1
0

llama.cpp 741 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. // TODO: replace with ggml API call
  25. #define QK_K 256
  26. #ifdef __has_include
  27. #if __has_include(<unistd.h>)
  28. #include <unistd.h>
  29. #if defined(_POSIX_MAPPED_FILES)
  30. #include <sys/mman.h>
  31. #include <fcntl.h>
  32. #endif
  33. #if defined(_POSIX_MEMLOCK_RANGE)
  34. #include <sys/resource.h>
  35. #endif
  36. #endif
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. #ifndef PATH_MAX
  45. #define PATH_MAX MAX_PATH
  46. #endif
  47. #include <io.h>
  48. #endif
  49. #include <algorithm>
  50. #include <array>
  51. #include <cassert>
  52. #include <cctype>
  53. #include <cfloat>
  54. #include <cinttypes>
  55. #include <climits>
  56. #include <cmath>
  57. #include <cstdarg>
  58. #include <cstddef>
  59. #include <cstdint>
  60. #include <cstdio>
  61. #include <cstring>
  62. #include <ctime>
  63. #include <forward_list>
  64. #include <fstream>
  65. #include <functional>
  66. #include <future>
  67. #include <initializer_list>
  68. #include <locale>
  69. #include <map>
  70. #include <memory>
  71. #include <mutex>
  72. #include <numeric>
  73. #include <queue>
  74. #include <random>
  75. #include <regex>
  76. #include <set>
  77. #include <sstream>
  78. #include <thread>
  79. #include <type_traits>
  80. #include <unordered_map>
  81. #if defined(_MSC_VER)
  82. #pragma warning(disable: 4244 4267) // possible loss of data
  83. #endif
  84. #ifdef __GNUC__
  85. #ifdef __MINGW32__
  86. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  87. #else
  88. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  89. #endif
  90. #else
  91. #define LLAMA_ATTRIBUTE_FORMAT(...)
  92. #endif
  93. #define LLAMA_MAX_NODES 8192
  94. #define LLAMA_MAX_EXPERTS 128
  95. //
  96. // logging
  97. //
  98. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  99. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  100. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  101. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  102. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  103. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  104. //
  105. // helpers
  106. //
  107. static size_t utf8_len(char src) {
  108. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  109. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  110. return lookup[highbits];
  111. }
  112. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  113. std::string result;
  114. for (size_t pos = 0; ; pos += search.length()) {
  115. auto new_pos = s.find(search, pos);
  116. if (new_pos == std::string::npos) {
  117. result += s.substr(pos, s.size() - pos);
  118. break;
  119. }
  120. result += s.substr(pos, new_pos - pos) + replace;
  121. pos = new_pos;
  122. }
  123. s = std::move(result);
  124. }
  125. static bool is_float_close(float a, float b, float abs_tol) {
  126. // Check for non-negative tolerance
  127. if (abs_tol < 0.0) {
  128. throw std::invalid_argument("Tolerance must be non-negative");
  129. }
  130. // Exact equality check
  131. if (a == b) {
  132. return true;
  133. }
  134. // Check for infinities
  135. if (std::isinf(a) || std::isinf(b)) {
  136. return false;
  137. }
  138. // Regular comparison using the provided absolute tolerance
  139. return std::fabs(b - a) <= abs_tol;
  140. }
  141. static void zeros(std::ofstream & file, size_t n) {
  142. char zero = 0;
  143. for (size_t i = 0; i < n; ++i) {
  144. file.write(&zero, 1);
  145. }
  146. }
  147. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  148. static std::string format(const char * fmt, ...) {
  149. va_list ap;
  150. va_list ap2;
  151. va_start(ap, fmt);
  152. va_copy(ap2, ap);
  153. int size = vsnprintf(NULL, 0, fmt, ap);
  154. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  155. std::vector<char> buf(size + 1);
  156. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  157. GGML_ASSERT(size2 == size);
  158. va_end(ap2);
  159. va_end(ap);
  160. return std::string(buf.data(), size);
  161. }
  162. //
  163. // gguf constants (sync with gguf.py)
  164. //
  165. enum llm_arch {
  166. LLM_ARCH_LLAMA,
  167. LLM_ARCH_FALCON,
  168. LLM_ARCH_BAICHUAN,
  169. LLM_ARCH_GROK,
  170. LLM_ARCH_GPT2,
  171. LLM_ARCH_GPTJ,
  172. LLM_ARCH_GPTNEOX,
  173. LLM_ARCH_MPT,
  174. LLM_ARCH_STARCODER,
  175. LLM_ARCH_REFACT,
  176. LLM_ARCH_BERT,
  177. LLM_ARCH_NOMIC_BERT,
  178. LLM_ARCH_JINA_BERT_V2,
  179. LLM_ARCH_BLOOM,
  180. LLM_ARCH_STABLELM,
  181. LLM_ARCH_QWEN,
  182. LLM_ARCH_QWEN2,
  183. LLM_ARCH_QWEN2MOE,
  184. LLM_ARCH_PHI2,
  185. LLM_ARCH_PHI3,
  186. LLM_ARCH_PLAMO,
  187. LLM_ARCH_CODESHELL,
  188. LLM_ARCH_ORION,
  189. LLM_ARCH_INTERNLM2,
  190. LLM_ARCH_MINICPM,
  191. LLM_ARCH_GEMMA,
  192. LLM_ARCH_STARCODER2,
  193. LLM_ARCH_MAMBA,
  194. LLM_ARCH_XVERSE,
  195. LLM_ARCH_COMMAND_R,
  196. LLM_ARCH_DBRX,
  197. LLM_ARCH_OLMO,
  198. LLM_ARCH_ARCTIC,
  199. LLM_ARCH_UNKNOWN,
  200. };
  201. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  202. { LLM_ARCH_LLAMA, "llama" },
  203. { LLM_ARCH_FALCON, "falcon" },
  204. { LLM_ARCH_GROK, "grok" },
  205. { LLM_ARCH_GPT2, "gpt2" },
  206. { LLM_ARCH_GPTJ, "gptj" },
  207. { LLM_ARCH_GPTNEOX, "gptneox" },
  208. { LLM_ARCH_MPT, "mpt" },
  209. { LLM_ARCH_BAICHUAN, "baichuan" },
  210. { LLM_ARCH_STARCODER, "starcoder" },
  211. { LLM_ARCH_REFACT, "refact" },
  212. { LLM_ARCH_BERT, "bert" },
  213. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  214. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  215. { LLM_ARCH_BLOOM, "bloom" },
  216. { LLM_ARCH_STABLELM, "stablelm" },
  217. { LLM_ARCH_QWEN, "qwen" },
  218. { LLM_ARCH_QWEN2, "qwen2" },
  219. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  220. { LLM_ARCH_PHI2, "phi2" },
  221. { LLM_ARCH_PHI3, "phi3" },
  222. { LLM_ARCH_PLAMO, "plamo" },
  223. { LLM_ARCH_CODESHELL, "codeshell" },
  224. { LLM_ARCH_ORION, "orion" },
  225. { LLM_ARCH_INTERNLM2, "internlm2" },
  226. { LLM_ARCH_MINICPM, "minicpm" },
  227. { LLM_ARCH_GEMMA, "gemma" },
  228. { LLM_ARCH_STARCODER2, "starcoder2" },
  229. { LLM_ARCH_MAMBA, "mamba" },
  230. { LLM_ARCH_XVERSE, "xverse" },
  231. { LLM_ARCH_COMMAND_R, "command-r" },
  232. { LLM_ARCH_DBRX, "dbrx" },
  233. { LLM_ARCH_OLMO, "olmo" },
  234. { LLM_ARCH_ARCTIC, "arctic" },
  235. { LLM_ARCH_UNKNOWN, "(unknown)" },
  236. };
  237. enum llm_kv {
  238. LLM_KV_GENERAL_ARCHITECTURE,
  239. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  240. LLM_KV_GENERAL_ALIGNMENT,
  241. LLM_KV_GENERAL_NAME,
  242. LLM_KV_GENERAL_AUTHOR,
  243. LLM_KV_GENERAL_VERSION,
  244. LLM_KV_GENERAL_URL,
  245. LLM_KV_GENERAL_DESCRIPTION,
  246. LLM_KV_GENERAL_LICENSE,
  247. LLM_KV_GENERAL_SOURCE_URL,
  248. LLM_KV_GENERAL_SOURCE_HF_REPO,
  249. LLM_KV_VOCAB_SIZE,
  250. LLM_KV_CONTEXT_LENGTH,
  251. LLM_KV_EMBEDDING_LENGTH,
  252. LLM_KV_BLOCK_COUNT,
  253. LLM_KV_FEED_FORWARD_LENGTH,
  254. LLM_KV_USE_PARALLEL_RESIDUAL,
  255. LLM_KV_TENSOR_DATA_LAYOUT,
  256. LLM_KV_EXPERT_COUNT,
  257. LLM_KV_EXPERT_USED_COUNT,
  258. LLM_KV_POOLING_TYPE,
  259. LLM_KV_LOGIT_SCALE,
  260. LLM_KV_ATTENTION_HEAD_COUNT,
  261. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  262. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  263. LLM_KV_ATTENTION_CLAMP_KQV,
  264. LLM_KV_ATTENTION_KEY_LENGTH,
  265. LLM_KV_ATTENTION_VALUE_LENGTH,
  266. LLM_KV_ATTENTION_LAYERNORM_EPS,
  267. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  268. LLM_KV_ATTENTION_CAUSAL,
  269. LLM_KV_ROPE_DIMENSION_COUNT,
  270. LLM_KV_ROPE_FREQ_BASE,
  271. LLM_KV_ROPE_SCALE_LINEAR,
  272. LLM_KV_ROPE_SCALING_TYPE,
  273. LLM_KV_ROPE_SCALING_FACTOR,
  274. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  275. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  276. LLM_KV_ROPE_SCALING_FINETUNED,
  277. LLM_KV_SPLIT_NO,
  278. LLM_KV_SPLIT_COUNT,
  279. LLM_KV_SPLIT_TENSORS_COUNT,
  280. LLM_KV_SSM_INNER_SIZE,
  281. LLM_KV_SSM_CONV_KERNEL,
  282. LLM_KV_SSM_STATE_SIZE,
  283. LLM_KV_SSM_TIME_STEP_RANK,
  284. LLM_KV_TOKENIZER_MODEL,
  285. LLM_KV_TOKENIZER_PRE,
  286. LLM_KV_TOKENIZER_LIST,
  287. LLM_KV_TOKENIZER_TOKEN_TYPE,
  288. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  289. LLM_KV_TOKENIZER_SCORES,
  290. LLM_KV_TOKENIZER_MERGES,
  291. LLM_KV_TOKENIZER_BOS_ID,
  292. LLM_KV_TOKENIZER_EOS_ID,
  293. LLM_KV_TOKENIZER_UNK_ID,
  294. LLM_KV_TOKENIZER_SEP_ID,
  295. LLM_KV_TOKENIZER_PAD_ID,
  296. LLM_KV_TOKENIZER_CLS_ID,
  297. LLM_KV_TOKENIZER_MASK_ID,
  298. LLM_KV_TOKENIZER_ADD_BOS,
  299. LLM_KV_TOKENIZER_ADD_EOS,
  300. LLM_KV_TOKENIZER_ADD_PREFIX,
  301. LLM_KV_TOKENIZER_HF_JSON,
  302. LLM_KV_TOKENIZER_RWKV,
  303. LLM_KV_TOKENIZER_PREFIX_ID,
  304. LLM_KV_TOKENIZER_SUFFIX_ID,
  305. LLM_KV_TOKENIZER_MIDDLE_ID,
  306. LLM_KV_TOKENIZER_EOT_ID,
  307. };
  308. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  309. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  310. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  311. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  312. { LLM_KV_GENERAL_NAME, "general.name" },
  313. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  314. { LLM_KV_GENERAL_VERSION, "general.version" },
  315. { LLM_KV_GENERAL_URL, "general.url" },
  316. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  317. { LLM_KV_GENERAL_LICENSE, "general.license" },
  318. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  319. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  320. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  321. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  322. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  323. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  324. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  325. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  326. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  327. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  328. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  329. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  330. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  331. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  332. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  333. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  334. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  335. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  336. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  337. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  338. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  339. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  340. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  341. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  342. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  343. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  344. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  345. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  346. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  347. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  348. { LLM_KV_SPLIT_NO, "split.no" },
  349. { LLM_KV_SPLIT_COUNT, "split.count" },
  350. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  351. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  352. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  353. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  354. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  355. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  356. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  357. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  358. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  359. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  360. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  361. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  362. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  363. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  364. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  365. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  366. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  367. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  368. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  369. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  370. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  371. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  372. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  373. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  374. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  375. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  376. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  377. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  378. };
  379. struct LLM_KV {
  380. LLM_KV(llm_arch arch) : arch(arch) {}
  381. llm_arch arch;
  382. std::string operator()(llm_kv kv) const {
  383. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  384. }
  385. };
  386. enum llm_tensor {
  387. LLM_TENSOR_TOKEN_EMBD,
  388. LLM_TENSOR_TOKEN_EMBD_NORM,
  389. LLM_TENSOR_TOKEN_TYPES,
  390. LLM_TENSOR_POS_EMBD,
  391. LLM_TENSOR_OUTPUT,
  392. LLM_TENSOR_OUTPUT_NORM,
  393. LLM_TENSOR_ROPE_FREQS,
  394. LLM_TENSOR_ROPE_FACTORS_LONG,
  395. LLM_TENSOR_ROPE_FACTORS_SHORT,
  396. LLM_TENSOR_ATTN_Q,
  397. LLM_TENSOR_ATTN_K,
  398. LLM_TENSOR_ATTN_V,
  399. LLM_TENSOR_ATTN_QKV,
  400. LLM_TENSOR_ATTN_OUT,
  401. LLM_TENSOR_ATTN_NORM,
  402. LLM_TENSOR_ATTN_NORM_2,
  403. LLM_TENSOR_ATTN_OUT_NORM,
  404. LLM_TENSOR_ATTN_ROT_EMBD,
  405. LLM_TENSOR_FFN_GATE_INP,
  406. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  407. LLM_TENSOR_FFN_NORM,
  408. LLM_TENSOR_FFN_GATE,
  409. LLM_TENSOR_FFN_DOWN,
  410. LLM_TENSOR_FFN_UP,
  411. LLM_TENSOR_FFN_ACT,
  412. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  413. LLM_TENSOR_FFN_GATE_EXP,
  414. LLM_TENSOR_FFN_UP_EXP,
  415. LLM_TENSOR_FFN_NORM_EXPS,
  416. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  417. LLM_TENSOR_FFN_GATE_EXPS,
  418. LLM_TENSOR_FFN_UP_EXPS,
  419. LLM_TENSOR_FFN_DOWN_SHEXP,
  420. LLM_TENSOR_FFN_GATE_SHEXP,
  421. LLM_TENSOR_FFN_UP_SHEXP,
  422. LLM_TENSOR_ATTN_Q_NORM,
  423. LLM_TENSOR_ATTN_K_NORM,
  424. LLM_TENSOR_LAYER_OUT_NORM,
  425. LLM_TENSOR_SSM_IN,
  426. LLM_TENSOR_SSM_CONV1D,
  427. LLM_TENSOR_SSM_X,
  428. LLM_TENSOR_SSM_DT,
  429. LLM_TENSOR_SSM_A,
  430. LLM_TENSOR_SSM_D,
  431. LLM_TENSOR_SSM_OUT,
  432. };
  433. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  434. {
  435. LLM_ARCH_LLAMA,
  436. {
  437. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  438. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  439. { LLM_TENSOR_OUTPUT, "output" },
  440. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  441. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  442. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  443. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  444. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  445. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  446. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  447. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  448. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  449. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  450. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  451. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  452. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  453. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  454. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  455. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  456. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  457. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  458. },
  459. },
  460. {
  461. LLM_ARCH_BAICHUAN,
  462. {
  463. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  464. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  465. { LLM_TENSOR_OUTPUT, "output" },
  466. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  467. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  468. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  469. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  470. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  471. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  472. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  473. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  474. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  475. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  476. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  477. },
  478. },
  479. {
  480. LLM_ARCH_FALCON,
  481. {
  482. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  483. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  484. { LLM_TENSOR_OUTPUT, "output" },
  485. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  486. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  487. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  488. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  489. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  490. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  491. },
  492. },
  493. {
  494. LLM_ARCH_GROK,
  495. {
  496. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  497. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  498. { LLM_TENSOR_OUTPUT, "output" },
  499. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  500. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  501. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  502. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  503. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  504. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  505. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  506. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  507. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  508. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  509. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  510. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  511. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  512. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  513. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  514. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  515. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  516. },
  517. },
  518. {
  519. LLM_ARCH_GPT2,
  520. {
  521. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  522. { LLM_TENSOR_POS_EMBD, "position_embd" },
  523. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  524. { LLM_TENSOR_OUTPUT, "output" },
  525. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  526. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  527. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  528. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  529. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  530. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  531. },
  532. },
  533. {
  534. LLM_ARCH_GPTJ,
  535. {
  536. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  537. },
  538. },
  539. {
  540. LLM_ARCH_GPTNEOX,
  541. {
  542. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  543. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  544. { LLM_TENSOR_OUTPUT, "output" },
  545. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  546. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  547. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  548. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  549. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  550. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  551. },
  552. },
  553. {
  554. LLM_ARCH_MPT,
  555. {
  556. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  557. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  558. { LLM_TENSOR_OUTPUT, "output"},
  559. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  560. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  561. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  562. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  563. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  564. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  565. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  566. { LLM_TENSOR_POS_EMBD, "position_embd" },
  567. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  568. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  569. },
  570. },
  571. {
  572. LLM_ARCH_STARCODER,
  573. {
  574. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  575. { LLM_TENSOR_POS_EMBD, "position_embd" },
  576. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  577. { LLM_TENSOR_OUTPUT, "output" },
  578. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  579. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  580. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  581. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  582. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  583. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  584. },
  585. },
  586. {
  587. LLM_ARCH_REFACT,
  588. {
  589. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  590. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  591. { LLM_TENSOR_OUTPUT, "output" },
  592. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  593. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  594. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  595. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  596. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  597. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  598. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  599. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  600. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  601. },
  602. },
  603. {
  604. LLM_ARCH_BERT,
  605. {
  606. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  607. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  608. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  609. { LLM_TENSOR_POS_EMBD, "position_embd" },
  610. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  611. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  612. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  613. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  614. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  615. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  616. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  617. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  618. },
  619. },
  620. {
  621. LLM_ARCH_NOMIC_BERT,
  622. {
  623. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  624. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  625. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  626. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  627. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  628. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  629. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  630. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  631. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  632. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  633. },
  634. },
  635. {
  636. LLM_ARCH_JINA_BERT_V2,
  637. {
  638. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  639. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  640. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  641. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  642. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  643. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  644. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  645. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  646. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  647. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  648. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  649. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  650. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  651. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  652. },
  653. },
  654. {
  655. LLM_ARCH_BLOOM,
  656. {
  657. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  658. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  659. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  660. { LLM_TENSOR_OUTPUT, "output" },
  661. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  662. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  663. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  664. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  665. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  666. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  667. },
  668. },
  669. {
  670. LLM_ARCH_STABLELM,
  671. {
  672. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  673. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  674. { LLM_TENSOR_OUTPUT, "output" },
  675. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  676. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  677. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  678. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  679. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  680. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  681. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  682. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  683. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  684. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  685. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  686. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  687. },
  688. },
  689. {
  690. LLM_ARCH_QWEN,
  691. {
  692. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  693. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  694. { LLM_TENSOR_OUTPUT, "output" },
  695. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  696. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  697. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  698. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  699. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  700. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  701. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  702. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  703. },
  704. },
  705. {
  706. LLM_ARCH_QWEN2,
  707. {
  708. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  709. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  710. { LLM_TENSOR_OUTPUT, "output" },
  711. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  712. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  713. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  714. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  715. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  716. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  717. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  718. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  719. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  720. },
  721. },
  722. {
  723. LLM_ARCH_QWEN2MOE,
  724. {
  725. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  726. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  727. { LLM_TENSOR_OUTPUT, "output" },
  728. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  729. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  730. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  731. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  732. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  733. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  734. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  735. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  736. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  737. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  738. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  739. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  740. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  741. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  742. },
  743. },
  744. {
  745. LLM_ARCH_PHI2,
  746. {
  747. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  748. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  749. { LLM_TENSOR_OUTPUT, "output" },
  750. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  751. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  752. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  753. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  754. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  755. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  756. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  757. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  758. },
  759. },
  760. {
  761. LLM_ARCH_PHI3,
  762. {
  763. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  764. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  765. { LLM_TENSOR_OUTPUT, "output" },
  766. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  767. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  768. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  769. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  770. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  771. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  772. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  773. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  774. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  775. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  776. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  777. },
  778. },
  779. {
  780. LLM_ARCH_PLAMO,
  781. {
  782. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  783. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  784. { LLM_TENSOR_OUTPUT, "output" },
  785. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  786. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  787. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  788. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  789. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  790. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  791. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  792. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  793. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  794. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  795. },
  796. },
  797. {
  798. LLM_ARCH_CODESHELL,
  799. {
  800. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  801. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  802. { LLM_TENSOR_OUTPUT, "output" },
  803. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  804. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  805. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  806. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  807. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  808. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  809. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  810. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  811. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  812. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  813. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  814. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  815. },
  816. },
  817. {
  818. LLM_ARCH_ORION,
  819. {
  820. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  821. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  822. { LLM_TENSOR_OUTPUT, "output" },
  823. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  824. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  825. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  826. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  827. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  828. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  829. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  830. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  831. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  832. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  833. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  834. },
  835. },
  836. {
  837. LLM_ARCH_INTERNLM2,
  838. {
  839. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  840. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  841. { LLM_TENSOR_OUTPUT, "output" },
  842. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  843. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  844. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  845. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  846. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  847. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  848. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  849. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  850. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  851. },
  852. },
  853. {
  854. LLM_ARCH_MINICPM,
  855. {
  856. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  857. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  858. { LLM_TENSOR_OUTPUT, "output" },
  859. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  860. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  861. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  862. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  863. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  864. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  865. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  866. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  867. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  868. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  869. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  870. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  871. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  872. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  873. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  874. },
  875. },
  876. {
  877. LLM_ARCH_GEMMA,
  878. {
  879. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  880. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  881. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  882. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  883. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  884. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  885. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  886. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  887. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  888. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  889. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  890. },
  891. },
  892. {
  893. LLM_ARCH_STARCODER2,
  894. {
  895. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  896. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  897. { LLM_TENSOR_OUTPUT, "output" },
  898. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  899. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  900. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  901. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  902. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  903. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  904. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  905. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  906. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  907. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  908. },
  909. },
  910. {
  911. LLM_ARCH_MAMBA,
  912. {
  913. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  914. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  915. { LLM_TENSOR_OUTPUT, "output" },
  916. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  917. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  918. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  919. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  920. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  921. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  922. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  923. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  924. },
  925. },
  926. {
  927. LLM_ARCH_XVERSE,
  928. {
  929. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  930. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  931. { LLM_TENSOR_OUTPUT, "output" },
  932. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  933. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  934. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  935. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  936. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  937. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  938. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  939. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  940. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  941. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  942. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  943. },
  944. },
  945. {
  946. LLM_ARCH_COMMAND_R,
  947. {
  948. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  949. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  950. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  951. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  952. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  953. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  954. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  955. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  956. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  957. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  958. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  959. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  960. },
  961. },
  962. {
  963. LLM_ARCH_DBRX,
  964. {
  965. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  966. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  967. { LLM_TENSOR_OUTPUT, "output" },
  968. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  969. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  970. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  971. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  972. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  973. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  974. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  975. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  976. },
  977. },
  978. {
  979. LLM_ARCH_OLMO,
  980. {
  981. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  982. { LLM_TENSOR_OUTPUT, "output" },
  983. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  984. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  985. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  986. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  987. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  988. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  989. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  990. },
  991. },
  992. {
  993. LLM_ARCH_ARCTIC,
  994. {
  995. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  996. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  997. { LLM_TENSOR_OUTPUT, "output" },
  998. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  999. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1000. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1001. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1002. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1003. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1004. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1005. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1006. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1007. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1008. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1009. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1010. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1011. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1012. },
  1013. },
  1014. {
  1015. LLM_ARCH_UNKNOWN,
  1016. {
  1017. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1018. },
  1019. },
  1020. };
  1021. static llm_arch llm_arch_from_string(const std::string & name) {
  1022. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1023. if (kv.second == name) {
  1024. return kv.first;
  1025. }
  1026. }
  1027. return LLM_ARCH_UNKNOWN;
  1028. }
  1029. // helper to handle gguf constants
  1030. // usage:
  1031. //
  1032. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1033. //
  1034. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1035. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1036. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1037. //
  1038. struct LLM_TN {
  1039. LLM_TN(llm_arch arch) : arch(arch) {}
  1040. llm_arch arch;
  1041. std::string operator()(llm_tensor tensor) const {
  1042. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1043. return "__missing__";
  1044. }
  1045. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1046. }
  1047. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1048. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1049. return "__missing__";
  1050. }
  1051. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1052. }
  1053. std::string operator()(llm_tensor tensor, int bid) const {
  1054. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1055. return "__missing__";
  1056. }
  1057. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1058. }
  1059. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1060. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1061. return "__missing__";
  1062. }
  1063. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1064. }
  1065. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1066. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1067. return "__missing__";
  1068. }
  1069. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1070. }
  1071. };
  1072. //
  1073. // gguf helpers
  1074. //
  1075. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1076. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1077. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1078. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1079. };
  1080. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1081. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1082. if (kv.second == name) {
  1083. return (llama_rope_scaling_type) kv.first;
  1084. }
  1085. }
  1086. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1087. }
  1088. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1089. switch (type) {
  1090. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1091. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1092. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1093. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1094. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1095. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1096. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1097. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1098. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1099. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1100. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1101. default: return format("unknown type %d", type);
  1102. }
  1103. }
  1104. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1105. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1106. switch (type) {
  1107. case GGUF_TYPE_STRING:
  1108. return gguf_get_val_str(ctx_gguf, i);
  1109. case GGUF_TYPE_ARRAY:
  1110. {
  1111. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1112. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1113. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1114. std::stringstream ss;
  1115. ss << "[";
  1116. for (int j = 0; j < arr_n; j++) {
  1117. if (arr_type == GGUF_TYPE_STRING) {
  1118. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1119. // escape quotes
  1120. replace_all(val, "\\", "\\\\");
  1121. replace_all(val, "\"", "\\\"");
  1122. ss << '"' << val << '"';
  1123. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1124. ss << "???";
  1125. } else {
  1126. ss << gguf_data_to_str(arr_type, data, j);
  1127. }
  1128. if (j < arr_n - 1) {
  1129. ss << ", ";
  1130. }
  1131. }
  1132. ss << "]";
  1133. return ss.str();
  1134. }
  1135. default:
  1136. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1137. }
  1138. }
  1139. //
  1140. // llama helpers
  1141. //
  1142. #if defined(_WIN32)
  1143. static std::string llama_format_win_err(DWORD err) {
  1144. LPSTR buf;
  1145. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1146. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1147. if (!size) {
  1148. return "FormatMessageA failed";
  1149. }
  1150. std::string ret(buf, size);
  1151. LocalFree(buf);
  1152. return ret;
  1153. }
  1154. #endif
  1155. template <typename T>
  1156. struct no_init {
  1157. T value;
  1158. no_init() { /* do nothing */ }
  1159. };
  1160. struct llama_file {
  1161. // use FILE * so we don't have to re-open the file to mmap
  1162. FILE * fp;
  1163. size_t size;
  1164. llama_file(const char * fname, const char * mode) {
  1165. fp = ggml_fopen(fname, mode);
  1166. if (fp == NULL) {
  1167. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1168. }
  1169. seek(0, SEEK_END);
  1170. size = tell();
  1171. seek(0, SEEK_SET);
  1172. }
  1173. size_t tell() const {
  1174. #ifdef _WIN32
  1175. __int64 ret = _ftelli64(fp);
  1176. #else
  1177. long ret = std::ftell(fp);
  1178. #endif
  1179. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1180. return (size_t) ret;
  1181. }
  1182. void seek(size_t offset, int whence) const {
  1183. #ifdef _WIN32
  1184. int ret = _fseeki64(fp, (__int64) offset, whence);
  1185. #else
  1186. int ret = std::fseek(fp, (long) offset, whence);
  1187. #endif
  1188. GGML_ASSERT(ret == 0); // same
  1189. }
  1190. void read_raw(void * ptr, size_t len) const {
  1191. if (len == 0) {
  1192. return;
  1193. }
  1194. errno = 0;
  1195. std::size_t ret = std::fread(ptr, len, 1, fp);
  1196. if (ferror(fp)) {
  1197. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1198. }
  1199. if (ret != 1) {
  1200. throw std::runtime_error("unexpectedly reached end of file");
  1201. }
  1202. }
  1203. uint32_t read_u32() const {
  1204. uint32_t ret;
  1205. read_raw(&ret, sizeof(ret));
  1206. return ret;
  1207. }
  1208. void write_raw(const void * ptr, size_t len) const {
  1209. if (len == 0) {
  1210. return;
  1211. }
  1212. errno = 0;
  1213. size_t ret = std::fwrite(ptr, len, 1, fp);
  1214. if (ret != 1) {
  1215. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1216. }
  1217. }
  1218. void write_u32(std::uint32_t val) const {
  1219. write_raw(&val, sizeof(val));
  1220. }
  1221. ~llama_file() {
  1222. if (fp) {
  1223. std::fclose(fp);
  1224. }
  1225. }
  1226. };
  1227. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1228. struct llama_mmap {
  1229. void * addr;
  1230. size_t size;
  1231. llama_mmap(const llama_mmap &) = delete;
  1232. #ifdef _POSIX_MAPPED_FILES
  1233. static constexpr bool SUPPORTED = true;
  1234. // list of mapped fragments (first_offset, last_offset)
  1235. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1236. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1237. size = file->size;
  1238. int fd = fileno(file->fp);
  1239. int flags = MAP_SHARED;
  1240. // prefetch/readahead impairs performance on NUMA systems
  1241. if (numa) { prefetch = 0; }
  1242. #ifdef __linux__
  1243. // advise the kernel to read the file sequentially (increases readahead)
  1244. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1245. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1246. strerror(errno));
  1247. }
  1248. if (prefetch) { flags |= MAP_POPULATE; }
  1249. #endif
  1250. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1251. if (addr == MAP_FAILED) { // NOLINT
  1252. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1253. }
  1254. if (prefetch > 0) {
  1255. // advise the kernel to preload the mapped memory
  1256. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1257. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1258. strerror(errno));
  1259. }
  1260. }
  1261. if (numa) {
  1262. // advise the kernel not to use readahead
  1263. // (because the next page might not belong on the same node)
  1264. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1265. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1266. strerror(errno));
  1267. }
  1268. }
  1269. // initialize list of mapped_fragments
  1270. mapped_fragments.emplace_back(0, file->size);
  1271. }
  1272. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1273. // align first to the next page
  1274. size_t offset_in_page = *first & (page_size - 1);
  1275. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1276. *first += offset_to_page;
  1277. // align last to the previous page
  1278. *last = *last & ~(page_size - 1);
  1279. if (*last <= *first) {
  1280. *last = *first;
  1281. }
  1282. }
  1283. // partially unmap the file in the range [first, last)
  1284. void unmap_fragment(size_t first, size_t last) {
  1285. // note: this function must not be called multiple times with overlapping ranges
  1286. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1287. int page_size = sysconf(_SC_PAGESIZE);
  1288. align_range(&first, &last, page_size);
  1289. size_t len = last - first;
  1290. if (len == 0) {
  1291. return;
  1292. }
  1293. GGML_ASSERT(first % page_size == 0);
  1294. GGML_ASSERT(last % page_size == 0);
  1295. GGML_ASSERT(last > first);
  1296. void * next_page_start = (uint8_t *) addr + first;
  1297. // unmap the range
  1298. if (munmap(next_page_start, len)) {
  1299. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1300. }
  1301. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1302. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1303. for (const auto & frag : mapped_fragments) {
  1304. if (frag.first < first && frag.second > last) {
  1305. // the range is in the middle of the fragment, split it
  1306. new_mapped_fragments.emplace_back(frag.first, first);
  1307. new_mapped_fragments.emplace_back(last, frag.second);
  1308. } else if (frag.first < first && frag.second > first) {
  1309. // the range starts in the middle of the fragment
  1310. new_mapped_fragments.emplace_back(frag.first, first);
  1311. } else if (frag.first < last && frag.second > last) {
  1312. // the range ends in the middle of the fragment
  1313. new_mapped_fragments.emplace_back(last, frag.second);
  1314. } else if (frag.first >= first && frag.second <= last) {
  1315. // the range covers the entire fragment
  1316. } else {
  1317. // the range is outside the fragment
  1318. new_mapped_fragments.push_back(frag);
  1319. }
  1320. }
  1321. mapped_fragments = std::move(new_mapped_fragments);
  1322. }
  1323. ~llama_mmap() {
  1324. for (const auto & frag : mapped_fragments) {
  1325. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1326. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1327. }
  1328. }
  1329. }
  1330. #elif defined(_WIN32)
  1331. static constexpr bool SUPPORTED = true;
  1332. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1333. GGML_UNUSED(numa);
  1334. size = file->size;
  1335. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1336. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1337. if (hMapping == NULL) {
  1338. DWORD error = GetLastError();
  1339. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1340. }
  1341. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1342. DWORD error = GetLastError();
  1343. CloseHandle(hMapping);
  1344. if (addr == NULL) {
  1345. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1346. }
  1347. if (prefetch > 0) {
  1348. #if _WIN32_WINNT >= 0x602
  1349. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1350. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1351. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1352. // may fail on pre-Windows 8 systems
  1353. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1354. if (pPrefetchVirtualMemory) {
  1355. // advise the kernel to preload the mapped memory
  1356. WIN32_MEMORY_RANGE_ENTRY range;
  1357. range.VirtualAddress = addr;
  1358. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1359. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1360. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1361. llama_format_win_err(GetLastError()).c_str());
  1362. }
  1363. }
  1364. #else
  1365. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1366. #endif
  1367. }
  1368. }
  1369. void unmap_fragment(size_t first, size_t last) {
  1370. // not supported
  1371. GGML_UNUSED(first);
  1372. GGML_UNUSED(last);
  1373. }
  1374. ~llama_mmap() {
  1375. if (!UnmapViewOfFile(addr)) {
  1376. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1377. llama_format_win_err(GetLastError()).c_str());
  1378. }
  1379. }
  1380. #else
  1381. static constexpr bool SUPPORTED = false;
  1382. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1383. GGML_UNUSED(file);
  1384. GGML_UNUSED(prefetch);
  1385. GGML_UNUSED(numa);
  1386. throw std::runtime_error("mmap not supported");
  1387. }
  1388. void unmap_fragment(size_t first, size_t last) {
  1389. GGML_UNUSED(first);
  1390. GGML_UNUSED(last);
  1391. throw std::runtime_error("mmap not supported");
  1392. }
  1393. #endif
  1394. };
  1395. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1396. // Represents some region of memory being locked using mlock or VirtualLock;
  1397. // will automatically unlock on destruction.
  1398. struct llama_mlock {
  1399. void * addr = NULL;
  1400. size_t size = 0;
  1401. bool failed_already = false;
  1402. llama_mlock() {}
  1403. llama_mlock(const llama_mlock &) = delete;
  1404. ~llama_mlock() {
  1405. if (size) {
  1406. raw_unlock(addr, size);
  1407. }
  1408. }
  1409. void init(void * ptr) {
  1410. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1411. addr = ptr;
  1412. }
  1413. void grow_to(size_t target_size) {
  1414. GGML_ASSERT(addr);
  1415. if (failed_already) {
  1416. return;
  1417. }
  1418. size_t granularity = lock_granularity();
  1419. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1420. if (target_size > size) {
  1421. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1422. size = target_size;
  1423. } else {
  1424. failed_already = true;
  1425. }
  1426. }
  1427. }
  1428. #ifdef _POSIX_MEMLOCK_RANGE
  1429. static constexpr bool SUPPORTED = true;
  1430. static size_t lock_granularity() {
  1431. return (size_t) sysconf(_SC_PAGESIZE);
  1432. }
  1433. #ifdef __APPLE__
  1434. #define MLOCK_SUGGESTION \
  1435. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1436. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1437. #else
  1438. #define MLOCK_SUGGESTION \
  1439. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1440. #endif
  1441. bool raw_lock(const void * addr, size_t size) const {
  1442. if (!mlock(addr, size)) {
  1443. return true;
  1444. }
  1445. char* errmsg = std::strerror(errno);
  1446. bool suggest = (errno == ENOMEM);
  1447. // Check if the resource limit is fine after all
  1448. struct rlimit lock_limit;
  1449. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1450. suggest = false;
  1451. }
  1452. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1453. suggest = false;
  1454. }
  1455. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1456. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1457. return false;
  1458. }
  1459. #undef MLOCK_SUGGESTION
  1460. static void raw_unlock(void * addr, size_t size) {
  1461. if (munlock(addr, size)) {
  1462. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1463. }
  1464. }
  1465. #elif defined(_WIN32)
  1466. static constexpr bool SUPPORTED = true;
  1467. static size_t lock_granularity() {
  1468. SYSTEM_INFO si;
  1469. GetSystemInfo(&si);
  1470. return (size_t) si.dwPageSize;
  1471. }
  1472. bool raw_lock(void * ptr, size_t len) const {
  1473. for (int tries = 1; ; tries++) {
  1474. if (VirtualLock(ptr, len)) {
  1475. return true;
  1476. }
  1477. if (tries == 2) {
  1478. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1479. len, size, llama_format_win_err(GetLastError()).c_str());
  1480. return false;
  1481. }
  1482. // It failed but this was only the first try; increase the working
  1483. // set size and try again.
  1484. SIZE_T min_ws_size, max_ws_size;
  1485. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1486. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1487. llama_format_win_err(GetLastError()).c_str());
  1488. return false;
  1489. }
  1490. // Per MSDN: "The maximum number of pages that a process can lock
  1491. // is equal to the number of pages in its minimum working set minus
  1492. // a small overhead."
  1493. // Hopefully a megabyte is enough overhead:
  1494. size_t increment = len + 1048576;
  1495. // The minimum must be <= the maximum, so we need to increase both:
  1496. min_ws_size += increment;
  1497. max_ws_size += increment;
  1498. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1499. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1500. llama_format_win_err(GetLastError()).c_str());
  1501. return false;
  1502. }
  1503. }
  1504. }
  1505. static void raw_unlock(void * ptr, size_t len) {
  1506. if (!VirtualUnlock(ptr, len)) {
  1507. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1508. llama_format_win_err(GetLastError()).c_str());
  1509. }
  1510. }
  1511. #else
  1512. static constexpr bool SUPPORTED = false;
  1513. static size_t lock_granularity() {
  1514. return (size_t) 65536;
  1515. }
  1516. bool raw_lock(const void * addr, size_t len) const {
  1517. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1518. return false;
  1519. }
  1520. static void raw_unlock(const void * addr, size_t len) {}
  1521. #endif
  1522. };
  1523. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1524. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1525. std::vector<char> result(8, 0);
  1526. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1527. if (n_tokens < 0) {
  1528. result.resize(-n_tokens);
  1529. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1530. GGML_ASSERT(check == -n_tokens);
  1531. }
  1532. else {
  1533. result.resize(n_tokens);
  1534. }
  1535. return std::string(result.data(), result.size());
  1536. }
  1537. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1538. ggml_backend_buffer_type_t buft = nullptr;
  1539. #if defined(GGML_USE_CUDA)
  1540. // host buffers should only be used when data is expected to be copied to/from the GPU
  1541. if (host_buffer) {
  1542. buft = ggml_backend_cuda_host_buffer_type();
  1543. }
  1544. #elif defined(GGML_USE_SYCL)
  1545. if (host_buffer) {
  1546. buft = ggml_backend_sycl_host_buffer_type();
  1547. }
  1548. #elif defined(GGML_USE_CPU_HBM)
  1549. buft = ggml_backend_cpu_hbm_buffer_type();
  1550. #elif defined(GGML_USE_VULKAN)
  1551. if (host_buffer) {
  1552. buft = ggml_backend_vk_host_buffer_type();
  1553. }
  1554. #endif
  1555. if (buft == nullptr) {
  1556. buft = ggml_backend_cpu_buffer_type();
  1557. }
  1558. return buft;
  1559. GGML_UNUSED(host_buffer);
  1560. }
  1561. //
  1562. // globals
  1563. //
  1564. struct llama_state {
  1565. llama_state() {
  1566. #ifdef GGML_USE_METAL
  1567. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1568. #elif defined(GGML_USE_CUDA)
  1569. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1570. #endif
  1571. }
  1572. // We save the log callback globally
  1573. ggml_log_callback log_callback = llama_log_callback_default;
  1574. void * log_callback_user_data = nullptr;
  1575. };
  1576. static llama_state g_state;
  1577. // available llama models
  1578. enum e_model {
  1579. MODEL_UNKNOWN,
  1580. MODEL_14M,
  1581. MODEL_17M,
  1582. MODEL_22M,
  1583. MODEL_33M,
  1584. MODEL_70M,
  1585. MODEL_109M,
  1586. MODEL_137M,
  1587. MODEL_160M,
  1588. MODEL_335M,
  1589. MODEL_410M,
  1590. MODEL_0_5B,
  1591. MODEL_1B,
  1592. MODEL_1_4B,
  1593. MODEL_2B,
  1594. MODEL_2_8B,
  1595. MODEL_3B,
  1596. MODEL_4B,
  1597. MODEL_6_9B,
  1598. MODEL_7B,
  1599. MODEL_8B,
  1600. MODEL_12B,
  1601. MODEL_13B,
  1602. MODEL_14B,
  1603. MODEL_15B,
  1604. MODEL_20B,
  1605. MODEL_30B,
  1606. MODEL_34B,
  1607. MODEL_35B,
  1608. MODEL_40B,
  1609. MODEL_65B,
  1610. MODEL_70B,
  1611. MODEL_314B,
  1612. MODEL_SMALL,
  1613. MODEL_MEDIUM,
  1614. MODEL_LARGE,
  1615. MODEL_XL,
  1616. MODEL_A2_7B,
  1617. MODEL_8x7B,
  1618. MODEL_8x22B,
  1619. MODEL_16x12B,
  1620. MODEL_10B_128x3_66B,
  1621. };
  1622. static const size_t kiB = 1024;
  1623. static const size_t MiB = 1024*kiB;
  1624. static const size_t GiB = 1024*MiB;
  1625. struct llama_hparams {
  1626. bool vocab_only;
  1627. bool rope_finetuned;
  1628. bool use_par_res;
  1629. uint32_t n_vocab;
  1630. uint32_t n_ctx_train; // context size the model was trained on
  1631. uint32_t n_embd;
  1632. uint32_t n_head;
  1633. uint32_t n_head_kv;
  1634. uint32_t n_layer;
  1635. uint32_t n_rot;
  1636. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1637. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1638. uint32_t n_ff;
  1639. uint32_t n_expert = 0;
  1640. uint32_t n_expert_used = 0;
  1641. uint32_t n_vocab_type = 0; // for BERT-style token types
  1642. float f_norm_eps;
  1643. float f_norm_rms_eps;
  1644. float rope_attn_factor = 1.0f;
  1645. float rope_freq_base_train;
  1646. float rope_freq_scale_train;
  1647. uint32_t n_yarn_orig_ctx;
  1648. // for State Space Models
  1649. uint32_t ssm_d_conv = 0;
  1650. uint32_t ssm_d_inner = 0;
  1651. uint32_t ssm_d_state = 0;
  1652. uint32_t ssm_dt_rank = 0;
  1653. float f_clamp_kqv = 0.0f;
  1654. float f_max_alibi_bias = 0.0f;
  1655. float f_logit_scale = 0.0f;
  1656. bool causal_attn = true;
  1657. bool use_alibi = false;
  1658. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1659. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1660. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1661. bool operator!=(const llama_hparams & other) const {
  1662. if (this->vocab_only != other.vocab_only) return true;
  1663. if (this->n_vocab != other.n_vocab) return true;
  1664. if (this->n_ctx_train != other.n_ctx_train) return true;
  1665. if (this->n_embd != other.n_embd) return true;
  1666. if (this->n_head != other.n_head) return true;
  1667. if (this->n_head_kv != other.n_head_kv) return true;
  1668. if (this->n_layer != other.n_layer) return true;
  1669. if (this->n_rot != other.n_rot) return true;
  1670. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1671. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1672. if (this->n_ff != other.n_ff) return true;
  1673. if (this->n_expert != other.n_expert) return true;
  1674. if (this->n_expert_used != other.n_expert_used) return true;
  1675. if (this->rope_finetuned != other.rope_finetuned) return true;
  1676. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1677. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1678. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1679. if (this->ssm_d_state != other.ssm_d_state) return true;
  1680. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1681. const float EPSILON = 1e-9f;
  1682. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1683. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1684. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1685. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1686. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1687. return false;
  1688. }
  1689. uint32_t n_gqa() const {
  1690. if (n_head_kv == 0) {
  1691. return 0;
  1692. }
  1693. return n_head/n_head_kv;
  1694. }
  1695. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1696. return n_embd_head_k * n_head_kv;
  1697. }
  1698. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1699. return n_embd_head_v * n_head_kv;
  1700. }
  1701. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1702. // corresponds to Mamba's conv_states size
  1703. // TODO: maybe support other convolution strides than 1
  1704. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1705. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1706. }
  1707. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1708. // corresponds to Mamba's ssm_states size
  1709. return ssm_d_state * ssm_d_inner;
  1710. }
  1711. };
  1712. struct llama_cparams {
  1713. uint32_t n_ctx; // context size used during inference
  1714. uint32_t n_batch;
  1715. uint32_t n_ubatch;
  1716. uint32_t n_seq_max;
  1717. uint32_t n_threads; // number of threads to use for generation
  1718. uint32_t n_threads_batch; // number of threads to use for batch processing
  1719. float rope_freq_base;
  1720. float rope_freq_scale;
  1721. uint32_t n_yarn_orig_ctx;
  1722. // These hyperparameters are not exposed in GGUF, because all
  1723. // existing YaRN models use the same values for them.
  1724. float yarn_ext_factor;
  1725. float yarn_attn_factor;
  1726. float yarn_beta_fast;
  1727. float yarn_beta_slow;
  1728. float defrag_thold;
  1729. bool embeddings;
  1730. bool causal_attn;
  1731. bool offload_kqv;
  1732. bool flash_attn;
  1733. enum llama_pooling_type pooling_type;
  1734. ggml_backend_sched_eval_callback cb_eval;
  1735. void * cb_eval_user_data;
  1736. };
  1737. struct llama_layer {
  1738. // normalization
  1739. struct ggml_tensor * attn_norm;
  1740. struct ggml_tensor * attn_norm_b;
  1741. struct ggml_tensor * attn_norm_2;
  1742. struct ggml_tensor * attn_norm_2_b;
  1743. struct ggml_tensor * attn_q_norm;
  1744. struct ggml_tensor * attn_q_norm_b;
  1745. struct ggml_tensor * attn_k_norm;
  1746. struct ggml_tensor * attn_k_norm_b;
  1747. struct ggml_tensor * attn_out_norm;
  1748. struct ggml_tensor * attn_out_norm_b;
  1749. // attention
  1750. struct ggml_tensor * wq;
  1751. struct ggml_tensor * wk;
  1752. struct ggml_tensor * wv;
  1753. struct ggml_tensor * wo;
  1754. struct ggml_tensor * wqkv;
  1755. // attention bias
  1756. struct ggml_tensor * bq;
  1757. struct ggml_tensor * bk;
  1758. struct ggml_tensor * bv;
  1759. struct ggml_tensor * bo;
  1760. struct ggml_tensor * bqkv;
  1761. // normalization
  1762. struct ggml_tensor * ffn_norm;
  1763. struct ggml_tensor * ffn_norm_b;
  1764. struct ggml_tensor * layer_out_norm;
  1765. struct ggml_tensor * layer_out_norm_b;
  1766. struct ggml_tensor * ffn_norm_exps;
  1767. // ff
  1768. struct ggml_tensor * ffn_gate; // w1
  1769. struct ggml_tensor * ffn_down; // w2
  1770. struct ggml_tensor * ffn_up; // w3
  1771. // ff MoE
  1772. struct ggml_tensor * ffn_gate_inp;
  1773. struct ggml_tensor * ffn_gate_exps;
  1774. struct ggml_tensor * ffn_down_exps;
  1775. struct ggml_tensor * ffn_up_exps ;
  1776. // ff shared expert (shexp)
  1777. struct ggml_tensor * ffn_gate_inp_shexp;
  1778. struct ggml_tensor * ffn_gate_shexp;
  1779. struct ggml_tensor * ffn_down_shexp;
  1780. struct ggml_tensor * ffn_up_shexp;
  1781. // ff bias
  1782. struct ggml_tensor * ffn_down_b; // b2
  1783. struct ggml_tensor * ffn_up_b; // b3
  1784. struct ggml_tensor * ffn_act;
  1785. // mamba proj
  1786. struct ggml_tensor * ssm_in;
  1787. struct ggml_tensor * ssm_x;
  1788. struct ggml_tensor * ssm_dt;
  1789. struct ggml_tensor * ssm_out;
  1790. // mamba
  1791. struct ggml_tensor * ssm_conv1d;
  1792. struct ggml_tensor * ssm_a;
  1793. struct ggml_tensor * ssm_d;
  1794. // mamba bias
  1795. struct ggml_tensor * ssm_conv1d_b;
  1796. struct ggml_tensor * ssm_dt_b;
  1797. // long rope factors
  1798. struct ggml_tensor * rope_long = nullptr;
  1799. struct ggml_tensor * rope_short = nullptr;
  1800. };
  1801. struct llama_kv_cell {
  1802. llama_pos pos = -1;
  1803. llama_pos delta = 0;
  1804. int32_t src = 0; // used by recurrent state models to copy states
  1805. std::set<llama_seq_id> seq_id;
  1806. bool has_seq_id(const llama_seq_id & id) const {
  1807. return seq_id.find(id) != seq_id.end();
  1808. }
  1809. bool is_empty() const {
  1810. return seq_id.empty();
  1811. }
  1812. bool is_same_seq(const llama_kv_cell & other) const {
  1813. return seq_id == other.seq_id;
  1814. }
  1815. };
  1816. // ring-buffer of cached KV data
  1817. struct llama_kv_cache {
  1818. bool has_shift = false;
  1819. bool do_defrag = false;
  1820. bool do_copy = false;
  1821. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1822. bool v_trans = true; // the value tensor is transposed
  1823. // Note: The value of head isn't only used to optimize searching
  1824. // for a free KV slot. llama_decode_internal also uses it, so it
  1825. // cannot be freely changed after a slot has been allocated.
  1826. uint32_t head = 0;
  1827. uint32_t size = 0;
  1828. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1829. // computed before each graph build
  1830. uint32_t n = 0;
  1831. ggml_type type_k = GGML_TYPE_F16;
  1832. ggml_type type_v = GGML_TYPE_F16;
  1833. std::vector<llama_kv_cell> cells;
  1834. std::vector<struct ggml_tensor *> k_l; // per layer
  1835. std::vector<struct ggml_tensor *> v_l;
  1836. std::vector<struct ggml_context *> ctxs;
  1837. std::vector<ggml_backend_buffer_t> bufs;
  1838. size_t total_size() const {
  1839. size_t size = 0;
  1840. for (ggml_backend_buffer_t buf : bufs) {
  1841. size += ggml_backend_buffer_get_size(buf);
  1842. }
  1843. return size;
  1844. }
  1845. ~llama_kv_cache() {
  1846. for (struct ggml_context * ctx : ctxs) {
  1847. ggml_free(ctx);
  1848. }
  1849. for (ggml_backend_buffer_t buf : bufs) {
  1850. ggml_backend_buffer_free(buf);
  1851. }
  1852. }
  1853. };
  1854. struct llama_control_vector {
  1855. std::vector<struct ggml_tensor *> tensors; // per layer
  1856. std::vector<struct ggml_context *> ctxs;
  1857. std::vector<ggml_backend_buffer_t> bufs;
  1858. int32_t layer_start = -1;
  1859. int32_t layer_end = -1;
  1860. ggml_tensor * tensor_for(int il) const {
  1861. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1862. return nullptr;
  1863. }
  1864. return tensors[il];
  1865. }
  1866. ~llama_control_vector() {
  1867. for (struct ggml_context * ctx : ctxs) {
  1868. ggml_free(ctx);
  1869. }
  1870. for (ggml_backend_buffer_t buf : bufs) {
  1871. ggml_backend_buffer_free(buf);
  1872. }
  1873. }
  1874. };
  1875. struct llama_vocab {
  1876. using id = int32_t;
  1877. using token = std::string;
  1878. using ttype = llama_token_type;
  1879. struct token_data {
  1880. token text;
  1881. float score;
  1882. ttype type;
  1883. };
  1884. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1885. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1886. std::unordered_map<token, id> token_to_id;
  1887. std::vector<token_data> id_to_token;
  1888. std::unordered_map<token, id> special_tokens_cache;
  1889. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1890. // default LLaMA special tokens
  1891. id special_bos_id = 1;
  1892. id special_eos_id = 2;
  1893. id special_unk_id = 0;
  1894. id special_sep_id = -1;
  1895. id special_pad_id = -1;
  1896. id special_cls_id = -1;
  1897. id special_mask_id = -1;
  1898. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1899. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1900. id linefeed_id = 13;
  1901. id special_prefix_id = -1;
  1902. id special_suffix_id = -1;
  1903. id special_middle_id = -1;
  1904. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1905. bool add_space_prefix = true;
  1906. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1907. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1908. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1909. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1910. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1911. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1912. if (it == bpe_ranks.end()) {
  1913. return -1;
  1914. }
  1915. return it->second;
  1916. }
  1917. };
  1918. struct llama_model {
  1919. e_model type = MODEL_UNKNOWN;
  1920. llm_arch arch = LLM_ARCH_UNKNOWN;
  1921. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1922. std::string name = "n/a";
  1923. llama_hparams hparams = {};
  1924. llama_vocab vocab;
  1925. struct ggml_tensor * tok_embd;
  1926. struct ggml_tensor * type_embd;
  1927. struct ggml_tensor * pos_embd;
  1928. struct ggml_tensor * tok_norm;
  1929. struct ggml_tensor * tok_norm_b;
  1930. struct ggml_tensor * output_norm;
  1931. struct ggml_tensor * output_norm_b;
  1932. struct ggml_tensor * output;
  1933. struct ggml_tensor * output_b;
  1934. std::vector<llama_layer> layers;
  1935. llama_split_mode split_mode;
  1936. int main_gpu;
  1937. int n_gpu_layers;
  1938. std::vector<std::string> rpc_servers;
  1939. // gguf metadata
  1940. std::unordered_map<std::string, std::string> gguf_kv;
  1941. // layer -> buffer type mapping
  1942. struct layer_buft {
  1943. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1944. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1945. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1946. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1947. ggml_backend_buffer_type_t buft; // everything else
  1948. };
  1949. layer_buft buft_input;
  1950. layer_buft buft_output;
  1951. std::vector<layer_buft> buft_layer;
  1952. // contexts where the model tensors metadata is stored
  1953. std::vector<struct ggml_context *> ctxs;
  1954. // the model memory buffers for the tensor data
  1955. std::vector<ggml_backend_buffer_t> bufs;
  1956. // model memory mapped files
  1957. llama_mmaps mappings;
  1958. // objects representing data potentially being locked in memory
  1959. llama_mlocks mlock_bufs;
  1960. llama_mlocks mlock_mmaps;
  1961. // for quantize-stats only
  1962. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1963. int64_t t_load_us = 0;
  1964. int64_t t_start_us = 0;
  1965. ~llama_model() {
  1966. for (struct ggml_context * ctx : ctxs) {
  1967. ggml_free(ctx);
  1968. }
  1969. for (ggml_backend_buffer_t buf : bufs) {
  1970. #ifdef GGML_USE_CUDA
  1971. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1972. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1973. }
  1974. #endif
  1975. ggml_backend_buffer_free(buf);
  1976. }
  1977. }
  1978. };
  1979. struct llama_context {
  1980. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1981. ~llama_context() {
  1982. ggml_backend_sched_free(sched);
  1983. for (ggml_backend_t backend : backends) {
  1984. ggml_backend_free(backend);
  1985. }
  1986. ggml_backend_buffer_free(buf_output);
  1987. }
  1988. llama_cparams cparams;
  1989. std::vector<ggml_backend_t> backends;
  1990. #ifdef GGML_USE_METAL
  1991. ggml_backend_t backend_metal = nullptr;
  1992. #endif
  1993. ggml_backend_t backend_cpu = nullptr;
  1994. const llama_model & model;
  1995. // key + value cache for the self attention
  1996. struct llama_kv_cache kv_self;
  1997. std::mt19937 rng;
  1998. bool has_evaluated_once = false;
  1999. int64_t t_start_us;
  2000. int64_t t_load_us;
  2001. int64_t t_sample_us = 0;
  2002. int64_t t_p_eval_us = 0;
  2003. int64_t t_eval_us = 0;
  2004. int64_t t_compute_start_us = 0;
  2005. int64_t n_queued_tokens = 0;
  2006. int32_t n_sample = 0; // number of tokens sampled
  2007. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2008. int32_t n_eval = 0; // number of eval calls
  2009. // host buffer for the model output (logits and embeddings)
  2010. ggml_backend_buffer_t buf_output = nullptr;
  2011. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2012. size_t logits_size = 0; // capacity (of floats) for logits
  2013. float * logits = nullptr;
  2014. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2015. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2016. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2017. bool logits_all = false;
  2018. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2019. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2020. size_t embd_size = 0; // capacity (of floats) for embeddings
  2021. float * embd = nullptr;
  2022. // sequence embeddings output (map of [n_embd] vectors)
  2023. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2024. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2025. // memory buffers used to evaluate the model
  2026. std::vector<uint8_t> buf_compute_meta;
  2027. ggml_backend_sched_t sched = nullptr;
  2028. ggml_abort_callback abort_callback = nullptr;
  2029. void * abort_callback_data = nullptr;
  2030. // input tensors
  2031. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2032. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2033. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2034. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2035. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2036. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2037. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2038. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2039. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2040. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2041. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2042. // control vectors
  2043. struct llama_control_vector cvec;
  2044. };
  2045. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2046. ggml_backend_buffer_type_t buft = nullptr;
  2047. #ifdef GGML_USE_RPC
  2048. std::string endpoint = model.rpc_servers[gpu];
  2049. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2050. #elif defined(GGML_USE_METAL)
  2051. buft = ggml_backend_metal_buffer_type();
  2052. #elif defined(GGML_USE_CUDA)
  2053. buft = ggml_backend_cuda_buffer_type(gpu);
  2054. #elif defined(GGML_USE_VULKAN)
  2055. buft = ggml_backend_vk_buffer_type(gpu);
  2056. #elif defined(GGML_USE_SYCL)
  2057. buft = ggml_backend_sycl_buffer_type(gpu);
  2058. #elif defined(GGML_USE_CLBLAST)
  2059. buft = ggml_backend_opencl_buffer_type();
  2060. #elif defined(GGML_USE_KOMPUTE)
  2061. buft = ggml_backend_kompute_buffer_type(gpu);
  2062. if (buft == nullptr) {
  2063. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2064. }
  2065. #endif
  2066. if (buft == nullptr) {
  2067. buft = llama_default_buffer_type_cpu(true);
  2068. }
  2069. return buft;
  2070. GGML_UNUSED(model);
  2071. GGML_UNUSED(gpu);
  2072. }
  2073. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2074. ggml_backend_buffer_type_t buft = nullptr;
  2075. #ifdef GGML_USE_CUDA
  2076. if (ggml_backend_cuda_get_device_count() > 1) {
  2077. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2078. }
  2079. #endif
  2080. #ifdef GGML_USE_SYCL
  2081. if (ggml_backend_sycl_get_device_count() > 1) {
  2082. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2083. }
  2084. #endif
  2085. if (buft == nullptr) {
  2086. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2087. }
  2088. return buft;
  2089. GGML_UNUSED(tensor_split);
  2090. }
  2091. static size_t llama_get_device_count(const llama_model & model) {
  2092. #if defined(GGML_USE_RPC)
  2093. return model.rpc_servers.size();
  2094. #elif defined(GGML_USE_CUDA)
  2095. return ggml_backend_cuda_get_device_count();
  2096. #elif defined(GGML_USE_SYCL)
  2097. return ggml_backend_sycl_get_device_count();
  2098. #elif defined(GGML_USE_VULKAN)
  2099. return ggml_backend_vk_get_device_count();
  2100. #else
  2101. return 1;
  2102. #endif
  2103. GGML_UNUSED(model);
  2104. }
  2105. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2106. #if defined(GGML_USE_RPC)
  2107. size_t total;
  2108. size_t free;
  2109. std::string endpoint = model.rpc_servers[device];
  2110. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2111. return free;
  2112. #elif defined(GGML_USE_CUDA)
  2113. size_t total;
  2114. size_t free;
  2115. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2116. return free;
  2117. #elif defined(GGML_USE_SYCL)
  2118. size_t total;
  2119. size_t free;
  2120. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2121. return free;
  2122. #elif defined(GGML_USE_VULKAN)
  2123. size_t total;
  2124. size_t free;
  2125. ggml_backend_vk_get_device_memory(device, &free, &total);
  2126. return free;
  2127. #else
  2128. return 1;
  2129. #endif
  2130. GGML_UNUSED(model);
  2131. GGML_UNUSED(device);
  2132. }
  2133. //
  2134. // kv cache helpers
  2135. //
  2136. static bool llama_kv_cache_init(
  2137. struct llama_kv_cache & cache,
  2138. const llama_context * ctx,
  2139. ggml_type type_k,
  2140. ggml_type type_v,
  2141. uint32_t kv_size,
  2142. bool offload) {
  2143. const llama_model & model = ctx->model;
  2144. const llama_cparams & cparams = ctx->cparams;
  2145. const struct llama_hparams & hparams = model.hparams;
  2146. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2147. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2148. const int64_t n_layer = hparams.n_layer;
  2149. cache.has_shift = false;
  2150. // TODO: find a nicer way to add other recurrent model architectures
  2151. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2152. cache.v_trans = !cparams.flash_attn;
  2153. // TODO: support mixed recurrent Transformer architectures
  2154. // NOTE: (!a || b) is a logical implication (a -> b)
  2155. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2156. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2157. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2158. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2159. cache.head = 0;
  2160. cache.size = kv_size;
  2161. cache.used = 0;
  2162. cache.type_k = type_k;
  2163. cache.type_v = type_v;
  2164. cache.cells.clear();
  2165. cache.cells.resize(kv_size);
  2166. if (cache.recurrent) {
  2167. // init state copy sources
  2168. for (uint32_t i = 0; i < cache.size; ++i) {
  2169. cache.cells[i].src = i;
  2170. }
  2171. }
  2172. #ifdef GGML_USE_CLBLAST
  2173. offload = false;
  2174. #endif
  2175. // count used buffer types
  2176. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2177. if (offload) {
  2178. for (int64_t i = 0; i < n_layer; ++i) {
  2179. buft_layer_count[model.buft_layer[i].buft]++;
  2180. }
  2181. } else {
  2182. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2183. }
  2184. // create a context for each buffer type
  2185. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2186. for (auto & it : buft_layer_count) {
  2187. int n_layers = it.second;
  2188. struct ggml_init_params params = {
  2189. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2190. /*.mem_buffer =*/ NULL,
  2191. /*.no_alloc =*/ true,
  2192. };
  2193. ggml_context * ctx = ggml_init(params);
  2194. if (!ctx) {
  2195. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2196. return false;
  2197. }
  2198. ctx_map[it.first] = ctx;
  2199. cache.ctxs.push_back(ctx);
  2200. }
  2201. cache.k_l.reserve(n_layer);
  2202. cache.v_l.reserve(n_layer);
  2203. for (int i = 0; i < (int) n_layer; i++) {
  2204. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2205. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2206. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2207. ggml_format_name(k, "cache_k_l%d", i);
  2208. ggml_format_name(v, "cache_v_l%d", i);
  2209. cache.k_l.push_back(k);
  2210. cache.v_l.push_back(v);
  2211. }
  2212. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2213. for (auto it : ctx_map) {
  2214. ggml_backend_buffer_type_t buft = it.first;
  2215. ggml_context * ctx = it.second;
  2216. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2217. if (!buf) {
  2218. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2219. return false;
  2220. }
  2221. ggml_backend_buffer_clear(buf, 0);
  2222. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2223. cache.bufs.push_back(buf);
  2224. }
  2225. return true;
  2226. }
  2227. // find an empty slot of size "n_tokens" in the cache
  2228. // updates the cache head
  2229. // Note: On success, it's important that cache.head points
  2230. // to the first cell of the slot.
