ggml.c 635 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q8_K] = {
  513. .type_name = "q8_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q8_K),
  516. .is_quantized = true,
  517. .from_float = quantize_row_q8_K,
  518. }
  519. };
  520. // For internal test use
  521. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  522. GGML_ASSERT(type < GGML_TYPE_COUNT);
  523. return type_traits[type];
  524. }
  525. //
  526. // simd mappings
  527. //
  528. #if defined(__ARM_NEON)
  529. #if !defined(__aarch64__)
  530. // 64-bit compatibility
  531. inline static float vaddvq_f32(float32x4_t v) {
  532. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  533. }
  534. #endif
  535. #endif
  536. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  537. // we then implement the fundamental computation operations below using only these macros
  538. // adding support for new architectures requires to define the corresponding SIMD macros
  539. //
  540. // GGML_F32_STEP / GGML_F16_STEP
  541. // number of elements to process in a single step
  542. //
  543. // GGML_F32_EPR / GGML_F16_EPR
  544. // number of elements to fit in a single register
  545. //
  546. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  547. #define GGML_SIMD
  548. // F32 NEON
  549. #define GGML_F32_STEP 16
  550. #define GGML_F32_EPR 4
  551. #define GGML_F32x4 float32x4_t
  552. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  553. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  554. #define GGML_F32x4_LOAD vld1q_f32
  555. #define GGML_F32x4_STORE vst1q_f32
  556. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  557. #define GGML_F32x4_ADD vaddq_f32
  558. #define GGML_F32x4_MUL vmulq_f32
  559. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  560. #define GGML_F32x4_REDUCE(res, x) \
  561. { \
  562. int offset = GGML_F32_ARR >> 1; \
  563. for (int i = 0; i < offset; ++i) { \
  564. x[i] = vaddq_f32(x[i], x[offset+i]); \
  565. } \
  566. offset >>= 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f32(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f32(x[i], x[offset+i]); \
  573. } \
  574. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  575. }
  576. #define GGML_F32_VEC GGML_F32x4
  577. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  578. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  579. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  580. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  581. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  582. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  583. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  584. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  585. // F16 NEON
  586. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  587. #define GGML_F16_STEP 32
  588. #define GGML_F16_EPR 8
  589. #define GGML_F16x8 float16x8_t
  590. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  591. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  592. #define GGML_F16x8_LOAD vld1q_f16
  593. #define GGML_F16x8_STORE vst1q_f16
  594. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  595. #define GGML_F16x8_ADD vaddq_f16
  596. #define GGML_F16x8_MUL vmulq_f16
  597. #define GGML_F16x8_REDUCE(res, x) \
  598. do { \
  599. int offset = GGML_F16_ARR >> 1; \
  600. for (int i = 0; i < offset; ++i) { \
  601. x[i] = vaddq_f16(x[i], x[offset+i]); \
  602. } \
  603. offset >>= 1; \
  604. for (int i = 0; i < offset; ++i) { \
  605. x[i] = vaddq_f16(x[i], x[offset+i]); \
  606. } \
  607. offset >>= 1; \
  608. for (int i = 0; i < offset; ++i) { \
  609. x[i] = vaddq_f16(x[i], x[offset+i]); \
  610. } \
  611. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  612. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  613. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  614. } while (0)
  615. #define GGML_F16_VEC GGML_F16x8
  616. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  617. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  618. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  619. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  620. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  621. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  622. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  623. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  624. #else
  625. // if FP16 vector arithmetic is not supported, we use FP32 instead
  626. // and take advantage of the vcvt_ functions to convert to/from FP16
  627. #define GGML_F16_STEP 16
  628. #define GGML_F16_EPR 4
  629. #define GGML_F32Cx4 float32x4_t
  630. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  631. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  632. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  633. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  634. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  635. #define GGML_F32Cx4_ADD vaddq_f32
  636. #define GGML_F32Cx4_MUL vmulq_f32
  637. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  638. #define GGML_F16_VEC GGML_F32Cx4
  639. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  640. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  641. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  642. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  643. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  644. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  645. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  646. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  647. #endif
  648. #elif defined(__AVX__)
  649. #define GGML_SIMD
  650. // F32 AVX
  651. #define GGML_F32_STEP 32
  652. #define GGML_F32_EPR 8
  653. #define GGML_F32x8 __m256
  654. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  655. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  656. #define GGML_F32x8_LOAD _mm256_loadu_ps
  657. #define GGML_F32x8_STORE _mm256_storeu_ps
  658. #if defined(__FMA__)
  659. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  660. #else
  661. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  662. #endif
  663. #define GGML_F32x8_ADD _mm256_add_ps
  664. #define GGML_F32x8_MUL _mm256_mul_ps
  665. #define GGML_F32x8_REDUCE(res, x) \
  666. do { \
  667. int offset = GGML_F32_ARR >> 1; \
  668. for (int i = 0; i < offset; ++i) { \
  669. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  670. } \
  671. offset >>= 1; \
  672. for (int i = 0; i < offset; ++i) { \
  673. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  674. } \
  675. offset >>= 1; \
  676. for (int i = 0; i < offset; ++i) { \
  677. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  678. } \
  679. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  680. _mm256_extractf128_ps(x[0], 1)); \
  681. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  682. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  683. } while (0)
  684. // TODO: is this optimal ?
  685. #define GGML_F32_VEC GGML_F32x8
  686. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  687. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  688. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  689. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  690. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  691. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  692. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  693. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  694. // F16 AVX
  695. #define GGML_F16_STEP 32
  696. #define GGML_F16_EPR 8
  697. // F16 arithmetic is not supported by AVX, so we use F32 instead
  698. #define GGML_F32Cx8 __m256
  699. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  700. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  701. #if defined(__F16C__)
  702. // the _mm256_cvt intrinsics require F16C
  703. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  704. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  705. #else
  706. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  707. float tmp[8];
  708. for (int i = 0; i < 8; i++) {
  709. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  710. }
  711. return _mm256_loadu_ps(tmp);
  712. }
  713. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  714. float arr[8];
  715. _mm256_storeu_ps(arr, y);
  716. for (int i = 0; i < 8; i++)
  717. x[i] = GGML_FP32_TO_FP16(arr[i]);
  718. }
  719. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  720. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  721. #endif
  722. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  723. #define GGML_F32Cx8_ADD _mm256_add_ps
  724. #define GGML_F32Cx8_MUL _mm256_mul_ps
  725. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  726. #define GGML_F16_VEC GGML_F32Cx8
  727. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  728. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  729. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  730. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  731. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  732. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  733. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  734. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  735. #elif defined(__POWER9_VECTOR__)
