params,
  10129. const struct ggml_tensor * src0,
  10130. const struct ggml_tensor * src1,
  10131. struct ggml_tensor * dst) {
  10132. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10133. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10134. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10135. int64_t t0 = ggml_perf_time_us();
  10136. UNUSED(t0);
  10137. GGML_TENSOR_BINARY_OP_LOCALS;
  10138. const int ith = params->ith;
  10139. const int nth = params->nth;
  10140. const int nk = ne00;
  10141. const int nh = nk/2;
  10142. const int ew0 = ggml_up32(ne01);
  10143. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10144. GGML_ASSERT(nb00 == sizeof(float));
  10145. GGML_ASSERT(nb10 == sizeof(float));
  10146. if (params->type == GGML_TASK_INIT) {
  10147. // TODO: fix this memset (wsize is overestimated)
  10148. memset(params->wdata, 0, params->wsize);
  10149. // prepare kernel data (src0)
  10150. {
  10151. float * const wdata = (float *) params->wdata + 0;
  10152. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10153. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10154. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10155. float * dst_data = wdata + i02*ew0*ne00;
  10156. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10157. dst_data[i00*ew0 + i01] = src[i00];
  10158. }
  10159. }
  10160. }
  10161. }
  10162. // prepare source data (src1)
  10163. {
  10164. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10165. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10166. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10167. float * dst_data = wdata;
  10168. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10169. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10170. }
  10171. }
  10172. }
  10173. return;
  10174. }
  10175. if (params->type == GGML_TASK_FINALIZE) {
  10176. return;
  10177. }
  10178. // total rows in dst
  10179. const int nr = ne02;
  10180. // rows per thread
  10181. const int dr = (nr + nth - 1)/nth;
  10182. // row range for this thread
  10183. const int ir0 = dr*ith;
  10184. const int ir1 = MIN(ir0 + dr, nr);
  10185. for (int i1 = ir0; i1 < ir1; i1++) {
  10186. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10187. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10188. dst_data[i0] = 0;
  10189. for (int k = -nh; k <= nh; k++) {
  10190. float v = 0.0f;
  10191. ggml_vec_dot_f32(ew0, &v,
  10192. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10193. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10194. dst_data[i0] += v;
  10195. }
  10196. }
  10197. }
  10198. }
  10199. static void ggml_compute_forward_conv_1d_s1_ph(
  10200. const struct ggml_compute_params * params,
  10201. const struct ggml_tensor * src0,
  10202. const struct ggml_tensor * src1,
  10203. struct ggml_tensor * dst) {
  10204. switch (src0->type) {
  10205. case GGML_TYPE_F16:
  10206. {
  10207. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10208. } break;
  10209. case GGML_TYPE_F32:
  10210. {
  10211. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10212. } break;
  10213. default:
  10214. {
  10215. GGML_ASSERT(false);
  10216. } break;
  10217. }
  10218. }
  10219. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10220. const struct ggml_compute_params * params,
  10221. const struct ggml_tensor * src0,
  10222. const struct ggml_tensor * src1,
  10223. struct ggml_tensor * dst) {
  10224. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10225. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10226. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10227. int64_t t0 = ggml_perf_time_us();
  10228. UNUSED(t0);
  10229. GGML_TENSOR_BINARY_OP_LOCALS;
  10230. const int ith = params->ith;
  10231. const int nth = params->nth;
  10232. const int nk = ne00;
  10233. const int nh = nk/2;
  10234. const int ew0 = ggml_up32(ne01);
  10235. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10236. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10237. GGML_ASSERT(nb10 == sizeof(float));
  10238. if (params->type == GGML_TASK_INIT) {
  10239. // TODO: fix this memset (wsize is overestimated)
  10240. memset(params->wdata, 0, params->wsize);
  10241. // prepare kernel data (src0)
  10242. {
  10243. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10244. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10245. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10246. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10247. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10248. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10249. dst_data[i00*ew0 + i01] = src[i00];
  10250. }
  10251. }
  10252. }
  10253. }
  10254. // prepare source data (src1)
  10255. {
  10256. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10257. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10258. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10259. ggml_fp16_t * dst_data = wdata;
  10260. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10261. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10262. }
  10263. }
  10264. }
  10265. return;
  10266. }
  10267. if (params->type == GGML_TASK_FINALIZE) {
  10268. return;
  10269. }
  10270. // total rows in dst
  10271. const int nr = ne02;
  10272. // rows per thread
  10273. const int dr = (nr + nth - 1)/nth;
  10274. // row range for this thread
  10275. const int ir0 = dr*ith;
  10276. const int ir1 = MIN(ir0 + dr, nr);
  10277. for (int i1 = ir0; i1 < ir1; i1++) {
  10278. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10279. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10280. dst_data[i0/2] = 0;
  10281. for (int k = -nh; k <= nh; k++) {
  10282. float v = 0.0f;
  10283. ggml_vec_dot_f16(ew0, &v,
  10284. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10285. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10286. dst_data[i0/2] += v;
  10287. }
  10288. }
  10289. }
  10290. }
  10291. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10292. const struct ggml_compute_params * params,
  10293. const struct ggml_tensor * src0,
  10294. const struct ggml_tensor * src1,
  10295. struct ggml_tensor * dst) {
  10296. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10297. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10298. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10299. int64_t t0 = ggml_perf_time_us();
  10300. UNUSED(t0);
  10301. GGML_TENSOR_BINARY_OP_LOCALS;
  10302. const int ith = params->ith;
  10303. const int nth = params->nth;
  10304. const int nk = ne00;
  10305. const int nh = nk/2;
  10306. const int ew0 = ggml_up32(ne01);
  10307. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10308. GGML_ASSERT(nb00 == sizeof(float));
  10309. GGML_ASSERT(nb10 == sizeof(float));
  10310. if (params->type == GGML_TASK_INIT) {
  10311. // TODO: fix this memset (wsize is overestimated)
  10312. memset(params->wdata, 0, params->wsize);
  10313. // prepare kernel data (src0)
  10314. {
  10315. float * const wdata = (float *) params->wdata + 0;
  10316. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10317. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10318. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10319. float * dst_data = wdata + i02*ew0*ne00;
  10320. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10321. dst_data[i00*ew0 + i01] = src[i00];
  10322. }
  10323. }
  10324. }
  10325. }
  10326. // prepare source data (src1)
  10327. {
  10328. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10329. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10330. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10331. float * dst_data = wdata;
  10332. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10333. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10334. }
  10335. }
  10336. }
  10337. return;
  10338. }
  10339. if (params->type == GGML_TASK_FINALIZE) {
  10340. return;
  10341. }
  10342. // total rows in dst
  10343. const int nr = ne02;
  10344. // rows per thread
  10345. const int dr = (nr + nth - 1)/nth;
  10346. // row range for this thread
  10347. const int ir0 = dr*ith;
  10348. const int ir1 = MIN(ir0 + dr, nr);
  10349. for (int i1 = ir0; i1 < ir1; i1++) {
  10350. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10351. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10352. dst_data[i0/2] = 0;
  10353. for (int k = -nh; k <= nh; k++) {
  10354. float v = 0.0f;
  10355. ggml_vec_dot_f32(ew0, &v,
  10356. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10357. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10358. dst_data[i0/2] += v;
  10359. }
  10360. }
  10361. }
  10362. }
  10363. static void ggml_compute_forward_conv_1d_s2_ph(
  10364. const struct ggml_compute_params * params,
  10365. const struct ggml_tensor * src0,
  10366. const struct ggml_tensor * src1,
  10367. struct ggml_tensor * dst) {
  10368. switch (src0->type) {
  10369. case GGML_TYPE_F16:
  10370. {
  10371. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10372. } break;
  10373. case GGML_TYPE_F32:
  10374. {
  10375. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10376. } break;
  10377. default:
  10378. {
  10379. GGML_ASSERT(false);
  10380. } break;
  10381. }
  10382. }
  10383. // ggml_compute_forward_conv_1d
  10384. static void ggml_compute_forward_conv_1d(
  10385. const struct ggml_compute_params * params,
  10386. const struct ggml_tensor * src0,
  10387. const struct ggml_tensor * src1,
  10388. const struct ggml_tensor * opt0,
  10389. struct ggml_tensor * dst) {
  10390. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10391. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10392. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10393. GGML_ASSERT(d0 == 1); // dilation not supported
  10394. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10395. if (s0 == 1) {
  10396. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10397. } else if (s0 == 2) {
  10398. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10399. } else {
  10400. GGML_ASSERT(false); // only stride 1 and 2 supported
  10401. };
  10402. }
  10403. // ggml_compute_forward_conv_2d_sk_p0
  10404. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10405. const struct ggml_compute_params * params,
  10406. const struct ggml_tensor * src0,
  10407. const struct ggml_tensor * src1,
  10408. struct ggml_tensor * dst) {
  10409. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10410. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10411. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10412. int64_t t0 = ggml_perf_time_us();
  10413. UNUSED(t0);
  10414. GGML_TENSOR_BINARY_OP_LOCALS;
  10415. const int ith = params->ith;
  10416. const int nth = params->nth;
  10417. const int nk0 = ne00;
  10418. const int nk1 = ne01;
  10419. // size of the convolution row - the kernel size unrolled across all channels
  10420. const int ew0 = nk0*nk1*ne02;
  10421. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10422. GGML_ASSERT(nb10 == sizeof(float));
  10423. if (params->type == GGML_TASK_INIT) {
  10424. // TODO: fix this memset (wsize is overestimated)
  10425. memset(params->wdata, 0, params->wsize);
  10426. // prepare source data (src1)
  10427. {
  10428. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10429. for (int i12 = 0; i12 < ne12; i12++) {
  10430. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10431. ggml_fp16_t * dst_data = wdata;
  10432. for (int i1 = 0; i1 < ne1; i1++) {
  10433. for (int i0 = 0; i0 < ne0; i0++) {
  10434. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10435. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10436. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10437. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10438. }
  10439. }
  10440. }
  10441. }
  10442. }
  10443. }
  10444. return;
  10445. }
  10446. if (params->type == GGML_TASK_FINALIZE) {
  10447. return;
  10448. }
  10449. // total patches in dst
  10450. const int np = ne2;
  10451. // patches per thread
  10452. const int dp = (np + nth - 1)/nth;
  10453. // patch range for this thread
  10454. const int ip0 = dp*ith;
  10455. const int ip1 = MIN(ip0 + dp, np);
  10456. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10457. for (int i2 = ip0; i2 < ip1; i2++) {
  10458. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10459. for (int i1 = 0; i1 < ne1; ++i1) {
  10460. for (int i0 = 0; i0 < ne0; ++i0) {
  10461. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10462. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10463. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10464. }
  10465. }
  10466. }
  10467. }
  10468. static void ggml_compute_forward_conv_2d_sk_p0(
  10469. const struct ggml_compute_params * params,
  10470. const struct ggml_tensor * src0,
  10471. const struct ggml_tensor * src1,
  10472. struct ggml_tensor * dst) {
  10473. switch (src0->type) {
  10474. case GGML_TYPE_F16:
  10475. {
  10476. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10477. } break;
  10478. case GGML_TYPE_F32:
  10479. {
  10480. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10481. GGML_ASSERT(false);
  10482. } break;
  10483. default:
  10484. {
  10485. GGML_ASSERT(false);
  10486. } break;
  10487. }
  10488. }
  10489. // ggml_compute_forward_conv_2d
  10490. static void ggml_compute_forward_conv_2d(
  10491. const struct ggml_compute_params* params,
  10492. const struct ggml_tensor* src0,
  10493. const struct ggml_tensor* src1,
  10494. const struct ggml_tensor* opt0,
  10495. struct ggml_tensor* dst) {
  10496. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10497. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10498. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10499. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10500. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10501. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10502. GGML_ASSERT(d0 == 1); // dilation not supported
  10503. GGML_ASSERT(d1 == 1);
  10504. GGML_ASSERT(p0 == 0); // padding not supported
  10505. GGML_ASSERT(p1 == 0);
  10506. if (s0 == src0->ne[0] && s1 == src0->ne[1]) {
  10507. ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst);
  10508. }
  10509. else {
  10510. GGML_ASSERT(false); // only stride equal to kernel size is supported
  10511. };
  10512. }
  10513. // ggml_compute_forward_flash_attn
  10514. static void ggml_compute_forward_flash_attn_f32(
  10515. const struct ggml_compute_params * params,
  10516. const struct ggml_tensor * q,
  10517. const struct ggml_tensor * k,
  10518. const struct ggml_tensor * v,
  10519. const bool masked,
  10520. struct ggml_tensor * dst) {
  10521. int64_t t0 = ggml_perf_time_us();
  10522. UNUSED(t0);
  10523. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10524. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10525. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10526. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10527. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10528. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10529. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10530. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10531. const int ith = params->ith;
  10532. const int nth = params->nth;
  10533. const int64_t D = neq0;
  10534. const int64_t N = neq1;
  10535. const int64_t P = nek1 - N;
  10536. const int64_t M = P + N;
  10537. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10538. GGML_ASSERT(ne0 == D);
  10539. GGML_ASSERT(ne1 == N);
  10540. GGML_ASSERT(P >= 0);
  10541. GGML_ASSERT(nbq0 == sizeof(float));
  10542. GGML_ASSERT(nbk0 == sizeof(float));
  10543. GGML_ASSERT(nbv0 == sizeof(float));
  10544. GGML_ASSERT(neq0 == D);
  10545. GGML_ASSERT(nek0 == D);
  10546. GGML_ASSERT(nev1 == D);
  10547. GGML_ASSERT(neq1 == N);
  10548. GGML_ASSERT(nek1 == N + P);
  10549. GGML_ASSERT(nev1 == D);
  10550. // dst cannot be transposed or permuted
  10551. GGML_ASSERT(nb0 == sizeof(float));
  10552. GGML_ASSERT(nb0 <= nb1);
  10553. GGML_ASSERT(nb1 <= nb2);
  10554. GGML_ASSERT(nb2 <= nb3);
  10555. if (params->type == GGML_TASK_INIT) {
  10556. return;
  10557. }
  10558. if (params->type == GGML_TASK_FINALIZE) {
  10559. return;
  10560. }
  10561. // parallelize by q rows using ggml_vec_dot_f32
  10562. // total rows in q
  10563. const int nr = neq1*neq2*neq3;
  10564. // rows per thread
  10565. const int dr = (nr + nth - 1)/nth;
  10566. // row range for this thread
  10567. const int ir0 = dr*ith;
  10568. const int ir1 = MIN(ir0 + dr, nr);
  10569. const float scale = 1.0f/sqrtf(D);
  10570. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10571. for (int ir = ir0; ir < ir1; ++ir) {
  10572. // q indices
  10573. const int iq3 = ir/(neq2*neq1);
  10574. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10575. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10576. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10577. for (int i = M; i < Mup; ++i) {
  10578. S[i] = -INFINITY;
  10579. }
  10580. for (int64_t ic = 0; ic < nek1; ++ic) {
  10581. // k indices
  10582. const int ik3 = iq3;
  10583. const int ik2 = iq2;
  10584. const int ik1 = ic;
  10585. // S indices
  10586. const int i1 = ik1;
  10587. ggml_vec_dot_f32(neq0,
  10588. S + i1,
  10589. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10590. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10591. }
  10592. // scale
  10593. ggml_vec_scale_f32(nek1, S, scale);
  10594. if (masked) {
  10595. for (int64_t i = P; i < M; i++) {
  10596. if (i > P + iq1) {
  10597. S[i] = -INFINITY;
  10598. }
  10599. }
  10600. }
  10601. // softmax
  10602. {
  10603. float max = -INFINITY;
  10604. ggml_vec_max_f32(M, &max, S);
  10605. ggml_float sum = 0.0;
  10606. {
  10607. #ifdef GGML_SOFT_MAX_ACCELERATE
  10608. max = -max;
  10609. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10610. vvexpf(S, S, &Mup);
  10611. ggml_vec_sum_f32(Mup, &sum, S);
  10612. #else
  10613. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10614. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10615. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10616. float * SS = S + i;
  10617. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10618. if (SS[j] == -INFINITY) {
  10619. SS[j] = 0.0f;
  10620. } else {
  10621. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10622. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10623. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10624. sump[j] += (ggml_float)val;
  10625. SS[j] = val;
  10626. }
  10627. }
  10628. }
  10629. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10630. sum += sump[i];
  10631. }
  10632. #endif
  10633. }
  10634. assert(sum > 0.0);
  10635. sum = 1.0/sum;
  10636. ggml_vec_scale_f32(M, S, sum);
  10637. #ifndef NDEBUG
  10638. for (int i = 0; i < M; ++i) {
  10639. assert(!isnan(S[i]));
  10640. assert(!isinf(S[i]));
  10641. }
  10642. #endif
  10643. }
  10644. for (int64_t ic = 0; ic < nev1; ++ic) {
  10645. // dst indices
  10646. const int i1 = iq1;
  10647. const int i2 = iq2;
  10648. const int i3 = iq3;
  10649. ggml_vec_dot_f32(nek1,
  10650. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10651. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10652. S);
  10653. }
  10654. }
  10655. }
  10656. static void ggml_compute_forward_flash_attn_f16(
  10657. const struct ggml_compute_params * params,
  10658. const struct ggml_tensor * q,
  10659. const struct ggml_tensor * k,
  10660. const struct ggml_tensor * v,
  10661. const bool masked,
  10662. struct ggml_tensor * dst) {
  10663. int64_t t0 = ggml_perf_time_us();
  10664. UNUSED(t0);
  10665. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10666. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10667. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10668. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10669. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10670. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10671. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10672. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10673. const int ith = params->ith;
  10674. const int nth = params->nth;
  10675. const int64_t D = neq0;
  10676. const int64_t N = neq1;
  10677. const int64_t P = nek1 - N;
  10678. const int64_t M = P + N;
  10679. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10680. GGML_ASSERT(ne0 == D);
  10681. GGML_ASSERT(ne1 == N);
  10682. GGML_ASSERT(P >= 0);