  2231. static bool llama_kv_cache_find_slot(
  2232. struct llama_kv_cache & cache,
  2233. const struct llama_batch & batch) {
  2234. const uint32_t n_tokens = batch.n_tokens;
  2235. if (cache.recurrent) {
  2236. // For recurrent state architectures (like Mamba),
  2237. // each KV cache cell can store the state for a whole sequence.
  2238. llama_seq_id min = cache.size - 1;
  2239. llama_seq_id max = 0;
  2240. for (uint32_t i = 0; i < n_tokens; ++i) {
  2241. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2242. llama_seq_id seq_id = batch.seq_id[i][j];
  2243. // make sure it's a valid seq_id
  2244. if ((uint32_t) seq_id < cache.size) {
  2245. if (seq_id > max) {
  2246. max = seq_id;
  2247. }
  2248. if (seq_id < min) {
  2249. min = seq_id;
  2250. }
  2251. // Assuming the tokens are in-order
  2252. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2253. // What should happen when the pos backtracks or skips a value?
  2254. // Clearing the state mid-batch would require special-casing which isn't done.
  2255. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2256. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2257. }
  2258. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2259. cache.used += 1;
  2260. }
  2261. cache.cells[seq_id].pos = batch.pos[i];
  2262. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2263. } else {
  2264. // too big seq_id
  2265. // TODO: would it be possible to resize the KV cache size instead?
  2266. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2267. return false;
  2268. }
  2269. }
  2270. }
  2271. // allow getting the range of used cells, from head to head + n
  2272. cache.head = min;
  2273. cache.n = max - min + 1;
  2274. // sanity check
  2275. return max >= min;
  2276. }
  2277. // otherwise, one cell per token.
  2278. if (n_tokens > cache.size) {
  2279. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2280. return false;
  2281. }
  2282. uint32_t n_tested = 0;
  2283. while (true) {
  2284. if (cache.head + n_tokens > cache.size) {
  2285. n_tested += cache.size - cache.head;
  2286. cache.head = 0;
  2287. continue;
  2288. }
  2289. bool found = true;
  2290. for (uint32_t i = 0; i < n_tokens; i++) {
  2291. if (cache.cells[cache.head + i].pos >= 0) {
  2292. found = false;
  2293. cache.head += i + 1;
  2294. n_tested += i + 1;
  2295. break;
  2296. }
  2297. }
  2298. if (found) {
  2299. break;
  2300. }
  2301. if (n_tested >= cache.size) {
  2302. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2303. return false;
  2304. }
  2305. }
  2306. for (uint32_t i = 0; i < n_tokens; i++) {
  2307. cache.cells[cache.head + i].pos = batch.pos[i];
  2308. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2309. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2310. }
  2311. }
  2312. cache.used += n_tokens;
  2313. return true;
  2314. }
  2315. // find how many cells are currently in use
  2316. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2317. for (uint32_t i = cache.size; i > 0; --i) {
  2318. const llama_kv_cell & cell = cache.cells[i - 1];
  2319. if (cell.pos >= 0 && !cell.is_empty()) {
  2320. return i;
  2321. }
  2322. }
  2323. return 0;
  2324. }
  2325. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2326. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2327. cache.cells[i].pos = -1;
  2328. cache.cells[i].seq_id.clear();
  2329. }
  2330. cache.head = 0;
  2331. cache.used = 0;
  2332. for (auto & buf : cache.bufs) {
  2333. ggml_backend_buffer_clear(buf, 0);
  2334. }
  2335. }
  2336. static bool llama_kv_cache_seq_rm(
  2337. struct llama_kv_cache & cache,
  2338. llama_seq_id seq_id,
  2339. llama_pos p0,
  2340. llama_pos p1) {
  2341. uint32_t new_head = cache.size;
  2342. if (p0 < 0) p0 = 0;
  2343. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2344. // models like Mamba can't have a state partially erased
  2345. if (cache.recurrent) {
  2346. if (seq_id >= (int64_t) cache.size) {
  2347. // could be fatal
  2348. return false;
  2349. }
  2350. if (0 <= seq_id) {
  2351. // partial intersection is invalid
  2352. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2353. return false;
  2354. }
  2355. } else {
  2356. // seq_id is negative, then the range should include everything or nothing
  2357. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2358. return false;
  2359. }
  2360. }
  2361. }
  2362. for (uint32_t i = 0; i < cache.size; ++i) {
  2363. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2364. if (seq_id < 0) {
  2365. cache.cells[i].seq_id.clear();
  2366. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2367. cache.cells[i].seq_id.erase(seq_id);
  2368. } else {
  2369. continue;
  2370. }
  2371. if (cache.cells[i].is_empty()) {
  2372. // keep count of the number of used cells
  2373. if (cache.cells[i].pos >= 0) cache.used--;
  2374. cache.cells[i].pos = -1;
  2375. if (new_head == cache.size) new_head = i;
  2376. }
  2377. }
  2378. }
  2379. // If we freed up a slot, set head to it so searching can start there.
  2380. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2381. return true;
  2382. }
  2383. static void llama_kv_cache_seq_cp(
  2384. struct llama_kv_cache & cache,
  2385. llama_seq_id seq_id_src,
  2386. llama_seq_id seq_id_dst,
  2387. llama_pos p0,
  2388. llama_pos p1) {
  2389. if (p0 < 0) p0 = 0;
  2390. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2391. if (cache.recurrent) {
  2392. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2393. seq_id_src = cache.cells[seq_id_src].src;
  2394. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2395. // intent to "copy from"
  2396. // supports copy chains thanks to taking the source of the source
  2397. cache.cells[seq_id_dst].src = seq_id_src;
  2398. // preserve the "keep or clear" status of the copied sequence
  2399. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2400. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2401. } else {
  2402. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2403. }
  2404. cache.do_copy = true;
  2405. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2406. }
  2407. return;
  2408. }
  2409. // otherwise, this is the KV cache of a Transformer-like model
  2410. cache.head = 0;
  2411. for (uint32_t i = 0; i < cache.size; ++i) {
  2412. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2413. cache.cells[i].seq_id.insert(seq_id_dst);
  2414. }
  2415. }
  2416. }
  2417. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2418. uint32_t new_head = cache.size;
  2419. for (uint32_t i = 0; i < cache.size; ++i) {
  2420. if (!cache.cells[i].has_seq_id(seq_id)) {
  2421. if (cache.cells[i].pos >= 0) cache.used--;
  2422. cache.cells[i].pos = -1;
  2423. cache.cells[i].seq_id.clear();
  2424. if (new_head == cache.size) new_head = i;
  2425. } else {
  2426. cache.cells[i].seq_id.clear();
  2427. cache.cells[i].seq_id.insert(seq_id);
  2428. }
  2429. }
  2430. // If we freed up a slot, set head to it so searching can start there.
  2431. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2432. }
  2433. static void llama_kv_cache_seq_add(
  2434. struct llama_kv_cache & cache,
  2435. llama_seq_id seq_id,
  2436. llama_pos p0,
  2437. llama_pos p1,
  2438. llama_pos delta) {
  2439. uint32_t new_head = cache.size;
  2440. if (p0 < 0) p0 = 0;
  2441. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2442. if (cache.recurrent) {
  2443. // for Mamba-like models, only the pos needs to be shifted
  2444. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2445. llama_kv_cell & cell = cache.cells[seq_id];
  2446. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2447. cell.pos += delta;
  2448. }
  2449. }
  2450. return;
  2451. }
  2452. for (uint32_t i = 0; i < cache.size; ++i) {
  2453. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2454. cache.has_shift = true;
  2455. cache.cells[i].pos += delta;
  2456. cache.cells[i].delta += delta;
  2457. if (cache.cells[i].pos < 0) {
  2458. if (!cache.cells[i].is_empty()) {
  2459. cache.used--;
  2460. }
  2461. cache.cells[i].pos = -1;
  2462. cache.cells[i].seq_id.clear();
  2463. if (new_head == cache.size) {
  2464. new_head = i;
  2465. }
  2466. }
  2467. }
  2468. }
  2469. // If we freed up a slot, set head to it so searching can start there.
  2470. // Otherwise we just start the next search from the beginning.
  2471. cache.head = new_head != cache.size ? new_head : 0;
  2472. }
  2473. static void llama_kv_cache_seq_div(
  2474. struct llama_kv_cache & cache,
  2475. llama_seq_id seq_id,
  2476. llama_pos p0,
  2477. llama_pos p1,
  2478. int d) {
  2479. if (p0 < 0) p0 = 0;
  2480. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2481. if (cache.recurrent) {
  2482. // for Mamba-like models, only the pos needs to be changed
  2483. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2484. llama_kv_cell & cell = cache.cells[seq_id];
  2485. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2486. cell.pos /= d;
  2487. }
  2488. }
  2489. return;
  2490. }
  2491. for (uint32_t i = 0; i < cache.size; ++i) {
  2492. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2493. cache.has_shift = true;
  2494. {
  2495. llama_pos p_old = cache.cells[i].pos;
  2496. cache.cells[i].pos /= d;
  2497. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2498. }
  2499. }
  2500. }
  2501. }
  2502. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2503. llama_pos result = 0;
  2504. for (uint32_t i = 0; i < cache.size; ++i) {
  2505. if (cache.cells[i].has_seq_id(seq_id)) {
  2506. result = std::max(result, cache.cells[i].pos);
  2507. }
  2508. }
  2509. return result;
  2510. }
  2511. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2512. cache.do_defrag = true;
  2513. }
  2514. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2515. // the FA kernels require padding to avoid extra runtime boundary checks
  2516. return cparams.flash_attn ? 256u : 32u;
  2517. }
  2518. //
  2519. // model loading and saving
  2520. //
  2521. enum llama_fver {
  2522. GGUF_FILE_VERSION_V1 = 1,
  2523. GGUF_FILE_VERSION_V2 = 2,
  2524. GGUF_FILE_VERSION_V3 = 3,
  2525. };
  2526. static const char * llama_file_version_name(llama_fver version) {
  2527. switch (version) {
  2528. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2529. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2530. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2531. }
  2532. return "unknown";
  2533. }
  2534. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2535. char buf[256];
  2536. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2537. for (size_t i = 1; i < ne.size(); i++) {
  2538. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2539. }
  2540. return buf;
  2541. }
  2542. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2543. char buf[256];
  2544. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2545. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2546. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2547. }
  2548. return buf;
  2549. }
  2550. namespace GGUFMeta {
  2551. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2552. struct GKV_Base_Type {
  2553. static constexpr gguf_type gt = gt_;
  2554. static T getter(const gguf_context * ctx, const int kid) {
  2555. return gfun(ctx, kid);
  2556. }
  2557. };
  2558. template<typename T> struct GKV_Base;
  2559. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2560. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2561. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2562. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2563. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2564. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2565. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2566. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2567. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2568. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2569. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2570. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2571. template<> struct GKV_Base<std::string> {
  2572. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2573. static std::string getter(const gguf_context * ctx, const int kid) {
  2574. return gguf_get_val_str(ctx, kid);
  2575. }
  2576. };
  2577. struct ArrayInfo {
  2578. const gguf_type gt;
  2579. const size_t length;
  2580. const void * data;
  2581. };
  2582. template<> struct GKV_Base<ArrayInfo> {
  2583. public:
  2584. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2585. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2586. return ArrayInfo {
  2587. gguf_get_arr_type(ctx, k),
  2588. size_t(gguf_get_arr_n(ctx, k)),
  2589. gguf_get_arr_data(ctx, k),
  2590. };
  2591. }
  2592. };
  2593. template<typename T>
  2594. class GKV : public GKV_Base<T> {
  2595. GKV() = delete;
  2596. public:
  2597. static T get_kv(const gguf_context * ctx, const int k) {
  2598. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2599. if (kt != GKV::gt) {
  2600. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2601. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2602. }
  2603. return GKV::getter(ctx, k);
  2604. }
  2605. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2606. switch (ty) {
  2607. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2608. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2609. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2610. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2611. }
  2612. return "unknown";
  2613. }
  2614. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2615. if (!ovrd) { return false; }
  2616. if (ovrd->tag == expected_type) {
  2617. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2618. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2619. switch (ovrd->tag) {
  2620. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2621. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2622. } break;
  2623. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2624. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2625. } break;
  2626. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2627. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2628. } break;
  2629. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2630. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2631. } break;
  2632. default:
  2633. // Shouldn't be possible to end up here, but just in case...
  2634. throw std::runtime_error(
  2635. format("Unsupported attempt to override %s type for metadata key %s\n",
  2636. override_type_to_str(ovrd->tag), ovrd->key));
  2637. }
  2638. return true;
  2639. }
  2640. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2641. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2642. return false;
  2643. }
  2644. template<typename OT>
  2645. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2646. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2647. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2648. target = ovrd->val_bool;
  2649. return true;
  2650. }
  2651. return false;
  2652. }
  2653. template<typename OT>
  2654. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2655. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2656. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2657. target = ovrd->val_i64;
  2658. return true;
  2659. }
  2660. return false;
  2661. }
  2662. template<typename OT>
  2663. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2664. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2665. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2666. target = ovrd->val_f64;
  2667. return true;
  2668. }
  2669. return false;
  2670. }
  2671. template<typename OT>
  2672. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2673. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2674. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2675. target = ovrd->val_str;
  2676. return true;
  2677. }
  2678. return false;
  2679. }
  2680. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2681. if (try_override<T>(target, ovrd)) {
  2682. return true;
  2683. }
  2684. if (k < 0) { return false; }
  2685. target = get_kv(ctx, k);
  2686. return true;
  2687. }
  2688. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2689. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2690. }
  2691. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2692. return set(ctx, key.c_str(), target, ovrd);
  2693. }
  2694. };
  2695. }
  2696. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2697. struct llama_model_loader {
  2698. int n_kv = 0;
  2699. int n_tensors = 0;
  2700. int n_created = 0;
  2701. int64_t n_elements = 0;
  2702. size_t n_bytes = 0;
  2703. bool use_mmap = false;
  2704. bool check_tensors;
  2705. llama_files files;
  2706. llama_ftype ftype;
  2707. llama_fver fver;
  2708. llama_mmaps mappings;
  2709. // Holds information on a model weight
  2710. struct llama_tensor_weight {
  2711. uint16_t idx; // source file index
  2712. size_t offs; // tensor data offset in the original file
  2713. ggml_tensor * tensor;
  2714. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2715. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2716. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2717. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2718. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2719. }
  2720. }
  2721. };
  2722. std::vector<llama_tensor_weight> weights;
  2723. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2724. struct gguf_context * meta = NULL;
  2725. std::vector<ggml_context *> contexts;
  2726. std::string arch_name;
  2727. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2728. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2729. int trace = 0;
  2730. if (getenv("LLAMA_TRACE")) {
  2731. trace = atoi(getenv("LLAMA_TRACE"));
  2732. }
  2733. if (param_overrides_p != nullptr) {
  2734. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2735. kv_overrides.insert({std::string(p->key), *p});
  2736. }
  2737. }
  2738. struct ggml_context * ctx = NULL;
  2739. struct gguf_init_params params = {
  2740. /*.no_alloc = */ true,
  2741. /*.ctx = */ &ctx,
  2742. };
  2743. meta = gguf_init_from_file(fname.c_str(), params);
  2744. if (!meta) {
  2745. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2746. }
  2747. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2748. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2749. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2750. contexts.emplace_back(ctx);
  2751. // Save tensors data offset of the main file.
  2752. // For subsidiary files, `meta` tensor data offset must not be used,
  2753. // so we build a unified tensors index for weights.
  2754. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2755. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2756. }
  2757. uint16_t n_split = 0;
  2758. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2759. // Load additional GGML contexts
  2760. if (n_split > 1) {
  2761. uint16_t idx = 0;
  2762. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2763. if (idx != 0) {
  2764. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2765. }
  2766. char split_prefix[PATH_MAX] = {0};
  2767. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2768. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2769. }
  2770. if (trace > 0) {
  2771. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2772. }
  2773. char split_path[PATH_MAX] = {0};
  2774. for (idx = 1; idx < n_split; idx++) {
  2775. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2776. struct gguf_init_params split_params = {
  2777. /*.no_alloc = */ true,
  2778. /*.ctx = */ &ctx,
  2779. };
  2780. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2781. if (!ctx_gguf) {
  2782. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2783. }
  2784. files.emplace_back(new llama_file(split_path, "rb"));
  2785. contexts.emplace_back(ctx);
  2786. // Save tensors data offset info of the shard.
  2787. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2788. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2789. }
  2790. gguf_free(ctx_gguf);
  2791. }
  2792. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2793. // sanity check
  2794. {
  2795. const int n_tensors_loaded = (int) weights.size();
  2796. if (n_tensors != n_tensors_loaded) {
  2797. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2798. }
  2799. }
  2800. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2801. }
  2802. n_kv = gguf_get_n_kv(meta);
  2803. n_tensors = weights.size();
  2804. fver = (enum llama_fver) gguf_get_version(meta);
  2805. std::set<std::string> tensor_names;
  2806. for (auto & w : weights) {
  2807. n_elements += ggml_nelements(w.tensor);
  2808. n_bytes += ggml_nbytes(w.tensor);
  2809. // make sure there is no duplicated tensor names
  2810. const std::string name(w.tensor->name);
  2811. auto found = tensor_names.find(name);
  2812. if (found != tensor_names.end()) {
  2813. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2814. }
  2815. tensor_names.insert(name);
  2816. }
  2817. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2818. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2819. // determine file type based on the number of tensors for each quantization and print meta data
  2820. // TODO: make optional
  2821. {
  2822. std::map<enum ggml_type, uint32_t> n_type;
  2823. uint32_t n_type_max = 0;
  2824. enum ggml_type type_max = GGML_TYPE_F32;
  2825. for (int i = 0; i < n_tensors; i++) {
  2826. const ggml_tensor * tensor = weights.at(i).tensor;
  2827. enum ggml_type type = tensor->type;
  2828. n_type[type]++;
  2829. if (n_type_max < n_type[type]) {
  2830. n_type_max = n_type[type];
  2831. type_max = type;
  2832. }
  2833. if (trace > 0) {
  2834. const uint16_t sid = weights.at(i).idx;
  2835. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2836. }
  2837. }
  2838. switch (type_max) {
  2839. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2840. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2841. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2842. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2843. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2844. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2845. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2846. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2847. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2848. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2849. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2850. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2851. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2852. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2853. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2854. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2855. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2856. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2857. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2858. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2859. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2860. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2861. default:
  2862. {
  2863. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2864. ftype = LLAMA_FTYPE_ALL_F32;
  2865. } break;
  2866. }
  2867. // this is a way to mark that we have "guessed" the file type
  2868. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2869. {
  2870. const int kid = gguf_find_key(meta, "general.file_type");
  2871. if (kid >= 0) {
  2872. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2873. }
  2874. }
  2875. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2876. for (int i = 0; i < n_kv; i++) {
  2877. const char * name = gguf_get_key(meta, i);
  2878. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2879. const std::string type_name =
  2880. type == GGUF_TYPE_ARRAY
  2881. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2882. : gguf_type_name(type);
  2883. std::string value = gguf_kv_to_str(meta, i);
  2884. const size_t MAX_VALUE_LEN = 40;
  2885. if (value.size() > MAX_VALUE_LEN) {
  2886. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2887. }
  2888. replace_all(value, "\n", "\\n");
  2889. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2890. }
  2891. // print type counts
  2892. for (auto & kv : n_type) {
  2893. if (kv.second == 0) {
  2894. continue;
  2895. }
  2896. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2897. }
  2898. }
  2899. if (!llama_mmap::SUPPORTED) {
  2900. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2901. use_mmap = false;
  2902. }
  2903. this->use_mmap = use_mmap;
  2904. this->check_tensors = check_tensors;
  2905. }
  2906. ~llama_model_loader() {
  2907. if (meta) {
  2908. gguf_free(meta);
  2909. }
  2910. for (auto * ctx : contexts) {
  2911. ggml_free(ctx);
  2912. }
  2913. }
  2914. template<typename T>
  2915. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2916. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2917. const int kid = gguf_find_key(meta, key.c_str());
  2918. if (kid < 0) {
  2919. if (required) {
  2920. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2921. }
  2922. return false;
  2923. }
  2924. struct GGUFMeta::ArrayInfo arr_info =
  2925. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2926. result = arr_info.length;
  2927. return true;
  2928. }
  2929. template<typename T>
  2930. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2931. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2932. return get_arr_n(llm_kv(kid), result, required);
  2933. }
  2934. template<typename T>
  2935. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  2936. const int kid = gguf_find_key(meta, key.c_str());
  2937. if (kid < 0) {
  2938. if (required) {
  2939. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2940. }
  2941. return false;
  2942. }
  2943. struct GGUFMeta::ArrayInfo arr_info =
  2944. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2945. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  2946. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  2947. }
  2948. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  2949. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  2950. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  2951. result.resize(arr_info.length);
  2952. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  2953. return true;
  2954. }
  2955. template<typename T>
  2956. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  2957. return get_arr(llm_kv(kid), result, required);
  2958. }
  2959. template<typename T>
  2960. bool get_key(const std::string & key, T & result, const bool required = true) {
  2961. auto it = kv_overrides.find(key);
  2962. const struct llama_model_kv_override * override =
  2963. it != kv_overrides.end() ? &it->second : nullptr;
  2964. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2965. if (required && !found) {
  2966. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2967. }
  2968. return found;
  2969. }
  2970. template<typename T>
  2971. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2972. return get_key(llm_kv(kid), result, required);
  2973. }
  2974. std::string get_arch_name() const {
  2975. return arch_name;
  2976. }
  2977. enum llm_arch get_arch() const {
  2978. return llm_kv.arch;
  2979. }
  2980. const char * get_tensor_name(int i) const {
  2981. return weights.at(i).tensor->name;
  2982. }
  2983. const llama_tensor_weight * get_weight(const char * name) const {
  2984. for (const auto & weight : weights) {
  2985. if (strcmp(name, weight.tensor->name) == 0) {
  2986. return &weight;
  2987. }
  2988. }
  2989. return nullptr;
  2990. }
  2991. const llama_tensor_weight * get_weight(int i) const {
  2992. return get_weight(get_tensor_name(i));
  2993. }
  2994. const llama_tensor_weight & require_weight(const char * name) const {
  2995. const llama_tensor_weight * weight = get_weight(name);
  2996. if (!weight) {
  2997. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2998. }
  2999. return *weight;
  3000. }
  3001. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3002. const auto * weight = get_weight(name);
  3003. if (!weight) {
  3004. return nullptr;
  3005. }
  3006. return weight->tensor;
  3007. }
  3008. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3009. struct ggml_tensor * tensor = get_tensor_meta(name);
  3010. if (!tensor) {
  3011. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3012. }
  3013. return tensor;
  3014. }
  3015. struct ggml_tensor * get_tensor_meta(int i) const {
  3016. return get_tensor_meta(get_tensor_name(i));
  3017. }
  3018. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3019. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3020. ggml_set_name(tensor, ggml_get_name(cur));
  3021. if (duplicated) {
  3022. size_data += ggml_nbytes(cur);
  3023. } else {
  3024. n_created++;
  3025. }
  3026. return tensor;
  3027. }
  3028. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3029. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3030. if (cur == NULL) {
  3031. if (!required) {
  3032. return NULL;
  3033. }
  3034. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3035. }
  3036. {
  3037. bool is_ok = true;
  3038. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3039. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3040. is_ok = false;
  3041. break;
  3042. }
  3043. }
  3044. if (!is_ok) {
  3045. throw std::runtime_error(
  3046. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3047. __func__, name.c_str(),
  3048. llama_format_tensor_shape(ne).c_str(),
  3049. llama_format_tensor_shape(cur).c_str()));
  3050. }
  3051. }
  3052. return cur;
  3053. }
  3054. static const int TENSOR_NOT_REQUIRED = 1;
  3055. static const int TENSOR_DUPLICATED = 2;
  3056. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3057. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3058. if (cur == NULL) {
  3059. return NULL;
  3060. }
  3061. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3062. }
  3063. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3064. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3065. if (cur == NULL) {
  3066. return NULL;
  3067. }
  3068. if (cur->type != base->type) {
  3069. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3070. }
  3071. std::array<int64_t, GGML_MAX_DIMS> dims;
  3072. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3073. dims[i] = i < ne.size() ? ne[i] : 1;
  3074. }
  3075. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3076. dims[0], dims[1], dims[2], dims[3],
  3077. cur->nb[1], cur->nb[2], cur->nb[3],
  3078. offset);
  3079. ggml_set_name(tensor, name.c_str());
  3080. n_created++;
  3081. return tensor;
  3082. }
  3083. void done_getting_tensors() const {
  3084. if (n_created != n_tensors) {
  3085. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3086. }
  3087. }
  3088. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3089. if (use_mmap) {
  3090. mappings.reserve(files.size());
  3091. mmaps_used.reserve(files.size());
  3092. for (const auto & file : files) {
  3093. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3094. mmaps_used.emplace_back(mapping->size, 0);
  3095. if (mlock_mmaps) {
  3096. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3097. mlock_mmap->init(mapping->addr);
  3098. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3099. }
  3100. mappings.emplace_back(std::move(mapping));
  3101. }
  3102. }
  3103. // compute the total size of all tensors for progress reporting
  3104. for (auto & w : weights) {
  3105. size_data += ggml_nbytes(w.tensor);
  3106. }
  3107. }
  3108. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3109. GGML_ASSERT(!mappings.empty());
  3110. const auto & mapping = mappings.at(idx);
  3111. *first = mapping->size;
  3112. *last = 0;
  3113. *addr = mapping->addr;
  3114. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3115. try {
  3116. const auto * weight = get_weight(ggml_get_name(tensor));
  3117. if (!weight) {
  3118. continue;
  3119. }
  3120. if (weight->idx != idx) {
  3121. continue;
  3122. }
  3123. *first = std::min(*first, weight->offs);
  3124. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3125. } catch(...) {
  3126. // the tensor is not in the model
  3127. }
  3128. }
  3129. }
  3130. // for backwards compatibility, does not support ggml-backend
  3131. void load_data_for(struct ggml_tensor * cur) const {
  3132. const auto & w = require_weight(ggml_get_name(cur));
  3133. if (use_mmap) {
  3134. const auto & mapping = mappings.at(w.idx);
  3135. if (cur->data == nullptr) {
  3136. cur->data = (uint8_t *)mapping->addr + w.offs;
  3137. } else {
  3138. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3139. }
  3140. } else {
  3141. GGML_ASSERT(cur->data != nullptr);
  3142. GGML_ASSERT(w.idx < files.size());
  3143. const auto & file = files.at(w.idx);
  3144. file->seek(w.offs, SEEK_SET);
  3145. file->read_raw(cur->data, ggml_nbytes(cur));
  3146. }
  3147. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3148. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3149. }
  3150. }
  3151. size_t size_done = 0;
  3152. size_t size_data = 0;
  3153. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3154. // Returns false if cancelled by progress_callback
  3155. bool load_all_data(
  3156. struct ggml_context * ctx,
  3157. llama_buf_map & bufs_mmap,
  3158. llama_mlocks * lmlocks,
  3159. llama_progress_callback progress_callback,
  3160. void * progress_callback_user_data) {
  3161. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3162. std::vector<no_init<uint8_t>> read_buf;
  3163. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3164. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3165. const auto * weight = get_weight(ggml_get_name(cur));
  3166. if (weight == nullptr) {
  3167. // this can happen with split experts models
  3168. continue;
  3169. }
  3170. if (progress_callback) {
  3171. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3172. return false;
  3173. }
  3174. }
  3175. size_t n_size = ggml_nbytes(cur);
  3176. if (use_mmap) {
  3177. const auto & mapping = mappings.at(weight->idx);
  3178. ggml_backend_buffer_t buf_mmap = nullptr;
  3179. if (bufs_mmap.count(weight->idx)) {
  3180. buf_mmap = bufs_mmap.at(weight->idx);
  3181. }
  3182. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3183. if (check_tensors) {
  3184. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3185. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3186. }));
  3187. }
  3188. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3189. if (buf_mmap && cur->data == nullptr) {
  3190. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3191. if (lmlocks) {
  3192. const auto & lmlock = lmlocks->at(weight->idx);
  3193. lmlock->grow_to(weight->offs + n_size);
  3194. }
  3195. auto & mmap_used = mmaps_used[weight->idx];
  3196. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3197. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3198. } else {
  3199. ggml_backend_tensor_set(cur, data, 0, n_size);
  3200. }
  3201. } else {
  3202. GGML_ASSERT(weight->idx < files.size());
  3203. const auto & file = files.at(weight->idx);
  3204. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3205. file->seek(weight->offs, SEEK_SET);
  3206. file->read_raw(cur->data, n_size);
  3207. if (check_tensors) {
  3208. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3209. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3210. }));
  3211. }
  3212. } else {
  3213. read_buf.resize(n_size);
  3214. file->seek(weight->offs, SEEK_SET);
  3215. file->read_raw(read_buf.data(), n_size);
  3216. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3217. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3218. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3219. }
  3220. }
  3221. }
  3222. size_done += n_size;
  3223. }
  3224. // check validation results
  3225. bool validation_failed = false;
  3226. for (auto & future : validation_result) {
  3227. auto result = future.get();
  3228. if (!result.second) {
  3229. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3230. validation_failed = true;
  3231. }
  3232. }
  3233. if (validation_failed) {
  3234. throw std::runtime_error("found tensors with invalid data");
  3235. }
  3236. // check if this is the last call and do final cleanup
  3237. if (size_done >= size_data) {
  3238. // unmap offloaded tensors and metadata
  3239. if (use_mmap) {
  3240. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3241. const auto & mmap_used = mmaps_used.at(idx);
  3242. auto & mapping = mappings.at(idx);
  3243. mapping->unmap_fragment(0, mmap_used.first);
  3244. if (mmap_used.second != 0) {
  3245. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3246. }
  3247. }
  3248. }
  3249. if (progress_callback) {
  3250. // Even though the model is done loading, we still honor
  3251. // cancellation since we need to free allocations.
  3252. return progress_callback(1.0f, progress_callback_user_data);
  3253. }
  3254. }
  3255. return true;
  3256. }
  3257. };
  3258. template<>
  3259. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3260. uint32_t tmp;
  3261. const bool found = get_key(kid, tmp, required);
  3262. if (found) {
  3263. result = (enum llama_pooling_type) tmp;
  3264. } else {
  3265. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3266. }
  3267. return found;
  3268. }
  3269. //
  3270. // load LLaMA models
  3271. //
  3272. static const char * llama_model_arch_name(llm_arch arch) {
  3273. auto it = LLM_ARCH_NAMES.find(arch);
  3274. if (it == LLM_ARCH_NAMES.end()) {
  3275. return "unknown";
  3276. }
  3277. return it->second;
  3278. }
  3279. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3280. if (ftype & LLAMA_FTYPE_GUESSED) {
  3281. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3282. }
  3283. switch (ftype) {
  3284. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3285. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3286. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3287. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3288. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3289. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3290. return "Q4_1, some F16";
  3291. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3292. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3293. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3294. // K-quants
  3295. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3296. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3297. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3298. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3299. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3300. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3301. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3302. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3303. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3304. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3305. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3306. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3307. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3308. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3309. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3310. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3311. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3312. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3313. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3314. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3315. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3316. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3317. default: return "unknown, may not work";
  3318. }
  3319. }
  3320. static const char * llama_model_type_name(e_model type) {
  3321. switch (type) {
  3322. case MODEL_14M: return "14M";
  3323. case MODEL_17M: return "17M";
  3324. case MODEL_22M: return "22M";
  3325. case MODEL_33M: return "33M";
  3326. case MODEL_70M: return "70M";
  3327. case MODEL_109M: return "109M";
  3328. case MODEL_137M: return "137M";
  3329. case MODEL_160M: return "160M";
  3330. case MODEL_335M: return "335M";
  3331. case MODEL_410M: return "410M";
  3332. case MODEL_0_5B: return "0.5B";
  3333. case MODEL_1B: return "1B";
  3334. case MODEL_1_4B: return "1.4B";
  3335. case MODEL_2B: return "2B";
  3336. case MODEL_2_8B: return "2.8B";
  3337. case MODEL_3B: return "3B";
  3338. case MODEL_4B: return "4B";
  3339. case MODEL_6_9B: return "6.9B";
  3340. case MODEL_7B: return "7B";
  3341. case MODEL_8B: return "8B";
  3342. case MODEL_12B: return "12B";
  3343. case MODEL_13B: return "13B";
  3344. case MODEL_14B: return "14B";
  3345. case MODEL_15B: return "15B";
  3346. case MODEL_20B: return "20B";
  3347. case MODEL_30B: return "30B";
  3348. case MODEL_34B: return "34B";
  3349. case MODEL_35B: return "35B";
  3350. case MODEL_40B: return "40B";
  3351. case MODEL_65B: return "65B";
  3352. case MODEL_70B: return "70B";
  3353. case MODEL_314B: return "314B";
  3354. case MODEL_SMALL: return "0.1B";
  3355. case MODEL_MEDIUM: return "0.4B";
  3356. case MODEL_LARGE: return "0.8B";
  3357. case MODEL_XL: return "1.5B";
  3358. case MODEL_A2_7B: return "A2.7B";
  3359. case MODEL_8x7B: return "8x7B";
  3360. case MODEL_8x22B: return "8x22B";
  3361. case MODEL_16x12B: return "16x12B";
  3362. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3363. default: return "?B";
  3364. }
  3365. }
  3366. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3367. switch (type) {
  3368. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3369. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3370. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3371. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3372. default: return "unknown";
  3373. }
  3374. }
  3375. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3376. model.arch = ml.get_arch();
  3377. if (model.arch == LLM_ARCH_UNKNOWN) {
  3378. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3379. }
  3380. }
  3381. static void llm_load_hparams(
  3382. llama_model_loader & ml,
  3383. llama_model & model) {
  3384. auto & hparams = model.hparams;
  3385. const gguf_context * ctx = ml.meta;
  3386. // get metadata as string
  3387. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3388. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3389. if (type == GGUF_TYPE_ARRAY) {
  3390. continue;
  3391. }
  3392. const char * name = gguf_get_key(ctx, i);
  3393. const std::string value = gguf_kv_to_str(ctx, i);
  3394. model.gguf_kv.emplace(name, value);
  3395. }
  3396. // get general kv
  3397. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3398. // get hparams kv
  3399. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3400. // everything past this point is not vocab-related
  3401. if (hparams.vocab_only) {
  3402. return;
  3403. }
  3404. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3405. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3406. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3407. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3408. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3409. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3410. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3411. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3412. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3413. if (hparams.n_expert > 0) {
  3414. GGML_ASSERT(hparams.n_expert_used > 0);
  3415. } else {
  3416. GGML_ASSERT(hparams.n_expert_used == 0);
  3417. }
  3418. // n_head_kv is optional, default to n_head
  3419. hparams.n_head_kv = hparams.n_head;
  3420. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3421. bool rope_finetuned = false;
  3422. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3423. hparams.rope_finetuned = rope_finetuned;
  3424. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3425. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3426. // rope_freq_base (optional)
  3427. hparams.rope_freq_base_train = 10000.0f;
  3428. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3429. std::string rope_scaling("linear");
  3430. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3431. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3432. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3433. // rope_freq_scale (inverse of the kv) is optional
  3434. float ropescale = 0.0f;
  3435. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3436. // try the old key name
  3437. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3438. }
  3439. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3440. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3441. // sanity check for n_rot (optional)
  3442. {
  3443. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3444. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3445. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3446. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3447. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3448. }
  3449. }
  3450. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3451. // gpt-j n_rot = rotary_dim
  3452. }
  3453. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3454. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3455. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3456. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3457. // arch-specific KVs
  3458. switch (model.arch) {
  3459. case LLM_ARCH_LLAMA:
  3460. {
  3461. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3462. if (hparams.n_expert == 8) {
  3463. switch (hparams.n_layer) {
  3464. case 32: model.type = e_model::MODEL_8x7B; break;
  3465. case 56: model.type = e_model::MODEL_8x22B; break;
  3466. default: model.type = e_model::MODEL_UNKNOWN;
  3467. }
  3468. } else {
  3469. switch (hparams.n_layer) {
  3470. case 22: model.type = e_model::MODEL_1B; break;
  3471. case 26: model.type = e_model::MODEL_3B; break;
  3472. case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
  3473. case 40: model.type = e_model::MODEL_13B; break;
  3474. case 48: model.type = e_model::MODEL_34B; break;
  3475. case 60: model.type = e_model::MODEL_30B; break;
  3476. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3477. default: model.type = e_model::MODEL_UNKNOWN;
  3478. }
  3479. }
  3480. } break;
  3481. case LLM_ARCH_MINICPM:
  3482. {
  3483. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3484. switch (hparams.n_layer) {
  3485. case 40: model.type = e_model::MODEL_2B; break;
  3486. default: model.type = e_model::MODEL_UNKNOWN;
  3487. }
  3488. } break;
  3489. case LLM_ARCH_GROK:
  3490. {
  3491. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3492. switch (hparams.n_layer) {
  3493. case 64: model.type = e_model::MODEL_314B; break;
  3494. default: model.type = e_model::MODEL_UNKNOWN;
  3495. }
  3496. } break;
  3497. case LLM_ARCH_FALCON:
  3498. {
  3499. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3500. switch (hparams.n_layer) {
  3501. case 32: model.type = e_model::MODEL_7B; break;
  3502. case 60: model.type = e_model::MODEL_40B; break;
  3503. default: model.type = e_model::MODEL_UNKNOWN;
  3504. }
  3505. } break;
  3506. case LLM_ARCH_BAICHUAN:
  3507. {
  3508. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3509. switch (hparams.n_layer) {
  3510. case 32: model.type = e_model::MODEL_7B; break;
  3511. case 40: model.type = e_model::MODEL_13B; break;
  3512. default: model.type = e_model::MODEL_UNKNOWN;
  3513. }
  3514. if (model.type == e_model::MODEL_13B) {
  3515. // TODO: become GGUF KV parameter
  3516. hparams.f_max_alibi_bias = 8.0f;
  3517. }
  3518. } break;
  3519. case LLM_ARCH_STARCODER:
  3520. {
  3521. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3522. switch (hparams.n_layer) {
  3523. case 24: model.type = e_model::MODEL_1B; break;
  3524. case 36: model.type = e_model::MODEL_3B; break;
  3525. case 42: model.type = e_model::MODEL_7B; break;
  3526. case 40: model.type = e_model::MODEL_15B; break;
  3527. default: model.type = e_model::MODEL_UNKNOWN;
  3528. }
  3529. } break;
  3530. case LLM_ARCH_REFACT:
  3531. {
  3532. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3533. switch (hparams.n_layer) {
  3534. case 32: model.type = e_model::MODEL_1B; break;
  3535. default: model.type = e_model::MODEL_UNKNOWN;
  3536. }
  3537. // TODO: become GGUF KV parameter
  3538. hparams.f_max_alibi_bias = 8.0f;
  3539. } break;
  3540. case LLM_ARCH_BERT:
  3541. {
  3542. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3543. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3544. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3545. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3546. switch (hparams.n_layer) {
  3547. case 3:
  3548. model.type = e_model::MODEL_17M; break; // bge-micro
  3549. case 6:
  3550. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3551. case 12:
  3552. switch (hparams.n_embd) {
  3553. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3554. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3555. } break;
  3556. case 24:
  3557. model.type = e_model::MODEL_335M; break; // bge-large
  3558. }
  3559. } break;
  3560. case LLM_ARCH_JINA_BERT_V2:
  3561. {
  3562. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3563. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3564. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3565. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3566. hparams.f_max_alibi_bias = 8.0f;
  3567. switch (hparams.n_layer) {
  3568. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3569. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3570. }
  3571. } break;
  3572. case LLM_ARCH_NOMIC_BERT:
  3573. {
  3574. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3575. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3576. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3577. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3578. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3579. model.type = e_model::MODEL_137M;
  3580. }
  3581. } break;
  3582. case LLM_ARCH_BLOOM:
  3583. {
  3584. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3585. switch (hparams.n_layer) {
  3586. case 24: model.type = e_model::MODEL_1B; break;
  3587. case 30:
  3588. switch (hparams.n_embd) {
  3589. case 2560: model.type = e_model::MODEL_3B; break;
  3590. case 4096: model.type = e_model::MODEL_7B; break;
  3591. } break;
  3592. }
  3593. // TODO: become GGUF KV parameter
  3594. hparams.f_max_alibi_bias = 8.0f;
  3595. } break;
  3596. case LLM_ARCH_MPT:
  3597. {
  3598. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3599. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3600. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3601. switch (hparams.n_layer) {
  3602. case 32: model.type = e_model::MODEL_7B; break;
  3603. case 48: model.type = e_model::MODEL_30B; break;
  3604. default: model.type = e_model::MODEL_UNKNOWN;
  3605. }
  3606. } break;
  3607. case LLM_ARCH_STABLELM:
  3608. {
  3609. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3610. switch (hparams.n_layer) {
  3611. case 24: model.type = e_model::MODEL_1B; break;
  3612. case 32: model.type = e_model::MODEL_3B; break;
  3613. case 40: model.type = e_model::MODEL_12B; break;
  3614. default: model.type = e_model::MODEL_UNKNOWN;
  3615. }
  3616. } break;
  3617. case LLM_ARCH_QWEN:
  3618. {
  3619. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3620. switch (hparams.n_layer) {
  3621. case 32: model.type = e_model::MODEL_7B; break;
  3622. case 40: model.type = e_model::MODEL_13B; break;
  3623. default: model.type = e_model::MODEL_UNKNOWN;
  3624. }
  3625. } break;
  3626. case LLM_ARCH_QWEN2:
  3627. {
  3628. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3629. switch (hparams.n_layer) {
  3630. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3631. case 32: model.type = e_model::MODEL_7B; break;
  3632. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3633. case 80: model.type = e_model::MODEL_70B; break;
  3634. default: model.type = e_model::MODEL_UNKNOWN;
  3635. }
  3636. } break;
  3637. case LLM_ARCH_QWEN2MOE:
  3638. {
  3639. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3640. switch (hparams.n_layer) {
  3641. case 24: model.type = e_model::MODEL_A2_7B; break;
  3642. default: model.type = e_model::MODEL_UNKNOWN;
  3643. }
  3644. } break;
  3645. case LLM_ARCH_PHI2:
  3646. {
  3647. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3648. switch (hparams.n_layer) {
  3649. case 24: model.type = e_model::MODEL_1B; break;
  3650. case 32: model.type = e_model::MODEL_3B; break;
  3651. default: model.type = e_model::MODEL_UNKNOWN;
  3652. }
  3653. } break;
  3654. case LLM_ARCH_PHI3:
  3655. {
  3656. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3657. switch (hparams.n_layer) {
  3658. case 24: model.type = e_model::MODEL_1B; break;
  3659. case 32: model.type = e_model::MODEL_3B; break;
  3660. case 40: model.type = e_model::MODEL_14B; break;
  3661. default: model.type = e_model::MODEL_UNKNOWN;
  3662. }
  3663. } break;
  3664. case LLM_ARCH_PLAMO:
  3665. {
  3666. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3667. switch (hparams.n_layer) {
  3668. case 40: model.type = e_model::MODEL_13B; break;
  3669. default: model.type = e_model::MODEL_UNKNOWN;
  3670. }
  3671. } break;
  3672. case LLM_ARCH_GPT2:
  3673. {
  3674. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3675. switch (hparams.n_layer) {
  3676. case 12: model.type = e_model::MODEL_SMALL; break;
  3677. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3678. case 36: model.type = e_model::MODEL_LARGE; break;
  3679. case 48: model.type = e_model::MODEL_XL; break;
  3680. default: model.type = e_model::MODEL_UNKNOWN;
  3681. }
  3682. } break;
  3683. case LLM_ARCH_CODESHELL:
  3684. {
  3685. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3686. switch (hparams.n_layer) {
  3687. case 42: model.type = e_model::MODEL_SMALL; break;
  3688. default: model.type = e_model::MODEL_UNKNOWN;
  3689. }
  3690. } break;
  3691. case LLM_ARCH_ORION:
  3692. {
  3693. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3694. switch (hparams.n_layer) {
  3695. case 40: model.type = e_model::MODEL_14B; break;
  3696. default: model.type = e_model::MODEL_UNKNOWN;
  3697. }
  3698. } break;
  3699. case LLM_ARCH_INTERNLM2:
  3700. {
  3701. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3702. switch (hparams.n_layer) {
  3703. case 32: model.type = e_model::MODEL_7B; break;
  3704. case 48: model.type = e_model::MODEL_20B; break;
  3705. default: model.type = e_model::MODEL_UNKNOWN;
  3706. }
  3707. } break;
  3708. case LLM_ARCH_GEMMA:
  3709. {
  3710. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3711. switch (hparams.n_layer) {
  3712. case 18: model.type = e_model::MODEL_2B; break;
  3713. case 28: model.type = e_model::MODEL_7B; break;
  3714. default: model.type = e_model::MODEL_UNKNOWN;
  3715. }
  3716. } break;
  3717. case LLM_ARCH_STARCODER2:
  3718. {
  3719. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3720. switch (hparams.n_layer) {
  3721. case 30: model.type = e_model::MODEL_3B; break;
  3722. case 32: model.type = e_model::MODEL_7B; break;
  3723. case 40: model.type = e_model::MODEL_15B; break;
  3724. default: model.type = e_model::MODEL_UNKNOWN;
  3725. }
  3726. } break;
  3727. case LLM_ARCH_MAMBA:
  3728. {
  3729. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3730. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3731. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3732. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3733. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3734. switch (hparams.n_layer) {
  3735. case 24:
  3736. switch (hparams.n_embd) {
  3737. case 768: model.type = e_model::MODEL_SMALL; break;
  3738. default: model.type = e_model::MODEL_UNKNOWN;
  3739. } break;
  3740. case 48:
  3741. switch (hparams.n_embd) {
  3742. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3743. case 1536: model.type = e_model::MODEL_LARGE; break;
  3744. case 2048: model.type = e_model::MODEL_XL; break;
  3745. default: model.type = e_model::MODEL_UNKNOWN;
  3746. } break;
  3747. case 64:
  3748. switch (hparams.n_embd) {
  3749. case 2560: model.type = e_model::MODEL_3B; break;
  3750. default: model.type = e_model::MODEL_UNKNOWN;
  3751. } break;
  3752. default: model.type = e_model::MODEL_UNKNOWN;
  3753. }
  3754. } break;
  3755. case LLM_ARCH_XVERSE:
  3756. {
  3757. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3758. switch (hparams.n_layer) {
  3759. case 32: model.type = e_model::MODEL_7B; break;
  3760. case 40: model.type = e_model::MODEL_13B; break;
  3761. case 80: model.type = e_model::MODEL_65B; break;
  3762. default: model.type = e_model::MODEL_UNKNOWN;
  3763. }
  3764. } break;
  3765. case LLM_ARCH_COMMAND_R:
  3766. {
  3767. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3768. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3769. switch (hparams.n_layer) {
  3770. case 40: model.type = e_model::MODEL_35B; break;
  3771. default: model.type = e_model::MODEL_UNKNOWN;
  3772. }
  3773. } break;
  3774. case LLM_ARCH_DBRX:
  3775. {
  3776. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3777. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3778. switch (hparams.n_layer) {
  3779. case 40: model.type = e_model::MODEL_16x12B; break;
  3780. default: model.type = e_model::MODEL_UNKNOWN;
  3781. }
  3782. } break;
  3783. case LLM_ARCH_OLMO:
  3784. {
  3785. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3786. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3787. switch (hparams.n_layer) {
  3788. case 22: model.type = e_model::MODEL_1B; break;
  3789. case 32: model.type = e_model::MODEL_7B; break;
  3790. case 80: model.type = e_model::MODEL_70B; break;
  3791. default: model.type = e_model::MODEL_UNKNOWN;
  3792. }
  3793. } break;
  3794. case LLM_ARCH_GPTNEOX:
  3795. {
  3796. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3797. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  3798. switch (hparams.n_layer) {
  3799. case 6:
  3800. switch (hparams.n_ff) {
  3801. case 512: model.type = e_model::MODEL_14M; break;
  3802. case 2048: model.type = e_model::MODEL_70M; break;
  3803. default: model.type = e_model::MODEL_UNKNOWN;
  3804. } break;
  3805. case 12:
  3806. switch (hparams.n_ff) {
  3807. case 3072: model.type = e_model::MODEL_160M; break;
  3808. default: model.type = e_model::MODEL_UNKNOWN;
  3809. } break;
  3810. case 16:
  3811. switch (hparams.n_ff) {
  3812. case 8192: model.type = e_model::MODEL_1B; break;
  3813. default: model.type = e_model::MODEL_UNKNOWN;
  3814. } break;
  3815. case 24:
  3816. switch (hparams.n_ff) {
  3817. case 4096: model.type = e_model::MODEL_410M; break;
  3818. case 8192: model.type = e_model::MODEL_1_4B; break;
  3819. default: model.type = e_model::MODEL_UNKNOWN;
  3820. } break;
  3821. case 32:
  3822. switch (hparams.n_ff) {
  3823. case 10240: model.type = e_model::MODEL_2_8B; break;
  3824. case 16384: model.type = e_model::MODEL_6_9B; break;
  3825. default: model.type = e_model::MODEL_UNKNOWN;
  3826. } break;
  3827. case 36:
  3828. switch (hparams.n_ff) {
  3829. case 20480: model.type = e_model::MODEL_12B; break;
  3830. default: model.type = e_model::MODEL_UNKNOWN;
  3831. } break;
  3832. case 44:
  3833. switch (hparams.n_ff) {
  3834. case 24576: model.type = e_model::MODEL_20B; break;
  3835. default: model.type = e_model::MODEL_UNKNOWN;
  3836. } break;
  3837. default: model.type = e_model::MODEL_UNKNOWN;
  3838. }
  3839. } break;
  3840. case LLM_ARCH_ARCTIC:
  3841. {
  3842. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3843. if (hparams.n_expert == 128) {
  3844. switch (hparams.n_layer) {
  3845. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  3846. default: model.type = e_model::MODEL_UNKNOWN;
  3847. }
  3848. } else {
  3849. model.type = e_model::MODEL_UNKNOWN;
  3850. }
  3851. } break;
  3852. default: (void)0;
  3853. }
  3854. model.ftype = ml.ftype;
  3855. if (hparams.f_max_alibi_bias > 0.0f) {
  3856. hparams.use_alibi = true;
  3857. }
  3858. hparams.rope_type = llama_rope_type(&model);
  3859. }
  3860. // TODO: This should probably be in llama.h
  3861. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3862. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3863. );
  3864. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3865. static void llm_load_vocab(
  3866. llama_model_loader & ml,
  3867. llama_model & model) {
  3868. auto & vocab = model.vocab;
  3869. struct gguf_context * ctx = ml.meta;
  3870. const auto kv = LLM_KV(model.arch);
  3871. // determine vocab type
  3872. {
  3873. std::string tokenizer_model;
  3874. std::string tokenizer_pre;
  3875. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3876. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3877. if (tokenizer_model == "no_vocab") {
  3878. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3879. // default special tokens
  3880. vocab.special_bos_id = -1;
  3881. vocab.special_eos_id = -1;
  3882. vocab.special_unk_id = -1;
  3883. vocab.special_sep_id = -1;
  3884. vocab.special_pad_id = -1;
  3885. vocab.special_cls_id = -1;
  3886. vocab.special_mask_id = -1;
  3887. vocab.linefeed_id = -1;
  3888. return;
  3889. } else if (tokenizer_model == "llama") {
  3890. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3891. // default special tokens
  3892. vocab.special_bos_id = 1;
  3893. vocab.special_eos_id = 2;
  3894. vocab.special_unk_id = 0;
  3895. vocab.special_sep_id = -1;
  3896. vocab.special_pad_id = -1;
  3897. vocab.special_cls_id = -1;
  3898. vocab.special_mask_id = -1;
  3899. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3900. // prior to support of FIM special tokens in GGUF, the following
  3901. // will allow those models to continue to work. The general names
  3902. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3903. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3904. // new versions of these models have been published.
  3905. std::string gen_name;
  3906. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3907. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3908. [](unsigned char c){ return std::tolower(c); });
  3909. if (gen_name.find("code") != std::string::npos) {
  3910. if (model.arch == LLM_ARCH_LLAMA) {
  3911. vocab.special_prefix_id = 32007;
  3912. vocab.special_suffix_id = 32008;
  3913. vocab.special_middle_id = 32009;
  3914. vocab.special_eot_id = 32010;
  3915. } else if (model.arch == LLM_ARCH_GEMMA) {
  3916. vocab.special_prefix_id = 67;
  3917. vocab.special_suffix_id = 69;
  3918. vocab.special_middle_id = 68;
  3919. // TODO: this is not EOT, it is "file separator" token, needs fix
  3920. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3921. //vocab.special_eot_id = 70;
  3922. vocab.special_eot_id = 107;
  3923. }
  3924. }
  3925. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3926. if (add_space_prefix_keyidx != -1) {
  3927. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3928. } // The default value of add_space_prefix is true.
