1
0

utils.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. # type: ignore[reportUnusedImport]
  4. import subprocess
  5. import os
  6. import re
  7. import json
  8. import sys
  9. import requests
  10. import time
  11. from concurrent.futures import ThreadPoolExecutor, as_completed
  12. from typing import (
  13. Any,
  14. Callable,
  15. ContextManager,
  16. Iterable,
  17. Iterator,
  18. List,
  19. Literal,
  20. Tuple,
  21. Set,
  22. )
  23. from re import RegexFlag
  24. class ServerResponse:
  25. headers: dict
  26. status_code: int
  27. body: dict | Any
  28. class ServerProcess:
  29. # default options
  30. debug: bool = False
  31. server_port: int = 8080
  32. server_host: str = "127.0.0.1"
  33. model_hf_repo: str = "ggml-org/models"
  34. model_hf_file: str = "tinyllamas/stories260K.gguf"
  35. model_alias: str = "tinyllama-2"
  36. temperature: float = 0.8
  37. seed: int = 42
  38. # custom options
  39. model_alias: str | None = None
  40. model_url: str | None = None
  41. model_file: str | None = None
  42. model_draft: str | None = None
  43. n_threads: int | None = None
  44. n_gpu_layer: int | None = None
  45. n_batch: int | None = None
  46. n_ubatch: int | None = None
  47. n_ctx: int | None = None
  48. n_ga: int | None = None
  49. n_ga_w: int | None = None
  50. n_predict: int | None = None
  51. n_prompts: int | None = 0
  52. slot_save_path: str | None = None
  53. id_slot: int | None = None
  54. cache_prompt: bool | None = None
  55. n_slots: int | None = None
  56. server_continuous_batching: bool | None = False
  57. server_embeddings: bool | None = False
  58. server_reranking: bool | None = False
  59. server_metrics: bool | None = False
  60. draft: int | None = None
  61. api_key: str | None = None
  62. response_format: str | None = None
  63. lora_files: List[str] | None = None
  64. disable_ctx_shift: int | None = False
  65. draft_min: int | None = None
  66. draft_max: int | None = None
  67. # session variables
  68. process: subprocess.Popen | None = None
  69. def __init__(self):
  70. if "N_GPU_LAYERS" in os.environ:
  71. self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
  72. if "DEBUG" in os.environ:
  73. self.debug = True
  74. if "PORT" in os.environ:
  75. self.server_port = int(os.environ["PORT"])
  76. def start(self, timeout_seconds: int = 10) -> None:
  77. if "LLAMA_SERVER_BIN_PATH" in os.environ:
  78. server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
  79. elif os.name == "nt":
  80. server_path = "../../../build/bin/Release/llama-server.exe"
  81. else:
  82. server_path = "../../../build/bin/llama-server"
  83. server_args = [
  84. "--slots", # requires to get slot status via /slots endpoint
  85. "--host",
  86. self.server_host,
  87. "--port",
  88. self.server_port,
  89. "--temp",
  90. self.temperature,
  91. "--seed",
  92. self.seed,
  93. ]
  94. if self.model_file:
  95. server_args.extend(["--model", self.model_file])
  96. if self.model_url:
  97. server_args.extend(["--model-url", self.model_url])
  98. if self.model_draft:
  99. server_args.extend(["--model-draft", self.model_draft])
  100. if self.model_hf_repo:
  101. server_args.extend(["--hf-repo", self.model_hf_repo])
  102. if self.model_hf_file:
  103. server_args.extend(["--hf-file", self.model_hf_file])
  104. if self.n_batch:
  105. server_args.extend(["--batch-size", self.n_batch])
  106. if self.n_ubatch:
  107. server_args.extend(["--ubatch-size", self.n_ubatch])
  108. if self.n_threads:
  109. server_args.extend(["--threads", self.n_threads])
  110. if self.n_gpu_layer:
  111. server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
  112. if self.draft is not None:
  113. server_args.extend(["--draft", self.draft])
  114. if self.server_continuous_batching:
  115. server_args.append("--cont-batching")
  116. if self.server_embeddings:
  117. server_args.append("--embedding")