  10683. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10684. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10685. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10686. GGML_ASSERT(neq0 == D);
  10687. GGML_ASSERT(nek0 == D);
  10688. GGML_ASSERT(nev1 == D);
  10689. GGML_ASSERT(neq1 == N);
  10690. GGML_ASSERT(nek1 == N + P);
  10691. GGML_ASSERT(nev1 == D);
  10692. // dst cannot be transposed or permuted
  10693. GGML_ASSERT(nb0 == sizeof(float));
  10694. GGML_ASSERT(nb0 <= nb1);
  10695. GGML_ASSERT(nb1 <= nb2);
  10696. GGML_ASSERT(nb2 <= nb3);
  10697. if (params->type == GGML_TASK_INIT) {
  10698. return;
  10699. }
  10700. if (params->type == GGML_TASK_FINALIZE) {
  10701. return;
  10702. }
  10703. // parallelize by q rows using ggml_vec_dot_f32
  10704. // total rows in q
  10705. const int nr = neq1*neq2*neq3;
  10706. // rows per thread
  10707. const int dr = (nr + nth - 1)/nth;
  10708. // row range for this thread
  10709. const int ir0 = dr*ith;
  10710. const int ir1 = MIN(ir0 + dr, nr);
  10711. const float scale = 1.0f/sqrtf(D);
  10712. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10713. for (int ir = ir0; ir < ir1; ++ir) {
  10714. // q indices
  10715. const int iq3 = ir/(neq2*neq1);
  10716. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10717. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10718. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10719. for (int i = M; i < Mup; ++i) {
  10720. S[i] = -INFINITY;
  10721. }
  10722. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10723. for (int64_t ic = 0; ic < nek1; ++ic) {
  10724. // k indices
  10725. const int ik3 = iq3;
  10726. const int ik2 = iq2;
  10727. const int ik1 = ic;
  10728. // S indices
  10729. const int i1 = ik1;
  10730. ggml_vec_dot_f16(neq0,
  10731. S + i1,
  10732. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10733. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10734. }
  10735. } else {
  10736. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10737. // k indices
  10738. const int ik3 = iq3;
  10739. const int ik2 = iq2;
  10740. const int ik1 = ic;
  10741. // S indices
  10742. const int i1 = ik1;
  10743. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10744. S + i1,
  10745. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10746. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10747. }
  10748. }
  10749. // scale
  10750. ggml_vec_scale_f32(nek1, S, scale);
  10751. if (masked) {
  10752. for (int64_t i = P; i < M; i++) {
  10753. if (i > P + iq1) {
  10754. S[i] = -INFINITY;
  10755. }
  10756. }
  10757. }
  10758. // softmax
  10759. {
  10760. float max = -INFINITY;
  10761. ggml_vec_max_f32(M, &max, S);
  10762. ggml_float sum = 0.0;
  10763. {
  10764. #ifdef GGML_SOFT_MAX_ACCELERATE
  10765. max = -max;
  10766. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10767. vvexpf(S, S, &Mup);
  10768. ggml_vec_sum_f32(Mup, &sum, S);
  10769. #else
  10770. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10771. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10772. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10773. float * SS = S + i;
  10774. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10775. if (SS[j] == -INFINITY) {
  10776. SS[j] = 0.0f;
  10777. } else {
  10778. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10779. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10780. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10781. sump[j] += (ggml_float)val;
  10782. SS[j] = val;
  10783. }
  10784. }
  10785. }
  10786. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10787. sum += sump[i];
  10788. }
  10789. #endif
  10790. }
  10791. assert(sum > 0.0);
  10792. sum = 1.0/sum;
  10793. ggml_vec_scale_f32(M, S, sum);
  10794. #ifndef NDEBUG
  10795. for (int i = 0; i < M; ++i) {
  10796. assert(!isnan(S[i]));
  10797. assert(!isinf(S[i]));
  10798. }
  10799. #endif
  10800. }
  10801. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10802. for (int64_t i = 0; i < M; i++) {
  10803. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10804. }
  10805. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10806. for (int64_t ic = 0; ic < nev1; ++ic) {
  10807. // dst indices
  10808. const int i1 = iq1;
  10809. const int i2 = iq2;
  10810. const int i3 = iq3;
  10811. ggml_vec_dot_f16(nek1,
  10812. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10813. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10814. S16);
  10815. }
  10816. } else {
  10817. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10818. // dst indices
  10819. const int i1 = iq1;
  10820. const int i2 = iq2;
  10821. const int i3 = iq3;
  10822. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10823. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10824. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10825. S16);
  10826. }
  10827. }
  10828. }
  10829. }
  10830. static void ggml_compute_forward_flash_attn(
  10831. const struct ggml_compute_params * params,
  10832. const struct ggml_tensor * q,
  10833. const struct ggml_tensor * k,
  10834. const struct ggml_tensor * v,
  10835. const bool masked,
  10836. struct ggml_tensor * dst) {
  10837. switch (q->type) {
  10838. case GGML_TYPE_F16:
  10839. {
  10840. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10841. } break;
  10842. case GGML_TYPE_F32:
  10843. {
  10844. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10845. } break;
  10846. default:
  10847. {
  10848. GGML_ASSERT(false);
  10849. } break;
  10850. }
  10851. }
  10852. // ggml_compute_forward_flash_ff
  10853. static void ggml_compute_forward_flash_ff_f16(
  10854. const struct ggml_compute_params * params,
  10855. const struct ggml_tensor * a, // F16
  10856. const struct ggml_tensor * b0, // F16 fc_w
  10857. const struct ggml_tensor * b1, // F32 fc_b
  10858. const struct ggml_tensor * c0, // F16 proj_w
  10859. const struct ggml_tensor * c1, // F32 proj_b
  10860. struct ggml_tensor * dst) {
  10861. int64_t t0 = ggml_perf_time_us();
  10862. UNUSED(t0);
  10863. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10864. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10865. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10866. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10867. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10868. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10869. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10870. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10871. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10872. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10873. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10874. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10875. const int ith = params->ith;
  10876. const int nth = params->nth;
  10877. const int64_t D = nea0;
  10878. //const int64_t N = nea1;
  10879. const int64_t M = neb01;
  10880. GGML_ASSERT(ne0 == nea0);
  10881. GGML_ASSERT(ne1 == nea1);
  10882. GGML_ASSERT(ne2 == nea2);
  10883. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10884. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10885. GGML_ASSERT(nbb10 == sizeof(float));
  10886. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10887. GGML_ASSERT(nbc10 == sizeof(float));
  10888. GGML_ASSERT(neb00 == D);
  10889. GGML_ASSERT(neb01 == M);
  10890. GGML_ASSERT(neb10 == M);
  10891. GGML_ASSERT(neb11 == 1);
  10892. GGML_ASSERT(nec00 == M);
  10893. GGML_ASSERT(nec01 == D);
  10894. GGML_ASSERT(nec10 == D);
  10895. GGML_ASSERT(nec11 == 1);
  10896. // dst cannot be transposed or permuted
  10897. GGML_ASSERT(nb0 == sizeof(float));
  10898. GGML_ASSERT(nb0 <= nb1);
  10899. GGML_ASSERT(nb1 <= nb2);
  10900. GGML_ASSERT(nb2 <= nb3);
  10901. if (params->type == GGML_TASK_INIT) {
  10902. return;
  10903. }
  10904. if (params->type == GGML_TASK_FINALIZE) {
  10905. return;
  10906. }
  10907. // parallelize by a rows using ggml_vec_dot_f32
  10908. // total rows in a
  10909. const int nr = nea1*nea2*nea3;
  10910. // rows per thread
  10911. const int dr = (nr + nth - 1)/nth;
  10912. // row range for this thread
  10913. const int ir0 = dr*ith;
  10914. const int ir1 = MIN(ir0 + dr, nr);
  10915. for (int ir = ir0; ir < ir1; ++ir) {
  10916. // a indices
  10917. const int ia3 = ir/(nea2*nea1);
  10918. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10919. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10920. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10921. for (int64_t ic = 0; ic < neb01; ++ic) {
  10922. // b0 indices
  10923. const int ib03 = ia3;
  10924. const int ib02 = ia2;
  10925. const int ib01 = ic;
  10926. // S indices
  10927. const int i1 = ib01;
  10928. ggml_vec_dot_f16(nea0,
  10929. S + i1,
  10930. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10931. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10932. }
  10933. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10934. //ggml_vec_gelu_f32(neb01, S, S);
  10935. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10936. for (int64_t i = 0; i < M; i++) {
  10937. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10938. }
  10939. ggml_vec_gelu_f16(neb01, S16, S16);
  10940. {
  10941. // dst indices
  10942. const int i1 = ia1;
  10943. const int i2 = ia2;
  10944. const int i3 = ia3;
  10945. for (int64_t ic = 0; ic < nec01; ++ic) {
  10946. ggml_vec_dot_f16(neb01,
  10947. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10948. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10949. S16);
  10950. }
  10951. ggml_vec_add_f32(nec01,
  10952. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10953. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10954. (float *) c1->data);
  10955. }
  10956. }
  10957. }
  10958. static void ggml_compute_forward_flash_ff(
  10959. const struct ggml_compute_params * params,
  10960. const struct ggml_tensor * a,
  10961. const struct ggml_tensor * b0,
  10962. const struct ggml_tensor * b1,
  10963. const struct ggml_tensor * c0,
  10964. const struct ggml_tensor * c1,
  10965. struct ggml_tensor * dst) {
  10966. switch (b0->type) {
  10967. case GGML_TYPE_F16:
  10968. {
  10969. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10970. } break;
  10971. case GGML_TYPE_F32:
  10972. {
  10973. GGML_ASSERT(false); // TODO
  10974. } break;
  10975. default:
  10976. {
  10977. GGML_ASSERT(false);
  10978. } break;
  10979. }
  10980. }
  10981. // ggml_compute_forward_flash_attn_back
  10982. static void ggml_compute_forward_flash_attn_back_f32(
  10983. const struct ggml_compute_params * params,
  10984. const struct ggml_tensor * q,
  10985. const struct ggml_tensor * k,
  10986. const struct ggml_tensor * v,
  10987. const struct ggml_tensor * d,
  10988. const bool masked,
  10989. struct ggml_tensor * dst) {
  10990. int64_t t0 = ggml_perf_time_us();
  10991. UNUSED(t0);
  10992. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10993. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10994. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10995. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10996. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10997. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10998. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  10999. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11000. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11001. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11002. const int ith = params->ith;
  11003. const int nth = params->nth;
  11004. const int64_t D = neq0;
  11005. const int64_t N = neq1;
  11006. const int64_t P = nek1 - N;
  11007. const int64_t M = P + N;
  11008. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11009. const int mxDM = MAX(D, Mup);
  11010. // GGML_ASSERT(ne0 == D);
  11011. // GGML_ASSERT(ne1 == N);
  11012. GGML_ASSERT(P >= 0);
  11013. GGML_ASSERT(nbq0 == sizeof(float));
  11014. GGML_ASSERT(nbk0 == sizeof(float));
  11015. GGML_ASSERT(nbv0 == sizeof(float));
  11016. GGML_ASSERT(neq0 == D);
  11017. GGML_ASSERT(nek0 == D);
  11018. GGML_ASSERT(nev1 == D);
  11019. GGML_ASSERT(ned0 == D);
  11020. GGML_ASSERT(neq1 == N);
  11021. GGML_ASSERT(nek1 == N + P);
  11022. GGML_ASSERT(nev1 == D);
  11023. GGML_ASSERT(ned1 == N);
  11024. // dst cannot be transposed or permuted
  11025. GGML_ASSERT(nb0 == sizeof(float));
  11026. GGML_ASSERT(nb0 <= nb1);
  11027. GGML_ASSERT(nb1 <= nb2);
  11028. GGML_ASSERT(nb2 <= nb3);
  11029. if (params->type == GGML_TASK_INIT) {
  11030. if (ith == 0) {
  11031. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11032. }
  11033. return;
  11034. }
  11035. if (params->type == GGML_TASK_FINALIZE) {
  11036. return;
  11037. }
  11038. // parallelize by q rows using ggml_vec_dot_f32
  11039. // total rows in q
  11040. const int nr = neq2*neq3;
  11041. // rows per thread
  11042. const int dr = (nr + nth - 1)/nth;
  11043. // row range for this thread
  11044. const int ir0 = dr*ith;
  11045. const int ir1 = MIN(ir0 + dr, nr);
  11046. const float scale = 1.0f/sqrtf(D);
  11047. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11048. for (int ir = ir0; ir < ir1; ++ir) {
  11049. // q indices
  11050. const int iq3 = ir/(neq2);
  11051. const int iq2 = ir - iq3*neq2;
  11052. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11053. // not sure about CACHE_LINE_SIZE_F32..
  11054. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11055. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11056. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11057. for (int i = M; i < Mup; ++i) {
  11058. S[i] = -INFINITY;
  11059. }
  11060. for (int64_t ic = 0; ic < nek1; ++ic) {
  11061. // k indices
  11062. const int ik3 = iq3;
  11063. const int ik2 = iq2;
  11064. const int ik1 = ic;
  11065. // S indices
  11066. const int i1 = ik1;
  11067. ggml_vec_dot_f32(neq0,
  11068. S + i1,
  11069. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11070. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11071. }
  11072. // scale
  11073. ggml_vec_scale_f32(nek1, S, scale);
  11074. if (masked) {
  11075. for (int64_t i = P; i < M; i++) {
  11076. if (i > P + iq1) {
  11077. S[i] = -INFINITY;
  11078. }
  11079. }
  11080. }
  11081. // softmax
  11082. {
  11083. float max = -INFINITY;
  11084. ggml_vec_max_f32(M, &max, S);
  11085. ggml_float sum = 0.0;
  11086. {
  11087. #ifdef GGML_SOFT_MAX_ACCELERATE
  11088. max = -max;
  11089. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11090. vvexpf(SM, SM, &Mup);
  11091. ggml_vec_sum_f32(Mup, &sum, SM);
  11092. #else
  11093. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11094. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11095. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11096. float * SR = S + i;
  11097. float * SW = SM + i;
  11098. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11099. if (SR[j] == -INFINITY) {
  11100. SW[j] = 0.0f;
  11101. } else {
  11102. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11103. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11104. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11105. sump[j] += (ggml_float)val;
  11106. SW[j] = val;
  11107. }
  11108. }
  11109. }
  11110. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11111. sum += sump[i];
  11112. }
  11113. #endif
  11114. }
  11115. assert(sum > 0.0);
  11116. sum = 1.0/sum;
  11117. ggml_vec_scale_f32(M, SM, sum);
  11118. }
  11119. // step-by-step explanation
  11120. {
  11121. // forward-process shape grads from backward process
  11122. // parallel_for iq2,iq3:
  11123. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11124. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11125. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11126. // for iq1:
  11127. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11128. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11129. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11130. // S0 = -Inf [D,1,1,1]
  11131. // ~S1[i] = dot(kcur[:D,i], qcur)
  11132. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11133. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11134. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11135. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11136. // ~S5[i] = dot(vcur[:,i], S4)
  11137. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11138. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11139. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11140. // dst backward-/ grad[dst] = d
  11141. //
  11142. // output gradients with their dependencies:
  11143. //
  11144. // grad[kcur] = grad[S1].T @ qcur
  11145. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11146. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11147. // grad[S4] = grad[S5] @ vcur
  11148. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11149. // grad[qcur] = grad[S1] @ kcur
  11150. // grad[vcur] = grad[S5].T @ S4
  11151. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11152. //
  11153. // in post-order:
  11154. //
  11155. // S1 = qcur @ kcur.T
  11156. // S2 = S1 * scale
  11157. // S3 = diag_mask_inf(S2, P)
  11158. // S4 = softmax(S3)
  11159. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11160. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11161. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11162. // grad[qcur] = grad[S1] @ kcur
  11163. // grad[kcur] = grad[S1].T @ qcur
  11164. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11165. //
  11166. // using less variables (SM=S4):
  11167. //
  11168. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11169. // SM = softmax(S)
  11170. // S = d[:D,iq1,iq2,iq3] @ vcur
  11171. // dot_SM_gradSM = dot(SM, S)
  11172. // S = SM * (S - dot(SM, S))
  11173. // S = diag_mask_zero(S, P) * scale
  11174. //
  11175. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11176. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11177. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11178. }
  11179. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11180. // S = d[:D,iq1,iq2,iq3] @ vcur
  11181. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11182. ggml_vec_set_f32(M, S, 0);
  11183. for (int64_t ic = 0; ic < D; ++ic) {
  11184. // dst indices
  11185. const int i1 = iq1;
  11186. const int i2 = iq2;
  11187. const int i3 = iq3;
  11188. ggml_vec_mad_f32(M,
  11189. S,
  11190. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11191. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11192. }
  11193. // S = SM * (S - dot(SM, S))
  11194. float dot_SM_gradSM = 0;
  11195. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11196. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11197. ggml_vec_mul_f32 (M, S, S, SM);
  11198. // S = diag_mask_zero(S, P) * scale
  11199. if (masked) {
  11200. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11201. // S[i] = 0;
  11202. // }
  11203. for (int64_t i = P; i < M; i++) {
  11204. if (i > P + iq1) {
  11205. S[i] = 0;
  11206. }
  11207. }
  11208. }
  11209. ggml_vec_scale_f32(M, S, scale);
  11210. void * grad_q = (char *) dst->data;
  11211. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11212. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11213. const size_t nbgq1 = nb0*neq0;
  11214. const size_t nbgq2 = nb0*neq0*neq1;
  11215. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11216. const size_t nbgk1 = nb0*nek0;
  11217. const size_t nbgk2 = nb0*nek0*nek1;
  11218. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11219. const size_t nbgv1 = nb0*nev0;
  11220. const size_t nbgv2 = nb0*nev0*nev1;
  11221. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11222. // S shape [M,1]
  11223. // SM shape [M,1]
  11224. // kcur shape [D,M]
  11225. // qcur shape [D,1]
  11226. // vcur shape [M,D]
  11227. //
  11228. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11229. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11230. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11231. //
  11232. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11233. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11234. for (int64_t ic = 0; ic < M; ++ic) {
  11235. // dst indices
  11236. const int i1 = iq1;
  11237. const int i2 = iq2;
  11238. const int i3 = iq3;
  11239. ggml_vec_mad_f32(D,
  11240. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11241. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11242. S[ic]);
  11243. }