  3929. } else if (tokenizer_model == "bert") {
  3930. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3931. // default special tokens
  3932. vocab.special_bos_id = -1;
  3933. vocab.special_eos_id = -1;
  3934. vocab.special_unk_id = 100;
  3935. vocab.special_sep_id = 102;
  3936. vocab.special_pad_id = 0;
  3937. vocab.special_cls_id = 101;
  3938. vocab.special_mask_id = 103;
  3939. vocab.add_space_prefix = false;
  3940. } else {
  3941. if (tokenizer_model == "gpt2") {
  3942. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3943. } else {
  3944. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3945. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3946. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3947. return;
  3948. }
  3949. // read bpe merges and populate bpe ranks
  3950. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3951. if (merges_keyidx == -1) {
  3952. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3953. }
  3954. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3955. for (int i = 0; i < n_merges; i++) {
  3956. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3957. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3958. std::string first;
  3959. std::string second;
  3960. const size_t pos = word.find(' ', 1);
  3961. if (pos != std::string::npos) {
  3962. first = word.substr(0, pos);
  3963. second = word.substr(pos + 1);
  3964. }
  3965. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3966. }
  3967. // default special tokens
  3968. vocab.special_bos_id = 11;
  3969. vocab.special_eos_id = 11;
  3970. vocab.special_unk_id = -1;
  3971. vocab.special_sep_id = -1;
  3972. vocab.special_pad_id = -1;
  3973. vocab.special_cls_id = -1;
  3974. vocab.special_mask_id = -1;
  3975. }
  3976. // for now, only BPE models have pre-tokenizers
  3977. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3978. if (tokenizer_pre.empty()) {
  3979. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3980. LLAMA_LOG_WARN("%s: \n", __func__);
  3981. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3982. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3983. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3984. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3985. LLAMA_LOG_WARN("%s: \n", __func__);
  3986. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3987. } else if (
  3988. tokenizer_pre == "default") {
  3989. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3990. } else if (
  3991. tokenizer_pre == "llama3" ||
  3992. tokenizer_pre == "llama-v3" ||
  3993. tokenizer_pre == "llama-bpe") {
  3994. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3995. } else if (
  3996. tokenizer_pre == "deepseek-llm") {
  3997. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3998. } else if (
  3999. tokenizer_pre == "deepseek-coder") {
  4000. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4001. } else if (
  4002. tokenizer_pre == "falcon") {
  4003. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4004. } else if (
  4005. tokenizer_pre == "mpt") {
  4006. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4007. } else if (
  4008. tokenizer_pre == "starcoder") {
  4009. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4010. } else if (
  4011. tokenizer_pre == "gpt-2" ||
  4012. tokenizer_pre == "jina-es" ||
  4013. tokenizer_pre == "jina-de" ||
  4014. tokenizer_pre == "jina-v2-es" ||
  4015. tokenizer_pre == "jina-v2-de") {
  4016. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4017. } else if (
  4018. tokenizer_pre == "refact") {
  4019. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4020. } else if (
  4021. tokenizer_pre == "command-r") {
  4022. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4023. } else if (
  4024. tokenizer_pre == "qwen2") {
  4025. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4026. } else if (
  4027. tokenizer_pre == "stablelm2") {
  4028. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4029. } else if (
  4030. tokenizer_pre == "olmo") {
  4031. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4032. } else if (
  4033. tokenizer_pre == "dbrx") {
  4034. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4035. } else if (
  4036. tokenizer_pre == "smaug-bpe") {
  4037. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4038. } else {
  4039. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4040. }
  4041. } else {
  4042. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4043. }
  4044. }
  4045. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4046. if (token_idx == -1) {
  4047. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4048. }
  4049. const float * scores = nullptr;
  4050. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4051. if (score_idx != -1) {
  4052. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4053. }
  4054. const int * toktypes = nullptr;
  4055. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4056. if (toktype_idx != -1) {
  4057. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4058. }
  4059. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4060. vocab.id_to_token.resize(n_vocab);
  4061. for (uint32_t i = 0; i < n_vocab; i++) {
  4062. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4063. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4064. vocab.token_to_id[word] = i;
  4065. auto & token_data = vocab.id_to_token[i];
  4066. token_data.text = std::move(word);
  4067. token_data.score = scores ? scores[i] : 0.0f;
  4068. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  4069. }
  4070. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4071. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4072. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4073. try {
  4074. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4075. } catch (const std::exception & e) {
  4076. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4077. vocab.linefeed_id = vocab.special_pad_id;
  4078. }
  4079. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4080. vocab.linefeed_id = vocab.special_pad_id;
  4081. } else {
  4082. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4083. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4084. vocab.linefeed_id = ids[0];
  4085. }
  4086. // special tokens
  4087. {
  4088. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4089. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4090. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4091. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4092. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4093. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4094. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4095. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4096. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4097. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4098. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4099. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4100. };
  4101. for (const auto & it : special_token_types) {
  4102. const std::string & key = kv(std::get<0>(it));
  4103. int32_t & id = std::get<1>(it);
  4104. uint32_t new_id;
  4105. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4106. continue;
  4107. }
  4108. if (new_id >= vocab.id_to_token.size()) {
  4109. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4110. __func__, key.c_str(), new_id, id);
  4111. } else {
  4112. id = new_id;
  4113. }
  4114. }
  4115. // Handle add_bos_token and add_eos_token
  4116. {
  4117. bool temp = true;
  4118. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4119. vocab.special_add_bos = int(temp);
  4120. }
  4121. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4122. vocab.special_add_eos = int(temp);
  4123. }
  4124. }
  4125. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4126. //
  4127. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4128. // for now, we apply this workaround to find the EOT token based on its text
  4129. if (vocab.special_eot_id == -1) {
  4130. for (const auto & t : vocab.token_to_id) {
  4131. if (
  4132. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4133. // need to fix convert script
  4134. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4135. (t.first == "<|eot_id|>" ||
  4136. t.first == "<|im_end|>" ||
  4137. t.first == "<|end|>" ||
  4138. t.first == "<end_of_turn>" ||
  4139. t.first == "<|endoftext|>"
  4140. )
  4141. ) {
  4142. vocab.special_eot_id = t.second;
  4143. break;
  4144. }
  4145. }
  4146. }
  4147. }
  4148. // build special tokens cache
  4149. {
  4150. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  4151. // and will always be correctly labeled in 'added_tokens.json' etc.
  4152. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  4153. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  4154. // are special tokens.
  4155. // From testing, this appears to correlate 1:1 with special tokens.
  4156. //
  4157. // Counting special tokens and verifying in only one direction
  4158. // is sufficient to detect difference in those two sets.
  4159. //
  4160. uint32_t special_tokens_count_by_type = 0;
  4161. uint32_t special_tokens_count_from_verification = 0;
  4162. bool special_tokens_definition_mismatch = false;
  4163. for (const auto & t : vocab.token_to_id) {
  4164. const auto & token = t.first;
  4165. const auto & id = t.second;
  4166. // Count all non-normal tokens in the vocab while iterating
  4167. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4168. special_tokens_count_by_type++;
  4169. }
  4170. // Skip single character tokens
  4171. if (token.length() > 1) {
  4172. bool is_tokenizable = false;
  4173. // Split token string representation in two, in all possible ways
  4174. // and check if both halves can be matched to a valid token
  4175. for (unsigned i = 1; i < token.length();) {
  4176. const auto left = token.substr(0, i);
  4177. const auto right = token.substr(i);
  4178. // check if we didnt partition in the middle of a utf sequence
  4179. auto utf = utf8_len(left.at(left.length() - 1));
  4180. if (utf == 1) {
  4181. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4182. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4183. is_tokenizable = true;
  4184. break;
  4185. }
  4186. i++;
  4187. } else {
  4188. // skip over the rest of multibyte utf sequence
  4189. i += utf - 1;
  4190. }
  4191. }
  4192. if (!is_tokenizable) {
  4193. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4194. // it's faster to re-filter them here, since there are way less candidates now
  4195. // Calculate a total "utf" length of a token string representation
  4196. size_t utf8_str_len = 0;
  4197. for (unsigned i = 0; i < token.length();) {
  4198. utf8_str_len++;
  4199. i += utf8_len(token.at(i));
  4200. }
  4201. // And skip the ones which are one character
  4202. if (utf8_str_len > 1) {
  4203. // At this point what we have left are special tokens only
  4204. vocab.special_tokens_cache[token] = id;
  4205. // Count manually found special tokens
  4206. special_tokens_count_from_verification++;
  4207. // If this manually found special token is not marked as such, flag a mismatch
  4208. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4209. special_tokens_definition_mismatch = true;
  4210. }
  4211. }
  4212. }
  4213. }
  4214. }
  4215. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4216. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4217. __func__,
  4218. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4219. special_tokens_count_by_type, vocab.id_to_token.size()
  4220. );
  4221. } else {
  4222. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4223. __func__,
  4224. special_tokens_count_from_verification, vocab.id_to_token.size()
  4225. );
  4226. }
  4227. }
  4228. }
  4229. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4230. const auto & hparams = model.hparams;
  4231. const auto & vocab = model.vocab;
  4232. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4233. // hparams
  4234. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4235. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4236. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4237. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4238. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4239. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4240. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4241. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4242. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4243. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4244. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4245. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4246. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4247. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4248. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4249. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4250. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4251. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4252. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4253. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4254. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4255. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4256. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4257. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4258. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4259. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4260. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4261. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4262. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4263. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4264. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4265. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4266. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4267. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4268. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4269. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4270. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4271. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4272. if (ml.n_elements >= 1e12) {
  4273. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4274. } else if (ml.n_elements >= 1e9) {
  4275. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4276. } else if (ml.n_elements >= 1e6) {
  4277. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4278. } else {
  4279. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4280. }
  4281. if (ml.n_bytes < GiB) {
  4282. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4283. } else {
  4284. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4285. }
  4286. // general kv
  4287. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4288. // special tokens
  4289. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4290. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4291. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4292. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4293. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4294. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4295. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4296. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4297. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4298. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4299. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4300. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4301. }
  4302. // Returns false if cancelled by progress_callback
  4303. static bool llm_load_tensors(
  4304. llama_model_loader & ml,
  4305. llama_model & model,
  4306. int n_gpu_layers,
  4307. enum llama_split_mode split_mode,
  4308. int main_gpu,
  4309. const float * tensor_split,
  4310. bool use_mlock,
  4311. llama_progress_callback progress_callback,
  4312. void * progress_callback_user_data) {
  4313. model.t_start_us = ggml_time_us();
  4314. auto & hparams = model.hparams;
  4315. #ifdef GGML_USE_SYCL
  4316. // disable MoE with SYCL until mul_mat_id is updated
  4317. if (hparams.n_expert > 0) {
  4318. n_gpu_layers = 0;
  4319. }
  4320. #endif
  4321. model.split_mode = split_mode;
  4322. model.main_gpu = main_gpu;
  4323. model.n_gpu_layers = n_gpu_layers;
  4324. const int64_t n_layer = hparams.n_layer;
  4325. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4326. bool use_mmap_buffer = true;
  4327. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4328. model.buft_input = llama_default_buffer_type_cpu(true);
  4329. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4330. model.buft_layer.resize(n_layer);
  4331. // assign cpu layers
  4332. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4333. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4334. }
  4335. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4336. // calculate the split points
  4337. int device_count = llama_get_device_count(model);
  4338. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4339. std::vector<float> splits(device_count);
  4340. if (all_zero) {
  4341. // default split, by free memory
  4342. for (int i = 0; i < device_count; ++i) {
  4343. splits[i] = llama_get_device_memory(model, i);
  4344. }
  4345. } else {
  4346. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4347. }
  4348. // sum and normalize the splits to get the split points
  4349. float split_sum = 0.0f;
  4350. for (int i = 0; i < device_count; ++i) {
  4351. split_sum += splits[i];
  4352. splits[i] = split_sum;
  4353. }
  4354. for (int i = 0; i < device_count; ++i) {
  4355. splits[i] /= split_sum;
  4356. }
  4357. // assign the repeating layers to the devices according to the splits
  4358. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4359. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4360. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4361. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4362. }
  4363. // assign the output layer
  4364. if (n_gpu_layers > n_layer) {
  4365. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4366. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4367. } else {
  4368. model.buft_output = llama_default_buffer_type_cpu(true);
  4369. }
  4370. } else {
  4371. ggml_backend_buffer_type_t split_buft;
  4372. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4373. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4374. } else {
  4375. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4376. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4377. }
  4378. // assign the repeating layers
  4379. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4380. model.buft_layer[i] = {
  4381. split_buft,
  4382. llama_default_buffer_type_offload(model, main_gpu)
  4383. };
  4384. }
  4385. // assign the output layer
  4386. if (n_gpu_layers > n_layer) {
  4387. model.buft_output = {
  4388. split_buft,
  4389. llama_default_buffer_type_offload(model, main_gpu)
  4390. };
  4391. } else {
  4392. model.buft_output = llama_default_buffer_type_cpu(true);
  4393. }
  4394. }
  4395. // count used buffer types
  4396. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4397. buft_layer_count[model.buft_input.buft]++;
  4398. buft_layer_count[model.buft_input.buft_matrix]++;
  4399. buft_layer_count[model.buft_output.buft]++;
  4400. buft_layer_count[model.buft_output.buft_matrix]++;
  4401. for (int64_t i = 0; i < n_layer; ++i) {
  4402. buft_layer_count[model.buft_layer[i].buft]++;
  4403. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4404. }
  4405. // create one context per buffer type
  4406. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4407. // for moe merged tensors
  4408. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4409. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4410. for (auto & it : buft_layer_count) {
  4411. struct ggml_init_params params = {
  4412. /*.mem_size =*/ ctx_size,
  4413. /*.mem_buffer =*/ NULL,
  4414. /*.no_alloc =*/ true,
  4415. };
  4416. ggml_context * ctx = ggml_init(params);
  4417. if (!ctx) {
  4418. throw std::runtime_error(format("failed to create context"));
  4419. }
  4420. ctx_map[it.first] = ctx;
  4421. model.ctxs.push_back(ctx);
  4422. }
  4423. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4424. // create tensors for the weights
  4425. {
  4426. const int64_t n_embd = hparams.n_embd;
  4427. const int64_t n_embd_head = n_embd / hparams.n_head;
  4428. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4429. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4430. const int64_t n_embd_gqa = n_embd_v_gqa;
  4431. const int64_t n_vocab = hparams.n_vocab;
  4432. const int64_t n_vocab_type = hparams.n_vocab_type;
  4433. const int64_t n_ff = hparams.n_ff;
  4434. const int64_t n_expert = hparams.n_expert;
  4435. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4436. throw std::runtime_error("model has expert layers but no expert layers are used");
  4437. }
  4438. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4439. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4440. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4441. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4442. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4443. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4444. model.layers.resize(n_layer);
  4445. const auto tn = LLM_TN(model.arch);
  4446. switch (model.arch) {
  4447. case LLM_ARCH_LLAMA:
  4448. case LLM_ARCH_REFACT:
  4449. case LLM_ARCH_MINICPM:
  4450. {
  4451. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4452. // output
  4453. {
  4454. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4455. if (model.arch != LLM_ARCH_MINICPM){
  4456. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4457. // if output is NULL, init from the input tok embed
  4458. if (model.output == NULL) {
  4459. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4460. }
  4461. }
  4462. }
  4463. for (int i = 0; i < n_layer; ++i) {
  4464. ggml_context * ctx_layer = ctx_for_layer(i);
  4465. ggml_context * ctx_split = ctx_for_layer_split(i);
  4466. auto & layer = model.layers[i];
  4467. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4468. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4469. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4470. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4471. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4472. // optional bias tensors
  4473. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4474. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4475. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4476. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4477. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4478. if (n_expert == 0) {
  4479. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4480. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4481. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4482. } else {
  4483. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4484. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4485. if (layer.ffn_gate_exps) {
  4486. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4487. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4488. } else {
  4489. // merge split expert into a single tensor for compatibility with older models
  4490. // requires disabling mmap
  4491. use_mmap_buffer = false;
  4492. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4493. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4494. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4495. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4496. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4497. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4498. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4499. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4500. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4501. for (uint32_t x = 0; x < n_expert; ++x) {
  4502. // the individual experts are loaded into a view of the merged tensor
  4503. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4504. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4505. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4506. }
  4507. }
  4508. }
  4509. }
  4510. } break;
  4511. case LLM_ARCH_GROK:
  4512. {
  4513. if (n_expert == 0) {
  4514. throw std::runtime_error("Grok model cannot have zero experts");
  4515. }
  4516. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4517. // output
  4518. {
  4519. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4520. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4521. // if output is NULL, init from the input tok embed
  4522. if (model.output == NULL) {
  4523. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4524. }
  4525. }
  4526. for (int i = 0; i < n_layer; ++i) {
  4527. ggml_context * ctx_layer = ctx_for_layer(i);
  4528. ggml_context * ctx_split = ctx_for_layer_split(i);
  4529. auto & layer = model.layers[i];
  4530. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4531. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4532. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4533. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4534. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4535. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4536. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4537. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4538. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4539. if (layer.ffn_gate_exps) {
  4540. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4541. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4542. } else {
  4543. // merge split expert into a single tensor for compatibility with older models
  4544. // requires disabling mmap
  4545. use_mmap_buffer = false;
  4546. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4547. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4548. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4549. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4550. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4551. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4552. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4553. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4554. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4555. for (uint32_t x = 0; x < n_expert; ++x) {
  4556. // the individual experts are loaded into a view of the merged tensor
  4557. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4558. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4559. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4560. }
  4561. }
  4562. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4563. }
  4564. } break;
  4565. case LLM_ARCH_DBRX:
  4566. {
  4567. if (n_expert == 0) {
  4568. throw std::runtime_error("DBRX model cannot have zero experts");
  4569. }
  4570. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4571. // output
  4572. {
  4573. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4574. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4575. }
  4576. for (int i = 0; i < n_layer; ++i) {
  4577. ggml_context * ctx_layer = ctx_for_layer(i);
  4578. ggml_context * ctx_split = ctx_for_layer_split(i);
  4579. auto & layer = model.layers[i];
  4580. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4581. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4582. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4583. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4584. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4585. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4586. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4587. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4588. }
  4589. } break;
  4590. case LLM_ARCH_BAICHUAN:
  4591. {
  4592. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4593. {
  4594. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4595. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4596. }
  4597. for (int i = 0; i < n_layer; ++i) {
  4598. ggml_context * ctx_layer = ctx_for_layer(i);
  4599. ggml_context * ctx_split = ctx_for_layer_split(i);
  4600. auto & layer = model.layers[i];
  4601. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4602. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4603. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4604. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4605. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4606. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4607. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4608. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4609. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4610. }
  4611. } break;
  4612. case LLM_ARCH_FALCON:
  4613. {
  4614. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4615. // output
  4616. {
  4617. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4618. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4619. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4620. if (!model.output) {
  4621. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4622. }
  4623. }
  4624. for (int i = 0; i < n_layer; ++i) {
  4625. ggml_context * ctx_layer = ctx_for_layer(i);
  4626. ggml_context * ctx_split = ctx_for_layer_split(i);
  4627. auto & layer = model.layers[i];
  4628. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4629. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4630. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4631. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4632. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4633. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4634. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4635. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4636. }
  4637. } break;
  4638. case LLM_ARCH_STARCODER:
  4639. {
  4640. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4641. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4642. // output
  4643. {
  4644. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4645. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4646. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4647. if (!model.output) {
  4648. // needs to be on GPU
  4649. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4650. }
  4651. }
  4652. for (int i = 0; i < n_layer; ++i) {
  4653. ggml_context * ctx_layer = ctx_for_layer(i);
  4654. ggml_context * ctx_split = ctx_for_layer_split(i);
  4655. auto & layer = model.layers[i];
  4656. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4657. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4658. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4659. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4660. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4661. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4662. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4663. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4664. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4665. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4666. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4667. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4668. }
  4669. } break;
  4670. case LLM_ARCH_BERT:
  4671. case LLM_ARCH_NOMIC_BERT:
  4672. {
  4673. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4674. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4675. if (model.arch == LLM_ARCH_BERT) {
  4676. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4677. }
  4678. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4679. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4680. for (int i = 0; i < n_layer; ++i) {
  4681. ggml_context * ctx_layer = ctx_for_layer(i);
  4682. ggml_context * ctx_split = ctx_for_layer_split(i);
  4683. auto & layer = model.layers[i];
  4684. if (model.arch == LLM_ARCH_BERT) {
  4685. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4686. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4687. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4688. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4689. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4690. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4691. } else {
  4692. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4693. }
  4694. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4695. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4696. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4697. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4698. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4699. if (model.arch == LLM_ARCH_BERT) {
  4700. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4701. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4702. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4703. } else {
  4704. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4705. }
  4706. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4707. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4708. }
  4709. } break;
  4710. case LLM_ARCH_JINA_BERT_V2:
  4711. {
  4712. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4713. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4714. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4715. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4716. for (int i = 0; i < n_layer; ++i) {
  4717. ggml_context * ctx_layer = ctx_for_layer(i);
  4718. ggml_context * ctx_split = ctx_for_layer_split(i);
  4719. auto & layer = model.layers[i]; // JinaBertLayer
  4720. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4721. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4722. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4723. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4724. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4725. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4726. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4727. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4728. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4729. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4730. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4731. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4732. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4733. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4734. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4735. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4736. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4737. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4738. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4739. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4740. }
  4741. } break;
  4742. case LLM_ARCH_BLOOM:
  4743. {
  4744. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4745. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4746. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4747. // output
  4748. {
  4749. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4750. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4751. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4752. }
  4753. for (int i = 0; i < n_layer; ++i) {
  4754. ggml_context * ctx_layer = ctx_for_layer(i);
  4755. ggml_context * ctx_split = ctx_for_layer_split(i);
  4756. auto & layer = model.layers[i];
  4757. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4758. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4759. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4760. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4761. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4762. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4763. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4764. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4765. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4766. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4767. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4768. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4769. }
  4770. } break;
  4771. case LLM_ARCH_MPT:
  4772. {
  4773. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4774. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4775. // output
  4776. {
  4777. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4778. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4779. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4780. if (!model.output) {
  4781. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4782. }
  4783. }
  4784. for (int i = 0; i < n_layer; ++i) {
  4785. ggml_context * ctx_layer = ctx_for_layer(i);
  4786. ggml_context * ctx_split = ctx_for_layer_split(i);
  4787. auto & layer = model.layers[i];
  4788. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4789. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4790. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4791. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4792. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4793. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4794. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4795. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4796. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4797. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4798. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4799. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4800. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4801. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4802. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4803. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4804. // AWQ ScaleActivation layer
  4805. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4806. }
  4807. } break;
  4808. case LLM_ARCH_STABLELM:
  4809. {
  4810. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4811. // output
  4812. {
  4813. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4814. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4815. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4816. }
  4817. for (int i = 0; i < n_layer; ++i) {
  4818. ggml_context * ctx_layer = ctx_for_layer(i);
  4819. ggml_context * ctx_split = ctx_for_layer_split(i);
  4820. auto & layer = model.layers[i];
  4821. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4822. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4823. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4824. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4825. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4826. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4827. // optional bias tensors, present in Stable LM 2 1.6B
  4828. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4829. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4830. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4831. // optional q and k layernorms, present in StableLM 2 12B
  4832. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4833. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4834. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4835. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4836. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4837. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4838. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4839. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4840. }
  4841. } break;
  4842. case LLM_ARCH_QWEN:
  4843. {
  4844. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4845. // output
  4846. {
  4847. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4848. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4849. }
  4850. for (int i = 0; i < n_layer; ++i) {
  4851. ggml_context * ctx_layer = ctx_for_layer(i);
  4852. ggml_context * ctx_split = ctx_for_layer_split(i);
  4853. auto & layer = model.layers[i];
  4854. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4855. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4856. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4857. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4858. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4859. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4860. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4861. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4862. }
  4863. } break;
  4864. case LLM_ARCH_QWEN2:
  4865. {
  4866. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4867. // output
  4868. {
  4869. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4870. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4871. // if output is NULL, init from the input tok embed
  4872. if (model.output == NULL) {
  4873. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4874. }
  4875. }
  4876. for (int i = 0; i < n_layer; ++i) {
  4877. ggml_context * ctx_layer = ctx_for_layer(i);
  4878. ggml_context * ctx_split = ctx_for_layer_split(i);
  4879. auto & layer = model.layers[i];
  4880. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4881. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4882. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4883. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4884. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4885. // optional bias tensors
  4886. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4887. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4888. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4889. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4890. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4891. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4892. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4893. }
  4894. } break;
  4895. case LLM_ARCH_QWEN2MOE:
  4896. {
  4897. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4898. // output
  4899. {
  4900. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4901. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4902. }
  4903. for (int i = 0; i < n_layer; ++i) {
  4904. ggml_context * ctx_layer = ctx_for_layer(i);
  4905. ggml_context * ctx_split = ctx_for_layer_split(i);
  4906. auto & layer = model.layers[i];
  4907. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4908. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4909. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4910. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4911. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4912. // optional bias tensors
  4913. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4914. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4915. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4916. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4917. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4918. GGML_ASSERT(hparams.n_expert > 0);
  4919. GGML_ASSERT(hparams.n_expert_used > 0);
  4920. // MoE branch
  4921. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4922. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4923. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4924. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4925. // Shared expert branch
  4926. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4927. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4928. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4929. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4930. }
  4931. } break;
  4932. case LLM_ARCH_PHI2:
  4933. {
  4934. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4935. // output
  4936. {
  4937. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4938. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4939. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4940. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4941. }
  4942. for (int i = 0; i < n_layer; ++i) {
  4943. ggml_context * ctx_layer = ctx_for_layer(i);
  4944. ggml_context * ctx_split = ctx_for_layer_split(i);
  4945. auto & layer = model.layers[i];
  4946. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4947. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4948. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4949. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4950. if (layer.wqkv == nullptr) {
  4951. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4952. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4953. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4954. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4955. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4956. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4957. }
  4958. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4959. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4960. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4961. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4962. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4963. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4964. }
  4965. } break;
  4966. case LLM_ARCH_PHI3:
  4967. {
  4968. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4969. // output
  4970. {
  4971. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4972. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4973. }
  4974. for (int i = 0; i < n_layer; ++i) {
  4975. ggml_context* ctx_layer = ctx_for_layer(i);
  4976. ggml_context* ctx_split = ctx_for_layer_split(i);
  4977. auto & layer = model.layers[i];
  4978. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4979. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  4980. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4981. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4982. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4983. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4984. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  4985. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  4986. }
  4987. } break;
  4988. case LLM_ARCH_PLAMO:
  4989. {
  4990. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4991. // output
  4992. {
  4993. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4994. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4995. }
  4996. for (int i = 0; i < n_layer; ++i) {
  4997. ggml_context * ctx_layer = ctx_for_layer(i);
  4998. ggml_context * ctx_split = ctx_for_layer_split(i);
  4999. auto & layer = model.layers[i];
  5000. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5001. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5002. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5003. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5004. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5005. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5006. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5007. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5008. }
  5009. } break;
  5010. case LLM_ARCH_GPT2:
  5011. {
  5012. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5013. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5014. // output
  5015. {
  5016. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5017. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5018. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5019. }
  5020. for (int i = 0; i < n_layer; ++i) {
  5021. ggml_context * ctx_layer = ctx_for_layer(i);
  5022. ggml_context * ctx_split = ctx_for_layer_split(i);
  5023. auto & layer = model.layers[i];
  5024. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5025. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5026. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5027. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5028. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5029. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5030. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5031. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5032. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5033. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5034. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5035. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5036. }
  5037. } break;
  5038. case LLM_ARCH_CODESHELL:
  5039. {
  5040. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5041. // output
  5042. {
  5043. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5044. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5045. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5046. }
  5047. for (int i = 0; i < n_layer; ++i) {
  5048. ggml_context * ctx_layer = ctx_for_layer(i);
  5049. ggml_context * ctx_split = ctx_for_layer_split(i);
  5050. auto & layer = model.layers[i];
  5051. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5052. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5053. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5054. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5055. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5056. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5057. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5058. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5059. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5060. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5061. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5062. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5063. }
  5064. } break;
  5065. case LLM_ARCH_ORION:
  5066. {
  5067. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5068. {
  5069. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5070. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5071. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5072. }
  5073. for (int i = 0; i < n_layer; ++i) {
  5074. ggml_context * ctx_layer = ctx_for_layer(i);
  5075. ggml_context * ctx_split = ctx_for_layer_split(i);
  5076. auto & layer = model.layers[i];
  5077. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5078. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5079. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5080. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5081. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5082. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5083. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5084. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5085. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5086. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5087. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5088. }
  5089. } break;
  5090. case LLM_ARCH_INTERNLM2:
  5091. {
  5092. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5093. // output
  5094. {
  5095. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5096. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5097. }
  5098. for (int i = 0; i < n_layer; ++i) {
  5099. ggml_context * ctx_layer = ctx_for_layer(i);
  5100. ggml_context * ctx_split = ctx_for_layer_split(i);
  5101. auto & layer = model.layers[i];
  5102. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5103. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5104. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5105. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5106. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5107. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5108. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5109. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5110. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5111. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5112. }
  5113. } break;
  5114. case LLM_ARCH_GEMMA:
  5115. {
  5116. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5117. // output
  5118. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5119. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5120. const int64_t n_ff = hparams.n_ff;
  5121. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5122. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5123. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5124. for (uint32_t i = 0; i < n_layer; ++i) {
  5125. ggml_context * ctx_layer = ctx_for_layer(i);
  5126. ggml_context * ctx_split = ctx_for_layer_split(i);
  5127. auto & layer = model.layers[i];
  5128. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5129. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5130. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5131. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5132. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5133. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5134. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5135. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5136. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5137. }
  5138. } break;
  5139. case LLM_ARCH_STARCODER2:
  5140. {
  5141. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5142. // output
  5143. {
  5144. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5145. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5146. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5147. // if output is NULL, init from the input tok embed
  5148. if (model.output == NULL) {
  5149. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5150. }
  5151. }
  5152. for (int i = 0; i < n_layer; ++i) {
  5153. ggml_context * ctx_layer = ctx_for_layer(i);
  5154. ggml_context * ctx_split = ctx_for_layer_split(i);
  5155. auto & layer = model.layers[i];
  5156. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5157. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5158. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5159. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5160. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5161. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5162. // optional bias tensors
  5163. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5164. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5165. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5166. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5167. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5168. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5169. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5170. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5171. // optional bias tensors
  5172. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5173. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5174. }
  5175. } break;
  5176. case LLM_ARCH_MAMBA:
  5177. {
  5178. const int64_t d_conv = hparams.ssm_d_conv;
  5179. const int64_t d_inner = hparams.ssm_d_inner;
  5180. const int64_t d_state = hparams.ssm_d_state;
  5181. const int64_t dt_rank = hparams.ssm_dt_rank;
  5182. // only an expansion factor of 2 is supported for now
  5183. GGML_ASSERT(2 * n_embd == d_inner);
  5184. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5185. // output
  5186. {
  5187. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5188. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5189. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5190. if (model.output == NULL) {
  5191. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5192. }
  5193. }
  5194. for (int i = 0; i < n_layer; ++i) {
  5195. ggml_context * ctx_layer = ctx_for_layer(i);
  5196. ggml_context * ctx_split = ctx_for_layer_split(i);
  5197. auto & layer = model.layers[i];
  5198. // norm
  5199. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5200. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5201. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5202. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5203. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5204. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5205. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5206. // no "weight" suffix for these
  5207. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5208. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5209. // out_proj
  5210. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5211. }
  5212. } break;
  5213. case LLM_ARCH_XVERSE:
  5214. {
  5215. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5216. {
  5217. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5218. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5219. }
  5220. for (int i = 0; i < n_layer; ++i) {
  5221. ggml_context * ctx_layer = ctx_for_layer(i);
  5222. ggml_context * ctx_split = ctx_for_layer_split(i);
  5223. auto & layer = model.layers[i];
  5224. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5225. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5226. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5227. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5228. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5229. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5230. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5231. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5232. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5233. }
  5234. } break;
  5235. case LLM_ARCH_COMMAND_R:
  5236. {
  5237. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5238. // output
  5239. {
  5240. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5241. // init output from the input tok embed
  5242. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5243. }
  5244. for (int i = 0; i < n_layer; ++i) {
  5245. ggml_context * ctx_layer = ctx_for_layer(i);
  5246. ggml_context * ctx_split = ctx_for_layer_split(i);
  5247. auto & layer = model.layers[i];
  5248. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5249. if (n_layer >= 64){
  5250. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5251. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5252. }
  5253. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5254. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5255. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5256. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5257. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5258. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5259. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5260. }
  5261. } break;
  5262. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5263. {
  5264. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5265. // output
  5266. {
  5267. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5268. // if output is NULL, init from the input tok embed
  5269. if (model.output == NULL) {
  5270. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5271. }
  5272. }
  5273. for (int i = 0; i < n_layer; ++i) {
  5274. ggml_context * ctx_split = ctx_for_layer_split(i);
  5275. auto & layer = model.layers[i];
  5276. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5277. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5278. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5279. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5280. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5281. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5282. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5283. }
  5284. } break;
  5285. case LLM_ARCH_GPTNEOX:
  5286. {
  5287. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5288. // output
  5289. {
  5290. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5291. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5292. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5293. }
  5294. for (int i = 0; i < n_layer; ++i) {
  5295. ggml_context * ctx_layer = ctx_for_layer(i);
  5296. ggml_context * ctx_split = ctx_for_layer_split(i);
  5297. auto & layer = model.layers[i];
  5298. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5299. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5300. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5301. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5302. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5303. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5304. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5305. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5306. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5307. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5308. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5309. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5310. }
  5311. } break;
  5312. case LLM_ARCH_ARCTIC:
  5313. {
  5314. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5315. // output
  5316. {
  5317. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5318. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5319. // if output is NULL, init from the input tok embed
  5320. if (model.output == NULL) {
  5321. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5322. }
  5323. }
  5324. for (int i = 0; i < n_layer; ++i) {
  5325. ggml_context * ctx_layer = ctx_for_layer(i);
  5326. ggml_context * ctx_split = ctx_for_layer_split(i);
  5327. auto & layer = model.layers[i];
  5328. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5329. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5330. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5331. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5332. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5333. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5334. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5335. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5336. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5337. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5338. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5339. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5340. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5341. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5342. }
  5343. } break;
  5344. default:
  5345. throw std::runtime_error("unknown architecture");
  5346. }
  5347. }
  5348. ml.done_getting_tensors();
  5349. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5350. model.mappings.reserve(ml.mappings.size());
  5351. // create the backend buffers
  5352. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5353. ctx_bufs.reserve(ctx_map.size());
  5354. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5355. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5356. model.bufs.reserve(n_max_backend_buffer);
  5357. for (auto & it : ctx_map) {
  5358. ggml_backend_buffer_type_t buft = it.first;
  5359. ggml_context * ctx = it.second;
  5360. llama_buf_map bufs;
  5361. bufs.reserve(n_max_backend_buffer);
  5362. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5363. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5364. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5365. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5366. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5367. void * addr = nullptr;
  5368. size_t first, last;
  5369. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5370. if (first >= last) {
  5371. continue;
  5372. }
  5373. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5374. if (buf == nullptr) {
  5375. throw std::runtime_error("unable to allocate backend CPU buffer");
  5376. }
  5377. model.bufs.push_back(buf);
  5378. bufs.emplace(idx, buf);
  5379. #ifdef GGML_USE_CUDA
  5380. if (n_layer >= n_gpu_layers) {
  5381. ggml_backend_cuda_register_host_buffer(
  5382. ggml_backend_buffer_get_base(buf),
  5383. ggml_backend_buffer_get_size(buf));
  5384. }
  5385. #endif
  5386. }
  5387. }
  5388. #ifdef GGML_USE_METAL
  5389. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5390. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5391. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5392. void * addr = nullptr;
  5393. size_t first, last;
  5394. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5395. if (first >= last) {
  5396. continue;
  5397. }
  5398. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5399. if (buf == nullptr) {
  5400. throw std::runtime_error("unable to allocate backend metal buffer");
  5401. }
  5402. model.bufs.push_back(buf);
  5403. bufs.emplace(idx, buf);
  5404. }
  5405. }
  5406. #endif
  5407. else {
  5408. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5409. if (buf == nullptr) {
  5410. throw std::runtime_error("unable to allocate backend buffer");
  5411. }
  5412. model.bufs.push_back(buf);
  5413. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5414. model.mlock_bufs.emplace_back(new llama_mlock);
  5415. auto & mlock_buf = model.mlock_bufs.back();
  5416. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5417. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5418. }
  5419. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5420. bufs.emplace(idx, buf);
  5421. }
  5422. }
  5423. if (bufs.empty()) {
  5424. throw std::runtime_error("failed to allocate buffer");
  5425. }
  5426. for (auto & buf : bufs) {
  5427. // indicate that this buffer contains weights
  5428. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5429. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5430. }
  5431. ctx_bufs.emplace_back(ctx, bufs);
  5432. }
  5433. if (llama_supports_gpu_offload()) {
  5434. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5435. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5436. if (n_gpu_layers > (int) hparams.n_layer) {
  5437. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5438. }
  5439. const int max_backend_supported_layers = hparams.n_layer + 1;
  5440. const int max_offloadable_layers = hparams.n_layer + 1;
  5441. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5442. }
  5443. // print memory requirements
  5444. for (ggml_backend_buffer_t buf : model.bufs) {
  5445. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5446. }
  5447. // populate tensors_by_name
  5448. for (ggml_context * ctx : model.ctxs) {
  5449. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5450. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5451. }
  5452. }
  5453. // load tensor data
  5454. for (auto & it : ctx_bufs) {
  5455. ggml_context * ctx = it.first;
  5456. auto & bufs = it.second;
  5457. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5458. return false;
  5459. }
  5460. }
  5461. if (use_mmap_buffer) {
  5462. for (auto & mapping : ml.mappings) {
  5463. model.mappings.emplace_back(std::move(mapping));
  5464. }
  5465. }
  5466. // loading time will be recalculate after the first eval, so
  5467. // we take page faults deferred by mmap() into consideration
  5468. model.t_load_us = ggml_time_us() - model.t_start_us;
  5469. return true;
  5470. }
  5471. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5472. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5473. try {
  5474. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5475. model.hparams.vocab_only = params.vocab_only;
  5476. try {
  5477. llm_load_arch(ml, model);
  5478. } catch(const std::exception & e) {
  5479. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5480. }
  5481. try {
  5482. llm_load_hparams(ml, model);
  5483. } catch(const std::exception & e) {
  5484. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5485. }
  5486. try {
  5487. llm_load_vocab(ml, model);
  5488. } catch(const std::exception & e) {
  5489. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5490. }
  5491. llm_load_print_meta(ml, model);
  5492. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5493. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5494. throw std::runtime_error("vocab size mismatch");
  5495. }
  5496. if (params.vocab_only) {
  5497. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5498. return 0;
  5499. }
  5500. #ifdef GGML_USE_KOMPUTE
  5501. if (params.n_gpu_layers > 0 && (
  5502. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5503. || !(
  5504. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5505. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5506. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5507. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5508. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5509. )
  5510. )) {
  5511. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5512. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5513. params.n_gpu_layers = 0;
  5514. }
  5515. #endif
  5516. #ifdef GGML_USE_SYCL
  5517. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5518. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5519. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5520. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5521. } else {
  5522. ggml_backend_sycl_set_mul_device_mode();
  5523. }
  5524. #endif
  5525. if (!llm_load_tensors(
  5526. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5527. params.progress_callback, params.progress_callback_user_data
  5528. )) {
  5529. return -2;
  5530. }
  5531. } catch (const std::exception & err) {
  5532. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5533. return -1;
  5534. }
  5535. return 0;
  5536. }
  5537. //
  5538. // llm_build
  5539. //
  5540. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5541. enum llm_ffn_op_type {
  5542. LLM_FFN_SILU,
  5543. LLM_FFN_GELU,
  5544. LLM_FFN_RELU,
  5545. LLM_FFN_RELU_SQR,
  5546. };
  5547. enum llm_ffn_gate_type {
  5548. LLM_FFN_SEQ,
  5549. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5550. };
  5551. enum llm_norm_type {
  5552. LLM_NORM,
  5553. LLM_NORM_RMS,
  5554. };
  5555. static struct ggml_tensor * llm_build_inp_embd(
  5556. struct ggml_context * ctx,
  5557. struct llama_context & lctx,
  5558. const llama_hparams & hparams,
  5559. const llama_batch & batch,
  5560. struct ggml_tensor * tok_embd,
  5561. const llm_build_cb & cb) {
  5562. const int64_t n_embd = hparams.n_embd;
  5563. struct ggml_tensor * inpL;
  5564. if (batch.token) {
  5565. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5566. cb(lctx.inp_tokens, "inp_tokens", -1);
  5567. ggml_set_input(lctx.inp_tokens);
  5568. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5569. } else {
  5570. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5571. inpL = lctx.inp_embd;
  5572. ggml_set_input(lctx.inp_embd);
  5573. }
  5574. cb(inpL, "inp_embd", -1);
  5575. return inpL;
  5576. }
  5577. static void llm_build_kv_store(
  5578. struct ggml_context * ctx,
  5579. const llama_hparams & hparams,
  5580. const llama_cparams & cparams,
  5581. const llama_kv_cache & kv,
  5582. struct ggml_cgraph * graph,
  5583. struct ggml_tensor * k_cur,
  5584. struct ggml_tensor * v_cur,
  5585. int32_t n_tokens,
  5586. int32_t kv_head,
  5587. const llm_build_cb & cb,
  5588. int64_t il) {
  5589. const int64_t n_ctx = cparams.n_ctx;
  5590. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5591. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5592. GGML_ASSERT(kv.size == n_ctx);
  5593. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5594. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5595. cb(k_cache_view, "k_cache_view", il);
  5596. // note: storing RoPE-ed version of K in the KV cache
  5597. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5598. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5599. struct ggml_tensor * v_cache_view = nullptr;
  5600. if (cparams.flash_attn) {
  5601. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5602. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5603. } else {
  5604. // note: the V cache is transposed when not using flash attention
  5605. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5606. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5607. (kv_head)*ggml_element_size(kv.v_l[il]));
  5608. v_cur = ggml_transpose(ctx, v_cur);
  5609. }
  5610. cb(v_cache_view, "v_cache_view", il);
  5611. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5612. }
  5613. static struct ggml_tensor * llm_build_norm(
  5614. struct ggml_context * ctx,
  5615. struct ggml_tensor * cur,
  5616. const llama_hparams & hparams,
  5617. struct ggml_tensor * mw,
  5618. struct ggml_tensor * mb,
  5619. llm_norm_type type,
  5620. const llm_build_cb & cb,
  5621. int il) {
  5622. switch (type) {
  5623. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5624. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5625. }
  5626. if (mw || mb) {
  5627. cb(cur, "norm", il);
  5628. }
  5629. if (mw) {
  5630. cur = ggml_mul(ctx, cur, mw);
  5631. if (mb) {
  5632. cb(cur, "norm_w", il);
  5633. }
  5634. }
  5635. if (mb) {
  5636. cur = ggml_add(ctx, cur, mb);
  5637. }
  5638. return cur;
  5639. }
  5640. static struct ggml_tensor * llm_build_ffn(
  5641. struct ggml_context * ctx,
  5642. struct ggml_tensor * cur,
  5643. struct ggml_tensor * up,
  5644. struct ggml_tensor * up_b,
  5645. struct ggml_tensor * gate,
  5646. struct ggml_tensor * gate_b,
  5647. struct ggml_tensor * down,
  5648. struct ggml_tensor * down_b,
  5649. struct ggml_tensor * act_scales,
  5650. llm_ffn_op_type type_op,
  5651. llm_ffn_gate_type type_gate,
  5652. const llm_build_cb & cb,
  5653. int il) {
  5654. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5655. cb(tmp, "ffn_up", il);
  5656. if (up_b) {
  5657. tmp = ggml_add(ctx, tmp, up_b);
  5658. cb(tmp, "ffn_up_b", il);
  5659. }
  5660. if (gate) {
  5661. switch (type_gate) {
  5662. case LLM_FFN_SEQ:
  5663. {
  5664. cur = ggml_mul_mat(ctx, gate, tmp);
  5665. cb(cur, "ffn_gate", il);
  5666. } break;
  5667. case LLM_FFN_PAR:
  5668. {
  5669. cur = ggml_mul_mat(ctx, gate, cur);
  5670. cb(cur, "ffn_gate", il);
  5671. } break;
  5672. }
  5673. if (gate_b) {
  5674. cur = ggml_add(ctx, cur, gate_b);
  5675. cb(cur, "ffn_gate_b", il);
  5676. }
  5677. } else {
  5678. cur = tmp;
  5679. }
  5680. switch (type_op) {
  5681. case LLM_FFN_SILU:
  5682. {
  5683. cur = ggml_silu(ctx, cur);
  5684. cb(cur, "ffn_silu", il);
  5685. } break;
  5686. case LLM_FFN_GELU:
  5687. {
  5688. cur = ggml_gelu(ctx, cur);
  5689. cb(cur, "ffn_gelu", il);
  5690. if (act_scales != NULL) {
  5691. cur = ggml_div(ctx, cur, act_scales);
  5692. cb(cur, "ffn_act", il);
  5693. }
  5694. } break;
  5695. case LLM_FFN_RELU:
