ggml.h 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_OPT 4
  195. #define GGML_MAX_NAME 48
  196. #define GGML_DEFAULT_N_THREADS 4
  197. #define GGML_UNUSED(x) (void)(x)
  198. #define GGML_ASSERT(x) \
  199. do { \
  200. if (!(x)) { \
  201. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  202. abort(); \
  203. } \
  204. } while (0)
  205. // used to copy the number of elements and stride in bytes of tensors into local variables.
  206. // main purpose is to reduce code duplication and improve readability.
  207. //
  208. // example:
  209. //
  210. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  211. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  212. //
  213. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  214. const type prefix##0 = (pointer)->array[0]; \
  215. GGML_UNUSED(prefix##0);
  216. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  217. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  218. const type prefix##1 = (pointer)->array[1]; \
  219. GGML_UNUSED(prefix##1);
  220. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  221. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  222. const type prefix##2 = (pointer)->array[2]; \
  223. GGML_UNUSED(prefix##2);
  224. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  225. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  226. const type prefix##3 = (pointer)->array[3]; \
  227. GGML_UNUSED(prefix##3);
  228. #ifdef __cplusplus
  229. extern "C" {
  230. #endif
  231. #ifdef __ARM_NEON
  232. // we use the built-in 16-bit float type
  233. typedef __fp16 ggml_fp16_t;
  234. #else
  235. typedef uint16_t ggml_fp16_t;
  236. #endif
  237. // convert FP16 <-> FP32
  238. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  239. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  240. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  241. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  242. struct ggml_object;
  243. struct ggml_context;
  244. enum ggml_type {
  245. GGML_TYPE_F32 = 0,
  246. GGML_TYPE_F16 = 1,
  247. GGML_TYPE_Q4_0 = 2,
  248. GGML_TYPE_Q4_1 = 3,
  249. // GGML_TYPE_Q4_2 = 4, support has been removed
  250. // GGML_TYPE_Q4_3 (5) support has been removed
  251. GGML_TYPE_Q5_0 = 6,
  252. GGML_TYPE_Q5_1 = 7,
  253. GGML_TYPE_Q8_0 = 8,
  254. GGML_TYPE_Q8_1 = 9,
  255. // k-quantizations
  256. GGML_TYPE_Q2_K = 10,
  257. GGML_TYPE_Q3_K = 11,
  258. GGML_TYPE_Q4_K = 12,
  259. GGML_TYPE_Q5_K = 13,
  260. GGML_TYPE_Q6_K = 14,
  261. GGML_TYPE_Q8_K = 15,
  262. GGML_TYPE_I8,
  263. GGML_TYPE_I16,
  264. GGML_TYPE_I32,
  265. GGML_TYPE_COUNT,
  266. };
  267. enum ggml_backend {
  268. GGML_BACKEND_CPU = 0,
  269. GGML_BACKEND_GPU = 10,
  270. GGML_BACKEND_GPU_SPLIT = 20,
  271. };
  272. // model file types
  273. enum ggml_ftype {
  274. GGML_FTYPE_UNKNOWN = -1,
  275. GGML_FTYPE_ALL_F32 = 0,
  276. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  277. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  278. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  279. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  280. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  281. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  282. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  283. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  284. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  285. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  286. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  287. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  288. };
  289. // available tensor operations:
  290. enum ggml_op {
  291. GGML_OP_NONE = 0,
  292. GGML_OP_DUP,
  293. GGML_OP_ADD,
  294. GGML_OP_ADD1,
  295. GGML_OP_ACC,
  296. GGML_OP_SUB,
  297. GGML_OP_MUL,
  298. GGML_OP_DIV,
  299. GGML_OP_SQR,
  300. GGML_OP_SQRT,
  301. GGML_OP_LOG,
  302. GGML_OP_SUM,
  303. GGML_OP_SUM_ROWS,
  304. GGML_OP_MEAN,
  305. GGML_OP_ARGMAX,
  306. GGML_OP_REPEAT,
  307. GGML_OP_REPEAT_BACK,
  308. GGML_OP_ABS,
  309. GGML_OP_SGN,
  310. GGML_OP_NEG,
  311. GGML_OP_STEP,
  312. GGML_OP_TANH,
  313. GGML_OP_ELU,
  314. GGML_OP_RELU,
  315. GGML_OP_GELU,
  316. GGML_OP_GELU_QUICK,
  317. GGML_OP_SILU,
  318. GGML_OP_SILU_BACK,
  319. GGML_OP_NORM, // normalize
  320. GGML_OP_RMS_NORM,
  321. GGML_OP_RMS_NORM_BACK,
  322. GGML_OP_MUL_MAT,
  323. GGML_OP_OUT_PROD,
  324. GGML_OP_SCALE,
  325. GGML_OP_SET,
  326. GGML_OP_CPY,
  327. GGML_OP_CONT,
  328. GGML_OP_RESHAPE,
  329. GGML_OP_VIEW,
  330. GGML_OP_PERMUTE,
  331. GGML_OP_TRANSPOSE,
  332. GGML_OP_GET_ROWS,
  333. GGML_OP_GET_ROWS_BACK,
  334. GGML_OP_DIAG,
  335. GGML_OP_DIAG_MASK_INF,
  336. GGML_OP_DIAG_MASK_ZERO,
  337. GGML_OP_SOFT_MAX,
  338. GGML_OP_SOFT_MAX_BACK,
  339. GGML_OP_ROPE,
  340. GGML_OP_ROPE_BACK,
  341. GGML_OP_ALIBI,
  342. GGML_OP_CLAMP,
  343. GGML_OP_CONV_1D,
  344. GGML_OP_CONV_2D,
