speculative.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "sampling.h"
  4. #include "log.h"
  5. #include "llama.h"
  6. #include <algorithm>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <random>
  10. #include <set>
  11. #include <string>
  12. #include <vector>
  13. #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
  14. #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
  15. struct seq_draft {
  16. bool active = false;
  17. bool drafting = false;
  18. bool skip = false;
  19. int i_batch_dft = 0;
  20. std::vector<int> i_batch_tgt;
  21. std::vector<llama_token> tokens;
  22. std::vector<std::vector<llama_token_data>> dists;
  23. struct common_sampler * smpl = nullptr;
  24. };
  25. int main(int argc, char ** argv) {
  26. common_params params;
  27. // needed to get candidate probs even for temp <= 0.0
  28. params.sampling.n_probs = 128;
  29. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
  30. return 1;
  31. }
  32. if (params.n_predict < -1) {
  33. LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
  34. return 1;
  35. }
  36. common_init();
  37. if (params.speculative.model.empty()) {
  38. LOG_ERR("%s: --model-draft is required\n", __func__);
  39. return 1;
  40. }
  41. // max number of parallel drafting sequences (i.e. tree branches)
  42. const int n_seq_dft = params.n_parallel;
  43. // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
  44. const float p_draft_split = params.speculative.p_split;
  45. std::default_random_engine rng(params.sampling.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sampling.seed);
  46. std::uniform_real_distribution<> u_dist;
  47. // init llama.cpp
  48. llama_backend_init();
  49. llama_numa_init(params.numa);
  50. llama_model * model_tgt = NULL;
  51. llama_model * model_dft = NULL;
  52. llama_context * ctx_tgt = NULL;
  53. llama_context * ctx_dft = NULL;
  54. // load the target model
  55. common_init_result llama_init_tgt = common_init_from_params(params);
  56. model_tgt = llama_init_tgt.model;
  57. ctx_tgt = llama_init_tgt.context;
  58. // load the draft model
  59. params.devices = params.speculative.devices;
  60. params.model = params.speculative.model;
  61. params.n_gpu_layers = params.speculative.n_gpu_layers;
  62. if (params.speculative.cpuparams.n_threads > 0) {
  63. params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
  64. }
  65. params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
  66. common_init_result llama_init_dft = common_init_from_params(params);
  67. model_dft = llama_init_dft.model;
  68. ctx_dft = llama_init_dft.context;
  69. const bool vocab_type_tgt = llama_vocab_type(model_tgt);
  70. LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
  71. const bool vocab_type_dft = llama_vocab_type(model_dft);
  72. LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
  73. if (vocab_type_tgt != vocab_type_dft) {
  74. LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
  75. LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
  76. return 1;
  77. }
  78. if (
  79. llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
  80. llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
  81. llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
  82. llama_token_eos(model_tgt) != llama_token_eos(model_dft)
  83. ) {
  84. LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
  85. return 1;
  86. }
  87. {
  88. const int n_vocab_tgt = llama_n_vocab(model_tgt);
  89. const int n_vocab_dft = llama_n_vocab(model_dft);
  90. const int vocab_diff = n_vocab_tgt > n_vocab_dft
  91. ? n_vocab_tgt - n_vocab_dft
  92. : n_vocab_dft - n_vocab_tgt;
  93. if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
  94. LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
  95. LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
  96. n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
  97. return 1;
  98. }
  99. for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
  100. const char * token_text_tgt = llama_token_get_text(model_tgt, i);
  101. const char * token_text_dft = llama_token_get_text(model_dft, i);
  102. if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
  103. LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
  104. LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
  105. common_token_to_piece(ctx_tgt, i).c_str(),
  106. common_token_to_piece(ctx_dft, i).c_str());
  107. return 1;
  108. }
  109. }
  110. }
  111. // Tokenize the prompt
  112. std::vector<llama_token> inp;
  113. inp = common_tokenize(ctx_tgt, params.prompt, true, true);
  114. const int max_context_size = llama_n_ctx(ctx_tgt);
  115. const int max_tokens_list_size = max_context_size - 4;
  116. if ((int) inp.size() > max_tokens_list_size) {
  117. LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  118. return 1;