  5696. {
  5697. cur = ggml_relu(ctx, cur);
  5698. cb(cur, "ffn_relu", il);
  5699. } break;
  5700. case LLM_FFN_RELU_SQR:
  5701. {
  5702. cur = ggml_relu(ctx, cur);
  5703. cb(cur, "ffn_relu", il);
  5704. cur = ggml_sqr(ctx, cur);
  5705. cb(cur, "ffn_sqr(relu)", il);
  5706. } break;
  5707. }
  5708. if (type_gate == LLM_FFN_PAR) {
  5709. cur = ggml_mul(ctx, cur, tmp);
  5710. cb(cur, "ffn_gate_par", il);
  5711. }
  5712. cur = ggml_mul_mat(ctx, down, cur);
  5713. if (down_b) {
  5714. cb(cur, "ffn_down", il);
  5715. }
  5716. if (down_b) {
  5717. cur = ggml_add(ctx, cur, down_b);
  5718. }
  5719. return cur;
  5720. }
  5721. static struct ggml_tensor * llm_build_moe_ffn(
  5722. struct ggml_context * ctx,
  5723. struct ggml_tensor * cur,
  5724. struct ggml_tensor * gate_inp,
  5725. struct ggml_tensor * up_exps,
  5726. struct ggml_tensor * gate_exps,
  5727. struct ggml_tensor * down_exps,
  5728. int64_t n_expert,
  5729. int64_t n_expert_used,
  5730. llm_ffn_op_type type_op,
  5731. bool norm_w,
  5732. const llm_build_cb & cb,
  5733. int il) {
  5734. int64_t n_embd = cur->ne[0];
  5735. int64_t n_tokens = cur->ne[1];
  5736. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5737. cb(logits, "ffn_moe_logits", il);
  5738. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5739. cb(probs, "ffn_moe_probs", il);
  5740. // select experts
  5741. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5742. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5743. cb(selected_experts, "ffn_moe_topk", il);
  5744. ggml_tensor * weights = ggml_get_rows(ctx,
  5745. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5746. cb(weights, "ffn_moe_weights", il);
  5747. if (norm_w) {
  5748. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5749. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5750. cb(weights_sum, "ffn_moe_weights_sum", il);
  5751. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5752. cb(weights, "ffn_moe_weights_norm", il);
  5753. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5754. }
  5755. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5756. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5757. cb(up, "ffn_moe_up", il);
  5758. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5759. cb(gate, "ffn_moe_gate", il);
  5760. switch (type_op) {
  5761. case LLM_FFN_SILU:
  5762. {
  5763. gate = ggml_silu(ctx, gate);
  5764. cb(gate, "ffn_moe_silu", il);
  5765. } break;
  5766. case LLM_FFN_GELU:
  5767. {
  5768. gate = ggml_gelu(ctx, gate);
  5769. cb(gate, "ffn_moe_gelu", il);
  5770. } break;
  5771. default:
  5772. GGML_ASSERT(false);
  5773. }
  5774. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5775. cb(par, "ffn_moe_gate_par", il);
  5776. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5777. cb(experts, "ffn_moe_down", il);
  5778. experts = ggml_mul(ctx, experts, weights);
  5779. // aggregate experts
  5780. ggml_tensor * moe_out = nullptr;
  5781. for (int i = 0; i < n_expert_used; ++i) {
  5782. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5783. experts->nb[2], i*experts->nb[1]);
  5784. if (i == 0) {
  5785. moe_out = cur_expert;
  5786. } else {
  5787. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5788. }
  5789. }
  5790. if (n_expert_used == 1) {
  5791. // avoid returning a non-contiguous tensor
  5792. moe_out = ggml_cont(ctx, moe_out);
  5793. }
  5794. return moe_out;
  5795. }
  5796. static struct ggml_tensor * llm_build_kqv(
  5797. struct ggml_context * ctx,
  5798. const llama_model & model,
  5799. const llama_hparams & hparams,
  5800. const llama_cparams & cparams,
  5801. const llama_kv_cache & kv,
  5802. struct ggml_cgraph * graph,
  5803. struct ggml_tensor * wo,
  5804. struct ggml_tensor * wo_b,
  5805. struct ggml_tensor * q_cur,
  5806. struct ggml_tensor * kq_mask,
  5807. int32_t n_tokens,
  5808. int32_t n_kv,
  5809. float kq_scale,
  5810. const llm_build_cb & cb,
  5811. int il) {
  5812. const int64_t n_ctx = cparams.n_ctx;
  5813. const int64_t n_head = hparams.n_head;
  5814. const int64_t n_head_kv = hparams.n_head_kv;
  5815. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5816. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5817. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5818. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5819. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5820. cb(q, "q", il);
  5821. struct ggml_tensor * k =
  5822. ggml_view_3d(ctx, kv.k_l[il],
  5823. n_embd_head_k, n_kv, n_head_kv,
  5824. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5825. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5826. 0);
  5827. cb(k, "k", il);
  5828. struct ggml_tensor * cur;
  5829. if (cparams.flash_attn) {
  5830. GGML_UNUSED(model);
  5831. GGML_UNUSED(n_ctx);
  5832. // split cached v into n_head heads (not transposed)
  5833. struct ggml_tensor * v =
  5834. ggml_view_3d(ctx, kv.v_l[il],
  5835. n_embd_head_v, n_kv, n_head_kv,
  5836. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  5837. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  5838. 0);
  5839. cb(v, "v", il);
  5840. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5841. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  5842. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5843. }
  5844. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  5845. } else {
  5846. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5847. cb(kq, "kq", il);
  5848. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  5849. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5850. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5851. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5852. }
  5853. if (model.arch == LLM_ARCH_GROK) {
  5854. // need to do the following:
  5855. // multiply by attn_output_multiplyer of 0.08838834764831845
  5856. // and then :
  5857. // kq = 30 * tanh(kq / 30)
  5858. // before the softmax below
  5859. //try from phi2
  5860. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5861. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5862. kq = ggml_scale(ctx, kq, 30);
  5863. }
  5864. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5865. cb(kq, "kq_soft_max_ext", il);
  5866. GGML_ASSERT(kv.size == n_ctx);
  5867. // split cached v into n_head heads
  5868. struct ggml_tensor * v =
  5869. ggml_view_3d(ctx, kv.v_l[il],
  5870. n_kv, n_embd_head_v, n_head_kv,
  5871. ggml_element_size(kv.v_l[il])*n_ctx,
  5872. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5873. 0);
  5874. cb(v, "v", il);
  5875. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5876. cb(kqv, "kqv", il);
  5877. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5878. cb(kqv_merged, "kqv_merged", il);
  5879. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  5880. cb(cur, "kqv_merged_cont", il);
  5881. }
  5882. ggml_build_forward_expand(graph, cur);
  5883. cur = ggml_mul_mat(ctx, wo, cur);
  5884. if (wo_b) {
  5885. cb(cur, "kqv_wo", il);
  5886. }
  5887. if (wo_b) {
  5888. cur = ggml_add(ctx, cur, wo_b);
  5889. }
  5890. return cur;
  5891. }
  5892. static struct ggml_tensor * llm_build_kv(
  5893. struct ggml_context * ctx,
  5894. const llama_model & model,
  5895. const llama_hparams & hparams,
  5896. const llama_cparams & cparams,
  5897. const llama_kv_cache & kv,
  5898. struct ggml_cgraph * graph,
  5899. struct ggml_tensor * wo,
  5900. struct ggml_tensor * wo_b,
  5901. struct ggml_tensor * k_cur,
  5902. struct ggml_tensor * v_cur,
  5903. struct ggml_tensor * q_cur,
  5904. struct ggml_tensor * kq_mask,
  5905. int32_t n_tokens,
  5906. int32_t kv_head,
  5907. int32_t n_kv,
  5908. float kq_scale,
  5909. const llm_build_cb & cb,
  5910. int il) {
  5911. // these nodes are added to the graph together so that they are not reordered
  5912. // by doing so, the number of splits in the graph is reduced
  5913. ggml_build_forward_expand(graph, q_cur);
  5914. ggml_build_forward_expand(graph, k_cur);
  5915. ggml_build_forward_expand(graph, v_cur);
  5916. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5917. struct ggml_tensor * cur;
  5918. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5919. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  5920. cb(cur, "kqv_out", il);
  5921. return cur;
  5922. }
  5923. struct llm_build_context {
  5924. const llama_model & model;
  5925. llama_context & lctx;
  5926. const llama_hparams & hparams;
  5927. const llama_cparams & cparams;
  5928. const llama_batch & batch;
  5929. const llama_kv_cache & kv_self;
  5930. const int64_t n_embd;
  5931. const int64_t n_layer;
  5932. const int64_t n_rot;
  5933. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5934. const int64_t n_head;
  5935. const int64_t n_head_kv;
  5936. const int64_t n_embd_head_k;
  5937. const int64_t n_embd_k_gqa;
  5938. const int64_t n_embd_head_v;
  5939. const int64_t n_embd_v_gqa;
  5940. const int64_t n_expert;
  5941. const int64_t n_expert_used;
  5942. const float freq_base;
  5943. const float freq_scale;
  5944. const float ext_factor;
  5945. const float attn_factor;
  5946. const float beta_fast;
  5947. const float beta_slow;
  5948. const float norm_eps;
  5949. const float norm_rms_eps;
  5950. const int32_t n_tokens;
  5951. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5952. const int32_t n_outputs;
  5953. const int32_t kv_head; // index of where we store new KV data in the cache
  5954. const int32_t n_orig_ctx;
  5955. const bool flash_attn;
  5956. const enum llama_pooling_type pooling_type;
  5957. const enum llama_rope_type rope_type;
  5958. const llm_build_cb & cb;
  5959. std::vector<uint8_t> & buf_compute_meta;
  5960. struct ggml_context * ctx0 = nullptr;
  5961. // TODO: consider making the entire interface noexcept
  5962. llm_build_context(
  5963. llama_context & lctx,
  5964. const llama_batch & batch,
  5965. const llm_build_cb & cb,
  5966. bool worst_case) :
  5967. model (lctx.model),
  5968. lctx (lctx),
  5969. hparams (model.hparams),
  5970. cparams (lctx.cparams),
  5971. batch (batch),
  5972. kv_self (lctx.kv_self),
  5973. n_embd (hparams.n_embd),
  5974. n_layer (hparams.n_layer),
  5975. n_rot (hparams.n_rot),
  5976. n_ctx (cparams.n_ctx),
  5977. n_head (hparams.n_head),
  5978. n_head_kv (hparams.n_head_kv),
  5979. n_embd_head_k (hparams.n_embd_head_k),
  5980. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5981. n_embd_head_v (hparams.n_embd_head_v),
  5982. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5983. n_expert (hparams.n_expert),
  5984. n_expert_used (hparams.n_expert_used),
  5985. freq_base (cparams.rope_freq_base),
  5986. freq_scale (cparams.rope_freq_scale),
  5987. ext_factor (cparams.yarn_ext_factor),
  5988. attn_factor (cparams.yarn_attn_factor),
  5989. beta_fast (cparams.yarn_beta_fast),
  5990. beta_slow (cparams.yarn_beta_slow),
  5991. norm_eps (hparams.f_norm_eps),
  5992. norm_rms_eps (hparams.f_norm_rms_eps),
  5993. n_tokens (batch.n_tokens),
  5994. n_kv (worst_case ? kv_self.size : kv_self.n),
  5995. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5996. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5997. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5998. flash_attn (cparams.flash_attn),
  5999. pooling_type (cparams.pooling_type),
  6000. rope_type (hparams.rope_type),
  6001. cb (cb),
  6002. buf_compute_meta (lctx.buf_compute_meta) {
  6003. // all initializations should be done in init()
  6004. }
  6005. void init() {
  6006. struct ggml_init_params params = {
  6007. /*.mem_size =*/ buf_compute_meta.size(),
  6008. /*.mem_buffer =*/ buf_compute_meta.data(),
  6009. /*.no_alloc =*/ true,
  6010. };
  6011. ctx0 = ggml_init(params);
  6012. lctx.inp_tokens = nullptr;
  6013. lctx.inp_embd = nullptr;
  6014. lctx.inp_pos = nullptr;
  6015. lctx.inp_out_ids = nullptr;
  6016. lctx.inp_KQ_mask = nullptr;
  6017. lctx.inp_K_shift = nullptr;
  6018. lctx.inp_mean = nullptr;
  6019. lctx.inp_cls = nullptr;
  6020. lctx.inp_s_copy = nullptr;
  6021. lctx.inp_s_mask = nullptr;
  6022. lctx.inp_s_seq = nullptr;
  6023. }
  6024. void free() {
  6025. if (ctx0) {
  6026. ggml_free(ctx0);
  6027. ctx0 = nullptr;
  6028. }
  6029. }
  6030. struct ggml_cgraph * build_k_shift() {
  6031. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6032. GGML_ASSERT(kv_self.size == n_ctx);
  6033. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6034. cb(lctx.inp_K_shift, "K_shift", -1);
  6035. ggml_set_input(lctx.inp_K_shift);
  6036. for (int il = 0; il < n_layer; ++il) {
  6037. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6038. struct ggml_tensor * tmp =
  6039. // we rotate only the first n_rot dimensions
  6040. ggml_rope_ext_inplace(ctx0,
  6041. ggml_view_3d(ctx0, kv_self.k_l[il],
  6042. n_embd_head_k, n_head_kv, n_ctx,
  6043. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6044. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6045. 0),
  6046. lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6047. ext_factor, attn_factor, beta_fast, beta_slow);
  6048. cb(tmp, "K_shifted", il);
  6049. ggml_build_forward_expand(gf, tmp);
  6050. }
  6051. return gf;
  6052. }
  6053. struct ggml_cgraph * build_s_copy() {
  6054. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6055. GGML_ASSERT(kv_self.recurrent);
  6056. struct ggml_tensor * state_copy = build_inp_s_copy();
  6057. for (int il = 0; il < n_layer; ++il) {
  6058. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6059. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6060. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6061. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6062. // TODO: name the intermediate tensors with cb()
  6063. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6064. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6065. }
  6066. return gf;
  6067. }
  6068. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6069. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6070. for (uint32_t i = 0; i < ids.size(); ++i) {
  6071. const uint32_t id = ids[i];
  6072. if (i == id || id == ids.size()) {
  6073. continue;
  6074. }
  6075. uint32_t nm = 1;
  6076. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6077. nm++;
  6078. }
  6079. for (int il = 0; il < n_layer; ++il) {
  6080. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6081. n_embd_k_gqa, nm,
  6082. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6083. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6084. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6085. n_embd_k_gqa, nm,
  6086. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6087. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6088. ggml_tensor * view_v_src;
  6089. ggml_tensor * view_v_dst;
  6090. if (flash_attn) {
  6091. // NOTE: the V cache is not transposed when using flash attention
  6092. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6093. n_embd_v_gqa, nm,
  6094. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6095. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6096. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6097. n_embd_v_gqa, nm,
  6098. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6099. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6100. } else {
  6101. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6102. nm, n_embd_v_gqa,
  6103. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6104. ggml_row_size(kv_self.v_l[il]->type, i));
  6105. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6106. nm, n_embd_v_gqa,
  6107. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6108. ggml_row_size(kv_self.v_l[il]->type, id));
  6109. }
  6110. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6111. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6112. }
  6113. i += nm - 1;
  6114. }
  6115. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6116. return gf;
  6117. }
  6118. struct ggml_tensor * build_inp_pos() {
  6119. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6120. cb(lctx.inp_pos, "inp_pos", -1);
  6121. ggml_set_input(lctx.inp_pos);
  6122. return lctx.inp_pos;
  6123. }
  6124. struct ggml_tensor * build_rope_factors(int il) {
  6125. // choose long/short freq factors based on the context size
  6126. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6127. if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) {
  6128. return model.layers[il].rope_long;
  6129. }
  6130. return model.layers[il].rope_short;
  6131. }
  6132. struct ggml_tensor * build_inp_out_ids() {
  6133. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6134. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6135. ggml_set_input(lctx.inp_out_ids);
  6136. return lctx.inp_out_ids;
  6137. }
  6138. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6139. if (causal) {
  6140. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6141. } else {
  6142. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6143. }
  6144. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6145. ggml_set_input(lctx.inp_KQ_mask);
  6146. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6147. }
  6148. struct ggml_tensor * build_inp_mean() {
  6149. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6150. cb(lctx.inp_mean, "inp_mean", -1);
  6151. ggml_set_input(lctx.inp_mean);
  6152. return lctx.inp_mean;
  6153. }
  6154. struct ggml_tensor * build_inp_cls() {
  6155. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6156. cb(lctx.inp_cls, "inp_cls", -1);
  6157. ggml_set_input(lctx.inp_cls);
  6158. return lctx.inp_cls;
  6159. }
  6160. struct ggml_tensor * build_inp_s_copy() {
  6161. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6162. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6163. ggml_set_input(lctx.inp_s_copy);
  6164. return lctx.inp_s_copy;
  6165. }
  6166. struct ggml_tensor * build_inp_s_mask() {
  6167. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6168. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6169. ggml_set_input(lctx.inp_s_mask);
  6170. return lctx.inp_s_mask;
  6171. }
  6172. struct ggml_tensor * build_inp_s_seq() {
  6173. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6174. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6175. ggml_set_input(lctx.inp_s_seq);
  6176. return lctx.inp_s_seq;
  6177. }
  6178. struct ggml_cgraph * build_llama() {
  6179. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6180. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6181. int32_t n_tokens = this->n_tokens;
  6182. const int64_t n_embd_head = hparams.n_embd_head_v;
  6183. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6184. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6185. struct ggml_tensor * cur;
  6186. struct ggml_tensor * inpL;
  6187. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6188. // inp_pos - contains the positions
  6189. struct ggml_tensor * inp_pos = build_inp_pos();
  6190. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6191. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6192. for (int il = 0; il < n_layer; ++il) {
  6193. struct ggml_tensor * inpSA = inpL;
  6194. // norm
  6195. cur = llm_build_norm(ctx0, inpL, hparams,
  6196. model.layers[il].attn_norm, NULL,
  6197. LLM_NORM_RMS, cb, il);
  6198. cb(cur, "attn_norm", il);
  6199. // self-attention
  6200. {
  6201. // compute Q and K and RoPE them
  6202. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6203. cb(Qcur, "Qcur", il);
  6204. if (model.layers[il].bq) {
  6205. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6206. cb(Qcur, "Qcur", il);
  6207. }
  6208. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6209. cb(Kcur, "Kcur", il);
  6210. if (model.layers[il].bk) {
  6211. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6212. cb(Kcur, "Kcur", il);
  6213. }
  6214. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6215. cb(Vcur, "Vcur", il);
  6216. if (model.layers[il].bv) {
  6217. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6218. cb(Vcur, "Vcur", il);
  6219. }
  6220. Qcur = ggml_rope_ext(
  6221. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6222. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6223. ext_factor, attn_factor, beta_fast, beta_slow
  6224. );
  6225. cb(Qcur, "Qcur", il);
  6226. Kcur = ggml_rope_ext(
  6227. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6228. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6229. ext_factor, attn_factor, beta_fast, beta_slow
  6230. );
  6231. cb(Kcur, "Kcur", il);
  6232. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6233. model.layers[il].wo, model.layers[il].bo,
  6234. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6235. }
  6236. if (il == n_layer - 1) {
  6237. // skip computing output for unused tokens
  6238. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6239. n_tokens = n_outputs;
  6240. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6241. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6242. }
  6243. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6244. cb(ffn_inp, "ffn_inp", il);
  6245. // feed-forward network
  6246. if (model.layers[il].ffn_gate_inp == nullptr) {
  6247. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6248. model.layers[il].ffn_norm, NULL,
  6249. LLM_NORM_RMS, cb, il);
  6250. cb(cur, "ffn_norm", il);
  6251. cur = llm_build_ffn(ctx0, cur,
  6252. model.layers[il].ffn_up, NULL,
  6253. model.layers[il].ffn_gate, NULL,
  6254. model.layers[il].ffn_down, NULL,
  6255. NULL,
  6256. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6257. cb(cur, "ffn_out", il);
  6258. } else {
  6259. // MoE branch
  6260. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6261. model.layers[il].ffn_norm, NULL,
  6262. LLM_NORM_RMS, cb, il);
  6263. cb(cur, "ffn_norm", il);
  6264. cur = llm_build_moe_ffn(ctx0, cur,
  6265. model.layers[il].ffn_gate_inp,
  6266. model.layers[il].ffn_up_exps,
  6267. model.layers[il].ffn_gate_exps,
  6268. model.layers[il].ffn_down_exps,
  6269. n_expert, n_expert_used,
  6270. LLM_FFN_SILU, true,
  6271. cb, il);
  6272. cb(cur, "ffn_moe_out", il);
  6273. }
  6274. cur = ggml_add(ctx0, cur, ffn_inp);
  6275. cb(cur, "ffn_out", il);
  6276. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6277. if (layer_dir != nullptr) {
  6278. cur = ggml_add(ctx0, cur, layer_dir);
  6279. }
  6280. cb(cur, "l_out", il);
  6281. // input for next layer
  6282. inpL = cur;
  6283. }
  6284. cur = inpL;
  6285. cur = llm_build_norm(ctx0, cur, hparams,
  6286. model.output_norm, NULL,
  6287. LLM_NORM_RMS, cb, -1);
  6288. cb(cur, "result_norm", -1);
  6289. // lm_head
  6290. cur = ggml_mul_mat(ctx0, model.output, cur);
  6291. cb(cur, "result_output", -1);
  6292. ggml_build_forward_expand(gf, cur);
  6293. return gf;
  6294. }
  6295. struct ggml_cgraph * build_baichuan() {
  6296. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6297. const int64_t n_embd_head = hparams.n_embd_head_v;
  6298. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6299. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6300. struct ggml_tensor * cur;
  6301. struct ggml_tensor * inpL;
  6302. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6303. // inp_pos - contains the positions
  6304. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6305. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6306. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6307. for (int il = 0; il < n_layer; ++il) {
  6308. struct ggml_tensor * inpSA = inpL;
  6309. cur = llm_build_norm(ctx0, inpL, hparams,
  6310. model.layers[il].attn_norm, NULL,
  6311. LLM_NORM_RMS, cb, il);
  6312. cb(cur, "attn_norm", il);
  6313. // self-attention
  6314. {
  6315. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6316. cb(Qcur, "Qcur", il);
  6317. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6318. cb(Kcur, "Kcur", il);
  6319. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6320. cb(Vcur, "Vcur", il);
  6321. switch (model.type) {
  6322. case MODEL_7B:
  6323. Qcur = ggml_rope_ext(
  6324. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6325. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6326. ext_factor, attn_factor, beta_fast, beta_slow
  6327. );
  6328. Kcur = ggml_rope_ext(
  6329. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6330. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6331. ext_factor, attn_factor, beta_fast, beta_slow
  6332. );
  6333. break;
  6334. case MODEL_13B:
  6335. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6336. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6337. break;
  6338. default:
  6339. GGML_ASSERT(false);
  6340. }
  6341. cb(Qcur, "Qcur", il);
  6342. cb(Kcur, "Kcur", il);
  6343. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6344. model.layers[il].wo, NULL,
  6345. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6346. }
  6347. if (il == n_layer - 1) {
  6348. // skip computing output for unused tokens
  6349. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6350. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6351. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6352. }
  6353. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6354. cb(ffn_inp, "ffn_inp", il);
  6355. // feed-forward network
  6356. {
  6357. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6358. model.layers[il].ffn_norm, NULL,
  6359. LLM_NORM_RMS, cb, il);
  6360. cb(cur, "ffn_norm", il);
  6361. cur = llm_build_ffn(ctx0, cur,
  6362. model.layers[il].ffn_up, NULL,
  6363. model.layers[il].ffn_gate, NULL,
  6364. model.layers[il].ffn_down, NULL,
  6365. NULL,
  6366. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6367. cb(cur, "ffn_out", il);
  6368. }
  6369. cur = ggml_add(ctx0, cur, ffn_inp);
  6370. cb(cur, "l_out", il);
  6371. // input for next layer
  6372. inpL = cur;
  6373. }
  6374. cur = inpL;
  6375. cur = llm_build_norm(ctx0, cur, hparams,
  6376. model.output_norm, NULL,
  6377. LLM_NORM_RMS, cb, -1);
  6378. cb(cur, "result_norm", -1);
  6379. // lm_head
  6380. cur = ggml_mul_mat(ctx0, model.output, cur);
  6381. cb(cur, "result_output", -1);
  6382. ggml_build_forward_expand(gf, cur);
  6383. return gf;
  6384. }
  6385. struct ggml_cgraph * build_xverse() {
  6386. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6387. const int64_t n_embd_head = hparams.n_embd_head_v;
  6388. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6389. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6390. struct ggml_tensor * cur;
  6391. struct ggml_tensor * inpL;
  6392. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6393. // inp_pos - contains the positions
  6394. struct ggml_tensor * inp_pos = build_inp_pos();
  6395. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6396. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6397. for (int il = 0; il < n_layer; ++il) {
  6398. struct ggml_tensor * inpSA = inpL;
  6399. cur = llm_build_norm(ctx0, inpL, hparams,
  6400. model.layers[il].attn_norm, NULL,
  6401. LLM_NORM_RMS, cb, il);
  6402. cb(cur, "attn_norm", il);
  6403. // self-attention
  6404. {
  6405. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6406. cb(Qcur, "Qcur", il);
  6407. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6408. cb(Kcur, "Kcur", il);
  6409. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6410. cb(Vcur, "Vcur", il);
  6411. Qcur = ggml_rope_ext(
  6412. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6413. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6414. ext_factor, attn_factor, beta_fast, beta_slow
  6415. );
  6416. cb(Qcur, "Qcur", il);
  6417. Kcur = ggml_rope_ext(
  6418. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6419. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6420. ext_factor, attn_factor, beta_fast, beta_slow
  6421. );
  6422. cb(Kcur, "Kcur", il);
  6423. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6424. model.layers[il].wo, NULL,
  6425. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6426. }
  6427. if (il == n_layer - 1) {
  6428. // skip computing output for unused tokens
  6429. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6430. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6431. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6432. }
  6433. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6434. cb(ffn_inp, "ffn_inp", il);
  6435. // feed-forward network
  6436. {
  6437. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6438. model.layers[il].ffn_norm, NULL,
  6439. LLM_NORM_RMS, cb, il);
  6440. cb(cur, "ffn_norm", il);
  6441. cur = llm_build_ffn(ctx0, cur,
  6442. model.layers[il].ffn_up, NULL,
  6443. model.layers[il].ffn_gate, NULL,
  6444. model.layers[il].ffn_down, NULL,
  6445. NULL,
  6446. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6447. cb(cur, "ffn_out", il);
  6448. }
  6449. cur = ggml_add(ctx0, cur, ffn_inp);
  6450. cb(cur, "l_out", il);
  6451. // input for next layer
  6452. inpL = cur;
  6453. }
  6454. cur = inpL;
  6455. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6456. cb(cur, "result_norm", -1);
  6457. // lm_head
  6458. cur = ggml_mul_mat(ctx0, model.output, cur);
  6459. cb(cur, "result_output", -1);
  6460. ggml_build_forward_expand(gf, cur);
  6461. return gf;
  6462. }
  6463. struct ggml_cgraph * build_falcon() {
  6464. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6465. const int64_t n_embd_head = hparams.n_embd_head_v;
  6466. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6467. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6468. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6469. struct ggml_tensor * cur;
  6470. struct ggml_tensor * inpL;
  6471. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6472. // inp_pos - contains the positions
  6473. struct ggml_tensor * inp_pos = build_inp_pos();
  6474. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6475. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6476. for (int il = 0; il < n_layer; ++il) {
  6477. struct ggml_tensor * attn_norm;
  6478. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6479. model.layers[il].attn_norm,
  6480. model.layers[il].attn_norm_b,
  6481. LLM_NORM, cb, il);
  6482. cb(attn_norm, "attn_norm", il);
  6483. // self-attention
  6484. {
  6485. if (model.layers[il].attn_norm_2) {
  6486. // Falcon-40B
  6487. cur = llm_build_norm(ctx0, inpL, hparams,
  6488. model.layers[il].attn_norm_2,
  6489. model.layers[il].attn_norm_2_b,
  6490. LLM_NORM, cb, il);
  6491. cb(cur, "attn_norm_2", il);
  6492. } else {
  6493. cur = attn_norm;
  6494. }
  6495. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6496. cb(cur, "wqkv", il);
  6497. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6498. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6499. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6500. cb(Qcur, "Qcur", il);
  6501. cb(Kcur, "Kcur", il);
  6502. cb(Vcur, "Vcur", il);
  6503. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6504. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6505. // using mode = 2 for neox mode
  6506. Qcur = ggml_rope_ext(
  6507. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6508. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6509. );
  6510. cb(Qcur, "Qcur", il);
  6511. Kcur = ggml_rope_ext(
  6512. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6513. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6514. );
  6515. cb(Kcur, "Kcur", il);
  6516. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6517. model.layers[il].wo, NULL,
  6518. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6519. }
  6520. if (il == n_layer - 1) {
  6521. // skip computing output for unused tokens
  6522. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6523. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6524. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6525. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6526. }
  6527. struct ggml_tensor * ffn_inp = cur;
  6528. // feed forward
  6529. {
  6530. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6531. model.layers[il].ffn_up, NULL,
  6532. NULL, NULL,
  6533. model.layers[il].ffn_down, NULL,
  6534. NULL,
  6535. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6536. cb(cur, "ffn_out", il);
  6537. }
  6538. cur = ggml_add(ctx0, cur, ffn_inp);
  6539. cb(cur, "l_out", il);
  6540. cur = ggml_add(ctx0, cur, inpL);
  6541. cb(cur, "l_out", il);
  6542. // input for next layer
  6543. inpL = cur;
  6544. }
  6545. cur = inpL;
  6546. // norm
  6547. cur = llm_build_norm(ctx0, cur, hparams,
  6548. model.output_norm,
  6549. model.output_norm_b,
  6550. LLM_NORM, cb, -1);
  6551. cb(cur, "result_norm", -1);
  6552. cur = ggml_mul_mat(ctx0, model.output, cur);
  6553. cb(cur, "result_output", -1);
  6554. ggml_build_forward_expand(gf, cur);
  6555. return gf;
  6556. }
  6557. struct ggml_cgraph * build_grok() {
  6558. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6559. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6560. int32_t n_tokens = this->n_tokens;
  6561. const int64_t n_embd_head = hparams.n_embd_head_v;
  6562. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6563. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6564. struct ggml_tensor * cur;
  6565. struct ggml_tensor * inpL;
  6566. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6567. // multiply by embedding_multiplier_scale of 78.38367176906169
  6568. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6569. // inp_pos - contains the positions
  6570. struct ggml_tensor * inp_pos = build_inp_pos();
  6571. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6572. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6573. for (int il = 0; il < n_layer; ++il) {
  6574. struct ggml_tensor * inpSA = inpL;
  6575. // norm
  6576. cur = llm_build_norm(ctx0, inpL, hparams,
  6577. model.layers[il].attn_norm, NULL,
  6578. LLM_NORM_RMS, cb, il);
  6579. cb(cur, "attn_norm", il);
  6580. // self-attention
  6581. {
  6582. // compute Q and K and RoPE them
  6583. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6584. cb(Qcur, "Qcur", il);
  6585. if (model.layers[il].bq) {
  6586. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6587. cb(Qcur, "Qcur", il);
  6588. }
  6589. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6590. cb(Kcur, "Kcur", il);
  6591. if (model.layers[il].bk) {
  6592. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6593. cb(Kcur, "Kcur", il);
  6594. }
  6595. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6596. cb(Vcur, "Vcur", il);
  6597. if (model.layers[il].bv) {
  6598. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6599. cb(Vcur, "Vcur", il);
  6600. }
  6601. Qcur = ggml_rope_ext(
  6602. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6603. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6604. ext_factor, attn_factor, beta_fast, beta_slow
  6605. );
  6606. cb(Qcur, "Qcur", il);
  6607. Kcur = ggml_rope_ext(
  6608. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6609. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6610. ext_factor, attn_factor, beta_fast, beta_slow
  6611. );
  6612. cb(Kcur, "Kcur", il);
  6613. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6614. model.layers[il].wo, model.layers[il].bo,
  6615. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6616. }
  6617. if (il == n_layer - 1) {
  6618. // skip computing output for unused tokens
  6619. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6620. n_tokens = n_outputs;
  6621. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6622. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6623. }
  6624. // Grok
  6625. // if attn_out_norm is present then apply it before adding the input
  6626. if (model.layers[il].attn_out_norm) {
  6627. cur = llm_build_norm(ctx0, cur, hparams,
  6628. model.layers[il].attn_out_norm, NULL,
  6629. LLM_NORM_RMS, cb, il);
  6630. cb(cur, "attn_out_norm", il);
  6631. }
  6632. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6633. cb(ffn_inp, "ffn_inp", il);
  6634. // feed-forward network
  6635. // MoE branch
  6636. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6637. model.layers[il].ffn_norm, NULL,
  6638. LLM_NORM_RMS, cb, il);
  6639. cb(cur, "ffn_norm", il);
  6640. cur = llm_build_moe_ffn(ctx0, cur,
  6641. model.layers[il].ffn_gate_inp,
  6642. model.layers[il].ffn_up_exps,
  6643. model.layers[il].ffn_gate_exps,
  6644. model.layers[il].ffn_down_exps,
  6645. n_expert, n_expert_used,
  6646. LLM_FFN_GELU, true,
  6647. cb, il);
  6648. cb(cur, "ffn_moe_out", il);
  6649. // Grok
  6650. // if layer_out_norm is present then apply it before adding the input
  6651. // Idea: maybe ffn_out_norm is a better name
  6652. if (model.layers[il].layer_out_norm) {
  6653. cur = llm_build_norm(ctx0, cur, hparams,
  6654. model.layers[il].layer_out_norm, NULL,
  6655. LLM_NORM_RMS, cb, il);
  6656. cb(cur, "layer_out_norm", il);
  6657. }
  6658. cur = ggml_add(ctx0, cur, ffn_inp);
  6659. cb(cur, "ffn_out", il);
  6660. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6661. if (layer_dir != nullptr) {
  6662. cur = ggml_add(ctx0, cur, layer_dir);
  6663. }
  6664. cb(cur, "l_out", il);
  6665. // input for next layer
  6666. inpL = cur;
  6667. }
  6668. cur = inpL;
  6669. cur = llm_build_norm(ctx0, cur, hparams,
  6670. model.output_norm, NULL,
  6671. LLM_NORM_RMS, cb, -1);
  6672. cb(cur, "result_norm", -1);
  6673. // lm_head
  6674. cur = ggml_mul_mat(ctx0, model.output, cur);
  6675. // Grok
  6676. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6677. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6678. cb(cur, "result_output", -1);
  6679. ggml_build_forward_expand(gf, cur);
  6680. return gf;
  6681. }
  6682. struct ggml_cgraph * build_dbrx() {
  6683. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6684. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6685. int32_t n_tokens = this->n_tokens;
  6686. const int64_t n_embd_head = hparams.n_embd_head_v;
  6687. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6688. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6689. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6690. struct ggml_tensor * cur;
  6691. struct ggml_tensor * inpL;
  6692. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6693. // inp_pos - contains the positions
  6694. struct ggml_tensor * inp_pos = build_inp_pos();
  6695. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6696. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6697. for (int il = 0; il < n_layer; ++il) {
  6698. struct ggml_tensor * inpSA = inpL;
  6699. // norm
  6700. cur = llm_build_norm(ctx0, inpL, hparams,
  6701. model.layers[il].attn_norm, NULL,
  6702. LLM_NORM, cb, il);
  6703. cb(cur, "attn_norm", il);
  6704. // self-attention
  6705. {
  6706. struct ggml_tensor * Qcur = nullptr;
  6707. struct ggml_tensor * Kcur = nullptr;
  6708. struct ggml_tensor * Vcur = nullptr;
  6709. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6710. cb(cur, "wqkv", il);
  6711. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6712. cb(cur, "wqkv_clamped", il);
  6713. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6714. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6715. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6716. cb(Qcur, "Qcur", il);
  6717. cb(Kcur, "Kcur", il);
  6718. cb(Vcur, "Vcur", il);
  6719. Qcur = ggml_rope_ext(
  6720. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6721. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6722. ext_factor, attn_factor, beta_fast, beta_slow
  6723. );
  6724. cb(Qcur, "Qcur", il);
  6725. Kcur = ggml_rope_ext(
  6726. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6727. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6728. ext_factor, attn_factor, beta_fast, beta_slow
  6729. );
  6730. cb(Kcur, "Kcur", il);
  6731. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6732. model.layers[il].wo, NULL,
  6733. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6734. }
  6735. if (il == n_layer - 1) {
  6736. // skip computing output for unused tokens
  6737. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6738. n_tokens = n_outputs;
  6739. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6740. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6741. }
  6742. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6743. cb(ffn_inp, "ffn_inp", il);
  6744. // feed-forward network
  6745. // MoE branch
  6746. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6747. model.layers[il].attn_out_norm, NULL,
  6748. LLM_NORM, cb, il);
  6749. cb(cur, "attn_out_norm", il);
  6750. cur = llm_build_moe_ffn(ctx0, cur,
  6751. model.layers[il].ffn_gate_inp,
  6752. model.layers[il].ffn_up_exps,
  6753. model.layers[il].ffn_gate_exps,
  6754. model.layers[il].ffn_down_exps,
  6755. n_expert, n_expert_used,
  6756. LLM_FFN_SILU, true,
  6757. cb, il);
  6758. cb(cur, "ffn_moe_out", il);
  6759. cur = ggml_add(ctx0, cur, ffn_inp);
  6760. cb(cur, "ffn_out", il);
  6761. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6762. if (layer_dir != nullptr) {
  6763. cur = ggml_add(ctx0, cur, layer_dir);
  6764. }
  6765. cb(cur, "l_out", il);
  6766. // input for next layer
  6767. inpL = cur;
  6768. }
  6769. cur = inpL;
  6770. cur = llm_build_norm(ctx0, cur, hparams,
  6771. model.output_norm, NULL,
  6772. LLM_NORM, cb, -1);
  6773. cb(cur, "result_norm", -1);
  6774. // lm_head
  6775. cur = ggml_mul_mat(ctx0, model.output, cur);
  6776. cb(cur, "result_output", -1);
  6777. ggml_build_forward_expand(gf, cur);
  6778. return gf;
  6779. }
  6780. struct ggml_cgraph * build_starcoder() {
  6781. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6782. const int64_t n_embd_head = hparams.n_embd_head_v;
  6783. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6784. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6785. struct ggml_tensor * cur;
  6786. struct ggml_tensor * inpL;
  6787. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6788. // inp_pos - contains the positions
  6789. struct ggml_tensor * inp_pos = build_inp_pos();
  6790. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6791. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6792. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6793. cb(pos, "pos_embd", -1);
  6794. inpL = ggml_add(ctx0, inpL, pos);
  6795. cb(inpL, "inpL", -1);
  6796. for (int il = 0; il < n_layer; ++il) {
  6797. cur = llm_build_norm(ctx0, inpL, hparams,
  6798. model.layers[il].attn_norm,
  6799. model.layers[il].attn_norm_b,
  6800. LLM_NORM, cb, il);
  6801. cb(cur, "attn_norm", il);
  6802. // self-attention
  6803. {
  6804. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6805. cb(cur, "wqkv", il);
  6806. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6807. cb(cur, "bqkv", il);
  6808. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6809. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6810. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6811. cb(Qcur, "Qcur", il);
  6812. cb(Kcur, "Kcur", il);
  6813. cb(Vcur, "Vcur", il);
  6814. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6815. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6816. model.layers[il].wo, model.layers[il].bo,
  6817. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6818. }
  6819. if (il == n_layer - 1) {
  6820. // skip computing output for unused tokens
  6821. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6822. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6823. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6824. }
  6825. // add the input
  6826. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6827. cb(ffn_inp, "ffn_inp", il);
  6828. // FF
  6829. {
  6830. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6831. model.layers[il].ffn_norm,
  6832. model.layers[il].ffn_norm_b,
  6833. LLM_NORM, cb, il);
  6834. cb(cur, "ffn_norm", il);
  6835. cur = llm_build_ffn(ctx0, cur,
  6836. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6837. NULL, NULL,
  6838. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6839. NULL,
  6840. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6841. cb(cur, "ffn_out", il);
  6842. }
  6843. inpL = ggml_add(ctx0, cur, ffn_inp);
  6844. cb(inpL, "l_out", il);
  6845. }
  6846. cur = llm_build_norm(ctx0, inpL, hparams,
  6847. model.output_norm,
  6848. model.output_norm_b,
  6849. LLM_NORM, cb, -1);
  6850. cb(cur, "result_norm", -1);
  6851. cur = ggml_mul_mat(ctx0, model.output, cur);
  6852. cb(cur, "result_output", -1);
  6853. ggml_build_forward_expand(gf, cur);
  6854. return gf;
  6855. }
  6856. struct ggml_cgraph * build_refact() {
  6857. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6858. const int64_t n_embd_head = hparams.n_embd_head_v;
  6859. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6860. struct ggml_tensor * cur;
  6861. struct ggml_tensor * inpL;
  6862. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6863. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6864. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6865. for (int il = 0; il < n_layer; ++il) {
  6866. struct ggml_tensor * inpSA = inpL;
  6867. cur = llm_build_norm(ctx0, inpL, hparams,
  6868. model.layers[il].attn_norm, NULL,
  6869. LLM_NORM_RMS, cb, il);
  6870. cb(cur, "attn_norm", il);
  6871. // self-attention
  6872. {
  6873. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6874. cb(Qcur, "Qcur", il);
  6875. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6876. cb(Kcur, "Kcur", il);
  6877. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6878. cb(Vcur, "Vcur", il);
  6879. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6880. cb(Kcur, "Kcur", il);
  6881. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6882. cb(Qcur, "Qcur", il);
  6883. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6884. model.layers[il].wo, NULL,
  6885. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6886. }
  6887. if (il == n_layer - 1) {
  6888. // skip computing output for unused tokens
  6889. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6890. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6891. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6892. }
  6893. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6894. cb(ffn_inp, "ffn_inp", il);
  6895. // feed-forward network
  6896. {
  6897. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6898. model.layers[il].ffn_norm, NULL,
  6899. LLM_NORM_RMS, cb, il);
  6900. cb(cur, "ffn_norm", il);
  6901. cur = llm_build_ffn(ctx0, cur,
  6902. model.layers[il].ffn_up, NULL,
  6903. model.layers[il].ffn_gate, NULL,
  6904. model.layers[il].ffn_down, NULL,
  6905. NULL,
  6906. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6907. cb(cur, "ffn_out", il);
  6908. }
  6909. cur = ggml_add(ctx0, cur, ffn_inp);
  6910. cb(cur, "l_out", il);
  6911. // input for next layer
  6912. inpL = cur;
  6913. }
  6914. cur = inpL;
  6915. cur = llm_build_norm(ctx0, cur, hparams,
  6916. model.output_norm, NULL,
  6917. LLM_NORM_RMS, cb, -1);
  6918. cb(cur, "result_norm", -1);
  6919. // lm_head
  6920. cur = ggml_mul_mat(ctx0, model.output, cur);
  6921. cb(cur, "result_output", -1);
  6922. ggml_build_forward_expand(gf, cur);
  6923. return gf;
  6924. }
  6925. struct ggml_cgraph * build_bert() {
  6926. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6927. const int64_t n_embd_head = hparams.n_embd_head_v;
  6928. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6929. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6930. struct ggml_tensor * cur;
  6931. struct ggml_tensor * inpL;
  6932. struct ggml_tensor * inp_pos = nullptr;
  6933. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6934. inp_pos = build_inp_pos();
  6935. }
  6936. struct ggml_tensor * inp_mean = build_inp_mean();
  6937. struct ggml_tensor * inp_cls = build_inp_cls();
  6938. // construct input embeddings (token, type, position)
  6939. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6940. // token types are hardcoded to zero ("Sentence A")
  6941. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6942. inpL = ggml_add(ctx0, inpL, type_row0);
  6943. if (model.arch == LLM_ARCH_BERT) {
  6944. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6945. }
  6946. cb(inpL, "inp_embd", -1);
  6947. // embed layer norm
  6948. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6949. cb(inpL, "inp_norm", -1);
  6950. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6951. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6952. // iterate layers
  6953. for (int il = 0; il < n_layer; ++il) {
  6954. struct ggml_tensor * cur = inpL;
  6955. struct ggml_tensor * Qcur;
  6956. struct ggml_tensor * Kcur;
  6957. struct ggml_tensor * Vcur;
  6958. // self-attention
  6959. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  6960. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6961. cb(Qcur, "Qcur", il);
  6962. if (model.layers[il].attn_q_norm) {
  6963. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6964. model.layers[il].attn_q_norm,
  6965. model.layers[il].attn_q_norm_b,
  6966. LLM_NORM, cb, il);
  6967. }
  6968. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6969. cb(Kcur, "Kcur", il);
  6970. if (model.layers[il].attn_k_norm) {
  6971. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6972. model.layers[il].attn_k_norm,
  6973. model.layers[il].attn_k_norm_b,
  6974. LLM_NORM, cb, il);
  6975. }
  6976. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6977. cb(Vcur, "Vcur", il);
  6978. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6979. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6980. } else {
  6981. // compute Q and K and RoPE them
  6982. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6983. cb(cur, "wqkv", il);
  6984. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6985. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6986. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6987. cb(Qcur, "Qcur", il);
  6988. cb(Kcur, "Kcur", il);
  6989. cb(Vcur, "Vcur", il);
  6990. Qcur = ggml_rope_ext(
  6991. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6992. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6993. ext_factor, attn_factor, beta_fast, beta_slow
  6994. );
  6995. cb(Qcur, "Qcur", il);
  6996. Kcur = ggml_rope_ext(
  6997. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6998. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6999. ext_factor, attn_factor, beta_fast, beta_slow
  7000. );
  7001. cb(Kcur, "Kcur", il);
  7002. }
  7003. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7004. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7005. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7006. cb(kq, "kq", il);
  7007. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7008. cb(kq, "kq_soft_max_ext", il);
  7009. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7010. cb(v, "v", il);
  7011. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7012. cb(kqv, "kqv", il);
  7013. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7014. cb(kqv_merged, "kqv_merged", il);
  7015. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7016. cb(cur, "kqv_merged_cont", il);
  7017. ggml_build_forward_expand(gf, cur);
  7018. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7019. if (model.layers[il].bo) {
  7020. cb(cur, "kqv_wo", il);
  7021. }
  7022. if (model.layers[il].bo) {
  7023. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7024. }
  7025. cb(cur, "kqv_out", il);
  7026. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7027. // skip computing output for unused tokens
  7028. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7029. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7030. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7031. }
  7032. // re-add the layer input
  7033. cur = ggml_add(ctx0, cur, inpL);
  7034. // attention layer norm
  7035. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7036. struct ggml_tensor * ffn_inp = cur;
  7037. cb(ffn_inp, "ffn_inp", il);
  7038. // feed-forward network
  7039. if (model.arch == LLM_ARCH_BERT) {
  7040. cur = llm_build_ffn(ctx0, cur,
  7041. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7042. NULL, NULL,
  7043. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7044. NULL,
  7045. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7046. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7047. cur = llm_build_ffn(ctx0, cur,
  7048. model.layers[il].ffn_up, NULL,
  7049. model.layers[il].ffn_gate, NULL,
  7050. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7051. NULL,
  7052. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7053. } else {
  7054. cur = llm_build_ffn(ctx0, cur,
  7055. model.layers[il].ffn_up, NULL,
  7056. model.layers[il].ffn_gate, NULL,
  7057. model.layers[il].ffn_down, NULL,
  7058. NULL,
  7059. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7060. }
  7061. cb(cur, "ffn_out", il);
  7062. // attentions bypass the intermediate layer
  7063. cur = ggml_add(ctx0, cur, ffn_inp);
  7064. // output layer norm
  7065. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7066. // input for next layer
  7067. inpL = cur;
  7068. }
  7069. // final output
  7070. cur = inpL;
  7071. cb(cur, "result_embd", -1);
  7072. // pooling layer
  7073. switch (pooling_type) {
  7074. case LLAMA_POOLING_TYPE_NONE:
  7075. {
  7076. // nop
  7077. } break;
  7078. case LLAMA_POOLING_TYPE_MEAN:
  7079. {
  7080. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7081. cb(cur, "result_embd_pooled", -1);
  7082. } break;
  7083. case LLAMA_POOLING_TYPE_CLS:
  7084. {
  7085. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7086. cb(cur, "result_embd_pooled", -1);
  7087. } break;
  7088. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7089. {
  7090. GGML_ASSERT(false && "Invalid pooling type");
  7091. } break;
  7092. }
  7093. ggml_build_forward_expand(gf, cur);
  7094. return gf;
  7095. }
  7096. struct ggml_cgraph * build_bloom() {
  7097. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7098. const int64_t n_embd_head = hparams.n_embd_head_v;
  7099. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7100. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7101. struct ggml_tensor * cur;
  7102. struct ggml_tensor * inpL;
  7103. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7104. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7105. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7106. inpL = llm_build_norm(ctx0, inpL, hparams,
  7107. model.tok_norm,
  7108. model.tok_norm_b,
  7109. LLM_NORM, cb, -1);
  7110. cb(inpL, "inp_norm", -1);
  7111. for (int il = 0; il < n_layer; ++il) {
  7112. cur = llm_build_norm(ctx0, inpL, hparams,
  7113. model.layers[il].attn_norm,
  7114. model.layers[il].attn_norm_b,
  7115. LLM_NORM, cb, il);
  7116. cb(cur, "attn_norm", il);
  7117. // self-attention
  7118. {
  7119. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7120. cb(cur, "wqkv", il);
  7121. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7122. cb(cur, "bqkv", il);
  7123. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7124. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7125. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7126. cb(Qcur, "Qcur", il);
  7127. cb(Kcur, "Kcur", il);
  7128. cb(Vcur, "Vcur", il);
  7129. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7130. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7131. model.layers[il].wo, model.layers[il].bo,
  7132. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7133. }
  7134. if (il == n_layer - 1) {
  7135. // skip computing output for unused tokens
  7136. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7137. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7138. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7139. }
  7140. // Add the input
  7141. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7142. cb(ffn_inp, "ffn_inp", il);
  7143. // FF
  7144. {
  7145. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7146. model.layers[il].ffn_norm,
  7147. model.layers[il].ffn_norm_b,
  7148. LLM_NORM, cb, il);
  7149. cb(cur, "ffn_norm", il);
  7150. cur = llm_build_ffn(ctx0, cur,
  7151. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7152. NULL, NULL,
  7153. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7154. NULL,
  7155. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7156. cb(cur, "ffn_out", il);
  7157. }
  7158. inpL = ggml_add(ctx0, cur, ffn_inp);
  7159. cb(inpL, "l_out", il);
  7160. }
  7161. cur = llm_build_norm(ctx0, inpL, hparams,
  7162. model.output_norm,
  7163. model.output_norm_b,
  7164. LLM_NORM, cb, -1);
  7165. cb(cur, "result_norm", -1);
  7166. cur = ggml_mul_mat(ctx0, model.output, cur);
  7167. cb(cur, "result_output", -1);
  7168. ggml_build_forward_expand(gf, cur);
  7169. return gf;
  7170. }
  7171. struct ggml_cgraph * build_mpt() {
  7172. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7173. const int64_t n_embd_head = hparams.n_embd_head_v;
  7174. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7175. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7176. struct ggml_tensor * cur;
  7177. struct ggml_tensor * pos;
  7178. struct ggml_tensor * inpL;
  7179. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7180. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7181. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7182. if (model.pos_embd) {
  7183. // inp_pos - contains the positions
  7184. struct ggml_tensor * inp_pos = build_inp_pos();
  7185. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7186. cb(pos, "pos_embd", -1);
  7187. inpL = ggml_add(ctx0, inpL, pos);
  7188. cb(inpL, "inpL", -1);
  7189. }
  7190. for (int il = 0; il < n_layer; ++il) {
  7191. struct ggml_tensor * attn_norm;
  7192. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7193. model.layers[il].attn_norm,
  7194. model.layers[il].attn_norm_b,
  7195. LLM_NORM, cb, il);
  7196. cb(attn_norm, "attn_norm", il);
  7197. // self-attention
  7198. {
  7199. cur = attn_norm;
  7200. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7201. cb(cur, "wqkv", il);
  7202. if (model.layers[il].bqkv){
  7203. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7204. cb(cur, "bqkv", il);
  7205. }
  7206. if (hparams.f_clamp_kqv > 0.0f) {
  7207. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7208. cb(cur, "wqkv_clamped", il);
  7209. }
  7210. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7211. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7212. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7213. cb(Qcur, "Qcur", il);
  7214. cb(Kcur, "Kcur", il);
  7215. cb(Vcur, "Vcur", il);
  7216. // Q/K Layernorm
  7217. if (model.layers[il].attn_q_norm) {
  7218. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7219. model.layers[il].attn_q_norm,
  7220. model.layers[il].attn_q_norm_b,
  7221. LLM_NORM, cb, il);
  7222. cb(Qcur, "Qcur", il);
  7223. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7224. model.layers[il].attn_k_norm,
  7225. model.layers[il].attn_k_norm_b,
  7226. LLM_NORM, cb, il);
  7227. cb(Kcur, "Kcur", il);
  7228. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7229. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7230. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7231. model.layers[il].wo, model.layers[il].bo,
  7232. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7233. } else {
  7234. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7235. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7236. model.layers[il].wo, model.layers[il].bo,
  7237. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7238. }
  7239. }
  7240. if (il == n_layer - 1) {
  7241. // skip computing output for unused tokens
  7242. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7243. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7244. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7245. }
  7246. // Add the input
  7247. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7248. cb(ffn_inp, "ffn_inp", il);
  7249. // feed forward
  7250. {
  7251. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7252. model.layers[il].ffn_norm,
  7253. model.layers[il].ffn_norm_b,
  7254. LLM_NORM, cb, il);
  7255. cb(cur, "ffn_norm", il);
  7256. cur = llm_build_ffn(ctx0, cur,
  7257. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7258. NULL, NULL,
  7259. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7260. model.layers[il].ffn_act,
  7261. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7262. cb(cur, "ffn_out", il);
  7263. }
  7264. cur = ggml_add(ctx0, cur, ffn_inp);
  7265. cb(cur, "l_out", il);
  7266. // input for next layer
  7267. inpL = cur;
  7268. }
  7269. cur = inpL;
  7270. cur = llm_build_norm(ctx0, cur, hparams,
  7271. model.output_norm,
  7272. model.output_norm_b,
  7273. LLM_NORM, cb, -1);
  7274. cb(cur, "result_norm", -1);
  7275. cur = ggml_mul_mat(ctx0, model.output, cur);
  7276. cb(cur, "result_output", -1);
  7277. ggml_build_forward_expand(gf, cur);
  7278. return gf;
  7279. }
  7280. struct ggml_cgraph * build_stablelm() {
  7281. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7282. const int64_t n_embd_head = hparams.n_embd_head_v;
  7283. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7284. struct ggml_tensor * cur;
  7285. struct ggml_tensor * inpL;
  7286. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7287. // inp_pos - contains the positions
  7288. struct ggml_tensor * inp_pos = build_inp_pos();
  7289. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7290. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7291. for (int il = 0; il < n_layer; ++il) {
  7292. // norm
  7293. cur = llm_build_norm(ctx0, inpL, hparams,
  7294. model.layers[il].attn_norm,
  7295. model.layers[il].attn_norm_b,
  7296. LLM_NORM, cb, il);
  7297. cb(cur, "attn_norm", il);
  7298. struct ggml_tensor * inpSA = cur;
  7299. // self-attention
  7300. {
  7301. // compute Q and K and RoPE them
  7302. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7303. cb(Qcur, "Qcur", il);
  7304. if (model.layers[il].bq) {
  7305. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7306. cb(Qcur, "Qcur", il);
  7307. }
  7308. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7309. cb(Kcur, "Kcur", il);
  7310. if (model.layers[il].bk) {
  7311. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7312. cb(Kcur, "Kcur", il);
  7313. }
  7314. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7315. cb(Vcur, "Vcur", il);
  7316. if (model.layers[il].bv) {
  7317. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7318. cb(Vcur, "Vcur", il);
  7319. }
  7320. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7321. cb(Qcur, "Qcur", il);
  7322. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7323. cb(Kcur, "Kcur", il);
  7324. if (model.layers[il].attn_q_norm) {
  7325. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7326. model.layers[il].attn_q_norm,
  7327. NULL,
  7328. LLM_NORM, cb, il);
  7329. cb(Qcur, "Qcur", il);
  7330. }
  7331. if (model.layers[il].attn_k_norm) {
  7332. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7333. model.layers[il].attn_k_norm,
  7334. NULL,
  7335. LLM_NORM, cb, il);
  7336. cb(Kcur, "Kcur", il);
  7337. }
  7338. Qcur = ggml_rope_ext(
  7339. ctx0, Qcur, inp_pos, nullptr,
  7340. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7341. ext_factor, attn_factor, beta_fast, beta_slow
  7342. );
  7343. cb(Qcur, "Qcur", il);
  7344. Kcur = ggml_rope_ext(
  7345. ctx0, Kcur, inp_pos, nullptr,
  7346. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7347. ext_factor, attn_factor, beta_fast, beta_slow
  7348. );
  7349. cb(Kcur, "Kcur", il);
  7350. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7351. model.layers[il].wo, NULL,
  7352. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7353. }
  7354. if (il == n_layer - 1) {
  7355. // skip computing output for unused tokens
  7356. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7357. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7358. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7359. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7360. }
  7361. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7362. cb(ffn_inp, "ffn_inp", il);
  7363. // feed-forward network
  7364. {
  7365. if (model.layers[il].ffn_norm) {
  7366. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7367. model.layers[il].ffn_norm,
  7368. model.layers[il].ffn_norm_b,
  7369. LLM_NORM, cb, il);
  7370. cb(cur, "ffn_norm", il);
  7371. } else {
  7372. // parallel residual
  7373. cur = inpSA;
  7374. }
  7375. cur = llm_build_ffn(ctx0, cur,
  7376. model.layers[il].ffn_up, NULL,
  7377. model.layers[il].ffn_gate, NULL,
  7378. model.layers[il].ffn_down, NULL,
  7379. NULL,
  7380. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7381. cb(cur, "ffn_out", il);
  7382. }
  7383. cur = ggml_add(ctx0, cur, ffn_inp);
  7384. cb(cur, "l_out", il);
  7385. // input for next layer
  7386. inpL = cur;
  7387. }
  7388. cur = inpL;
  7389. cur = llm_build_norm(ctx0, cur, hparams,
  7390. model.output_norm,
  7391. model.output_norm_b,
  7392. LLM_NORM, cb, -1);
  7393. cb(cur, "result_norm", -1);
  7394. // lm_head
  7395. cur = ggml_mul_mat(ctx0, model.output, cur);
  7396. cb(cur, "result_output", -1);
  7397. ggml_build_forward_expand(gf, cur);
  7398. return gf;
  7399. }
  7400. struct ggml_cgraph * build_qwen() {
  7401. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7402. const int64_t n_embd_head = hparams.n_embd_head_v;
  7403. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7404. struct ggml_tensor * cur;
  7405. struct ggml_tensor * inpL;
  7406. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7407. // inp_pos - contains the positions
  7408. struct ggml_tensor * inp_pos = build_inp_pos();
  7409. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7410. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7411. for (int il = 0; il < n_layer; ++il) {
  7412. struct ggml_tensor * inpSA = inpL;
  7413. cur = llm_build_norm(ctx0, inpL, hparams,
  7414. model.layers[il].attn_norm, NULL,
  7415. LLM_NORM_RMS, cb, il);
  7416. cb(cur, "attn_norm", il);
  7417. // self-attention
  7418. {
  7419. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7420. cb(cur, "wqkv", il);
  7421. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7422. cb(cur, "bqkv", il);
  7423. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7424. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7425. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7426. cb(Qcur, "Qcur", il);
  7427. cb(Kcur, "Kcur", il);
  7428. cb(Vcur, "Vcur", il);
  7429. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7430. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7431. // using mode = 2 for neox mode
  7432. Qcur = ggml_rope_ext(
  7433. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7434. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7435. );
  7436. cb(Qcur, "Qcur", il);
  7437. Kcur = ggml_rope_ext(
  7438. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7439. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7440. );
  7441. cb(Kcur, "Kcur", il);
  7442. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7443. model.layers[il].wo, NULL,
  7444. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7445. }
  7446. if (il == n_layer - 1) {
  7447. // skip computing output for unused tokens
  7448. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7449. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7450. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7451. }
  7452. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7453. cb(ffn_inp, "ffn_inp", il);
  7454. // feed-forward forward
  7455. {
  7456. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7457. model.layers[il].ffn_norm, NULL,
  7458. LLM_NORM_RMS, cb, il);
  7459. cb(cur, "ffn_norm", il);
  7460. cur = llm_build_ffn(ctx0, cur,
  7461. model.layers[il].ffn_up, NULL,
  7462. model.layers[il].ffn_gate, NULL,
  7463. model.layers[il].ffn_down, NULL,
  7464. NULL,
  7465. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7466. cb(cur, "ffn_out", il);
  7467. }
  7468. cur = ggml_add(ctx0, cur, ffn_inp);
  7469. cb(cur, "l_out", il);
  7470. // input for next layer
  7471. inpL = cur;
  7472. }
  7473. cur = inpL;
  7474. cur = llm_build_norm(ctx0, cur, hparams,
  7475. model.output_norm, NULL,
  7476. LLM_NORM_RMS, cb, -1);
  7477. cb(cur, "result_norm", -1);
  7478. // lm_head
  7479. cur = ggml_mul_mat(ctx0, model.output, cur);
  7480. cb(cur, "result_output", -1);
  7481. ggml_build_forward_expand(gf, cur);
  7482. return gf;
  7483. }
  7484. struct ggml_cgraph * build_qwen2() {
  7485. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7486. const int64_t n_embd_head = hparams.n_embd_head_v;
  7487. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7488. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7489. struct ggml_tensor * cur;
  7490. struct ggml_tensor * inpL;
  7491. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7492. // inp_pos - contains the positions
  7493. struct ggml_tensor * inp_pos = build_inp_pos();
  7494. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7495. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7496. for (int il = 0; il < n_layer; ++il) {
  7497. struct ggml_tensor * inpSA = inpL;
  7498. // norm
  7499. cur = llm_build_norm(ctx0, inpL, hparams,
  7500. model.layers[il].attn_norm, NULL,
  7501. LLM_NORM_RMS, cb, il);
  7502. cb(cur, "attn_norm", il);
  7503. // self-attention
  7504. {
  7505. // compute Q and K and RoPE them
  7506. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7507. cb(Qcur, "Qcur", il);
  7508. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7509. cb(Qcur, "Qcur", il);
  7510. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7511. cb(Kcur, "Kcur", il);
  7512. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7513. cb(Kcur, "Kcur", il);
  7514. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7515. cb(Vcur, "Vcur", il);
  7516. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7517. cb(Vcur, "Vcur", il);
  7518. Qcur = ggml_rope_ext(
  7519. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7520. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7521. ext_factor, attn_factor, beta_fast, beta_slow
  7522. );
  7523. cb(Qcur, "Qcur", il);
  7524. Kcur = ggml_rope_ext(
  7525. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7526. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7527. ext_factor, attn_factor, beta_fast, beta_slow
  7528. );
  7529. cb(Kcur, "Kcur", il);
  7530. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7531. model.layers[il].wo, model.layers[il].bo,
  7532. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7533. }
  7534. if (il == n_layer - 1) {
  7535. // skip computing output for unused tokens
  7536. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7537. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7538. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7539. }
  7540. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7541. cb(ffn_inp, "ffn_inp", il);
  7542. // feed-forward network
  7543. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7544. model.layers[il].ffn_norm, NULL,
  7545. LLM_NORM_RMS, cb, il);
  7546. cb(cur, "ffn_norm", il);
  7547. cur = llm_build_ffn(ctx0, cur,
  7548. model.layers[il].ffn_up, NULL,
  7549. model.layers[il].ffn_gate, NULL,
  7550. model.layers[il].ffn_down, NULL,
  7551. NULL,
  7552. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7553. cb(cur, "ffn_out", il);
  7554. cur = ggml_add(ctx0, cur, ffn_inp);
  7555. cb(cur, "l_out", il);
  7556. // input for next layer
  7557. inpL = cur;
  7558. }
  7559. cur = inpL;
  7560. cur = llm_build_norm(ctx0, cur, hparams,
  7561. model.output_norm, NULL,
  7562. LLM_NORM_RMS, cb, -1);
  7563. cb(cur, "result_norm", -1);
  7564. // lm_head
  7565. cur = ggml_mul_mat(ctx0, model.output, cur);
  7566. cb(cur, "result_output", -1);
  7567. ggml_build_forward_expand(gf, cur);
  7568. return gf;
  7569. }
  7570. struct ggml_cgraph * build_qwen2moe() {
  7571. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7572. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7573. int32_t n_tokens = this->n_tokens;
  7574. const int64_t n_embd_head = hparams.n_embd_head_v;
  7575. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7576. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7577. struct ggml_tensor * cur;
  7578. struct ggml_tensor * inpL;
  7579. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7580. // inp_pos - contains the positions
  7581. struct ggml_tensor * inp_pos = build_inp_pos();
  7582. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7583. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7584. for (int il = 0; il < n_layer; ++il) {
  7585. struct ggml_tensor * inpSA = inpL;
  7586. // norm
  7587. cur = llm_build_norm(ctx0, inpL, hparams,
  7588. model.layers[il].attn_norm, NULL,
  7589. LLM_NORM_RMS, cb, il);
  7590. cb(cur, "attn_norm", il);
  7591. // self_attention
  7592. {
  7593. // compute Q and K and RoPE them
  7594. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7595. cb(Qcur, "Qcur", il);
  7596. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7597. cb(Qcur, "Qcur", il);
  7598. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7599. cb(Kcur, "Kcur", il);
  7600. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7601. cb(Kcur, "Kcur", il);
  7602. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7603. cb(Vcur, "Vcur", il);
  7604. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7605. cb(Vcur, "Vcur", il);
  7606. Qcur = ggml_rope_ext(
  7607. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7608. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7609. ext_factor, attn_factor, beta_fast, beta_slow
  7610. );
  7611. cb(Qcur, "Qcur", il);
  7612. Kcur = ggml_rope_ext(
  7613. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7614. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7615. ext_factor, attn_factor, beta_fast, beta_slow