  736. #define GGML_SIMD
  737. // F32 POWER9
  738. #define GGML_F32_STEP 32
  739. #define GGML_F32_EPR 4
  740. #define GGML_F32x4 vector float
  741. #define GGML_F32x4_ZERO 0.0f
  742. #define GGML_F32x4_SET1 vec_splats
  743. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  744. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  745. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  746. #define GGML_F32x4_ADD vec_add
  747. #define GGML_F32x4_MUL vec_mul
  748. #define GGML_F32x4_REDUCE(res, x) \
  749. { \
  750. int offset = GGML_F32_ARR >> 1; \
  751. for (int i = 0; i < offset; ++i) { \
  752. x[i] = vec_add(x[i], x[offset+i]); \
  753. } \
  754. offset >>= 1; \
  755. for (int i = 0; i < offset; ++i) { \
  756. x[i] = vec_add(x[i], x[offset+i]); \
  757. } \
  758. offset >>= 1; \
  759. for (int i = 0; i < offset; ++i) { \
  760. x[i] = vec_add(x[i], x[offset+i]); \
  761. } \
  762. res = vec_extract(x[0], 0) + \
  763. vec_extract(x[0], 1) + \
  764. vec_extract(x[0], 2) + \
  765. vec_extract(x[0], 3); \
  766. }
  767. #define GGML_F32_VEC GGML_F32x4
  768. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  769. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  770. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  771. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  772. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  773. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  774. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  775. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  776. // F16 POWER9
  777. #define GGML_F16_STEP GGML_F32_STEP
  778. #define GGML_F16_EPR GGML_F32_EPR
  779. #define GGML_F16_VEC GGML_F32x4
  780. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  781. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  782. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  783. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  784. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  785. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  786. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  787. vec_extract_fp32_from_shortl(vec_xl(0, p))
  788. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  789. #define GGML_F16_VEC_STORE(p, r, i) \
  790. if (i & 0x1) \
  791. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  792. r[i - GGML_ENDIAN_BYTE(0)]), \
  793. 0, p - GGML_F16_EPR)
  794. #elif defined(__wasm_simd128__)
  795. #define GGML_SIMD
  796. // F32 WASM
  797. #define GGML_F32_STEP 16
  798. #define GGML_F32_EPR 4
  799. #define GGML_F32x4 v128_t
  800. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  801. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  802. #define GGML_F32x4_LOAD wasm_v128_load
  803. #define GGML_F32x4_STORE wasm_v128_store
  804. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  805. #define GGML_F32x4_ADD wasm_f32x4_add
  806. #define GGML_F32x4_MUL wasm_f32x4_mul
  807. #define GGML_F32x4_REDUCE(res, x) \
  808. { \
  809. int offset = GGML_F32_ARR >> 1; \
  810. for (int i = 0; i < offset; ++i) { \
  811. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  812. } \
  813. offset >>= 1; \
  814. for (int i = 0; i < offset; ++i) { \
  815. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  816. } \
  817. offset >>= 1; \
  818. for (int i = 0; i < offset; ++i) { \
  819. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  820. } \
  821. res = wasm_f32x4_extract_lane(x[0], 0) + \
  822. wasm_f32x4_extract_lane(x[0], 1) + \
  823. wasm_f32x4_extract_lane(x[0], 2) + \
  824. wasm_f32x4_extract_lane(x[0], 3); \
  825. }
  826. #define GGML_F32_VEC GGML_F32x4
  827. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  828. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  829. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  830. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  831. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  832. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  833. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  834. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  835. // F16 WASM
  836. #define GGML_F16_STEP 16
  837. #define GGML_F16_EPR 4
  838. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  839. float tmp[4];
  840. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  841. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  842. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  843. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  844. return wasm_v128_load(tmp);
  845. }
  846. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  847. float tmp[4];
  848. wasm_v128_store(tmp, x);
  849. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  850. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  851. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  852. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  853. }
  854. #define GGML_F16x4 v128_t
  855. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  856. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  857. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  858. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  859. #define GGML_F16x4_FMA GGML_F32x4_FMA
  860. #define GGML_F16x4_ADD wasm_f32x4_add
  861. #define GGML_F16x4_MUL wasm_f32x4_mul
  862. #define GGML_F16x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F16_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  875. } \
  876. res = wasm_f32x4_extract_lane(x[0], 0) + \
  877. wasm_f32x4_extract_lane(x[0], 1) + \
  878. wasm_f32x4_extract_lane(x[0], 2) + \
  879. wasm_f32x4_extract_lane(x[0], 3); \
  880. }
  881. #define GGML_F16_VEC GGML_F16x4
  882. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  883. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  884. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  886. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  887. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  888. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  889. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  890. #elif defined(__SSE3__)
  891. #define GGML_SIMD
  892. // F32 SSE
  893. #define GGML_F32_STEP 32
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 __m128
  896. #define GGML_F32x4_ZERO _mm_setzero_ps()
  897. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  898. #define GGML_F32x4_LOAD _mm_loadu_ps
  899. #define GGML_F32x4_STORE _mm_storeu_ps
  900. #if defined(__FMA__)
  901. // TODO: Does this work?
  902. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  903. #else
  904. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  905. #endif
  906. #define GGML_F32x4_ADD _mm_add_ps
  907. #define GGML_F32x4_MUL _mm_mul_ps
  908. #define GGML_F32x4_REDUCE(res, x) \
  909. { \
  910. int offset = GGML_F32_ARR >> 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  913. } \
  914. offset >>= 1; \
  915. for (int i = 0; i < offset; ++i) { \
  916. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  917. } \
  918. offset >>= 1; \
  919. for (int i = 0; i < offset; ++i) { \
  920. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  921. } \
  922. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  923. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  924. }
  925. // TODO: is this optimal ?
  926. #define GGML_F32_VEC GGML_F32x4
  927. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  928. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  929. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  930. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  931. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  932. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  933. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  934. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  935. // F16 SSE
  936. #define GGML_F16_STEP 32
  937. #define GGML_F16_EPR 4
  938. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  939. float tmp[4];
  940. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  941. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  942. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  943. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  944. return _mm_loadu_ps(tmp);
  945. }
  946. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  947. float arr[4];
  948. _mm_storeu_ps(arr, y);
  949. x[0] = GGML_FP32_TO_FP16(arr[0]);
  950. x[1] = GGML_FP32_TO_FP16(arr[1]);
  951. x[2] = GGML_FP32_TO_FP16(arr[2]);
  952. x[3] = GGML_FP32_TO_FP16(arr[3]);
  953. }
  954. #define GGML_F32Cx4 __m128
  955. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  956. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  957. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  958. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  959. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  960. #define GGML_F32Cx4_ADD _mm_add_ps
  961. #define GGML_F32Cx4_MUL _mm_mul_ps
  962. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  963. #define GGML_F16_VEC GGML_F32Cx4