  345. GGML_OP_FLASH_ATTN,
  346. GGML_OP_FLASH_FF,
  347. GGML_OP_FLASH_ATTN_BACK,
  348. GGML_OP_WIN_PART,
  349. GGML_OP_WIN_UNPART,
  350. GGML_OP_MAP_UNARY,
  351. GGML_OP_MAP_BINARY,
  352. GGML_OP_MAP_CUSTOM1,
  353. GGML_OP_MAP_CUSTOM2,
  354. GGML_OP_MAP_CUSTOM3,
  355. GGML_OP_CROSS_ENTROPY_LOSS,
  356. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  357. GGML_OP_COUNT,
  358. };
  359. // ggml object
  360. struct ggml_object {
  361. size_t offs;
  362. size_t size;
  363. struct ggml_object * next;
  364. char padding[8];
  365. };
  366. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  367. // n-dimensional tensor
  368. struct ggml_tensor {
  369. enum ggml_type type;
  370. enum ggml_backend backend;
  371. int n_dims;
  372. int64_t ne[GGML_MAX_DIMS]; // number of elements
  373. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  374. // nb[0] = sizeof(type)
  375. // nb[1] = nb[0] * ne[0] + padding
  376. // nb[i] = nb[i-1] * ne[i-1]
  377. // compute data
  378. enum ggml_op op;
  379. bool is_param;
  380. struct ggml_tensor * grad;
  381. struct ggml_tensor * src0;
  382. struct ggml_tensor * src1;
  383. struct ggml_tensor * opt[GGML_MAX_OPT];
  384. // performance
  385. int perf_runs;
  386. int64_t perf_cycles;
  387. int64_t perf_time_us;
  388. void * data;
  389. char name[GGML_MAX_NAME];
  390. void * extra; // extra things e.g. for ggml-cuda.cu
  391. char padding[8];
  392. };
  393. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  394. // the compute plan that needs to be prepared for ggml_graph_compute()
  395. // since https://github.com/ggerganov/ggml/issues/287
  396. struct ggml_cplan {
  397. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  398. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  399. int n_threads;
  400. // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
  401. int n_tasks[GGML_MAX_NODES];
  402. };
  403. // computation graph
  404. struct ggml_cgraph {
  405. int n_nodes;
  406. int n_leafs;
  407. struct ggml_tensor * nodes[GGML_MAX_NODES];
  408. struct ggml_tensor * grads[GGML_MAX_NODES];
  409. struct ggml_tensor * leafs[GGML_MAX_NODES];
  410. // performance
  411. int perf_runs;
  412. int64_t perf_cycles;
  413. int64_t perf_time_us;
  414. };
  415. // scratch buffer
  416. struct ggml_scratch {
  417. size_t offs;
  418. size_t size;
  419. void * data;
  420. };
  421. struct ggml_init_params {
  422. // memory pool
  423. size_t mem_size; // bytes
  424. void * mem_buffer; // if NULL, memory will be allocated internally
  425. bool no_alloc; // don't allocate memory for the tensor data
  426. };
  427. // compute types
  428. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  429. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  430. enum ggml_task_type {
  431. GGML_TASK_INIT = 0,
  432. GGML_TASK_COMPUTE,
  433. GGML_TASK_FINALIZE,
  434. };
  435. struct ggml_compute_params {
  436. enum ggml_task_type type;
  437. // ith = thread index, nth = number of threads
  438. int ith, nth;
  439. // work buffer for all threads
  440. size_t wsize;
  441. void * wdata;
  442. };
  443. // misc
  444. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  445. GGML_API int64_t ggml_time_ms(void);
  446. GGML_API int64_t ggml_time_us(void);
  447. GGML_API int64_t ggml_cycles(void);
  448. GGML_API int64_t ggml_cycles_per_ms(void);
  449. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  450. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  451. GGML_API void ggml_print_object (const struct ggml_object * obj);
  452. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  453. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  454. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  455. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  456. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  457. GGML_API int ggml_blck_size (enum ggml_type type);
  458. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  459. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  460. GGML_API const char * ggml_type_name(enum ggml_type type);
  461. GGML_API const char * ggml_op_name (enum ggml_op op);
  462. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  463. GGML_API bool ggml_is_quantized(enum ggml_type type);
  464. // TODO: temporary until model loading of ggml examples is refactored
  465. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  466. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  467. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  468. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  469. // use this to compute the memory overhead of a tensor
  470. GGML_API size_t ggml_tensor_overhead(void);
  471. // main
  472. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  473. GGML_API void ggml_free(struct ggml_context * ctx);
