test-opt.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. #include "ggml.h"
  2. #include <math.h>
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <assert.h>
  6. #define MAX_NARGS 2
  7. #pragma GCC diagnostic ignored "-Wdouble-promotion"
  8. //
  9. // logging
  10. //
  11. #define GGML_DEBUG 0
  12. #if (GGML_DEBUG >= 1)
  13. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  14. #else
  15. #define GGML_PRINT_DEBUG(...)
  16. #endif
  17. #if (GGML_DEBUG >= 5)
  18. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  19. #else
  20. #define GGML_PRINT_DEBUG_5(...)
  21. #endif
  22. #if (GGML_DEBUG >= 10)
  23. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  24. #else
  25. #define GGML_PRINT_DEBUG_10(...)
  26. #endif
  27. #define GGML_PRINT(...) printf(__VA_ARGS__)
  28. float frand(void) {
  29. return (float)rand()/(float)RAND_MAX;
  30. }
  31. int irand(int n) {
  32. return rand()%n;
  33. }
  34. void get_random_dims(int64_t * dims, int ndims) {
  35. dims[0] = dims[1] = dims[2] = dims[3] = 1;
  36. for (int i = 0; i < ndims; i++) {
  37. dims[i] = 1 + irand(4);
  38. }
  39. }
  40. void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) {
  41. dims[0] = dims[1] = dims[2] = dims[3] = 1;
  42. for (int i = 0; i < ndims; i++) {
  43. dims[i] = min + irand(max-min);
  44. }
  45. }
  46. struct ggml_tensor * get_random_tensor(
  47. struct ggml_context * ctx0,
  48. int ndims,
  49. int64_t ne[],
  50. float fmin,
  51. float fmax) {
  52. struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
  53. switch (ndims) {
  54. case 1:
  55. for (int i0 = 0; i0 < ne[0]; i0++) {
  56. ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
  57. }
  58. break;
  59. case 2:
  60. for (int i1 = 0; i1 < ne[1]; i1++) {
  61. for (int i0 = 0; i0 < ne[0]; i0++) {
  62. ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
  63. }
  64. }
  65. break;
  66. case 3:
  67. for (int i2 = 0; i2 < ne[2]; i2++) {
  68. for (int i1 = 0; i1 < ne[1]; i1++) {
  69. for (int i0 = 0; i0 < ne[0]; i0++) {
  70. ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
  71. }
  72. }
  73. }
  74. break;
  75. case 4:
  76. for (int i3 = 0; i3 < ne[3]; i3++) {
  77. for (int i2 = 0; i2 < ne[2]; i2++) {
  78. for (int i1 = 0; i1 < ne[1]; i1++) {
  79. for (int i0 = 0; i0 < ne[0]; i0++) {
  80. ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
  81. }
  82. }
  83. }
  84. }
  85. break;
  86. default:
  87. assert(false);
  88. };
  89. return result;
  90. }
  91. float get_element(const struct ggml_tensor * t, int idx) {
  92. return ((float *)t->data)[idx];
  93. }
  94. void set_element(struct ggml_tensor * t, int idx, float value) {
  95. ((float *)t->data)[idx] = value;
  96. }
  97. int main(void) {
  98. struct ggml_init_params params = {
  99. .mem_size = 1024*1024*1024,
  100. .mem_buffer = NULL,
  101. .no_alloc = false,
  102. };
  103. struct ggml_context * ctx = ggml_init(params);
  104. int64_t ne1[4] = {4, 1024, 1, 1};
  105. int64_t ne2[4] = {4, 2048, 1, 1};;
  106. int64_t ne3[4] = {1024, 2048, 1, 1};
  107. struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
  108. struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
  109. ggml_set_param(ctx, a);
  110. ggml_set_param(ctx, b);
  111. struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
  112. struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
  113. struct ggml_tensor * d = ggml_sub(ctx, c, ab);
  114. struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
  115. struct ggml_cgraph ge = ggml_build_forward(e);
  116. ggml_graph_reset(&ge);
  117. ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
  118. const float fe = ggml_get_f32_1d(e, 0);
  119. printf("%s: e = %.4f\n", __func__, fe);
  120. struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
  121. ggml_opt(ctx, opt_params, e);
  122. ggml_graph_reset(&ge);
  123. ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
  124. const float fe_opt = ggml_get_f32_1d(e, 0);
  125. printf("%s: original e = %.4f\n", __func__, fe);
  126. printf("%s: optimized e = %.4f\n", __func__, fe_opt);
  127. const bool success = (fe_opt <= fe);
  128. assert(success);
  129. ggml_free(ctx);
  130. return success ? 0 : -1;
  131. }
  132. // int64_t ne1[4] = {4, 128, 1, 1};
  133. // int64_t ne2[4] = {4, 256, 1, 1};;
  134. // int64_t ne3[4] = {128, 256, 1, 1};
  135. // main: original e = 25890.9375
  136. // main: optimized e = 10094.7031
  137. // int64_t ne1[4] = {8, 128, 1, 1};
  138. // int64_t ne2[4] = {8, 256, 1, 1};;
  139. // int64_t ne3[4] = {128, 256, 1, 1};
  140. // main: original e = 39429.5078
  141. // main: optimized e = 9275.8936
  142. // int64_t ne1[4] = {16, 128, 1, 1};
  143. // int64_t ne2[4] = {16, 256, 1, 1};;
  144. // int64_t ne3[4] = {128, 256, 1, 1};
  145. // main: original e = 68371.1328
  146. // main: optimized e = 7854.4502
  147. // int64_t ne1[4] = {32, 128, 1, 1};
  148. // int64_t ne2[4] = {32, 256, 1, 1};;
  149. // int64_t ne3[4] = {128, 256, 1, 1};
  150. // main: original e = 126061.1953
  151. // main: optimized e = 5451.0166
  152. // int64_t ne1[4] = {4, 1024, 1, 1};
  153. // int64_t ne2[4] = {4, 2048, 1, 1};;
  154. // int64_t ne3[4] = {1024, 2048, 1, 1};
  155. // main: original e = 1620817.8750
  156. // main: optimized e = 698387.6875
  157. // another run on M1
  158. // int64_t ne1[4] = {4, 1024, 1, 1};
  159. // int64_t ne2[4] = {4, 2048, 1, 1};;
  160. // int64_t ne3[4] = {1024, 2048, 1, 1};
  161. // main: original e = 1629595.6250
  162. // main: optimized e = 698169.1250
  163. // int64_t ne1[4] = {32, 1024, 1, 1};
  164. // int64_t ne2[4] = {32, 2048, 1, 1};;
  165. // int64_t ne3[4] = {1024, 2048, 1, 1};
  166. // main: original e = 8146770.5000
  167. // main: optimized e = 651119.1250