  964. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  965. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  966. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  968. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  969. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  970. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  971. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  972. #endif
  973. // GGML_F32_ARR / GGML_F16_ARR
  974. // number of registers to use per step
  975. #ifdef GGML_SIMD
  976. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  977. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  978. #endif
  979. //
  980. // fundamental operations
  981. //
  982. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  983. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  984. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  985. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  986. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  987. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  988. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  989. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  990. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  991. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  992. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  993. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  994. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  995. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  996. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  997. #ifdef GGML_SIMD
  998. float sumf = 0.0f;
  999. const int np = (n & ~(GGML_F32_STEP - 1));
  1000. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1001. GGML_F32_VEC ax[GGML_F32_ARR];
  1002. GGML_F32_VEC ay[GGML_F32_ARR];
  1003. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1004. for (int j = 0; j < GGML_F32_ARR; j++) {
  1005. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1006. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1007. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1008. }
  1009. }
  1010. // reduce sum0..sum3 to sum0
  1011. GGML_F32_VEC_REDUCE(sumf, sum);
  1012. // leftovers
  1013. for (int i = np; i < n; ++i) {
  1014. sumf += x[i]*y[i];
  1015. }
  1016. #else
  1017. // scalar
  1018. ggml_float sumf = 0.0;
  1019. for (int i = 0; i < n; ++i) {
  1020. sumf += (ggml_float)(x[i]*y[i]);
  1021. }
  1022. #endif
  1023. *s = sumf;
  1024. }
  1025. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1026. ggml_float sumf = 0.0;
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1037. }
  1038. }
  1039. // reduce sum0..sum3 to sum0
  1040. GGML_F16_VEC_REDUCE(sumf, sum);
  1041. // leftovers
  1042. for (int i = np; i < n; ++i) {
  1043. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1044. }
  1045. #else
  1046. for (int i = 0; i < n; ++i) {
  1047. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1048. }
  1049. #endif
  1050. *s = sumf;
  1051. }
  1052. // compute GGML_VEC_DOT_UNROLL dot products at once
  1053. // xs - x row stride in bytes
  1054. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1055. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1056. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1057. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1058. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1059. }
  1060. #if defined(GGML_SIMD)
  1061. const int np = (n & ~(GGML_F16_STEP - 1));
  1062. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1063. GGML_F16_VEC ax[GGML_F16_ARR];
  1064. GGML_F16_VEC ay[GGML_F16_ARR];
  1065. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1066. for (int j = 0; j < GGML_F16_ARR; j++) {
  1067. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1068. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1069. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1070. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1071. }
  1072. }
  1073. }
  1074. // reduce sum0..sum3 to sum0
  1075. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1076. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1077. }
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1081. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1082. }
  1083. }
  1084. #else
  1085. for (int i = 0; i < n; ++i) {
  1086. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1087. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1088. }
  1089. }
  1090. #endif
  1091. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1092. s[i] = sumf[i];
  1093. }
  1094. }
  1095. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1106. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1107. }
  1108. }
  1109. // leftovers
  1110. for (int i = np; i < n; ++i) {
  1111. y[i] += x[i]*v;
  1112. }
  1113. #else
  1114. // scalar
  1115. for (int i = 0; i < n; ++i) {
  1116. y[i] += x[i]*v;
  1117. }
  1118. #endif
  1119. }
  1120. // xs and vs are byte strides of x and v
  1121. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1122. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1123. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1124. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1125. x[i] = (const float *) ((const char *) xv + i*xs);
  1126. v[i] = (const float *) ((const char *) vv + i*vs);
  1127. }
  1128. #if defined(GGML_SIMD)
  1129. const int np = (n & ~(GGML_F32_STEP - 1));
  1130. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1131. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1132. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1133. }
  1134. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1140. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1141. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1142. }
  1143. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1144. }
  1145. }
  1146. // leftovers
  1147. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1148. for (int i = np; i < n; ++i) {
  1149. y[i] += x[k][i]*v[k][0];
  1150. }
  1151. }
  1152. #else
  1153. // scalar
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. for (int i = 0; i < n; ++i) {
  1156. y[i] += x[k][i]*v[k][0];
  1157. }
  1158. }
  1159. #endif
  1160. }
  1161. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1162. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1163. #if defined(GGML_USE_ACCELERATE)
  1164. vDSP_vsmul(y, 1, &v, y, 1, n);
  1165. #elif defined(GGML_SIMD)
  1166. const int np = (n & ~(GGML_F32_STEP - 1));
  1167. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1168. GGML_F32_VEC ay[GGML_F32_ARR];
  1169. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1170. for (int j = 0; j < GGML_F32_ARR; j++) {
  1171. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1172. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1173. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1174. }
  1175. }
  1176. // leftovers
  1177. for (int i = np; i < n; ++i) {
  1178. y[i] *= v;
  1179. }
  1180. #else
  1181. // scalar
  1182. for (int i = 0; i < n; ++i) {
  1183. y[i] *= v;
  1184. }
  1185. #endif
  1186. }
  1187. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1188. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1189. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1190. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1191. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1192. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1193. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1194. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1195. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1196. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1197. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1198. static const float GELU_COEF_A = 0.044715f;
  1199. static const float GELU_QUICK_COEF = -1.702f;
  1200. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1201. inline static float ggml_gelu_f32(float x) {
  1202. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1203. }
  1204. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1205. const uint16_t * i16 = (const uint16_t *) x;
  1206. for (int i = 0; i < n; ++i) {
  1207. y[i] = ggml_table_gelu_f16[i16[i]];
  1208. }
  1209. }
  1210. #ifdef GGML_GELU_FP16
  1211. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1212. uint16_t t;
  1213. for (int i = 0; i < n; ++i) {
  1214. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1215. memcpy(&t, &fp16, sizeof(uint16_t));
  1216. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1217. }
  1218. }
  1219. #else
  1220. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_gelu_f32(x[i]);
  1223. }
  1224. }
  1225. #endif
  1226. inline static float ggml_gelu_quick_f32(float x) {
  1227. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1228. }
  1229. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. // const uint16_t * i16 = (const uint16_t *) x;
  1231. // for (int i = 0; i < n; ++i) {
  1232. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1233. // }
  1234. //}
  1235. #ifdef GGML_GELU_QUICK_FP16
  1236. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_quick_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. // Sigmoid Linear Unit (SiLU) function
  1252. inline static float ggml_silu_f32(float x) {
  1253. return x/(1.0f + expf(-x));
  1254. }
  1255. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_silu_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_SILU_FP16