  474. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  475. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  476. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  477. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  478. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  479. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  480. GGML_API struct ggml_tensor * ggml_new_tensor(
  481. struct ggml_context * ctx,
  482. enum ggml_type type,
  483. int n_dims,
  484. const int64_t *ne);
  485. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  486. struct ggml_context * ctx,
  487. enum ggml_type type,
  488. int64_t ne0);
  489. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  490. struct ggml_context * ctx,
  491. enum ggml_type type,
  492. int64_t ne0,
  493. int64_t ne1);
  494. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  495. struct ggml_context * ctx,
  496. enum ggml_type type,
  497. int64_t ne0,
  498. int64_t ne1,
  499. int64_t ne2);
  500. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  501. struct ggml_context * ctx,
  502. enum ggml_type type,
  503. int64_t ne0,
  504. int64_t ne1,
  505. int64_t ne2,
  506. int64_t ne3);
  507. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  508. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  509. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  510. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  511. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  512. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  513. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  514. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  515. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  516. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  517. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  518. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  519. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  520. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  521. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  522. GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
  523. GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
  524. //
  525. // operations on tensors with backpropagation
  526. //
  527. GGML_API struct ggml_tensor * ggml_dup(
  528. struct ggml_context * ctx,
  529. struct ggml_tensor * a);
  530. GGML_API struct ggml_tensor * ggml_add(
  531. struct ggml_context * ctx,
  532. struct ggml_tensor * a,
  533. struct ggml_tensor * b);
  534. GGML_API struct ggml_tensor * ggml_add_inplace(
  535. struct ggml_context * ctx,
  536. struct ggml_tensor * a,
  537. struct ggml_tensor * b);
  538. GGML_API struct ggml_tensor * ggml_add1(
  539. struct ggml_context * ctx,
  540. struct ggml_tensor * a,
  541. struct ggml_tensor * b);
  542. GGML_API struct ggml_tensor * ggml_add1_inplace(
  543. struct ggml_context * ctx,
  544. struct ggml_tensor * a,
  545. struct ggml_tensor * b);
  546. GGML_API struct ggml_tensor * ggml_acc(
  547. struct ggml_context * ctx,
  548. struct ggml_tensor * a,
  549. struct ggml_tensor * b,
  550. size_t nb1,
  551. size_t nb2,
  552. size_t nb3,
  553. size_t offset);
  554. GGML_API struct ggml_tensor * ggml_acc_inplace(
  555. struct ggml_context * ctx,
  556. struct ggml_tensor * a,
  557. struct ggml_tensor * b,
  558. size_t nb1,
  559. size_t nb2,
  560. size_t nb3,
  561. size_t offset);
  562. GGML_API struct ggml_tensor * ggml_sub(
  563. struct ggml_context * ctx,
  564. struct ggml_tensor * a,
  565. struct ggml_tensor * b);
  566. GGML_API struct ggml_tensor * ggml_sub_inplace(
  567. struct ggml_context * ctx,
  568. struct ggml_tensor * a,
  569. struct ggml_tensor * b);
  570. GGML_API struct ggml_tensor * ggml_mul(
  571. struct ggml_context * ctx,
  572. struct ggml_tensor * a,
  573. struct ggml_tensor * b);
  574. GGML_API struct ggml_tensor * ggml_mul_inplace(
  575. struct ggml_context * ctx,
  576. struct ggml_tensor * a,
  577. struct ggml_tensor * b);
  578. GGML_API struct ggml_tensor * ggml_div(
  579. struct ggml_context * ctx,
  580. struct ggml_tensor * a,
  581. struct ggml_tensor * b);
  582. GGML_API struct ggml_tensor * ggml_div_inplace(
  583. struct ggml_context * ctx,
  584. struct ggml_tensor * a,
  585. struct ggml_tensor * b);
  586. GGML_API struct ggml_tensor * ggml_sqr(
  587. struct ggml_context * ctx,
  588. struct ggml_tensor * a);
  589. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  590. struct ggml_context * ctx,
  591. struct ggml_tensor * a);
  592. GGML_API struct ggml_tensor * ggml_sqrt(
  593. struct ggml_context * ctx,
  594. struct ggml_tensor * a);
  595. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  596. struct ggml_context * ctx,
  597. struct ggml_tensor * a);
  598. GGML_API struct ggml_tensor * ggml_log(
  599. struct ggml_context * ctx,
  600. struct ggml_tensor * a);