  119. }
  120. LOG("\n\n");
  121. for (auto id : inp) {
  122. LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
  123. }
  124. const int n_input = inp.size();
  125. const auto t_enc_start = ggml_time_us();
  126. // eval the prompt with both models
  127. llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1));
  128. llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1));
  129. llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input));
  130. const auto t_enc_end = ggml_time_us();
  131. // the 2 models should have the same vocab
  132. //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
  133. // how many tokens to draft each time
  134. int n_draft = params.speculative.n_max;
  135. int n_predict = 0;
  136. int n_drafted = 0;
  137. int n_accept = 0;
  138. int n_past_tgt = inp.size();
  139. int n_past_dft = inp.size();
  140. // used to determine end of generation
  141. bool has_eos = false;
  142. // target model sampling context (reuse the llama_context's sampling instance)
  143. struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
  144. // draft sequence data
  145. std::vector<seq_draft> drafts(n_seq_dft);
  146. for (int s = 0; s < n_seq_dft; ++s) {
  147. // allocate llama_sampler for each draft sequence
  148. drafts[s].smpl = common_sampler_init(model_dft, params.sampling);
  149. }
  150. llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
  151. llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, n_seq_dft);
  152. const auto t_dec_start = ggml_time_us();
  153. // sample from the last token of the prompt
  154. drafts[0].i_batch_tgt.resize(1);
  155. drafts[0].i_batch_tgt[0] = 0;
  156. while (true) {
  157. std::set<int> active_seqs = {};
  158. // print current draft sequences
  159. for (int s = 0; s < n_seq_dft; ++s) {
  160. if (!drafts[s].active) {
  161. continue;
  162. }
  163. active_seqs.insert(s);
  164. const auto & tokens = drafts[s].tokens;
  165. LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
  166. }
  167. int i_dft = 0;
  168. int s_keep = 0;
  169. llama_token token_id;
  170. std::string token_str;
  171. // loop until we fail to accept a drafted token or we run out of drafted tokens
  172. while (true) {
  173. // check if the target token matches any of the drafts
  174. // for stochastic sampling, attempt to match the token with the drafted tokens
  175. {
  176. bool accept = false;
  177. if (params.sampling.temp > 0) {
  178. // stochastic verification
  179. common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
  180. auto & dist_tgt = *common_sampler_get_candidates(smpl);
  181. float p_tgt = 0.0f;
  182. float p_dft = 0.0f;
  183. while (active_seqs.size() > 0) {
  184. // randomly select a sequence to verify from active sequences
  185. std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
  186. int s = *std::next(active_seqs.begin(), u_int_dist(rng));
  187. if (i_dft >= (int) drafts[s].tokens.size()) {
  188. drafts[s].active = false;
  189. active_seqs.erase(s);
  190. continue;
  191. }
  192. if (accept) {
  193. // if we already accepted a token, we can skip the rest
  194. if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
  195. drafts[s].active = false;
  196. active_seqs.erase(s);
  197. }
  198. continue;
  199. }
  200. LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
  201. float r = u_dist(rng);
  202. llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
  203. //GGML_ASSERT(dist_tgt.size <= dist_dft.size);
  204. // acquire the token probabilities assigned by the draft and target models
  205. for (size_t i = 0; i < dist_tgt.size; i++) {
  206. if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
  207. p_tgt = dist_tgt.data[i].p;
  208. break;
  209. }
  210. }
  211. for (size_t i = 0; i < dist_dft.size; i++) {
  212. if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
  213. p_dft = dist_dft.data[i].p;
  214. break;
  215. }
  216. }
  217. LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
  218. if (r <= p_tgt / p_dft) {
  219. s_keep = s;
  220. accept = true;
  221. token_id = drafts[s].tokens[i_dft];
  222. token_str = common_token_to_piece(ctx_tgt, token_id);
  223. common_sampler_accept(smpl, token_id, true);
  224. LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
  225. break;
  226. } else {
  227. LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
  228. drafts[s].active = false;
  229. // calculate residual probability
  230. GGML_ASSERT(dist_tgt.sorted);
  231. GGML_ASSERT(dist_dft.sorted);
  232. // sort dist by id
  233. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  234. return a.id < b.id;
  235. });
  236. std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
  237. return a.id < b.id;
  238. });
  239. float sum_probs = 0.0f;