  1262. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_silu_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. inline static float ggml_silu_backward_f32(float x, float dy) {
  1278. const float s = 1.0f/(1.0f + expf(-x));
  1279. return dy*s*(1.0f + x*(1.0f - s));
  1280. }
  1281. #ifdef GGML_SILU_FP16
  1282. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1283. for (int i = 0; i < n; ++i) {
  1284. // we did not use x[i] to compute forward silu but its f16 equivalent
  1285. // take derivative at f16 of x[i]:
  1286. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1287. float usedx = GGML_FP16_TO_FP32(fp16);
  1288. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1289. }
  1290. }
  1291. #else
  1292. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1293. for (int i = 0; i < n; ++i) {
  1294. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1295. }
  1296. }
  1297. #endif
  1298. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1299. #ifndef GGML_USE_ACCELERATE
  1300. ggml_float sum = 0.0;
  1301. for (int i = 0; i < n; ++i) {
  1302. sum += (ggml_float)x[i];
  1303. }
  1304. *s = sum;
  1305. #else
  1306. vDSP_sve(x, 1, s, n);
  1307. #endif
  1308. }
  1309. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1310. ggml_float sum = 0.0;
  1311. for (int i = 0; i < n; ++i) {
  1312. sum += (ggml_float)x[i];
  1313. }
  1314. *s = sum;
  1315. }
  1316. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1317. float sum = 0.0f;
  1318. for (int i = 0; i < n; ++i) {
  1319. sum += GGML_FP16_TO_FP32(x[i]);
  1320. }
  1321. *s = sum;
  1322. }
  1323. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. float max = -INFINITY;
  1326. for (int i = 0; i < n; ++i) {
  1327. max = MAX(max, x[i]);
  1328. }
  1329. *s = max;
  1330. #else
  1331. vDSP_maxv(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1335. ggml_vec_norm_f32(n, s, x);
  1336. *s = 1.f/(*s);
  1337. }
  1338. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1339. float max = -INFINITY;
  1340. int idx = 0;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. if (max == x[i]) { idx = i; }
  1344. }
  1345. *s = idx;
  1346. }
  1347. //
  1348. // data types
  1349. //
  1350. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1351. "NONE",
  1352. "DUP",
  1353. "ADD",
  1354. "ADD1",
  1355. "ACC",
  1356. "SUB",
  1357. "MUL",
  1358. "DIV",
  1359. "SQR",
  1360. "SQRT",
  1361. "LOG",
  1362. "SUM",
  1363. "SUM_ROWS",
  1364. "MEAN",
  1365. "ARGMAX",
  1366. "REPEAT",
  1367. "REPEAT_BACK",
  1368. "CONCAT",
  1369. "SILU_BACK",
  1370. "NORM",
  1371. "RMS_NORM",
  1372. "RMS_NORM_BACK",
  1373. "GROUP_NORM",
  1374. "MUL_MAT",
  1375. "MUL_MAT_ID",
  1376. "OUT_PROD",
  1377. "SCALE",
  1378. "SET",
  1379. "CPY",
  1380. "CONT",
  1381. "RESHAPE",
  1382. "VIEW",
  1383. "PERMUTE",
  1384. "TRANSPOSE",
  1385. "GET_ROWS",
  1386. "GET_ROWS_BACK",
  1387. "DIAG",
  1388. "DIAG_MASK_INF",
  1389. "DIAG_MASK_ZERO",
  1390. "SOFT_MAX",
  1391. "SOFT_MAX_BACK",
  1392. "ROPE",
  1393. "ROPE_BACK",
  1394. "ALIBI",
  1395. "CLAMP",
  1396. "CONV_TRANSPOSE_1D",
  1397. "IM2COL",
  1398. "CONV_TRANSPOSE_2D",
  1399. "POOL_1D",
  1400. "POOL_2D",
  1401. "UPSCALE",
  1402. "PAD",
  1403. "ARGSORT",
  1404. "LEAKY_RELU",
  1405. "FLASH_ATTN",
  1406. "FLASH_FF",
  1407. "FLASH_ATTN_BACK",
  1408. "WIN_PART",
  1409. "WIN_UNPART",
  1410. "GET_REL_POS",
  1411. "ADD_REL_POS",
  1412. "UNARY",
  1413. "MAP_UNARY",
  1414. "MAP_BINARY",
  1415. "MAP_CUSTOM1_F32",
  1416. "MAP_CUSTOM2_F32",
  1417. "MAP_CUSTOM3_F32",
  1418. "MAP_CUSTOM1",
  1419. "MAP_CUSTOM2",
  1420. "MAP_CUSTOM3",
  1421. "CROSS_ENTROPY_LOSS",
  1422. "CROSS_ENTROPY_LOSS_BACK",
  1423. };
  1424. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1425. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1426. "none",
  1427. "x",
  1428. "x+y",
  1429. "x+y",
  1430. "view(x,nb,offset)+=y->x",
  1431. "x-y",
  1432. "x*y",
  1433. "x/y",
  1434. "x^2",
  1435. "√x",
  1436. "log(x)",
  1437. "Σx",
  1438. "Σx_k",
  1439. "Σx/n",
  1440. "argmax(x)",
  1441. "repeat(x)",
  1442. "repeat_back(x)",
  1443. "concat(x, y)",
  1444. "silu_back(x)",
  1445. "norm(x)",
  1446. "rms_norm(x)",
  1447. "rms_norm_back(x)",
  1448. "group_norm(x)",
  1449. "X*Y",
  1450. "X[i]*Y",
  1451. "X*Y",
  1452. "x*v",
  1453. "y-\\>view(x)",
  1454. "x-\\>y",
  1455. "cont(x)",
  1456. "reshape(x)",
  1457. "view(x)",
  1458. "permute(x)",
  1459. "transpose(x)",
  1460. "get_rows(x)",
  1461. "get_rows_back(x)",
  1462. "diag(x)",
  1463. "diag_mask_inf(x)",
  1464. "diag_mask_zero(x)",
  1465. "soft_max(x)",
  1466. "soft_max_back(x)",
  1467. "rope(x)",
  1468. "rope_back(x)",
  1469. "alibi(x)",
  1470. "clamp(x)",
  1471. "conv_transpose_1d(x)",
  1472. "im2col(x)",
  1473. "conv_transpose_2d(x)",
  1474. "pool_1d(x)",
  1475. "pool_2d(x)",
  1476. "upscale(x)",
  1477. "pad(x)",
  1478. "argsort(x)",
  1479. "leaky_relu(x)",
  1480. "flash_attn(x)",
  1481. "flash_ff(x)",
  1482. "flash_attn_back(x)",
  1483. "win_part(x)",
  1484. "win_unpart(x)",
  1485. "get_rel_pos(x)",
  1486. "add_rel_pos(x)",
  1487. "unary(x)",
  1488. "f(x)",
  1489. "f(x,y)",
  1490. "custom_f32(x)",
  1491. "custom_f32(x,y)",
  1492. "custom_f32(x,y,z)",
  1493. "custom(x)",
  1494. "custom(x,y)",
  1495. "custom(x,y,z)",
  1496. "cross_entropy_loss(x,y)",
  1497. "cross_entropy_loss_back(x,y)",
  1498. };
  1499. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1500. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1501. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1502. "ABS",
  1503. "SGN",
  1504. "NEG",
  1505. "STEP",
  1506. "TANH",
  1507. "ELU",
  1508. "RELU",
  1509. "GELU",
  1510. "GELU_QUICK",
  1511. "SILU",
  1512. };
  1513. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1514. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1515. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1516. // WARN:
  1517. // Mis-configuration can lead to problem that's hard to reason about:
  1518. // * At best it crash or talks nosense.
  1519. // * At worst it talks slightly difference but hard to perceive.
  1520. //
  1521. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1522. // Take care about compile options (e.g., GGML_USE_xxx).
  1523. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1524. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1525. static void ggml_setup_op_has_task_pass(void) {
  1526. { // INIT
  1527. bool * p = GGML_OP_HAS_INIT;
  1528. p[GGML_OP_ACC ] = true;
  1529. p[GGML_OP_MUL_MAT ] = true;
  1530. p[GGML_OP_MUL_MAT_ID ] = true;
  1531. p[GGML_OP_OUT_PROD ] = true;
  1532. p[GGML_OP_SET ] = true;
  1533. p[GGML_OP_GET_ROWS_BACK ] = true;
  1534. p[GGML_OP_DIAG_MASK_INF ] = true;
  1535. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1536. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1537. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1538. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1539. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1540. p[GGML_OP_ADD_REL_POS ] = true;
  1541. }
  1542. { // FINALIZE
  1543. bool * p = GGML_OP_HAS_FINALIZE;
  1544. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1545. }
  1546. }
  1547. //
  1548. // ggml context
  1549. //
  1550. struct ggml_context {
  1551. size_t mem_size;
  1552. void * mem_buffer;
  1553. bool mem_buffer_owned;
  1554. bool no_alloc;
  1555. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1556. int n_objects;
  1557. struct ggml_object * objects_begin;
  1558. struct ggml_object * objects_end;
  1559. struct ggml_scratch scratch;
  1560. struct ggml_scratch scratch_save;
  1561. };
  1562. struct ggml_context_container {
  1563. bool used;
  1564. struct ggml_context context;
  1565. };
  1566. //
  1567. // NUMA support
  1568. //
  1569. #define GGML_NUMA_MAX_NODES 8
  1570. #define GGML_NUMA_MAX_CPUS 512
  1571. struct ggml_numa_node {
  1572. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1573. uint32_t n_cpus;
  1574. };
  1575. struct ggml_numa_nodes {
  1576. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1577. uint32_t n_nodes;
  1578. uint32_t total_cpus; // hardware threads on system
  1579. };
  1580. //
  1581. // ggml state
  1582. //
  1583. struct ggml_state {
  1584. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1585. struct ggml_numa_nodes numa;
  1586. };
  1587. // global state
  1588. static struct ggml_state g_state;
  1589. static atomic_int g_state_barrier = 0;
  1590. // barrier via spin lock
  1591. inline static void ggml_critical_section_start(void) {
  1592. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1593. while (processing > 0) {
  1594. // wait for other threads to finish
  1595. atomic_fetch_sub(&g_state_barrier, 1);
  1596. sched_yield(); // TODO: reconsider this
  1597. processing = atomic_fetch_add(&g_state_barrier, 1);
  1598. }
  1599. }
  1600. // TODO: make this somehow automatically executed
  1601. // some sort of "sentry" mechanism
  1602. inline static void ggml_critical_section_end(void) {
  1603. atomic_fetch_sub(&g_state_barrier, 1);
  1604. }
  1605. void ggml_numa_init(void) {
  1606. if (g_state.numa.n_nodes > 0) {