  601. GGML_API struct ggml_tensor * ggml_log_inplace(
  602. struct ggml_context * ctx,
  603. struct ggml_tensor * a);
  604. // return scalar
  605. GGML_API struct ggml_tensor * ggml_sum(
  606. struct ggml_context * ctx,
  607. struct ggml_tensor * a);
  608. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  609. GGML_API struct ggml_tensor * ggml_sum_rows(
  610. struct ggml_context * ctx,
  611. struct ggml_tensor * a);
  612. // mean along rows
  613. GGML_API struct ggml_tensor * ggml_mean(
  614. struct ggml_context * ctx,
  615. struct ggml_tensor * a);
  616. // argmax along rows
  617. GGML_API struct ggml_tensor * ggml_argmax(
  618. struct ggml_context * ctx,
  619. struct ggml_tensor * a);
  620. // if a is the same shape as b, and a is not parameter, return a
  621. // otherwise, return a new tensor: repeat(a) to fit in b
  622. GGML_API struct ggml_tensor * ggml_repeat(
  623. struct ggml_context * ctx,
  624. struct ggml_tensor * a,
  625. struct ggml_tensor * b);
  626. GGML_API struct ggml_tensor * ggml_repeat_back(
  627. struct ggml_context * ctx,
  628. struct ggml_tensor * a,
  629. struct ggml_tensor * b);
  630. GGML_API struct ggml_tensor * ggml_abs(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a);
  633. GGML_API struct ggml_tensor * ggml_abs_inplace(
  634. struct ggml_context * ctx,
  635. struct ggml_tensor * a);
  636. GGML_API struct ggml_tensor * ggml_sgn(
  637. struct ggml_context * ctx,
  638. struct ggml_tensor * a);
  639. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  640. struct ggml_context * ctx,
  641. struct ggml_tensor * a);
  642. GGML_API struct ggml_tensor * ggml_neg(
  643. struct ggml_context * ctx,
  644. struct ggml_tensor * a);
  645. GGML_API struct ggml_tensor * ggml_neg_inplace(
  646. struct ggml_context * ctx,
  647. struct ggml_tensor * a);
  648. GGML_API struct ggml_tensor * ggml_step(
  649. struct ggml_context * ctx,
  650. struct ggml_tensor * a);
  651. GGML_API struct ggml_tensor * ggml_step_inplace(
  652. struct ggml_context * ctx,
  653. struct ggml_tensor * a);
  654. GGML_API struct ggml_tensor * ggml_tanh(
  655. struct ggml_context * ctx,
  656. struct ggml_tensor * a);
  657. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  658. struct ggml_context * ctx,
  659. struct ggml_tensor * a);
  660. GGML_API struct ggml_tensor * ggml_elu(
  661. struct ggml_context * ctx,
  662. struct ggml_tensor * a);
  663. GGML_API struct ggml_tensor * ggml_elu_inplace(
  664. struct ggml_context * ctx,
  665. struct ggml_tensor * a);
  666. GGML_API struct ggml_tensor * ggml_relu(
  667. struct ggml_context * ctx,
  668. struct ggml_tensor * a);
  669. GGML_API struct ggml_tensor * ggml_relu_inplace(
  670. struct ggml_context * ctx,
  671. struct ggml_tensor * a);
  672. // TODO: double-check this computation is correct
  673. GGML_API struct ggml_tensor * ggml_gelu(
  674. struct ggml_context * ctx,
  675. struct ggml_tensor * a);
  676. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  677. struct ggml_context * ctx,
  678. struct ggml_tensor * a);
  679. GGML_API struct ggml_tensor * ggml_gelu_quick(
  680. struct ggml_context * ctx,
  681. struct ggml_tensor * a);
  682. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a);
  685. GGML_API struct ggml_tensor * ggml_silu(
  686. struct ggml_context * ctx,
  687. struct ggml_tensor * a);
  688. GGML_API struct ggml_tensor * ggml_silu_inplace(
  689. struct ggml_context * ctx,
  690. struct ggml_tensor * a);
  691. // a - x
  692. // b - dy
  693. GGML_API struct ggml_tensor * ggml_silu_back(
  694. struct ggml_context * ctx,
  695. struct ggml_tensor * a,
  696. struct ggml_tensor * b);
  697. // normalize along rows
  698. // TODO: eps is hardcoded to 1e-5 for now
  699. GGML_API struct ggml_tensor * ggml_norm(
  700. struct ggml_context * ctx,
  701. struct ggml_tensor * a);
  702. GGML_API struct ggml_tensor * ggml_norm_inplace(
  703. struct ggml_context * ctx,
  704. struct ggml_tensor * a);
  705. GGML_API struct ggml_tensor * ggml_rms_norm(
  706. struct ggml_context * ctx,
  707. struct ggml_tensor * a);
  708. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  709. struct ggml_context * ctx,
  710. struct ggml_tensor * a);
  711. // a - x
  712. // b - dy
  713. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a,
  716. struct ggml_tensor * b);
  717. // A: n columns, m rows
  718. // B: n columns, p rows (i.e. we transpose it internally)
  719. // result is m columns, p rows
  720. GGML_API struct ggml_tensor * ggml_mul_mat(
  721. struct ggml_context * ctx,
  722. struct ggml_tensor * a,
  723. struct ggml_tensor * b);
  724. // A: m columns, n rows,
  725. // B: p columns, n rows,
  726. // result is m columns, p rows
  727. GGML_API struct ggml_tensor * ggml_out_prod(
  728. struct ggml_context * ctx,
  729. struct ggml_tensor * a,
  730. struct ggml_tensor * b);
  731. //