  7616. );
  7617. cb(Kcur, "Kcur", il);
  7618. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7619. model.layers[il].wo, model.layers[il].bo,
  7620. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7621. }
  7622. if (il == n_layer - 1) {
  7623. // skip computing output for unused tokens
  7624. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7625. n_tokens = n_outputs;
  7626. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7627. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7628. }
  7629. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7630. cb(ffn_inp, "ffn_inp", il);
  7631. // MoE branch
  7632. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7633. model.layers[il].ffn_norm, NULL,
  7634. LLM_NORM_RMS, cb, il);
  7635. cb(cur, "ffn_norm", il);
  7636. ggml_tensor * moe_out =
  7637. llm_build_moe_ffn(ctx0, cur,
  7638. model.layers[il].ffn_gate_inp,
  7639. model.layers[il].ffn_up_exps,
  7640. model.layers[il].ffn_gate_exps,
  7641. model.layers[il].ffn_down_exps,
  7642. n_expert, n_expert_used,
  7643. LLM_FFN_SILU, false,
  7644. cb, il);
  7645. cb(cur, "ffn_moe_out", il);
  7646. // FFN shared expert
  7647. {
  7648. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7649. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7650. // sigmoid
  7651. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7652. cb(cur_gate, "ffn_shexp_gate", il);
  7653. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7654. model.layers[il].ffn_up_shexp, NULL,
  7655. model.layers[il].ffn_gate_shexp, NULL,
  7656. model.layers[il].ffn_down_shexp, NULL,
  7657. NULL,
  7658. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7659. cb(cur_ffn, "ffn_shexp", il);
  7660. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7661. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7662. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7663. cb(moe_out, "ffn_out", il);
  7664. cur = moe_out;
  7665. }
  7666. cur = ggml_add(ctx0, cur, ffn_inp);
  7667. cb(cur, "l_out", il);
  7668. // input for next layer
  7669. inpL = cur;
  7670. }
  7671. cur = inpL;
  7672. cur = llm_build_norm(ctx0, cur, hparams,
  7673. model.output_norm, NULL,
  7674. LLM_NORM_RMS, cb, -1);
  7675. cb(cur, "result_norm", -1);
  7676. // lm_head
  7677. cur = ggml_mul_mat(ctx0, model.output, cur);
  7678. cb(cur, "result_output", -1);
  7679. ggml_build_forward_expand(gf, cur);
  7680. return gf;
  7681. }
  7682. struct ggml_cgraph * build_phi2() {
  7683. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7684. const int64_t n_embd_head = hparams.n_embd_head_v;
  7685. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7686. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7687. struct ggml_tensor * cur;
  7688. struct ggml_tensor * attn_norm_output;
  7689. struct ggml_tensor * ffn_output;
  7690. struct ggml_tensor * inpL;
  7691. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7692. // inp_pos - contains the positions
  7693. struct ggml_tensor * inp_pos = build_inp_pos();
  7694. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7695. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7696. for (int il = 0; il < n_layer; ++il) {
  7697. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7698. model.layers[il].attn_norm,
  7699. model.layers[il].attn_norm_b,
  7700. LLM_NORM, cb, il);
  7701. cb(attn_norm_output, "attn_norm", il);
  7702. // self-attention
  7703. {
  7704. struct ggml_tensor * Qcur = nullptr;
  7705. struct ggml_tensor * Kcur = nullptr;
  7706. struct ggml_tensor * Vcur = nullptr;
  7707. if (model.layers[il].wqkv) {
  7708. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7709. cb(cur, "wqkv", il);
  7710. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7711. cb(cur, "bqkv", il);
  7712. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7713. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7714. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7715. } else {
  7716. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7717. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7718. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7719. }
  7720. cb(Qcur, "Qcur", il);
  7721. cb(Kcur, "Kcur", il);
  7722. cb(Vcur, "Vcur", il);
  7723. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7724. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7725. Qcur = ggml_rope_ext(
  7726. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7727. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7728. );
  7729. cb(Qcur, "Qcur", il);
  7730. // with phi2, we scale the Q to avoid precision issues
  7731. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7732. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7733. cb(Qcur, "Qcur", il);
  7734. Kcur = ggml_rope_ext(
  7735. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7736. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7737. );
  7738. cb(Kcur, "Kcur", il);
  7739. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7740. model.layers[il].wo, model.layers[il].bo,
  7741. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7742. }
  7743. if (il == n_layer - 1) {
  7744. // skip computing output for unused tokens
  7745. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7746. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7747. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7748. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7749. }
  7750. // FF
  7751. {
  7752. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7753. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7754. NULL, NULL,
  7755. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7756. NULL,
  7757. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7758. cb(ffn_output, "ffn_out", il);
  7759. }
  7760. cur = ggml_add(ctx0, cur, ffn_output);
  7761. cb(cur, "l_out", il);
  7762. cur = ggml_add(ctx0, cur, inpL);
  7763. cb(cur, "l_out", il);
  7764. inpL = cur;
  7765. }
  7766. cur = llm_build_norm(ctx0, inpL, hparams,
  7767. model.output_norm,
  7768. model.output_norm_b,
  7769. LLM_NORM, cb, -1);
  7770. cb(cur, "result_norm", -1);
  7771. cur = ggml_mul_mat(ctx0, model.output, cur);
  7772. cb(cur, "result_output_no_bias", -1);
  7773. cur = ggml_add(ctx0, cur, model.output_b);
  7774. cb(cur, "result_output", -1);
  7775. ggml_build_forward_expand(gf, cur);
  7776. return gf;
  7777. }
  7778. struct ggml_cgraph * build_phi3() {
  7779. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7780. const int64_t n_embd_head = hparams.n_embd_head_v;
  7781. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7782. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7783. struct ggml_tensor * cur;
  7784. struct ggml_tensor * inpL;
  7785. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7786. // inp_pos - contains the positions
  7787. struct ggml_tensor * inp_pos = build_inp_pos();
  7788. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7789. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7790. for (int il = 0; il < n_layer; ++il) {
  7791. auto residual = inpL;
  7792. // self-attention
  7793. {
  7794. // rope freq factors for 128k context
  7795. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7796. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7797. model.layers[il].attn_norm,
  7798. NULL,
  7799. LLM_NORM_RMS, cb, il);
  7800. cb(attn_norm_output, "attn_norm", il);
  7801. struct ggml_tensor * Qcur = nullptr;
  7802. struct ggml_tensor * Kcur = nullptr;
  7803. struct ggml_tensor * Vcur = nullptr;
  7804. if (model.layers[il].wqkv) {
  7805. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7806. cb(cur, "wqkv", il);
  7807. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7808. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7809. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7810. }
  7811. else {
  7812. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7813. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7814. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7815. }
  7816. cb(Qcur, "Qcur", il);
  7817. cb(Kcur, "Kcur", il);
  7818. cb(Vcur, "Vcur", il);
  7819. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7820. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7821. Qcur = ggml_rope_ext(
  7822. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7823. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7824. );
  7825. cb(Qcur, "Qcur", il);
  7826. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7827. cb(Qcur, "Qcur", il);
  7828. Kcur = ggml_rope_ext(
  7829. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7830. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7831. );
  7832. cb(Kcur, "Kcur", il);
  7833. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7834. model.layers[il].wo, model.layers[il].bo,
  7835. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7836. }
  7837. if (il == n_layer - 1) {
  7838. // skip computing output for unused tokens
  7839. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7840. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7841. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7842. }
  7843. cur = ggml_add(ctx0, cur, residual);
  7844. residual = cur;
  7845. cur = llm_build_norm(ctx0, cur, hparams,
  7846. model.layers[il].ffn_norm, NULL,
  7847. LLM_NORM_RMS, cb, il);
  7848. cb(cur, "ffn_norm", il);
  7849. // FF
  7850. // special-case: the up and gate tensors are merged into a single tensor
  7851. // TOOD: support into llm_build_ffn
  7852. {
  7853. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7854. cb(up, "ffn_up", il);
  7855. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7856. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7857. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7858. cb(y, "ffn_gate", il);
  7859. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7860. cb(down, "ffn_down", il);
  7861. cur = down;
  7862. cb(cur, "ffn_out", il);
  7863. }
  7864. cur = ggml_add(ctx0, residual, cur);
  7865. cb(cur, "l_out", il);
  7866. inpL = cur;
  7867. }
  7868. cur = llm_build_norm(ctx0, inpL, hparams,
  7869. model.output_norm,
  7870. NULL,
  7871. LLM_NORM_RMS, cb, -1);
  7872. cb(cur, "result_norm", -1);
  7873. cur = ggml_mul_mat(ctx0, model.output, cur);
  7874. cb(cur, "result_output", -1);
  7875. ggml_build_forward_expand(gf, cur);
  7876. return gf;
  7877. }
  7878. struct ggml_cgraph * build_plamo() {
  7879. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7880. const int64_t n_embd_head = hparams.n_embd_head_v;
  7881. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7882. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7883. struct ggml_tensor * cur;
  7884. struct ggml_tensor * inpL;
  7885. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7886. // inp_pos - contains the positions
  7887. struct ggml_tensor * inp_pos = build_inp_pos();
  7888. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7889. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7890. for (int il = 0; il < n_layer; ++il) {
  7891. // norm
  7892. cur = llm_build_norm(ctx0, inpL, hparams,
  7893. model.layers[il].attn_norm, NULL,
  7894. LLM_NORM_RMS, cb, il);
  7895. cb(cur, "attn_norm", il);
  7896. struct ggml_tensor * attention_norm = cur;
  7897. // self-attention
  7898. {
  7899. // compute Q and K and RoPE them
  7900. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7901. cb(Qcur, "Qcur", il);
  7902. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7903. cb(Kcur, "Kcur", il);
  7904. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7905. cb(Vcur, "Vcur", il);
  7906. Qcur = ggml_rope_ext(
  7907. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  7908. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7909. ext_factor, attn_factor, beta_fast, beta_slow);
  7910. cb(Qcur, "Qcur", il);
  7911. Kcur = ggml_rope_ext(
  7912. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  7913. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7914. ext_factor, attn_factor, beta_fast, beta_slow);
  7915. cb(Kcur, "Kcur", il);
  7916. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7917. model.layers[il].wo, NULL,
  7918. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7919. }
  7920. struct ggml_tensor * sa_out = cur;
  7921. cur = attention_norm;
  7922. if (il == n_layer - 1) {
  7923. // skip computing output for unused tokens
  7924. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7925. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7926. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7927. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7928. }
  7929. // feed-forward network
  7930. {
  7931. cur = llm_build_ffn(ctx0, cur,
  7932. model.layers[il].ffn_up, NULL,
  7933. model.layers[il].ffn_gate, NULL,
  7934. model.layers[il].ffn_down, NULL,
  7935. NULL,
  7936. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7937. cb(cur, "ffn_out", il);
  7938. }
  7939. cur = ggml_add(ctx0, cur, sa_out);
  7940. cb(cur, "l_out", il);
  7941. cur = ggml_add(ctx0, cur, inpL);
  7942. cb(cur, "l_out", il);
  7943. // input for next layer
  7944. inpL = cur;
  7945. }
  7946. cur = inpL;
  7947. cur = llm_build_norm(ctx0, cur, hparams,
  7948. model.output_norm, NULL,
  7949. LLM_NORM_RMS, cb, -1);
  7950. cb(cur, "result_norm", -1);
  7951. // lm_head
  7952. cur = ggml_mul_mat(ctx0, model.output, cur);
  7953. cb(cur, "result_output", -1);
  7954. ggml_build_forward_expand(gf, cur);
  7955. return gf;
  7956. }
  7957. struct ggml_cgraph * build_gpt2() {
  7958. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7959. const int64_t n_embd_head = hparams.n_embd_head_v;
  7960. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7961. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7962. struct ggml_tensor * cur;
  7963. struct ggml_tensor * pos;
  7964. struct ggml_tensor * inpL;
  7965. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7966. // inp_pos - contains the positions
  7967. struct ggml_tensor * inp_pos = build_inp_pos();
  7968. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7969. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7970. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7971. cb(pos, "pos_embd", -1);
  7972. inpL = ggml_add(ctx0, inpL, pos);
  7973. cb(inpL, "inpL", -1);
  7974. for (int il = 0; il < n_layer; ++il) {
  7975. cur = llm_build_norm(ctx0, inpL, hparams,
  7976. model.layers[il].attn_norm,
  7977. model.layers[il].attn_norm_b,
  7978. LLM_NORM, cb, il);
  7979. cb(cur, "attn_norm", il);
  7980. // self-attention
  7981. {
  7982. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7983. cb(cur, "wqkv", il);
  7984. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7985. cb(cur, "bqkv", il);
  7986. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7987. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7988. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7989. cb(Qcur, "Qcur", il);
  7990. cb(Kcur, "Kcur", il);
  7991. cb(Vcur, "Vcur", il);
  7992. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7993. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7994. model.layers[il].wo, model.layers[il].bo,
  7995. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7996. }
  7997. if (il == n_layer - 1) {
  7998. // skip computing output for unused tokens
  7999. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8000. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8001. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8002. }
  8003. // add the input
  8004. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8005. cb(ffn_inp, "ffn_inp", il);
  8006. // FF
  8007. {
  8008. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8009. model.layers[il].ffn_norm,
  8010. model.layers[il].ffn_norm_b,
  8011. LLM_NORM, cb, il);
  8012. cb(cur, "ffn_norm", il);
  8013. cur = llm_build_ffn(ctx0, cur,
  8014. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8015. NULL, NULL,
  8016. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8017. NULL,
  8018. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8019. cb(cur, "ffn_out", il);
  8020. }
  8021. inpL = ggml_add(ctx0, cur, ffn_inp);
  8022. cb(inpL, "l_out", il);
  8023. }
  8024. cur = llm_build_norm(ctx0, inpL, hparams,
  8025. model.output_norm,
  8026. model.output_norm_b,
  8027. LLM_NORM, cb, -1);
  8028. cb(cur, "result_norm", -1);
  8029. cur = ggml_mul_mat(ctx0, model.output, cur);
  8030. cb(cur, "result_output", -1);
  8031. ggml_build_forward_expand(gf, cur);
  8032. return gf;
  8033. }
  8034. struct ggml_cgraph * build_codeshell() {
  8035. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8036. const int64_t n_embd_head = hparams.n_embd_head_v;
  8037. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8038. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8039. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8040. struct ggml_tensor * cur;
  8041. struct ggml_tensor * inpL;
  8042. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8043. // inp_pos - contains the positions
  8044. struct ggml_tensor * inp_pos = build_inp_pos();
  8045. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8046. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8047. for (int il = 0; il < n_layer; ++il) {
  8048. cur = llm_build_norm(ctx0, inpL, hparams,
  8049. model.layers[il].attn_norm,
  8050. model.layers[il].attn_norm_b,
  8051. LLM_NORM, cb, il);
  8052. cb(cur, "attn_norm", il);
  8053. // self-attention
  8054. {
  8055. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8056. cb(cur, "wqkv", il);
  8057. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8058. cb(cur, "bqkv", il);
  8059. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8060. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8061. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8062. cb(tmpq, "tmpq", il);
  8063. cb(tmpk, "tmpk", il);
  8064. cb(Vcur, "Vcur", il);
  8065. struct ggml_tensor * Qcur = ggml_rope_ext(
  8066. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8067. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8068. ext_factor, attn_factor, beta_fast, beta_slow
  8069. );
  8070. cb(Qcur, "Qcur", il);
  8071. struct ggml_tensor * Kcur = ggml_rope_ext(
  8072. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8073. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8074. ext_factor, attn_factor, beta_fast, beta_slow
  8075. );
  8076. cb(Kcur, "Kcur", il);
  8077. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8078. model.layers[il].wo, model.layers[il].bo,
  8079. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8080. }
  8081. if (il == n_layer - 1) {
  8082. // skip computing output for unused tokens
  8083. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8084. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8085. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8086. }
  8087. // add the input
  8088. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8089. cb(ffn_inp, "ffn_inp", il);
  8090. // FF
  8091. {
  8092. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8093. model.layers[il].ffn_norm,
  8094. model.layers[il].ffn_norm_b,
  8095. LLM_NORM, cb, il);
  8096. cb(cur, "ffn_norm", il);
  8097. cur = llm_build_ffn(ctx0, cur,
  8098. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8099. NULL, NULL,
  8100. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8101. NULL,
  8102. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8103. cb(cur, "ffn_out", il);
  8104. }
  8105. inpL = ggml_add(ctx0, cur, ffn_inp);
  8106. cb(inpL, "l_out", il);
  8107. }
  8108. cur = llm_build_norm(ctx0, inpL, hparams,
  8109. model.output_norm,
  8110. model.output_norm_b,
  8111. LLM_NORM, cb, -1);
  8112. cb(cur, "result_norm", -1);
  8113. cur = ggml_mul_mat(ctx0, model.output, cur);
  8114. cb(cur, "result_output", -1);
  8115. ggml_build_forward_expand(gf, cur);
  8116. return gf;
  8117. }
  8118. struct ggml_cgraph * build_orion() {
  8119. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8120. const int64_t n_embd_head = hparams.n_embd_head_v;
  8121. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8122. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8123. struct ggml_tensor * cur;
  8124. struct ggml_tensor * inpL;
  8125. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8126. // inp_pos - contains the positions
  8127. struct ggml_tensor * inp_pos = build_inp_pos();
  8128. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8129. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8130. for (int il = 0; il < n_layer; ++il) {
  8131. struct ggml_tensor * inpSA = inpL;
  8132. // norm
  8133. cur = llm_build_norm(ctx0, inpL, hparams,
  8134. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8135. LLM_NORM, cb, il);
  8136. cb(cur, "attn_norm", il);
  8137. // self-attention
  8138. {
  8139. // compute Q and K and RoPE them
  8140. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8141. cb(Qcur, "Qcur", il);
  8142. // if (model.layers[il].bq) {
  8143. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8144. // cb(Qcur, "Qcur", il);
  8145. // }
  8146. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8147. cb(Kcur, "Kcur", il);
  8148. // if (model.layers[il].bk) {
  8149. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8150. // cb(Kcur, "Kcur", il);
  8151. // }
  8152. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8153. cb(Vcur, "Vcur", il);
  8154. // if (model.layers[il].bv) {
  8155. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8156. // cb(Vcur, "Vcur", il);
  8157. // }
  8158. Qcur = ggml_rope_ext(
  8159. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8160. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8161. ext_factor, attn_factor, beta_fast, beta_slow
  8162. );
  8163. cb(Qcur, "Qcur", il);
  8164. Kcur = ggml_rope_ext(
  8165. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8166. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8167. ext_factor, attn_factor, beta_fast, beta_slow
  8168. );
  8169. cb(Kcur, "Kcur", il);
  8170. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8171. model.layers[il].wo, NULL,
  8172. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8173. }
  8174. if (il == n_layer - 1) {
  8175. // skip computing output for unused tokens
  8176. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8177. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8178. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8179. }
  8180. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8181. cb(ffn_inp, "ffn_inp", il);
  8182. // feed-forward network
  8183. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8184. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8185. LLM_NORM, cb, il);
  8186. cb(cur, "ffn_norm", il);
  8187. cur = llm_build_ffn(ctx0, cur,
  8188. model.layers[il].ffn_up, NULL,
  8189. model.layers[il].ffn_gate, NULL,
  8190. model.layers[il].ffn_down, NULL,
  8191. NULL,
  8192. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8193. cb(cur, "ffn_out", il);
  8194. cur = ggml_add(ctx0, cur, ffn_inp);
  8195. cb(cur, "l_out", il);
  8196. // input for next layer
  8197. inpL = cur;
  8198. }
  8199. cur = inpL;
  8200. cur = llm_build_norm(ctx0, cur, hparams,
  8201. model.output_norm, model.output_norm_b,
  8202. LLM_NORM, cb, -1);
  8203. cb(cur, "result_norm", -1);
  8204. // lm_head
  8205. cur = ggml_mul_mat(ctx0, model.output, cur);
  8206. cb(cur, "result_output", -1);
  8207. ggml_build_forward_expand(gf, cur);
  8208. return gf;
  8209. }
  8210. struct ggml_cgraph * build_internlm2() {
  8211. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8212. const int64_t n_embd_head = hparams.n_embd_head_v;
  8213. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8214. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8215. struct ggml_tensor * cur;
  8216. struct ggml_tensor * inpL;
  8217. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8218. // inp_pos - contains the positions
  8219. struct ggml_tensor * inp_pos = build_inp_pos();
  8220. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8221. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8222. for (int il = 0; il < n_layer; ++il) {
  8223. struct ggml_tensor * inpSA = inpL;
  8224. // norm
  8225. cur = llm_build_norm(ctx0, inpL, hparams,
  8226. model.layers[il].attn_norm, NULL,
  8227. LLM_NORM_RMS, cb, il);
  8228. cb(cur, "attn_norm", il);
  8229. // self-attention
  8230. {
  8231. // compute Q and K and RoPE them
  8232. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8233. cb(Qcur, "Qcur", il);
  8234. if (model.layers[il].bq) {
  8235. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8236. cb(Qcur, "Qcur", il);
  8237. }
  8238. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8239. cb(Kcur, "Kcur", il);
  8240. if (model.layers[il].bk) {
  8241. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8242. cb(Kcur, "Kcur", il);
  8243. }
  8244. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8245. cb(Vcur, "Vcur", il);
  8246. if (model.layers[il].bv) {
  8247. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8248. cb(Vcur, "Vcur", il);
  8249. }
  8250. Qcur = ggml_rope_ext(
  8251. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8252. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8253. ext_factor, attn_factor, beta_fast, beta_slow
  8254. );
  8255. cb(Qcur, "Qcur", il);
  8256. Kcur = ggml_rope_ext(
  8257. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8258. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8259. ext_factor, attn_factor, beta_fast, beta_slow
  8260. );
  8261. cb(Kcur, "Kcur", il);
  8262. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8263. model.layers[il].wo, model.layers[il].bo,
  8264. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8265. }
  8266. if (il == n_layer - 1) {
  8267. // skip computing output for unused tokens
  8268. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8269. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8270. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8271. }
  8272. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8273. cb(ffn_inp, "ffn_inp", il);
  8274. // feed-forward network
  8275. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8276. model.layers[il].ffn_norm, NULL,
  8277. LLM_NORM_RMS, cb, il);
  8278. cb(cur, "ffn_norm", il);
  8279. cur = llm_build_ffn(ctx0, cur,
  8280. model.layers[il].ffn_up, NULL,
  8281. model.layers[il].ffn_gate, NULL,
  8282. model.layers[il].ffn_down, NULL,
  8283. NULL,
  8284. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8285. cb(cur, "ffn_out", il);
  8286. cur = ggml_add(ctx0, cur, ffn_inp);
  8287. cb(cur, "l_out", il);
  8288. // input for next layer
  8289. inpL = cur;
  8290. }
  8291. cur = inpL;
  8292. cur = llm_build_norm(ctx0, cur, hparams,
  8293. model.output_norm, NULL,
  8294. LLM_NORM_RMS, cb, -1);
  8295. cb(cur, "result_norm", -1);
  8296. // lm_head
  8297. cur = ggml_mul_mat(ctx0, model.output, cur);
  8298. cb(cur, "result_output", -1);
  8299. ggml_build_forward_expand(gf, cur);
  8300. return gf;
  8301. }
  8302. // ref: https://arxiv.org/abs/2203.03466
  8303. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8304. // based on the original build_llama() function
  8305. struct ggml_cgraph * build_minicpm() {
  8306. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8307. const int64_t n_embd_head = hparams.n_embd_head_v;
  8308. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8309. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8310. const int64_t n_embd = hparams.n_embd;
  8311. //TODO: if the model varies, these parameters need to be read from the model
  8312. const int64_t n_embd_base = 256;
  8313. const float scale_embd = 12.0f;
  8314. const float scale_depth = 1.4f;
  8315. struct ggml_tensor * cur;
  8316. struct ggml_tensor * inpL;
  8317. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8318. // scale the input embeddings
  8319. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8320. cb(inpL, "inp_scaled", -1);
  8321. // inp_pos - contains the positions
  8322. struct ggml_tensor * inp_pos = build_inp_pos();
  8323. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8324. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8325. for (int il = 0; il < n_layer; ++il) {
  8326. struct ggml_tensor * inpSA = inpL;
  8327. // norm
  8328. cur = llm_build_norm(ctx0, inpL, hparams,
  8329. model.layers[il].attn_norm, NULL,
  8330. LLM_NORM_RMS, cb, il);
  8331. cb(cur, "attn_norm", il);
  8332. // self-attention
  8333. {
  8334. // compute Q and K and RoPE them
  8335. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8336. cb(Qcur, "Qcur", il);
  8337. if (model.layers[il].bq) {
  8338. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8339. cb(Qcur, "Qcur", il);
  8340. }
  8341. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8342. cb(Kcur, "Kcur", il);
  8343. if (model.layers[il].bk) {
  8344. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8345. cb(Kcur, "Kcur", il);
  8346. }
  8347. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8348. cb(Vcur, "Vcur", il);
  8349. if (model.layers[il].bv) {
  8350. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8351. cb(Vcur, "Vcur", il);
  8352. }
  8353. Qcur = ggml_rope_ext(
  8354. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8355. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8356. ext_factor, attn_factor, beta_fast, beta_slow
  8357. );
  8358. cb(Qcur, "Qcur", il);
  8359. Kcur = ggml_rope_ext(
  8360. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8361. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8362. ext_factor, attn_factor, beta_fast, beta_slow
  8363. );
  8364. cb(Kcur, "Kcur", il);
  8365. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8366. model.layers[il].wo, model.layers[il].bo,
  8367. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8368. }
  8369. if (il == n_layer - 1) {
  8370. // skip computing output for unused tokens
  8371. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8372. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8373. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8374. }
  8375. // scale_res - scale the hidden states for residual connection
  8376. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8377. cur = ggml_scale(ctx0, cur, scale_res);
  8378. cb(cur, "hidden_scaled", -1);
  8379. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8380. cb(ffn_inp, "ffn_inp", il);
  8381. // feed-forward network
  8382. {
  8383. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8384. model.layers[il].ffn_norm, NULL,
  8385. LLM_NORM_RMS, cb, il);
  8386. cb(cur, "ffn_norm", il);
  8387. cur = llm_build_ffn(ctx0, cur,
  8388. model.layers[il].ffn_up, NULL,
  8389. model.layers[il].ffn_gate, NULL,
  8390. model.layers[il].ffn_down, NULL,
  8391. NULL,
  8392. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8393. cb(cur, "ffn_out", il);
  8394. }
  8395. // scale the hidden states for residual connection
  8396. cur = ggml_scale(ctx0, cur, scale_res);
  8397. cb(cur, "hidden_scaled_ffn", -1);
  8398. cur = ggml_add(ctx0, cur, ffn_inp);
  8399. cb(cur, "l_out", il);
  8400. // input for next layer
  8401. inpL = cur;
  8402. }
  8403. cur = inpL;
  8404. cur = llm_build_norm(ctx0, cur, hparams,
  8405. model.output_norm, NULL,
  8406. LLM_NORM_RMS, cb, -1);
  8407. cb(cur, "result_norm", -1);
  8408. // lm_head scaling
  8409. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8410. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8411. cb(cur, "lmhead_scaling", -1);
  8412. // lm_head
  8413. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8414. cb(cur, "result_output", -1);
  8415. ggml_build_forward_expand(gf, cur);
  8416. return gf;
  8417. }
  8418. struct ggml_cgraph * build_gemma() {
  8419. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8420. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8421. struct ggml_tensor * cur;
  8422. struct ggml_tensor * inpL;
  8423. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8424. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8425. cb(inpL, "inp_scaled", -1);
  8426. // inp_pos - contains the positions
  8427. struct ggml_tensor * inp_pos = build_inp_pos();
  8428. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8429. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8430. for (int il = 0; il < n_layer; ++il) {
  8431. // norm
  8432. cur = llm_build_norm(ctx0, inpL, hparams,
  8433. model.layers[il].attn_norm, NULL,
  8434. LLM_NORM_RMS, cb, il);
  8435. cb(cur, "attn_norm", il);
  8436. // self-attention
  8437. {
  8438. // compute Q and K and RoPE them
  8439. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8440. cb(Qcur, "Qcur", il);
  8441. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8442. cb(Kcur, "Kcur", il);
  8443. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8444. cb(Vcur, "Vcur", il);
  8445. Qcur = ggml_rope_ext(
  8446. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8447. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8448. ext_factor, attn_factor, beta_fast, beta_slow);
  8449. cb(Qcur, "Qcur", il);
  8450. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8451. cb(Qcur, "Qcur_scaled", il);
  8452. Kcur = ggml_rope_ext(
  8453. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8454. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8455. ext_factor, attn_factor, beta_fast, beta_slow);
  8456. cb(Kcur, "Kcur", il);
  8457. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8458. model.layers[il].wo, NULL,
  8459. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8460. }
  8461. if (il == n_layer - 1) {
  8462. // skip computing output for unused tokens
  8463. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8464. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8465. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8466. }
  8467. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8468. cb(sa_out, "sa_out", il);
  8469. cur = llm_build_norm(ctx0, sa_out, hparams,
  8470. model.layers[il].ffn_norm, NULL,
  8471. LLM_NORM_RMS, cb, il);
  8472. cb(cur, "ffn_norm", il);
  8473. // feed-forward network
  8474. {
  8475. cur = llm_build_ffn(ctx0, cur,
  8476. model.layers[il].ffn_up, NULL,
  8477. model.layers[il].ffn_gate, NULL,
  8478. model.layers[il].ffn_down, NULL,
  8479. NULL,
  8480. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8481. cb(cur, "ffn_out", il);
  8482. }
  8483. cur = ggml_add(ctx0, cur, sa_out);
  8484. cb(cur, "l_out", il);
  8485. // input for next layer
  8486. inpL = cur;
  8487. }
  8488. cur = inpL;
  8489. cur = llm_build_norm(ctx0, cur, hparams,
  8490. model.output_norm, NULL,
  8491. LLM_NORM_RMS, cb, -1);
  8492. cb(cur, "result_norm", -1);
  8493. // lm_head
  8494. cur = ggml_mul_mat(ctx0, model.output, cur);
  8495. cb(cur, "result_output", -1);
  8496. ggml_build_forward_expand(gf, cur);
  8497. return gf;
  8498. }
  8499. struct ggml_cgraph * build_starcoder2() {
  8500. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8501. const int64_t n_embd_head = hparams.n_embd_head_v;
  8502. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8503. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8504. struct ggml_tensor * cur;
  8505. struct ggml_tensor * inpL;
  8506. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8507. // inp_pos - contains the positions
  8508. struct ggml_tensor * inp_pos = build_inp_pos();
  8509. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8510. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8511. for (int il = 0; il < n_layer; ++il) {
  8512. struct ggml_tensor * inpSA = inpL;
  8513. // norm
  8514. cur = llm_build_norm(ctx0, inpL, hparams,
  8515. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8516. LLM_NORM, cb, il);
  8517. cb(cur, "attn_norm", il);
  8518. // self-attention
  8519. {
  8520. // compute Q and K and RoPE them
  8521. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8522. cb(Qcur, "Qcur", il);
  8523. if (model.layers[il].bq) {
  8524. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8525. cb(Qcur, "Qcur", il);
  8526. }
  8527. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8528. cb(Kcur, "Kcur", il);
  8529. if (model.layers[il].bk) {
  8530. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8531. cb(Kcur, "Kcur", il);
  8532. }
  8533. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8534. cb(Vcur, "Vcur", il);
  8535. if (model.layers[il].bv) {
  8536. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8537. cb(Vcur, "Vcur", il);
  8538. }
  8539. Qcur = ggml_rope_ext(
  8540. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8541. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8542. ext_factor, attn_factor, beta_fast, beta_slow
  8543. );
  8544. cb(Qcur, "Qcur", il);
  8545. Kcur = ggml_rope_ext(
  8546. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8547. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8548. ext_factor, attn_factor, beta_fast, beta_slow
  8549. );
  8550. cb(Kcur, "Kcur", il);
  8551. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8552. model.layers[il].wo, model.layers[il].bo,
  8553. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8554. }
  8555. if (il == n_layer - 1) {
  8556. // skip computing output for unused tokens
  8557. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8558. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8559. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8560. }
  8561. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8562. cb(ffn_inp, "ffn_inp", il);
  8563. // feed-forward network
  8564. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8565. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8566. LLM_NORM, cb, il);
  8567. cb(cur, "ffn_norm", il);
  8568. cur = llm_build_ffn(ctx0, cur,
  8569. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8570. NULL, NULL,
  8571. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8572. NULL,
  8573. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8574. cb(cur, "ffn_out", il);
  8575. cur = ggml_add(ctx0, cur, ffn_inp);
  8576. cb(cur, "l_out", il);
  8577. // input for next layer
  8578. inpL = cur;
  8579. }
  8580. cur = inpL;
  8581. cur = llm_build_norm(ctx0, cur, hparams,
  8582. model.output_norm, model.output_norm_b,
  8583. LLM_NORM, cb, -1);
  8584. cb(cur, "result_norm", -1);
  8585. // lm_head
  8586. cur = ggml_mul_mat(ctx0, model.output, cur);
  8587. cb(cur, "result_output", -1);
  8588. ggml_build_forward_expand(gf, cur);
  8589. return gf;
  8590. }
  8591. struct ggml_cgraph * build_mamba() {
  8592. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8593. const int64_t d_model = n_embd;
  8594. const int64_t d_conv = hparams.ssm_d_conv;
  8595. const int64_t d_inner = hparams.ssm_d_inner;
  8596. GGML_ASSERT(2 * d_model == d_inner);
  8597. const int64_t d_state = hparams.ssm_d_state;
  8598. const int64_t dt_rank = hparams.ssm_dt_rank;
  8599. struct ggml_tensor * cur;
  8600. struct ggml_tensor * inpL;
  8601. // {n_embd, n_tokens}
  8602. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8603. struct ggml_tensor * state_mask = build_inp_s_mask();
  8604. struct ggml_tensor * state_seq = build_inp_s_seq();
  8605. for (int il = 0; il < n_layer; ++il) {
  8606. // (ab)using the KV cache to store the states
  8607. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8608. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8609. // clear states of sequences which are starting at the beginning of this batch
  8610. {
  8611. conv_states = ggml_mul(ctx0,
  8612. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8613. state_mask);
  8614. ssm_states = ggml_mul(ctx0,
  8615. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8616. state_mask);
  8617. }
  8618. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8619. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8620. // norm
  8621. cur = llm_build_norm(ctx0, inpL, hparams,
  8622. model.layers[il].attn_norm, NULL,
  8623. LLM_NORM_RMS, cb, il);
  8624. cb(cur, "attn_norm", il);
  8625. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8626. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8627. // split the above in two
  8628. // => {d_inner, n_tokens}
  8629. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8630. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8631. // conv
  8632. {
  8633. // Custom operator which is needed only to ease simultaneous sequence processing.
  8634. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8635. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8636. // then element-wise multiply that with the conv1d weigth,
  8637. // then sum the elements of each row,
  8638. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8639. // then permute away the ne[0] dimension,
  8640. // and then you're left with the resulting x tensor.
  8641. // The new conv_states is the last (d_conv - 1) columns
  8642. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8643. // For simultaneous sequences, it's more complicated.
  8644. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8645. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8646. ggml_build_forward_expand(gf,
  8647. ggml_cpy(ctx0,
  8648. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8649. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8650. // extract x from x_conv
  8651. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8652. // bias
  8653. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8654. x = ggml_silu(ctx0, x);
  8655. }
  8656. // ssm
  8657. {
  8658. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8659. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8660. // split
  8661. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8662. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8663. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8664. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8665. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8666. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8667. // Custom operator to optimize the parallel associative scan
  8668. // as described in the Annex D of the Mamba paper.
  8669. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8670. // because only a single tensor can be returned.
  8671. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8672. // store last states (the second part of y_ssm_states)
  8673. ggml_build_forward_expand(gf,
  8674. ggml_cpy(ctx0,
  8675. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8676. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8677. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8678. if (il == n_layer - 1) {
  8679. // skip computing output for unused tokens
  8680. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8681. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8682. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8683. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8684. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8685. }
  8686. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8687. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8688. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8689. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8690. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8691. }
  8692. // residual
  8693. cur = ggml_add(ctx0, cur, inpL);
  8694. cb(cur, "l_out", il);
  8695. // input for next layer
  8696. inpL = cur;
  8697. }
  8698. // final rmsnorm
  8699. cur = llm_build_norm(ctx0, inpL, hparams,
  8700. model.output_norm, NULL,
  8701. LLM_NORM_RMS, cb, -1);
  8702. cb(cur, "result_norm", -1);
  8703. // lm_head
  8704. cur = ggml_mul_mat(ctx0, model.output, cur);
  8705. cb(cur, "result_output", -1);
  8706. ggml_build_forward_expand(gf, cur);
  8707. return gf;
  8708. }
  8709. struct ggml_cgraph * build_command_r() {
  8710. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8711. const int64_t n_embd_head = hparams.n_embd_head_v;
  8712. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8713. const float f_logit_scale = hparams.f_logit_scale;
  8714. struct ggml_tensor * cur;
  8715. struct ggml_tensor * inpL;
  8716. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8717. // inp_pos - contains the positions
  8718. struct ggml_tensor * inp_pos = build_inp_pos();
  8719. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8720. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8721. for (int il = 0; il < n_layer; ++il) {
  8722. // norm
  8723. cur = llm_build_norm(ctx0, inpL, hparams,
  8724. model.layers[il].attn_norm, NULL,
  8725. LLM_NORM, cb, il);
  8726. cb(cur, "attn_norm", il);
  8727. struct ggml_tensor * ffn_inp = cur;
  8728. // self-attention
  8729. {
  8730. // compute Q and K and RoPE them
  8731. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8732. cb(Qcur, "Qcur", il);
  8733. if (model.layers[il].bq) {
  8734. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8735. cb(Qcur, "Qcur", il);
  8736. }
  8737. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8738. cb(Kcur, "Kcur", il);
  8739. if (model.layers[il].bk) {
  8740. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8741. cb(Kcur, "Kcur", il);
  8742. }
  8743. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8744. cb(Vcur, "Vcur", il);
  8745. if (model.layers[il].bv) {
  8746. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8747. cb(Vcur, "Vcur", il);
  8748. }
  8749. if (model.layers[il].attn_q_norm) {
  8750. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8751. ggml_element_size(Qcur) * n_embd_head,
  8752. ggml_element_size(Qcur) * n_embd_head * n_head,
  8753. 0);
  8754. cb(Qcur, "Qcur", il);
  8755. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8756. ggml_element_size(Kcur) * n_embd_head,
  8757. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8758. 0);
  8759. cb(Kcur, "Kcur", il);
  8760. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8761. model.layers[il].attn_q_norm,
  8762. NULL,
  8763. LLM_NORM, cb, il);
  8764. cb(Qcur, "Qcur", il);
  8765. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8766. model.layers[il].attn_k_norm,
  8767. NULL,
  8768. LLM_NORM, cb, il);
  8769. cb(Kcur, "Kcur", il);
  8770. }
  8771. Qcur = ggml_rope_ext(
  8772. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8773. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8774. ext_factor, attn_factor, beta_fast, beta_slow
  8775. );
  8776. cb(Qcur, "Qcur", il);
  8777. Kcur = ggml_rope_ext(
  8778. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8779. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8780. ext_factor, attn_factor, beta_fast, beta_slow
  8781. );
  8782. cb(Kcur, "Kcur", il);
  8783. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8784. model.layers[il].wo, model.layers[il].bo,
  8785. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8786. }
  8787. if (il == n_layer - 1) {
  8788. // skip computing output for unused tokens
  8789. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8790. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8791. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8792. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8793. }
  8794. struct ggml_tensor * attn_out = cur;
  8795. // feed-forward network
  8796. {
  8797. cur = llm_build_ffn(ctx0, ffn_inp,
  8798. model.layers[il].ffn_up, NULL,
  8799. model.layers[il].ffn_gate, NULL,
  8800. model.layers[il].ffn_down, NULL,
  8801. NULL,
  8802. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8803. cb(cur, "ffn_out", il);
  8804. }
  8805. // add together residual + FFN + self-attention
  8806. cur = ggml_add(ctx0, cur, inpL);
  8807. cur = ggml_add(ctx0, cur, attn_out);
  8808. cb(cur, "l_out", il);
  8809. // input for next layer
  8810. inpL = cur;
  8811. }
  8812. cur = inpL;
  8813. cur = llm_build_norm(ctx0, cur, hparams,
  8814. model.output_norm, NULL,
  8815. LLM_NORM, cb, -1);
  8816. cb(cur, "result_norm", -1);
  8817. // lm_head
  8818. cur = ggml_mul_mat(ctx0, model.output, cur);
  8819. if (f_logit_scale) {
  8820. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8821. }
  8822. cb(cur, "result_output", -1);
  8823. ggml_build_forward_expand(gf, cur);
  8824. return gf;
  8825. }
  8826. // ref: https://allenai.org/olmo
  8827. // based on the original build_llama() function, changes:
  8828. // * non-parametric layer norm
  8829. // * clamp qkv
  8830. // * removed bias
  8831. // * removed MoE
  8832. struct ggml_cgraph * build_olmo() {
  8833. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8834. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8835. int32_t n_tokens = this->n_tokens;
  8836. const int64_t n_embd_head = hparams.n_embd_head_v;
  8837. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8838. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8839. struct ggml_tensor * cur;
  8840. struct ggml_tensor * inpL;
  8841. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8842. // inp_pos - contains the positions
  8843. struct ggml_tensor * inp_pos = build_inp_pos();
  8844. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8845. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8846. for (int il = 0; il < n_layer; ++il) {
  8847. struct ggml_tensor * inpSA = inpL;
  8848. // norm
  8849. cur = llm_build_norm(ctx0, inpL, hparams,
  8850. NULL, NULL,
  8851. LLM_NORM, cb, il);
  8852. cb(cur, "attn_norm", il);
  8853. // self-attention
  8854. {
  8855. // compute Q and K and RoPE them
  8856. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8857. cb(Qcur, "Qcur", il);
  8858. if (hparams.f_clamp_kqv > 0.0f) {
  8859. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8860. cb(Qcur, "Qcur", il);
  8861. }
  8862. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8863. cb(Kcur, "Kcur", il);
  8864. if (hparams.f_clamp_kqv > 0.0f) {
  8865. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8866. cb(Kcur, "Kcur", il);
  8867. }
  8868. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8869. cb(Vcur, "Vcur", il);
  8870. if (hparams.f_clamp_kqv > 0.0f) {
  8871. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8872. cb(Vcur, "Vcur", il);
  8873. }
  8874. Qcur = ggml_rope_ext(
  8875. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8876. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8877. ext_factor, attn_factor, beta_fast, beta_slow
  8878. );
  8879. cb(Qcur, "Qcur", il);
  8880. Kcur = ggml_rope_ext(
  8881. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8882. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8883. ext_factor, attn_factor, beta_fast, beta_slow
  8884. );
  8885. cb(Kcur, "Kcur", il);
  8886. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8887. model.layers[il].wo, nullptr,
  8888. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8889. }
  8890. if (il == n_layer - 1) {
  8891. // skip computing output for unused tokens
  8892. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8893. n_tokens = n_outputs;
  8894. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8895. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8896. }
  8897. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8898. cb(ffn_inp, "ffn_inp", il);
  8899. // feed-forward network
  8900. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8901. NULL, NULL,
  8902. LLM_NORM, cb, il);
  8903. cb(cur, "ffn_norm", il);
  8904. cur = llm_build_ffn(ctx0, cur,
  8905. model.layers[il].ffn_up, NULL,
  8906. model.layers[il].ffn_gate, NULL,
  8907. model.layers[il].ffn_down, NULL,
  8908. NULL,
  8909. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8910. cb(cur, "ffn_out", il);
  8911. cur = ggml_add(ctx0, cur, ffn_inp);
  8912. cb(cur, "ffn_out", il);
  8913. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8914. if (layer_dir != nullptr) {
  8915. cur = ggml_add(ctx0, cur, layer_dir);
  8916. }
  8917. cb(cur, "l_out", il);
  8918. // input for next layer
  8919. inpL = cur;
  8920. }
  8921. cur = inpL;
  8922. cur = llm_build_norm(ctx0, cur, hparams,
  8923. NULL, NULL,
  8924. LLM_NORM, cb, -1);
  8925. cb(cur, "result_norm", -1);
  8926. // lm_head
  8927. cur = ggml_mul_mat(ctx0, model.output, cur);
  8928. cb(cur, "result_output", -1);
  8929. ggml_build_forward_expand(gf, cur);
  8930. return gf;
  8931. }
  8932. struct ggml_cgraph * build_gptneox() {
  8933. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8934. const int64_t n_embd_head = hparams.n_embd_head_v;
  8935. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8936. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8937. struct ggml_tensor * cur;
  8938. struct ggml_tensor * inpL;
  8939. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8940. // inp_pos - contains the positions
  8941. struct ggml_tensor * inp_pos = build_inp_pos();
  8942. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8943. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8944. for (int il = 0; il < n_layer; ++il) {
  8945. cur = llm_build_norm(ctx0, inpL, hparams,
  8946. model.layers[il].attn_norm,
  8947. model.layers[il].attn_norm_b,
  8948. LLM_NORM, cb, il);
  8949. cb(cur, "attn_norm", il);
  8950. // self-attention
  8951. {
  8952. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8953. cb(cur, "wqkv", il);
  8954. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8955. cb(cur, "bqkv", il);
  8956. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8957. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8958. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8959. cb(Qcur, "Qcur", il);
  8960. cb(Kcur, "Kcur", il);
  8961. cb(Vcur, "Vcur", il);
  8962. Qcur = ggml_rope_ext(
  8963. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8964. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8965. ext_factor, attn_factor, beta_fast, beta_slow
  8966. );
  8967. cb(Qcur, "Qcur", il);
  8968. Kcur = ggml_rope_ext(
  8969. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8970. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8971. ext_factor, attn_factor, beta_fast, beta_slow
  8972. );
  8973. cb(Kcur, "Kcur", il);
  8974. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8975. model.layers[il].wo, model.layers[il].bo,
  8976. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8977. }
  8978. if (il == n_layer - 1) {
  8979. // skip computing output for unused tokens
  8980. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8981. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8982. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8983. }
  8984. // ffn
  8985. if (hparams.use_par_res) {
  8986. // attention and ffn are computed in parallel
  8987. // x = x + attn(ln1(x)) + ffn(ln2(x))
  8988. struct ggml_tensor * attn_out = cur;
  8989. cur = llm_build_norm(ctx0, inpL, hparams,
  8990. model.layers[il].ffn_norm,
  8991. model.layers[il].ffn_norm_b,
  8992. LLM_NORM, cb, il);
  8993. cb(cur, "ffn_norm", il);
  8994. cur = llm_build_ffn(ctx0, cur,
  8995. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8996. NULL, NULL,
  8997. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8998. NULL,
  8999. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9000. cb(cur, "ffn_out", il);
  9001. cur = ggml_add(ctx0, cur, inpL);
  9002. cb(cur, "ffn_out", il);
  9003. inpL = ggml_add(ctx0, cur, attn_out);
  9004. cb(inpL, "l_out", il);
  9005. } else {
  9006. // attention and ffn are computed sequentially
  9007. // x = x + attn(ln1(x))
  9008. // x = x + ffn(ln2(x))
  9009. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9010. cb(ffn_inp, "ffn_inp", il);
  9011. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9012. model.layers[il].ffn_norm,
  9013. model.layers[il].ffn_norm_b,
  9014. LLM_NORM, cb, il);
  9015. cb(cur, "ffn_norm", il);
  9016. cur = llm_build_ffn(ctx0, cur,
  9017. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9018. NULL, NULL,
  9019. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9020. NULL,
  9021. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9022. cb(cur, "ffn_out", il);
  9023. inpL = ggml_add(ctx0, cur, ffn_inp);
  9024. cb(inpL, "l_out", il);
  9025. }
  9026. }
  9027. cur = llm_build_norm(ctx0, inpL, hparams,
  9028. model.output_norm,
  9029. model.output_norm_b,
  9030. LLM_NORM, cb, -1);
  9031. cb(cur, "result_norm", -1);
  9032. cur = ggml_mul_mat(ctx0, model.output, cur);
  9033. cb(cur, "result_output", -1);
  9034. ggml_build_forward_expand(gf, cur);
  9035. return gf;
  9036. }
  9037. struct ggml_cgraph * build_arctic() {
  9038. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9039. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9040. int32_t n_tokens = this->n_tokens;
  9041. const int64_t n_embd_head = hparams.n_embd_head_v;
  9042. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9043. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9044. struct ggml_tensor * cur;
  9045. struct ggml_tensor * inpL;
  9046. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9047. // inp_pos - contains the positions
  9048. struct ggml_tensor * inp_pos = build_inp_pos();
  9049. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9050. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9051. for (int il = 0; il < n_layer; ++il) {
  9052. struct ggml_tensor * inpSA = inpL;
  9053. // norm
  9054. cur = llm_build_norm(ctx0, inpL, hparams,
  9055. model.layers[il].attn_norm, NULL,
  9056. LLM_NORM_RMS, cb, il);
  9057. cb(cur, "attn_norm", il);
  9058. // self-attention
  9059. {
  9060. // compute Q and K and RoPE them
  9061. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9062. cb(Qcur, "Qcur", il);
  9063. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9064. cb(Kcur, "Kcur", il);
  9065. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9066. cb(Vcur, "Vcur", il);
  9067. Qcur = ggml_rope_ext(
  9068. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9069. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9070. ext_factor, attn_factor, beta_fast, beta_slow
  9071. );
  9072. cb(Qcur, "Qcur", il);
  9073. Kcur = ggml_rope_ext(
  9074. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9075. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9076. ext_factor, attn_factor, beta_fast, beta_slow
  9077. );
  9078. cb(Kcur, "Kcur", il);
  9079. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9080. model.layers[il].wo, NULL,
  9081. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9082. }
  9083. if (il == n_layer - 1) {
  9084. // skip computing output for unused tokens
  9085. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9086. n_tokens = n_outputs;
  9087. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9088. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9089. }
  9090. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9091. cb(ffn_inp, "ffn_inp", il);
  9092. // feed-forward network
  9093. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9094. model.layers[il].ffn_norm, NULL,
  9095. LLM_NORM_RMS, cb, il);
  9096. cb(cur, "ffn_norm", il);
  9097. cur = llm_build_ffn(ctx0, cur,
  9098. model.layers[il].ffn_up, NULL,
  9099. model.layers[il].ffn_gate, NULL,
  9100. model.layers[il].ffn_down, NULL,
  9101. NULL,
  9102. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9103. cb(cur, "ffn_out", il);
  9104. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9105. cb(ffn_out, "ffn_out", il);
  9106. // MoE
  9107. cur = llm_build_norm(ctx0, inpSA, hparams,
  9108. model.layers[il].ffn_norm_exps, NULL,
  9109. LLM_NORM_RMS, cb, il);
  9110. cb(cur, "ffn_norm_exps", il);
  9111. cur = llm_build_moe_ffn(ctx0, cur,
  9112. model.layers[il].ffn_gate_inp,
  9113. model.layers[il].ffn_up_exps,
  9114. model.layers[il].ffn_gate_exps,
  9115. model.layers[il].ffn_down_exps,
  9116. n_expert, n_expert_used,
  9117. LLM_FFN_SILU, true,
  9118. cb, il);
  9119. cb(cur, "ffn_moe_out", il);
  9120. cur = ggml_add(ctx0, cur, ffn_out);
  9121. cb(cur, "ffn_out", il);
  9122. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9123. if (layer_dir != nullptr) {
  9124. cur = ggml_add(ctx0, cur, layer_dir);
  9125. }
  9126. cb(cur, "l_out", il);
  9127. // input for next layer
  9128. inpL = cur;
  9129. }
  9130. cur = inpL;
  9131. cur = llm_build_norm(ctx0, cur, hparams,
  9132. model.output_norm, NULL,
  9133. LLM_NORM_RMS, cb, -1);
  9134. cb(cur, "result_norm", -1);
  9135. // lm_head
  9136. cur = ggml_mul_mat(ctx0, model.output, cur);
  9137. cb(cur, "result_output", -1);
  9138. ggml_build_forward_expand(gf, cur);
  9139. return gf;
  9140. }
  9141. };
  9142. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9143. llama_batch dummy;
  9144. dummy.n_tokens = 0;
  9145. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9146. struct llm_build_context llm(lctx, dummy, cb, false);
  9147. llm.init();
  9148. struct ggml_cgraph * result = llm.build_defrag(ids);
  9149. llm.free();
  9150. return result;
  9151. }
  9152. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9153. llama_batch dummy;
  9154. dummy.n_tokens = 0;
  9155. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9156. struct llm_build_context llm(lctx, dummy, cb, false);
  9157. llm.init();
  9158. struct ggml_cgraph * result = llm.build_k_shift();
  9159. llm.free();
  9160. return result;
  9161. }
  9162. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9163. llama_batch dummy;
  9164. dummy.n_tokens = 0;
  9165. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9166. struct llm_build_context llm(lctx, dummy, cb, false);
  9167. llm.init();
  9168. struct ggml_cgraph * result = llm.build_s_copy();
  9169. llm.free();
  9170. return result;
  9171. }
  9172. static struct ggml_cgraph * llama_build_graph(
  9173. llama_context & lctx,
  9174. const llama_batch & batch,
  9175. bool worst_case) {
  9176. const auto & model = lctx.model;
  9177. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9178. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9179. if (il >= 0) {
  9180. ggml_format_name(cur, "%s-%d", name, il);
  9181. } else {
  9182. ggml_set_name(cur, name);
  9183. }
  9184. if (!lctx.cparams.offload_kqv) {
  9185. if (strcmp(name, "kqv_merged_cont") == 0) {
  9186. // all nodes between the KV store and the attention output are run on the CPU
  9187. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9188. }
  9189. }
  9190. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9191. // FIXME: fix in ggml_backend_sched
  9192. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9193. if (batch.n_tokens < 32 || full_offload) {
  9194. if (il != -1 && strcmp(name, "norm") == 0) {
  9195. for (auto * backend : lctx.backends) {
  9196. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9197. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9198. break;
  9199. }
  9200. }
  9201. }
  9202. }
  9203. };
  9204. struct ggml_cgraph * result = NULL;
  9205. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9206. llm.init();
  9207. switch (model.arch) {
  9208. case LLM_ARCH_LLAMA:
  9209. {
  9210. result = llm.build_llama();
  9211. } break;
  9212. case LLM_ARCH_BAICHUAN:
  9213. {
  9214. result = llm.build_baichuan();
  9215. } break;
  9216. case LLM_ARCH_FALCON:
  9217. {
  9218. result = llm.build_falcon();
  9219. } break;
  9220. case LLM_ARCH_GROK:
  9221. {
  9222. result = llm.build_grok();
  9223. } break;
  9224. case LLM_ARCH_STARCODER:
  9225. {
  9226. result = llm.build_starcoder();
  9227. } break;
  9228. case LLM_ARCH_REFACT:
  9229. {
  9230. result = llm.build_refact();
  9231. } break;
  9232. case LLM_ARCH_BERT:
  9233. case LLM_ARCH_JINA_BERT_V2:
  9234. case LLM_ARCH_NOMIC_BERT:
  9235. {
  9236. result = llm.build_bert();
  9237. } break;
  9238. case LLM_ARCH_BLOOM:
  9239. {
  9240. result = llm.build_bloom();
  9241. } break;
  9242. case LLM_ARCH_MPT:
  9243. {
  9244. result = llm.build_mpt();
  9245. } break;
  9246. case LLM_ARCH_STABLELM:
  9247. {
  9248. result = llm.build_stablelm();
  9249. } break;
  9250. case LLM_ARCH_QWEN:
  9251. {
  9252. result = llm.build_qwen();
  9253. } break;
  9254. case LLM_ARCH_QWEN2:
  9255. {
  9256. result = llm.build_qwen2();
  9257. } break;
  9258. case LLM_ARCH_QWEN2MOE:
  9259. {
  9260. result = llm.build_qwen2moe();
  9261. } break;
  9262. case LLM_ARCH_PHI2:
  9263. {
  9264. result = llm.build_phi2();
  9265. } break;
  9266. case LLM_ARCH_PHI3:
  9267. {
  9268. result = llm.build_phi3();
  9269. } break;
  9270. case LLM_ARCH_PLAMO:
  9271. {
  9272. result = llm.build_plamo();
  9273. } break;
  9274. case LLM_ARCH_GPT2:
  9275. {
  9276. result = llm.build_gpt2();
  9277. } break;
  9278. case LLM_ARCH_CODESHELL:
  9279. {
  9280. result = llm.build_codeshell();
  9281. } break;
  9282. case LLM_ARCH_ORION:
  9283. {
  9284. result = llm.build_orion();
  9285. } break;
  9286. case LLM_ARCH_INTERNLM2:
  9287. {
  9288. result = llm.build_internlm2();
  9289. } break;
  9290. case LLM_ARCH_MINICPM:
  9291. {
  9292. result = llm.build_minicpm();
  9293. } break;
  9294. case LLM_ARCH_GEMMA:
  9295. {
  9296. result = llm.build_gemma();
  9297. } break;
  9298. case LLM_ARCH_STARCODER2:
  9299. {
  9300. result = llm.build_starcoder2();
  9301. } break;
  9302. case LLM_ARCH_MAMBA:
  9303. {
  9304. result = llm.build_mamba();
  9305. } break;
  9306. case LLM_ARCH_XVERSE:
  9307. {
  9308. result = llm.build_xverse();
  9309. } break;
  9310. case LLM_ARCH_COMMAND_R:
  9311. {
  9312. result = llm.build_command_r();
  9313. } break;
  9314. case LLM_ARCH_DBRX:
  9315. {
  9316. result = llm.build_dbrx();
  9317. } break;
  9318. case LLM_ARCH_OLMO:
  9319. {
  9320. result = llm.build_olmo();
  9321. } break;
  9322. case LLM_ARCH_GPTNEOX:
  9323. {
  9324. result = llm.build_gptneox();
  9325. } break;
  9326. case LLM_ARCH_ARCTIC:
  9327. {
  9328. result = llm.build_arctic();
  9329. } break;
  9330. default:
  9331. GGML_ASSERT(false);
  9332. }
  9333. llm.free();
  9334. return result;
  9335. }
  9336. static void llama_set_k_shift(llama_context & lctx) {
  9337. const int64_t kv_size = lctx.kv_self.size;
  9338. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9339. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9340. for (int i = 0; i < kv_size; ++i) {
  9341. data[i] = lctx.kv_self.cells[i].delta;
  9342. }
  9343. }
  9344. static void llama_set_s_copy(llama_context & lctx) {
  9345. const int64_t kv_size = lctx.kv_self.size;
  9346. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9347. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9348. for (int i = 0; i < kv_size; ++i) {
  9349. data[i] = lctx.kv_self.cells[i].src;
  9350. }
  9351. }
  9352. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9353. //
  9354. // set input data
  9355. //
  9356. const auto & hparams = lctx.model.hparams;
  9357. const auto & cparams = lctx.cparams;
  9358. const auto & kv_self = lctx.kv_self;
  9359. if (batch.token) {
  9360. const int64_t n_tokens = batch.n_tokens;
  9361. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9362. }
  9363. if (batch.embd) {
  9364. const int64_t n_embd = hparams.n_embd;
  9365. const int64_t n_tokens = batch.n_tokens;
  9366. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9367. }
  9368. if (batch.pos && lctx.inp_pos) {
  9369. const int64_t n_tokens = batch.n_tokens;
  9370. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9371. }
  9372. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9373. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9374. const int64_t n_tokens = batch.n_tokens;
  9375. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9376. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9377. if (lctx.n_outputs == n_tokens) {
  9378. for (int i = 0; i < n_tokens; ++i) {
  9379. data[i] = i;
  9380. }
  9381. } else if (batch.logits) {
  9382. int32_t n_outputs = 0;
  9383. for (int i = 0; i < n_tokens; ++i) {
  9384. if (batch.logits[i]) {
  9385. data[n_outputs++] = i;
  9386. }
  9387. }
  9388. // the graph needs to have been passed the correct number of outputs
  9389. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9390. } else if (lctx.n_outputs == 1) {
  9391. // only keep last output
  9392. data[0] = n_tokens - 1;
  9393. } else {
  9394. GGML_ASSERT(lctx.n_outputs == 0);
  9395. }
  9396. }
  9397. GGML_ASSERT(
  9398. // (!a || b) is a logical implication (a -> b)
  9399. // !hparams.causal_attn -> !cparams.causal_attn
  9400. (hparams.causal_attn || !cparams.causal_attn) &&
  9401. "causal attention with embedding models is not supported"
  9402. );
  9403. if (lctx.inp_KQ_mask) {
  9404. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9405. if (cparams.causal_attn) {
  9406. const int64_t n_kv = kv_self.n;
  9407. const int64_t n_tokens = batch.n_tokens;
  9408. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9409. float * data = (float *) lctx.inp_KQ_mask->data;
  9410. // For causal attention, use only the previous KV cells
  9411. // of the correct sequence for each token of the batch.
  9412. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9413. for (int h = 0; h < 1; ++h) {
  9414. for (int j = 0; j < n_tokens; ++j) {
  9415. const llama_pos pos = batch.pos[j];
  9416. const llama_seq_id seq_id = batch.seq_id[j][0];
  9417. for (int i = 0; i < n_kv; ++i) {
  9418. float f;
  9419. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9420. f = -INFINITY;
  9421. } else {
  9422. if (hparams.use_alibi) {
  9423. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9424. } else {
  9425. f = 0.0f;
  9426. }
  9427. }
  9428. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9429. }
  9430. }
  9431. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9432. for (int j = 0; j < n_kv; ++j) {
  9433. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9434. }
  9435. }
  9436. }
  9437. } else {
  9438. // when using kv cache, the mask needs to match the kv cache size
  9439. const int64_t n_tokens = batch.n_tokens;
  9440. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9441. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9442. float * data = (float *) lctx.inp_KQ_mask->data;
  9443. for (int h = 0; h < 1; ++h) {
  9444. for (int j = 0; j < n_tokens; ++j) {
  9445. const llama_seq_id seq_id = batch.seq_id[j][0];
  9446. for (int i = 0; i < n_tokens; ++i) {
  9447. float f = -INFINITY;
  9448. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9449. if (batch.seq_id[i][s] == seq_id) {
  9450. if (hparams.use_alibi) {
  9451. f = -fabs(batch.pos[i] - batch.pos[j]);
  9452. } else {
  9453. f = 0.0f;
  9454. }
  9455. break;
  9456. }
  9457. }
  9458. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9459. }
  9460. for (int i = n_tokens; i < n_stride; ++i) {
  9461. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9462. }
  9463. }
  9464. }
  9465. }
  9466. }
  9467. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9468. const int64_t n_tokens = batch.n_tokens;
  9469. GGML_ASSERT(lctx.inp_mean);
  9470. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9471. float * data = (float *) lctx.inp_mean->data;
  9472. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9473. std::vector<uint64_t> sum(n_tokens, 0);
  9474. for (int i = 0; i < n_tokens; ++i) {
  9475. const llama_seq_id seq_id = batch.seq_id[i][0];
  9476. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9477. sum[seq_id] += 1;
  9478. }
  9479. std::vector<float> div(n_tokens, 0.0f);
  9480. for (int i = 0; i < n_tokens; ++i) {
  9481. const uint64_t s = sum[i];
  9482. if (s > 0) {
  9483. div[i] = 1.0f/float(s);
  9484. }
  9485. }
  9486. for (int i = 0; i < n_tokens; ++i) {
  9487. const llama_seq_id seq_id = batch.seq_id[i][0];
  9488. data[seq_id*n_tokens + i] = div[seq_id];
  9489. }
  9490. }
  9491. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9492. const int64_t n_tokens = batch.n_tokens;
  9493. GGML_ASSERT(lctx.inp_cls);
  9494. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9495. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9496. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9497. for (int i = 0; i < n_tokens; ++i) {
  9498. const llama_seq_id seq_id = batch.seq_id[i][0];
  9499. const llama_pos pos = batch.pos[i];
  9500. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9501. if (pos == 0) {
  9502. data[seq_id] = i;
  9503. }
  9504. }
  9505. }
  9506. if (kv_self.recurrent) {
  9507. const int64_t n_kv = kv_self.n;
  9508. if (lctx.inp_s_mask) {
  9509. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9510. float * data = (float *) lctx.inp_s_mask->data;
  9511. // states which are not affected by the current batch are left untouched
  9512. for (int i = 0; i < n_kv; ++i) {
  9513. llama_seq_id seq_id = i + lctx.kv_self.head;
  9514. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9515. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9516. data[i] = (float) has_self_seq;
  9517. // ensure current sequences will be kept
  9518. if (!has_self_seq && kv_cell.pos >= 0) {
  9519. kv_cell.seq_id.insert(seq_id);
  9520. }
  9521. }
  9522. }
  9523. // For Mamba (and other recurrent architectures),
  9524. // update the correct state(s)/sequence(s) for each token of the batch.
  9525. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9526. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9527. if (lctx.inp_s_seq) {
  9528. const int64_t n_tokens = batch.n_tokens;
  9529. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9530. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9531. for (int j = 0; j < n_tokens; ++j) {
  9532. const int32_t n_seq = batch.n_seq_id[j];
  9533. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9534. for (int i = 0; i < n_kv; ++i) {
  9535. if (i < n_seq) {
  9536. // for this type of model, the head is the minimum seq_id of the batch
  9537. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9538. } else {
  9539. data[j*n_kv + i] = -1;
  9540. }
  9541. }
  9542. }
  9543. }
  9544. }
  9545. }
  9546. // Make sure enough space is available for outputs.
  9547. // Returns max number of outputs for which space was reserved.