  11244. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11245. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11246. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11247. for (int64_t ic = 0; ic < M; ++ic) {
  11248. // dst indices
  11249. const int i1 = iq1;
  11250. const int i2 = iq2;
  11251. const int i3 = iq3;
  11252. // ggml_vec_set_f32(D,
  11253. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11254. // 0);
  11255. ggml_vec_mad_f32(D,
  11256. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11257. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11258. S[ic]);
  11259. }
  11260. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11261. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11262. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11263. for (int64_t ic = 0; ic < D; ++ic) {
  11264. // dst indices
  11265. const int i1 = iq1;
  11266. const int i2 = iq2;
  11267. const int i3 = iq3;
  11268. // ggml_vec_set_f32(M,
  11269. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11270. // 0);
  11271. ggml_vec_mad_f32(M,
  11272. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11273. SM,
  11274. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11275. }
  11276. }
  11277. }
  11278. }
  11279. static void ggml_compute_forward_flash_attn_back(
  11280. const struct ggml_compute_params * params,
  11281. const struct ggml_tensor * q,
  11282. const struct ggml_tensor * k,
  11283. const struct ggml_tensor * v,
  11284. const struct ggml_tensor * d,
  11285. const bool masked,
  11286. struct ggml_tensor * dst) {
  11287. switch (q->type) {
  11288. case GGML_TYPE_F32:
  11289. {
  11290. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11291. } break;
  11292. default:
  11293. {
  11294. GGML_ASSERT(false);
  11295. } break;
  11296. }
  11297. }
  11298. // ggml_compute_forward_win_part
  11299. static void ggml_compute_forward_win_part_f32(
  11300. const struct ggml_compute_params * params,
  11301. const struct ggml_tensor * src0,
  11302. const struct ggml_tensor * opt0,
  11303. struct ggml_tensor * dst) {
  11304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11305. return;
  11306. }
  11307. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11308. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11309. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11310. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11311. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11312. assert(ne00 == ne0);
  11313. assert(ne3 == nep0*nep1);
  11314. // TODO: optimize / multi-thread
  11315. for (int py = 0; py < nep1; ++py) {
  11316. for (int px = 0; px < nep0; ++px) {
  11317. const int64_t i3 = py*nep0 + px;
  11318. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11319. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11320. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11321. const int64_t i02 = py*w + i2;
  11322. const int64_t i01 = px*w + i1;
  11323. const int64_t i00 = i0;
  11324. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11325. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11326. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11327. ((float *) dst->data)[i] = 0.0f;
  11328. } else {
  11329. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11330. }
  11331. }
  11332. }
  11333. }
  11334. }
  11335. }
  11336. }
  11337. static void ggml_compute_forward_win_part(
  11338. const struct ggml_compute_params * params,
  11339. const struct ggml_tensor * src0,
  11340. const struct ggml_tensor * opt0,
  11341. struct ggml_tensor * dst) {
  11342. switch (src0->type) {
  11343. case GGML_TYPE_F32:
  11344. {
  11345. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11346. } break;
  11347. default:
  11348. {
  11349. GGML_ASSERT(false);
  11350. } break;
  11351. }
  11352. }
  11353. // ggml_compute_forward_win_unpart
  11354. static void ggml_compute_forward_win_unpart_f32(
  11355. const struct ggml_compute_params * params,
  11356. const struct ggml_tensor * src0,
  11357. const struct ggml_tensor * opt0,
  11358. struct ggml_tensor * dst) {
  11359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11360. return;
  11361. }
  11362. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11363. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11364. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11365. // padding
  11366. const int px = (w - ne1%w)%w;
  11367. //const int py = (w - ne2%w)%w;
  11368. const int npx = (px + ne1)/w;
  11369. //const int npy = (py + ne2)/w;
  11370. assert(ne0 == ne00);
  11371. // TODO: optimize / multi-thread
  11372. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11373. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11374. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11375. const int ip2 = i2/w;
  11376. const int ip1 = i1/w;
  11377. const int64_t i02 = i2%w;
  11378. const int64_t i01 = i1%w;
  11379. const int64_t i00 = i0;
  11380. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11381. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11382. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11383. }
  11384. }
  11385. }
  11386. }
  11387. static void ggml_compute_forward_win_unpart(
  11388. const struct ggml_compute_params * params,
  11389. const struct ggml_tensor * src0,
  11390. const struct ggml_tensor * opt0,
  11391. struct ggml_tensor * dst) {
  11392. switch (src0->type) {
  11393. case GGML_TYPE_F32:
  11394. {
  11395. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11396. } break;
  11397. default:
  11398. {
  11399. GGML_ASSERT(false);
  11400. } break;
  11401. }
  11402. }
  11403. // ggml_compute_forward_map_unary
  11404. static void ggml_compute_forward_map_unary_f32(
  11405. const struct ggml_compute_params * params,
  11406. const struct ggml_tensor * src0,
  11407. struct ggml_tensor * dst,
  11408. const ggml_unary_op_f32_t fun) {
  11409. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11411. return;
  11412. }
  11413. const int n = ggml_nrows(src0);
  11414. const int nc = src0->ne[0];
  11415. assert( dst->nb[0] == sizeof(float));
  11416. assert(src0->nb[0] == sizeof(float));
  11417. for (int i = 0; i < n; i++) {
  11418. fun(nc,
  11419. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11420. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11421. }
  11422. }
  11423. static void ggml_compute_forward_map_unary(
  11424. const struct ggml_compute_params * params,
  11425. const struct ggml_tensor * src0,
  11426. struct ggml_tensor * dst,
  11427. const ggml_unary_op_f32_t fun) {
  11428. switch (src0->type) {
  11429. case GGML_TYPE_F32:
  11430. {
  11431. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11432. } break;
  11433. default:
  11434. {
  11435. GGML_ASSERT(false);
  11436. } break;
  11437. }
  11438. }
  11439. // ggml_compute_forward_map_binary
  11440. static void ggml_compute_forward_map_binary_f32(
  11441. const struct ggml_compute_params * params,
  11442. const struct ggml_tensor * src0,
  11443. const struct ggml_tensor * src1,
  11444. struct ggml_tensor * dst,
  11445. const ggml_binary_op_f32_t fun) {
  11446. assert(params->ith == 0);
  11447. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11449. return;
  11450. }
  11451. const int n = ggml_nrows(src0);
  11452. const int nc = src0->ne[0];
  11453. assert( dst->nb[0] == sizeof(float));
  11454. assert(src0->nb[0] == sizeof(float));
  11455. assert(src1->nb[0] == sizeof(float));
  11456. for (int i = 0; i < n; i++) {
  11457. fun(nc,
  11458. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11459. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11460. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11461. }
  11462. }
  11463. static void ggml_compute_forward_map_binary(
  11464. const struct ggml_compute_params * params,
  11465. const struct ggml_tensor * src0,
  11466. const struct ggml_tensor * src1,
  11467. struct ggml_tensor * dst,
  11468. const ggml_binary_op_f32_t fun) {
  11469. switch (src0->type) {
  11470. case GGML_TYPE_F32:
  11471. {
  11472. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11473. } break;
  11474. default:
  11475. {
  11476. GGML_ASSERT(false);
  11477. } break;
  11478. }
  11479. }
  11480. // ggml_compute_forward_map_custom1
  11481. static void ggml_compute_forward_map_custom1_f32(
  11482. const struct ggml_compute_params * params,
  11483. const struct ggml_tensor * a,
  11484. struct ggml_tensor * dst,
  11485. const ggml_custom1_op_f32_t fun) {
  11486. assert(params->ith == 0);
  11487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11488. return;
  11489. }
  11490. fun(dst, a);
  11491. }
  11492. static void ggml_compute_forward_map_custom1(
  11493. const struct ggml_compute_params * params,
  11494. const struct ggml_tensor * a,
  11495. struct ggml_tensor * dst,
  11496. const ggml_custom1_op_f32_t fun) {
  11497. switch (a->type) {
  11498. case GGML_TYPE_F32:
  11499. {
  11500. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11501. } break;
  11502. default:
  11503. {
  11504. GGML_ASSERT(false);
  11505. } break;
  11506. }
  11507. }
  11508. // ggml_compute_forward_map_custom2
  11509. static void ggml_compute_forward_map_custom2_f32(
  11510. const struct ggml_compute_params * params,
  11511. const struct ggml_tensor * a,
  11512. const struct ggml_tensor * b,
  11513. struct ggml_tensor * dst,
  11514. const ggml_custom2_op_f32_t fun) {
  11515. assert(params->ith == 0);
  11516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11517. return;
  11518. }
  11519. fun(dst, a, b);
  11520. }
  11521. static void ggml_compute_forward_map_custom2(
  11522. const struct ggml_compute_params * params,
  11523. const struct ggml_tensor * a,
  11524. const struct ggml_tensor * b,
  11525. struct ggml_tensor * dst,
  11526. const ggml_custom2_op_f32_t fun) {
  11527. switch (a->type) {
  11528. case GGML_TYPE_F32:
  11529. {
  11530. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11531. } break;
  11532. default:
  11533. {
  11534. GGML_ASSERT(false);
  11535. } break;
  11536. }
  11537. }
  11538. // ggml_compute_forward_map_custom3
  11539. static void ggml_compute_forward_map_custom3_f32(
  11540. const struct ggml_compute_params * params,
  11541. const struct ggml_tensor * a,
  11542. const struct ggml_tensor * b,
  11543. const struct ggml_tensor * c,
  11544. struct ggml_tensor * dst,
  11545. const ggml_custom3_op_f32_t fun) {
  11546. assert(params->ith == 0);
  11547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11548. return;
  11549. }
  11550. fun(dst, a, b, c);
  11551. }
  11552. static void ggml_compute_forward_map_custom3(
  11553. const struct ggml_compute_params * params,
  11554. const struct ggml_tensor * a,
  11555. const struct ggml_tensor * b,
  11556. const struct ggml_tensor * c,
  11557. struct ggml_tensor * dst,
  11558. const ggml_custom3_op_f32_t fun) {
  11559. switch (a->type) {
  11560. case GGML_TYPE_F32:
  11561. {
  11562. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11563. } break;
  11564. default:
  11565. {
  11566. GGML_ASSERT(false);
  11567. } break;
  11568. }
  11569. }
  11570. // ggml_compute_forward_cross_entropy_loss
  11571. static void ggml_compute_forward_cross_entropy_loss_f32(
  11572. const struct ggml_compute_params * params,
  11573. const struct ggml_tensor * src0,
  11574. const struct ggml_tensor * src1,
  11575. struct ggml_tensor * dst) {
  11576. GGML_ASSERT(ggml_is_contiguous(src0));
  11577. GGML_ASSERT(ggml_is_contiguous(src1));
  11578. GGML_ASSERT(ggml_is_scalar(dst));
  11579. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11580. const int ith = params->ith;
  11581. const int nth = params->nth;
  11582. float * sums = (float *) params->wdata;
  11583. // TODO: handle transposed/permuted matrices
  11584. const int nc = src0->ne[0];
  11585. const int nr = ggml_nrows(src0);
  11586. if (params->type == GGML_TASK_INIT) {
  11587. if (ith == 0) {
  11588. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11589. }
  11590. return;
  11591. }
  11592. if (params->type == GGML_TASK_FINALIZE) {
  11593. if (ith == 0) {
  11594. float * dp = (float *) dst->data;
  11595. ggml_vec_sum_f32(nth, dp, sums);
  11596. dp[0] *= -1.0f;
  11597. }
  11598. return;
  11599. }
  11600. const double eps = 1e-9;
  11601. // rows per thread
  11602. const int dr = (nr + nth - 1)/nth;
  11603. // row range for this thread
  11604. const int ir0 = dr*ith;
  11605. const int ir1 = MIN(ir0 + dr, nr);
  11606. for (int i1 = ir0; i1 < ir1; i1++) {
  11607. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11608. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11609. float * st = (float *) params->wdata + nth + ith*nc;
  11610. #ifndef NDEBUG
  11611. for (int i = 0; i < nc; ++i) {
  11612. //printf("p[%d] = %f\n", i, p[i]);
  11613. assert(!isnan(s0[i]));
  11614. assert(!isnan(s1[i]));
  11615. }
  11616. #endif
  11617. // soft_max
  11618. ggml_float sum = 0.0;
  11619. {
  11620. float max = -INFINITY;
  11621. ggml_vec_max_f32(nc, &max, s0);
  11622. uint16_t scvt;
  11623. for (int i = 0; i < nc; i++) {
  11624. if (s0[i] == -INFINITY) {
  11625. st[i] = 0.0f;
  11626. } else {
  11627. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11628. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11629. memcpy(&scvt, &s, sizeof(scvt));
  11630. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11631. sum += (ggml_float)val;
  11632. st[i] = val;
  11633. }
  11634. }
  11635. assert(sum > 0.0);
  11636. // sum = 1.0/sum;
  11637. }
  11638. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11639. sum = (1.0 - eps) / sum;
  11640. ggml_vec_scale_f32(nc, st, sum);
  11641. ggml_vec_add1_f32(nc, st, st, eps);
  11642. ggml_vec_log_f32(nc, st, st);
  11643. ggml_vec_mul_f32(nc, st, st, s1);
  11644. ggml_vec_sum_f32(nc, sums + ith, st);
  11645. #ifndef NDEBUG
  11646. for (int i = 0; i < nc; ++i) {
  11647. assert(!isnan(st[i]));
  11648. assert(!isinf(st[i]));
  11649. }
  11650. #endif
  11651. }
  11652. }
  11653. static void ggml_compute_forward_cross_entropy_loss(
  11654. const struct ggml_compute_params * params,
  11655. const struct ggml_tensor * src0,
  11656. const struct ggml_tensor * src1,
  11657. struct ggml_tensor * dst) {
  11658. switch (src0->type) {
  11659. case GGML_TYPE_F32:
  11660. {
  11661. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11662. } break;
  11663. default:
  11664. {
  11665. GGML_ASSERT(false);
  11666. } break;
  11667. }
  11668. }
  11669. // ggml_compute_forward_cross_entropy_loss_back
  11670. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11671. const struct ggml_compute_params * params,
  11672. const struct ggml_tensor * src0,
  11673. const struct ggml_tensor * src1,
  11674. const struct ggml_tensor * opt0,
  11675. struct ggml_tensor * dst) {
  11676. GGML_ASSERT(ggml_is_contiguous(dst));
  11677. GGML_ASSERT(ggml_is_contiguous(src0));
  11678. GGML_ASSERT(ggml_is_contiguous(src1));
  11679. GGML_ASSERT(ggml_is_contiguous(opt0));
  11680. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11681. const int64_t ith = params->ith;
  11682. const int64_t nth = params->nth;
  11683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11684. return;
  11685. }
  11686. const float eps = 1e-9f;
  11687. // TODO: handle transposed/permuted matrices
  11688. const int64_t nc = src0->ne[0];
  11689. const int64_t nr = ggml_nrows(src0);
  11690. // rows per thread
  11691. const int64_t dr = (nr + nth - 1)/nth;
  11692. // row range for this thread
  11693. const int64_t ir0 = dr*ith;
  11694. const int64_t ir1 = MIN(ir0 + dr, nr);
  11695. float * d = (float *) opt0->data;
  11696. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11697. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11698. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11699. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11700. float * sm = (float *) params->wdata + ith*nc;
  11701. #ifndef NDEBUG
  11702. for (int i = 0; i < nc; ++i) {
  11703. //printf("p[%d] = %f\n", i, p[i]);
  11704. assert(!isnan(s0[i]));
  11705. assert(!isnan(s1[i]));
  11706. }
  11707. #endif
  11708. // step by step explanation:
  11709. {
  11710. //float * sums = (float *) params->wdata;
  11711. // forward pass with annotated gradients from backward pass
  11712. // (built by going in reverse operation order, adding to gradients of current operation args)
  11713. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11714. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11715. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11716. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11717. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11718. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11719. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11720. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11721. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11722. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11723. // postorder:
  11724. // grad[st1] := softmax(s0)
  11725. // grad[st1] := grad[st1]*(1.0 - eps)
  11726. // grad[st1] := grad[st1] + eps
  11727. // grad[st1] := s1 / grad[st1]
  11728. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11729. // src0 gradients by going through softmax_back
  11730. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11731. // from softmax_back:
  11732. // dxk = yk * (dyk - dot(y, dy))
  11733. // dot_y_dy := dot(y, dy)
  11734. // dx := dy
  11735. // dx := dx - dot_y_dy
  11736. // dx := dx * y
  11737. // postorder:
  11738. // dot_st1_dst1 := dot(st1, grad[st1])
  11739. // grad[s0] := grad[st1]
  11740. // grad[s0] := grad[s0] - dot_st1_dst1
  11741. // grad[s0] := grad[s0] * st1
  11742. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11743. // sm := softmax(s0)
  11744. // grad[s0] := sm*(1.0 - eps)
  11745. // grad[s0] := grad[s0] + eps
  11746. // grad[s0] := s1 / grad[s0]
  11747. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11748. // dot_st1_dst1 := dot(sm, grad[s0])
  11749. // grad[s0] := grad[s0] - dot_st1_dst1
  11750. // grad[s0] := grad[s0] * sm
  11751. }
  11752. // soft_max
  11753. ggml_float sum = 0.0;
  11754. {
  11755. float max = -INFINITY;
  11756. ggml_vec_max_f32(nc, &max, s0);
  11757. uint16_t scvt;
  11758. for (int i = 0; i < nc; i++) {
  11759. if (s0[i] == -INFINITY) {
  11760. sm[i] = 0.0f;
  11761. } else {
  11762. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11763. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11764. memcpy(&scvt, &s, sizeof(scvt));
  11765. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11766. sum += (ggml_float)val;
  11767. sm[i] = val;
  11768. }
  11769. }
  11770. assert(sum > 0.0);
  11771. sum = 1.0/sum;
  11772. }
  11773. float dot_st1_dst1 = 0;
  11774. ggml_vec_scale_f32(nc, sm, sum);
  11775. ggml_vec_cpy_f32 (nc, ds0, sm);
  11776. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11777. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11778. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11779. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11780. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11781. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11782. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11783. #ifndef NDEBUG
  11784. for (int i = 0; i < nc; ++i) {
  11785. assert(!isnan(sm[i]));
  11786. assert(!isinf(sm[i]));
  11787. assert(!isnan(ds0[i]));
  11788. assert(!isinf(ds0[i]));
  11789. }
  11790. #endif
  11791. }
  11792. }
  11793. static void ggml_compute_forward_cross_entropy_loss_back(
  11794. const struct ggml_compute_params * params,
  11795. const struct ggml_tensor * src0,
  11796. const struct ggml_tensor * src1,
  11797. const struct ggml_tensor * opt0,
  11798. struct ggml_tensor * dst) {
  11799. switch (src0->type) {
  11800. case GGML_TYPE_F32:
  11801. {
  11802. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11803. } break;
  11804. default:
  11805. {
  11806. GGML_ASSERT(false);
  11807. } break;
  11808. }
  11809. }
  11810. /////////////////////////////////
  11811. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11812. GGML_ASSERT(params);
  11813. #ifdef GGML_USE_CUBLAS
  11814. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11815. if (skip_cpu) {
  11816. return;
  11817. }
  11818. GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU);
  11819. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  11820. #endif // GGML_USE_CUBLAS
  11821. switch (tensor->op) {