  732. // operations on tensors without backpropagation
  733. //
  734. GGML_API struct ggml_tensor * ggml_scale(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a,
  737. struct ggml_tensor * b);
  738. // in-place, returns view(a)
  739. GGML_API struct ggml_tensor * ggml_scale_inplace(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a,
  742. struct ggml_tensor * b);
  743. // b -> view(a,offset,nb1,nb2,3), return modified a
  744. GGML_API struct ggml_tensor * ggml_set(
  745. struct ggml_context * ctx,
  746. struct ggml_tensor * a,
  747. struct ggml_tensor * b,
  748. size_t nb1,
  749. size_t nb2,
  750. size_t nb3,
  751. size_t offset);
  752. // b -> view(a,offset,nb1,nb2,3), return view(a)
  753. GGML_API struct ggml_tensor * ggml_set_inplace(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a,
  756. struct ggml_tensor * b,
  757. size_t nb1,
  758. size_t nb2,
  759. size_t nb3,
  760. size_t offset);
  761. GGML_API struct ggml_tensor * ggml_set_1d(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b,
  765. size_t offset);
  766. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a,
  769. struct ggml_tensor * b,
  770. size_t offset);
  771. // b -> view(a,offset,nb1,nb2,3), return modified a
  772. GGML_API struct ggml_tensor * ggml_set_2d(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a,
  775. struct ggml_tensor * b,
  776. size_t nb1,
  777. size_t offset);
  778. // b -> view(a,offset,nb1,nb2,3), return view(a)
  779. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  780. struct ggml_context * ctx,
  781. struct ggml_tensor * a,
  782. struct ggml_tensor * b,
  783. size_t nb1,
  784. size_t offset);
  785. // a -> b, return view(b)
  786. GGML_API struct ggml_tensor * ggml_cpy(
  787. struct ggml_context * ctx,
  788. struct ggml_tensor * a,
  789. struct ggml_tensor * b);
  790. // make contiguous
  791. GGML_API struct ggml_tensor * ggml_cont(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a);
  794. // return view(a), b specifies the new shape
  795. // TODO: when we start computing gradient, make a copy instead of view
  796. GGML_API struct ggml_tensor * ggml_reshape(
  797. struct ggml_context * ctx,
  798. struct ggml_tensor * a,
  799. struct ggml_tensor * b);
  800. // return view(a)
  801. // TODO: when we start computing gradient, make a copy instead of view
  802. GGML_API struct ggml_tensor * ggml_reshape_1d(
  803. struct ggml_context * ctx,
  804. struct ggml_tensor * a,
  805. int64_t ne0);
  806. GGML_API struct ggml_tensor * ggml_reshape_2d(
  807. struct ggml_context * ctx,
  808. struct ggml_tensor * a,
  809. int64_t ne0,
  810. int64_t ne1);
  811. // return view(a)
  812. // TODO: when we start computing gradient, make a copy instead of view
  813. GGML_API struct ggml_tensor * ggml_reshape_3d(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a,
  816. int64_t ne0,
  817. int64_t ne1,
  818. int64_t ne2);
  819. GGML_API struct ggml_tensor * ggml_reshape_4d(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a,
  822. int64_t ne0,
  823. int64_t ne1,
  824. int64_t ne2,
  825. int64_t ne3);
  826. // offset in bytes
  827. GGML_API struct ggml_tensor * ggml_view_1d(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a,
  830. int64_t ne0,
  831. size_t offset);
  832. GGML_API struct ggml_tensor * ggml_view_2d(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a,
  835. int64_t ne0,
  836. int64_t ne1,
  837. size_t nb1, // row stride in bytes
  838. size_t offset);
  839. GGML_API struct ggml_tensor * ggml_view_3d(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a,
  842. int64_t ne0,
  843. int64_t ne1,
  844. int64_t ne2,
  845. size_t nb1, // row stride in bytes
  846. size_t nb2, // slice stride in bytes
  847. size_t offset);
  848. GGML_API struct ggml_tensor * ggml_view_4d(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a,
  851. int64_t ne0,
  852. int64_t ne1,
  853. int64_t ne2,
  854. int64_t ne3,
  855. size_t nb1, // row stride in bytes
  856. size_t nb2, // slice stride in bytes
  857. size_t nb3,
  858. size_t offset);
  859. GGML_API struct ggml_tensor * ggml_permute(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a,
  862. int axis0,
  863. int axis1,
  864. int axis2,
  865. int axis3);
  866. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  867. GGML_API struct ggml_tensor * ggml_transpose(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a);
  870. GGML_API struct ggml_tensor * ggml_get_rows(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a,
  873. struct ggml_tensor * b);
  874. GGML_API struct ggml_tensor * ggml_get_rows_back(
  875. struct ggml_context * ctx,
  876. struct ggml_tensor * a,
  877. struct ggml_tensor * b,
  878. struct ggml_tensor * c);
  879. GGML_API struct ggml_tensor * ggml_diag(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a);
  882. // set elements above the diagonal to -INF