  240. for (size_t i = 0; i < dist_tgt.size; i++) {
  241. if (i < dist_dft.size) {
  242. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
  243. } else {
  244. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
  245. }
  246. sum_probs += dist_tgt.data[i].p;
  247. }
  248. for (size_t i = 0; i < dist_tgt.size; i++) {
  249. dist_tgt.data[i].p /= sum_probs;
  250. }
  251. // sort dist_tgt by p desc
  252. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  253. return a.p > b.p;
  254. });
  255. }
  256. active_seqs.erase(s);
  257. for(int i = 0; i < n_seq_dft; i++) {
  258. if (i == s) {
  259. continue;
  260. }
  261. if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
  262. // synchronize active status for sequences with the same drafted token
  263. drafts[i].active = drafts[i].active && accept;
  264. if (!drafts[i].active) {
  265. active_seqs.erase(s);
  266. }
  267. }
  268. }
  269. }
  270. if (!accept) {
  271. // all drafted tokens were rejected
  272. // sample from the target model
  273. LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
  274. std::vector<float> probs(dist_tgt.size);
  275. for (size_t i = 0; i < dist_tgt.size; ++i) {
  276. probs[i] = dist_tgt.data[i].p;
  277. }
  278. std::discrete_distribution<> dist(probs.begin(), probs.end());
  279. const int idx = dist(rng);
  280. token_id = dist_tgt.data[idx].id;
  281. common_sampler_accept(smpl, token_id, true);
  282. token_str = common_token_to_piece(ctx_tgt, token_id);
  283. }
  284. } else {
  285. // greedy verification
  286. // sample from the target model
  287. LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
  288. token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
  289. common_sampler_accept(smpl, token_id, true);
  290. token_str = common_token_to_piece(ctx_tgt, token_id);
  291. for (int s = 0; s < n_seq_dft; ++s) {
  292. if (!drafts[s].active) {
  293. continue;
  294. }
  295. if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
  296. LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
  297. s_keep = s;
  298. accept = true;
  299. } else {
  300. drafts[s].active = false;
  301. }
  302. }
  303. }
  304. if (llama_token_is_eog(model_tgt, token_id)) {
  305. has_eos = true;
  306. }
  307. ++n_predict;
  308. if (accept) {
  309. ++n_accept;
  310. ++n_past_tgt;
  311. ++n_past_dft;
  312. ++i_dft;
  313. if (params.use_color) {
  314. // Color token according to its origin sequence
  315. LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
  316. } else {
  317. LOG("%s", token_str.c_str());
  318. }
  319. continue;
  320. } else {
  321. LOG("%s", token_str.c_str());
  322. break;
  323. }
  324. }
  325. }
  326. {
  327. LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
  328. // TODO: simplify
  329. {
  330. LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
  331. llama_kv_cache_seq_keep(ctx_dft, s_keep);
  332. llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
  333. llama_kv_cache_seq_keep(ctx_dft, 0);
  334. llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
  335. llama_kv_cache_seq_keep(ctx_tgt, s_keep);
  336. llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
  337. llama_kv_cache_seq_keep(ctx_tgt, 0);
  338. }
  339. for (int s = 0; s < n_seq_dft; ++s) {
  340. drafts[s].active = false;
  341. drafts[s].tokens.clear();
  342. drafts[s].i_batch_tgt.clear();
  343. drafts[s].dists.clear();
  344. }
  345. // note: will be erased after the speculation phase
  346. drafts[0].tokens.push_back(token_id);
  347. drafts[0].dists.push_back(std::vector<llama_token_data>());
  348. drafts[0].i_batch_tgt.push_back(0);
  349. common_batch_clear(batch_dft);
  350. common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
  351. llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
  352. // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
  353. llama_decode(ctx_dft, batch_dft);
  354. ++n_past_dft;
  355. }
  356. if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
  357. break;
  358. }
  359. if (drafts[0].smpl) {
  360. common_sampler_free(drafts[0].smpl);
  361. }
  362. drafts[0].smpl = common_sampler_clone(smpl);
  363. int n_seq_cur = 1;
  364. int n_past_cur = n_past_dft;
  365. for (int s = 0; s < n_seq_dft; ++s) {
  366. drafts[s].active = false;
  367. drafts[s].drafting = false;
  368. }
  369. drafts[0].active = true;
  370. drafts[0].drafting = true;
  371. drafts[0].i_batch_dft = 0;
  372. common_batch_clear(batch_tgt);
  373. common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
  374. // sample n_draft tokens from the draft model using tree-based sampling
  375. for (int i = 0; i < n_draft; ++i) {
  376. batch_dft.n_tokens = 0;
  377. for (int s = 0; s < n_seq_dft; ++s) {
  378. drafts[s].skip = false;
  379. }