  11822. case GGML_OP_DUP:
  11823. {
  11824. ggml_compute_forward_dup(params, tensor->src0, tensor);
  11825. } break;
  11826. case GGML_OP_ADD:
  11827. {
  11828. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  11829. } break;
  11830. case GGML_OP_ADD1:
  11831. {
  11832. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  11833. } break;
  11834. case GGML_OP_ACC:
  11835. {
  11836. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11837. } break;
  11838. case GGML_OP_SUB:
  11839. {
  11840. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  11841. } break;
  11842. case GGML_OP_MUL:
  11843. {
  11844. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  11845. } break;
  11846. case GGML_OP_DIV:
  11847. {
  11848. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  11849. } break;
  11850. case GGML_OP_SQR:
  11851. {
  11852. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  11853. } break;
  11854. case GGML_OP_SQRT:
  11855. {
  11856. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  11857. } break;
  11858. case GGML_OP_LOG:
  11859. {
  11860. ggml_compute_forward_log(params, tensor->src0, tensor);
  11861. } break;
  11862. case GGML_OP_SUM:
  11863. {
  11864. ggml_compute_forward_sum(params, tensor->src0, tensor);
  11865. } break;
  11866. case GGML_OP_SUM_ROWS:
  11867. {
  11868. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  11869. } break;
  11870. case GGML_OP_MEAN:
  11871. {
  11872. ggml_compute_forward_mean(params, tensor->src0, tensor);
  11873. } break;
  11874. case GGML_OP_ARGMAX:
  11875. {
  11876. ggml_compute_forward_argmax(params, tensor->src0, tensor);
  11877. } break;
  11878. case GGML_OP_REPEAT:
  11879. {
  11880. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  11881. } break;
  11882. case GGML_OP_REPEAT_BACK:
  11883. {
  11884. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  11885. } break;
  11886. case GGML_OP_ABS:
  11887. {
  11888. ggml_compute_forward_abs(params, tensor->src0, tensor);
  11889. } break;
  11890. case GGML_OP_SGN:
  11891. {
  11892. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  11893. } break;
  11894. case GGML_OP_NEG:
  11895. {
  11896. ggml_compute_forward_neg(params, tensor->src0, tensor);
  11897. } break;
  11898. case GGML_OP_STEP:
  11899. {
  11900. ggml_compute_forward_step(params, tensor->src0, tensor);
  11901. } break;
  11902. case GGML_OP_TANH:
  11903. {
  11904. ggml_compute_forward_tanh(params, tensor->src0, tensor);
  11905. } break;
  11906. case GGML_OP_ELU:
  11907. {
  11908. ggml_compute_forward_elu(params, tensor->src0, tensor);
  11909. } break;
  11910. case GGML_OP_RELU:
  11911. {
  11912. ggml_compute_forward_relu(params, tensor->src0, tensor);
  11913. } break;
  11914. case GGML_OP_GELU:
  11915. {
  11916. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  11917. } break;
  11918. case GGML_OP_GELU_QUICK:
  11919. {
  11920. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  11921. } break;
  11922. case GGML_OP_SILU:
  11923. {
  11924. ggml_compute_forward_silu(params, tensor->src0, tensor);
  11925. } break;
  11926. case GGML_OP_SILU_BACK:
  11927. {
  11928. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  11929. } break;
  11930. case GGML_OP_NORM:
  11931. {
  11932. ggml_compute_forward_norm(params, tensor->src0, tensor);
  11933. } break;
  11934. case GGML_OP_RMS_NORM:
  11935. {
  11936. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  11937. } break;
  11938. case GGML_OP_RMS_NORM_BACK:
  11939. {
  11940. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  11941. } break;
  11942. case GGML_OP_MUL_MAT:
  11943. {
  11944. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  11945. } break;
  11946. case GGML_OP_OUT_PROD:
  11947. {
  11948. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  11949. } break;
  11950. case GGML_OP_SCALE:
  11951. {
  11952. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  11953. } break;
  11954. case GGML_OP_SET:
  11955. {
  11956. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11957. } break;
  11958. case GGML_OP_CPY:
  11959. {
  11960. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  11961. } break;
  11962. case GGML_OP_CONT:
  11963. {
  11964. ggml_compute_forward_cont(params, tensor->src0, tensor);
  11965. } break;
  11966. case GGML_OP_RESHAPE:
  11967. {
  11968. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  11969. } break;
  11970. case GGML_OP_VIEW:
  11971. {
  11972. ggml_compute_forward_view(params, tensor->src0);
  11973. } break;
  11974. case GGML_OP_PERMUTE:
  11975. {
  11976. ggml_compute_forward_permute(params, tensor->src0);
  11977. } break;
  11978. case GGML_OP_TRANSPOSE:
  11979. {
  11980. ggml_compute_forward_transpose(params, tensor->src0);
  11981. } break;
  11982. case GGML_OP_GET_ROWS:
  11983. {
  11984. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  11985. } break;
  11986. case GGML_OP_GET_ROWS_BACK:
  11987. {
  11988. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11989. } break;
  11990. case GGML_OP_DIAG:
  11991. {
  11992. ggml_compute_forward_diag(params, tensor->src0, tensor);
  11993. } break;
  11994. case GGML_OP_DIAG_MASK_INF:
  11995. {
  11996. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  11997. } break;
  11998. case GGML_OP_DIAG_MASK_ZERO:
  11999. {
  12000. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12001. } break;
  12002. case GGML_OP_SOFT_MAX:
  12003. {
  12004. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12005. } break;
  12006. case GGML_OP_SOFT_MAX_BACK:
  12007. {
  12008. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12009. } break;
  12010. case GGML_OP_ROPE:
  12011. {
  12012. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12013. } break;
  12014. case GGML_OP_ROPE_BACK:
  12015. {
  12016. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12017. } break;
  12018. case GGML_OP_ALIBI:
  12019. {
  12020. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12021. } break;
  12022. case GGML_OP_CLAMP:
  12023. {
  12024. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12025. } break;
  12026. case GGML_OP_CONV_1D:
  12027. {
  12028. ggml_compute_forward_conv_1d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12029. } break;
  12030. case GGML_OP_CONV_2D:
  12031. {
  12032. ggml_compute_forward_conv_2d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12033. } break;
  12034. case GGML_OP_FLASH_ATTN:
  12035. {
  12036. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12037. GGML_ASSERT(t == 0 || t == 1);
  12038. const bool masked = t != 0;
  12039. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12040. } break;
  12041. case GGML_OP_FLASH_FF:
  12042. {
  12043. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12044. } break;
  12045. case GGML_OP_FLASH_ATTN_BACK:
  12046. {
  12047. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12048. GGML_ASSERT(t == 0 || t == 1);
  12049. bool masked = t != 0;
  12050. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12051. } break;
  12052. case GGML_OP_WIN_PART:
  12053. {
  12054. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12055. } break;
  12056. case GGML_OP_WIN_UNPART:
  12057. {
  12058. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12059. } break;
  12060. case GGML_OP_MAP_UNARY:
  12061. {
  12062. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12063. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12064. }
  12065. break;
  12066. case GGML_OP_MAP_BINARY:
  12067. {
  12068. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12069. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12070. }
  12071. break;
  12072. case GGML_OP_MAP_CUSTOM1:
  12073. {
  12074. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data);
  12075. ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun);
  12076. }
  12077. break;
  12078. case GGML_OP_MAP_CUSTOM2:
  12079. {
  12080. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data);
  12081. ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun);
  12082. }
  12083. break;
  12084. case GGML_OP_MAP_CUSTOM3:
  12085. {
  12086. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data);
  12087. ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun);
  12088. }
  12089. break;
  12090. case GGML_OP_CROSS_ENTROPY_LOSS:
  12091. {
  12092. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12093. }
  12094. break;
  12095. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12096. {
  12097. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12098. }
  12099. break;
  12100. case GGML_OP_NONE:
  12101. {
  12102. // nop
  12103. } break;
  12104. case GGML_OP_COUNT:
  12105. {
  12106. GGML_ASSERT(false);
  12107. } break;
  12108. }
  12109. }
  12110. ////////////////////////////////////////////////////////////////////////////////
  12111. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12112. struct ggml_tensor * src0 = tensor->src0;
  12113. struct ggml_tensor * src1 = tensor->src1;
  12114. switch (tensor->op) {
  12115. case GGML_OP_DUP:
  12116. {
  12117. if (src0->grad) {
  12118. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12119. }
  12120. } break;
  12121. case GGML_OP_ADD:
  12122. {
  12123. if (src0->grad) {
  12124. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12125. }
  12126. if (src1->grad) {
  12127. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12128. }
  12129. } break;
  12130. case GGML_OP_ADD1:
  12131. {
  12132. if (src0->grad) {
  12133. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12134. }
  12135. if (src1->grad) {
  12136. src1->grad = ggml_add_impl(ctx,
  12137. src1->grad,
  12138. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12139. inplace);
  12140. }
  12141. } break;
  12142. case GGML_OP_ACC:
  12143. {
  12144. if (src0->grad) {
  12145. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12146. }
  12147. if (src1->grad) {
  12148. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12149. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12150. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12151. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12152. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12153. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12154. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12155. tensor->grad,
  12156. src1->grad->ne[0],
  12157. src1->grad->ne[1],
  12158. src1->grad->ne[2],
  12159. src1->grad->ne[3],
  12160. nb1, nb2, nb3, offset);
  12161. src1->grad =
  12162. ggml_add_impl(ctx,
  12163. src1->grad,
  12164. ggml_reshape(ctx,
  12165. ggml_cont(ctx, tensor_grad_view),
  12166. src1->grad),
  12167. inplace);
  12168. }
  12169. } break;
  12170. case GGML_OP_SUB:
  12171. {
  12172. if (src0->grad) {
  12173. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12174. }
  12175. if (src1->grad) {
  12176. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12177. }
  12178. } break;
  12179. case GGML_OP_MUL:
  12180. {
  12181. if (src0->grad) {
  12182. src0->grad =
  12183. ggml_add_impl(ctx,
  12184. src0->grad,
  12185. ggml_mul(ctx, src1, tensor->grad),
  12186. inplace);
  12187. }
  12188. if (src1->grad) {
  12189. src1->grad =
  12190. ggml_add_impl(ctx,
  12191. src1->grad,
  12192. ggml_mul(ctx, src0, tensor->grad),
  12193. inplace);
  12194. }
  12195. } break;
  12196. case GGML_OP_DIV:
  12197. {
  12198. if (src0->grad) {
  12199. src0->grad =
  12200. ggml_add_impl(ctx,
  12201. src0->grad,
  12202. ggml_div(ctx, tensor->grad, src1),
  12203. inplace);
  12204. }
  12205. if (src1->grad) {
  12206. src1->grad =
  12207. ggml_sub_impl(ctx,
  12208. src1->grad,
  12209. ggml_mul(ctx,
  12210. tensor->grad,
  12211. ggml_div(ctx, tensor, src1)),
  12212. inplace);
  12213. }
  12214. } break;
  12215. case GGML_OP_SQR:
  12216. {
  12217. if (src0->grad) {
  12218. src0->grad =
  12219. ggml_add_impl(ctx,
  12220. src0->grad,
  12221. ggml_scale(ctx,
  12222. ggml_mul(ctx, src0, tensor->grad),
  12223. ggml_new_f32(ctx, 2.0f)),
  12224. inplace);
  12225. }
  12226. } break;
  12227. case GGML_OP_SQRT:
  12228. {
  12229. if (src0->grad) {
  12230. src0->grad =
  12231. ggml_add_impl(ctx,
  12232. src0->grad,
  12233. ggml_scale(ctx,
  12234. ggml_div(ctx,
  12235. tensor->grad,
  12236. tensor),
  12237. ggml_new_f32(ctx, 0.5f)),
  12238. inplace);
  12239. }
  12240. } break;
  12241. case GGML_OP_LOG:
  12242. {
  12243. if (src0->grad) {
  12244. src0->grad =
  12245. ggml_add_impl(ctx,
  12246. src0->grad,
  12247. ggml_div(ctx,
  12248. tensor->grad,
  12249. src0),
  12250. inplace);
  12251. }
  12252. } break;
  12253. case GGML_OP_SUM:
  12254. {
  12255. if (src0->grad) {
  12256. src0->grad =
  12257. ggml_add1_impl(ctx,
  12258. src0->grad,
  12259. tensor->grad,
  12260. inplace);
  12261. }
  12262. } break;
  12263. case GGML_OP_SUM_ROWS:
  12264. {
  12265. if (src0->grad) {
  12266. src0->grad =
  12267. ggml_add_impl(ctx,
  12268. src0->grad,
  12269. ggml_repeat(ctx,
  12270. tensor->grad,
  12271. src0->grad),
  12272. inplace);
  12273. }
  12274. } break;
  12275. case GGML_OP_MEAN:
  12276. case GGML_OP_ARGMAX:
  12277. {
  12278. GGML_ASSERT(false); // TODO: implement
  12279. } break;
  12280. case GGML_OP_REPEAT:
  12281. {
  12282. // necessary for llama
  12283. if (src0->grad) {
  12284. src0->grad = ggml_add_impl(ctx,
  12285. src0->grad,
  12286. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12287. inplace);
  12288. }
  12289. } break;
  12290. case GGML_OP_REPEAT_BACK:
  12291. {
  12292. if (src0->grad) {
  12293. // TODO: test this
  12294. src0->grad = ggml_add_impl(ctx,
  12295. src0->grad,
  12296. ggml_repeat(ctx, tensor->grad, src0->grad),
  12297. inplace);
  12298. }
  12299. } break;
  12300. case GGML_OP_ABS:
  12301. {
  12302. if (src0->grad) {
  12303. src0->grad =
  12304. ggml_add_impl(ctx,
  12305. src0->grad,
  12306. ggml_mul(ctx,
  12307. ggml_sgn(ctx, src0),
  12308. tensor->grad),
  12309. inplace);
  12310. }
  12311. } break;
  12312. case GGML_OP_SGN:
  12313. {
  12314. if (src0->grad) {
  12315. // noop
  12316. }
  12317. } break;
  12318. case GGML_OP_NEG:
  12319. {
  12320. if (src0->grad) {
  12321. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12322. }
  12323. } break;
  12324. case GGML_OP_STEP:
  12325. {
  12326. if (src0->grad) {
  12327. // noop
  12328. }
  12329. } break;
  12330. case GGML_OP_TANH:
  12331. {
  12332. GGML_ASSERT(false); // TODO: not implemented
  12333. } break;
  12334. case GGML_OP_ELU:
  12335. {
  12336. GGML_ASSERT(false); // TODO: not implemented
  12337. } break;
  12338. case GGML_OP_RELU:
  12339. {
  12340. if (src0->grad) {
  12341. src0->grad = ggml_sub_impl(ctx,
  12342. src0->grad,
  12343. ggml_mul(ctx,
  12344. ggml_step(ctx, src0),
  12345. tensor->grad),
  12346. inplace);
  12347. }
  12348. } break;
  12349. case GGML_OP_GELU:
  12350. {
  12351. GGML_ASSERT(false); // TODO: not implemented
  12352. } break;
  12353. case GGML_OP_GELU_QUICK:
  12354. {
  12355. GGML_ASSERT(false); // TODO: not implemented
  12356. } break;
  12357. case GGML_OP_SILU:
  12358. {
  12359. // necessary for llama
  12360. if (src0->grad) {
  12361. src0->grad = ggml_add_impl(ctx,
  12362. src0->grad,
  12363. ggml_silu_back(ctx, src0, tensor->grad),
  12364. inplace);
  12365. }
  12366. } break;
  12367. case GGML_OP_SILU_BACK:
  12368. {
  12369. GGML_ASSERT(false); // TODO: not implemented
  12370. } break;
  12371. case GGML_OP_NORM:
  12372. {
  12373. GGML_ASSERT(false); // TODO: not implemented
  12374. } break;
  12375. case GGML_OP_RMS_NORM:
  12376. {
  12377. // necessary for llama
  12378. if (src0->grad) {
  12379. src0->grad = ggml_add_impl(ctx,
  12380. src0->grad,
  12381. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12382. inplace);
  12383. }
  12384. } break;
  12385. case GGML_OP_RMS_NORM_BACK:
  12386. {
  12387. GGML_ASSERT(false); // TODO: not implemented
  12388. } break;
  12389. case GGML_OP_MUL_MAT:
  12390. {
  12391. // https://cs231n.github.io/optimization-2/#staged
  12392. // # forward pass
  12393. // s0 = np.random.randn(5, 10)
  12394. // s1 = np.random.randn(10, 3)
  12395. // t = s0.dot(s1)
  12396. // # now suppose we had the gradient on t from above in the circuit
  12397. // dt = np.random.randn(*t.shape) # same shape as t
  12398. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12399. // ds1 = t.T.dot(dt)
  12400. // tensor.shape [m,p]
  12401. // src0.shape [n,m]
  12402. // src1.shape [n,p]
  12403. // necessary for llama
  12404. if (src0->grad) {
  12405. src0->grad =
  12406. ggml_add_impl(ctx,
  12407. src0->grad,
  12408. ggml_out_prod(ctx, // [n,m]
  12409. src1, // [n,p]
  12410. tensor->grad), // [m,p]
  12411. inplace);
  12412. }
  12413. if (src1->grad) {
  12414. src1->grad =
  12415. ggml_add_impl(ctx,
  12416. src1->grad,
  12417. // ggml_mul_mat(ctx, // [n,p]
  12418. // ggml_cont(ctx, // [m,n]
  12419. // ggml_transpose(ctx, src0)), // [m,n]
  12420. // tensor->grad), // [m,p]
  12421. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12422. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12423. // // and then use ggml_out_prod
  12424. ggml_out_prod(ctx, // [n,p]
  12425. src0, // [n,m]
  12426. ggml_transpose(ctx, // [p,m]
  12427. tensor->grad)), // [m,p]
  12428. inplace);
  12429. }
  12430. } break;
  12431. case GGML_OP_OUT_PROD:
  12432. {
  12433. GGML_ASSERT(false); // TODO: not implemented
  12434. } break;
  12435. case GGML_OP_SCALE:
  12436. {
  12437. // necessary for llama
  12438. if (src0->grad) {
  12439. src0->grad =
  12440. ggml_add_impl(ctx,
  12441. src0->grad,
  12442. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12443. inplace);
  12444. }
  12445. if (src1->grad) {
  12446. src1->grad =
  12447. ggml_add_impl(ctx,
  12448. src1->grad,
  12449. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12450. inplace);
  12451. }
  12452. } break;
  12453. case GGML_OP_SET:
  12454. {
  12455. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12456. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12457. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12458. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12459. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12460. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12461. struct ggml_tensor * tensor_grad_view = NULL;
  12462. if (src0->grad || src1->grad) {
  12463. GGML_ASSERT(src0->type == tensor->type);
  12464. GGML_ASSERT(tensor->grad->type == tensor->type);
  12465. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12466. tensor_grad_view = ggml_view_4d(ctx,
  12467. tensor->grad,
  12468. src1->grad->ne[0],
  12469. src1->grad->ne[1],
  12470. src1->grad->ne[2],
  12471. src1->grad->ne[3],
  12472. nb1, nb2, nb3, offset);
  12473. }
  12474. if (src0->grad) {
  12475. src0->grad = ggml_add_impl(ctx,
  12476. src0->grad,
  12477. ggml_acc_impl(ctx,
  12478. tensor->grad,
  12479. ggml_neg(ctx, tensor_grad_view),
  12480. nb1, nb2, nb3, offset, false),
  12481. inplace);
  12482. }
  12483. if (src1->grad) {
  12484. src1->grad =
  12485. ggml_add_impl(ctx,
  12486. src1->grad,
  12487. ggml_reshape(ctx,
  12488. ggml_cont(ctx, tensor_grad_view),
  12489. src1->grad),
  12490. inplace);
  12491. }
  12492. } break;
  12493. case GGML_OP_CPY:
  12494. {
  12495. // necessary for llama
  12496. // cpy overwrites value of src1 by src0 and returns view(src1)
  12497. // the overwriting is mathematically equivalent to:
  12498. // tensor = src0 * 1 + src1 * 0
  12499. if (src0->grad) {
  12500. // dsrc0 = dtensor * 1
  12501. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12502. }
  12503. if (src1->grad) {
  12504. // dsrc1 = dtensor * 0 -> noop
  12505. }
  12506. } break;
  12507. case GGML_OP_CONT:
  12508. {
  12509. // same as cpy
  12510. if (src0->grad) {
  12511. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12512. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12513. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12514. }
  12515. } break;
  12516. case GGML_OP_RESHAPE:
  12517. {
  12518. // necessary for llama
  12519. if (src0->grad) {
  12520. src0->grad =
  12521. ggml_add_impl(ctx, src0->grad,
  12522. ggml_reshape(ctx, tensor->grad, src0->grad),
  12523. inplace);
  12524. }
  12525. } break;
  12526. case GGML_OP_VIEW:
  12527. {
  12528. // necessary for llama
  12529. if (src0->grad) {
  12530. size_t offset;
  12531. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12532. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12533. size_t nb1 = tensor->nb[1];