  883. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  884. struct ggml_context * ctx,
  885. struct ggml_tensor * a,
  886. int n_past);
  887. // in-place, returns view(a)
  888. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a,
  891. int n_past);
  892. // set elements above the diagonal to 0
  893. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a,
  896. int n_past);
  897. // in-place, returns view(a)
  898. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a,
  901. int n_past);
  902. GGML_API struct ggml_tensor * ggml_soft_max(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. // in-place, returns view(a)
  906. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a);
  909. GGML_API struct ggml_tensor * ggml_soft_max_back(
  910. struct ggml_context * ctx,
  911. struct ggml_tensor * a,
  912. struct ggml_tensor * b);
  913. // in-place, returns view(a)
  914. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a,
  917. struct ggml_tensor * b);
  918. // rotary position embedding
  919. // if mode & 1 == 1, skip n_past elements
  920. // if mode & 2 == 1, GPT-NeoX style
  921. // if mode & 4 == 1, ChatGLM style
  922. // TODO: avoid creating a new tensor every time
  923. GGML_API struct ggml_tensor * ggml_rope(
  924. struct ggml_context * ctx,
  925. struct ggml_tensor * a,
  926. int n_past,
  927. int n_dims,
  928. int mode,
  929. int n_ctx);
  930. // in-place, returns view(a)
  931. GGML_API struct ggml_tensor * ggml_rope_inplace(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a,
  934. int n_past,
  935. int n_dims,
  936. int mode,
  937. int n_ctx);
  938. // rotary position embedding backward, i.e compute dx from dy
  939. // a - dy
  940. GGML_API struct ggml_tensor * ggml_rope_back(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a,
  943. int n_past,
  944. int n_dims,
  945. int mode);
  946. // alibi position embedding
  947. // in-place, returns view(a)
  948. struct ggml_tensor * ggml_alibi(
  949. struct ggml_context * ctx,
  950. struct ggml_tensor * a,
  951. int n_past,
  952. int n_head,
  953. float bias_max);
  954. // clamp
  955. // in-place, returns view(a)
  956. struct ggml_tensor * ggml_clamp(
  957. struct ggml_context * ctx,
  958. struct ggml_tensor * a,
  959. float min,
  960. float max);
  961. GGML_API struct ggml_tensor * ggml_conv_1d(
  962. struct ggml_context * ctx,
  963. struct ggml_tensor * a,
  964. struct ggml_tensor * b,
  965. int s0, // stride
  966. int p0, // padding
  967. int d0); // dilation
  968. GGML_API struct ggml_tensor * ggml_conv_2d(
  969. struct ggml_context * ctx,
  970. struct ggml_tensor * a,
  971. struct ggml_tensor * b,
  972. int s0,
  973. int s1,
  974. int p0,
  975. int p1,
  976. int d0,
  977. int d1);
  978. // conv_1d with padding = half
  979. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  980. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a,
  983. struct ggml_tensor * b,
  984. int s,
  985. int d);
  986. GGML_API struct ggml_tensor * ggml_flash_attn(
  987. struct ggml_context * ctx,
  988. struct ggml_tensor * q,
  989. struct ggml_tensor * k,
  990. struct ggml_tensor * v,
  991. bool masked);
  992. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * q,
  995. struct ggml_tensor * k,
  996. struct ggml_tensor * v,
  997. struct ggml_tensor * d,
  998. bool masked);
  999. GGML_API struct ggml_tensor * ggml_flash_ff(
  1000. struct ggml_context * ctx,
  1001. struct ggml_tensor * a,
  1002. struct ggml_tensor * b0,
  1003. struct ggml_tensor * b1,
  1004. struct ggml_tensor * c0,
  1005. struct ggml_tensor * c1);
  1006. // partition into non-overlapping windows with padding if needed
  1007. // example:
  1008. // a: 768 64 64 1
  1009. // w: 14
  1010. // res: 768 14 14 25
  1011. // used in sam
  1012. GGML_API struct ggml_tensor * ggml_win_part(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a,
  1015. int w);
  1016. // reverse of ggml_win_part
  1017. // used in sam
  1018. GGML_API struct ggml_tensor * ggml_win_unpart(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a,
  1021. int w0,
  1022. int h0,
  1023. int w);
  1024. // custom operators
  1025. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1026. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1027. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1028. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1029. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1030. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a,
  1033. ggml_unary_op_f32_t fun);
  1034. GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a,
  1037. ggml_unary_op_f32_t fun);
  1038. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a,
  1041. struct ggml_tensor * b,
  1042. ggml_binary_op_f32_t fun);
  1043. GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1044. struct ggml_context * ctx,