  118. if self.server_reranking:
  119. server_args.append("--reranking")
  120. if self.server_metrics:
  121. server_args.append("--metrics")
  122. if self.model_alias:
  123. server_args.extend(["--alias", self.model_alias])
  124. if self.n_ctx:
  125. server_args.extend(["--ctx-size", self.n_ctx])
  126. if self.n_slots:
  127. server_args.extend(["--parallel", self.n_slots])
  128. if self.n_predict:
  129. server_args.extend(["--n-predict", self.n_predict])
  130. if self.slot_save_path:
  131. server_args.extend(["--slot-save-path", self.slot_save_path])
  132. if self.n_ga:
  133. server_args.extend(["--grp-attn-n", self.n_ga])
  134. if self.n_ga_w:
  135. server_args.extend(["--grp-attn-w", self.n_ga_w])
  136. if self.debug:
  137. server_args.append("--verbose")
  138. if self.lora_files:
  139. for lora_file in self.lora_files:
  140. server_args.extend(["--lora", lora_file])
  141. if self.disable_ctx_shift:
  142. server_args.extend(["--no-context-shift"])
  143. if self.api_key:
  144. server_args.extend(["--api-key", self.api_key])
  145. if self.draft_max:
  146. server_args.extend(["--draft-max", self.draft_max])
  147. if self.draft_min:
  148. server_args.extend(["--draft-min", self.draft_min])
  149. args = [str(arg) for arg in [server_path, *server_args]]
  150. print(f"bench: starting server with: {' '.join(args)}")
  151. flags = 0
  152. if "nt" == os.name:
  153. flags |= subprocess.DETACHED_PROCESS
  154. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  155. flags |= subprocess.CREATE_NO_WINDOW
  156. self.process = subprocess.Popen(
  157. [str(arg) for arg in [server_path, *server_args]],
  158. creationflags=flags,
  159. stdout=sys.stdout,
  160. stderr=sys.stdout,
  161. env={**os.environ, "LLAMA_CACHE": "tmp"},
  162. )
  163. server_instances.add(self)
  164. print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
  165. # wait for server to start
  166. start_time = time.time()
  167. while time.time() - start_time < timeout_seconds:
  168. try:
  169. response = self.make_request("GET", "/slots", headers={
  170. "Authorization": f"Bearer {self.api_key}" if self.api_key else None
  171. })
  172. if response.status_code == 200:
  173. self.ready = True
  174. return # server is ready
  175. except Exception as e:
  176. pass
  177. print(f"Waiting for server to start...")
  178. time.sleep(0.5)
  179. raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
  180. def stop(self) -> None:
  181. if self in server_instances:
  182. server_instances.remove(self)
  183. if self.process:
  184. print(f"Stopping server with pid={self.process.pid}")
  185. self.process.kill()
  186. self.process = None
  187. def make_request(
  188. self,
  189. method: str,
  190. path: str,
  191. data: dict | Any | None = None,
  192. headers: dict | None = None,
  193. ) -> ServerResponse:
  194. url = f"http://{self.server_host}:{self.server_port}{path}"
  195. parse_body = False
  196. if method == "GET":
  197. response = requests.get(url, headers=headers)
  198. parse_body = True
  199. elif method == "POST":
  200. response = requests.post(url, headers=headers, json=data)
  201. parse_body = True
  202. elif method == "OPTIONS":
  203. response = requests.options(url, headers=headers)
  204. else:
  205. raise ValueError(f"Unimplemented method: {method}")
  206. result = ServerResponse()
  207. result.headers = dict(response.headers)
  208. result.status_code = response.status_code
  209. result.body = response.json() if parse_body else None
  210. print("Response from server", result.body)
  211. return result
  212. def make_stream_request(
  213. self,
  214. method: str,
  215. path: str,
  216. data: dict | None = None,
  217. headers: dict | None = None,
  218. ) -> Iterator[dict]:
  219. url = f"http://{self.server_host}:{self.server_port}{path}"
  220. if method == "POST":