  12534. size_t nb2 = tensor->nb[2];
  12535. size_t nb3 = tensor->nb[3];
  12536. if (src0->type != src0->grad->type) {
  12537. // gradient is typically F32, but src0 could be other type
  12538. size_t ng = ggml_element_size(src0->grad);
  12539. size_t n0 = ggml_element_size(src0);
  12540. GGML_ASSERT(offset % n0 == 0);
  12541. GGML_ASSERT(nb1 % n0 == 0);
  12542. GGML_ASSERT(nb2 % n0 == 0);
  12543. GGML_ASSERT(nb3 % n0 == 0);
  12544. offset = (offset / n0) * ng;
  12545. nb1 = (nb1 / n0) * ng;
  12546. nb2 = (nb2 / n0) * ng;
  12547. nb3 = (nb3 / n0) * ng;
  12548. }
  12549. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12550. }
  12551. } break;
  12552. case GGML_OP_PERMUTE:
  12553. {
  12554. // necessary for llama
  12555. if (src0->grad) {
  12556. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12557. int axis0 = axes[0] & 0x3;
  12558. int axis1 = axes[1] & 0x3;
  12559. int axis2 = axes[2] & 0x3;
  12560. int axis3 = axes[3] & 0x3;
  12561. int axes_backward[4] = {0,0,0,0};
  12562. axes_backward[axis0] = 0;
  12563. axes_backward[axis1] = 1;
  12564. axes_backward[axis2] = 2;
  12565. axes_backward[axis3] = 3;
  12566. src0->grad =
  12567. ggml_add_impl(ctx, src0->grad,
  12568. ggml_permute(ctx,
  12569. tensor->grad,
  12570. axes_backward[0],
  12571. axes_backward[1],
  12572. axes_backward[2],
  12573. axes_backward[3]),
  12574. inplace);
  12575. }
  12576. } break;
  12577. case GGML_OP_TRANSPOSE:
  12578. {
  12579. // necessary for llama
  12580. if (src0->grad) {
  12581. src0->grad =
  12582. ggml_add_impl(ctx, src0->grad,
  12583. ggml_transpose(ctx, tensor->grad),
  12584. inplace);
  12585. }
  12586. } break;
  12587. case GGML_OP_GET_ROWS:
  12588. {
  12589. // necessary for llama (only for tokenizer)
  12590. if (src0->grad) {
  12591. src0->grad =
  12592. ggml_add_impl(ctx, src0->grad,
  12593. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12594. inplace);
  12595. }
  12596. if (src1->grad) {
  12597. // noop
  12598. }
  12599. } break;
  12600. case GGML_OP_GET_ROWS_BACK:
  12601. {
  12602. GGML_ASSERT(false); // TODO: not implemented
  12603. } break;
  12604. case GGML_OP_DIAG:
  12605. {
  12606. GGML_ASSERT(false); // TODO: not implemented
  12607. } break;
  12608. case GGML_OP_DIAG_MASK_INF:
  12609. {
  12610. // necessary for llama
  12611. if (src0->grad) {
  12612. assert(src1->type == GGML_TYPE_I32);
  12613. assert(ggml_nelements(src1) == 2);
  12614. const int n_past = ((int32_t *) src1->data)[0];
  12615. src0->grad =
  12616. ggml_add_impl(ctx, src0->grad,
  12617. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12618. inplace);
  12619. }
  12620. if (src1->grad) {
  12621. // noop
  12622. }
  12623. } break;
  12624. case GGML_OP_DIAG_MASK_ZERO:
  12625. {
  12626. // necessary for llama
  12627. if (src0->grad) {
  12628. assert(src1->type == GGML_TYPE_I32);
  12629. assert(ggml_nelements(src1) == 2);
  12630. const int n_past = ((int32_t *) src1->data)[0];
  12631. src0->grad =
  12632. ggml_add_impl(ctx, src0->grad,
  12633. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12634. inplace);
  12635. }
  12636. if (src1->grad) {
  12637. // noop
  12638. }
  12639. } break;
  12640. case GGML_OP_SOFT_MAX:
  12641. {
  12642. // necessary for llama
  12643. if (src0->grad) {
  12644. src0->grad =
  12645. ggml_add_impl(ctx, src0->grad,
  12646. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12647. inplace);
  12648. }
  12649. } break;
  12650. case GGML_OP_SOFT_MAX_BACK:
  12651. {
  12652. GGML_ASSERT(false); // TODO: not implemented
  12653. } break;
  12654. case GGML_OP_ROPE:
  12655. {
  12656. // necessary for llama
  12657. if (src0->grad) {
  12658. assert(src1->type == GGML_TYPE_I32);
  12659. assert(ggml_nelements(src1) == 4);
  12660. const int n_past = ((int32_t *) src1->data)[0];
  12661. const int n_dims = ((int32_t *) src1->data)[1];
  12662. const int mode = ((int32_t *) src1->data)[2];
  12663. src0->grad = ggml_add_impl(ctx,
  12664. src0->grad,
  12665. ggml_rope_back(ctx,
  12666. tensor->grad,
  12667. n_past,
  12668. n_dims,
  12669. mode),
  12670. inplace);
  12671. }
  12672. if (src1->grad) {
  12673. // noop
  12674. }
  12675. } break;
  12676. case GGML_OP_ROPE_BACK:
  12677. {
  12678. if (src0->grad) {
  12679. assert(src1->type == GGML_TYPE_I32);
  12680. assert(ggml_nelements(src1) == 4);
  12681. const int n_past = ((int32_t *) src1->data)[0];
  12682. const int n_dims = ((int32_t *) src1->data)[1];
  12683. const int mode = ((int32_t *) src1->data)[2];
  12684. const int n_ctx = ((int32_t *) src1->data)[3];
  12685. src0->grad = ggml_add_impl(ctx,
  12686. src0->grad,
  12687. ggml_rope(ctx,
  12688. tensor->grad,
  12689. n_past,
  12690. n_dims,
  12691. mode,
  12692. n_ctx),
  12693. inplace);
  12694. }
  12695. if (src1->grad) {
  12696. // noop
  12697. }
  12698. } break;
  12699. case GGML_OP_ALIBI:
  12700. {
  12701. GGML_ASSERT(false); // TODO: not implemented
  12702. } break;
  12703. case GGML_OP_CLAMP:
  12704. {
  12705. GGML_ASSERT(false); // TODO: not implemented
  12706. } break;
  12707. case GGML_OP_CONV_1D:
  12708. {
  12709. GGML_ASSERT(false); // TODO: not implemented
  12710. } break;
  12711. case GGML_OP_CONV_2D:
  12712. {
  12713. GGML_ASSERT(false); // TODO: not implemented
  12714. } break;
  12715. case GGML_OP_FLASH_ATTN:
  12716. {
  12717. struct ggml_tensor * flash_grad = NULL;
  12718. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12719. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12720. GGML_ASSERT(t == 0 || t == 1);
  12721. bool masked = t != 0;
  12722. flash_grad =
  12723. ggml_flash_attn_back(ctx,
  12724. src0,
  12725. src1,
  12726. tensor->opt[0],
  12727. tensor->grad,
  12728. masked);
  12729. }
  12730. if (src0->grad) {
  12731. struct ggml_tensor * grad_q = NULL;
  12732. const size_t nb0 = flash_grad->nb[0];
  12733. const size_t offset = 0;
  12734. switch(src0->n_dims) {
  12735. case 2:
  12736. {
  12737. grad_q = ggml_view_2d(ctx,
  12738. flash_grad,
  12739. src0->ne[0],
  12740. src0->ne[1],
  12741. nb0*src0->ne[0],
  12742. offset);
  12743. } break;
  12744. case 3:
  12745. {
  12746. grad_q = ggml_view_3d(ctx,
  12747. flash_grad,
  12748. src0->ne[0],
  12749. src0->ne[1],
  12750. src0->ne[2],
  12751. nb0*src0->ne[0],
  12752. nb0*src0->ne[0]*src0->ne[1],
  12753. offset);
  12754. } break;
  12755. case 4:
  12756. {
  12757. grad_q = ggml_view_4d(ctx,
  12758. flash_grad,
  12759. src0->ne[0],
  12760. src0->ne[1],
  12761. src0->ne[2],
  12762. src0->ne[3],
  12763. nb0*src0->ne[0],
  12764. nb0*src0->ne[0]*src0->ne[1],
  12765. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12766. offset);
  12767. } break;
  12768. }
  12769. src0->grad = ggml_add_impl(ctx,
  12770. src0->grad,
  12771. grad_q,
  12772. inplace);
  12773. }
  12774. if (src1->grad) {
  12775. struct ggml_tensor * grad_k = NULL;
  12776. const size_t nb0 = flash_grad->nb[0];
  12777. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12778. switch(src1->n_dims) {
  12779. case 2:
  12780. {
  12781. grad_k = ggml_view_2d(ctx,
  12782. flash_grad,
  12783. src1->ne[0],
  12784. src1->ne[1],
  12785. nb0*src1->ne[0],
  12786. offset);
  12787. } break;
  12788. case 3:
  12789. {
  12790. grad_k = ggml_view_3d(ctx,
  12791. flash_grad,
  12792. src1->ne[0],
  12793. src1->ne[1],
  12794. src1->ne[2],
  12795. nb0*src1->ne[0],
  12796. nb0*src1->ne[0]*src1->ne[1],
  12797. offset);
  12798. } break;
  12799. case 4:
  12800. {
  12801. grad_k = ggml_view_4d(ctx,
  12802. flash_grad,
  12803. src1->ne[0],
  12804. src1->ne[1],
  12805. src1->ne[2],
  12806. src1->ne[3],
  12807. nb0*src1->ne[0],
  12808. nb0*src1->ne[0]*src1->ne[1],
  12809. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12810. offset);
  12811. } break;
  12812. }
  12813. src1->grad = ggml_add_impl(ctx,
  12814. src1->grad,
  12815. grad_k,
  12816. inplace);
  12817. }
  12818. struct ggml_tensor * opt0 = tensor->opt[0];
  12819. if (opt0->grad) {
  12820. struct ggml_tensor * grad_v = NULL;
  12821. const size_t nb0 = flash_grad->nb[0];
  12822. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12823. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12824. switch(opt0->n_dims) {
  12825. case 2:
  12826. {
  12827. grad_v = ggml_view_2d(ctx,
  12828. flash_grad,
  12829. opt0->ne[0],
  12830. opt0->ne[1],
  12831. nb0*opt0->ne[0],
  12832. offset);
  12833. } break;
  12834. case 3:
  12835. {
  12836. grad_v = ggml_view_3d(ctx,
  12837. flash_grad,
  12838. opt0->ne[0],
  12839. opt0->ne[1],
  12840. opt0->ne[2],
  12841. nb0*opt0->ne[0],
  12842. nb0*opt0->ne[0]*opt0->ne[1],
  12843. offset);
  12844. } break;
  12845. case 4:
  12846. {
  12847. grad_v = ggml_view_4d(ctx,
  12848. flash_grad,
  12849. opt0->ne[0],
  12850. opt0->ne[1],
  12851. opt0->ne[2],
  12852. opt0->ne[3],
  12853. nb0*opt0->ne[0],
  12854. nb0*opt0->ne[0]*opt0->ne[1],
  12855. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12856. offset);
  12857. } break;
  12858. }
  12859. opt0->grad = ggml_add_impl(ctx,
  12860. opt0->grad,
  12861. grad_v,
  12862. inplace);
  12863. }
  12864. } break;
  12865. case GGML_OP_FLASH_FF:
  12866. {
  12867. GGML_ASSERT(false); // not supported
  12868. } break;
  12869. case GGML_OP_FLASH_ATTN_BACK:
  12870. {
  12871. GGML_ASSERT(false); // not supported
  12872. } break;
  12873. case GGML_OP_WIN_PART:
  12874. case GGML_OP_WIN_UNPART:
  12875. case GGML_OP_MAP_UNARY:
  12876. case GGML_OP_MAP_BINARY:
  12877. case GGML_OP_MAP_CUSTOM1:
  12878. case GGML_OP_MAP_CUSTOM2:
  12879. case GGML_OP_MAP_CUSTOM3:
  12880. {
  12881. GGML_ASSERT(false); // not supported
  12882. } break;
  12883. case GGML_OP_CROSS_ENTROPY_LOSS:
  12884. {
  12885. if (src0->grad) {
  12886. src0->grad = ggml_add_impl(ctx,
  12887. src0->grad,
  12888. ggml_cross_entropy_loss_back(ctx,
  12889. src0,
  12890. src1,
  12891. tensor->grad),
  12892. inplace);
  12893. }
  12894. } break;
  12895. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12896. {
  12897. GGML_ASSERT(false); // not supported
  12898. } break;
  12899. case GGML_OP_NONE:
  12900. {
  12901. // nop
  12902. } break;
  12903. case GGML_OP_COUNT:
  12904. {
  12905. GGML_ASSERT(false);
  12906. } break;
  12907. }
  12908. }
  12909. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12910. if (node->grad == NULL) {
  12911. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12912. // it can also happen during forward pass, if the user performs computations with constants
  12913. if (node->op != GGML_OP_NONE) {
  12914. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12915. }
  12916. }
  12917. // check if already visited
  12918. for (int i = 0; i < cgraph->n_nodes; i++) {
  12919. if (cgraph->nodes[i] == node) {
  12920. return;
  12921. }
  12922. }
  12923. for (int i = 0; i < cgraph->n_leafs; i++) {
  12924. if (cgraph->leafs[i] == node) {
  12925. return;
  12926. }
  12927. }
  12928. if (node->src0) {
  12929. ggml_visit_parents(cgraph, node->src0);
  12930. }
  12931. if (node->src1) {
  12932. ggml_visit_parents(cgraph, node->src1);
  12933. }
  12934. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  12935. if (node->opt[i]) {
  12936. ggml_visit_parents(cgraph, node->opt[i]);
  12937. }
  12938. }
  12939. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12940. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12941. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12942. if (strlen(node->name) == 0) {
  12943. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12944. }
  12945. cgraph->leafs[cgraph->n_leafs] = node;
  12946. cgraph->n_leafs++;
  12947. } else {
  12948. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12949. if (strlen(node->name) == 0) {
  12950. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12951. }
  12952. cgraph->nodes[cgraph->n_nodes] = node;
  12953. cgraph->grads[cgraph->n_nodes] = node->grad;
  12954. cgraph->n_nodes++;
  12955. }
  12956. }
  12957. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12958. if (!expand) {
  12959. cgraph->n_nodes = 0;
  12960. cgraph->n_leafs = 0;
  12961. }
  12962. const int n0 = cgraph->n_nodes;
  12963. UNUSED(n0);
  12964. ggml_visit_parents(cgraph, tensor);
  12965. const int n_new = cgraph->n_nodes - n0;
  12966. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12967. if (n_new > 0) {
  12968. // the last added node should always be starting point
  12969. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12970. }
  12971. }
  12972. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12973. ggml_build_forward_impl(cgraph, tensor, true);
  12974. }
  12975. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12976. struct ggml_cgraph result = {
  12977. /*.n_nodes =*/ 0,
  12978. /*.n_leafs =*/ 0,
  12979. /*.nodes =*/ { NULL },
  12980. /*.grads =*/ { NULL },
  12981. /*.leafs =*/ { NULL },
  12982. /*.perf_runs =*/ 0,
  12983. /*.perf_cycles =*/ 0,
  12984. /*.perf_time_us =*/ 0,
  12985. };
  12986. ggml_build_forward_impl(&result, tensor, false);
  12987. return result;
  12988. }
  12989. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12990. struct ggml_cgraph result = *gf;
  12991. GGML_ASSERT(gf->n_nodes > 0);
  12992. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12993. if (keep) {
  12994. for (int i = 0; i < gf->n_nodes; i++) {
  12995. struct ggml_tensor * node = gf->nodes[i];
  12996. if (node->grad) {
  12997. node->grad = ggml_dup_tensor(ctx, node);
  12998. gf->grads[i] = node->grad;
  12999. }
  13000. }
  13001. }
  13002. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13003. struct ggml_tensor * node = gf->nodes[i];
  13004. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13005. if (node->grad) {
  13006. ggml_compute_backward(ctx, node, keep);
  13007. }
  13008. }
  13009. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13010. struct ggml_tensor * node = gf->nodes[i];
  13011. if (node->is_param) {
  13012. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13013. ggml_build_forward_impl(&result, node->grad, true);
  13014. }
  13015. }
  13016. return result;
  13017. }
  13018. //
  13019. // thread data
  13020. //
  13021. // synchronization is done via busy loops
  13022. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13023. //
  13024. #ifdef __APPLE__
  13025. //#include <os/lock.h>
  13026. //
  13027. //typedef os_unfair_lock ggml_lock_t;
  13028. //
  13029. //#define ggml_lock_init(x) UNUSED(x)
  13030. //#define ggml_lock_destroy(x) UNUSED(x)
  13031. //#define ggml_lock_lock os_unfair_lock_lock
  13032. //#define ggml_lock_unlock os_unfair_lock_unlock
  13033. //
  13034. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13035. typedef int ggml_lock_t;
  13036. #define ggml_lock_init(x) UNUSED(x)
  13037. #define ggml_lock_destroy(x) UNUSED(x)
  13038. #define ggml_lock_lock(x) UNUSED(x)
  13039. #define ggml_lock_unlock(x) UNUSED(x)
  13040. #define GGML_LOCK_INITIALIZER 0
  13041. typedef pthread_t ggml_thread_t;
  13042. #define ggml_thread_create pthread_create
  13043. #define ggml_thread_join pthread_join
  13044. #else
  13045. //typedef pthread_spinlock_t ggml_lock_t;
  13046. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13047. //#define ggml_lock_destroy pthread_spin_destroy
  13048. //#define ggml_lock_lock pthread_spin_lock
  13049. //#define ggml_lock_unlock pthread_spin_unlock
  13050. typedef int ggml_lock_t;
  13051. #define ggml_lock_init(x) UNUSED(x)
  13052. #define ggml_lock_destroy(x) UNUSED(x)
  13053. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13054. #define ggml_lock_lock(x) _mm_pause()
  13055. #else
  13056. #define ggml_lock_lock(x) UNUSED(x)
  13057. #endif
  13058. #define ggml_lock_unlock(x) UNUSED(x)
  13059. #define GGML_LOCK_INITIALIZER 0
  13060. typedef pthread_t ggml_thread_t;
  13061. #define ggml_thread_create pthread_create
  13062. #define ggml_thread_join pthread_join
  13063. #endif
  13064. // Android's libc implementation "bionic" does not support setting affinity
  13065. #if defined(__linux__) && !defined(__BIONIC__)
  13066. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13067. if (!ggml_is_numa()) {
  13068. return;
  13069. }
  13070. // run thread on node_num thread_n / (threads per node)
  13071. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13072. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13073. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13074. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13075. CPU_ZERO_S(setsize, cpus);
  13076. for (size_t i = 0; i < node->n_cpus; ++i) {
  13077. CPU_SET_S(node->cpus[i], setsize, cpus);
  13078. }
  13079. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13080. if (rv) {
  13081. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13082. strerror(rv));
  13083. }
  13084. CPU_FREE(cpus);
  13085. }
  13086. void clear_numa_thread_affinity(void) {
  13087. if (!ggml_is_numa()) {
  13088. return;
  13089. }
  13090. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13091. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13092. CPU_ZERO_S(setsize, cpus);
  13093. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13094. CPU_SET_S(i, setsize, cpus);
  13095. }
  13096. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13097. if (rv) {
  13098. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13099. strerror(rv));
  13100. }
  13101. CPU_FREE(cpus);
  13102. }
  13103. #else
  13104. // TODO: Windows etc.
  13105. // (the linux implementation may also work on BSD, someone should test)
  13106. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13107. void clear_numa_thread_affinity(void) {}
  13108. #endif
  13109. struct ggml_compute_state_shared {
  13110. const struct ggml_cgraph * cgraph;
  13111. const struct ggml_cplan * cplan;
  13112. int64_t perf_node_start_cycles;
  13113. int64_t perf_node_start_time_us;
  13114. const int n_threads;
  13115. // synchronization primitives
  13116. atomic_int n_active; // num active threads
  13117. atomic_int node_n; // active graph node
  13118. };
  13119. struct ggml_compute_state {
  13120. ggml_thread_t thrd;
  13121. int ith;
  13122. struct ggml_compute_state_shared * shared;
  13123. };
  13124. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13125. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13126. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13127. node->perf_runs++;
  13128. node->perf_cycles += cycles_cur;
  13129. node->perf_time_us += time_us_cur;
  13130. }
  13131. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13132. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13133. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13134. const struct ggml_cplan * cplan = state->shared->cplan;
  13135. const int * n_tasks_arr = cplan->n_tasks;
  13136. const int n_threads = state->shared->n_threads;
  13137. set_numa_thread_affinity(state->ith, n_threads);
  13138. int node_n = -1;
  13139. while (true) {
  13140. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13141. // all other threads are finished and spinning
  13142. // do finalize and init here so we don't have synchronize again
  13143. struct ggml_compute_params params = {
  13144. /*.type =*/ GGML_TASK_FINALIZE,
  13145. /*.ith =*/ 0,
  13146. /*.nth =*/ 0,
  13147. /*.wsize =*/ cplan->work_size,
  13148. /*.wdata =*/ cplan->work_data,
  13149. };
  13150. if (node_n != -1) {
  13151. /* FINALIZE */
  13152. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13153. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13154. params.nth = n_tasks_arr[node_n];
  13155. ggml_compute_forward(&params, node);
  13156. ggml_graph_compute_perf_stats_node(node, state->shared);
  13157. }
  13158. }
  13159. // distribute new work or execute it direct if 1T
  13160. while (++node_n < cgraph->n_nodes) {
  13161. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13162. struct ggml_tensor * node = cgraph->nodes[node_n];
  13163. const int n_tasks = n_tasks_arr[node_n];
  13164. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13165. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13166. params.nth = n_tasks;
  13167. /* INIT */
  13168. if (GGML_OP_HAS_INIT[node->op]) {
  13169. params.type = GGML_TASK_INIT;
  13170. ggml_compute_forward(&params, node);
  13171. }
  13172. if (n_tasks == 1) {
  13173. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13174. // they do something more efficient than spinning (?)