  9548. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9549. const auto & cparams = lctx.cparams;
  9550. const auto & hparams = lctx.model.hparams;
  9551. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9552. const auto n_batch = cparams.n_batch;
  9553. const auto n_vocab = hparams.n_vocab;
  9554. const auto n_embd = hparams.n_embd;
  9555. // TODO: use a per-batch flag for logits presence instead
  9556. const bool has_logits = cparams.causal_attn;
  9557. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9558. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9559. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9560. if (lctx.output_ids.empty()) {
  9561. // init, never resized afterwards
  9562. lctx.output_ids.resize(n_batch);
  9563. }
  9564. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9565. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9566. // alloc only when more than the current capacity is required
  9567. // TODO: also consider shrinking the buffer
  9568. if (!lctx.buf_output || prev_size < new_size) {
  9569. if (lctx.buf_output) {
  9570. #ifndef NDEBUG
  9571. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9572. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9573. #endif
  9574. ggml_backend_buffer_free(lctx.buf_output);
  9575. lctx.buf_output = nullptr;
  9576. lctx.logits = nullptr;
  9577. lctx.embd = nullptr;
  9578. }
  9579. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9580. if (lctx.buf_output == nullptr) {
  9581. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9582. return 0;
  9583. }
  9584. }
  9585. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9586. lctx.logits = has_logits ? output_base : nullptr;
  9587. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9588. lctx.output_size = n_outputs_max;
  9589. lctx.logits_size = logits_size;
  9590. lctx.embd_size = embd_size;
  9591. // set all ids as invalid (negative)
  9592. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9593. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9594. lctx.n_outputs = 0;
  9595. return n_outputs_max;
  9596. }
  9597. static void llama_graph_compute(
  9598. llama_context & lctx,
  9599. ggml_cgraph * gf,
  9600. int n_threads) {
  9601. #ifdef GGML_USE_METAL
  9602. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9603. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9604. }
  9605. #endif
  9606. if (lctx.backend_cpu != nullptr) {
  9607. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9608. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9609. }
  9610. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9611. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9612. }
  9613. // decode a batch of tokens by evaluating the transformer
  9614. //
  9615. // - lctx: llama context
  9616. // - batch: batch to evaluate
  9617. //
  9618. // return 0 on success
  9619. // return positive int on warning
  9620. // return negative int on error
  9621. //
  9622. static int llama_decode_internal(
  9623. llama_context & lctx,
  9624. llama_batch batch_all) { // TODO: rename back to batch
  9625. const uint32_t n_tokens_all = batch_all.n_tokens;
  9626. if (n_tokens_all == 0) {
  9627. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9628. return -1;
  9629. }
  9630. const auto & model = lctx.model;
  9631. const auto & hparams = model.hparams;
  9632. const auto & cparams = lctx.cparams;
  9633. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9634. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9635. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9636. if (lctx.t_compute_start_us == 0) {
  9637. lctx.t_compute_start_us = ggml_time_us();
  9638. }
  9639. lctx.n_queued_tokens += n_tokens_all;
  9640. auto & kv_self = lctx.kv_self;
  9641. const int64_t n_embd = hparams.n_embd;
  9642. const int64_t n_vocab = hparams.n_vocab;
  9643. uint32_t n_outputs = 0;
  9644. uint32_t n_outputs_prev = 0;
  9645. const auto n_ubatch = cparams.n_ubatch;
  9646. std::vector<llama_pos> pos;
  9647. std::vector<int32_t> n_seq_id;
  9648. std::vector<llama_seq_id *> seq_id_arr;
  9649. std::vector<std::vector<llama_seq_id>> seq_id;
  9650. // count outputs
  9651. if (batch_all.logits) {
  9652. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9653. n_outputs += batch_all.logits[i] != 0;
  9654. }
  9655. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9656. n_outputs = n_tokens_all;
  9657. } else {
  9658. // keep last output only
  9659. n_outputs = 1;
  9660. }
  9661. // reserve output buffer
  9662. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9663. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9664. return -2;
  9665. };
  9666. // set output mappings
  9667. if (batch_all.logits) {
  9668. int32_t i_logits = 0;
  9669. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9670. if (batch_all.logits[i]) {
  9671. lctx.output_ids[i] = i_logits++;
  9672. }
  9673. }
  9674. } else {
  9675. for (uint32_t i = 0; i < n_outputs; ++i) {
  9676. lctx.output_ids[i] = i;
  9677. }
  9678. }
  9679. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9680. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9681. llama_batch u_batch = {
  9682. /* .n_tokens = */ (int32_t) n_tokens,
  9683. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9684. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9685. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9686. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9687. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9688. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9689. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9690. /* .all_pos_1 = */ batch_all.all_pos_1,
  9691. /* .all_seq_id = */ batch_all.all_seq_id,
  9692. };
  9693. // count the outputs in this u_batch
  9694. {
  9695. int32_t n_outputs_new = 0;
  9696. if (u_batch.logits) {
  9697. for (uint32_t i = 0; i < n_tokens; i++) {
  9698. n_outputs_new += u_batch.logits[i] != 0;
  9699. }
  9700. } else if (n_outputs == n_tokens_all) {
  9701. n_outputs_new = n_tokens;
  9702. } else {
  9703. // keep last output only
  9704. if (cur_token + n_tokens >= n_tokens_all) {
  9705. n_outputs_new = 1;
  9706. }
  9707. }
  9708. // needs to happen before the graph is built
  9709. lctx.n_outputs = n_outputs_new;
  9710. }
  9711. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9712. GGML_ASSERT(n_threads > 0);
  9713. // helpers for smoother batch API transition
  9714. // after deprecating the llama_eval calls, these will be removed
  9715. if (u_batch.pos == nullptr) {
  9716. pos.resize(n_tokens);
  9717. for (uint32_t i = 0; i < n_tokens; i++) {
  9718. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9719. }
  9720. u_batch.pos = pos.data();
  9721. }
  9722. if (u_batch.seq_id == nullptr) {
  9723. n_seq_id.resize(n_tokens);
  9724. seq_id.resize(n_tokens);
  9725. seq_id_arr.resize(n_tokens);
  9726. for (uint32_t i = 0; i < n_tokens; i++) {
  9727. n_seq_id[i] = 1;
  9728. seq_id[i].resize(1);
  9729. seq_id[i][0] = u_batch.all_seq_id;
  9730. seq_id_arr[i] = seq_id[i].data();
  9731. }
  9732. u_batch.n_seq_id = n_seq_id.data();
  9733. u_batch.seq_id = seq_id_arr.data();
  9734. }
  9735. // non-causal masks do not use the KV cache
  9736. if (hparams.causal_attn) {
  9737. llama_kv_cache_update(&lctx);
  9738. // if we have enough unused cells before the current head ->
  9739. // better to start searching from the beginning of the cache, hoping to fill it
  9740. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9741. kv_self.head = 0;
  9742. }
  9743. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9744. return 1;
  9745. }
  9746. if (!kv_self.recurrent) {
  9747. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9748. // after enough generations, the benefit from this heuristic disappears
  9749. // if we start defragmenting the cache, the benefit from this will be more important
  9750. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  9751. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  9752. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9753. }
  9754. }
  9755. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9756. ggml_backend_sched_reset(lctx.sched);
  9757. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9758. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9759. // the output is always the last tensor in the graph
  9760. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9761. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9762. if (lctx.n_outputs == 0) {
  9763. // no output
  9764. res = nullptr;
  9765. embd = nullptr;
  9766. } else if (!hparams.causal_attn) {
  9767. res = nullptr; // do not extract logits for embedding models such as BERT
  9768. // token or sequence embeddings
  9769. embd = gf->nodes[gf->n_nodes - 1];
  9770. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9771. } else if (cparams.embeddings) {
  9772. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9773. int i_embd = gf->n_nodes - 2;
  9774. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9775. i_embd = gf->n_nodes - i;
  9776. if (i_embd < 0) { break; }
  9777. embd = gf->nodes[i_embd];
  9778. }
  9779. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9780. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9781. if (!cparams.causal_attn) {
  9782. res = nullptr; // do not extract logits when not needed
  9783. // skip computing logits
  9784. // TODO: is this safe?
  9785. gf->n_nodes = i_embd + 1;
  9786. }
  9787. } else {
  9788. embd = nullptr; // do not extract embeddings when not needed
  9789. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9790. }
  9791. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9792. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9793. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9794. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9795. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9796. // with the BLAS calls. need a better solution
  9797. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9798. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9799. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9800. n_threads = std::min(4, n_threads);
  9801. }
  9802. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9803. llama_set_inputs(lctx, u_batch);
  9804. llama_graph_compute(lctx, gf, n_threads);
  9805. // update the kv ring buffer
  9806. {
  9807. kv_self.head += n_tokens;
  9808. // Ensure kv cache head points to a valid index.
  9809. if (kv_self.head >= kv_self.size) {
  9810. kv_self.head = 0;
  9811. }
  9812. }
  9813. #ifdef GGML_PERF
  9814. // print timing information per ggml operation (for debugging purposes)
  9815. // requires GGML_PERF to be defined
  9816. ggml_graph_print(gf);
  9817. #endif
  9818. // plot the computation graph in dot format (for debugging purposes)
  9819. //if (n_past%100 == 0) {
  9820. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9821. //}
  9822. // extract logits
  9823. if (res) {
  9824. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9825. GGML_ASSERT(backend_res != nullptr);
  9826. GGML_ASSERT(lctx.logits != nullptr);
  9827. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9828. const int32_t n_outputs_new = lctx.n_outputs;
  9829. if (n_outputs_new) {
  9830. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9831. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9832. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9833. }
  9834. }
  9835. // extract embeddings
  9836. if (embd) {
  9837. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9838. GGML_ASSERT(backend_embd != nullptr);
  9839. switch (cparams.pooling_type) {
  9840. case LLAMA_POOLING_TYPE_NONE:
  9841. {
  9842. // extract token embeddings
  9843. GGML_ASSERT(lctx.embd != nullptr);
  9844. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9845. const int32_t n_outputs_new = lctx.n_outputs;
  9846. if (n_outputs_new) {
  9847. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9848. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9849. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9850. }
  9851. } break;
  9852. case LLAMA_POOLING_TYPE_CLS:
  9853. case LLAMA_POOLING_TYPE_MEAN:
  9854. {
  9855. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9856. // extract sequence embeddings
  9857. auto & embd_seq_out = lctx.embd_seq;
  9858. embd_seq_out.clear();
  9859. for (uint32_t i = 0; i < n_tokens; i++) {
  9860. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9861. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9862. continue;
  9863. }
  9864. embd_seq_out[seq_id].resize(n_embd);
  9865. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9866. }
  9867. } break;
  9868. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9869. {
  9870. GGML_ASSERT(false && "unknown pooling type");
  9871. } break;
  9872. }
  9873. }
  9874. n_outputs_prev += lctx.n_outputs;
  9875. }
  9876. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9877. lctx.n_outputs = n_outputs;
  9878. // wait for the computation to finish (automatically done when obtaining the model output)
  9879. //llama_synchronize(&lctx);
  9880. // decide if we need to defrag the kv cache
  9881. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9882. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9883. // queue defragmentation for next llama_kv_cache_update
  9884. if (fragmentation > cparams.defrag_thold) {
  9885. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9886. llama_kv_cache_defrag(kv_self);
  9887. }
  9888. }
  9889. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9890. // overlap with device computation.
  9891. ggml_backend_sched_reset(lctx.sched);
  9892. return 0;
  9893. }
  9894. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9895. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9896. auto & kv_self = lctx.kv_self;
  9897. const auto & hparams = lctx.model.hparams;
  9898. const uint32_t n_layer = hparams.n_layer;
  9899. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9900. const uint32_t n_used = kv_self.used;
  9901. assert(n_used <= n_kv);
  9902. //const int64_t t_start = ggml_time_us();
  9903. // number of cells moved
  9904. uint32_t n_moves = 0;
  9905. // each move requires 6*n_layer tensors (see build_defrag)
  9906. // - source view, destination view, copy operation
  9907. // - x2 for keys and values
  9908. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9909. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9910. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9911. // determine which KV cells to move where
  9912. //
  9913. // cell i moves to ids[i]
  9914. //
  9915. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9916. //
  9917. std::vector<uint32_t> ids(n_kv, n_kv);
  9918. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9919. const auto & cell0 = kv_self.cells[i0];
  9920. if (!cell0.is_empty()) {
  9921. ids[i0] = i0;
  9922. continue;
  9923. }
  9924. // found a hole - fill it with data from the end of the cache
  9925. uint32_t nh = 1;
  9926. // determine the size of the hole
  9927. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9928. nh++;
  9929. }
  9930. uint32_t nf = 0;
  9931. uint32_t is = n_kv - 1;
  9932. // starting from the end, find nh non-empty cells
  9933. for (; is > i0; --is) {
  9934. const auto & cell1 = kv_self.cells[is];
  9935. if (cell1.is_empty() || ids[is] != n_kv) {
  9936. continue;
  9937. }
  9938. // non-empty cell which is not yet moved
  9939. nf++;
  9940. if (nf == nh) {
  9941. break;
  9942. }
  9943. }
  9944. // this can only happen if `n_used` is not accurate, which would be a bug
  9945. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9946. nf = 0;
  9947. uint32_t i1 = is;
  9948. // are we moving a continuous block of memory?
  9949. bool cont = false;
  9950. // should we stop searching for the next move?
  9951. bool stop = false;
  9952. // go back and move the nf cells to the hole
  9953. for (; i1 < n_kv; ++i1) {
  9954. auto & cell1 = kv_self.cells[i1];
  9955. if (cell1.is_empty() || ids[i1] != n_kv) {
  9956. if (n_moves == max_moves) {
  9957. stop = true;
  9958. break;
  9959. }
  9960. cont = false;
  9961. continue;
  9962. }
  9963. // this cell goes to (i0 + nf)
  9964. ids[i1] = i0 + nf;
  9965. // move the cell meta data
  9966. kv_self.cells[i0 + nf] = cell1;
  9967. // clear the old cell and move the head there
  9968. cell1 = llama_kv_cell();
  9969. kv_self.head = n_used;
  9970. if (!cont) {
  9971. n_moves++;
  9972. cont = true;
  9973. }
  9974. nf++;
  9975. if (nf == nh) {
  9976. break;
  9977. }
  9978. }
  9979. if (stop || n_moves == max_moves) {
  9980. break;
  9981. }
  9982. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9983. i0 += nh - 1;
  9984. }
  9985. if (n_moves == 0) {
  9986. return;
  9987. }
  9988. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9989. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9990. #if 0
  9991. // CPU defrag
  9992. //
  9993. // TODO: optimizations are possible:
  9994. // - multiple threads
  9995. // - avoid copying to the host memory when already there
  9996. //
  9997. // likely not worth the effort, as we have ggml_graph based defrag
  9998. //
  9999. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10000. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10001. const uint32_t kv_size = kv_self.size;
  10002. std::vector<uint8_t> buf_k;
  10003. std::vector<uint8_t> buf_v;
  10004. for (uint32_t il = 0; il < n_layer; ++il) {
  10005. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10006. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10007. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10008. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10009. buf_k.resize(k_size);
  10010. buf_v.resize(v_size);
  10011. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10012. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10013. // batch move [i, i+nm) to [id, id+nm)
  10014. // note: cells can move only to a lower index
  10015. for (uint32_t i = 0; i < n_kv; ++i) {
  10016. const uint32_t id = ids[i];
  10017. if (i == id || id == n_kv) {
  10018. continue;
  10019. }
  10020. uint32_t nm = 1;
  10021. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10022. nm++;
  10023. }
  10024. // move keys
  10025. {
  10026. const int64_t os = i*k_size_row;
  10027. const int64_t od = id*k_size_row;
  10028. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10029. }
  10030. // move values (note: they are transposed)
  10031. {
  10032. const int64_t os = i;
  10033. const int64_t od = id;
  10034. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10035. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10036. }
  10037. }
  10038. i += nm - 1;
  10039. }
  10040. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10041. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10042. }
  10043. #else
  10044. // ggml_graph defrag
  10045. ggml_backend_sched_reset(lctx.sched);
  10046. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10047. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10048. #endif
  10049. //const int64_t t_end = ggml_time_us();
  10050. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10051. }
  10052. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10053. bool need_reserve = false;
  10054. // apply K-shift if needed
  10055. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10056. {
  10057. ggml_backend_sched_reset(lctx.sched);
  10058. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10059. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10060. llama_set_k_shift(lctx);
  10061. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10062. need_reserve = true;
  10063. }
  10064. {
  10065. auto & kv_self = lctx.kv_self;
  10066. kv_self.has_shift = false;
  10067. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10068. kv_self.cells[i].delta = 0;
  10069. }
  10070. }
  10071. }
  10072. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10073. {
  10074. ggml_backend_sched_reset(lctx.sched);
  10075. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10076. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10077. llama_set_s_copy(lctx);
  10078. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10079. need_reserve = true;
  10080. }
  10081. {
  10082. auto & kv_self = lctx.kv_self;
  10083. kv_self.do_copy = false;
  10084. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10085. kv_self.cells[i].src = i;
  10086. }
  10087. }
  10088. }
  10089. // defragment the KV cache if needed
  10090. if (lctx.kv_self.do_defrag) {
  10091. llama_kv_cache_defrag_internal(lctx);
  10092. need_reserve = true;
  10093. lctx.kv_self.do_defrag = false;
  10094. }
  10095. // reserve a worst case graph again
  10096. if (need_reserve) {
  10097. // TODO: extract to a function
  10098. // build worst-case graph
  10099. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10100. int n_past = lctx.cparams.n_ctx - n_tokens;
  10101. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10102. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10103. // initialize scheduler with the worst-case graph
  10104. ggml_backend_sched_reset(lctx.sched);
  10105. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10106. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10107. }
  10108. }
  10109. }
  10110. //
  10111. // tokenizer
  10112. //
  10113. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10114. return vocab.type;
  10115. }
  10116. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10117. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10118. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  10119. }
  10120. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10121. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10122. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  10123. }
  10124. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10125. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10126. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  10127. }
  10128. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10129. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10130. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  10131. }
  10132. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10133. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10134. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  10135. }
  10136. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10137. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10138. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10139. const auto & token_data = vocab.id_to_token.at(id);
  10140. switch (llama_vocab_get_type(vocab)) {
  10141. case LLAMA_VOCAB_TYPE_SPM: {
  10142. auto buf = token_data.text.substr(3, 2);
  10143. return strtol(buf.c_str(), NULL, 16);
  10144. }
  10145. case LLAMA_VOCAB_TYPE_BPE: {
  10146. GGML_ASSERT(false);
  10147. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10148. }
  10149. case LLAMA_VOCAB_TYPE_WPM: {
  10150. GGML_ASSERT(false);
  10151. }
  10152. default:
  10153. GGML_ASSERT(false);
  10154. }
  10155. }
  10156. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10157. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10158. static const char * hex = "0123456789ABCDEF";
  10159. switch (llama_vocab_get_type(vocab)) {
  10160. case LLAMA_VOCAB_TYPE_SPM: {
  10161. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10162. auto token = vocab.token_to_id.find(buf);
  10163. if (token != vocab.token_to_id.end()) {
  10164. return (*token).second;
  10165. }
  10166. // Try to fall back to just the byte as a string
  10167. const char buf2[2] = { (char)ch, 0 };
  10168. return vocab.token_to_id.at(buf2);
  10169. }
  10170. case LLAMA_VOCAB_TYPE_WPM:
  10171. case LLAMA_VOCAB_TYPE_BPE: {
  10172. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10173. }
  10174. default:
  10175. GGML_ASSERT(false);
  10176. }
  10177. }
  10178. static void llama_escape_whitespace(std::string & text) {
  10179. replace_all(text, " ", "\xe2\x96\x81");
  10180. }
  10181. static void llama_unescape_whitespace(std::string & word) {
  10182. replace_all(word, "\xe2\x96\x81", " ");
  10183. }
  10184. struct llm_symbol {
  10185. using index = int;
  10186. index prev;
  10187. index next;
  10188. const char * text;
  10189. size_t n;
  10190. };
  10191. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10192. // SPM tokenizer
  10193. // original implementation:
  10194. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10195. struct llm_bigram_spm {
  10196. struct comparator {
  10197. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10198. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10199. }
  10200. };
  10201. using queue_storage = std::vector<llm_bigram_spm>;
  10202. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10203. llm_symbol::index left;
  10204. llm_symbol::index right;
  10205. float score;
  10206. size_t size;
  10207. };
  10208. struct llm_tokenizer_spm {
  10209. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10210. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10211. // split string into utf8 chars
  10212. int index = 0;
  10213. size_t offs = 0;
  10214. while (offs < text.size()) {
  10215. llm_symbol sym;
  10216. size_t len = utf8_len(text[offs]);
  10217. sym.text = text.c_str() + offs;
  10218. sym.n = std::min(len, text.size() - offs);
  10219. offs += sym.n;
  10220. sym.prev = index - 1;
  10221. sym.next = offs == text.size() ? -1 : index + 1;
  10222. index++;
  10223. symbols.emplace_back(sym);
  10224. }
  10225. // seed the work queue with all possible 2-character tokens.
  10226. for (size_t i = 1; i < symbols.size(); ++i) {
  10227. try_add_bigram(i - 1, i);
  10228. }
  10229. // keep substituting the highest frequency pairs for as long as we can.
  10230. while (!work_queue.empty()) {
  10231. auto bigram = work_queue.top();
  10232. work_queue.pop();
  10233. auto & left_sym = symbols[bigram.left];
  10234. auto & right_sym = symbols[bigram.right];
  10235. // if one of the symbols already got merged, skip it.
  10236. if (left_sym.n == 0 || right_sym.n == 0 ||
  10237. left_sym.n + right_sym.n != bigram.size) {
  10238. continue;
  10239. }
  10240. // merge the right sym into the left one
  10241. left_sym.n += right_sym.n;
  10242. right_sym.n = 0;
  10243. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10244. // remove the right sym from the chain
  10245. left_sym.next = right_sym.next;
  10246. if (right_sym.next >= 0) {
  10247. symbols[right_sym.next].prev = bigram.left;
  10248. }
  10249. // find more substitutions
  10250. try_add_bigram(left_sym.prev, bigram.left);
  10251. try_add_bigram(bigram.left, left_sym.next);
  10252. }
  10253. for (int i = 0; i != -1; i = symbols[i].next) {
  10254. auto & symbol = symbols[i];
  10255. resegment(symbol, output);
  10256. }
  10257. }
  10258. private:
  10259. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10260. auto text = std::string(symbol.text, symbol.n);
  10261. auto token = vocab.token_to_id.find(text);
  10262. // Do we need to support is_unused?
  10263. if (token != vocab.token_to_id.end()) {
  10264. output.push_back((*token).second);
  10265. return;
  10266. }
  10267. const auto p = rev_merge.find(text);
  10268. if (p == rev_merge.end()) {
  10269. // output any symbols that did not form tokens as bytes.
  10270. output.reserve(output.size() + symbol.n);
  10271. for (int j = 0; j < (int)symbol.n; ++j) {
  10272. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10273. output.push_back(token_id);
  10274. }
  10275. return;
  10276. }
  10277. resegment(symbols[p->second.first], output);
  10278. resegment(symbols[p->second.second], output);
  10279. }
  10280. void try_add_bigram(int left, int right) {
  10281. if (left == -1 || right == -1) {
  10282. return;
  10283. }
  10284. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10285. auto token = vocab.token_to_id.find(text);
  10286. if (token == vocab.token_to_id.end()) {
  10287. return;
  10288. }
  10289. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10290. return;
  10291. }
  10292. const auto & tok_data = vocab.id_to_token[(*token).second];
  10293. llm_bigram_spm bigram;
  10294. bigram.left = left;
  10295. bigram.right = right;
  10296. bigram.score = tok_data.score;
  10297. bigram.size = text.size();
  10298. work_queue.push(bigram);
  10299. // Do we need to support is_unused?
  10300. rev_merge[text] = std::make_pair(left, right);
  10301. }
  10302. const llama_vocab & vocab;
  10303. std::vector<llm_symbol> symbols;
  10304. llm_bigram_spm::queue work_queue;
  10305. std::map<std::string, std::pair<int, int>> rev_merge;
  10306. };
  10307. // BPE tokenizer
  10308. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10309. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10310. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10311. struct llm_bigram_bpe {
  10312. struct comparator {
  10313. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10314. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10315. }
  10316. };
  10317. using queue_storage = std::vector<llm_bigram_bpe>;
  10318. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10319. llm_symbol::index left;
  10320. llm_symbol::index right;
  10321. std::string text;
  10322. int rank;
  10323. size_t size;
  10324. };
  10325. struct llm_tokenizer_bpe {
  10326. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10327. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10328. int final_prev_index = -1;
  10329. bool ignore_merges = false;
  10330. std::vector<std::string> word_collection;
  10331. switch (vocab.type) {
  10332. case LLAMA_VOCAB_TYPE_BPE:
  10333. switch (vocab.type_pre) {
  10334. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10335. ignore_merges = true;
  10336. word_collection = unicode_regex_split(text, {
  10337. // original regex from tokenizer.json
  10338. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10339. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10340. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10341. });
  10342. break;
  10343. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10344. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10345. word_collection = unicode_regex_split(text, {
  10346. // same as llama3
  10347. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10348. });
  10349. break;
  10350. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10351. word_collection = unicode_regex_split(text, {
  10352. "[\r\n]",
  10353. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10354. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10355. "\\s+$",
  10356. "[一-龥ࠀ-一가-퟿]+",
  10357. "\\p{N}+",
  10358. });
  10359. break;
  10360. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10361. word_collection = unicode_regex_split(text, {
  10362. "[\r\n]",
  10363. "\\s?\\p{L}+",
  10364. "\\s?\\p{P}+",
  10365. "[一-龥ࠀ-一가-퟿]+",
  10366. "\\p{N}",
  10367. });
  10368. break;
  10369. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10370. word_collection = unicode_regex_split(text, {
  10371. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10372. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10373. "[0-9][0-9][0-9]",
  10374. });
  10375. break;
  10376. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10377. // TODO: MPT pre-tokenization regexes are unknown
  10378. // the following are close, but not exact. run the following:
  10379. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10380. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10381. word_collection = unicode_regex_split(text, {
  10382. "\\s?\\p{L}+",
  10383. "\\s?\\p{P}+",
  10384. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10385. });
  10386. break;
  10387. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10388. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10389. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10390. word_collection = unicode_regex_split(text, {
  10391. "\\p{N}",
  10392. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10393. });
  10394. break;
  10395. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10396. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10397. word_collection = unicode_regex_split(text, {
  10398. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10399. });
  10400. break;
  10401. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10402. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10403. word_collection = unicode_regex_split(text, {
  10404. // original regex from tokenizer.json
  10405. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10406. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10407. });
  10408. break;
  10409. default:
  10410. // default regex for BPE tokenization pre-processing
  10411. word_collection = unicode_regex_split(text, {
  10412. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10413. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10414. "\\p{N}+",
  10415. "[0-9][0-9][0-9]",
  10416. });
  10417. break;
  10418. }
  10419. break;
  10420. default:
  10421. GGML_ASSERT(false);
  10422. break;
  10423. }
  10424. symbols_final.clear();
  10425. for (auto & word : word_collection) {
  10426. work_queue = llm_bigram_bpe::queue();
  10427. symbols.clear();
  10428. int index = 0;
  10429. size_t offset = 0;
  10430. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10431. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10432. offset = word.size();
  10433. }
  10434. while (offset < word.size()) {
  10435. llm_symbol sym;
  10436. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10437. sym.text = word.c_str() + offset;
  10438. sym.n = char_len;
  10439. offset += sym.n;
  10440. sym.prev = index - 1;
  10441. sym.next = offset == word.size() ? -1 : index + 1;
  10442. index++;
  10443. symbols.emplace_back(sym);
  10444. }
  10445. for (size_t i = 1; i < symbols.size(); ++i) {
  10446. add_new_bigram(i - 1, i);
  10447. }
  10448. // build token(s)
  10449. while (!work_queue.empty()) {
  10450. auto bigram = work_queue.top();
  10451. work_queue.pop();
  10452. auto & left_symbol = symbols[bigram.left];
  10453. auto & right_symbol = symbols[bigram.right];
  10454. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10455. continue;
  10456. }
  10457. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10458. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10459. if (left_token + right_token != bigram.text) {
  10460. continue; // Skip this bigram if it's outdated
  10461. }
  10462. // merge the right sym into the left one
  10463. left_symbol.n += right_symbol.n;
  10464. right_symbol.n = 0;
  10465. // remove the right sym from the chain
  10466. left_symbol.next = right_symbol.next;
  10467. if (right_symbol.next >= 0) {
  10468. symbols[right_symbol.next].prev = bigram.left;
  10469. }
  10470. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10471. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10472. }
  10473. // add the finished tokens to the final list keeping correct order for next and prev
  10474. for (auto & sym : symbols) {
  10475. if (sym.n > 0) {
  10476. sym.prev = final_prev_index;
  10477. sym.next = -1;
  10478. if (final_prev_index != -1) {
  10479. symbols_final[final_prev_index].next = symbols_final.size();
  10480. }
  10481. symbols_final.emplace_back(sym);
  10482. final_prev_index = symbols_final.size() - 1;
  10483. }
  10484. }
  10485. }
  10486. symbols = symbols_final;
  10487. if (!symbols.empty()) {
  10488. for (int i = 0; i != -1; i = symbols[i].next) {
  10489. auto & symbol = symbols[i];
  10490. if (symbol.n == 0) {
  10491. continue;
  10492. }
  10493. const std::string str = std::string(symbol.text, symbol.n);
  10494. const auto token = vocab.token_to_id.find(str);
  10495. if (token == vocab.token_to_id.end()) {
  10496. for (auto j = str.begin(); j != str.end(); ++j) {
  10497. std::string byte_str(1, *j);
  10498. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10499. if (token_multibyte == vocab.token_to_id.end()) {
  10500. throw std::runtime_error("ERROR: byte not found in vocab");
  10501. }
  10502. output.push_back((*token_multibyte).second);
  10503. }
  10504. } else {
  10505. output.push_back((*token).second);
  10506. }
  10507. }
  10508. }
  10509. }
  10510. private:
  10511. void add_new_bigram(int left, int right) {
  10512. if (left == -1 || right == -1) {
  10513. return;
  10514. }
  10515. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10516. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10517. int rank_found = -1;
  10518. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10519. if (rank_found < 0) {
  10520. return;
  10521. }
  10522. llm_bigram_bpe bigram;
  10523. bigram.left = left;
  10524. bigram.right = right;
  10525. bigram.text = left_token + right_token;
  10526. bigram.size = left_token.size() + right_token.size();
  10527. bigram.rank = rank_found;
  10528. work_queue.push(bigram);
  10529. }
  10530. const llama_vocab & vocab;
  10531. std::vector<llm_symbol> symbols;
  10532. std::vector<llm_symbol> symbols_final;
  10533. llm_bigram_bpe::queue work_queue;
  10534. };
  10535. struct llm_tokenizer_wpm {
  10536. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10537. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10538. auto * token_map = &vocab.token_to_id;
  10539. // normalize and split by whitespace
  10540. std::vector<std::string> words = preprocess(text);
  10541. // bos token prepended already
  10542. // find the longest tokens that form the words
  10543. for (const std::string &word : words) {
  10544. // skip empty words
  10545. if (word.size() == 0) {
  10546. continue;
  10547. }
  10548. // prepend phantom space
  10549. std::string word1 = "\xe2\x96\x81" + word;
  10550. int n = word1.size();
  10551. // we're at the start of a new word
  10552. int i = 0;
  10553. bool match_any = false;
  10554. // move through character position in word
  10555. while (i < n) {
  10556. // loop through possible match length
  10557. bool match = false;
  10558. for (int j = n; j > i; j--) {
  10559. auto it = token_map->find(word1.substr(i, j - i));
  10560. if (it != token_map->end()) {
  10561. output.push_back(it->second);
  10562. match = true;
  10563. match_any = true;
  10564. i = j;
  10565. break;
  10566. }
  10567. }
  10568. // must be an unknown character
  10569. if (!match) {
  10570. i++;
  10571. }
  10572. }
  10573. // we didn't find any matches for this word
  10574. if (!match_any) {
  10575. output.push_back(vocab.special_unk_id);
  10576. }
  10577. }
  10578. }
  10579. std::vector<std::string> preprocess(const std::string & text) {
  10580. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10581. // strip accents, strip control, uniformize whitespace,
  10582. // to lowercase, pad chinese characters, pad punctuation
  10583. std::string new_str = "";
  10584. for (uint32_t code : cpts_nfd) {
  10585. const codepoint_flags flags = unicode_cpt_flags(code);
  10586. if (flags.is_accent_mark || flags.is_control) {
  10587. continue;
  10588. }
  10589. code = unicode_tolower(code);
  10590. if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ?
  10591. code = ' ';
  10592. }
  10593. std::string s = unicode_cpt_to_utf8(code);
  10594. if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) {
  10595. new_str += " ";
  10596. new_str += s;
  10597. new_str += " ";
  10598. } else {
  10599. new_str += s;
  10600. }
  10601. }
  10602. // split by whitespace
  10603. uint64_t l = 0;
  10604. uint64_t r = 0;
  10605. std::vector<std::string> words;
  10606. while (r < new_str.size()) {
  10607. // if is whitespace
  10608. if (isspace(new_str[r], std::locale::classic())) {
  10609. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10610. l = r + 1;
  10611. r = l;
  10612. } else {
  10613. r += 1;
  10614. }
  10615. }
  10616. if (r > l) {
  10617. words.push_back(new_str.substr(l, (r - l)));
  10618. }
  10619. return words;
  10620. }
  10621. bool is_ascii_punct(uint32_t code) {
  10622. if (code > 0xFF) {
  10623. return false;
  10624. }
  10625. auto c = char(static_cast<unsigned char>(code));
  10626. return ispunct(c, std::locale::classic());
  10627. }
  10628. bool is_chinese_char(uint32_t cpt) {
  10629. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10630. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10631. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10632. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10633. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10634. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10635. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10636. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10637. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10638. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10639. return true; // NOLINT
  10640. }
  10641. return false;
  10642. }
  10643. const llama_vocab & vocab;
  10644. };
  10645. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10646. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10647. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10648. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10649. struct fragment_buffer_variant {
  10650. fragment_buffer_variant(llama_vocab::id _token)
  10651. :
  10652. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10653. token(_token),
  10654. raw_text(_dummy),
  10655. offset(0),
  10656. length(0) {}
  10657. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10658. :
  10659. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10660. token((llama_vocab::id) - 1),
  10661. raw_text(_raw_text),
  10662. offset(_offset),
  10663. length(_length){
  10664. GGML_ASSERT(_offset >= 0);
  10665. GGML_ASSERT(_length >= 1);
  10666. GGML_ASSERT(offset + length <= raw_text.length());
  10667. }
  10668. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10669. const llama_vocab::id token;
  10670. const std::string _dummy;
  10671. const std::string & raw_text;
  10672. const uint64_t offset;
  10673. const uint64_t length;
  10674. };
  10675. // #define PRETOKENIZERDEBUG
  10676. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10677. // for each special token
  10678. for (const auto & st: vocab.special_tokens_cache) {
  10679. const auto & special_token = st.first;
  10680. const auto & special_id = st.second;
  10681. // for each text fragment
  10682. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10683. while (it != buffer.end()) {
  10684. auto & fragment = (*it);
  10685. // if a fragment is text ( not yet processed )
  10686. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10687. auto * raw_text = &(fragment.raw_text);
  10688. auto raw_text_base_offset = fragment.offset;
  10689. auto raw_text_base_length = fragment.length;
  10690. // loop over the text
  10691. while (true) {
  10692. // find the first occurrence of a given special token in this fragment
  10693. // passing offset argument only limit the "search area" but match coordinates
  10694. // are still relative to the source full raw_text
  10695. auto match = raw_text->find(special_token, raw_text_base_offset);
  10696. // no occurrences found, stop processing this fragment for a given special token
  10697. if (match == std::string::npos) break;
  10698. // check if match is within bounds of offset <-> length
  10699. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10700. #ifdef PRETOKENIZERDEBUG
  10701. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10702. #endif
  10703. auto source = std::distance(buffer.begin(), it);
  10704. // if match is further than base offset
  10705. // then we have some text to the left of it
  10706. if (match > raw_text_base_offset) {
  10707. // left
  10708. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10709. const int64_t left_reminder_length = match - raw_text_base_offset;
  10710. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10711. #ifdef PRETOKENIZERDEBUG
  10712. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10713. #endif
  10714. it++;
  10715. }
  10716. // special token
  10717. buffer.emplace_after(it, special_id);
  10718. it++;
  10719. // right
  10720. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10721. const int64_t right_reminder_offset = match + special_token.length();
  10722. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10723. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10724. #ifdef PRETOKENIZERDEBUG
  10725. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10726. #endif
  10727. it++;
  10728. if (source == 0) {
  10729. buffer.erase_after(buffer.before_begin());
  10730. } else {
  10731. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10732. }
  10733. // repeat for the right side
  10734. raw_text_base_offset = right_reminder_offset;
  10735. raw_text_base_length = right_reminder_length;
  10736. #ifdef PRETOKENIZERDEBUG
  10737. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10738. #endif
  10739. } else {
  10740. if (source == 0) {
  10741. buffer.erase_after(buffer.before_begin());
  10742. } else {
  10743. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10744. }
  10745. break;
  10746. }
  10747. }
  10748. }
  10749. it++;
  10750. }
  10751. }
  10752. }
  10753. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10754. std::vector<llama_vocab::id> output;
  10755. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10756. if (!raw_text.empty()) {
  10757. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10758. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10759. }
  10760. switch (vocab.type) {
  10761. case LLAMA_VOCAB_TYPE_SPM:
  10762. {
  10763. // OG tokenizer behavior:
  10764. //
  10765. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10766. // tokenizer.encode('', add_special_tokens=False) returns []
  10767. static const bool rtrim = true; //TODO: as param
  10768. bool is_prev_special = false;
  10769. bool special_token_rtrim = false;
  10770. if (add_special && vocab.special_add_bos != 0) {
  10771. GGML_ASSERT(vocab.special_bos_id != -1);
  10772. output.push_back(vocab.special_bos_id);
  10773. is_prev_special = true;
  10774. }
  10775. for (const auto & fragment : fragment_buffer) {
  10776. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10777. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10778. // TODO: It's likely possible to get rid of this string copy entirely
  10779. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10780. // and passing 'add space prefix' as bool argument
  10781. //
  10782. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10783. if (special_token_rtrim) {
  10784. size_t num_whitespaces = 0;
  10785. while (isspace(raw_text[num_whitespaces])) {
  10786. num_whitespaces++;
  10787. }
  10788. if (num_whitespaces == raw_text.size()) {
  10789. continue; // skip if all whitespaces
  10790. }
  10791. raw_text = raw_text.substr(num_whitespaces);
  10792. }
  10793. if (vocab.add_space_prefix) {
  10794. if (!output.size() || is_prev_special) { // prefix with space if first token
  10795. raw_text = " " + raw_text;
  10796. }
  10797. }
  10798. #ifdef PRETOKENIZERDEBUG
  10799. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10800. #endif
  10801. llm_tokenizer_spm tokenizer(vocab);
  10802. llama_escape_whitespace(raw_text);
  10803. tokenizer.tokenize(raw_text, output);
  10804. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10805. output.push_back(fragment.token);
  10806. is_prev_special = true;
  10807. // phi-3 special tokens without rtrim, works fine for llama-spm too
  10808. special_token_rtrim = rtrim
  10809. && fragment.token != vocab.special_bos_id
  10810. && fragment.token != vocab.special_unk_id
  10811. && fragment.token != vocab.special_eos_id;
  10812. }
  10813. }
  10814. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10815. LLAMA_LOG_WARN(
  10816. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10817. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10818. "Are you sure this is what you want?\n", __FUNCTION__);
  10819. }
  10820. if (add_special && vocab.special_add_eos == 1) {
  10821. GGML_ASSERT(vocab.special_eos_id != -1);
  10822. output.push_back(vocab.special_eos_id);
  10823. }
  10824. } break;
  10825. case LLAMA_VOCAB_TYPE_BPE:
  10826. {
  10827. if (add_special && vocab.special_add_bos != 0) {
  10828. GGML_ASSERT(vocab.special_bos_id != -1);
  10829. output.push_back(vocab.special_bos_id);
  10830. }
  10831. for (const auto & fragment : fragment_buffer) {
  10832. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10833. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10834. #ifdef PRETOKENIZERDEBUG
  10835. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10836. #endif
  10837. llm_tokenizer_bpe tokenizer(vocab);
  10838. tokenizer.tokenize(raw_text, output);
  10839. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10840. output.push_back(fragment.token);
  10841. }
  10842. }
  10843. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10844. LLAMA_LOG_WARN(
  10845. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10846. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10847. "Are you sure this is what you want?\n", __FUNCTION__);
  10848. }
  10849. if (add_special && vocab.special_add_eos == 1) {
  10850. GGML_ASSERT(vocab.special_add_eos != -1);
  10851. output.push_back(vocab.special_eos_id);
  10852. }
  10853. } break;
  10854. case LLAMA_VOCAB_TYPE_WPM:
  10855. {
  10856. if (add_special) {
  10857. GGML_ASSERT(vocab.special_cls_id != -1);
  10858. output.push_back(vocab.special_cls_id);
  10859. }
  10860. for (const auto & fragment : fragment_buffer) {
  10861. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10862. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10863. #ifdef PRETOKENIZERDEBUG
  10864. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10865. #endif
  10866. llm_tokenizer_wpm tokenizer(vocab);
  10867. tokenizer.tokenize(raw_text, output);
  10868. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10869. output.push_back(fragment.token);
  10870. }
  10871. }
  10872. if (add_special) {
  10873. GGML_ASSERT(vocab.special_sep_id != -1);
  10874. output.push_back(vocab.special_sep_id);
  10875. }
  10876. } break;
  10877. case LLAMA_VOCAB_TYPE_NONE:
  10878. GGML_ASSERT(false);
  10879. }
  10880. return output;
  10881. }
  10882. //
  10883. // grammar - internal
  10884. //
  10885. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10886. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10887. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10888. const std::string & src,
  10889. llama_partial_utf8 partial_start) {
  10890. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10891. const char * pos = src.c_str();
  10892. std::vector<uint32_t> code_points;
  10893. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10894. code_points.reserve(src.size() + 1);
  10895. uint32_t value = partial_start.value;
  10896. int n_remain = partial_start.n_remain;
  10897. // continue previous decode, if applicable
  10898. while (*pos != 0 && n_remain > 0) {
  10899. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10900. if ((next_byte >> 6) != 2) {
  10901. // invalid sequence, abort
  10902. code_points.push_back(0);
  10903. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10904. }
  10905. value = (value << 6) + (next_byte & 0x3F);
  10906. ++pos;
  10907. --n_remain;
  10908. }
  10909. if (partial_start.n_remain > 0 && n_remain == 0) {
  10910. code_points.push_back(value);
  10911. }
  10912. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10913. while (*pos != 0) {
  10914. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10915. uint8_t highbits = first_byte >> 4;
  10916. n_remain = lookup[highbits] - 1;
  10917. if (n_remain < 0) {
  10918. // invalid sequence, abort
  10919. code_points.clear();
  10920. code_points.push_back(0);
  10921. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10922. }
  10923. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10924. value = first_byte & mask;
  10925. ++pos;
  10926. while (*pos != 0 && n_remain > 0) {
  10927. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10928. ++pos;
  10929. --n_remain;
  10930. }
  10931. if (n_remain == 0) {
  10932. code_points.push_back(value);
  10933. }
  10934. }
  10935. code_points.push_back(0);
  10936. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10937. }
  10938. // returns true iff pos points to the end of one of the definitions of a rule
  10939. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10940. switch (pos->type) {
  10941. case LLAMA_GRETYPE_END: return true; // NOLINT
  10942. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10943. default: return false;
  10944. }
  10945. }
  10946. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10947. // asserts that pos is pointing to a char range element
  10948. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10949. const llama_grammar_element * pos,
  10950. const uint32_t chr) {
  10951. bool found = false;
  10952. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10953. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10954. do {
  10955. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10956. // inclusive range, e.g. [a-z]
  10957. found = found || (pos->value <= chr && chr <= pos[1].value);
  10958. pos += 2;
  10959. } else {
  10960. // exact char match, e.g. [a] or "a"
  10961. found = found || pos->value == chr;
  10962. pos += 1;
  10963. }
  10964. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10965. return std::make_pair(found == is_positive_char, pos);
  10966. }
  10967. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10968. // range at pos (regular or inverse range)
  10969. // asserts that pos is pointing to a char range element
  10970. static bool llama_grammar_match_partial_char(
  10971. const llama_grammar_element * pos,
  10972. const llama_partial_utf8 partial_utf8) {
  10973. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10974. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10975. uint32_t partial_value = partial_utf8.value;
  10976. int n_remain = partial_utf8.n_remain;
  10977. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10978. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10979. return false;
  10980. }
  10981. // range of possible code points this partial UTF-8 sequence could complete to
  10982. uint32_t low = partial_value << (n_remain * 6);
  10983. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10984. if (low == 0) {
  10985. if (n_remain == 2) {
  10986. low = 1 << 11;
  10987. } else if (n_remain == 3) {
  10988. low = 1 << 16;
  10989. }
  10990. }
  10991. do {
  10992. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10993. // inclusive range, e.g. [a-z]
  10994. if (pos->value <= high && low <= pos[1].value) {
  10995. return is_positive_char;
  10996. }
  10997. pos += 2;
  10998. } else {
  10999. // exact char match, e.g. [a] or "a"
  11000. if (low <= pos->value && pos->value <= high) {
  11001. return is_positive_char;
  11002. }
  11003. pos += 1;
  11004. }
  11005. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11006. return !is_positive_char;
  11007. }
  11008. // transforms a grammar pushdown stack into N possible stacks, all ending
  11009. // at a character range (terminal element)
  11010. static void llama_grammar_advance_stack(
  11011. const std::vector<std::vector<llama_grammar_element>> & rules,
  11012. const std::vector<const llama_grammar_element *> & stack,
  11013. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11014. if (stack.empty()) {
  11015. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11016. new_stacks.emplace_back(stack);
  11017. }
  11018. return;
  11019. }
  11020. const llama_grammar_element * pos = stack.back();
  11021. switch (pos->type) {
  11022. case LLAMA_GRETYPE_RULE_REF: {
  11023. const size_t rule_id = static_cast<size_t>(pos->value);
  11024. const llama_grammar_element * subpos = rules[rule_id].data();
  11025. do {
  11026. // init new stack without the top (pos)
  11027. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11028. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11029. // if this rule ref is followed by another element, add that to stack
  11030. new_stack.push_back(pos + 1);
  11031. }
  11032. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11033. // if alternate is nonempty, add to stack
  11034. new_stack.push_back(subpos);
  11035. }
  11036. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11037. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11038. // scan to end of alternate def
  11039. subpos++;
  11040. }
  11041. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11042. // there's another alternate def of this rule to process
  11043. subpos++;
  11044. } else {
  11045. break;
  11046. }
  11047. } while (true);
  11048. break;
  11049. }
  11050. case LLAMA_GRETYPE_CHAR:
  11051. case LLAMA_GRETYPE_CHAR_NOT:
  11052. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11053. // only add the stack if it's not a duplicate of one we already have
  11054. new_stacks.emplace_back(stack);
  11055. }
  11056. break;
  11057. default:
  11058. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11059. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11060. // those
  11061. GGML_ASSERT(false);
  11062. }
  11063. }
  11064. // takes a set of possible pushdown stacks on a grammar, which are required to
  11065. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11066. // produces the N possible stacks if the given char is accepted at those
  11067. // positions
  11068. void llama_grammar_accept(
  11069. const std::vector<std::vector<llama_grammar_element>> & rules,
  11070. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11071. const uint32_t chr,
  11072. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11073. new_stacks.clear();
  11074. for (const auto & stack : stacks) {
  11075. if (stack.empty()) {
  11076. continue;
  11077. }
  11078. auto match = llama_grammar_match_char(stack.back(), chr);
  11079. if (match.first) {
  11080. const llama_grammar_element * pos = match.second;
  11081. // update top of stack to next element, if any
  11082. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11083. if (!llama_grammar_is_end_of_sequence(pos)) {
  11084. new_stack.push_back(pos);
  11085. }
  11086. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11087. }
  11088. }
  11089. }
  11090. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11091. const std::vector<std::vector<llama_grammar_element>> & rules,
  11092. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11093. const std::vector<llama_grammar_candidate> & candidates);
  11094. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11095. const std::vector<std::vector<llama_grammar_element>> & rules,
  11096. const std::vector<const llama_grammar_element *> & stack,
  11097. const std::vector<llama_grammar_candidate> & candidates) {
  11098. std::vector<llama_grammar_candidate> rejects;
  11099. rejects.reserve(candidates.size());
  11100. if (stack.empty()) {
  11101. for (const auto & tok : candidates) {
  11102. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11103. rejects.push_back(tok);
  11104. }
  11105. }
  11106. return rejects;
  11107. }
  11108. const llama_grammar_element * stack_pos = stack.back();
  11109. std::vector<llama_grammar_candidate> next_candidates;
  11110. next_candidates.reserve(candidates.size());
  11111. for (const auto & tok : candidates) {
  11112. if (*tok.code_points == 0) {
  11113. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11114. // that cannot satisfy this position in grammar
  11115. if (tok.partial_utf8.n_remain != 0 &&
  11116. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11117. rejects.push_back(tok);
  11118. }
  11119. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11120. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11121. } else {
  11122. rejects.push_back(tok);
  11123. }
  11124. }
  11125. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11126. // update top of stack to next element, if any
  11127. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11128. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11129. stack_after.push_back(stack_pos_after);
  11130. }
  11131. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11132. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11133. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11134. for (const auto & tok : next_rejects) {
  11135. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11136. }
  11137. return rejects;
  11138. }
  11139. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11140. const std::vector<std::vector<llama_grammar_element>> & rules,
  11141. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11142. const std::vector<llama_grammar_candidate> & candidates) {
  11143. GGML_ASSERT(!stacks.empty()); // REVIEW
  11144. if (candidates.empty()) {
  11145. return std::vector<llama_grammar_candidate>();
  11146. }
  11147. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11148. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11149. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11150. }
  11151. return rejects;
  11152. }
  11153. static bool llama_grammar_detect_left_recursion(
  11154. const std::vector<std::vector<llama_grammar_element>> & rules,
  11155. size_t rule_index,
  11156. std::vector<bool> * rules_visited,
  11157. std::vector<bool> * rules_in_progress,
  11158. std::vector<bool> * rules_may_be_empty) {
  11159. if ((*rules_in_progress)[rule_index]) {
  11160. return true;
  11161. }
  11162. (*rules_in_progress)[rule_index] = true;
  11163. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11164. // First check if the rule might produce the empty string. This could be done combined with the second
  11165. // step but it's more readable as two steps.
  11166. bool at_rule_start = true;
  11167. for (size_t i = 0; i < rule.size(); i++) {
  11168. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11169. if (at_rule_start) {
  11170. (*rules_may_be_empty)[rule_index] = true;
  11171. break;
  11172. }
  11173. at_rule_start = true;
  11174. } else {
  11175. at_rule_start = false;
  11176. }
  11177. }
  11178. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11179. // be empty)
  11180. bool recurse_into_nonterminal = true;
  11181. for (size_t i = 0; i < rule.size(); i++) {
  11182. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11183. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11184. return true;
  11185. }
  11186. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11187. recurse_into_nonterminal = false;
  11188. }
  11189. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11190. recurse_into_nonterminal = true;
  11191. } else {
  11192. recurse_into_nonterminal = false;
  11193. }
  11194. }
  11195. (*rules_in_progress)[rule_index] = false;
  11196. (*rules_visited)[rule_index] = true;
  11197. return false;
  11198. }
  11199. //
  11200. // grammar - external
  11201. //
  11202. struct llama_grammar * llama_grammar_init(
  11203. const llama_grammar_element ** rules,
  11204. size_t n_rules,
  11205. size_t start_rule_index) {
  11206. const llama_grammar_element * pos;
  11207. // copy rule definitions into vectors
  11208. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11209. for (size_t i = 0; i < n_rules; i++) {
  11210. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11211. vec_rules[i].push_back(*pos);
  11212. }
  11213. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11214. }
  11215. // Check for left recursion
  11216. std::vector<bool> rules_visited(n_rules);
  11217. std::vector<bool> rules_in_progress(n_rules);
  11218. std::vector<bool> rules_may_be_empty(n_rules);
  11219. for (size_t i = 0; i < n_rules; i++) {
  11220. if (rules_visited[i]) {
  11221. continue;
  11222. }
  11223. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11224. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11225. }
  11226. }
  11227. // loop over alternates of start rule to build initial stacks
  11228. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11229. pos = vec_rules[start_rule_index].data();
  11230. do {
  11231. std::vector<const llama_grammar_element *> stack;
  11232. if (!llama_grammar_is_end_of_sequence(pos)) {
  11233. // if alternate is nonempty, add to stack
  11234. stack.push_back(pos);
  11235. }
  11236. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11237. while (!llama_grammar_is_end_of_sequence(pos)) {
  11238. // scan to end of alternate def
  11239. pos++;
  11240. }
  11241. if (pos->type == LLAMA_GRETYPE_ALT) {
  11242. // there's another alternate def of this rule to process
  11243. pos++;
  11244. } else {
  11245. break;
  11246. }
  11247. } while (true);
  11248. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11249. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11250. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11251. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11252. }
  11253. void llama_grammar_free(struct llama_grammar * grammar) {
  11254. delete grammar;
  11255. }
  11256. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11257. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11258. // redirect elements in stacks to point to new rules
  11259. for (size_t is = 0; is < result->stacks.size(); is++) {
  11260. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11261. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11262. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11263. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11264. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11265. }
  11266. }
  11267. }
  11268. }
  11269. }
  11270. return result;
  11271. }
  11272. //
  11273. // sampling
  11274. //
  11275. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11276. if (seed == LLAMA_DEFAULT_SEED) {
  11277. seed = time(NULL);
  11278. }
  11279. ctx->rng.seed(seed);
  11280. }
  11281. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11282. GGML_ASSERT(candidates->size > 0);
  11283. const int64_t t_start_sample_us = ggml_time_us();
  11284. // Sort the logits in descending order
  11285. if (!candidates->sorted) {
  11286. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11287. return a.logit > b.logit;
  11288. });
  11289. candidates->sorted = true;
  11290. }
  11291. float max_l = candidates->data[0].logit;
  11292. float cum_sum = 0.0f;
  11293. for (size_t i = 0; i < candidates->size; ++i) {
  11294. float p = expf(candidates->data[i].logit - max_l);
  11295. candidates->data[i].p = p;
  11296. cum_sum += p;
  11297. }
  11298. for (size_t i = 0; i < candidates->size; ++i) {
  11299. candidates->data[i].p /= cum_sum;
  11300. }
  11301. if (ctx) {
  11302. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11303. }
  11304. }
  11305. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11306. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11307. // if (k >= (int32_t)candidates->size) {
  11308. // return;
  11309. // }
  11310. const int64_t t_start_sample_us = ggml_time_us();
  11311. if (k <= 0) {
  11312. k = candidates->size;
  11313. }
  11314. k = std::max(k, (int) min_keep);
  11315. k = std::min(k, (int) candidates->size);
  11316. // Sort scores in descending order
  11317. if (!candidates->sorted) {
  11318. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11319. return a.logit > b.logit;
  11320. };
  11321. if (k <= 128) {
  11322. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11323. } else {
  11324. constexpr int nbuckets = 128;
  11325. constexpr float bucket_low = -10.0f;
  11326. constexpr float bucket_high = 10.0f;
  11327. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11328. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11329. std::vector<int> bucket_idx(candidates->size);
  11330. std::vector<int> histo(nbuckets, 0);
  11331. for (int i = 0; i < (int)candidates->size; ++i) {
  11332. const float val = candidates->data[i].logit;
  11333. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11334. ib = std::max(0, std::min(nbuckets-1, ib));
  11335. bucket_idx[i] = ib;
  11336. ++histo[ib];
  11337. }
  11338. int nhave = 0;
  11339. int ib = nbuckets - 1;
  11340. for ( ; ib >= 0; --ib) {
  11341. nhave += histo[ib];
  11342. if (nhave >= k) break;
  11343. }
  11344. std::vector<llama_token_data> tmp_tokens(nhave);
  11345. auto ptr = tmp_tokens.data();
  11346. std::vector<llama_token_data*> bucket_ptrs;
  11347. bucket_ptrs.reserve(nbuckets - ib);
  11348. for (int j = nbuckets - 1; j >= ib; --j) {
  11349. bucket_ptrs.push_back(ptr);
  11350. ptr += histo[j];
  11351. }
  11352. for (int i = 0; i < (int)candidates->size; ++i) {
  11353. int j = bucket_idx[i];
  11354. if (j >= ib) {
  11355. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11356. }
  11357. }
  11358. ptr = tmp_tokens.data();
  11359. int ndone = 0;
  11360. for (int j = nbuckets-1; j > ib; --j) {
  11361. std::sort(ptr, ptr + histo[j], comp);
  11362. ptr += histo[j];
  11363. ndone += histo[j];
  11364. }
  11365. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11366. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11367. }
  11368. candidates->sorted = true;
  11369. }
  11370. candidates->size = k;
  11371. if (ctx) {
  11372. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11373. }
  11374. }
  11375. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11376. if (p >= 1.0f) {
  11377. return;
  11378. }
  11379. llama_sample_softmax(ctx, candidates);
  11380. const int64_t t_start_sample_us = ggml_time_us();
  11381. // Compute the cumulative probabilities
  11382. float cum_sum = 0.0f;
  11383. size_t last_idx = candidates->size;
  11384. for (size_t i = 0; i < candidates->size; ++i) {
  11385. cum_sum += candidates->data[i].p;
  11386. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11387. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11388. if (cum_sum >= p && i + 1 >= min_keep) {
  11389. last_idx = i + 1;
  11390. break;
  11391. }
  11392. }
  11393. // Resize the output vector to keep only the top-p tokens
  11394. candidates->size = last_idx;
  11395. if (ctx) {
  11396. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11397. }
  11398. }
  11399. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11400. if (p <= 0.0f || !candidates->size) {
  11401. return;
  11402. }
  11403. const int64_t t_start_sample_us = ggml_time_us();
  11404. bool min_p_applied = false;
  11405. // if the candidates aren't sorted, try the unsorted implementation first
  11406. if (!candidates->sorted) {
  11407. std::vector<llama_token_data> filtered_tokens;
  11408. float max_logit = -FLT_MAX;
  11409. for (size_t i = 0; i < candidates->size; ++i) {
  11410. max_logit = std::max(max_logit, candidates->data[i].logit);
  11411. }
  11412. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11413. for (size_t i = 0; i < candidates->size; ++i) {
  11414. if (candidates->data[i].logit >= min_logit) {
  11415. filtered_tokens.push_back(candidates->data[i]);
  11416. }
  11417. }
  11418. // if we have enough values the operation was a success
  11419. if (filtered_tokens.size() >= min_keep) {
  11420. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11421. candidates->size = filtered_tokens.size();
  11422. min_p_applied = true;
  11423. }
  11424. }
  11425. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11426. if (!min_p_applied) {
  11427. // Sort the logits in descending order
  11428. if (!candidates->sorted) {
  11429. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11430. return a.logit > b.logit;
  11431. });
  11432. candidates->sorted = true;
  11433. }
  11434. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11435. size_t i = 1; // first token always matches
  11436. for (; i < candidates->size; ++i) {
  11437. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11438. break; // prob too small
  11439. }
  11440. }
  11441. // Resize the output vector to keep only the matching tokens
  11442. candidates->size = i;
  11443. }
  11444. if (ctx) {
  11445. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11446. }
  11447. }
  11448. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11449. if (z >= 1.0f || candidates->size <= 2) {
  11450. return;
  11451. }
  11452. llama_sample_softmax(nullptr, candidates);
  11453. const int64_t t_start_sample_us = ggml_time_us();
  11454. // Compute the first and second derivatives
  11455. std::vector<float> first_derivatives(candidates->size - 1);
  11456. std::vector<float> second_derivatives(candidates->size - 2);
  11457. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11458. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11459. }
  11460. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11461. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11462. }
  11463. // Calculate absolute value of second derivatives
  11464. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11465. second_derivatives[i] = std::abs(second_derivatives[i]);
  11466. }
  11467. // Normalize the second derivatives
  11468. {
  11469. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11470. if (second_derivatives_sum > 1e-6f) {
  11471. for (float & value : second_derivatives) {
  11472. value /= second_derivatives_sum;
  11473. }
  11474. } else {
  11475. for (float & value : second_derivatives) {
  11476. value = 1.0f / second_derivatives.size();
  11477. }
  11478. }
  11479. }
  11480. float cum_sum = 0.0f;
  11481. size_t last_idx = candidates->size;
  11482. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11483. cum_sum += second_derivatives[i];
  11484. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11485. if (cum_sum > z && i >= min_keep) {
  11486. last_idx = i;
  11487. break;
  11488. }
  11489. }
  11490. // Resize the output vector to keep only the tokens above the tail location
  11491. candidates->size = last_idx;
  11492. if (ctx) {
  11493. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11494. }
  11495. }
  11496. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11497. // Reference implementation:
  11498. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11499. if (p >= 1.0f) {
  11500. return;
  11501. }
  11502. // Compute the softmax of logits and calculate entropy
  11503. llama_sample_softmax(nullptr, candidates);
  11504. const int64_t t_start_sample_us = ggml_time_us();
  11505. float entropy = 0.0f;
  11506. for (size_t i = 0; i < candidates->size; ++i) {
  11507. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11508. }
  11509. // Compute the absolute difference between negative log probability and entropy for each candidate
  11510. std::vector<float> shifted_scores;
  11511. for (size_t i = 0; i < candidates->size; ++i) {
  11512. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11513. shifted_scores.push_back(shifted_score);
  11514. }
  11515. // Sort tokens based on the shifted_scores and their corresponding indices
  11516. std::vector<size_t> indices(candidates->size);
  11517. std::iota(indices.begin(), indices.end(), 0);
  11518. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11519. return shifted_scores[a] < shifted_scores[b];
  11520. });
  11521. // Compute the cumulative probabilities
  11522. float cum_sum = 0.0f;
  11523. size_t last_idx = indices.size();
  11524. for (size_t i = 0; i < indices.size(); ++i) {
  11525. size_t idx = indices[i];
  11526. cum_sum += candidates->data[idx].p;
  11527. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11528. if (cum_sum > p && i >= min_keep - 1) {
  11529. last_idx = i + 1;
  11530. break;
  11531. }
  11532. }
  11533. // Resize the output vector to keep only the locally typical tokens
  11534. std::vector<llama_token_data> new_candidates;
  11535. for (size_t i = 0; i < last_idx; ++i) {
  11536. size_t idx = indices[i];
  11537. new_candidates.push_back(candidates->data[idx]);
  11538. }
  11539. // Replace the data in candidates with the new_candidates data
  11540. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11541. candidates->size = new_candidates.size();
  11542. candidates->sorted = false;
  11543. if (ctx) {
  11544. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11545. }
  11546. }
  11547. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11548. const int64_t t_start_sample_us = ggml_time_us();
  11549. // no need to do anything if there is only one (or zero) candidates
  11550. if(candidates_p->size <= 1) {
  11551. return;
  11552. }
  11553. // Calculate maximum possible entropy
  11554. float max_entropy = -logf(1.0f / candidates_p->size);
  11555. llama_sample_softmax(nullptr, candidates_p);
  11556. // Calculate entropy of the softmax probabilities
  11557. float entropy = 0.0f;
  11558. for (size_t i = 0; i < candidates_p->size; ++i) {
  11559. float prob = candidates_p->data[i].p;
  11560. if (prob > 0.0f) { // Ensure no log(0)
  11561. entropy -= prob * logf(prob);
  11562. }
  11563. }
  11564. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11565. float normalized_entropy = entropy / max_entropy;
  11566. // Map the normalized entropy to the desired temperature range using the power function
  11567. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11568. #ifdef DEBUG
  11569. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11570. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11571. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11572. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11573. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11574. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11575. #endif
  11576. // Apply the dynamically calculated temperature scaling
  11577. for (size_t i = 0; i < candidates_p->size; ++i) {
  11578. candidates_p->data[i].logit /= dyn_temp;
  11579. }
  11580. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11581. double max_l_double = candidates_p->data[0].logit;
  11582. double cum_sum_double = 0.0;
  11583. for (size_t i = 0; i < candidates_p->size; ++i) {
  11584. double p = exp(candidates_p->data[i].logit - max_l_double);
  11585. candidates_p->data[i].p = p; // Store the scaled probability
  11586. cum_sum_double += p;
  11587. }
  11588. for (size_t i = 0; i < candidates_p->size; ++i) {
  11589. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11590. }
  11591. #ifdef DEBUG
  11592. // Print the updated top 25 probabilities after temperature scaling
  11593. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11594. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11595. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11596. }
  11597. #endif
  11598. if (ctx) {
  11599. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11600. }
  11601. }
  11602. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11603. const int64_t t_start_sample_us = ggml_time_us();
  11604. for (size_t i = 0; i < candidates_p->size; ++i) {
  11605. candidates_p->data[i].logit /= temp;
  11606. }
  11607. if (ctx) {
  11608. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11609. }
  11610. }
  11611. void llama_sample_repetition_penalties(
  11612. struct llama_context * ctx,
  11613. llama_token_data_array * candidates,
  11614. const llama_token * last_tokens,
  11615. size_t penalty_last_n,
  11616. float penalty_repeat,
  11617. float penalty_freq,
  11618. float penalty_present) {
  11619. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11620. return;
  11621. }
  11622. const int64_t t_start_sample_us = ggml_time_us();
  11623. // Create a frequency map to count occurrences of each token in last_tokens
  11624. std::unordered_map<llama_token, int> token_count;
  11625. for (size_t i = 0; i < penalty_last_n; ++i) {
  11626. token_count[last_tokens[i]]++;
  11627. }
  11628. // Apply frequency and presence penalties to the candidates
  11629. for (size_t i = 0; i < candidates->size; ++i) {
  11630. const auto token_iter = token_count.find(candidates->data[i].id);
  11631. if (token_iter == token_count.end()) {
  11632. continue;
  11633. }
  11634. const int count = token_iter->second;
  11635. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11636. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11637. if (candidates->data[i].logit <= 0) {
  11638. candidates->data[i].logit *= penalty_repeat;
  11639. } else {
  11640. candidates->data[i].logit /= penalty_repeat;
  11641. }
  11642. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11643. }
  11644. candidates->sorted = false;
  11645. if (ctx) {
  11646. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11647. }
  11648. }
  11649. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11650. GGML_ASSERT(ctx);
  11651. const int64_t t_start_sample_us = ggml_time_us();
  11652. bool allow_eog = false;
  11653. for (const auto & stack : grammar->stacks) {
  11654. if (stack.empty()) {
  11655. allow_eog = true;
  11656. break;
  11657. }
  11658. }
  11659. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11660. candidates_decoded.reserve(candidates->size);
  11661. std::vector<llama_grammar_candidate> candidates_grammar;
  11662. candidates_grammar.reserve(candidates->size);
  11663. for (size_t i = 0; i < candidates->size; ++i) {
  11664. const llama_token id = candidates->data[i].id;
  11665. const std::string piece = llama_token_to_piece(ctx, id, false);
  11666. if (llama_token_is_eog(&ctx->model, id)) {
  11667. if (!allow_eog) {
  11668. candidates->data[i].logit = -INFINITY;
  11669. }
  11670. } else if (piece.empty() || piece[0] == 0) {
  11671. candidates->data[i].logit = -INFINITY;
  11672. } else {
  11673. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11674. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11675. }
  11676. }
  11677. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11678. for (const auto & reject : rejects) {
  11679. candidates->data[reject.index].logit = -INFINITY;
  11680. }
  11681. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11682. }
  11683. static void llama_log_softmax(float * array, size_t size) {
  11684. float max_l = *std::max_element(array, array + size);
  11685. float sum = 0.f;
  11686. for (size_t i = 0; i < size; ++i) {
  11687. float p = expf(array[i] - max_l);
  11688. sum += p;
  11689. array[i] = p;
  11690. }
  11691. for (size_t i = 0; i < size; ++i) {
  11692. array[i] = logf(array[i] / sum);
  11693. }
  11694. }
  11695. void llama_sample_apply_guidance(
  11696. struct llama_context * ctx,
  11697. float * logits,
  11698. float * logits_guidance,
  11699. float scale) {
  11700. GGML_ASSERT(ctx);
  11701. const auto t_start_sample_us = ggml_time_us();
  11702. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11703. llama_log_softmax(logits, n_vocab);
  11704. llama_log_softmax(logits_guidance, n_vocab);
  11705. for (int i = 0; i < n_vocab; ++i) {
  11706. auto & l = logits[i];
  11707. const auto & g = logits_guidance[i];
  11708. l = scale * (l - g) + g;
  11709. }
  11710. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11711. }
  11712. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11713. GGML_ASSERT(ctx);
  11714. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11715. int64_t t_start_sample_us;
  11716. t_start_sample_us = ggml_time_us();
  11717. llama_sample_softmax(nullptr, candidates);
  11718. // Estimate s_hat using the most probable m tokens
  11719. float s_hat = 0.0;
  11720. float sum_ti_bi = 0.0;
  11721. float sum_ti_sq = 0.0;
  11722. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11723. float t_i = logf(float(i + 2) / float(i + 1));
  11724. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11725. sum_ti_bi += t_i * b_i;
  11726. sum_ti_sq += t_i * t_i;
  11727. }
  11728. s_hat = sum_ti_bi / sum_ti_sq;
  11729. // Compute k from the estimated s_hat and target surprise value
  11730. float epsilon_hat = s_hat - 1;
  11731. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11732. // Sample the next word X using top-k sampling
  11733. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11734. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11735. llama_token X = llama_sample_token(ctx, candidates);
  11736. t_start_sample_us = ggml_time_us();
  11737. // Compute error as the difference between observed surprise and target surprise value
  11738. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11739. return candidate.id == X;
  11740. }));
  11741. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11742. float e = observed_surprise - tau;
  11743. // Update mu using the learning rate and error
  11744. *mu = *mu - eta * e;
  11745. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11746. return X;
  11747. }
  11748. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11749. int64_t t_start_sample_us;
  11750. t_start_sample_us = ggml_time_us();
  11751. llama_sample_softmax(ctx, candidates);
  11752. // Truncate the words with surprise values greater than mu
  11753. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11754. return -log2f(candidate.p) > *mu;
  11755. }));
  11756. if (candidates->size == 0) {
  11757. candidates->size = 1;
  11758. }
  11759. if (ctx) {
  11760. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11761. }
  11762. // Normalize the probabilities of the remaining words
  11763. llama_sample_softmax(ctx, candidates);
  11764. // Sample the next word X from the remaining words
  11765. llama_token X = llama_sample_token(ctx, candidates);
  11766. t_start_sample_us = ggml_time_us();
  11767. // Compute error as the difference between observed surprise and target surprise value
  11768. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11769. return candidate.id == X;
  11770. }));
  11771. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11772. float e = observed_surprise - tau;
  11773. // Update mu using the learning rate and error
  11774. *mu = *mu - eta * e;
  11775. if (ctx) {
  11776. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11777. }
  11778. return X;
  11779. }
  11780. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11781. const int64_t t_start_sample_us = ggml_time_us();
  11782. // Find max element
  11783. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11784. return a.logit < b.logit;
  11785. });
  11786. llama_token result = max_iter->id;
  11787. if (ctx) {
  11788. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11789. ctx->n_sample++;
  11790. }
  11791. return result;
  11792. }
  11793. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11794. GGML_ASSERT(ctx);
  11795. const int64_t t_start_sample_us = ggml_time_us();
  11796. llama_sample_softmax(nullptr, candidates);
  11797. std::vector<float> probs;
  11798. probs.reserve(candidates->size);
  11799. for (size_t i = 0; i < candidates->size; ++i) {
  11800. probs.push_back(candidates->data[i].p);
  11801. }
  11802. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11803. int idx = dist(rng);
  11804. llama_token result = candidates->data[idx].id;
  11805. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11806. ctx->n_sample++;
  11807. return result;
  11808. }
  11809. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11810. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11811. }
  11812. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11813. const int64_t t_start_sample_us = ggml_time_us();
  11814. if (llama_token_is_eog(&ctx->model, token)) {
  11815. for (const auto & stack : grammar->stacks) {
  11816. if (stack.empty()) {
  11817. return;
  11818. }
  11819. }
  11820. GGML_ASSERT(false);
  11821. }
  11822. const std::string piece = llama_token_to_piece(ctx, token, false);
  11823. // Note terminating 0 in decoded string
  11824. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11825. const auto & code_points = decoded.first;
  11826. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11827. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11828. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11829. grammar->stacks = tmp_new_stacks;
  11830. }
  11831. grammar->partial_utf8 = decoded.second;
  11832. GGML_ASSERT(!grammar->stacks.empty());
  11833. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11834. }
  11835. //
  11836. // Beam search
  11837. //
  11838. struct llama_beam {
  11839. std::vector<llama_token> tokens;
  11840. float p; // Cumulative beam probability (renormalized relative to all beams)
  11841. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11842. // Sort beams by probability. In case of ties, prefer beams at eob.