  380. for (int s = 0; s < n_seq_dft; ++s) {
  381. if (!drafts[s].drafting || drafts[s].skip) {
  382. continue;
  383. }
  384. common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
  385. const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
  386. for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
  387. LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
  388. k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
  389. }
  390. std::vector<int> sa(1, s);
  391. // attempt to split the branch if the probability is high enough
  392. for (int f = 1; f < 8; ++f) {
  393. if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
  394. LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
  395. llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
  396. llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
  397. // all previous tokens from this branch are now also part of the new branch
  398. for (int t = 0; t < batch_tgt.n_tokens; ++t) {
  399. for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
  400. if (batch_tgt.seq_id[t][p] == s) {
  401. batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
  402. batch_tgt.n_seq_id[t]++;
  403. break;
  404. }
  405. }
  406. }
  407. // copy the draft state
  408. drafts[n_seq_cur].active = true;
  409. drafts[n_seq_cur].drafting = true;
  410. drafts[n_seq_cur].skip = true;
  411. drafts[n_seq_cur].tokens = drafts[s].tokens;
  412. drafts[n_seq_cur].dists = drafts[s].dists;
  413. drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
  414. drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
  415. if (drafts[n_seq_cur].smpl) {
  416. common_sampler_free(drafts[n_seq_cur].smpl);
  417. }
  418. drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);
  419. sa.push_back(n_seq_cur);
  420. n_seq_cur++;
  421. } else {
  422. break;
  423. }
  424. }
  425. // add drafted token for each sequence
  426. for (int is = 0; is < (int) sa.size(); ++is) {
  427. const llama_token id = cur_p->data[is].id;
  428. const int s = sa[is];
  429. common_sampler_accept(drafts[s].smpl, id, true);
  430. drafts[s].tokens.push_back(id);
  431. // save cur_p.data into drafts[s].dists
  432. drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
  433. // add unique drafted tokens to the target batch
  434. drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
  435. common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
  436. // add the token to the batch for batched decoding with the draft model
  437. drafts[s].i_batch_dft = batch_dft.n_tokens;
  438. common_batch_add(batch_dft, id, n_past_cur, { s }, true);
  439. if (batch_tgt.n_tokens > n_draft) {
  440. drafts[s].drafting = false;
  441. }
  442. }
  443. }
  444. // no sequence is drafting anymore
  445. if (batch_dft.n_tokens == 0) {
  446. break;
  447. }
  448. // evaluate the drafted tokens on the draft model
  449. llama_decode(ctx_dft, batch_dft);
  450. ++n_past_cur;
  451. ++n_drafted;
  452. if (batch_tgt.n_tokens > n_draft) {
  453. break;
  454. }
  455. }
  456. // evaluate the target model on the drafted tokens
  457. {
  458. llama_kv_cache_seq_keep(ctx_tgt, 0);
  459. for (int s = 1; s < n_seq_dft; ++s) {
  460. llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
  461. }
  462. // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
  463. llama_decode(ctx_tgt, batch_tgt);
  464. ++n_past_tgt;
  465. }
  466. // the first token is always proposed by the target model before the speculation loop so we erase it here
  467. for (int s = 0; s < n_seq_dft; ++s) {
  468. if (!drafts[s].active) {
  469. continue;
  470. }
  471. drafts[s].tokens.erase(drafts[s].tokens.begin());
  472. drafts[s].dists.erase(drafts[s].dists.begin());
  473. }
  474. }
  475. auto t_dec_end = ggml_time_us();
  476. LOG("\n\n");
  477. LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  478. LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  479. LOG_INF("\n");
  480. LOG_INF("n_draft = %d\n", n_draft);
  481. LOG_INF("n_predict = %d\n", n_predict);
  482. LOG_INF("n_drafted = %d\n", n_drafted);
  483. LOG_INF("n_accept = %d\n", n_accept);
  484. LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  485. LOG_INF("\n");
  486. LOG_INF("draft:\n\n");
  487. // TODO: print sampling/grammar timings for all drafts
  488. llama_perf_context_print(ctx_dft);
  489. LOG_INF("\n");
  490. LOG_INF("target:\n\n");
  491. common_perf_print(ctx_tgt, smpl);
  492. common_sampler_free(smpl);
  493. for (int s = 0; s < n_seq_dft; ++s) {
  494. common_sampler_free(drafts[s].smpl);
  495. }
  496. llama_batch_free(batch_dft);
  497. llama_free(ctx_tgt);
  498. llama_free_model(model_tgt);
  499. llama_free(ctx_dft);
  500. llama_free_model(model_dft);
  501. llama_backend_free();
  502. LOG("\n\n");
  503. return 0;
  504. }