  13175. params.type = GGML_TASK_COMPUTE;
  13176. ggml_compute_forward(&params, node);
  13177. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13178. params.type = GGML_TASK_FINALIZE;
  13179. ggml_compute_forward(&params, node);
  13180. ggml_graph_compute_perf_stats_node(node, state->shared);
  13181. }
  13182. } else {
  13183. break;
  13184. }
  13185. }
  13186. atomic_store(&state->shared->n_active, n_threads);
  13187. atomic_store(&state->shared->node_n, node_n);
  13188. } else {
  13189. // wait for other threads to finish
  13190. const int last = node_n;
  13191. do {
  13192. //sched_yield();
  13193. node_n = atomic_load(&state->shared->node_n);
  13194. } while (node_n == last);
  13195. }
  13196. // check if we should stop
  13197. if (node_n >= cgraph->n_nodes) break;
  13198. /* COMPUTE */
  13199. struct ggml_tensor * node = cgraph->nodes[node_n];
  13200. const int n_tasks = n_tasks_arr[node_n];
  13201. struct ggml_compute_params params = {
  13202. /*.type =*/ GGML_TASK_COMPUTE,
  13203. /*.ith =*/ state->ith,
  13204. /*.nth =*/ n_tasks,
  13205. /*.wsize =*/ cplan->work_size,
  13206. /*.wdata =*/ cplan->work_data,
  13207. };
  13208. if (state->ith < n_tasks) {
  13209. ggml_compute_forward(&params, node);
  13210. }
  13211. }
  13212. return 0;
  13213. }
  13214. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13215. if (n_threads <= 0) {
  13216. n_threads = GGML_DEFAULT_N_THREADS;
  13217. }
  13218. size_t work_size = 0;
  13219. struct ggml_cplan cplan;
  13220. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13221. // thread scheduling for the different operations + work buffer size estimation
  13222. for (int i = 0; i < cgraph->n_nodes; i++) {
  13223. int n_tasks = 1;
  13224. struct ggml_tensor * node = cgraph->nodes[i];
  13225. switch (node->op) {
  13226. case GGML_OP_CPY:
  13227. case GGML_OP_DUP:
  13228. {
  13229. n_tasks = n_threads;
  13230. size_t cur = 0;
  13231. if (ggml_is_quantized(node->type)) {
  13232. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13233. }
  13234. work_size = MAX(work_size, cur);
  13235. } break;
  13236. case GGML_OP_ADD:
  13237. case GGML_OP_ADD1:
  13238. {
  13239. n_tasks = n_threads;
  13240. size_t cur = 0;
  13241. if (ggml_is_quantized(node->src0->type)) {
  13242. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks;
  13243. }
  13244. work_size = MAX(work_size, cur);
  13245. } break;
  13246. case GGML_OP_ACC:
  13247. {
  13248. n_tasks = n_threads;
  13249. size_t cur = 0;
  13250. if (ggml_is_quantized(node->src0->type)) {
  13251. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks;
  13252. }
  13253. work_size = MAX(work_size, cur);
  13254. } break;
  13255. case GGML_OP_SUB:
  13256. case GGML_OP_DIV:
  13257. case GGML_OP_SQR:
  13258. case GGML_OP_SQRT:
  13259. case GGML_OP_LOG:
  13260. case GGML_OP_SUM:
  13261. case GGML_OP_SUM_ROWS:
  13262. case GGML_OP_MEAN:
  13263. case GGML_OP_ARGMAX:
  13264. case GGML_OP_REPEAT:
  13265. case GGML_OP_REPEAT_BACK:
  13266. case GGML_OP_ABS:
  13267. case GGML_OP_SGN:
  13268. case GGML_OP_NEG:
  13269. case GGML_OP_STEP:
  13270. case GGML_OP_TANH:
  13271. case GGML_OP_ELU:
  13272. case GGML_OP_RELU:
  13273. {
  13274. n_tasks = 1;
  13275. } break;
  13276. case GGML_OP_MUL:
  13277. case GGML_OP_GELU:
  13278. case GGML_OP_GELU_QUICK:
  13279. case GGML_OP_SILU:
  13280. case GGML_OP_SILU_BACK:
  13281. case GGML_OP_NORM:
  13282. case GGML_OP_RMS_NORM:
  13283. case GGML_OP_RMS_NORM_BACK:
  13284. {
  13285. n_tasks = n_threads;
  13286. } break;
  13287. case GGML_OP_MUL_MAT:
  13288. case GGML_OP_OUT_PROD:
  13289. {
  13290. n_tasks = n_threads;
  13291. // TODO: use different scheduling for different matrix sizes
  13292. //const int nr0 = ggml_nrows(node->src0);
  13293. //const int nr1 = ggml_nrows(node->src1);
  13294. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13295. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13296. size_t cur = 0;
  13297. const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
  13298. #if defined(GGML_USE_CUBLAS)
  13299. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13300. n_tasks = 1; // TODO: this actually is doing nothing
  13301. // the threads are still spinning
  13302. } else
  13303. #elif defined(GGML_USE_CLBLAST)
  13304. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13305. n_tasks = 1; // TODO: this actually is doing nothing
  13306. // the threads are still spinning
  13307. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13308. } else
  13309. #endif
  13310. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13311. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13312. n_tasks = 1; // TODO: this actually is doing nothing
  13313. // the threads are still spinning
  13314. if (node->src0->type != GGML_TYPE_F32) {
  13315. // here we need memory just for single 2D matrix from src0
  13316. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13317. }
  13318. } else
  13319. #endif
  13320. if (node->src1->type != vec_dot_type) {
  13321. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
  13322. } else {
  13323. cur = 0;
  13324. }
  13325. work_size = MAX(work_size, cur);
  13326. } break;
  13327. case GGML_OP_SCALE:
  13328. {
  13329. n_tasks = 1;
  13330. } break;
  13331. case GGML_OP_SET:
  13332. case GGML_OP_CONT:
  13333. case GGML_OP_RESHAPE:
  13334. case GGML_OP_VIEW:
  13335. case GGML_OP_PERMUTE:
  13336. case GGML_OP_TRANSPOSE:
  13337. case GGML_OP_GET_ROWS:
  13338. case GGML_OP_GET_ROWS_BACK:
  13339. case GGML_OP_DIAG:
  13340. case GGML_OP_DIAG_MASK_ZERO:
  13341. {
  13342. n_tasks = 1;
  13343. } break;
  13344. case GGML_OP_DIAG_MASK_INF:
  13345. case GGML_OP_SOFT_MAX:
  13346. case GGML_OP_SOFT_MAX_BACK:
  13347. case GGML_OP_ROPE:
  13348. case GGML_OP_ROPE_BACK:
  13349. {
  13350. n_tasks = n_threads;
  13351. } break;
  13352. case GGML_OP_ALIBI:
  13353. {
  13354. n_tasks = 1; //TODO
  13355. } break;
  13356. case GGML_OP_CLAMP:
  13357. {
  13358. n_tasks = 1; //TODO
  13359. } break;
  13360. case GGML_OP_CONV_1D:
  13361. {
  13362. n_tasks = n_threads;
  13363. GGML_ASSERT(node->src0->ne[3] == 1);
  13364. GGML_ASSERT(node->src1->ne[2] == 1);
  13365. GGML_ASSERT(node->src1->ne[3] == 1);
  13366. size_t cur = 0;
  13367. const int nk = node->src0->ne[0];
  13368. if (node->src0->type == GGML_TYPE_F16 &&
  13369. node->src1->type == GGML_TYPE_F32) {
  13370. cur = sizeof(ggml_fp16_t)*(
  13371. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13372. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13373. );
  13374. } else if (node->src0->type == GGML_TYPE_F32 &&
  13375. node->src1->type == GGML_TYPE_F32) {
  13376. cur = sizeof(float)*(
  13377. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13378. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13379. );
  13380. } else {
  13381. GGML_ASSERT(false);
  13382. }
  13383. work_size = MAX(work_size, cur);
  13384. } break;
  13385. case GGML_OP_CONV_2D:
  13386. {
  13387. n_tasks = n_threads;
  13388. GGML_ASSERT(node->src1->ne[3] == 1);
  13389. const int64_t ne00 = node->src0->ne[0]; // W
  13390. const int64_t ne01 = node->src0->ne[1]; // H
  13391. const int64_t ne02 = node->src0->ne[2]; // C
  13392. const int64_t ne03 = node->src0->ne[3]; // N
  13393. const int64_t ne10 = node->src1->ne[0]; // W
  13394. const int64_t ne11 = node->src1->ne[1]; // H
  13395. const int64_t ne12 = node->src1->ne[2]; // C
  13396. const int64_t nk = ne00*ne01;
  13397. UNUSED(ne02);
  13398. UNUSED(ne03);
  13399. UNUSED(nk);
  13400. size_t cur = 0;
  13401. if (node->src0->type == GGML_TYPE_F16 &&
  13402. node->src1->type == GGML_TYPE_F32) {
  13403. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13404. } else if (node->src0->type == GGML_TYPE_F32 &&
  13405. node->src1->type == GGML_TYPE_F32) {
  13406. cur = sizeof(float)* (ne10*ne11*ne12);
  13407. } else {
  13408. GGML_ASSERT(false);
  13409. }
  13410. work_size = MAX(work_size, cur);
  13411. } break;
  13412. case GGML_OP_FLASH_ATTN:
  13413. {
  13414. n_tasks = n_threads;
  13415. size_t cur = 0;
  13416. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13417. if (node->src1->type == GGML_TYPE_F32) {
  13418. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13419. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13420. }
  13421. if (node->src1->type == GGML_TYPE_F16) {
  13422. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13423. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13424. }
  13425. work_size = MAX(work_size, cur);
  13426. } break;
  13427. case GGML_OP_FLASH_FF:
  13428. {
  13429. n_tasks = n_threads;
  13430. size_t cur = 0;
  13431. if (node->src1->type == GGML_TYPE_F32) {
  13432. cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13433. cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
  13434. }
  13435. if (node->src1->type == GGML_TYPE_F16) {
  13436. cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13437. cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
  13438. }
  13439. work_size = MAX(work_size, cur);
  13440. } break;
  13441. case GGML_OP_FLASH_ATTN_BACK:
  13442. {
  13443. n_tasks = n_threads;
  13444. size_t cur = 0;
  13445. const int64_t D = node->src0->ne[0];
  13446. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13447. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13448. if (node->src1->type == GGML_TYPE_F32) {
  13449. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13450. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13451. }
  13452. if (node->src1->type == GGML_TYPE_F16) {
  13453. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13454. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13455. }
  13456. work_size = MAX(work_size, cur);
  13457. } break;
  13458. case GGML_OP_WIN_PART:
  13459. case GGML_OP_WIN_UNPART:
  13460. case GGML_OP_MAP_UNARY:
  13461. case GGML_OP_MAP_BINARY:
  13462. case GGML_OP_MAP_CUSTOM1:
  13463. case GGML_OP_MAP_CUSTOM2:
  13464. case GGML_OP_MAP_CUSTOM3:
  13465. {
  13466. n_tasks = 1;
  13467. } break;
  13468. case GGML_OP_CROSS_ENTROPY_LOSS:
  13469. {
  13470. n_tasks = n_threads;
  13471. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src0->ne[0]*n_tasks);
  13472. work_size = MAX(work_size, cur);
  13473. } break;
  13474. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13475. {
  13476. n_tasks = n_threads;
  13477. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks;
  13478. work_size = MAX(work_size, cur);
  13479. } break;
  13480. case GGML_OP_NONE:
  13481. {
  13482. n_tasks = 1;
  13483. } break;
  13484. case GGML_OP_COUNT:
  13485. {
  13486. GGML_ASSERT(false);
  13487. } break;
  13488. }
  13489. cplan.n_tasks[i] = n_tasks;
  13490. }
  13491. if (work_size > 0) {
  13492. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13493. }
  13494. cplan.n_threads = n_threads;
  13495. cplan.work_size = work_size;
  13496. cplan.work_data = NULL;
  13497. return cplan;
  13498. }
  13499. void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13500. {
  13501. GGML_ASSERT(cplan);
  13502. GGML_ASSERT(cplan->n_threads > 0);
  13503. if (cplan->work_size > 0) {
  13504. GGML_ASSERT(cplan->work_data);
  13505. }
  13506. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13507. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13508. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13509. }
  13510. }
  13511. }
  13512. const int n_threads = cplan->n_threads;
  13513. struct ggml_compute_state_shared state_shared = {
  13514. /*.cgraph =*/ cgraph,
  13515. /*.cgraph_plan =*/ cplan,
  13516. /*.perf_node_start_cycles =*/ 0,
  13517. /*.perf_node_start_time_us =*/ 0,
  13518. /*.n_threads =*/ n_threads,
  13519. /*.n_active =*/ n_threads,
  13520. /*.node_n =*/ -1,
  13521. };
  13522. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13523. // create thread pool
  13524. if (n_threads > 1) {
  13525. for (int j = 1; j < n_threads; ++j) {
  13526. workers[j] = (struct ggml_compute_state) {
  13527. .thrd = 0,
  13528. .ith = j,
  13529. .shared = &state_shared,
  13530. };
  13531. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13532. GGML_ASSERT(rc == 0);
  13533. }
  13534. }
  13535. workers[0].ith = 0;
  13536. workers[0].shared = &state_shared;
  13537. const int64_t perf_start_cycles = ggml_perf_cycles();
  13538. const int64_t perf_start_time_us = ggml_perf_time_us();
  13539. // this is a work thread too
  13540. ggml_graph_compute_thread(&workers[0]);
  13541. // don't leave affinity set on the main thread
  13542. clear_numa_thread_affinity();
  13543. // join thread pool
  13544. if (n_threads > 1) {
  13545. for (int j = 1; j < n_threads; j++) {
  13546. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13547. GGML_ASSERT(rc == 0);
  13548. }
  13549. }
  13550. // performance stats (graph)
  13551. {
  13552. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13553. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13554. cgraph->perf_runs++;
  13555. cgraph->perf_cycles += perf_cycles_cur;
  13556. cgraph->perf_time_us += perf_time_us_cur;
  13557. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13558. __func__, cgraph->perf_runs,
  13559. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13560. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13561. (double) perf_time_us_cur / 1000.0,
  13562. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13563. }
  13564. }
  13565. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13566. for (int i = 0; i < cgraph->n_nodes; i++) {
  13567. struct ggml_tensor * grad = cgraph->grads[i];
  13568. if (grad) {
  13569. ggml_set_zero(grad);
  13570. }
  13571. }
  13572. }
  13573. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13574. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13575. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13576. GGML_ASSERT(buf);
  13577. cplan.work_data = buf->data;
  13578. ggml_graph_compute(cgraph, &cplan);
  13579. }
  13580. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13581. for (int i = 0; i < cgraph->n_leafs; i++) {
  13582. struct ggml_tensor * leaf = cgraph->leafs[i];
  13583. if (strcmp(leaf->name, name) == 0) {
  13584. return leaf;
  13585. }
  13586. }
  13587. for (int i = 0; i < cgraph->n_nodes; i++) {
  13588. struct ggml_tensor * node = cgraph->nodes[i];
  13589. if (strcmp(node->name, name) == 0) {
  13590. return node;
  13591. }
  13592. }
  13593. return NULL;
  13594. }
  13595. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13596. const int64_t * ne = tensor->ne;
  13597. const size_t * nb = tensor->nb;
  13598. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13599. ggml_type_name(tensor->type),
  13600. ggml_op_name (tensor->op),
  13601. tensor->n_dims,
  13602. ne[0], ne[1], ne[2], ne[3],
  13603. nb[0], nb[1], nb[2], nb[3],
  13604. tensor->data,
  13605. tensor->name);
  13606. }
  13607. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13608. const int64_t * ne = tensor->ne;
  13609. const size_t * nb = tensor->nb;
  13610. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13611. arg,
  13612. ggml_type_name(tensor->type),
  13613. ggml_op_name (tensor->op),
  13614. tensor->n_dims,
  13615. ne[0], ne[1], ne[2], ne[3],
  13616. nb[0], nb[1], nb[2], nb[3],
  13617. tensor->data,
  13618. tensor->name);
  13619. }
  13620. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13621. //assert(cgraph->work == NULL);
  13622. //assert(cgraph->work_size == 0);
  13623. uint64_t size_eval = 0;
  13624. // compute size of intermediate results
  13625. // TODO: does not take into account scratch buffers !!!!
  13626. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13627. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13628. }
  13629. // print
  13630. {
  13631. FILE * fout = stdout;
  13632. fprintf(fout, "\n");
  13633. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13634. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13635. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13636. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13637. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13638. // header
  13639. fprintf(fout, "\n");
  13640. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13641. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13642. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13643. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13644. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13645. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13646. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13647. }
  13648. // header
  13649. fprintf(fout, "\n");
  13650. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13651. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13652. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13653. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13654. if (cgraph->nodes[i]->src0) {
  13655. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13656. }
  13657. if (cgraph->nodes[i]->src1) {
  13658. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13659. }
  13660. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13661. if (cgraph->nodes[i]->opt[j]) {
  13662. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13663. }
  13664. }
  13665. fprintf(fout, "\n");
  13666. }
  13667. fprintf(fout, "\n");
  13668. }
  13669. // write binary data
  13670. {
  13671. FILE * fout = fopen(fname, "wb");
  13672. if (!fout) {
  13673. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13674. return;
  13675. }
  13676. // header
  13677. {
  13678. const uint32_t magic = GGML_FILE_MAGIC;
  13679. const uint32_t version = GGML_FILE_VERSION;
  13680. const uint32_t n_leafs = cgraph->n_leafs;
  13681. const uint32_t nodes = cgraph->n_nodes;
  13682. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13683. fwrite(&version, sizeof(uint32_t), 1, fout);
  13684. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13685. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13686. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13687. }
  13688. // leafs
  13689. {
  13690. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13691. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13692. const uint32_t type = tensor->type;
  13693. const uint32_t op = tensor->op;
  13694. const uint32_t n_dims = tensor->n_dims;
  13695. fwrite(&type, sizeof(uint32_t), 1, fout);
  13696. fwrite(&op, sizeof(uint32_t), 1, fout);
  13697. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13698. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13699. const uint64_t ne = tensor->ne[j];
  13700. const uint64_t nb = tensor->nb[j];
  13701. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13702. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13703. }
  13704. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13705. // dump the data
  13706. // TODO: pad this to 32 byte boundary
  13707. {
  13708. const size_t size = ggml_nbytes(tensor);
  13709. fwrite(tensor->data, sizeof(char), size, fout);
  13710. }
  13711. }
  13712. }
  13713. // nodes
  13714. {
  13715. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13716. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13717. const uint32_t type = tensor->type;
  13718. const uint32_t op = tensor->op;
  13719. const uint32_t n_dims = tensor->n_dims;
  13720. fwrite(&type, sizeof(uint32_t), 1, fout);
  13721. fwrite(&op, sizeof(uint32_t), 1, fout);
  13722. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13723. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13724. const uint64_t ne = tensor->ne[j];
  13725. const uint64_t nb = tensor->nb[j];
  13726. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13727. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13728. }
  13729. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13730. // output the op arguments
  13731. {
  13732. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13733. args[0] = tensor->src0;
  13734. args[1] = tensor->src1;
  13735. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13736. args[2 + j] = tensor->opt[j];
  13737. }
  13738. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13739. if (args[j]) {
  13740. int32_t idx = -1;
  13741. // check if leaf
  13742. {
  13743. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13744. if (args[j] == cgraph->leafs[k]) {
  13745. idx = k;
  13746. break;
  13747. }
  13748. }
  13749. }
  13750. // check if node
  13751. if (idx == -1) {
  13752. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13753. if (args[j] == cgraph->nodes[k]) {
  13754. idx = GGML_MAX_NODES + k;
  13755. break;
  13756. }
  13757. }
  13758. }
  13759. if (idx == -1) {
  13760. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13761. return;
  13762. }
  13763. fwrite(&idx, sizeof(int32_t), 1, fout);
  13764. } else {
  13765. const int32_t nul = -1;
  13766. fwrite(&nul, sizeof(int32_t), 1, fout);
  13767. }
  13768. }
  13769. }
  13770. }
  13771. }
  13772. fclose(fout);
  13773. }
  13774. }
  13775. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13776. assert(*ctx_data == NULL);
  13777. assert(*ctx_eval == NULL);
  13778. struct ggml_cgraph result = { 0 };
  13779. struct ggml_tensor * data = NULL;
  13780. // read file into data
  13781. {
  13782. FILE * fin = fopen(fname, "rb");
  13783. if (!fin) {
  13784. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13785. return result;
  13786. }
  13787. size_t fsize = 0;
  13788. fseek(fin, 0, SEEK_END);
  13789. fsize = ftell(fin);
  13790. fseek(fin, 0, SEEK_SET);
  13791. // create the data context
  13792. {
  13793. const size_t overhead = 1*ggml_tensor_overhead();
  13794. struct ggml_init_params params = {
  13795. .mem_size = fsize + overhead,
  13796. .mem_buffer = NULL,
  13797. .no_alloc = false,
  13798. };
  13799. *ctx_data = ggml_init(params);
  13800. if (!*ctx_data) {
  13801. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13802. fclose(fin);
  13803. return result;
  13804. }
  13805. }
  13806. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13807. {
  13808. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13809. if (ret != fsize) {
  13810. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13811. fclose(fin);
  13812. return result;
  13813. }
  13814. }
  13815. fclose(fin);
  13816. }
  13817. // populate result
  13818. {
  13819. char * ptr = (char *) data->data;
  13820. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13821. if (magic != GGML_FILE_MAGIC) {
  13822. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13823. return result;
  13824. }
  13825. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13826. if (version != GGML_FILE_VERSION) {
  13827. fprintf(stderr, "%s: invalid version number\n", __func__);
  13828. return result;
  13829. }
  13830. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13831. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13832. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13833. result.n_leafs = n_leafs;
  13834. result.n_nodes = n_nodes;
  13835. // create the data context
  13836. {
  13837. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13838. struct ggml_init_params params = {
  13839. .mem_size = size_eval + overhead,
  13840. .mem_buffer = NULL,
  13841. .no_alloc = true,
  13842. };
  13843. *ctx_eval = ggml_init(params);
  13844. if (!*ctx_eval) {
  13845. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13846. return result;
  13847. }
  13848. }
  13849. // leafs
  13850. {
  13851. uint32_t type;
  13852. uint32_t op;
  13853. uint32_t n_dims;
  13854. for (uint32_t i = 0; i < n_leafs; ++i) {
  13855. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13856. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13857. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13858. int64_t ne[GGML_MAX_DIMS];
  13859. size_t nb[GGML_MAX_DIMS];
  13860. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13861. uint64_t ne_cur;
  13862. uint64_t nb_cur;
  13863. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13864. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13865. ne[j] = ne_cur;
  13866. nb[j] = nb_cur;
  13867. }
  13868. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13869. tensor->op = (enum ggml_op) op;
  13870. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13871. tensor->data = (void *) ptr;
  13872. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13873. tensor->nb[j] = nb[j];
  13874. }
  13875. result.leafs[i] = tensor;
  13876. ptr += ggml_nbytes(tensor);
  13877. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13878. }
  13879. }
  13880. ggml_set_no_alloc(*ctx_eval, false);
  13881. // nodes
  13882. {
  13883. uint32_t type;
  13884. uint32_t op;
  13885. uint32_t n_dims;
  13886. for (uint32_t i = 0; i < n_nodes; ++i) {