  11843. bool operator<(const llama_beam & rhs) const {
  11844. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11845. }
  11846. // Shift off first n tokens and discard them.
  11847. void shift_tokens(const size_t n) {
  11848. if (n) {
  11849. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11850. tokens.resize(tokens.size() - n);
  11851. }
  11852. }
  11853. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11854. };
  11855. // A struct for calculating logit-related info.
  11856. struct llama_logit_info {
  11857. const float * const logits;
  11858. const int n_vocab;
  11859. const float max_l;
  11860. const float normalizer;
  11861. struct sum_exp {
  11862. float max_l;
  11863. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11864. };
  11865. llama_logit_info(llama_context * ctx)
  11866. : logits(llama_get_logits(ctx))
  11867. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11868. , max_l(*std::max_element(logits, logits + n_vocab))
  11869. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11870. { }
  11871. llama_token_data get_token_data(const llama_token token_id) const {
  11872. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11873. return {token_id, logits[token_id], p};
  11874. }
  11875. // Return top k token_data by logit.
  11876. std::vector<llama_token_data> top_k(size_t k) {
  11877. std::vector<llama_token_data> min_heap; // min-heap by logit
  11878. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11879. min_heap.reserve(k_min);
  11880. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11881. min_heap.push_back(get_token_data(token_id));
  11882. }
  11883. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11884. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11885. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11886. if (min_heap.front().logit < logits[token_id]) {
  11887. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11888. min_heap.back().id = token_id;
  11889. min_heap.back().logit = logits[token_id];
  11890. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11891. }
  11892. }
  11893. return min_heap;
  11894. }
  11895. float probability_from_logit(float logit) const {
  11896. return normalizer * std::exp(logit - max_l);
  11897. }
  11898. };
  11899. struct llama_beam_search_data {
  11900. llama_context * ctx;
  11901. size_t n_beams;
  11902. int n_past;
  11903. int n_predict;
  11904. std::vector<llama_beam> beams;
  11905. std::vector<llama_beam> next_beams;
  11906. // Re-calculated on each loop iteration
  11907. size_t common_prefix_length;
  11908. // Used to communicate to/from callback on beams state.
  11909. std::vector<llama_beam_view> beam_views;
  11910. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11911. : ctx(ctx)
  11912. , n_beams(n_beams)
  11913. , n_past(n_past)
  11914. , n_predict(n_predict)
  11915. , beam_views(n_beams) {
  11916. beams.reserve(n_beams);
  11917. next_beams.reserve(n_beams);
  11918. }
  11919. // Collapse beams to a single beam given by index.
  11920. void collapse_beams(const size_t beam_idx) {
  11921. if (0u < beam_idx) {
  11922. std::swap(beams[0], beams[beam_idx]);
  11923. }
  11924. beams.resize(1);
  11925. }
  11926. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11927. // The repetitive patterns below reflect the 2 stages of heaps:
  11928. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11929. // * If the heap is full and a new element is found that should be included, pop the
  11930. // least element to the back(), replace it with the new, then push it into the heap.
  11931. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11932. // Min-heaps use a greater-than comparator.
  11933. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11934. if (beam.eob) {
  11935. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11936. if (next_beams.size() < n_beams) {
  11937. next_beams.push_back(std::move(beam));
  11938. if (next_beams.size() == n_beams) {
  11939. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11940. }
  11941. } else if (next_beams.front().p < beam.p) {
  11942. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11943. next_beams.back() = std::move(beam);
  11944. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11945. }
  11946. } else {
  11947. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11948. if (!beam.tokens.empty()) {
  11949. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11950. }
  11951. llama_logit_info logit_info(ctx);
  11952. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11953. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11954. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11955. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11956. size_t i=0;
  11957. if (next_beams.size() < n_beams) {
  11958. for (; next_beams.size() < n_beams ; ++i) {
  11959. llama_beam next_beam = beam;
  11960. next_beam.tokens.push_back(next_tokens[i].id);
  11961. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11962. next_beams.push_back(std::move(next_beam));
  11963. }
  11964. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11965. } else {
  11966. for (; next_beams.front().p == 0.0f ; ++i) {
  11967. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11968. next_beams.back() = beam;
  11969. next_beams.back().tokens.push_back(next_tokens[i].id);
  11970. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11971. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11972. }
  11973. }
  11974. for (; i < n_beams ; ++i) {
  11975. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11976. if (next_beams.front().p < next_p) {
  11977. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11978. next_beams.back() = beam;
  11979. next_beams.back().tokens.push_back(next_tokens[i].id);
  11980. next_beams.back().p = next_p;
  11981. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11982. }
  11983. }
  11984. }
  11985. }
  11986. // Find common_prefix_length based on beams.
  11987. // Requires beams is not empty.
  11988. size_t find_common_prefix_length() {
  11989. size_t common_prefix_length = beams[0].tokens.size();
  11990. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11991. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11992. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11993. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11994. common_prefix_length = j;
  11995. break;
  11996. }
  11997. }
  11998. }
  11999. return common_prefix_length;
  12000. }
  12001. // Construct beams_state to send back to caller via the callback function.
  12002. // Side effect: set common_prefix_length = find_common_prefix_length();
  12003. llama_beams_state get_beams_state(const bool last_call) {
  12004. for (size_t i = 0 ; i < beams.size() ; ++i) {
  12005. beam_views[i] = beams[i].view();
  12006. }
  12007. common_prefix_length = find_common_prefix_length();
  12008. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  12009. }
  12010. // Loop:
  12011. // * while i < n_predict, AND
  12012. // * any of the beams have not yet reached end-of-beam (eob), AND
  12013. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  12014. // (since all other beam probabilities can only decrease)
  12015. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  12016. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  12017. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  12018. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  12019. !beams[top_beam_index()].eob ; ++i) {
  12020. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  12021. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  12022. if (common_prefix_length) {
  12023. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  12024. n_past += common_prefix_length;
  12025. }
  12026. // Zero-out next_beam probabilities to place them last in following min-heap.
  12027. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  12028. for (llama_beam & beam : beams) {
  12029. beam.shift_tokens(common_prefix_length);
  12030. fill_next_beams_by_top_probabilities(beam);
  12031. }
  12032. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  12033. beams.swap(next_beams);
  12034. renormalize_beam_probabilities(beams);
  12035. }
  12036. collapse_beams(top_beam_index());
  12037. callback(callback_data, get_beams_state(true));
  12038. }
  12039. // As beams grow, the cumulative probabilities decrease.
  12040. // Renormalize them to avoid floating point underflow.
  12041. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  12042. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  12043. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  12044. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  12045. }
  12046. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  12047. size_t top_beam_index() {
  12048. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  12049. }
  12050. // Copy (p,eob) for each beam which may have been changed by the callback.
  12051. void update_beams_from_beam_views() {
  12052. for (size_t i = 0 ; i < beams.size() ; ++i) {
  12053. beams[i].p = beam_views[i].p;
  12054. beams[i].eob = beam_views[i].eob;
  12055. }
  12056. }
  12057. };
  12058. void llama_beam_search(llama_context * ctx,
  12059. llama_beam_search_callback_fn_t callback, void * callback_data,
  12060. size_t n_beams, int n_past, int n_predict) {
  12061. assert(ctx);
  12062. const int64_t t_start_sample_us = ggml_time_us();
  12063. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  12064. beam_search_data.loop(callback, callback_data);
  12065. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12066. ctx->n_sample++;
  12067. }
  12068. //
  12069. // quantization
  12070. //
  12071. struct quantize_state_internal {
  12072. const llama_model & model;
  12073. const llama_model_quantize_params * params;
  12074. int n_attention_wv = 0;
  12075. int n_ffn_down = 0;
  12076. int n_ffn_gate = 0;
  12077. int n_ffn_up = 0;
  12078. int i_attention_wv = 0;
  12079. int i_ffn_down = 0;
  12080. int i_ffn_gate = 0;
  12081. int i_ffn_up = 0;
  12082. int n_k_quantized = 0;
  12083. int n_fallback = 0;
  12084. bool has_imatrix = false;
  12085. // used to figure out if a model shares tok_embd with the output weight
  12086. bool has_output = false;
  12087. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12088. : model(model)
  12089. , params(params)
  12090. {}
  12091. };
  12092. static void llama_tensor_dequantize_internal(
  12093. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12094. const size_t nelements, const int nthread
  12095. ) {
  12096. if (output.size() < nelements) {
  12097. output.resize(nelements);
  12098. }
  12099. float * f32_output = (float *) output.data();
  12100. ggml_type_traits_t qtype;
  12101. if (ggml_is_quantized(tensor->type)) {
  12102. qtype = ggml_internal_get_type_traits(tensor->type);
  12103. if (qtype.to_float == NULL) {
  12104. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12105. }
  12106. } else if (tensor->type != GGML_TYPE_F16 &&
  12107. tensor->type != GGML_TYPE_BF16) {
  12108. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12109. }
  12110. if (nthread < 2) {
  12111. if (tensor->type == GGML_TYPE_F16) {
  12112. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12113. } else if (tensor->type == GGML_TYPE_BF16) {
  12114. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12115. } else if (ggml_is_quantized(tensor->type)) {
  12116. qtype.to_float(tensor->data, f32_output, nelements);
  12117. } else {
  12118. GGML_ASSERT(false); // unreachable
  12119. }
  12120. return;
  12121. }
  12122. size_t block_size;
  12123. if (tensor->type == GGML_TYPE_F16 ||
  12124. tensor->type == GGML_TYPE_BF16) {
  12125. block_size = 1;
  12126. } else {
  12127. block_size = (size_t)ggml_blck_size(tensor->type);
  12128. }
  12129. size_t block_size_bytes = ggml_type_size(tensor->type);
  12130. GGML_ASSERT(nelements % block_size == 0);
  12131. size_t nblocks = nelements / block_size;
  12132. size_t blocks_per_thread = nblocks / nthread;
  12133. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12134. size_t in_buff_offs = 0;
  12135. size_t out_buff_offs = 0;
  12136. for (int tnum = 0; tnum < nthread; tnum++) {
  12137. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12138. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12139. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12140. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12141. if (typ == GGML_TYPE_F16) {
  12142. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12143. } else if (typ == GGML_TYPE_BF16) {
  12144. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12145. } else {
  12146. qtype.to_float(inbuf, outbuf, nels);
  12147. }
  12148. };
  12149. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12150. in_buff_offs += thr_block_bytes;
  12151. out_buff_offs += thr_elems;
  12152. }
  12153. for (auto & w : workers) { w.join(); }
  12154. workers.clear();
  12155. }
  12156. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12157. const std::string name = ggml_get_name(tensor);
  12158. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12159. const llm_arch arch = qs.model.arch;
  12160. const auto tn = LLM_TN(arch);
  12161. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12162. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12163. };
  12164. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12165. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12166. if (n_expert > 1) {
  12167. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12168. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12169. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12170. // tensor name.
  12171. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12172. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12173. }
  12174. if (i_layer < 0 || i_layer >= n_layer) {
  12175. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12176. }
  12177. }
  12178. return std::make_pair(i_layer, n_layer);
  12179. };
  12180. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12181. // with the quantization of the output tensor
  12182. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12183. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12184. new_type = qs.params->output_tensor_type;
  12185. } else {
  12186. int nx = tensor->ne[0];
  12187. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12188. new_type = GGML_TYPE_Q8_0;
  12189. }
  12190. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12191. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12192. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12193. new_type = GGML_TYPE_Q5_K;
  12194. }
  12195. else if (new_type != GGML_TYPE_Q8_0) {
  12196. new_type = GGML_TYPE_Q6_K;
  12197. }
  12198. }
  12199. } else if (name == "token_embd.weight") {
  12200. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12201. new_type = qs.params->token_embedding_type;
  12202. } else {
  12203. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12204. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12205. new_type = GGML_TYPE_Q2_K;
  12206. }
  12207. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12208. new_type = GGML_TYPE_IQ3_S;
  12209. }
  12210. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12211. new_type = GGML_TYPE_IQ3_S;
  12212. }
  12213. }
  12214. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12215. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12216. if (name.find("attn_v.weight") != std::string::npos) {
  12217. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12218. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12219. ++qs.i_attention_wv;
  12220. }
  12221. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12222. new_type = GGML_TYPE_Q4_K;
  12223. }
  12224. else if (name.find("ffn_down") != std::string::npos) {
  12225. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12226. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12227. }
  12228. ++qs.i_ffn_down;
  12229. }
  12230. else if (name.find("attn_output.weight") != std::string::npos) {
  12231. if (qs.model.hparams.n_expert == 8) {
  12232. new_type = GGML_TYPE_Q5_K;
  12233. } else {
  12234. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12235. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12236. }
  12237. }
  12238. } else if (name.find("attn_v.weight") != std::string::npos) {
  12239. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12240. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12241. }
  12242. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12243. new_type = GGML_TYPE_Q4_K;
  12244. }
  12245. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12246. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12247. }
  12248. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12249. new_type = GGML_TYPE_Q4_K;
  12250. }
  12251. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12252. new_type = GGML_TYPE_Q4_K;
  12253. }
  12254. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12255. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12256. }
  12257. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12258. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12259. new_type = GGML_TYPE_Q5_K;
  12260. }
  12261. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12262. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12263. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12264. if (qs.model.type == MODEL_70B) {
  12265. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12266. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12267. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12268. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12269. }
  12270. if (qs.model.hparams.n_expert == 8) {
  12271. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12272. // TODO: explore better strategies
  12273. new_type = GGML_TYPE_Q8_0;
  12274. }
  12275. ++qs.i_attention_wv;
  12276. } else if (name.find("attn_k.weight") != std::string::npos) {
  12277. if (qs.model.hparams.n_expert == 8) {
  12278. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12279. // TODO: explore better strategies
  12280. new_type = GGML_TYPE_Q8_0;
  12281. }
  12282. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12283. new_type = GGML_TYPE_IQ3_XXS;
  12284. }
  12285. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12286. new_type = GGML_TYPE_IQ2_S;
  12287. }
  12288. } else if (name.find("attn_q.weight") != std::string::npos) {
  12289. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12290. new_type = GGML_TYPE_IQ3_XXS;
  12291. }
  12292. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12293. new_type = GGML_TYPE_IQ2_S;
  12294. }
  12295. } else if (name.find("ffn_down") != std::string::npos) {
  12296. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12297. int i_layer = info.first, n_layer = info.second;
  12298. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12299. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12300. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12301. }
  12302. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12303. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12304. }
  12305. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12306. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12307. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12308. : GGML_TYPE_Q3_K;
  12309. }
  12310. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12311. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12312. new_type = GGML_TYPE_Q4_K;
  12313. }
  12314. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12315. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12316. }
  12317. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12318. if (arch == LLM_ARCH_FALCON) {
  12319. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12320. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12321. } else {
  12322. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12323. }
  12324. }
  12325. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12326. new_type = GGML_TYPE_Q5_K;
  12327. }
  12328. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12329. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12330. new_type = GGML_TYPE_Q5_K;
  12331. }
  12332. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12333. && qs.has_imatrix && i_layer < n_layer/8) {
  12334. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12335. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12336. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12337. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12338. }
  12339. ++qs.i_ffn_down;
  12340. } else if (name.find("attn_output.weight") != std::string::npos) {
  12341. if (arch != LLM_ARCH_FALCON) {
  12342. if (qs.model.hparams.n_expert == 8) {
  12343. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12344. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12345. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12346. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12347. new_type = GGML_TYPE_Q5_K;
  12348. }
  12349. } else {
  12350. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12351. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12352. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12353. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12354. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12355. }
  12356. } else {
  12357. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12358. }
  12359. }
  12360. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12361. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12362. new_type = GGML_TYPE_Q4_K;
  12363. }
  12364. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12365. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12366. }
  12367. else if (name.find("ffn_gate") != std::string::npos) {
  12368. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12369. int i_layer = info.first, n_layer = info.second;
  12370. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12371. new_type = GGML_TYPE_IQ3_XXS;
  12372. }
  12373. ++qs.i_ffn_gate;
  12374. }
  12375. else if (name.find("ffn_up") != std::string::npos) {
  12376. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12377. int i_layer = info.first, n_layer = info.second;
  12378. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12379. new_type = GGML_TYPE_IQ3_XXS;
  12380. }
  12381. ++qs.i_ffn_up;
  12382. }
  12383. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12384. //}
  12385. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12386. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12387. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12388. //}
  12389. // This can be used to reduce the size of the Q5_K_S model.
  12390. // The associated PPL increase is fully in line with the size reduction
  12391. //else {
  12392. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12393. //}
  12394. bool convert_incompatible_tensor = false;
  12395. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12396. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12397. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12398. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12399. new_type == GGML_TYPE_IQ1_M) {
  12400. int nx = tensor->ne[0];
  12401. int ny = tensor->ne[1];
  12402. if (nx % QK_K != 0) {
  12403. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12404. convert_incompatible_tensor = true;
  12405. } else {
  12406. ++qs.n_k_quantized;
  12407. }
  12408. }
  12409. if (convert_incompatible_tensor) {
  12410. switch (new_type) {
  12411. case GGML_TYPE_IQ2_XXS:
  12412. case GGML_TYPE_IQ2_XS:
  12413. case GGML_TYPE_IQ2_S:
  12414. case GGML_TYPE_IQ3_XXS:
  12415. case GGML_TYPE_IQ3_S:
  12416. case GGML_TYPE_IQ1_S:
  12417. case GGML_TYPE_IQ1_M:
  12418. case GGML_TYPE_Q2_K:
  12419. case GGML_TYPE_Q3_K:
  12420. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12421. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12422. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12423. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12424. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12425. }
  12426. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12427. ++qs.n_fallback;
  12428. }
  12429. return new_type;
  12430. }
  12431. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12432. if (nthread < 2) {
  12433. // single-thread
  12434. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12435. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12436. throw std::runtime_error("quantized data validation failed");
  12437. }
  12438. return new_size;
  12439. }
  12440. std::mutex mutex;
  12441. int64_t counter = 0;
  12442. size_t new_size = 0;
  12443. bool valid = true;
  12444. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12445. nrows, n_per_row, imatrix]() {
  12446. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12447. size_t local_size = 0;
  12448. while (true) {
  12449. std::unique_lock<std::mutex> lock(mutex);
  12450. int64_t first_row = counter; counter += nrows_per_chunk;
  12451. if (first_row >= nrows) {
  12452. if (local_size > 0) {
  12453. new_size += local_size;
  12454. }
  12455. break;
  12456. }
  12457. lock.unlock();
  12458. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12459. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12460. local_size += this_size;
  12461. // validate the quantized data
  12462. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12463. void * this_data = (char *) new_data + first_row * row_size;
  12464. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12465. std::unique_lock<std::mutex> lock(mutex);
  12466. valid = false;
  12467. break;
  12468. }
  12469. }
  12470. };
  12471. for (int it = 0; it < nthread - 1; ++it) {
  12472. workers.emplace_back(compute);
  12473. }
  12474. compute();
  12475. for (auto & w : workers) { w.join(); }
  12476. workers.clear();
  12477. if (!valid) {
  12478. throw std::runtime_error("quantized data validation failed");
  12479. }
  12480. return new_size;
  12481. }
  12482. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12483. ggml_type default_type;
  12484. llama_ftype ftype = params->ftype;
  12485. switch (params->ftype) {
  12486. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12487. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12488. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12489. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12490. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12491. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12492. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12493. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12494. // K-quants
  12495. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12496. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12497. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12498. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12499. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12500. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12501. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12502. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12503. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12504. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12505. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12506. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12507. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12508. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12509. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12510. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12511. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12512. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12513. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12514. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12515. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12516. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12517. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12518. }
  12519. int nthread = params->nthread;
  12520. if (nthread <= 0) {
  12521. nthread = std::thread::hardware_concurrency();
  12522. }
  12523. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12524. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12525. #if defined(__linux__) || defined(_WIN32)
  12526. constexpr bool use_mmap = true;
  12527. #else
  12528. constexpr bool use_mmap = false;
  12529. #endif
  12530. llama_model_kv_override * kv_overrides = nullptr;
  12531. if (params->kv_overrides) {
  12532. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12533. kv_overrides = v->data();
  12534. }
  12535. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12536. ml.init_mappings(false); // no prefetching
  12537. llama_model model;
  12538. llm_load_arch(ml, model);
  12539. llm_load_hparams(ml, model);
  12540. struct quantize_state_internal qs(model, params);
  12541. if (params->only_copy) {
  12542. ftype = model.ftype;
  12543. }
  12544. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12545. if (params->imatrix) {
  12546. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12547. if (imatrix_data) {
  12548. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12549. qs.has_imatrix = true;
  12550. }
  12551. }
  12552. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12553. struct gguf_context * ctx_out = gguf_init_empty();
  12554. // copy the KV pairs from the input file
  12555. gguf_set_kv (ctx_out, ml.meta);
  12556. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12557. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12558. // Remove split metadata
  12559. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12560. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12561. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12562. if (params->kv_overrides) {
  12563. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12564. for (auto & o : overrides) {
  12565. if (o.key[0] == 0) break;
  12566. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12567. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12568. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12569. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12570. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12571. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12572. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12573. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12574. } else {
  12575. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12576. }
  12577. }
  12578. }
  12579. for (int i = 0; i < ml.n_tensors; ++i) {
  12580. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12581. const std::string name = ggml_get_name(meta);
  12582. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12583. if (name.find("attn_v.weight") != std::string::npos ||
  12584. name.find("attn_qkv.weight") != std::string::npos) {
  12585. ++qs.n_attention_wv;
  12586. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12587. qs.has_output = true;
  12588. }
  12589. }
  12590. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12591. // sanity checks
  12592. //
  12593. // - qs.n_attention_wv == 0 for Mamba models
  12594. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12595. //
  12596. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12597. size_t total_size_org = 0;
  12598. size_t total_size_new = 0;
  12599. std::vector<std::thread> workers;
  12600. workers.reserve(nthread);
  12601. int idx = 0;
  12602. std::vector<no_init<uint8_t>> read_data;
  12603. std::vector<no_init<uint8_t>> work;
  12604. std::vector<no_init<float>> f32_conv_buf;
  12605. uint16_t n_split = 1;
  12606. // Assume split index is continuous
  12607. if (params->keep_split) {
  12608. for (int i = 0; i < ml.n_tensors; ++i) {
  12609. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12610. }
  12611. }
  12612. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12613. ctx_outs[0] = ctx_out;
  12614. // populate the original tensors so we get an initial meta data
  12615. for (int i = 0; i < ml.n_tensors; ++i) {
  12616. auto weight = ml.get_weight(i);
  12617. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12618. struct ggml_tensor * tensor = weight->tensor;
  12619. if (ctx_outs[i_split] == NULL) {
  12620. ctx_outs[i_split] = gguf_init_empty();
  12621. }
  12622. gguf_add_tensor(ctx_outs[i_split], tensor);
  12623. }
  12624. // Set split info if needed
  12625. if (n_split > 1) {
  12626. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12627. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12628. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12629. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12630. }
  12631. }
  12632. int cur_split = -1;
  12633. std::ofstream fout;
  12634. auto close_ofstream = [&]() {
  12635. // Write metadata and close file handler
  12636. if (fout.is_open()) {
  12637. fout.seekp(0);
  12638. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12639. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12640. fout.write((const char *) data.data(), data.size());
  12641. fout.close();
  12642. }
  12643. };
  12644. auto new_ofstream = [&](int index) {
  12645. cur_split = index;
  12646. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12647. std::string fname = fname_out;
  12648. if (params->keep_split) {
  12649. char split_path[PATH_MAX] = {0};
  12650. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12651. fname = std::string(split_path);
  12652. }
  12653. fout = std::ofstream(fname, std::ios::binary);
  12654. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12655. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12656. // placeholder for the meta data
  12657. ::zeros(fout, meta_size);
  12658. };
  12659. const auto tn = LLM_TN(model.arch);
  12660. new_ofstream(0);
  12661. for (int i = 0; i < ml.n_tensors; ++i) {
  12662. auto weight = ml.get_weight(i);
  12663. struct ggml_tensor * tensor = weight->tensor;
  12664. if (weight->idx != cur_split && params->keep_split) {
  12665. close_ofstream();
  12666. new_ofstream(weight->idx);
  12667. }
  12668. const std::string name = ggml_get_name(tensor);
  12669. if (!ml.use_mmap) {
  12670. if (read_data.size() < ggml_nbytes(tensor)) {
  12671. read_data.resize(ggml_nbytes(tensor));
  12672. }
  12673. tensor->data = read_data.data();
  12674. }
  12675. ml.load_data_for(tensor);
  12676. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12677. ++idx, ml.n_tensors,
  12678. ggml_get_name(tensor),
  12679. llama_format_tensor_shape(tensor).c_str(),
  12680. ggml_type_name(tensor->type));
  12681. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12682. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12683. // quantize only 2D and 3D tensors (experts)
  12684. quantize &= (ggml_n_dims(tensor) >= 2);
  12685. // do not quantize norm tensors
  12686. quantize &= name.find("_norm.weight") == std::string::npos;
  12687. quantize &= params->quantize_output_tensor || name != "output.weight";
  12688. quantize &= !params->only_copy;
  12689. // do not quantize expert gating tensors
  12690. // NOTE: can't use LLM_TN here because the layer number is not known
  12691. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12692. // do not quantize positional embeddings and token types (BERT)
  12693. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12694. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12695. // do not quantize Mamba's small yet 2D weights
  12696. // NOTE: can't use LLM_TN here because the layer number is not known
  12697. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12698. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12699. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12700. enum ggml_type new_type;
  12701. void * new_data;
  12702. size_t new_size;
  12703. if (quantize) {
  12704. new_type = default_type;
  12705. // get more optimal quantization type based on the tensor shape, layer, etc.
  12706. if (!params->pure && ggml_is_quantized(default_type)) {
  12707. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12708. }
  12709. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12710. new_type = params->token_embedding_type;
  12711. }
  12712. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12713. new_type = params->output_tensor_type;
  12714. }
  12715. // If we've decided to quantize to the same type the tensor is already
  12716. // in then there's nothing to do.
  12717. quantize = tensor->type != new_type;
  12718. }
  12719. if (!quantize) {
  12720. new_type = tensor->type;
  12721. new_data = tensor->data;
  12722. new_size = ggml_nbytes(tensor);
  12723. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12724. } else {
  12725. const int64_t nelements = ggml_nelements(tensor);
  12726. const float * imatrix = nullptr;
  12727. if (imatrix_data) {
  12728. auto it = imatrix_data->find(tensor->name);
  12729. if (it == imatrix_data->end()) {
  12730. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12731. } else {
  12732. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12733. imatrix = it->second.data();
  12734. } else {
  12735. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12736. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12737. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12738. // this is a significant error and it may be good idea to abort the process if this happens,
  12739. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12740. // tok_embd should be ignored in this case, since it always causes this warning
  12741. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12742. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12743. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12744. }
  12745. }
  12746. }
  12747. }
  12748. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12749. new_type == GGML_TYPE_IQ2_XS ||
  12750. new_type == GGML_TYPE_IQ2_S ||
  12751. new_type == GGML_TYPE_IQ1_S ||
  12752. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12753. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12754. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12755. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12756. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12757. LLAMA_LOG_ERROR("============================================================\n\n");
  12758. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12759. }
  12760. float * f32_data;
  12761. if (tensor->type == GGML_TYPE_F32) {
  12762. f32_data = (float *) tensor->data;
  12763. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12764. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12765. } else {
  12766. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12767. f32_data = (float *) f32_conv_buf.data();
  12768. }
  12769. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12770. fflush(stdout);
  12771. if (work.size() < (size_t)nelements * 4) {
  12772. work.resize(nelements * 4); // upper bound on size
  12773. }
  12774. new_data = work.data();
  12775. const int64_t n_per_row = tensor->ne[0];
  12776. const int64_t nrows = tensor->ne[1];
  12777. static const int64_t min_chunk_size = 32 * 512;
  12778. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12779. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12780. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12781. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12782. // quantize each expert separately since they have different importance matrices
  12783. new_size = 0;
  12784. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12785. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12786. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12787. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12788. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12789. }
  12790. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12791. }
  12792. total_size_org += ggml_nbytes(tensor);
  12793. total_size_new += new_size;
  12794. // update the gguf meta data as we go
  12795. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12796. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12797. // write tensor data + padding
  12798. fout.write((const char *) new_data, new_size);
  12799. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12800. }
  12801. close_ofstream();
  12802. for (auto & c:ctx_outs) {
  12803. gguf_free(c);
  12804. }
  12805. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12806. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12807. if (qs.n_fallback > 0) {
  12808. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12809. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12810. }
  12811. }
  12812. static int llama_apply_lora_from_file_internal(
  12813. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12814. ) {
  12815. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12816. const int64_t t_start_lora_us = ggml_time_us();
  12817. llama_file fin(path_lora, "rb");
  12818. // verify magic and version
  12819. {
  12820. uint32_t magic = fin.read_u32();
  12821. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12822. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12823. return 1;
  12824. }
  12825. uint32_t format_version = fin.read_u32();
  12826. if (format_version != 1) {
  12827. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12828. return 1;
  12829. }
  12830. }
  12831. int32_t lora_r = fin.read_u32();
  12832. int32_t lora_alpha = fin.read_u32();
  12833. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12834. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12835. // load base model
  12836. std::unique_ptr<llama_model_loader> ml;
  12837. if (path_base_model) {
  12838. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12839. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12840. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12841. }
  12842. struct tensor_meta {
  12843. std::string name;
  12844. ggml_type type;
  12845. int32_t ne[2];
  12846. size_t offset;
  12847. };
  12848. std::map<std::string, tensor_meta> tensor_meta_map;
  12849. // load all tensor meta
  12850. while (true) {
  12851. if (fin.tell() == fin.size) {
  12852. // eof
  12853. break;
  12854. }
  12855. int32_t n_dims;
  12856. int32_t name_len;
  12857. int32_t ftype;
  12858. fin.read_raw(&n_dims, sizeof(n_dims));
  12859. fin.read_raw(&name_len, sizeof(name_len));
  12860. fin.read_raw(&ftype, sizeof(ftype));
  12861. if (n_dims != 1 && n_dims != 2) {
  12862. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12863. return 1;
  12864. }
  12865. int32_t ne[2] = { 1, 1 };
  12866. for (int i = 0; i < n_dims; ++i) {
  12867. fin.read_raw(&ne[i], sizeof(ne[i]));
  12868. }
  12869. std::string name;
  12870. {
  12871. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12872. char buf[GGML_MAX_NAME];
  12873. fin.read_raw(buf, name_len);
  12874. name = std::string(buf, name_len);
  12875. }
  12876. // check for lora suffix
  12877. std::string lora_suffix;
  12878. if (name.length() > 6) {
  12879. lora_suffix = name.substr(name.length() - 6);
  12880. }
  12881. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12882. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12883. return 1;
  12884. }
  12885. // tensor type
  12886. ggml_type wtype;
  12887. switch (ftype) {
  12888. case 0: wtype = GGML_TYPE_F32; break;
  12889. case 1: wtype = GGML_TYPE_F16; break;
  12890. default:
  12891. {
  12892. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12893. __func__, ftype);
  12894. return 1;
  12895. }
  12896. }
  12897. // data offset
  12898. size_t offset = fin.tell();
  12899. offset = (offset + 31) & -32;
  12900. // skip tensor data
  12901. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12902. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12903. }
  12904. bool warned = false;
  12905. int n_tensors = 0;
  12906. // apply
  12907. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12908. if (backend_cpu == nullptr) {
  12909. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12910. return 1;
  12911. }
  12912. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12913. std::vector<no_init<uint8_t>> read_buf;
  12914. for (const auto & it : model.tensors_by_name) {
  12915. const std::string & base_name = it.first;
  12916. ggml_tensor * model_t = it.second;
  12917. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12918. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12919. continue;
  12920. }
  12921. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12922. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12923. ggml_init_params lora_init_params = {
  12924. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12925. /* .mem_buffer */ nullptr,
  12926. /* .no_alloc */ true,
  12927. };
  12928. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12929. if (lora_ctx == nullptr) {
  12930. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12931. ggml_backend_free(backend_cpu);
  12932. return 1;
  12933. }
  12934. // create tensors
  12935. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12936. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12937. ggml_set_name(loraA, metaA.name.c_str());
  12938. ggml_set_name(loraB, metaB.name.c_str());
  12939. ggml_tensor * base_t;
  12940. if (ml) {
  12941. if (!ml->get_tensor_meta(base_name.c_str())) {
  12942. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12943. return 1;
  12944. }
  12945. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12946. } else {
  12947. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12948. }
  12949. ggml_set_name(base_t, base_name.c_str());
  12950. // allocate in backend buffer
  12951. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12952. if (lora_buf == nullptr) {
  12953. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12954. return 1;
  12955. }
  12956. // load tensor data
  12957. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12958. read_buf.resize(ggml_nbytes(tensor));
  12959. fin.seek(tensor_meta.offset, SEEK_SET);
  12960. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12961. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12962. };
  12963. load_tensor(metaA, loraA);
  12964. load_tensor(metaB, loraB);
  12965. // load base model tensor data
  12966. if (ml) {
  12967. ml->load_data_for(base_t);
  12968. } else {
  12969. ggml_backend_tensor_copy(model_t, base_t);
  12970. }
  12971. if (ggml_is_quantized(base_t->type) && !warned) {
  12972. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12973. "use a f16 or f32 base model with --lora-base\n", __func__);
  12974. warned = true;
  12975. }
  12976. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12977. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12978. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12979. ggml_free(lora_ctx);
  12980. ggml_backend_buffer_free(lora_buf);
  12981. ggml_backend_free(backend_cpu);
  12982. return 1;
  12983. }
  12984. auto build_lora_graph = [&]() {
  12985. // w = w + BA*s
  12986. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12987. ggml_set_name(BA, "BA");
  12988. if (scaling != 1.0f) {
  12989. BA = ggml_scale(lora_ctx, BA, scaling);
  12990. ggml_set_name(BA, "BA_scaled");
  12991. }
  12992. ggml_tensor * r;
  12993. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12994. ggml_set_name(r, "r_add");
  12995. if (base_t->type != model_t->type) {
  12996. // convert the result to the model type
  12997. r = ggml_cast(lora_ctx, r, model_t->type);
  12998. ggml_set_name(r, "r_cast");
  12999. }
  13000. return r;
  13001. };
  13002. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13003. ggml_tensor * r = build_lora_graph();
  13004. ggml_build_forward_expand(gf, r);
  13005. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13006. if (graph_buf == nullptr) {
  13007. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13008. ggml_free(lora_ctx);
  13009. ggml_backend_buffer_free(lora_buf);
  13010. ggml_backend_free(backend_cpu);
  13011. return 1;
  13012. }
  13013. ggml_backend_graph_compute(backend_cpu, gf);
  13014. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13015. #if 0
  13016. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13017. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13018. // sched compute
  13019. ggml_build_forward_expand(gf, build_graph());
  13020. ggml_backend_sched_init_measure(sched, gf);
  13021. // create the graph again, since the previous one was destroyed by the measure
  13022. ggml_graph_clear(gf);
  13023. ggml_build_forward_expand(gf, build_graph());
  13024. ggml_backend_sched_graph_compute(sched, gf);
  13025. ggml_backend_sched_free(sched);
  13026. #endif
  13027. ggml_backend_buffer_free(lora_buf);
  13028. ggml_backend_buffer_free(graph_buf);
  13029. ggml_free(lora_ctx);
  13030. n_tensors++;
  13031. if (n_tensors % 4 == 0) {
  13032. LLAMA_LOG_INFO(".");
  13033. }
  13034. }
  13035. ggml_backend_free(backend_cpu);
  13036. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13037. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13038. return 0;
  13039. }
  13040. //
  13041. // interface implementation
  13042. //
  13043. struct llama_model_params llama_model_default_params() {
  13044. struct llama_model_params result = {
  13045. /*.n_gpu_layers =*/ 0,
  13046. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13047. /*.main_gpu =*/ 0,
  13048. /*.tensor_split =*/ nullptr,
  13049. /*.rpc_servers =*/ nullptr,
  13050. /*.progress_callback =*/ nullptr,
  13051. /*.progress_callback_user_data =*/ nullptr,
  13052. /*.kv_overrides =*/ nullptr,
  13053. /*.vocab_only =*/ false,
  13054. /*.use_mmap =*/ true,
  13055. /*.use_mlock =*/ false,
  13056. /*.check_tensors =*/ false,
  13057. };
  13058. #ifdef GGML_USE_METAL
  13059. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13060. result.n_gpu_layers = 999;
  13061. #endif
  13062. return result;
  13063. }
  13064. struct llama_context_params llama_context_default_params() {
  13065. struct llama_context_params result = {
  13066. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13067. /*.n_ctx =*/ 512,
  13068. /*.n_batch =*/ 2048,
  13069. /*.n_ubatch =*/ 512,
  13070. /*.n_seq_max =*/ 1,
  13071. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13072. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13073. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13074. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13075. /*.rope_freq_base =*/ 0.0f,
  13076. /*.rope_freq_scale =*/ 0.0f,
  13077. /*.yarn_ext_factor =*/ -1.0f,
  13078. /*.yarn_attn_factor =*/ 1.0f,
  13079. /*.yarn_beta_fast =*/ 32.0f,
  13080. /*.yarn_beta_slow =*/ 1.0f,
  13081. /*.yarn_orig_ctx =*/ 0,
  13082. /*.defrag_thold =*/ -1.0f,
  13083. /*.cb_eval =*/ nullptr,
  13084. /*.cb_eval_user_data =*/ nullptr,
  13085. /*.type_k =*/ GGML_TYPE_F16,
  13086. /*.type_v =*/ GGML_TYPE_F16,
  13087. /*.logits_all =*/ false,
  13088. /*.embeddings =*/ false,
  13089. /*.offload_kqv =*/ true,
  13090. /*.flash_attn =*/ false,
  13091. /*.abort_callback =*/ nullptr,
  13092. /*.abort_callback_data =*/ nullptr,
  13093. };
  13094. return result;
  13095. }
  13096. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13097. struct llama_model_quantize_params result = {
  13098. /*.nthread =*/ 0,
  13099. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13100. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13101. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13102. /*.allow_requantize =*/ false,
  13103. /*.quantize_output_tensor =*/ true,
  13104. /*.only_copy =*/ false,
  13105. /*.pure =*/ false,
  13106. /*.keep_split =*/ false,
  13107. /*.imatrix =*/ nullptr,
  13108. /*.kv_overrides =*/ nullptr,
  13109. };
  13110. return result;
  13111. }
  13112. size_t llama_max_devices(void) {
  13113. #if defined(GGML_USE_RPC)
  13114. return GGML_RPC_MAX_SERVERS;
  13115. #elif defined(GGML_USE_METAL)
  13116. return 1;
  13117. #elif defined(GGML_USE_CUDA)
  13118. return GGML_CUDA_MAX_DEVICES;
  13119. #elif defined(GGML_USE_SYCL)
  13120. return GGML_SYCL_MAX_DEVICES;
  13121. #elif defined(GGML_USE_VULKAN)
  13122. return GGML_VK_MAX_DEVICES;
  13123. #else
  13124. return 1;
  13125. #endif
  13126. }
  13127. bool llama_supports_mmap(void) {
  13128. return llama_mmap::SUPPORTED;
  13129. }
  13130. bool llama_supports_mlock(void) {
  13131. return llama_mlock::SUPPORTED;
  13132. }
  13133. bool llama_supports_gpu_offload(void) {
  13134. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13135. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13136. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13137. return true;
  13138. #else
  13139. return false;
  13140. #endif
  13141. }
  13142. void llama_backend_init(void) {
  13143. ggml_time_init();
  13144. // needed to initialize f16 tables
  13145. {
  13146. struct ggml_init_params params = { 0, NULL, false };
  13147. struct ggml_context * ctx = ggml_init(params);
  13148. ggml_free(ctx);
  13149. }
  13150. }
  13151. void llama_numa_init(enum ggml_numa_strategy numa) {
  13152. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13153. ggml_numa_init(numa);
  13154. }
  13155. }
  13156. void llama_backend_free(void) {
  13157. ggml_quantize_free();
  13158. }
  13159. int64_t llama_time_us(void) {
  13160. return ggml_time_us();
  13161. }
  13162. struct llama_model * llama_load_model_from_file(
  13163. const char * path_model,
  13164. struct llama_model_params params) {
  13165. ggml_time_init();
  13166. llama_model * model = new llama_model;
  13167. unsigned cur_percentage = 0;
  13168. if (params.progress_callback == NULL) {
  13169. params.progress_callback_user_data = &cur_percentage;
  13170. params.progress_callback = [](float progress, void * ctx) {
  13171. unsigned * cur_percentage_p = (unsigned *) ctx;
  13172. unsigned percentage = (unsigned) (100 * progress);
  13173. while (percentage > *cur_percentage_p) {
  13174. *cur_percentage_p = percentage;
  13175. LLAMA_LOG_INFO(".");
  13176. if (percentage >= 100) {
  13177. LLAMA_LOG_INFO("\n");
  13178. }
  13179. }
  13180. return true;
  13181. };
  13182. }
  13183. if (params.rpc_servers != nullptr) {
  13184. // split the servers set them into model->rpc_servers
  13185. std::string servers(params.rpc_servers);
  13186. size_t pos = 0;
  13187. while ((pos = servers.find(",")) != std::string::npos) {
  13188. std::string server = servers.substr(0, pos);
  13189. model->rpc_servers.push_back(server);
  13190. servers.erase(0, pos + 1);
  13191. }
  13192. model->rpc_servers.push_back(servers);
  13193. }
  13194. int status = llama_model_load(path_model, *model, params);
  13195. GGML_ASSERT(status <= 0);
  13196. if (status < 0) {
  13197. if (status == -1) {
  13198. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13199. } else if (status == -2) {
  13200. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13201. }
  13202. delete model;
  13203. return nullptr;
  13204. }
  13205. return model;
  13206. }
  13207. void llama_free_model(struct llama_model * model) {
  13208. delete model;
  13209. }
  13210. struct llama_context * llama_new_context_with_model(
  13211. struct llama_model * model,
  13212. struct llama_context_params params) {
  13213. if (!model) {
  13214. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13215. return nullptr;
  13216. }
  13217. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13218. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13219. return nullptr;
  13220. }
  13221. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13222. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13223. return nullptr;
  13224. }
  13225. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13226. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13227. params.flash_attn = false;
  13228. }
  13229. llama_context * ctx = new llama_context(*model);
  13230. const auto & hparams = model->hparams;
  13231. auto & cparams = ctx->cparams;
  13232. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13233. cparams.n_threads = params.n_threads;
  13234. cparams.n_threads_batch = params.n_threads_batch;
  13235. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13236. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13237. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13238. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13239. cparams.defrag_thold = params.defrag_thold;
  13240. cparams.embeddings = params.embeddings;
  13241. cparams.offload_kqv = params.offload_kqv;
  13242. cparams.flash_attn = params.flash_attn;
  13243. cparams.pooling_type = params.pooling_type;
  13244. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13245. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13246. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13247. // this is necessary due to kv_self.n being padded later during inference
  13248. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13249. // with causal attention, the batch size is limited by the context size
  13250. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13251. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13252. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13253. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13254. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13255. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13256. cparams.n_batch = GGML_KQ_MASK_PAD;
  13257. }
  13258. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13259. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13260. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  13261. hparams.n_ctx_train;
  13262. cparams.cb_eval = params.cb_eval;
  13263. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13264. auto rope_scaling_type = params.rope_scaling_type;
  13265. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13266. rope_scaling_type = hparams.rope_scaling_type_train;
  13267. }
  13268. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13269. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13270. }
  13271. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13272. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13273. }
  13274. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13275. cparams.causal_attn = hparams.causal_attn;
  13276. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13277. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13278. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13279. } else {
  13280. cparams.pooling_type = hparams.pooling_type;
  13281. }
  13282. }
  13283. if (params.seed == LLAMA_DEFAULT_SEED) {
  13284. params.seed = time(NULL);
  13285. }
  13286. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13287. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13288. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13289. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13290. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13291. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13292. ctx->abort_callback = params.abort_callback;
  13293. ctx->abort_callback_data = params.abort_callback_data;
  13294. ctx->rng = std::mt19937(params.seed);
  13295. ctx->logits_all = params.logits_all;
  13296. uint32_t kv_size = cparams.n_ctx;
  13297. ggml_type type_k = params.type_k;
  13298. ggml_type type_v = params.type_v;
  13299. // Mamba only needs a constant number of KV cache cells per sequence
  13300. if (model->arch == LLM_ARCH_MAMBA) {
  13301. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13302. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13303. // it's probably best to keep as much precision as possible for the states
  13304. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13305. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13306. }
  13307. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13308. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13309. if (!hparams.vocab_only) {
  13310. // initialize backends
  13311. #if defined(GGML_USE_RPC)
  13312. for (auto & server : model->rpc_servers) {
  13313. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  13314. if (backend == nullptr) {
  13315. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  13316. llama_free(ctx);
  13317. return nullptr;
  13318. }
  13319. ctx->backends.push_back(backend);
  13320. }
  13321. #elif defined(GGML_USE_METAL)
  13322. if (model->n_gpu_layers > 0) {
  13323. ctx->backend_metal = ggml_backend_metal_init();
  13324. if (ctx->backend_metal == nullptr) {
  13325. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13326. llama_free(ctx);
  13327. return nullptr;
  13328. }
  13329. ctx->backends.push_back(ctx->backend_metal);
  13330. }
  13331. #elif defined(GGML_USE_CUDA)
  13332. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13333. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13334. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13335. if (backend == nullptr) {
  13336. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13337. llama_free(ctx);
  13338. return nullptr;
  13339. }
  13340. ctx->backends.push_back(backend);
  13341. } else {
  13342. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13343. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13344. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13345. if (backend == nullptr) {
  13346. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13347. llama_free(ctx);
  13348. return nullptr;
  13349. }
  13350. ctx->backends.push_back(backend);
  13351. }
  13352. }
  13353. #elif defined(GGML_USE_VULKAN)
  13354. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13355. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13356. llama_free(ctx);
  13357. return nullptr;
  13358. }
  13359. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13360. ggml_backend_t backend = ggml_backend_vk_init(0);
  13361. if (backend == nullptr) {
  13362. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13363. llama_free(ctx);
  13364. return nullptr;
  13365. }
  13366. ctx->backends.push_back(backend);
  13367. } else {
  13368. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13369. ggml_backend_t backend = ggml_backend_vk_init(device);
  13370. if (backend == nullptr) {
  13371. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13372. llama_free(ctx);
  13373. return nullptr;
  13374. }
  13375. ctx->backends.push_back(backend);
  13376. }
  13377. }
  13378. #elif defined(GGML_USE_SYCL)
  13379. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13380. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13381. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13382. if (backend == nullptr) {
  13383. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13384. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13385. llama_free(ctx);
  13386. return nullptr;
  13387. }
  13388. ctx->backends.push_back(backend);
  13389. } else {
  13390. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13391. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13392. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13393. if (backend == nullptr) {
  13394. int id_list[GGML_SYCL_MAX_DEVICES];
  13395. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13396. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13397. llama_free(ctx);
  13398. return nullptr;
  13399. }
  13400. ctx->backends.push_back(backend);
  13401. }
  13402. }
  13403. #elif defined(GGML_USE_KOMPUTE)
  13404. if (model->n_gpu_layers > 0) {
  13405. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13406. if (backend == nullptr) {
  13407. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13408. llama_free(ctx);
  13409. return nullptr;
  13410. }
  13411. ctx->backends.push_back(backend);
  13412. }
  13413. #endif
  13414. ctx->backend_cpu = ggml_backend_cpu_init();
  13415. if (ctx->backend_cpu == nullptr) {
  13416. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13417. llama_free(ctx);
  13418. return nullptr;
  13419. }
  13420. ctx->backends.push_back(ctx->backend_cpu);
  13421. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13422. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13423. llama_free(ctx);
  13424. return nullptr;
  13425. }
  13426. {
  13427. size_t memory_size_k = 0;
  13428. size_t memory_size_v = 0;
  13429. for (auto & k : ctx->kv_self.k_l) {
  13430. memory_size_k += ggml_nbytes(k);
  13431. }
  13432. for (auto & v : ctx->kv_self.v_l) {
  13433. memory_size_v += ggml_nbytes(v);
  13434. }
  13435. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13436. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13437. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13438. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13439. }
  13440. // graph outputs buffer
  13441. {
  13442. // resized during inference when a batch uses more outputs
  13443. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13444. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13445. llama_free(ctx);
  13446. return nullptr;
  13447. }
  13448. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13449. ggml_backend_buffer_name(ctx->buf_output),
  13450. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13451. }
  13452. // scheduler and compute buffers
  13453. {
  13454. // buffer types used for the compute buffer of each backend
  13455. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13456. for (auto * backend : ctx->backends) {
  13457. if (ggml_backend_is_cpu(backend)) {
  13458. // use host buffers for the CPU backend compute buffer
  13459. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13460. } else {
  13461. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13462. }
  13463. }
  13464. // buffer used to store the computation graph and the tensor meta data
  13465. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13466. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13467. bool pipeline_parallel =
  13468. llama_get_device_count(*model) > 1 &&
  13469. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13470. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13471. params.offload_kqv;
  13472. #ifndef GGML_USE_CUDA
  13473. // pipeline parallelism requires support for async compute and events
  13474. // currently this is only implemented in the CUDA backend
  13475. pipeline_parallel = false;
  13476. #endif
  13477. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13478. if (pipeline_parallel) {
  13479. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13480. }
  13481. // build worst-case graph
  13482. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13483. int n_past = cparams.n_ctx - n_tokens;
  13484. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13485. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13486. // initialize scheduler with the worst-case graph
  13487. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13488. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13489. llama_free(ctx);
  13490. return nullptr;
  13491. }
  13492. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13493. ggml_backend_t backend = ctx->backends[i];
  13494. ggml_backend_buffer_type_t buft = backend_buft[i];
  13495. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13496. if (size > 1) {
  13497. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13498. ggml_backend_buft_name(buft),
  13499. size / 1024.0 / 1024.0);
  13500. }
  13501. }
  13502. // note: the number of splits during measure is higher than during inference due to the kv shift
  13503. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13504. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13505. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13506. }
  13507. }
  13508. return ctx;
  13509. }
  13510. void llama_free(struct llama_context * ctx) {
  13511. delete ctx;
  13512. }
  13513. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13514. return &ctx->model;
  13515. }
  13516. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13517. return ctx->cparams.n_ctx;
  13518. }
  13519. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13520. return ctx->cparams.n_batch;
  13521. }
  13522. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13523. return ctx->cparams.n_ubatch;
  13524. }
  13525. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13526. return ctx->kv_self.size;
  13527. }
  13528. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13529. return model->vocab.type;
  13530. }
  13531. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13532. switch (model->arch) {
  13533. // these models do not use RoPE
  13534. case LLM_ARCH_GPT2:
  13535. case LLM_ARCH_GPTJ:
  13536. case LLM_ARCH_MPT:
  13537. case LLM_ARCH_REFACT:
  13538. case LLM_ARCH_BLOOM:
  13539. case LLM_ARCH_MAMBA:
  13540. case LLM_ARCH_JINA_BERT_V2:
  13541. return LLAMA_ROPE_TYPE_NONE;
  13542. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13543. case LLM_ARCH_LLAMA:
  13544. case LLM_ARCH_BAICHUAN:
  13545. case LLM_ARCH_STARCODER:
  13546. case LLM_ARCH_PLAMO:
  13547. case LLM_ARCH_CODESHELL:
  13548. case LLM_ARCH_ORION:
  13549. case LLM_ARCH_INTERNLM2:
  13550. case LLM_ARCH_MINICPM:
  13551. case LLM_ARCH_XVERSE:
  13552. case LLM_ARCH_COMMAND_R:
  13553. case LLM_ARCH_OLMO:
  13554. case LLM_ARCH_ARCTIC:
  13555. return LLAMA_ROPE_TYPE_NORM;
  13556. // the pairs of head values are offset by n_rot/2
  13557. case LLM_ARCH_FALCON:
  13558. case LLM_ARCH_GROK:
  13559. case LLM_ARCH_DBRX:
  13560. case LLM_ARCH_BERT:
  13561. case LLM_ARCH_NOMIC_BERT:
  13562. case LLM_ARCH_STABLELM:
  13563. case LLM_ARCH_QWEN:
  13564. case LLM_ARCH_QWEN2:
  13565. case LLM_ARCH_QWEN2MOE:
  13566. case LLM_ARCH_PHI2:
  13567. case LLM_ARCH_PHI3:
  13568. case LLM_ARCH_GEMMA:
  13569. case LLM_ARCH_STARCODER2:
  13570. case LLM_ARCH_GPTNEOX:
  13571. return LLAMA_ROPE_TYPE_NEOX;
  13572. // all model arches should be listed explicitly here
  13573. case LLM_ARCH_UNKNOWN:
  13574. GGML_ASSERT(false && "unknown architecture");
  13575. break;
  13576. }
  13577. return LLAMA_ROPE_TYPE_NONE;
  13578. }
  13579. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13580. return ctx->cparams.pooling_type;
  13581. }
  13582. int32_t llama_n_vocab(const struct llama_model * model) {
  13583. return model->hparams.n_vocab;
  13584. }
  13585. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13586. return model->hparams.n_ctx_train;
  13587. }
  13588. int32_t llama_n_embd(const struct llama_model * model) {
  13589. return model->hparams.n_embd;
  13590. }
  13591. int32_t llama_n_layer(const struct llama_model * model) {
  13592. return model->hparams.n_layer;
  13593. }
  13594. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13595. return model->hparams.rope_freq_scale_train;
  13596. }
  13597. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13598. const auto & it = model->gguf_kv.find(key);