  1607. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1608. return;
  1609. }
  1610. #ifdef __linux__
  1611. struct stat st;
  1612. char path[256];
  1613. int rv;
  1614. // enumerate nodes
  1615. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1616. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1617. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1618. if (stat(path, &st) != 0) { break; }
  1619. ++g_state.numa.n_nodes;
  1620. }
  1621. // enumerate CPUs
  1622. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1623. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1624. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1625. if (stat(path, &st) != 0) { break; }
  1626. ++g_state.numa.total_cpus;
  1627. }
  1628. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1629. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1630. g_state.numa.n_nodes = 0;
  1631. return;
  1632. }
  1633. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1634. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1635. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1636. node->n_cpus = 0;
  1637. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1638. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1639. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1640. if (stat(path, &st) == 0) {
  1641. node->cpus[node->n_cpus++] = c;
  1642. GGML_PRINT_DEBUG(" %u", c);
  1643. }
  1644. }
  1645. GGML_PRINT_DEBUG("\n");
  1646. }
  1647. if (ggml_is_numa()) {
  1648. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1649. if (fptr != NULL) {
  1650. char buf[42];
  1651. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1652. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1653. }
  1654. fclose(fptr);
  1655. }
  1656. }
  1657. #else
  1658. // TODO
  1659. #endif
  1660. }
  1661. bool ggml_is_numa(void) {
  1662. return g_state.numa.n_nodes > 1;
  1663. }
  1664. ////////////////////////////////////////////////////////////////////////////////
  1665. void ggml_print_object(const struct ggml_object * obj) {
  1666. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1667. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1668. }
  1669. void ggml_print_objects(const struct ggml_context * ctx) {
  1670. struct ggml_object * obj = ctx->objects_begin;
  1671. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1672. while (obj != NULL) {
  1673. ggml_print_object(obj);
  1674. obj = obj->next;
  1675. }
  1676. GGML_PRINT("%s: --- end ---\n", __func__);
  1677. }
  1678. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1679. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1680. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1681. }
  1682. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1683. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1684. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1685. }
  1686. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1687. size_t nbytes;
  1688. size_t blck_size = ggml_blck_size(tensor->type);
  1689. if (blck_size == 1) {
  1690. nbytes = ggml_type_size(tensor->type);
  1691. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1692. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1693. }
  1694. }
  1695. else {
  1696. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1697. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1698. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1699. }
  1700. }
  1701. return nbytes;
  1702. }
  1703. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1704. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1705. }
  1706. int ggml_blck_size(enum ggml_type type) {
  1707. return type_traits[type].blck_size;
  1708. }
  1709. size_t ggml_type_size(enum ggml_type type) {
  1710. return type_traits[type].type_size;
  1711. }
  1712. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1713. assert(ne % ggml_blck_size(type) == 0);
  1714. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1715. }
  1716. double ggml_type_sizef(enum ggml_type type) {
  1717. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1718. }
  1719. const char * ggml_type_name(enum ggml_type type) {
  1720. return type_traits[type].type_name;
  1721. }
  1722. bool ggml_is_quantized(enum ggml_type type) {
  1723. return type_traits[type].is_quantized;
  1724. }
  1725. const char * ggml_op_name(enum ggml_op op) {
  1726. return GGML_OP_NAME[op];
  1727. }
  1728. const char * ggml_op_symbol(enum ggml_op op) {
  1729. return GGML_OP_SYMBOL[op];
  1730. }
  1731. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1732. return GGML_UNARY_OP_NAME[op];
  1733. }
  1734. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1735. if (t->op == GGML_OP_UNARY) {
  1736. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1737. return ggml_unary_op_name(uop);
  1738. }
  1739. else {
  1740. return ggml_op_name(t->op);
  1741. }
  1742. }
  1743. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1744. return ggml_type_size(tensor->type);
  1745. }
  1746. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1747. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1748. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1749. }
  1750. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1751. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1752. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1753. }
  1754. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1755. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1756. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1757. }
  1758. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1759. return tensor->ne[3] == 1;
  1760. }
  1761. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1762. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1763. if (tensor->ne[i] > 1) {
  1764. return i + 1;
  1765. }
  1766. }
  1767. return 1;
  1768. }
  1769. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1770. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1771. return (t0->ne[0] == t1->ne[0]) &&
  1772. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1773. (t1->ne[3]%t0->ne[3] == 0);
  1774. }
  1775. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1776. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1777. return (t0->ne[1] == t1->ne[1]) &&
  1778. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1779. (t1->ne[3]%t0->ne[3] == 0);
  1780. }
  1781. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1782. enum ggml_type wtype = GGML_TYPE_COUNT;
  1783. switch (ftype) {
  1784. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1785. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1786. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1787. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1788. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1789. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1790. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1791. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1792. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1793. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1794. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1795. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1796. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1797. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1798. }
  1799. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1800. return wtype;
  1801. }
  1802. size_t ggml_tensor_overhead(void) {
  1803. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1804. }
  1805. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1806. return tensor->nb[0] > tensor->nb[1];
  1807. }
  1808. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1809. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1810. return
  1811. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1812. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1813. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1814. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1815. }
  1816. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1817. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1818. return
  1819. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1820. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1821. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1822. }
  1823. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1824. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1825. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1826. }
  1827. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1828. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1829. return
  1830. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1831. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1832. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1833. }
  1834. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1835. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1836. return
  1837. (t0->ne[0] == t1->ne[0] ) &&
  1838. (t0->ne[1] == t1->ne[1] ) &&
  1839. (t0->ne[2] == t1->ne[2] ) &&
  1840. (t0->ne[3] == t1->ne[3] );
  1841. }
  1842. // check if t1 can be represented as a repeatition of t0
  1843. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1844. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1845. return