  13887. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13888. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13889. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13890. enum ggml_op eop = (enum ggml_op) op;
  13891. int64_t ne[GGML_MAX_DIMS];
  13892. size_t nb[GGML_MAX_DIMS];
  13893. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13894. uint64_t ne_cur;
  13895. uint64_t nb_cur;
  13896. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13897. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13898. ne[j] = ne_cur;
  13899. nb[j] = nb_cur;
  13900. }
  13901. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13902. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  13903. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13904. // parse args
  13905. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13906. const int32_t arg_idx = ptr_arg_idx[j];
  13907. if (arg_idx == -1) {
  13908. continue;
  13909. }
  13910. if (arg_idx < GGML_MAX_NODES) {
  13911. args[j] = result.leafs[arg_idx];
  13912. } else {
  13913. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13914. }
  13915. }
  13916. // create the tensor
  13917. // "view" operations are handled differently
  13918. // TODO: handle inplace ops - currently a copy is always made
  13919. struct ggml_tensor * tensor = NULL;
  13920. switch (eop) {
  13921. // TODO: implement other view ops
  13922. case GGML_OP_RESHAPE:
  13923. {
  13924. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13925. } break;
  13926. case GGML_OP_VIEW:
  13927. {
  13928. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13929. uint64_t offs;
  13930. memcpy(&offs, args[2]->data, sizeof(offs));
  13931. tensor->data = ((char *) tensor->data) + offs;
  13932. } break;
  13933. case GGML_OP_TRANSPOSE:
  13934. {
  13935. tensor = ggml_transpose(*ctx_eval, args[0]);
  13936. } break;
  13937. case GGML_OP_PERMUTE:
  13938. {
  13939. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13940. } break;
  13941. default:
  13942. {
  13943. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13944. tensor->op = eop;
  13945. } break;
  13946. }
  13947. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13948. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13949. tensor->nb[j] = nb[j];
  13950. }
  13951. tensor->src0 = args[0];
  13952. tensor->src1 = args[1];
  13953. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13954. tensor->opt[j] = args[2 + j];
  13955. }
  13956. result.nodes[i] = tensor;
  13957. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13958. }
  13959. }
  13960. }
  13961. return result;
  13962. }
  13963. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13964. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13965. GGML_PRINT("=== GRAPH ===\n");
  13966. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13967. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13968. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13969. for (int i = 0; i < cgraph->n_nodes; i++) {
  13970. struct ggml_tensor * node = cgraph->nodes[i];
  13971. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13972. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13973. i,
  13974. node->ne[0], node->ne[1], node->ne[2],
  13975. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13976. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13977. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13978. (double) node->perf_time_us / 1000.0,
  13979. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13980. }
  13981. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13982. for (int i = 0; i < cgraph->n_leafs; i++) {
  13983. struct ggml_tensor * node = cgraph->leafs[i];
  13984. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13985. i,
  13986. node->ne[0], node->ne[1],
  13987. GGML_OP_NAME[node->op]);
  13988. }
  13989. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13990. if (perf_total_per_op_us[i] == 0) {
  13991. continue;
  13992. }
  13993. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  13994. }
  13995. GGML_PRINT("========================================\n");
  13996. }
  13997. // check if node is part of the graph
  13998. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13999. if (cgraph == NULL) {
  14000. return true;
  14001. }
  14002. for (int i = 0; i < cgraph->n_nodes; i++) {
  14003. if (cgraph->nodes[i] == node) {
  14004. return true;
  14005. }
  14006. }
  14007. return false;
  14008. }
  14009. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14010. for (int i = 0; i < cgraph->n_nodes; i++) {
  14011. struct ggml_tensor * parent = cgraph->nodes[i];
  14012. if (parent->grad == node) {
  14013. return parent;
  14014. }
  14015. }
  14016. return NULL;
  14017. }
  14018. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14019. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14020. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14021. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14022. gparent0 ? (void *) gparent0 : (void *) parent,
  14023. gparent0 ? "g" : "x",
  14024. gparent ? (void *) gparent : (void *) node,
  14025. gparent ? "g" : "x",
  14026. gparent ? "empty" : "vee",
  14027. gparent ? "dashed" : "solid",
  14028. label);
  14029. }
  14030. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14031. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14032. (void *) parent, "x",
  14033. (void *) node, "x",
  14034. label);
  14035. }
  14036. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14037. char color[16];
  14038. FILE * fp = fopen(filename, "w");
  14039. GGML_ASSERT(fp);
  14040. fprintf(fp, "digraph G {\n");
  14041. fprintf(fp, " newrank = true;\n");
  14042. fprintf(fp, " rankdir = LR;\n");
  14043. for (int i = 0; i < gb->n_nodes; i++) {
  14044. struct ggml_tensor * node = gb->nodes[i];
  14045. if (ggml_graph_get_parent(gb, node) != NULL) {
  14046. continue;
  14047. }
  14048. if (node->is_param) {
  14049. snprintf(color, sizeof(color), "yellow");
  14050. } else if (node->grad) {
  14051. if (ggml_graph_find(gf, node)) {
  14052. snprintf(color, sizeof(color), "green");
  14053. } else {
  14054. snprintf(color, sizeof(color), "lightblue");
  14055. }
  14056. } else {
  14057. snprintf(color, sizeof(color), "white");
  14058. }
  14059. fprintf(fp, " \"%p\" [ "
  14060. "style = filled; fillcolor = %s; shape = record; "
  14061. "label=\"",
  14062. (void *) node, color);
  14063. if (strlen(node->name) > 0) {
  14064. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14065. } else {
  14066. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14067. }
  14068. if (node->n_dims == 2) {
  14069. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14070. } else {
  14071. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14072. }
  14073. if (node->grad) {
  14074. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14075. } else {
  14076. fprintf(fp, "\"; ]\n");
  14077. }
  14078. }
  14079. for (int i = 0; i < gb->n_leafs; i++) {
  14080. struct ggml_tensor * node = gb->leafs[i];
  14081. snprintf(color, sizeof(color), "pink");
  14082. fprintf(fp, " \"%p\" [ "
  14083. "style = filled; fillcolor = %s; shape = record; "
  14084. "label=\"<x>",
  14085. (void *) node, color);
  14086. if (strlen(node->name) > 0) {
  14087. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14088. } else {
  14089. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14090. }
  14091. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14092. if (ggml_nelements(node) < 5) {
  14093. fprintf(fp, " | (");
  14094. for (int j = 0; j < ggml_nelements(node); j++) {
  14095. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14096. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14097. }
  14098. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14099. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14100. }
  14101. else {
  14102. fprintf(fp, "#");
  14103. }
  14104. if (j < ggml_nelements(node) - 1) {
  14105. fprintf(fp, ", ");
  14106. }
  14107. }
  14108. fprintf(fp, ")");
  14109. }
  14110. fprintf(fp, "\"; ]\n");
  14111. }
  14112. for (int i = 0; i < gb->n_nodes; i++) {
  14113. struct ggml_tensor * node = gb->nodes[i];
  14114. if (node->src0) {
  14115. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14116. }
  14117. if (node->src1) {
  14118. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14119. }
  14120. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14121. if (node->opt[j]) {
  14122. char label[16];
  14123. snprintf(label, sizeof(label), "opt %d", j);
  14124. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14125. }
  14126. }
  14127. }
  14128. for (int i = 0; i < gb->n_leafs; i++) {
  14129. struct ggml_tensor * node = gb->leafs[i];
  14130. if (node->src0) {
  14131. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14132. }
  14133. if (node->src1) {
  14134. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14135. }
  14136. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14137. if (node->opt[j]) {
  14138. char label[16];
  14139. snprintf(label, sizeof(label), "opt %d", j);
  14140. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14141. }
  14142. }
  14143. }
  14144. fprintf(fp, "}\n");
  14145. fclose(fp);
  14146. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14147. }
  14148. ////////////////////////////////////////////////////////////////////////////////
  14149. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14150. int i = 0;
  14151. for (int p = 0; p < np; ++p) {
  14152. const int64_t ne = ggml_nelements(ps[p]) ;
  14153. // TODO: add function to set tensor from array
  14154. for (int64_t j = 0; j < ne; ++j) {
  14155. ggml_set_f32_1d(ps[p], j, x[i++]);
  14156. }
  14157. }
  14158. }
  14159. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14160. int i = 0;
  14161. for (int p = 0; p < np; ++p) {
  14162. const int64_t ne = ggml_nelements(ps[p]) ;
  14163. // TODO: add function to get all elements at once
  14164. for (int64_t j = 0; j < ne; ++j) {
  14165. x[i++] = ggml_get_f32_1d(ps[p], j);
  14166. }
  14167. }
  14168. }
  14169. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14170. int i = 0;
  14171. for (int p = 0; p < np; ++p) {
  14172. const int64_t ne = ggml_nelements(ps[p]) ;
  14173. // TODO: add function to get all elements at once
  14174. for (int64_t j = 0; j < ne; ++j) {
  14175. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14176. }
  14177. }
  14178. }
  14179. //
  14180. // ADAM
  14181. //
  14182. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14183. //
  14184. static enum ggml_opt_result ggml_opt_adam(
  14185. struct ggml_context * ctx,
  14186. struct ggml_opt_context * opt,
  14187. struct ggml_opt_params params,
  14188. struct ggml_tensor * f,
  14189. struct ggml_cgraph * gf,
  14190. struct ggml_cgraph * gb) {
  14191. GGML_ASSERT(ggml_is_scalar(f));
  14192. // these will store the parameters we want to optimize
  14193. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14194. int np = 0;
  14195. int nx = 0;
  14196. for (int i = 0; i < gf->n_nodes; ++i) {
  14197. if (gf->nodes[i]->is_param) {
  14198. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14199. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14200. ps[np++] = gf->nodes[i];
  14201. nx += ggml_nelements(gf->nodes[i]);
  14202. }
  14203. }
  14204. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14205. int iter = opt->iter;
  14206. ggml_opt_init(opt->ctx, opt, params, nx);
  14207. opt->iter = iter;
  14208. }
  14209. // constants
  14210. const float sched = params.adam.sched;
  14211. const float decay = params.adam.decay * sched;
  14212. const float alpha = params.adam.alpha * sched;
  14213. const float beta1 = params.adam.beta1;
  14214. const float beta2 = params.adam.beta2;
  14215. const float eps = params.adam.eps;
  14216. float * x = opt->adam.x->data; // view of the parameters
  14217. float * g1 = opt->adam.g1->data; // gradient
  14218. float * g2 = opt->adam.g2->data; // gradient squared
  14219. float * m = opt->adam.m->data; // first moment
  14220. float * v = opt->adam.v->data; // second moment
  14221. float * mh = opt->adam.mh->data; // first moment hat
  14222. float * vh = opt->adam.vh->data; // second moment hat
  14223. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14224. // update view
  14225. ggml_opt_get_params(np, ps, x);
  14226. // compute the function value
  14227. ggml_graph_reset (gf);
  14228. ggml_set_f32 (f->grad, 1.0f);
  14229. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14230. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14231. opt->adam.fx_best = opt->adam.fx_prev;
  14232. if (pf) {
  14233. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14234. }
  14235. // initialize
  14236. if (opt->just_initialized) {
  14237. opt->adam.n_no_improvement = 0;
  14238. opt->just_initialized = false;
  14239. }
  14240. float * fx_best = &opt->adam.fx_best;
  14241. float * fx_prev = &opt->adam.fx_prev;
  14242. int * n_no_improvement = &opt->adam.n_no_improvement;
  14243. int iter0 = opt->iter;
  14244. // run the optimizer
  14245. for (int t = 0; t < params.adam.n_iter; ++t) {
  14246. opt->iter = iter0 + t + 1;
  14247. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14248. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14249. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14250. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14251. for (int i = 0; i < np; ++i) {
  14252. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14253. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14254. }
  14255. const int64_t t_start_wall = ggml_time_us();
  14256. const int64_t t_start_cpu = ggml_cycles();
  14257. UNUSED(t_start_wall);
  14258. UNUSED(t_start_cpu);
  14259. {
  14260. // update the gradient
  14261. ggml_opt_get_grad(np, ps, g1);
  14262. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14263. ggml_vec_scale_f32(nx, m, beta1);
  14264. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14265. // g2 = g1^2
  14266. ggml_vec_sqr_f32 (nx, g2, g1);
  14267. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14268. ggml_vec_scale_f32(nx, v, beta2);
  14269. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14270. // m^hat = m_t / (1 - beta1^t)
  14271. // v^hat = v_t / (1 - beta2^t)
  14272. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14273. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14274. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14275. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14276. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14277. ggml_vec_cpy_f32 (nx, mh, m);
  14278. ggml_vec_cpy_f32 (nx, vh, v);
  14279. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14280. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14281. ggml_vec_sqrt_f32 (nx, vh, vh);
  14282. ggml_vec_acc1_f32 (nx, vh, eps);
  14283. ggml_vec_div_f32 (nx, mh, mh, vh);
  14284. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14285. ggml_vec_sub_f32 (nx, x, x, mh);
  14286. // update the parameters
  14287. ggml_opt_set_params(np, ps, x);
  14288. }
  14289. ggml_graph_reset (gf);
  14290. ggml_set_f32 (f->grad, 1.0f);
  14291. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14292. const float fx = ggml_get_f32_1d(f, 0);
  14293. // check convergence
  14294. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14295. GGML_PRINT_DEBUG("converged\n");
  14296. return GGML_OPT_OK;
  14297. }
  14298. // delta-based convergence test
  14299. if (pf != NULL) {
  14300. // need at least params.past iterations to start checking for convergence
  14301. if (params.past <= iter0 + t) {
  14302. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14303. if (fabsf(rate) < params.delta) {
  14304. return GGML_OPT_OK;
  14305. }
  14306. }
  14307. pf[(iter0 + t)%params.past] = fx;
  14308. }
  14309. // check for improvement
  14310. if (params.max_no_improvement > 0) {
  14311. if (fx_best[0] > fx) {
  14312. fx_best[0] = fx;
  14313. n_no_improvement[0] = 0;
  14314. } else {
  14315. ++n_no_improvement[0];
  14316. if (n_no_improvement[0] >= params.max_no_improvement) {
  14317. return GGML_OPT_OK;
  14318. }
  14319. }
  14320. }
  14321. fx_prev[0] = fx;
  14322. {
  14323. const int64_t t_end_cpu = ggml_cycles();
  14324. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14325. UNUSED(t_end_cpu);
  14326. const int64_t t_end_wall = ggml_time_us();
  14327. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14328. UNUSED(t_end_wall);
  14329. }
  14330. }
  14331. return GGML_OPT_DID_NOT_CONVERGE;
  14332. }
  14333. //
  14334. // L-BFGS
  14335. //
  14336. // the L-BFGS implementation below is based on the following implementation:
  14337. //
  14338. // https://github.com/chokkan/liblbfgs
  14339. //
  14340. struct ggml_lbfgs_iteration_data {
  14341. float alpha;
  14342. float ys;
  14343. float * s;
  14344. float * y;
  14345. };
  14346. static enum ggml_opt_result linesearch_backtracking(
  14347. struct ggml_context * ctx,
  14348. const struct ggml_opt_params * params,
  14349. int nx,
  14350. float * x,
  14351. float * fx,
  14352. float * g,
  14353. float * d,
  14354. float * step,
  14355. const float * xp,
  14356. struct ggml_tensor * f,
  14357. struct ggml_cgraph * gf,
  14358. struct ggml_cgraph * gb,
  14359. const int np,
  14360. struct ggml_tensor * ps[]) {
  14361. int count = 0;
  14362. float width = 0.0f;
  14363. float dg = 0.0f;
  14364. float finit = 0.0f;
  14365. float dginit = 0.0f;
  14366. float dgtest = 0.0f;
  14367. const float dec = 0.5f;
  14368. const float inc = 2.1f;
  14369. if (*step <= 0.f) {
  14370. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14371. }
  14372. // compute the initial gradient in the search direction
  14373. ggml_vec_dot_f32(nx, &dginit, g, d);
  14374. // make sure that d points to a descent direction
  14375. if (0 < dginit) {
  14376. return GGML_LINESEARCH_FAIL;
  14377. }
  14378. // initialize local variables
  14379. finit = *fx;
  14380. dgtest = params->lbfgs.ftol*dginit;
  14381. while (true) {
  14382. ggml_vec_cpy_f32(nx, x, xp);
  14383. ggml_vec_mad_f32(nx, x, d, *step);
  14384. // evaluate the function and gradient values
  14385. {
  14386. ggml_opt_set_params(np, ps, x);
  14387. ggml_graph_reset (gf);
  14388. ggml_set_f32 (f->grad, 1.0f);
  14389. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14390. ggml_opt_get_grad(np, ps, g);
  14391. *fx = ggml_get_f32_1d(f, 0);
  14392. }
  14393. ++count;
  14394. if (*fx > finit + (*step)*dgtest) {
  14395. width = dec;
  14396. } else {
  14397. // Armijo condition is satisfied
  14398. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14399. return count;
  14400. }
  14401. ggml_vec_dot_f32(nx, &dg, g, d);
  14402. // check the Wolfe condition
  14403. if (dg < params->lbfgs.wolfe * dginit) {
  14404. width = inc;
  14405. } else {
  14406. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14407. // regular Wolfe conditions
  14408. return count;
  14409. }
  14410. if(dg > -params->lbfgs.wolfe*dginit) {
  14411. width = dec;
  14412. } else {
  14413. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14414. return count;
  14415. }
  14416. return count;
  14417. }
  14418. }
  14419. if (*step < params->lbfgs.min_step) {
  14420. return GGML_LINESEARCH_MINIMUM_STEP;
  14421. }
  14422. if (*step > params->lbfgs.max_step) {
  14423. return GGML_LINESEARCH_MAXIMUM_STEP;
  14424. }
  14425. if (params->lbfgs.max_linesearch <= count) {
  14426. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14427. }
  14428. (*step) *= width;
  14429. }
  14430. return GGML_LINESEARCH_FAIL;
  14431. }
  14432. static enum ggml_opt_result ggml_opt_lbfgs(
  14433. struct ggml_context * ctx,
  14434. struct ggml_opt_context * opt,
  14435. struct ggml_opt_params params,
  14436. struct ggml_tensor * f,
  14437. struct ggml_cgraph * gf,
  14438. struct ggml_cgraph * gb) {
  14439. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14440. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14441. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14442. return GGML_OPT_INVALID_WOLFE;
  14443. }
  14444. }
  14445. const int m = params.lbfgs.m;
  14446. // these will store the parameters we want to optimize
  14447. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14448. int np = 0;
  14449. int nx = 0;
  14450. for (int i = 0; i < gf->n_nodes; ++i) {
  14451. if (gf->nodes[i]->is_param) {
  14452. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14453. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14454. ps[np++] = gf->nodes[i];
  14455. nx += ggml_nelements(gf->nodes[i]);
  14456. }
  14457. }
  14458. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14459. int iter = opt->iter;
  14460. ggml_opt_init(ctx, opt, params, nx);
  14461. opt->iter = iter;
  14462. }
  14463. float * x = opt->lbfgs.x->data; // current parameters
  14464. float * xp = opt->lbfgs.xp->data; // previous parameters
  14465. float * g = opt->lbfgs.g->data; // current gradient
  14466. float * gp = opt->lbfgs.gp->data; // previous gradient
  14467. float * d = opt->lbfgs.d->data; // search direction
  14468. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14469. float fx = 0.0f; // cost function value
  14470. float xnorm = 0.0f; // ||x||
  14471. float gnorm = 0.0f; // ||g||
  14472. // initialize x from the graph nodes
  14473. ggml_opt_get_params(np, ps, x);
  14474. // the L-BFGS memory
  14475. float * lm_alpha = opt->lbfgs.lmal->data;
  14476. float * lm_ys = opt->lbfgs.lmys->data;
  14477. float * lm_s = opt->lbfgs.lms->data;
  14478. float * lm_y = opt->lbfgs.lmy->data;
  14479. // evaluate the function value and its gradient
  14480. {
  14481. ggml_opt_set_params(np, ps, x);
  14482. ggml_graph_reset (gf);
  14483. ggml_set_f32 (f->grad, 1.0f);
  14484. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14485. ggml_opt_get_grad(np, ps, g);
  14486. fx = ggml_get_f32_1d(f, 0);
  14487. }
  14488. // search direction = -gradient
  14489. ggml_vec_neg_f32(nx, d, g);
  14490. // ||x||, ||g||
  14491. ggml_vec_norm_f32(nx, &xnorm, x);
  14492. ggml_vec_norm_f32(nx, &gnorm, g);
  14493. if (xnorm < 1.0f) {
  14494. xnorm = 1.0f;
  14495. }
  14496. // already optimized
  14497. if (gnorm/xnorm <= params.lbfgs.eps) {
  14498. return GGML_OPT_OK;
  14499. }
  14500. if (opt->just_initialized) {
  14501. if (pf) {
  14502. pf[0] = fx;
  14503. }
  14504. opt->lbfgs.fx_best = fx;
  14505. // initial step
  14506. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14507. opt->lbfgs.j = 0;
  14508. opt->lbfgs.k = 1;
  14509. opt->lbfgs.end = 0;
  14510. opt->lbfgs.n_no_improvement = 0;
  14511. opt->just_initialized = false;
  14512. }
  14513. float * fx_best = &opt->lbfgs.fx_best;
  14514. float * step = &opt->lbfgs.step;
  14515. int * j = &opt->lbfgs.j;
  14516. int * k = &opt->lbfgs.k;
  14517. int * end = &opt->lbfgs.end;
  14518. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14519. int ls = 0;
  14520. int bound = 0;
  14521. float ys = 0.0f;
  14522. float yy = 0.0f;
  14523. float beta = 0.0f;
  14524. int it = 0;
  14525. while (true) {
  14526. // store the current position and gradient vectors
  14527. ggml_vec_cpy_f32(nx, xp, x);
  14528. ggml_vec_cpy_f32(nx, gp, g);
  14529. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14530. if (ls < 0) {
  14531. // linesearch failed - go back to the previous point and return
  14532. ggml_vec_cpy_f32(nx, x, xp);
  14533. ggml_vec_cpy_f32(nx, g, gp);
  14534. return ls;
  14535. }
  14536. ggml_vec_norm_f32(nx, &xnorm, x);
  14537. ggml_vec_norm_f32(nx, &gnorm, g);
  14538. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14539. if (xnorm < 1.0f) {
  14540. xnorm = 1.0f;
  14541. }
  14542. if (gnorm/xnorm <= params.lbfgs.eps) {
  14543. // converged
  14544. return GGML_OPT_OK;
  14545. }
  14546. // delta-based convergence test
  14547. if (pf != NULL) {
  14548. // need at least params.past iterations to start checking for convergence
  14549. if (params.past <= k[0]) {
  14550. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14551. if (fabsf(rate) < params.delta) {
  14552. return GGML_OPT_OK;
  14553. }
  14554. }
  14555. pf[k[0]%params.past] = fx;
  14556. }
  14557. // check for improvement
  14558. if (params.max_no_improvement > 0) {
  14559. if (fx < fx_best[0]) {
  14560. fx_best[0] = fx;
  14561. n_no_improvement[0] = 0;
  14562. } else {
  14563. n_no_improvement[0]++;
  14564. if (n_no_improvement[0] >= params.max_no_improvement) {
  14565. return GGML_OPT_OK;
  14566. }
  14567. }
  14568. }
  14569. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14570. // reached the maximum number of iterations
  14571. return GGML_OPT_DID_NOT_CONVERGE;
  14572. }
  14573. // update vectors s and y:
  14574. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14575. // y_{k+1} = g_{k+1} - g_{k}.