  221. response = requests.post(url, headers=headers, json=data, stream=True)
  222. else:
  223. raise ValueError(f"Unimplemented method: {method}")
  224. for line_bytes in response.iter_lines():
  225. line = line_bytes.decode("utf-8")
  226. if '[DONE]' in line:
  227. break
  228. elif line.startswith('data: '):
  229. data = json.loads(line[6:])
  230. print("Partial response from server", data)
  231. yield data
  232. server_instances: Set[ServerProcess] = set()
  233. class ServerPreset:
  234. @staticmethod
  235. def tinyllama2() -> ServerProcess:
  236. server = ServerProcess()
  237. server.model_hf_repo = "ggml-org/models"
  238. server.model_hf_file = "tinyllamas/stories260K.gguf"
  239. server.model_alias = "tinyllama-2"
  240. server.n_ctx = 256
  241. server.n_batch = 32
  242. server.n_slots = 2
  243. server.n_predict = 64
  244. server.seed = 42
  245. return server
  246. @staticmethod
  247. def bert_bge_small() -> ServerProcess:
  248. server = ServerProcess()
  249. server.model_hf_repo = "ggml-org/models"
  250. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  251. server.model_alias = "bert-bge-small"
  252. server.n_ctx = 512
  253. server.n_batch = 128
  254. server.n_ubatch = 128
  255. server.n_slots = 2
  256. server.seed = 42
  257. server.server_embeddings = True
  258. return server
  259. @staticmethod
  260. def tinyllama_infill() -> ServerProcess:
  261. server = ServerProcess()
  262. server.model_hf_repo = "ggml-org/models"
  263. server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
  264. server.model_alias = "tinyllama-infill"
  265. server.n_ctx = 2048
  266. server.n_batch = 1024
  267. server.n_slots = 1
  268. server.n_predict = 64
  269. server.temperature = 0.0
  270. server.seed = 42
  271. return server
  272. @staticmethod
  273. def stories15m_moe() -> ServerProcess:
  274. server = ServerProcess()
  275. server.model_hf_repo = "ggml-org/stories15M_MOE"
  276. server.model_hf_file = "stories15M_MOE-F16.gguf"
  277. server.model_alias = "stories15m-moe"
  278. server.n_ctx = 2048
  279. server.n_batch = 1024
  280. server.n_slots = 1
  281. server.n_predict = 64
  282. server.temperature = 0.0
  283. server.seed = 42
  284. return server
  285. @staticmethod
  286. def jina_reranker_tiny() -> ServerProcess:
  287. server = ServerProcess()
  288. server.model_hf_repo = "ggml-org/models"
  289. server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
  290. server.model_alias = "jina-reranker"
  291. server.n_ctx = 512
  292. server.n_batch = 512
  293. server.n_slots = 1
  294. server.seed = 42
  295. server.server_reranking = True
  296. return server
  297. def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
  298. """
  299. Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
  300. Example usage:
  301. results = parallel_function_calls([
  302. (func1, (arg1, arg2)),
  303. (func2, (arg3, arg4)),
  304. ])
  305. """
  306. results = [None] * len(function_list)
  307. exceptions = []
  308. def worker(index, func, args):
  309. try:
  310. result = func(*args)
  311. results[index] = result
  312. except Exception as e:
  313. exceptions.append((index, str(e)))
  314. with ThreadPoolExecutor() as executor:
  315. futures = []
  316. for i, (func, args) in enumerate(function_list):
  317. future = executor.submit(worker, i, func, args)
  318. futures.append(future)
  319. # Wait for all futures to complete
  320. for future in as_completed(futures):
  321. pass
  322. # Check if there were any exceptions
  323. if exceptions:
  324. print("Exceptions occurred:")
  325. for index, error in exceptions:
  326. print(f"Function at index {index}: {error}")
  327. return results
  328. def match_regex(regex: str, text: str) -> bool:
  329. return (
  330. re.compile(
  331. regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
  332. ).search(text)
  333. is not None
  334. )