  1846. (t1->ne[0]%t0->ne[0] == 0) &&
  1847. (t1->ne[1]%t0->ne[1] == 0) &&
  1848. (t1->ne[2]%t0->ne[2] == 0) &&
  1849. (t1->ne[3]%t0->ne[3] == 0);
  1850. }
  1851. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1854. }
  1855. static inline int ggml_up32(int n) {
  1856. return (n + 31) & ~31;
  1857. }
  1858. //static inline int ggml_up64(int n) {
  1859. // return (n + 63) & ~63;
  1860. //}
  1861. static inline int ggml_up(int n, int m) {
  1862. // assert m is a power of 2
  1863. GGML_ASSERT((m & (m - 1)) == 0);
  1864. return (n + m - 1) & ~(m - 1);
  1865. }
  1866. // assert that pointer is aligned to GGML_MEM_ALIGN
  1867. #define ggml_assert_aligned(ptr) \
  1868. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1869. ////////////////////////////////////////////////////////////////////////////////
  1870. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1871. // make this function thread safe
  1872. ggml_critical_section_start();
  1873. static bool is_first_call = true;
  1874. if (is_first_call) {
  1875. // initialize time system (required on Windows)
  1876. ggml_time_init();
  1877. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1878. {
  1879. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1880. ggml_fp16_t ii;
  1881. for (int i = 0; i < (1 << 16); ++i) {
  1882. uint16_t ui = i;
  1883. memcpy(&ii, &ui, sizeof(ii));
  1884. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1885. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1886. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1887. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1888. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1889. }
  1890. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1891. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1892. }
  1893. // initialize g_state
  1894. {
  1895. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1896. g_state = (struct ggml_state) {
  1897. /*.contexts =*/ { { 0 } },
  1898. /*.numa =*/ {
  1899. .n_nodes = 0,
  1900. .total_cpus = 0,
  1901. },
  1902. };
  1903. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1904. g_state.contexts[i].used = false;
  1905. }
  1906. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1907. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1908. }
  1909. #if defined(GGML_USE_CUBLAS)
  1910. ggml_init_cublas();
  1911. #elif defined(GGML_USE_CLBLAST)
  1912. ggml_cl_init();
  1913. #endif
  1914. ggml_setup_op_has_task_pass();
  1915. is_first_call = false;
  1916. }
  1917. // find non-used context in g_state
  1918. struct ggml_context * ctx = NULL;
  1919. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1920. if (!g_state.contexts[i].used) {
  1921. g_state.contexts[i].used = true;
  1922. ctx = &g_state.contexts[i].context;
  1923. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1924. break;
  1925. }
  1926. }
  1927. if (ctx == NULL) {
  1928. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1929. ggml_critical_section_end();
  1930. return NULL;
  1931. }
  1932. // allow to call ggml_init with 0 size
  1933. if (params.mem_size == 0) {
  1934. params.mem_size = GGML_MEM_ALIGN;
  1935. }
  1936. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1937. *ctx = (struct ggml_context) {
  1938. /*.mem_size =*/ mem_size,
  1939. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1940. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1941. /*.no_alloc =*/ params.no_alloc,
  1942. /*.no_alloc_save =*/ params.no_alloc,
  1943. /*.n_objects =*/ 0,
  1944. /*.objects_begin =*/ NULL,
  1945. /*.objects_end =*/ NULL,
  1946. /*.scratch =*/ { 0, 0, NULL, },
  1947. /*.scratch_save =*/ { 0, 0, NULL, },
  1948. };
  1949. GGML_ASSERT(ctx->mem_buffer != NULL);
  1950. ggml_assert_aligned(ctx->mem_buffer);
  1951. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1952. ggml_critical_section_end();
  1953. return ctx;
  1954. }
  1955. void ggml_free(struct ggml_context * ctx) {
  1956. // make this function thread safe
  1957. ggml_critical_section_start();
  1958. bool found = false;
  1959. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1960. if (&g_state.contexts[i].context == ctx) {
  1961. g_state.contexts[i].used = false;
  1962. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1963. __func__, i, ggml_used_mem(ctx));
  1964. if (ctx->mem_buffer_owned) {
  1965. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1966. }
  1967. found = true;
  1968. break;
  1969. }
  1970. }
  1971. if (!found) {
  1972. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1973. }
  1974. ggml_critical_section_end();
  1975. }
  1976. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1977. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1978. }
  1979. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1980. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1981. ctx->scratch = scratch;
  1982. return result;
  1983. }
  1984. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1985. return ctx->no_alloc;
  1986. }
  1987. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1988. ctx->no_alloc = no_alloc;
  1989. }
  1990. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1991. return ctx->mem_buffer;
  1992. }
  1993. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1994. return ctx->mem_size;
  1995. }
  1996. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1997. size_t max_size = 0;
  1998. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  1999. max_size = MAX(max_size, ggml_nbytes(tensor));
  2000. }
  2001. return max_size;
  2002. }
  2003. // IMPORTANT:
  2004. // when creating "opt" tensors, always save and load the scratch buffer
  2005. // this is an error prone process, but it is necessary to support inplace
  2006. // operators when using scratch buffers
  2007. // TODO: implement a better way
  2008. static void ggml_scratch_save(struct ggml_context * ctx) {
  2009. // this is needed to allow opt tensors to store their data
  2010. // TODO: again, need to find a better way
  2011. ctx->no_alloc_save = ctx->no_alloc;
  2012. ctx->no_alloc = false;
  2013. ctx->scratch_save = ctx->scratch;
  2014. ctx->scratch.data = NULL;
  2015. }
  2016. static void ggml_scratch_load(struct ggml_context * ctx) {
  2017. ctx->no_alloc = ctx->no_alloc_save;
  2018. ctx->scratch = ctx->scratch_save;
  2019. }
  2020. ////////////////////////////////////////////////////////////////////////////////
  2021. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2022. // always insert objects at the end of the context's memory pool
  2023. struct ggml_object * obj_cur = ctx->objects_end;
  2024. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2025. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2026. const size_t cur_end = cur_offs + cur_size;
  2027. // align to GGML_MEM_ALIGN
  2028. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2029. char * const mem_buffer = ctx->mem_buffer;
  2030. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2031. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2032. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2033. __func__, cur_end + size_needed, ctx->mem_size);
  2034. assert(false);
  2035. return NULL;
  2036. }
  2037. *obj_new = (struct ggml_object) {
  2038. .offs = cur_end + GGML_OBJECT_SIZE,
  2039. .size = size_needed,
  2040. .next = NULL,
  2041. .type = type,
  2042. };
  2043. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2044. if (obj_cur != NULL) {
  2045. obj_cur->next = obj_new;
  2046. } else {
  2047. // this is the first object in this context
  2048. ctx->objects_begin = obj_new;
  2049. }
  2050. ctx->objects_end = obj_new;
  2051. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2052. return obj_new;
  2053. }
  2054. static struct ggml_tensor * ggml_new_tensor_impl(
  2055. struct ggml_context * ctx,
  2056. enum ggml_type type,
  2057. int n_dims,
  2058. const int64_t * ne,
  2059. struct ggml_tensor * view_src,
  2060. size_t view_offs) {
  2061. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2062. // find the base tensor and absolute offset
  2063. if (view_src != NULL && view_src->view_src != NULL) {
  2064. view_offs += view_src->view_offs;
  2065. view_src = view_src->view_src;
  2066. }
  2067. size_t data_size = ggml_row_size(type, ne[0]);
  2068. for (int i = 1; i < n_dims; i++) {
  2069. data_size *= ne[i];
  2070. }
  2071. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2072. void * data = view_src != NULL ? view_src->data : NULL;
  2073. if (data != NULL) {
  2074. data = (char *) data + view_offs;
  2075. }
  2076. size_t obj_alloc_size = 0;
  2077. if (view_src == NULL && !ctx->no_alloc) {
  2078. if (ctx->scratch.data != NULL) {
  2079. // allocate tensor data in the scratch buffer
  2080. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2081. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2082. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2083. assert(false);
  2084. return NULL;
  2085. }
  2086. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2087. ctx->scratch.offs += data_size;
  2088. } else {
  2089. // allocate tensor data in the context's memory pool
  2090. obj_alloc_size = data_size;
  2091. }
  2092. }