  14576. //
  14577. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14578. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14579. // compute scalars ys and yy:
  14580. // ys = y^t \cdot s -> 1 / \rho.
  14581. // yy = y^t \cdot y.
  14582. //
  14583. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14584. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14585. lm_ys[end[0]] = ys;
  14586. // find new search direction
  14587. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14588. bound = (m <= k[0]) ? m : k[0];
  14589. k[0]++;
  14590. it++;
  14591. end[0] = (end[0] + 1)%m;
  14592. // initialize search direction with -g
  14593. ggml_vec_neg_f32(nx, d, g);
  14594. j[0] = end[0];
  14595. for (int i = 0; i < bound; ++i) {
  14596. j[0] = (j[0] + m - 1) % m;
  14597. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14598. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14599. lm_alpha[j[0]] /= lm_ys[j[0]];
  14600. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14601. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14602. }
  14603. ggml_vec_scale_f32(nx, d, ys/yy);
  14604. for (int i = 0; i < bound; ++i) {
  14605. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14606. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14607. beta /= lm_ys[j[0]];
  14608. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14609. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14610. j[0] = (j[0] + 1)%m;
  14611. }
  14612. step[0] = 1.0;
  14613. }
  14614. return GGML_OPT_DID_NOT_CONVERGE;
  14615. }
  14616. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14617. struct ggml_opt_params result;
  14618. switch (type) {
  14619. case GGML_OPT_ADAM:
  14620. {
  14621. result = (struct ggml_opt_params) {
  14622. .type = GGML_OPT_ADAM,
  14623. .n_threads = 1,
  14624. .past = 0,
  14625. .delta = 1e-5f,
  14626. .max_no_improvement = 100,
  14627. .print_forward_graph = true,
  14628. .print_backward_graph = true,
  14629. .adam = {
  14630. .n_iter = 10000,
  14631. .sched = 1.000f,
  14632. .decay = 0.001f,
  14633. .alpha = 0.001f,
  14634. .beta1 = 0.9f,
  14635. .beta2 = 0.999f,
  14636. .eps = 1e-8f,
  14637. .eps_f = 1e-5f,
  14638. .eps_g = 1e-3f,
  14639. },
  14640. };
  14641. } break;
  14642. case GGML_OPT_LBFGS:
  14643. {
  14644. result = (struct ggml_opt_params) {
  14645. .type = GGML_OPT_LBFGS,
  14646. .n_threads = 1,
  14647. .past = 0,
  14648. .delta = 1e-5f,
  14649. .max_no_improvement = 0,
  14650. .print_forward_graph = true,
  14651. .print_backward_graph = true,
  14652. .lbfgs = {
  14653. .m = 6,
  14654. .n_iter = 100,
  14655. .max_linesearch = 20,
  14656. .eps = 1e-5f,
  14657. .ftol = 1e-4f,
  14658. .wolfe = 0.9f,
  14659. .min_step = 1e-20f,
  14660. .max_step = 1e+20f,
  14661. .linesearch = GGML_LINESEARCH_DEFAULT,
  14662. },
  14663. };
  14664. } break;
  14665. }
  14666. return result;
  14667. }
  14668. GGML_API void ggml_opt_init(
  14669. struct ggml_context * ctx,
  14670. struct ggml_opt_context * opt,
  14671. struct ggml_opt_params params,
  14672. int64_t nx) {
  14673. opt->ctx = ctx;
  14674. opt->params = params;
  14675. opt->iter = 0;
  14676. opt->nx = nx;
  14677. opt->just_initialized = true;
  14678. switch (opt->params.type) {
  14679. case GGML_OPT_ADAM:
  14680. {
  14681. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14682. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14683. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14684. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14685. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14686. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14687. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14688. opt->adam.pf = params.past > 0
  14689. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14690. : NULL;
  14691. ggml_set_zero(opt->adam.x);
  14692. ggml_set_zero(opt->adam.g1);
  14693. ggml_set_zero(opt->adam.g2);
  14694. ggml_set_zero(opt->adam.m);
  14695. ggml_set_zero(opt->adam.v);
  14696. ggml_set_zero(opt->adam.mh);
  14697. ggml_set_zero(opt->adam.vh);
  14698. if (opt->adam.pf) {
  14699. ggml_set_zero(opt->adam.pf);
  14700. }
  14701. } break;
  14702. case GGML_OPT_LBFGS:
  14703. {
  14704. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14705. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14706. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14707. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14708. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14709. opt->lbfgs.pf = params.past > 0
  14710. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14711. : NULL;
  14712. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14713. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14714. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14715. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14716. ggml_set_zero(opt->lbfgs.x);
  14717. ggml_set_zero(opt->lbfgs.xp);
  14718. ggml_set_zero(opt->lbfgs.g);
  14719. ggml_set_zero(opt->lbfgs.gp);
  14720. ggml_set_zero(opt->lbfgs.d);
  14721. if (opt->lbfgs.pf) {
  14722. ggml_set_zero(opt->lbfgs.pf);
  14723. }
  14724. ggml_set_zero(opt->lbfgs.lmal);
  14725. ggml_set_zero(opt->lbfgs.lmys);
  14726. ggml_set_zero(opt->lbfgs.lms);
  14727. ggml_set_zero(opt->lbfgs.lmy);
  14728. } break;
  14729. }
  14730. }
  14731. enum ggml_opt_result ggml_opt(
  14732. struct ggml_context * ctx,
  14733. struct ggml_opt_params params,
  14734. struct ggml_tensor * f) {
  14735. bool free_ctx = false;
  14736. if (ctx == NULL) {
  14737. struct ggml_init_params params_ctx = {
  14738. .mem_size = 16*1024*1024,
  14739. .mem_buffer = NULL,
  14740. .no_alloc = false,
  14741. };
  14742. ctx = ggml_init(params_ctx);
  14743. if (ctx == NULL) {
  14744. return GGML_OPT_NO_CONTEXT;
  14745. }
  14746. free_ctx = true;
  14747. }
  14748. enum ggml_opt_result result = GGML_OPT_OK;
  14749. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14750. ggml_opt_init(ctx, opt, params, 0);
  14751. result = ggml_opt_resume(ctx, opt, f);
  14752. if (free_ctx) {
  14753. ggml_free(ctx);
  14754. }
  14755. return result;
  14756. }
  14757. enum ggml_opt_result ggml_opt_resume(
  14758. struct ggml_context * ctx,
  14759. struct ggml_opt_context * opt,
  14760. struct ggml_tensor * f) {
  14761. // build forward + backward compute graphs
  14762. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14763. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14764. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14765. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14766. *gf = ggml_build_forward (f);
  14767. *gb = ggml_build_backward(ctx, gf, true);
  14768. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14769. }
  14770. enum ggml_opt_result ggml_opt_resume_g(
  14771. struct ggml_context * ctx,
  14772. struct ggml_opt_context * opt,
  14773. struct ggml_tensor * f,
  14774. struct ggml_cgraph * gf,
  14775. struct ggml_cgraph * gb) {
  14776. // build forward + backward compute graphs
  14777. enum ggml_opt_result result = GGML_OPT_OK;
  14778. switch (opt->params.type) {
  14779. case GGML_OPT_ADAM:
  14780. {
  14781. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14782. } break;
  14783. case GGML_OPT_LBFGS:
  14784. {
  14785. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14786. } break;
  14787. }
  14788. if (opt->params.print_forward_graph) {
  14789. ggml_graph_print (gf);
  14790. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14791. }
  14792. if (opt->params.print_backward_graph) {
  14793. ggml_graph_print (gb);
  14794. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14795. }
  14796. return result;
  14797. }
  14798. ////////////////////////////////////////////////////////////////////////////////
  14799. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14800. assert(k % QK4_0 == 0);
  14801. const int nb = k / QK4_0;
  14802. for (int b = 0; b < n; b += k) {
  14803. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14804. quantize_row_q4_0_reference(src + b, y, k);
  14805. for (int i = 0; i < nb; i++) {
  14806. for (int j = 0; j < QK4_0; j += 2) {
  14807. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14808. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14809. hist[vi0]++;
  14810. hist[vi1]++;
  14811. }
  14812. }
  14813. }
  14814. return (n/QK4_0*sizeof(block_q4_0));
  14815. }
  14816. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14817. assert(k % QK4_1 == 0);
  14818. const int nb = k / QK4_1;
  14819. for (int b = 0; b < n; b += k) {
  14820. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14821. quantize_row_q4_1_reference(src + b, y, k);
  14822. for (int i = 0; i < nb; i++) {
  14823. for (int j = 0; j < QK4_1; j += 2) {
  14824. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14825. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14826. hist[vi0]++;
  14827. hist[vi1]++;
  14828. }
  14829. }
  14830. }
  14831. return (n/QK4_1*sizeof(block_q4_1));
  14832. }
  14833. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14834. assert(k % QK5_0 == 0);
  14835. const int nb = k / QK5_0;
  14836. for (int b = 0; b < n; b += k) {
  14837. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14838. quantize_row_q5_0_reference(src + b, y, k);
  14839. for (int i = 0; i < nb; i++) {
  14840. uint32_t qh;
  14841. memcpy(&qh, &y[i].qh, sizeof(qh));
  14842. for (int j = 0; j < QK5_0; j += 2) {
  14843. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14844. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14845. // cast to 16 bins
  14846. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14847. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14848. hist[vi0]++;
  14849. hist[vi1]++;
  14850. }
  14851. }
  14852. }
  14853. return (n/QK5_0*sizeof(block_q5_0));
  14854. }
  14855. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14856. assert(k % QK5_1 == 0);
  14857. const int nb = k / QK5_1;
  14858. for (int b = 0; b < n; b += k) {
  14859. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14860. quantize_row_q5_1_reference(src + b, y, k);
  14861. for (int i = 0; i < nb; i++) {
  14862. uint32_t qh;
  14863. memcpy(&qh, &y[i].qh, sizeof(qh));
  14864. for (int j = 0; j < QK5_1; j += 2) {
  14865. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14866. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14867. // cast to 16 bins
  14868. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14869. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14870. hist[vi0]++;
  14871. hist[vi1]++;
  14872. }
  14873. }
  14874. }
  14875. return (n/QK5_1*sizeof(block_q5_1));
  14876. }
  14877. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14878. assert(k % QK8_0 == 0);
  14879. const int nb = k / QK8_0;
  14880. for (int b = 0; b < n; b += k) {
  14881. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14882. quantize_row_q8_0_reference(src + b, y, k);
  14883. for (int i = 0; i < nb; i++) {
  14884. for (int j = 0; j < QK8_0; ++j) {
  14885. const int8_t vi = y[i].qs[j];
  14886. hist[vi/16 + 8]++;
  14887. }
  14888. }
  14889. }
  14890. return (n/QK8_0*sizeof(block_q8_0));
  14891. }
  14892. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14893. size_t result = 0;
  14894. switch (type) {
  14895. case GGML_TYPE_Q4_0:
  14896. {
  14897. GGML_ASSERT(start % QK4_0 == 0);
  14898. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14899. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14900. } break;
  14901. case GGML_TYPE_Q4_1:
  14902. {
  14903. GGML_ASSERT(start % QK4_1 == 0);
  14904. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14905. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14906. } break;
  14907. case GGML_TYPE_Q5_0:
  14908. {
  14909. GGML_ASSERT(start % QK5_0 == 0);
  14910. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14911. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14912. } break;
  14913. case GGML_TYPE_Q5_1:
  14914. {
  14915. GGML_ASSERT(start % QK5_1 == 0);
  14916. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14917. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14918. } break;
  14919. case GGML_TYPE_Q8_0:
  14920. {
  14921. GGML_ASSERT(start % QK8_0 == 0);
  14922. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14923. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14924. } break;
  14925. #ifdef GGML_USE_K_QUANTS
  14926. case GGML_TYPE_Q2_K:
  14927. {
  14928. GGML_ASSERT(start % QK_K == 0);
  14929. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14930. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14931. } break;
  14932. case GGML_TYPE_Q3_K:
  14933. {
  14934. GGML_ASSERT(start % QK_K == 0);
  14935. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14936. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14937. } break;
  14938. case GGML_TYPE_Q4_K:
  14939. {
  14940. GGML_ASSERT(start % QK_K == 0);
  14941. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14942. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14943. } break;
  14944. case GGML_TYPE_Q5_K:
  14945. {
  14946. GGML_ASSERT(start % QK_K == 0);
  14947. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14948. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14949. } break;
  14950. case GGML_TYPE_Q6_K:
  14951. {
  14952. GGML_ASSERT(start % QK_K == 0);
  14953. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14954. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14955. } break;
  14956. #endif
  14957. case GGML_TYPE_F16:
  14958. {
  14959. int elemsize = sizeof(ggml_fp16_t);
  14960. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14961. result = n * elemsize;
  14962. } break;
  14963. case GGML_TYPE_F32:
  14964. {
  14965. int elemsize = sizeof(float);
  14966. result = n * elemsize;
  14967. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14968. } break;
  14969. default:
  14970. assert(false);
  14971. }
  14972. return result;
  14973. }
  14974. ////////////////////////////////////////////////////////////////////////////////
  14975. int ggml_cpu_has_avx(void) {
  14976. #if defined(__AVX__)
  14977. return 1;
  14978. #else
  14979. return 0;
  14980. #endif
  14981. }
  14982. int ggml_cpu_has_avx2(void) {
  14983. #if defined(__AVX2__)
  14984. return 1;
  14985. #else
  14986. return 0;
  14987. #endif
  14988. }
  14989. int ggml_cpu_has_avx512(void) {
  14990. #if defined(__AVX512F__)
  14991. return 1;
  14992. #else
  14993. return 0;
  14994. #endif
  14995. }
  14996. int ggml_cpu_has_avx512_vbmi(void) {
  14997. #if defined(__AVX512VBMI__)
  14998. return 1;
  14999. #else
  15000. return 0;
  15001. #endif
  15002. }
  15003. int ggml_cpu_has_avx512_vnni(void) {
  15004. #if defined(__AVX512VNNI__)
  15005. return 1;
  15006. #else
  15007. return 0;
  15008. #endif
  15009. }
  15010. int ggml_cpu_has_fma(void) {
  15011. #if defined(__FMA__)
  15012. return 1;
  15013. #else
  15014. return 0;
  15015. #endif
  15016. }
  15017. int ggml_cpu_has_neon(void) {
  15018. #if defined(__ARM_NEON)
  15019. return 1;
  15020. #else
  15021. return 0;
  15022. #endif
  15023. }
  15024. int ggml_cpu_has_arm_fma(void) {
  15025. #if defined(__ARM_FEATURE_FMA)
  15026. return 1;
  15027. #else
  15028. return 0;
  15029. #endif
  15030. }
  15031. int ggml_cpu_has_f16c(void) {
  15032. #if defined(__F16C__)
  15033. return 1;
  15034. #else
  15035. return 0;
  15036. #endif
  15037. }
  15038. int ggml_cpu_has_fp16_va(void) {
  15039. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15040. return 1;
  15041. #else
  15042. return 0;
  15043. #endif
  15044. }
  15045. int ggml_cpu_has_wasm_simd(void) {
  15046. #if defined(__wasm_simd128__)
  15047. return 1;
  15048. #else
  15049. return 0;
  15050. #endif
  15051. }
  15052. int ggml_cpu_has_blas(void) {
  15053. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15054. return 1;
  15055. #else
  15056. return 0;
  15057. #endif
  15058. }
  15059. int ggml_cpu_has_cublas(void) {
  15060. #if defined(GGML_USE_CUBLAS)
  15061. return 1;
  15062. #else
  15063. return 0;
  15064. #endif
  15065. }
  15066. int ggml_cpu_has_clblast(void) {
  15067. #if defined(GGML_USE_CLBLAST)
  15068. return 1;
  15069. #else
  15070. return 0;
  15071. #endif
  15072. }
  15073. int ggml_cpu_has_gpublas(void) {
  15074. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15075. }
  15076. int ggml_cpu_has_sse3(void) {
  15077. #if defined(__SSE3__)
  15078. return 1;
  15079. #else
  15080. return 0;
  15081. #endif
  15082. }
  15083. int ggml_cpu_has_vsx(void) {
  15084. #if defined(__POWER9_VECTOR__)
  15085. return 1;
  15086. #else
  15087. return 0;
  15088. #endif
  15089. }
  15090. ////////////////////////////////////////////////////////////////////////////////