  13599. if (it == model->gguf_kv.end()) {
  13600. if (buf_size > 0) {
  13601. buf[0] = '\0';
  13602. }
  13603. return -1;
  13604. }
  13605. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13606. }
  13607. int32_t llama_model_meta_count(const struct llama_model * model) {
  13608. return (int)model->gguf_kv.size();
  13609. }
  13610. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13611. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13612. if (buf_size > 0) {
  13613. buf[0] = '\0';
  13614. }
  13615. return -1;
  13616. }
  13617. auto it = model->gguf_kv.begin();
  13618. std::advance(it, i);
  13619. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13620. }
  13621. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13622. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13623. if (buf_size > 0) {
  13624. buf[0] = '\0';
  13625. }
  13626. return -1;
  13627. }
  13628. auto it = model->gguf_kv.begin();
  13629. std::advance(it, i);
  13630. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13631. }
  13632. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13633. return snprintf(buf, buf_size, "%s %s %s",
  13634. llama_model_arch_name(model->arch),
  13635. llama_model_type_name(model->type),
  13636. llama_model_ftype_name(model->ftype).c_str());
  13637. }
  13638. uint64_t llama_model_size(const struct llama_model * model) {
  13639. uint64_t size = 0;
  13640. for (const auto & it : model->tensors_by_name) {
  13641. size += ggml_nbytes(it.second);
  13642. }
  13643. return size;
  13644. }
  13645. uint64_t llama_model_n_params(const struct llama_model * model) {
  13646. uint64_t nparams = 0;
  13647. for (const auto & it : model->tensors_by_name) {
  13648. nparams += ggml_nelements(it.second);
  13649. }
  13650. return nparams;
  13651. }
  13652. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13653. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13654. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13655. return it.first == name;
  13656. });
  13657. if (it == model->tensors_by_name.end()) {
  13658. return nullptr;
  13659. }
  13660. return it->second;
  13661. }
  13662. uint32_t llama_model_quantize(
  13663. const char * fname_inp,
  13664. const char * fname_out,
  13665. const llama_model_quantize_params * params) {
  13666. try {
  13667. llama_model_quantize_internal(fname_inp, fname_out, params);
  13668. return 0;
  13669. } catch (const std::exception & err) {
  13670. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13671. return 1;
  13672. }
  13673. }
  13674. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13675. try {
  13676. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13677. } catch (const std::exception & err) {
  13678. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13679. return 1;
  13680. }
  13681. }
  13682. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13683. GGML_ASSERT(cvec.tensors.empty());
  13684. GGML_ASSERT(cvec.ctxs.empty());
  13685. GGML_ASSERT(cvec.bufs.empty());
  13686. // count layer buffer types
  13687. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13688. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13689. buft_layer_count[model.buft_layer[i].buft]++;
  13690. }
  13691. // allocate contexts
  13692. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13693. for (auto & it : buft_layer_count) {
  13694. int n_layers = it.second;
  13695. struct ggml_init_params params = {
  13696. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13697. /*.mem_buffer =*/ NULL,
  13698. /*.no_alloc =*/ true,
  13699. };
  13700. ggml_context * ctx = ggml_init(params);
  13701. if (!ctx) {
  13702. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13703. return 1;
  13704. }
  13705. ctx_map[it.first] = ctx;
  13706. }
  13707. // make tensors
  13708. cvec.tensors.reserve(model.hparams.n_layer);
  13709. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13710. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13711. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13712. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13713. cvec.tensors.push_back(tensor);
  13714. }
  13715. // allocate tensors / buffers and zero
  13716. cvec.ctxs.reserve(ctx_map.size());
  13717. cvec.bufs.reserve(ctx_map.size());
  13718. for (auto it : ctx_map) {
  13719. ggml_backend_buffer_type_t buft = it.first;
  13720. ggml_context * ctx = it.second;
  13721. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13722. if (!buf) {
  13723. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13724. return false;
  13725. }
  13726. ggml_backend_buffer_clear(buf, 0);
  13727. cvec.ctxs.push_back(ctx);
  13728. cvec.bufs.push_back(buf);
  13729. }
  13730. return true;
  13731. }
  13732. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13733. const llama_model & model = lctx->model;
  13734. llama_control_vector & cvec = lctx->cvec;
  13735. if (data == nullptr) {
  13736. // disable the current control vector (but leave allocated for later)
  13737. cvec.layer_start = -1;
  13738. cvec.layer_end = -1;
  13739. return 0;
  13740. }
  13741. if (n_embd != (int) model.hparams.n_embd) {
  13742. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13743. return 1;
  13744. }
  13745. if (cvec.tensors.empty()) {
  13746. if (!llama_control_vector_init(cvec, model)) {
  13747. return 1;
  13748. }
  13749. }
  13750. cvec.layer_start = il_start;
  13751. cvec.layer_end = il_end;
  13752. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13753. assert(cvec.tensors[il] != nullptr);
  13754. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13755. if (off + n_embd <= len) {
  13756. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13757. }
  13758. }
  13759. return 0;
  13760. }
  13761. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13762. struct llama_kv_cache_view result = {
  13763. /*.n_cells = */ 0,
  13764. /*.n_seq_max = */ n_seq_max,
  13765. /*.token_count = */ 0,
  13766. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13767. /*.max_contiguous = */ 0,
  13768. /*.max_contiguous_idx = */ -1,
  13769. /*.cells = */ nullptr,
  13770. /*.cells_sequences = */ nullptr,
  13771. };
  13772. return result;
  13773. }
  13774. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13775. if (view->cells != nullptr) {
  13776. free(view->cells);
  13777. view->cells = nullptr;
  13778. }
  13779. if (view->cells_sequences != nullptr) {
  13780. free(view->cells_sequences);
  13781. view->cells_sequences = nullptr;
  13782. }
  13783. }
  13784. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13785. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13786. view->n_cells = int32_t(ctx->kv_self.size);
  13787. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13788. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13789. view->cells = (struct llama_kv_cache_view_cell *)p;
  13790. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13791. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13792. view->cells_sequences = (llama_seq_id *)p;
  13793. }
  13794. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13795. llama_kv_cache_view_cell * c_curr = view->cells;
  13796. llama_seq_id * cs_curr = view->cells_sequences;
  13797. int32_t used_cells = 0;
  13798. int32_t token_count = 0;
  13799. int32_t curr_contig_idx = -1;
  13800. uint32_t max_contig = 0;
  13801. int32_t max_contig_idx = -1;
  13802. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13803. const size_t curr_size = kv_cells[i].seq_id.size();
  13804. token_count += curr_size;
  13805. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13806. if (curr_size > 0) {
  13807. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13808. max_contig = i - curr_contig_idx;
  13809. max_contig_idx = curr_contig_idx;
  13810. }
  13811. curr_contig_idx = -1;
  13812. } else if (curr_contig_idx < 0) {
  13813. curr_contig_idx = i;
  13814. }
  13815. int seq_idx = 0;
  13816. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13817. if (seq_idx >= view->n_seq_max) {
  13818. break;
  13819. }
  13820. cs_curr[seq_idx] = it;
  13821. seq_idx++;
  13822. }
  13823. if (seq_idx != 0) {
  13824. used_cells++;
  13825. }
  13826. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13827. cs_curr[seq_idx] = -1;
  13828. }
  13829. }
  13830. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13831. max_contig_idx = curr_contig_idx;
  13832. max_contig = kv_cells.size() - curr_contig_idx;
  13833. }
  13834. view->max_contiguous = max_contig;
  13835. view->max_contiguous_idx = max_contig_idx;
  13836. view->token_count = token_count;
  13837. view->used_cells = used_cells;
  13838. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13839. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13840. __func__, ctx->kv_self.used, used_cells);
  13841. }
  13842. }
  13843. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13844. int result = 0;
  13845. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13846. result += ctx->kv_self.cells[i].seq_id.size();
  13847. }
  13848. return result;
  13849. }
  13850. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13851. return ctx->kv_self.used;
  13852. }
  13853. void llama_kv_cache_clear(struct llama_context * ctx) {
  13854. llama_kv_cache_clear(ctx->kv_self);
  13855. }
  13856. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13857. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13858. }
  13859. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13860. if (seq_id_src == seq_id_dst) {
  13861. return;
  13862. }
  13863. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13864. }
  13865. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13866. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13867. }
  13868. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13869. if (delta == 0) {
  13870. return;
  13871. }
  13872. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13873. }
  13874. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13875. if (d == 1) {
  13876. return;
  13877. }
  13878. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13879. }
  13880. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13881. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13882. }
  13883. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13884. llama_kv_cache_defrag(ctx->kv_self);
  13885. }
  13886. void llama_kv_cache_update(struct llama_context * ctx) {
  13887. llama_kv_cache_update_internal(*ctx);
  13888. }
  13889. // deprecated
  13890. size_t llama_get_state_size(const struct llama_context * ctx) {
  13891. return llama_state_get_size(ctx);
  13892. }
  13893. // deprecated
  13894. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13895. return llama_state_get_data(ctx, dst);
  13896. }
  13897. // deprecated
  13898. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13899. return llama_state_set_data(ctx, src);
  13900. }
  13901. // deprecated
  13902. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13903. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13904. }
  13905. // deprecated
  13906. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13907. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13908. }
  13909. // Returns the *maximum* size of the state
  13910. size_t llama_state_get_size(const struct llama_context * ctx) {
  13911. const auto & cparams = ctx->cparams;
  13912. const auto & hparams = ctx->model.hparams;
  13913. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13914. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13915. const size_t s_rng_size = sizeof(size_t);
  13916. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13917. const size_t s_n_outputs = sizeof(size_t);
  13918. // assume worst case for outputs although only currently set ones are serialized
  13919. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13920. const size_t s_logits_size = sizeof(size_t);
  13921. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13922. const size_t s_embedding_size = sizeof(size_t);
  13923. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13924. const size_t s_kv_buf_size = sizeof(size_t);
  13925. const size_t s_kv_head = sizeof(uint32_t);
  13926. const size_t s_kv_size = sizeof(uint32_t);
  13927. const size_t s_kv_used = sizeof(uint32_t);
  13928. const size_t s_v_trans = sizeof(uint32_t);
  13929. const size_t s_kv = ctx->kv_self.total_size();
  13930. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13931. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13932. const size_t s_total = (
  13933. + s_rng_size
  13934. + s_rng
  13935. + s_n_outputs
  13936. + s_output_pos
  13937. + s_logits_size
  13938. + s_logits
  13939. + s_embedding_size
  13940. + s_embedding
  13941. + s_kv_buf_size
  13942. + s_kv_head
  13943. + s_kv_size
  13944. + s_kv_used
  13945. + s_v_trans
  13946. + s_kv
  13947. + s_kv_cells
  13948. );
  13949. // on session change it is very likely that the state size has changed - so we need to update this function
  13950. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13951. return s_total;
  13952. }
  13953. // llama_context_data
  13954. struct llama_data_context {
  13955. virtual void write(const void * src, size_t size) = 0;
  13956. virtual size_t get_size_written() = 0;
  13957. virtual ~llama_data_context() = default;
  13958. };
  13959. struct llama_data_buffer_context : llama_data_context {
  13960. uint8_t * ptr;
  13961. size_t size_written = 0;
  13962. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13963. void write(const void * src, size_t size) override {
  13964. memcpy(ptr, src, size);
  13965. ptr += size;
  13966. size_written += size;
  13967. }
  13968. size_t get_size_written() override {
  13969. return size_written;
  13970. }
  13971. };
  13972. struct llama_data_file_context : llama_data_context {
  13973. llama_file * file;
  13974. size_t size_written = 0;
  13975. llama_data_file_context(llama_file * f) : file(f) {}
  13976. void write(const void * src, size_t size) override {
  13977. file->write_raw(src, size);
  13978. size_written += size;
  13979. }
  13980. size_t get_size_written() override {
  13981. return size_written;
  13982. }
  13983. };
  13984. /** copy state data into either a buffer or file depending on the passed in context
  13985. *
  13986. * file context:
  13987. * llama_file file("/path", "wb");
  13988. * llama_data_file_context data_ctx(&file);
  13989. * llama_state_get_data(ctx, &data_ctx);
  13990. *
  13991. * buffer context:
  13992. * std::vector<uint8_t> buf(max_size, 0);
  13993. * llama_data_buffer_context data_ctx(&buf.data());
  13994. * llama_state_get_data(ctx, &data_ctx);
  13995. *
  13996. */
  13997. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13998. llama_synchronize(ctx);
  13999. // copy rng
  14000. {
  14001. std::ostringstream rng_ss;
  14002. rng_ss << ctx->rng;
  14003. const std::string & rng_str = rng_ss.str();
  14004. const size_t rng_size = rng_str.size();
  14005. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14006. data_ctx->write(&rng_size, sizeof(rng_size));
  14007. data_ctx->write(rng_str.data(), rng_size);
  14008. }
  14009. // copy outputs
  14010. {
  14011. // Can't use ctx->n_outputs because it's not for the
  14012. // entire last batch when n_ubatch is smaller than n_batch
  14013. size_t n_outputs = 0;
  14014. // copy output ids
  14015. {
  14016. std::vector<int32_t> output_pos;
  14017. const size_t n_batch = ctx->cparams.n_batch;
  14018. const auto & output_ids = ctx->output_ids;
  14019. output_pos.resize(ctx->output_size);
  14020. // build a more compact representation of the output ids
  14021. for (size_t i = 0; i < n_batch; ++i) {
  14022. // map an output id to a position in the batch
  14023. int32_t pos = output_ids[i];
  14024. if (pos >= 0) {
  14025. if ((size_t) pos >= n_outputs) {
  14026. n_outputs = pos + 1;
  14027. }
  14028. GGML_ASSERT((size_t) pos < ctx->output_size);
  14029. output_pos[pos] = i;
  14030. }
  14031. }
  14032. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14033. if (n_outputs) {
  14034. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14035. }
  14036. }
  14037. // copy logits
  14038. {
  14039. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14040. data_ctx->write(&logits_size, sizeof(logits_size));
  14041. if (logits_size) {
  14042. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14043. }
  14044. }
  14045. // copy embeddings
  14046. {
  14047. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14048. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14049. if (embeddings_size) {
  14050. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14051. }
  14052. }
  14053. }
  14054. // copy kv cache
  14055. {
  14056. const auto & kv_self = ctx->kv_self;
  14057. const auto & hparams = ctx->model.hparams;
  14058. const uint32_t n_layer = hparams.n_layer;
  14059. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14060. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14061. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14062. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14063. const uint32_t kv_size = kv_self.size;
  14064. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14065. const uint32_t kv_used = kv_self.used;
  14066. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14067. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14068. data_ctx->write(&kv_head, sizeof(kv_head));
  14069. data_ctx->write(&kv_size, sizeof(kv_size));
  14070. data_ctx->write(&kv_used, sizeof(kv_used));
  14071. data_ctx->write(&v_trans, sizeof(v_trans));
  14072. if (kv_buf_size) {
  14073. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14074. std::vector<uint8_t> tmp_buf;
  14075. for (int il = 0; il < (int) n_layer; ++il) {
  14076. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14077. tmp_buf.resize(k_size);
  14078. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14079. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14080. if (kv_self.recurrent || !kv_self.v_trans) {
  14081. // v is contiguous for recurrent models
  14082. // TODO: use other tensors for state models than k and v
  14083. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14084. tmp_buf.resize(v_size);
  14085. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14086. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14087. continue;
  14088. }
  14089. // v is not contiguous, copy row by row
  14090. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14091. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14092. tmp_buf.resize(v_row_size);
  14093. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14094. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14095. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14096. }
  14097. }
  14098. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14099. }
  14100. for (uint32_t i = 0; i < kv_head; ++i) {
  14101. const auto & cell = kv_self.cells[i];
  14102. const llama_pos pos = cell.pos;
  14103. const size_t seq_id_size = cell.seq_id.size();
  14104. data_ctx->write(&pos, sizeof(pos));
  14105. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14106. for (auto seq_id : cell.seq_id) {
  14107. data_ctx->write(&seq_id, sizeof(seq_id));
  14108. }
  14109. }
  14110. }
  14111. }
  14112. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14113. llama_data_buffer_context data_ctx(dst);
  14114. llama_state_get_data_internal(ctx, &data_ctx);
  14115. return data_ctx.get_size_written();
  14116. }
  14117. // Sets the state reading from the specified source address
  14118. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14119. llama_synchronize(ctx);
  14120. const uint8_t * inp = src;
  14121. // set rng
  14122. {
  14123. size_t rng_size;
  14124. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14125. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14126. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14127. std::istringstream rng_ss(rng_str);
  14128. rng_ss >> ctx->rng;
  14129. GGML_ASSERT(!rng_ss.fail());
  14130. }
  14131. // set output ids
  14132. {
  14133. size_t n_outputs;
  14134. std::vector<int32_t> output_pos;
  14135. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14136. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14137. if (n_outputs) {
  14138. output_pos.resize(n_outputs);
  14139. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14140. inp += n_outputs * sizeof(int32_t);
  14141. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14142. int32_t id = output_pos[i];
  14143. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14144. ctx->output_ids[id] = i;
  14145. }
  14146. ctx->n_outputs = n_outputs;
  14147. }
  14148. }
  14149. // set logits
  14150. {
  14151. size_t logits_size;
  14152. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14153. GGML_ASSERT(ctx->logits_size >= logits_size);
  14154. if (logits_size) {
  14155. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14156. inp += logits_size * sizeof(float);
  14157. }
  14158. }
  14159. // set embeddings
  14160. {
  14161. size_t embeddings_size;
  14162. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14163. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14164. if (embeddings_size) {
  14165. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14166. inp += embeddings_size * sizeof(float);
  14167. }
  14168. }
  14169. // set kv cache
  14170. {
  14171. const auto & kv_self = ctx->kv_self;
  14172. const auto & hparams = ctx->model.hparams;
  14173. const uint32_t n_layer = hparams.n_layer;
  14174. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14175. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14176. size_t kv_buf_size;
  14177. uint32_t kv_head;
  14178. uint32_t kv_size;
  14179. uint32_t kv_used;
  14180. uint32_t v_trans;
  14181. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14182. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14183. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14184. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14185. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14186. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14187. if (kv_self.size != kv_size) {
  14188. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14189. GGML_ASSERT(kv_self.size >= kv_head);
  14190. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14191. __func__, kv_head, kv_size, kv_self.size);
  14192. }
  14193. llama_kv_cache_clear(ctx);
  14194. if (kv_buf_size) {
  14195. const size_t pre_kv_buf_size = inp - src;
  14196. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14197. for (int il = 0; il < (int) n_layer; ++il) {
  14198. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14199. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14200. inp += k_size;
  14201. if (kv_self.recurrent || !kv_self.v_trans) {
  14202. // v is contiguous for recurrent models
  14203. // TODO: use other tensors for state models than k and v
  14204. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14205. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14206. inp += v_size;
  14207. continue;
  14208. }
  14209. // v is not contiguous, copy row by row
  14210. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14211. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14212. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14213. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14214. inp += v_row_size;
  14215. }
  14216. }
  14217. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14218. }
  14219. ctx->kv_self.head = kv_head;
  14220. ctx->kv_self.used = kv_used;
  14221. for (uint32_t i = 0; i < kv_head; ++i) {
  14222. llama_pos pos;
  14223. size_t seq_id_size;
  14224. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14225. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14226. ctx->kv_self.cells[i].pos = pos;
  14227. llama_seq_id seq_id;
  14228. for (size_t j = 0; j < seq_id_size; ++j) {
  14229. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14230. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14231. }
  14232. }
  14233. }
  14234. const size_t nread = inp - src;
  14235. const size_t max_size = llama_state_get_size(ctx);
  14236. GGML_ASSERT(nread <= max_size);
  14237. return nread;
  14238. }
  14239. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14240. llama_file file(path_session, "rb");
  14241. // sanity checks
  14242. {
  14243. const uint32_t magic = file.read_u32();
  14244. const uint32_t version = file.read_u32();
  14245. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14246. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14247. return false;
  14248. }
  14249. llama_hparams session_hparams;
  14250. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14251. if (session_hparams != ctx->model.hparams) {
  14252. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14253. return false;
  14254. }
  14255. }
  14256. // load the prompt
  14257. {
  14258. const uint32_t n_token_count = file.read_u32();
  14259. if (n_token_count > n_token_capacity) {
  14260. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14261. return false;
  14262. }
  14263. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14264. *n_token_count_out = n_token_count;
  14265. }
  14266. // restore the context state
  14267. {
  14268. const size_t n_state_size_cur = file.size - file.tell();
  14269. const size_t n_state_size_max = llama_state_get_size(ctx);
  14270. if (n_state_size_cur > n_state_size_max) {
  14271. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14272. return false;
  14273. }
  14274. std::vector<uint8_t> state_data(n_state_size_max);
  14275. file.read_raw(state_data.data(), n_state_size_cur);
  14276. llama_state_set_data(ctx, state_data.data());
  14277. }
  14278. return true;
  14279. }
  14280. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14281. try {
  14282. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14283. } catch (const std::exception & err) {
  14284. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14285. return false;
  14286. }
  14287. }
  14288. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14289. llama_file file(path_session, "wb");
  14290. file.write_u32(LLAMA_SESSION_MAGIC);
  14291. file.write_u32(LLAMA_SESSION_VERSION);
  14292. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14293. // save the prompt
  14294. file.write_u32((uint32_t) n_token_count);
  14295. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14296. // save the context state using stream saving
  14297. llama_data_file_context data_ctx(&file);
  14298. llama_state_get_data_internal(ctx, &data_ctx);
  14299. return true;
  14300. }
  14301. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14302. try {
  14303. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14304. } catch (const std::exception & err) {
  14305. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14306. return false;
  14307. }
  14308. }
  14309. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14310. // save the size of size_t as a uint32_t for safety check
  14311. const size_t size_t_size_size = sizeof(uint32_t);
  14312. // other values
  14313. const size_t s_cell_count_size = sizeof(uint32_t);
  14314. const size_t s_layer_count_size = sizeof(uint32_t);
  14315. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14316. size_t s_cell_count = 0;
  14317. size_t s_cell_data_size = 0;
  14318. const auto & kv_self = ctx->kv_self;
  14319. const auto & hparams = ctx->model.hparams;
  14320. const uint32_t n_layer = hparams.n_layer;
  14321. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14322. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14323. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14324. const auto & cell = kv_self.cells[i];
  14325. if (cell.seq_id.count(seq_id) > 0) {
  14326. ++s_cell_count;
  14327. s_cell_data_size += sizeof(llama_pos);
  14328. }
  14329. }
  14330. for (int il = 0; il < (int)n_layer; ++il) {
  14331. // types of keys and values
  14332. s_cell_data_size += sizeof(int32_t) * 2;
  14333. // k_size_row and v_size_el values of layer
  14334. s_cell_data_size += sizeof(size_t) * 2;
  14335. // keys
  14336. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14337. s_cell_data_size += k_size_row * s_cell_count;
  14338. // values (transposed)
  14339. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14340. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14341. }
  14342. const size_t s_total = (
  14343. size_t_size_size +
  14344. s_cell_count_size +
  14345. s_layer_count_size +
  14346. n_embd_v_gqa_size +
  14347. s_cell_data_size
  14348. );
  14349. return s_total;
  14350. }
  14351. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14352. llama_synchronize(ctx);
  14353. const auto & kv_self = ctx->kv_self;
  14354. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14355. // Save the size of size_t as a uint32_t for safety check
  14356. const uint32_t size_t_size = sizeof(size_t);
  14357. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14358. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14359. uint32_t cell_count = 0;
  14360. // Count the number of cells with the specified seq_id
  14361. // Find all the ranges of cells with this seq id
  14362. {
  14363. uint32_t cell_range_begin = kv_self.size;
  14364. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14365. const auto & cell = kv_self.cells[i];
  14366. if (cell.has_seq_id(seq_id)) {
  14367. ++cell_count;
  14368. if (cell_range_begin == kv_self.size) {
  14369. cell_range_begin = i;
  14370. }
  14371. }
  14372. else {
  14373. if (cell_range_begin != kv_self.size) {
  14374. cell_ranges.emplace_back(cell_range_begin, i);
  14375. cell_range_begin = kv_self.size;
  14376. }
  14377. }
  14378. }
  14379. if (cell_range_begin != kv_self.size) {
  14380. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14381. }
  14382. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14383. uint32_t cell_count_check = 0;
  14384. for (const auto & range : cell_ranges) {
  14385. cell_count_check += range.second - range.first;
  14386. }
  14387. GGML_ASSERT(cell_count == cell_count_check);
  14388. }
  14389. // Write the cell count
  14390. data_ctx.write(&cell_count, sizeof(cell_count));
  14391. const auto & hparams = ctx->model.hparams;
  14392. const uint32_t n_layer = hparams.n_layer;
  14393. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14394. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14395. // Write the layer count
  14396. data_ctx.write(&n_layer, sizeof(n_layer));
  14397. // Write n_embd_v_gqa
  14398. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14399. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14400. for (const auto & range : cell_ranges) {
  14401. for (uint32_t i = range.first; i < range.second; ++i) {
  14402. const auto & cell = kv_self.cells[i];
  14403. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14404. }
  14405. }
  14406. // Iterate and write all the keys first, each row is a cell
  14407. // Get whole range at a time
  14408. std::vector<uint8_t> tmp_buf;
  14409. for (int il = 0; il < (int)n_layer; ++il) {
  14410. // Write key type
  14411. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14412. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14413. // Write row size of key
  14414. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14415. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14416. // Read each range of cells of k_size length each into tmp_buf and write out
  14417. for (const auto & range : cell_ranges) {
  14418. const size_t range_size = range.second - range.first;
  14419. tmp_buf.resize(range_size * k_size_row);
  14420. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14421. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14422. }
  14423. }
  14424. // TODO: simplify, reduce copy-paste
  14425. if (!kv_self.v_trans) {
  14426. for (int il = 0; il < (int)n_layer; ++il) {
  14427. // Write value type
  14428. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14429. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14430. // Write row size of value
  14431. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14432. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14433. // Read each range of cells of v_size length each into tmp_buf and write out
  14434. for (const auto & range : cell_ranges) {
  14435. const size_t range_size = range.second - range.first;
  14436. tmp_buf.resize(range_size * v_size_row);
  14437. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14438. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14439. }
  14440. }
  14441. } else {
  14442. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14443. const uint32_t kv_size = kv_self.size;
  14444. for (int il = 0; il < (int)n_layer; ++il) {
  14445. // Write value type
  14446. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14447. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14448. // Write element size
  14449. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14450. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14451. // For each row, we get the element values of each cell
  14452. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14453. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14454. for (const auto & range : cell_ranges) {
  14455. const size_t range_size = range.second - range.first;
  14456. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14457. tmp_buf.resize(range_size * v_size_el);
  14458. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14459. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14460. }
  14461. }
  14462. }
  14463. }
  14464. return data_ctx.get_size_written();
  14465. }
  14466. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14467. llama_data_buffer_context data_ctx(dst);
  14468. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14469. }
  14470. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14471. llama_synchronize(ctx);
  14472. auto & kv_self = ctx->kv_self;
  14473. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14474. // Wipe the slot
  14475. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14476. const uint8_t * inp = src;
  14477. // Read size of size_t
  14478. uint32_t size_t_size;
  14479. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14480. inp += sizeof(size_t_size);
  14481. if (size_t_size != sizeof(size_t)) {
  14482. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14483. return 0;
  14484. }
  14485. // Read the cell count
  14486. uint32_t cell_count;
  14487. memcpy(&cell_count, inp, sizeof(cell_count));
  14488. inp += sizeof(cell_count);
  14489. // Read the layer count
  14490. uint32_t n_layer_ref;
  14491. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14492. inp += sizeof(n_layer_ref);
  14493. // Read n_embd_v_gqa
  14494. uint32_t n_embd_v_gqa_ref;
  14495. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14496. inp += sizeof(n_embd_v_gqa_ref);
  14497. // Sanity check model compatibility
  14498. const auto & hparams = ctx->model.hparams;
  14499. const uint32_t n_layer = hparams.n_layer;
  14500. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14501. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14502. if (n_layer != n_layer_ref) {
  14503. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14504. return 0;
  14505. }
  14506. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14507. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14508. return 0;
  14509. }
  14510. // Allocate the new cells for the slot
  14511. if (cell_count) {
  14512. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14513. batch.n_tokens = cell_count;
  14514. for (uint32_t i = 0; i < cell_count; ++i) {
  14515. llama_pos pos;
  14516. memcpy(&pos, inp, sizeof(pos));
  14517. inp += sizeof(pos);
  14518. batch.pos[i] = pos;
  14519. batch.n_seq_id[i] = 1;
  14520. batch.seq_id[i][0] = dest_seq_id;
  14521. }
  14522. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14523. llama_batch_free(batch);
  14524. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14525. return 0;
  14526. }
  14527. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14528. // Assume that this is one contiguous block of cells
  14529. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14530. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14531. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14532. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14533. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14534. // Cleanup
  14535. llama_batch_free(batch);
  14536. }
  14537. const uint32_t kv_size = kv_self.size;
  14538. const uint32_t kv_head = kv_self.head;
  14539. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14540. for (int il = 0; il < (int)n_layer; ++il) {
  14541. // Read type of key
  14542. int32_t k_type_i_ref;
  14543. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14544. inp += sizeof(k_type_i_ref);
  14545. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14546. if (k_type_i != k_type_i_ref) {
  14547. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14548. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14549. return 0;
  14550. }
  14551. // Read row size of key
  14552. size_t k_size_row_ref;
  14553. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14554. inp += sizeof(k_size_row_ref);
  14555. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14556. if (k_size_row != k_size_row_ref) {
  14557. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14558. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14559. return 0;
  14560. }
  14561. if (cell_count) {
  14562. // Read and set the keys for the whole cell range
  14563. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14564. inp += cell_count * k_size_row;
  14565. }
  14566. }
  14567. // TODO: simplify, reduce copy-paste
  14568. if (!kv_self.v_trans) {
  14569. for (int il = 0; il < (int)n_layer; ++il) {
  14570. // Read type of value
  14571. int32_t v_type_i_ref;
  14572. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14573. inp += sizeof(v_type_i_ref);
  14574. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14575. if (v_type_i != v_type_i_ref) {
  14576. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14577. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14578. return 0;
  14579. }
  14580. // Read row size of value
  14581. size_t v_size_row_ref;
  14582. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14583. inp += sizeof(v_size_row_ref);
  14584. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14585. if (v_size_row != v_size_row_ref) {
  14586. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14587. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14588. return 0;
  14589. }
  14590. if (cell_count) {
  14591. // Read and set the values for the whole cell range
  14592. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14593. inp += cell_count * v_size_row;
  14594. }
  14595. }
  14596. } else {
  14597. // For each layer, read the values for each cell (transposed)
  14598. for (int il = 0; il < (int)n_layer; ++il) {
  14599. // Read type of value
  14600. int32_t v_type_i_ref;
  14601. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14602. inp += sizeof(v_type_i_ref);
  14603. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14604. if (v_type_i != v_type_i_ref) {
  14605. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14606. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14607. return 0;
  14608. }
  14609. // Read element size of value
  14610. size_t v_size_el_ref;
  14611. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14612. inp += sizeof(v_size_el_ref);
  14613. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14614. if (v_size_el != v_size_el_ref) {
  14615. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14616. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14617. return 0;
  14618. }
  14619. if (cell_count) {
  14620. // For each row in the transposed matrix, read the values for the whole cell range
  14621. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14622. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14623. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14624. inp += cell_count * v_size_el;
  14625. }
  14626. }
  14627. }
  14628. }
  14629. const size_t nread = inp - src;
  14630. return nread;
  14631. }
  14632. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14633. llama_file file(filepath, "wb");
  14634. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14635. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14636. // save the prompt
  14637. file.write_u32((uint32_t)n_token_count);
  14638. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14639. // save the context state using stream saving
  14640. llama_data_file_context data_ctx(&file);
  14641. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14642. const size_t res = file.tell();
  14643. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14644. return res;
  14645. }
  14646. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14647. llama_file file(filepath, "rb");
  14648. // version checks
  14649. {
  14650. const uint32_t magic = file.read_u32();
  14651. const uint32_t version = file.read_u32();
  14652. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14653. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14654. return 0;
  14655. }
  14656. }
  14657. // load the prompt
  14658. {
  14659. const uint32_t n_token_count = file.read_u32();
  14660. if (n_token_count > n_token_capacity) {
  14661. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14662. return 0;
  14663. }
  14664. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14665. *n_token_count_out = n_token_count;
  14666. }
  14667. // restore the context state
  14668. {
  14669. const size_t state_size = file.size - file.tell();
  14670. std::vector<uint8_t> state_data(state_size);
  14671. file.read_raw(state_data.data(), state_size);
  14672. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14673. if (!nread) {
  14674. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14675. return 0;
  14676. }
  14677. GGML_ASSERT(nread <= state_size);
  14678. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14679. }
  14680. return file.tell();
  14681. }
  14682. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14683. try {
  14684. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14685. } catch (const std::exception & err) {
  14686. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14687. return 0;
  14688. }
  14689. }
  14690. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14691. try {
  14692. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14693. } catch (const std::exception & err) {
  14694. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14695. return 0;
  14696. }
  14697. }
  14698. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14699. ctx->cparams.n_threads = n_threads;
  14700. ctx->cparams.n_threads_batch = n_threads_batch;
  14701. }
  14702. uint32_t llama_n_threads(struct llama_context * ctx) {
  14703. return ctx->cparams.n_threads;
  14704. }
  14705. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  14706. return ctx->cparams.n_threads_batch;
  14707. }
  14708. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14709. ctx->abort_callback = abort_callback;
  14710. ctx->abort_callback_data = abort_callback_data;
  14711. }
  14712. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14713. ctx->cparams.causal_attn = causal_attn;
  14714. }
  14715. struct llama_batch llama_batch_get_one(
  14716. llama_token * tokens,
  14717. int32_t n_tokens,
  14718. llama_pos pos_0,
  14719. llama_seq_id seq_id) {
  14720. return {
  14721. /*n_tokens =*/ n_tokens,
  14722. /*tokens =*/ tokens,
  14723. /*embd =*/ nullptr,
  14724. /*pos =*/ nullptr,
  14725. /*n_seq_id =*/ nullptr,
  14726. /*seq_id =*/ nullptr,
  14727. /*logits =*/ nullptr,
  14728. /*all_pos_0 =*/ pos_0,
  14729. /*all_pos_1 =*/ 1,
  14730. /*all_seq_id =*/ seq_id,
  14731. };
  14732. }
  14733. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14734. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14735. if (embd) {
  14736. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14737. } else {
  14738. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14739. }
  14740. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14741. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14742. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14743. for (int i = 0; i < n_tokens_alloc; ++i) {
  14744. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14745. }
  14746. batch.seq_id[n_tokens_alloc] = nullptr;
  14747. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14748. return batch;
  14749. }
  14750. void llama_batch_free(struct llama_batch batch) {
  14751. if (batch.token) free(batch.token);
  14752. if (batch.embd) free(batch.embd);
  14753. if (batch.pos) free(batch.pos);
  14754. if (batch.n_seq_id) free(batch.n_seq_id);
  14755. if (batch.seq_id) {
  14756. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14757. free(batch.seq_id[i]);
  14758. }
  14759. free(batch.seq_id);
  14760. }
  14761. if (batch.logits) free(batch.logits);
  14762. }
  14763. int32_t llama_decode(
  14764. struct llama_context * ctx,
  14765. struct llama_batch batch) {
  14766. const int ret = llama_decode_internal(*ctx, batch);
  14767. if (ret < 0) {
  14768. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14769. }
  14770. return ret;
  14771. }
  14772. void llama_synchronize(struct llama_context * ctx) {
  14773. ggml_backend_sched_synchronize(ctx->sched);
  14774. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14775. // the stats will be added to the prompt evaluation stats
  14776. // this should only happen when using batch size 1 to evaluate a batch
  14777. // add the evaluation to the stats
  14778. if (ctx->n_queued_tokens == 1) {
  14779. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14780. ctx->n_eval++;
  14781. } else if (ctx->n_queued_tokens > 1) {
  14782. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14783. ctx->n_p_eval += ctx->n_queued_tokens;
  14784. }
  14785. // get a more accurate load time, upon first eval
  14786. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14787. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14788. ctx->has_evaluated_once = true;
  14789. }
  14790. ctx->n_queued_tokens = 0;
  14791. ctx->t_compute_start_us = 0;
  14792. }
  14793. float * llama_get_logits(struct llama_context * ctx) {
  14794. llama_synchronize(ctx);
  14795. return ctx->logits;
  14796. }
  14797. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14798. int32_t j = -1;
  14799. llama_synchronize(ctx);
  14800. try {
  14801. if (ctx->logits == nullptr) {
  14802. throw std::runtime_error("no logits");
  14803. }
  14804. if (i < 0) {
  14805. j = ctx->n_outputs + i;
  14806. if (j < 0) {
  14807. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14808. }
  14809. } else if ((size_t) i >= ctx->output_ids.size()) {
  14810. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14811. } else {
  14812. j = ctx->output_ids[i];
  14813. }
  14814. if (j < 0) {
  14815. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14816. }
  14817. if (j >= ctx->n_outputs) {
  14818. // This should not happen
  14819. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14820. }
  14821. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14822. } catch (const std::exception & err) {
  14823. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14824. #ifndef NDEBUG
  14825. GGML_ASSERT(false);
  14826. #endif
  14827. return nullptr;
  14828. }
  14829. }
  14830. float * llama_get_embeddings(struct llama_context * ctx) {
  14831. llama_synchronize(ctx);
  14832. return ctx->embd;
  14833. }
  14834. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14835. int32_t j = -1;
  14836. llama_synchronize(ctx);
  14837. try {
  14838. if (ctx->embd == nullptr) {
  14839. throw std::runtime_error("no embeddings");
  14840. }
  14841. if (i < 0) {
  14842. j = ctx->n_outputs + i;
  14843. if (j < 0) {
  14844. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14845. }
  14846. } else if ((size_t) i >= ctx->output_ids.size()) {
  14847. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14848. } else {
  14849. j = ctx->output_ids[i];
  14850. }
  14851. if (j < 0) {
  14852. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14853. }
  14854. if (j >= ctx->n_outputs) {
  14855. // This should not happen
  14856. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14857. }
  14858. return ctx->embd + j*ctx->model.hparams.n_embd;
  14859. } catch (const std::exception & err) {
  14860. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14861. #ifndef NDEBUG
  14862. GGML_ASSERT(false);
  14863. #endif
  14864. return nullptr;
  14865. }
  14866. }
  14867. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14868. llama_synchronize(ctx);
  14869. auto it = ctx->embd_seq.find(seq_id);
  14870. if (it == ctx->embd_seq.end()) {
  14871. return nullptr;
  14872. }
  14873. return it->second.data();
  14874. }
  14875. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14876. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14877. return model->vocab.id_to_token[token].text.c_str();
  14878. }
  14879. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14880. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14881. return model->vocab.id_to_token[token].score;
  14882. }
  14883. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14884. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14885. return model->vocab.id_to_token[token].type;
  14886. }
  14887. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14888. return token != -1 && (
  14889. token == llama_token_eos(model) ||
  14890. token == llama_token_eot(model)
  14891. );
  14892. }
  14893. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  14894. return llama_is_control_token(model->vocab, token);
  14895. }
  14896. llama_token llama_token_bos(const struct llama_model * model) {
  14897. return model->vocab.special_bos_id;
  14898. }
  14899. llama_token llama_token_eos(const struct llama_model * model) {
  14900. return model->vocab.special_eos_id;
  14901. }
  14902. llama_token llama_token_cls(const struct llama_model * model) {
  14903. return model->vocab.special_cls_id;
  14904. }
  14905. llama_token llama_token_sep(const struct llama_model * model) {
  14906. return model->vocab.special_sep_id;
  14907. }
  14908. llama_token llama_token_nl(const struct llama_model * model) {
  14909. return model->vocab.linefeed_id;
  14910. }
  14911. int32_t llama_add_bos_token(const struct llama_model * model) {
  14912. return model->vocab.special_add_bos;
  14913. }
  14914. int32_t llama_add_eos_token(const struct llama_model * model) {
  14915. return model->vocab.special_add_eos;
  14916. }
  14917. llama_token llama_token_prefix(const struct llama_model * model) {
  14918. return model->vocab.special_prefix_id;
  14919. }
  14920. llama_token llama_token_middle(const struct llama_model * model) {
  14921. return model->vocab.special_middle_id;
  14922. }
  14923. llama_token llama_token_suffix(const struct llama_model * model) {
  14924. return model->vocab.special_suffix_id;
  14925. }
  14926. llama_token llama_token_eot(const struct llama_model * model) {
  14927. return model->vocab.special_eot_id;
  14928. }
  14929. int32_t llama_tokenize(
  14930. const struct llama_model * model,
  14931. const char * text,
  14932. int32_t text_len,
  14933. llama_token * tokens,
  14934. int32_t n_tokens_max,
  14935. bool add_special,
  14936. bool parse_special) {
  14937. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14938. if (n_tokens_max < (int) res.size()) {
  14939. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14940. return -((int) res.size());
  14941. }
  14942. for (size_t i = 0; i < res.size(); i++) {
  14943. tokens[i] = res[i];
  14944. }
  14945. return res.size();
  14946. }
  14947. static std::string llama_decode_text(const std::string & text) {
  14948. std::string decoded_text;
  14949. const auto cpts = unicode_cpts_from_utf8(text);
  14950. for (const auto cpt : cpts) {
  14951. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14952. }
  14953. return decoded_text;
  14954. }
  14955. // does not write null-terminator to buf
  14956. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14957. if (0 <= token && token < llama_n_vocab(model)) {
  14958. switch (llama_vocab_get_type(model->vocab)) {
  14959. case LLAMA_VOCAB_TYPE_WPM:
  14960. case LLAMA_VOCAB_TYPE_SPM: {
  14961. // NOTE: we accept all unsupported token types,
  14962. // suppressing them like CONTROL tokens.
  14963. if (llama_is_normal_token(model->vocab, token)) {
  14964. std::string result = model->vocab.id_to_token[token].text;
  14965. llama_unescape_whitespace(result);
  14966. if (length < (int) result.length()) {
  14967. return -(int) result.length();
  14968. }
  14969. memcpy(buf, result.c_str(), result.length());
  14970. return result.length();
  14971. } else if (
  14972. (llama_is_user_defined_token(model->vocab, token)) ||
  14973. (llama_is_control_token (model->vocab, token) && special)) {
  14974. std::string result = model->vocab.id_to_token[token].text;
  14975. if (length < (int) result.length()) {
  14976. return -(int) result.length();
  14977. }
  14978. memcpy(buf, result.c_str(), result.length());
  14979. return result.length();
  14980. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14981. if (length < 3) {
  14982. return -3;
  14983. }
  14984. memcpy(buf, "\xe2\x96\x85", 3);
  14985. return 3;
  14986. } else if (llama_is_byte_token(model->vocab, token)) {
  14987. if (length < 1) {
  14988. return -1;
  14989. }
  14990. buf[0] = llama_token_to_byte(model->vocab, token);
  14991. return 1;
  14992. }
  14993. break;
  14994. }
  14995. case LLAMA_VOCAB_TYPE_BPE: {
  14996. // NOTE: we accept all unsupported token types,
  14997. // suppressing them like CONTROL tokens.
  14998. if (llama_is_normal_token(model->vocab, token)) {
  14999. std::string result = model->vocab.id_to_token[token].text;
  15000. result = llama_decode_text(result);
  15001. if (length < (int) result.length()) {
  15002. return -(int) result.length();
  15003. }
  15004. memcpy(buf, result.c_str(), result.length());
  15005. return result.length();
  15006. } else if (
  15007. (llama_is_user_defined_token(model->vocab, token)) ||
  15008. (llama_is_control_token (model->vocab, token) && special)) {
  15009. std::string result = model->vocab.id_to_token[token].text;
  15010. if (length < (int) result.length()) {
  15011. return -(int) result.length();
  15012. }
  15013. memcpy(buf, result.c_str(), result.length());
  15014. return result.length();
  15015. }
  15016. break;
  15017. }
  15018. default:
  15019. GGML_ASSERT(false);
  15020. }
  15021. }
  15022. return 0;
  15023. }
  15024. // trim whitespace from the beginning and end of a string
  15025. static std::string trim(const std::string & str) {
  15026. size_t start = 0;
  15027. size_t end = str.size();
  15028. while (start < end && isspace(str[start])) {
  15029. start += 1;
  15030. }
  15031. while (end > start && isspace(str[end - 1])) {
  15032. end -= 1;
  15033. }
  15034. return str.substr(start, end - start);
  15035. }
  15036. // Simple version of "llama_apply_chat_template" that only works with strings
  15037. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15038. static int32_t llama_chat_apply_template_internal(
  15039. const std::string & tmpl,
  15040. const std::vector<const llama_chat_message *> & chat,
  15041. std::string & dest, bool add_ass) {
  15042. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15043. std::stringstream ss;
  15044. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15045. // chatml template
  15046. for (auto message : chat) {
  15047. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15048. }
  15049. if (add_ass) {
  15050. ss << "<|im_start|>assistant\n";
  15051. }
  15052. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15053. // llama2 template and its variants
  15054. // [variant] support system message
  15055. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15056. // [variant] space before + after response
  15057. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15058. // [variant] add BOS inside history
  15059. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15060. // [variant] trim spaces from the input message
  15061. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15062. // construct the prompt
  15063. bool is_inside_turn = true; // skip BOS at the beginning
  15064. ss << "[INST] ";
  15065. for (auto message : chat) {
  15066. std::string content = strip_message ? trim(message->content) : message->content;
  15067. std::string role(message->role);
  15068. if (!is_inside_turn) {
  15069. is_inside_turn = true;
  15070. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15071. }
  15072. if (role == "system") {
  15073. if (support_system_message) {
  15074. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15075. } else {
  15076. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15077. ss << content << "\n";
  15078. }
  15079. } else if (role == "user") {
  15080. ss << content << " [/INST]";
  15081. } else {
  15082. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15083. is_inside_turn = false;
  15084. }
  15085. }
  15086. // llama2 templates seem to not care about "add_generation_prompt"
  15087. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15088. // Phi 3
  15089. for (auto message : chat) {
  15090. std::string role(message->role);
  15091. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15092. }
  15093. if (add_ass) {
  15094. ss << "<|assistant|>\n";
  15095. }
  15096. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15097. // zephyr template
  15098. for (auto message : chat) {
  15099. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15100. }
  15101. if (add_ass) {
  15102. ss << "<|assistant|>\n";
  15103. }
  15104. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15105. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15106. for (auto message : chat) {
  15107. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15108. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15109. }
  15110. if (add_ass) {
  15111. ss << "<s>assistant\n";
  15112. }
  15113. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15114. // google/gemma-7b-it
  15115. std::string system_prompt = "";
  15116. for (auto message : chat) {
  15117. std::string role(message->role);
  15118. if (role == "system") {
  15119. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15120. system_prompt = trim(message->content);
  15121. continue;
  15122. }
  15123. // in gemma, "assistant" is "model"
  15124. role = role == "assistant" ? "model" : message->role;
  15125. ss << "<start_of_turn>" << role << "\n";
  15126. if (!system_prompt.empty() && role != "model") {
  15127. ss << system_prompt << "\n\n";
  15128. system_prompt = "";
  15129. }
  15130. ss << trim(message->content) << "<end_of_turn>\n";
  15131. }
  15132. if (add_ass) {
  15133. ss << "<start_of_turn>model\n";
  15134. }
  15135. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15136. // OrionStarAI/Orion-14B-Chat
  15137. std::string system_prompt = "";
  15138. for (auto message : chat) {
  15139. std::string role(message->role);
  15140. if (role == "system") {
  15141. // there is no system message support, we will merge it with user prompt
  15142. system_prompt = message->content;
  15143. continue;
  15144. } else if (role == "user") {
  15145. ss << "Human: ";
  15146. if (!system_prompt.empty()) {
  15147. ss << system_prompt << "\n\n";
  15148. system_prompt = "";
  15149. }
  15150. ss << message->content << "\n\nAssistant: </s>";
  15151. } else {
  15152. ss << message->content << "</s>";
  15153. }
  15154. }
  15155. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15156. // openchat/openchat-3.5-0106,
  15157. for (auto message : chat) {
  15158. std::string role(message->role);
  15159. if (role == "system") {
  15160. ss << message->content << "<|end_of_turn|>";
  15161. } else {
  15162. role[0] = toupper(role[0]);
  15163. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15164. }
  15165. }
  15166. if (add_ass) {
  15167. ss << "GPT4 Correct Assistant:";
  15168. }
  15169. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15170. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15171. for (auto message : chat) {
  15172. std::string role(message->role);
  15173. if (role == "system") {
  15174. // Orca-Vicuna variant uses a system prefix
  15175. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15176. ss << "SYSTEM: " << message->content << "\n";
  15177. } else {
  15178. ss << message->content << "\n\n";
  15179. }
  15180. } else if (role == "user") {
  15181. ss << "USER: " << message->content << "\n";
  15182. } else if (role == "assistant") {
  15183. ss << "ASSISTANT: " << message->content << "</s>\n";
  15184. }
  15185. }
  15186. if (add_ass) {
  15187. ss << "ASSISTANT:";
  15188. }
  15189. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15190. // deepseek-ai/deepseek-coder-33b-instruct
  15191. for (auto message : chat) {
  15192. std::string role(message->role);
  15193. if (role == "system") {
  15194. ss << message->content;
  15195. } else if (role == "user") {
  15196. ss << "### Instruction:\n" << message->content << "\n";
  15197. } else if (role == "assistant") {
  15198. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15199. }
  15200. }
  15201. if (add_ass) {
  15202. ss << "### Response:\n";
  15203. }
  15204. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15205. // CohereForAI/c4ai-command-r-plus
  15206. for (auto message : chat) {
  15207. std::string role(message->role);
  15208. if (role == "system") {
  15209. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15210. } else if (role == "user") {
  15211. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15212. } else if (role == "assistant") {
  15213. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15214. }
  15215. }
  15216. if (add_ass) {
  15217. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15218. }
  15219. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15220. // Llama 3
  15221. for (auto message : chat) {
  15222. std::string role(message->role);
  15223. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15224. }
  15225. if (add_ass) {
  15226. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15227. }
  15228. } else {
  15229. // template not supported
  15230. return -1;
  15231. }
  15232. dest = ss.str();
  15233. return dest.size();
  15234. }
  15235. LLAMA_API int32_t llama_chat_apply_template(
  15236. const struct llama_model * model,
  15237. const char * tmpl,
  15238. const struct llama_chat_message * chat,
  15239. size_t n_msg,
  15240. bool add_ass,
  15241. char * buf,
  15242. int32_t length) {
  15243. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15244. if (tmpl == nullptr) {
  15245. GGML_ASSERT(model != nullptr);
  15246. // load template from model
  15247. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15248. std::string template_key = "tokenizer.chat_template";
  15249. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15250. if (res < 0) {
  15251. // worst case: there is no information about template, we will use chatml by default
  15252. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15253. } else {
  15254. curr_tmpl = std::string(model_template.data(), model_template.size());
  15255. }
  15256. }
  15257. // format the chat to string
  15258. std::vector<const llama_chat_message *> chat_vec;
  15259. chat_vec.resize(n_msg);
  15260. for (size_t i = 0; i < n_msg; i++) {
  15261. chat_vec[i] = &chat[i];
  15262. }
  15263. std::string formatted_chat;
  15264. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15265. if (res < 0) {
  15266. return res;
  15267. }
  15268. if (buf && length > 0) {
  15269. strncpy(buf, formatted_chat.c_str(), length);
  15270. }
  15271. return res;
  15272. }
  15273. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15274. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15275. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15276. return strlen(split_path);
  15277. }
  15278. return 0;
  15279. }
  15280. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15281. std::string str_split_path(split_path);
  15282. char postfix[32];
  15283. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15284. std::string str_postfix(postfix);
  15285. // check if dest ends with postfix
  15286. int size_prefix = str_split_path.size() - str_postfix.size();
  15287. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15288. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15289. return size_prefix;
  15290. }
  15291. return 0;
  15292. }
  15293. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15294. struct llama_timings result = {
  15295. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15296. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15297. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15298. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15299. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15300. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15301. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15302. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15303. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15304. };
  15305. return result;
  15306. }
  15307. void llama_print_timings(struct llama_context * ctx) {
  15308. const llama_timings timings = llama_get_timings(ctx);
  15309. LLAMA_LOG_INFO("\n");
  15310. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15311. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15312. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15313. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15314. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15315. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15316. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15317. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15318. }
  15319. void llama_reset_timings(struct llama_context * ctx) {
  15320. ctx->t_start_us = ggml_time_us();
  15321. ctx->t_sample_us = ctx->n_sample = 0;
  15322. ctx->t_eval_us = ctx->n_eval = 0;
  15323. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15324. }
  15325. const char * llama_print_system_info(void) {
  15326. static std::string s;
  15327. s = "";
  15328. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15329. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15330. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15331. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15332. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15333. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15334. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15335. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15336. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15337. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15338. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15339. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15340. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15341. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15342. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15343. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15344. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15345. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15346. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15347. #ifdef GGML_USE_LLAMAFILE
  15348. s += "LLAMAFILE = 1 | ";
  15349. #else
  15350. s += "LLAMAFILE = 0 | ";
  15351. #endif
  15352. return s.c_str();
  15353. }
  15354. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15355. fprintf(stream, "\n");
  15356. fprintf(stream, "###########\n");
  15357. fprintf(stream, "# Timings #\n");
  15358. fprintf(stream, "###########\n");
  15359. fprintf(stream, "\n");
  15360. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15361. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15362. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15363. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15364. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15365. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15366. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15367. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15368. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15369. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15370. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15371. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15372. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15373. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15374. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15375. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15376. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15377. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15378. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15379. }
  15380. // For internal test use
  15381. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15382. struct llama_context * ctx
  15383. ) {
  15384. return ctx->model.tensors_by_name;
  15385. }
  15386. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15387. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15388. g_state.log_callback_user_data = user_data;
  15389. #ifdef GGML_USE_METAL
  15390. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15391. #elif defined(GGML_USE_CUDA)
  15392. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15393. #endif
  15394. }
  15395. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15396. va_list args_copy;
  15397. va_copy(args_copy, args);
  15398. char buffer[128];
  15399. int len = vsnprintf(buffer, 128, format, args);
  15400. if (len < 128) {
  15401. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15402. } else {
  15403. char* buffer2 = new char[len+1];
  15404. vsnprintf(buffer2, len+1, format, args_copy);
  15405. buffer2[len] = 0;
  15406. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15407. delete[] buffer2;
  15408. }
  15409. va_end(args_copy);
  15410. }
  15411. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15412. va_list args;
  15413. va_start(args, format);
  15414. llama_log_internal_v(level, format, args);
  15415. va_end(args);
  15416. }
  15417. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15418. (void) level;
  15419. (void) user_data;
  15420. fputs(text, stderr);
  15421. fflush(stderr);
  15422. }