  2093. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2094. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2095. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2096. *result = (struct ggml_tensor) {
  2097. /*.type =*/ type,
  2098. /*.backend =*/ GGML_BACKEND_CPU,
  2099. /*.buffer =*/ NULL,
  2100. /*.ne =*/ { 1, 1, 1, 1 },
  2101. /*.nb =*/ { 0, 0, 0, 0 },
  2102. /*.op =*/ GGML_OP_NONE,
  2103. /*.op_params =*/ { 0 },
  2104. /*.is_param =*/ false,
  2105. /*.grad =*/ NULL,
  2106. /*.src =*/ { NULL },
  2107. /*.perf_runs =*/ 0,
  2108. /*.perf_cycles =*/ 0,
  2109. /*.perf_time_us =*/ 0,
  2110. /*.view_src =*/ view_src,
  2111. /*.view_offs =*/ view_offs,
  2112. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2113. /*.name =*/ { 0 },
  2114. /*.extra =*/ NULL,
  2115. /*.padding =*/ { 0 },
  2116. };
  2117. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2118. //ggml_assert_aligned(result->data);
  2119. for (int i = 0; i < n_dims; i++) {
  2120. result->ne[i] = ne[i];
  2121. }
  2122. result->nb[0] = ggml_type_size(type);
  2123. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2124. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2125. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2126. }
  2127. ctx->n_objects++;
  2128. return result;
  2129. }
  2130. struct ggml_tensor * ggml_new_tensor(
  2131. struct ggml_context * ctx,
  2132. enum ggml_type type,
  2133. int n_dims,
  2134. const int64_t * ne) {
  2135. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2136. }
  2137. struct ggml_tensor * ggml_new_tensor_1d(
  2138. struct ggml_context * ctx,
  2139. enum ggml_type type,
  2140. int64_t ne0) {
  2141. return ggml_new_tensor(ctx, type, 1, &ne0);
  2142. }
  2143. struct ggml_tensor * ggml_new_tensor_2d(
  2144. struct ggml_context * ctx,
  2145. enum ggml_type type,
  2146. int64_t ne0,
  2147. int64_t ne1) {
  2148. const int64_t ne[2] = { ne0, ne1 };
  2149. return ggml_new_tensor(ctx, type, 2, ne);
  2150. }
  2151. struct ggml_tensor * ggml_new_tensor_3d(
  2152. struct ggml_context * ctx,
  2153. enum ggml_type type,
  2154. int64_t ne0,
  2155. int64_t ne1,
  2156. int64_t ne2) {
  2157. const int64_t ne[3] = { ne0, ne1, ne2 };
  2158. return ggml_new_tensor(ctx, type, 3, ne);
  2159. }
  2160. struct ggml_tensor * ggml_new_tensor_4d(
  2161. struct ggml_context * ctx,
  2162. enum ggml_type type,
  2163. int64_t ne0,
  2164. int64_t ne1,
  2165. int64_t ne2,
  2166. int64_t ne3) {
  2167. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2168. return ggml_new_tensor(ctx, type, 4, ne);
  2169. }
  2170. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2171. ggml_scratch_save(ctx);
  2172. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2173. ggml_scratch_load(ctx);
  2174. ggml_set_i32(result, value);
  2175. return result;
  2176. }
  2177. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2178. ggml_scratch_save(ctx);
  2179. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2180. ggml_scratch_load(ctx);
  2181. ggml_set_f32(result, value);
  2182. return result;
  2183. }
  2184. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2185. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2186. }
  2187. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2188. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2189. assert(params_size <= GGML_MAX_OP_PARAMS);
  2190. memcpy(tensor->op_params, params, params_size);
  2191. }
  2192. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2193. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2194. return ((const int32_t *)(tensor->op_params))[i];
  2195. }
  2196. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2197. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2198. ((int32_t *)(tensor->op_params))[i] = value;
  2199. }
  2200. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2201. memset(tensor->data, 0, ggml_nbytes(tensor));
  2202. return tensor;
  2203. }
  2204. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2205. const int n = ggml_nrows(tensor);
  2206. const int nc = tensor->ne[0];
  2207. const size_t n1 = tensor->nb[1];
  2208. char * const data = tensor->data;
  2209. switch (tensor->type) {
  2210. case GGML_TYPE_I8:
  2211. {
  2212. assert(tensor->nb[0] == sizeof(int8_t));
  2213. for (int i = 0; i < n; i++) {
  2214. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2215. }
  2216. } break;
  2217. case GGML_TYPE_I16:
  2218. {
  2219. assert(tensor->nb[0] == sizeof(int16_t));
  2220. for (int i = 0; i < n; i++) {
  2221. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2222. }
  2223. } break;
  2224. case GGML_TYPE_I32:
  2225. {
  2226. assert(tensor->nb[0] == sizeof(int32_t));
  2227. for (int i = 0; i < n; i++) {
  2228. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2229. }
  2230. } break;
  2231. case GGML_TYPE_F16:
  2232. {
  2233. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2234. for (int i = 0; i < n; i++) {
  2235. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2236. }
  2237. } break;
  2238. case GGML_TYPE_F32:
  2239. {
  2240. assert(tensor->nb[0] == sizeof(float));
  2241. for (int i = 0; i < n; i++) {
  2242. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2243. }
  2244. } break;
  2245. default:
  2246. {
  2247. GGML_ASSERT(false);
  2248. } break;
  2249. }
  2250. return tensor;
  2251. }
  2252. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2253. const int n = ggml_nrows(tensor);
  2254. const int nc = tensor->ne[0];
  2255. const size_t n1 = tensor->nb[1];
  2256. char * const data = tensor->data;
  2257. switch (tensor->type) {
  2258. case GGML_TYPE_I8:
  2259. {
  2260. assert(tensor->nb[0] == sizeof(int8_t));
  2261. for (int i = 0; i < n; i++) {
  2262. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2263. }
  2264. } break;
  2265. case GGML_TYPE_I16:
  2266. {
  2267. assert(tensor->nb[0] == sizeof(int16_t));
  2268. for (int i = 0; i < n; i++) {
  2269. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2270. }
  2271. } break;
  2272. case GGML_TYPE_I32:
  2273. {
  2274. assert(tensor->nb[0] == sizeof(int32_t));
  2275. for (int i = 0; i < n; i++) {
  2276. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2277. }
  2278. } break;
  2279. case GGML_TYPE_F16:
  2280. {
  2281. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2282. for (int i = 0; i < n; i++) {
  2283. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2284. }
  2285. } break;
  2286. case GGML_TYPE_F32:
  2287. {
  2288. assert(tensor->nb[0] == sizeof(float));
  2289. for (int i = 0; i < n; i++) {
  2290. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2291. }
  2292. } break;
  2293. default:
  2294. {
  2295. GGML_ASSERT(false);
  2296. } break;
  2297. }
  2298. return tensor;
  2299. }
  2300. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2301. const int64_t ne2 = tensor->ne[2];
  2302. const int64_t ne1 = tensor->ne[1];
  2303. const int64_t ne0 = tensor->ne[0];
  2304. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2305. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2306. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2307. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2308. if (i0) {
  2309. * i0 = i0_;
  2310. }
  2311. if (i1) {
  2312. * i1 = i1_;
  2313. }
  2314. if (i2) {
  2315. * i2 = i2_;
  2316. }
  2317. if (i3) {
  2318. * i3 = i3_;
  2319. }
  2320. }
  2321. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2322. if (!ggml_is_contiguous(tensor)) {
  2323. int64_t id[4] = { 0, 0, 0, 0 };
  2324. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2325. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2326. }
  2327. switch (tensor->type) {
  2328. case GGML_TYPE_I8:
  2329. {
  2330. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2331. return ((int8_t *)(tensor->data))[i];
  2332. }
  2333. case GGML_TYPE_I16:
  2334. {
  2335. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2336. return ((int16_t *)(tensor->data))[i];
  2337. }
  2338. case GGML_TYPE_I32:
  2339. {
  2340. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2341. return ((int32_t *)(tensor->data))[i];
  2342. }
  2343. case GGML_TYPE_F16:
  2344. {
  2345. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2346. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2347. }
  2348. case GGML_TYPE_F32:
  2349. {
  2350. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2351. return ((float *)(tensor->data))[i];
  2352. }
  2353. default:
  2354. {
  2355. GGML_ASSERT(false);
  2356. }
  2357. }
  2358. return 0.0f;
  2359. }
  2360. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2361. if (!ggml_is_contiguous(tensor)) {
  2362. int64_t id[4] = { 0, 0, 0, 0 };
  2363. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2364. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2365. return;
  2366. }
  2367. switch (tensor->type) {
  2368. case GGML_TYPE_I8:
  2369. {
  2370. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2371. ((int8_t *)(tensor->data))[i] = value;
  2372. } break;
  2373. case GGML_TYPE_I16:
  2374. {
  2375. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2376. ((int16_t *)(tensor->data))[i] = value;
  2377. } break;
  2378. case GGML_TYPE_I32:
  2379. {