  1045. struct ggml_tensor * a,
  1046. struct ggml_tensor * b,
  1047. ggml_binary_op_f32_t fun);
  1048. GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1049. struct ggml_context * ctx,
  1050. struct ggml_tensor * a,
  1051. ggml_custom1_op_f32_t fun);
  1052. GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1053. struct ggml_context * ctx,
  1054. struct ggml_tensor * a,
  1055. ggml_custom1_op_f32_t fun);
  1056. GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1057. struct ggml_context * ctx,
  1058. struct ggml_tensor * a,
  1059. struct ggml_tensor * b,
  1060. ggml_custom2_op_f32_t fun);
  1061. GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1062. struct ggml_context * ctx,
  1063. struct ggml_tensor * a,
  1064. struct ggml_tensor * b,
  1065. ggml_custom2_op_f32_t fun);
  1066. GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1067. struct ggml_context * ctx,
  1068. struct ggml_tensor * a,
  1069. struct ggml_tensor * b,
  1070. struct ggml_tensor * c,
  1071. ggml_custom3_op_f32_t fun);
  1072. GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1073. struct ggml_context * ctx,
  1074. struct ggml_tensor * a,
  1075. struct ggml_tensor * b,
  1076. struct ggml_tensor * c,
  1077. ggml_custom3_op_f32_t fun);
  1078. // loss function
  1079. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a,
  1082. struct ggml_tensor * b);
  1083. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1084. struct ggml_context * ctx,
  1085. struct ggml_tensor * a,
  1086. struct ggml_tensor * b,
  1087. struct ggml_tensor * c);
  1088. //
  1089. // automatic differentiation
  1090. //
  1091. GGML_API void ggml_set_param(
  1092. struct ggml_context * ctx,
  1093. struct ggml_tensor * tensor);
  1094. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1095. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1096. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1097. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1098. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1099. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1100. GGML_API void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1101. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1102. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1103. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1104. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1105. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1106. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1107. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1108. // print info and performance information for the graph
  1109. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1110. // dump the graph into a file using the dot format
  1111. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1112. //
  1113. // optimization
  1114. //
  1115. // optimization methods
  1116. enum ggml_opt_type {
  1117. GGML_OPT_ADAM,
  1118. GGML_OPT_LBFGS,
  1119. };
  1120. // linesearch methods
  1121. enum ggml_linesearch {
  1122. GGML_LINESEARCH_DEFAULT = 1,
  1123. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1124. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1125. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1126. };
  1127. // optimization return values
  1128. enum ggml_opt_result {
  1129. GGML_OPT_OK = 0,
  1130. GGML_OPT_DID_NOT_CONVERGE,
  1131. GGML_OPT_NO_CONTEXT,
  1132. GGML_OPT_INVALID_WOLFE,
  1133. GGML_OPT_FAIL,
  1134. GGML_LINESEARCH_FAIL = -128,
  1135. GGML_LINESEARCH_MINIMUM_STEP,
  1136. GGML_LINESEARCH_MAXIMUM_STEP,
  1137. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1138. GGML_LINESEARCH_INVALID_PARAMETERS,
  1139. };
  1140. // optimization parameters
  1141. //
  1142. // see ggml.c (ggml_opt_default_params) for default values
  1143. //
  1144. struct ggml_opt_params {
  1145. enum ggml_opt_type type;
  1146. int n_threads;
  1147. // delta-based convergence test
  1148. //
  1149. // if past == 0 - disabled
  1150. // if past > 0:
  1151. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1152. //
  1153. int past;
  1154. float delta;
  1155. // maximum number of iterations without improvement
  1156. //
  1157. // if 0 - disabled
  1158. // if > 0:
  1159. // assume convergence if no cost improvement in this number of iterations
  1160. //
  1161. int max_no_improvement;
  1162. bool print_forward_graph;
  1163. bool print_backward_graph;
  1164. // ADAM parameters
  1165. struct {
  1166. int n_iter;
  1167. float sched; // schedule multiplier (fixed, decay or warmup)
  1168. float decay; // weight decay for AdamW, use 0.0f to disable
  1169. float alpha; // learning rate
  1170. float beta1;
  1171. float beta2;
  1172. float eps; // epsilon for numerical stability
  1173. float eps_f; // epsilon for convergence test
  1174. float eps_g; // epsilon for convergence test
  1175. } adam;
  1176. // LBFGS parameters
  1177. struct {
  1178. int m; // number of corrections to approximate the inv. Hessian
  1179. int n_iter;
  1180. int max_linesearch;
  1181. float eps; // convergence tolerance
  1182. float ftol; // line search tolerance
  1183. float wolfe;
  1184. float min_step;
  1185. float max_step;
  1186. enum ggml_linesearch linesearch;
  1187. } lbfgs;
  1188. };
  1189. struct ggml_opt_context {
  1190. struct ggml_context * ctx;
  1191. struct ggml_opt_params params;
  1192. int iter;
  1193. int64_t nx; // number of parameter elements
  1194. bool just_initialized;
  1195. struct {
  1196. struct ggml_tensor * x; // view of the parameters
  1197. struct ggml_tensor * g1; // gradient
  1198. struct ggml_tensor * g2; // gradient squared
  1199. struct ggml_tensor * m; // first moment
  1200. struct ggml_tensor * v; // second moment
  1201. struct ggml_tensor * mh; // first moment hat
  1202. struct ggml_tensor * vh; // second moment hat
  1203. struct ggml_tensor * pf; // past function values
  1204. float fx_best;
  1205. float fx_prev;
  1206. int n_no_improvement;
  1207. } adam;
  1208. struct {
  1209. struct ggml_tensor * x; // current parameters
  1210. struct ggml_tensor * xp; // previous parameters
  1211. struct ggml_tensor * g; // current gradient
  1212. struct ggml_tensor * gp; // previous gradient
  1213. struct ggml_tensor * d; // search direction
  1214. struct ggml_tensor * pf; // past function values
  1215. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1216. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1217. struct ggml_tensor * lms; // the L-BFGS memory s
  1218. struct ggml_tensor * lmy; // the L-BFGS memory y
  1219. float fx_best;
  1220. float step;
  1221. int j;
  1222. int k;
  1223. int end;
  1224. int n_no_improvement;
  1225. } lbfgs;
  1226. };
  1227. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1228. // optimize the function defined by the tensor f
  1229. GGML_API enum ggml_opt_result ggml_opt(
  1230. struct ggml_context * ctx,
  1231. struct ggml_opt_params params,
  1232. struct ggml_tensor * f);
  1233. // initialize optimizer context
  1234. GGML_API void ggml_opt_init(
  1235. struct ggml_context * ctx,
  1236. struct ggml_opt_context * opt,
  1237. struct ggml_opt_params params,
  1238. int64_t nx);
  1239. // continue optimizing the function defined by the tensor f
  1240. GGML_API enum ggml_opt_result ggml_opt_resume(
  1241. struct ggml_context * ctx,
  1242. struct ggml_opt_context * opt,
  1243. struct ggml_tensor * f);
  1244. // continue optimizing the function defined by the tensor f
  1245. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1246. struct ggml_context * ctx,
  1247. struct ggml_opt_context * opt,
  1248. struct ggml_tensor * f,
  1249. struct ggml_cgraph * gf,
  1250. struct ggml_cgraph * gb);
  1251. //
  1252. // quantization
  1253. //
  1254. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1255. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1256. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1257. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1258. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1259. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1260. //
  1261. // system info
  1262. //
  1263. GGML_API int ggml_cpu_has_avx (void);
  1264. GGML_API int ggml_cpu_has_avx2 (void);
  1265. GGML_API int ggml_cpu_has_avx512 (void);
  1266. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1267. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1268. GGML_API int ggml_cpu_has_fma (void);
  1269. GGML_API int ggml_cpu_has_neon (void);
  1270. GGML_API int ggml_cpu_has_arm_fma (void);
  1271. GGML_API int ggml_cpu_has_f16c (void);
  1272. GGML_API int ggml_cpu_has_fp16_va (void);
  1273. GGML_API int ggml_cpu_has_wasm_simd (void);
  1274. GGML_API int ggml_cpu_has_blas (void);
  1275. GGML_API int ggml_cpu_has_cublas (void);
  1276. GGML_API int ggml_cpu_has_clblast (void);
  1277. GGML_API int ggml_cpu_has_gpublas (void);
  1278. GGML_API int ggml_cpu_has_sse3 (void);
  1279. GGML_API int ggml_cpu_has_vsx (void);
  1280. //
  1281. // Internal types and functions exposed for tests and benchmarks
  1282. //
  1283. #ifdef __cplusplus
  1284. // restrict not standard in C++
  1285. #define GGML_RESTRICT
  1286. #else
  1287. #define GGML_RESTRICT restrict
  1288. #endif
  1289. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1290. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1291. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1292. typedef struct {
  1293. ggml_to_float_t to_float;
  1294. ggml_from_float_t from_float;
  1295. ggml_from_float_t from_float_reference;
  1296. ggml_vec_dot_t vec_dot;
  1297. enum ggml_type vec_dot_type;
  1298. } ggml_type_traits_t;
  1299. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
  1300. #ifdef __cplusplus
  1301. }
  1302. #endif