  2380. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2381. ((int32_t *)(tensor->data))[i] = value;
  2382. } break;
  2383. case GGML_TYPE_F16:
  2384. {
  2385. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2386. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2387. } break;
  2388. case GGML_TYPE_F32:
  2389. {
  2390. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2391. ((float *)(tensor->data))[i] = value;
  2392. } break;
  2393. default:
  2394. {
  2395. GGML_ASSERT(false);
  2396. } break;
  2397. }
  2398. }
  2399. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2400. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2401. switch (tensor->type) {
  2402. case GGML_TYPE_I8:
  2403. return ((int8_t *) data)[0];
  2404. case GGML_TYPE_I16:
  2405. return ((int16_t *) data)[0];
  2406. case GGML_TYPE_I32:
  2407. return ((int32_t *) data)[0];
  2408. case GGML_TYPE_F16:
  2409. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2410. case GGML_TYPE_F32:
  2411. return ((float *) data)[0];
  2412. default:
  2413. GGML_ASSERT(false);
  2414. }
  2415. return 0.0f;
  2416. }
  2417. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2418. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2419. switch (tensor->type) {
  2420. case GGML_TYPE_I8:
  2421. {
  2422. ((int8_t *)(data))[0] = value;
  2423. } break;
  2424. case GGML_TYPE_I16:
  2425. {
  2426. ((int16_t *)(data))[0] = value;
  2427. } break;
  2428. case GGML_TYPE_I32:
  2429. {
  2430. ((int32_t *)(data))[0] = value;
  2431. } break;
  2432. case GGML_TYPE_F16:
  2433. {
  2434. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2435. } break;
  2436. case GGML_TYPE_F32:
  2437. {
  2438. ((float *)(data))[0] = value;
  2439. } break;
  2440. default:
  2441. {
  2442. GGML_ASSERT(false);
  2443. } break;
  2444. }
  2445. }
  2446. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2447. if (!ggml_is_contiguous(tensor)) {
  2448. int64_t id[4] = { 0, 0, 0, 0 };
  2449. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2450. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2451. }
  2452. switch (tensor->type) {
  2453. case GGML_TYPE_I8:
  2454. {
  2455. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2456. return ((int8_t *)(tensor->data))[i];
  2457. }
  2458. case GGML_TYPE_I16:
  2459. {
  2460. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2461. return ((int16_t *)(tensor->data))[i];
  2462. }
  2463. case GGML_TYPE_I32:
  2464. {
  2465. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2466. return ((int32_t *)(tensor->data))[i];
  2467. }
  2468. case GGML_TYPE_F16:
  2469. {
  2470. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2471. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2472. }
  2473. case GGML_TYPE_F32:
  2474. {
  2475. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2476. return ((float *)(tensor->data))[i];
  2477. }
  2478. default:
  2479. {
  2480. GGML_ASSERT(false);
  2481. }
  2482. }
  2483. return 0.0f;
  2484. }
  2485. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2486. if (!ggml_is_contiguous(tensor)) {
  2487. int64_t id[4] = { 0, 0, 0, 0 };
  2488. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2489. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2490. return;
  2491. }
  2492. switch (tensor->type) {
  2493. case GGML_TYPE_I8:
  2494. {
  2495. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2496. ((int8_t *)(tensor->data))[i] = value;
  2497. } break;
  2498. case GGML_TYPE_I16:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2501. ((int16_t *)(tensor->data))[i] = value;
  2502. } break;
  2503. case GGML_TYPE_I32:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2506. ((int32_t *)(tensor->data))[i] = value;
  2507. } break;
  2508. case GGML_TYPE_F16:
  2509. {
  2510. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2511. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2512. } break;
  2513. case GGML_TYPE_F32:
  2514. {
  2515. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2516. ((float *)(tensor->data))[i] = value;
  2517. } break;
  2518. default:
  2519. {
  2520. GGML_ASSERT(false);
  2521. } break;
  2522. }
  2523. }
  2524. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2525. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2526. switch (tensor->type) {
  2527. case GGML_TYPE_I8:
  2528. return ((int8_t *) data)[0];
  2529. case GGML_TYPE_I16:
  2530. return ((int16_t *) data)[0];
  2531. case GGML_TYPE_I32:
  2532. return ((int32_t *) data)[0];
  2533. case GGML_TYPE_F16:
  2534. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2535. case GGML_TYPE_F32:
  2536. return ((float *) data)[0];
  2537. default:
  2538. GGML_ASSERT(false);
  2539. }
  2540. return 0.0f;
  2541. }
  2542. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2543. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2544. switch (tensor->type) {
  2545. case GGML_TYPE_I8:
  2546. {
  2547. ((int8_t *)(data))[0] = value;
  2548. } break;
  2549. case GGML_TYPE_I16:
  2550. {
  2551. ((int16_t *)(data))[0] = value;
  2552. } break;
  2553. case GGML_TYPE_I32:
  2554. {
  2555. ((int32_t *)(data))[0] = value;
  2556. } break;
  2557. case GGML_TYPE_F16:
  2558. {
  2559. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2560. } break;
  2561. case GGML_TYPE_F32:
  2562. {
  2563. ((float *)(data))[0] = value;
  2564. } break;
  2565. default:
  2566. {
  2567. GGML_ASSERT(false);
  2568. } break;
  2569. }
  2570. }
  2571. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2572. return tensor->data;
  2573. }
  2574. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2575. assert(tensor->type == GGML_TYPE_F32);
  2576. return (float *)(tensor->data);
  2577. }
  2578. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2579. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2580. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2581. }
  2582. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2583. return tensor->name;
  2584. }
  2585. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2586. strncpy(tensor->name, name, sizeof(tensor->name));
  2587. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2588. return tensor;
  2589. }
  2590. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2591. va_list args;
  2592. va_start(args, fmt);
  2593. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2594. va_end(args);
  2595. return tensor;
  2596. }
  2597. struct ggml_tensor * ggml_view_tensor(
  2598. struct ggml_context * ctx,
  2599. struct ggml_tensor * src) {
  2600. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2601. ggml_format_name(result, "%s (view)", src->name);
  2602. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2603. result->nb[i] = src->nb[i];
  2604. }
  2605. return result;
  2606. }
  2607. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2608. struct ggml_object * obj = ctx->objects_begin;
  2609. char * const mem_buffer = ctx->mem_buffer;
  2610. while (obj != NULL) {
  2611. if (obj->type == GGML_OBJECT_TENSOR) {
  2612. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2613. }
  2614. obj = obj->next;
  2615. }
  2616. return NULL;
  2617. }
  2618. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2619. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2620. obj = obj->next;
  2621. char * const mem_buffer = ctx->mem_buffer;
  2622. while (obj != NULL) {
  2623. if (obj->type == GGML_OBJECT_TENSOR) {
  2624. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2625. }
  2626. obj = obj->next;
  2627. }
  2628. return NULL;
  2629. }
  2630. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2631. struct ggml_object * obj = ctx->objects_begin;
  2632. char * const mem_buffer = ctx->mem_buffer;
  2633. while (obj != NULL) {
  2634. if (obj->type == GGML_OBJECT_TENSOR) {
  2635. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2636. if (strcmp(cur->name, name) == 0) {
  2637. return cur;
  2638. }
  2639. }
  2640. obj = obj->next;
  2641. }
  2642. return NULL;
  2643. }
  2644. ////////////////////////////////////////////////////////////////////////////////
  2645. // ggml_dup
  2646. static struct ggml_tensor * ggml_dup_impl(
  2647. struct ggml_context * ctx,
  2648. struct ggml_tensor * a,
  2649. bool inplace) {
  2650. bool is_node = false;
  2651. if (!inplace && (a->grad)) {
  2652. is_node = true;
  2653. }
  2654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2655. result->op = GGML_OP_DUP;
  2656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2657. result->src[0] = a;
  2658. return result;
  2659. }
  2660. struct ggml_tensor * ggml_dup(
  2661. struct ggml_context * ctx,
  2662. struct ggml_tensor * a) {
  2663. return ggml_dup_impl(ctx, a, false);
  2664. }
  2665. struct ggml_tensor * ggml_dup_inplace(
  2666. struct ggml_context * ctx,
  2667. struct ggml_tensor * a) {
  2668. return ggml_dup_impl(ctx, a, true);
  2669. }
  2670. // ggml_add
  2671. static struct ggml_tensor * ggml_add_impl(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b,
  2675. bool inplace) {
  2676. GGML_ASSERT(ggml_can_repeat(b, a));
  2677. bool is_node = false;
  2678. if (!inplace && (a->grad || b->grad)) {
  2679. // TODO: support backward pass for broadcasting
  2680. GGML_ASSERT(ggml_are_same_shape(a, b));
  2681. is_node = true;
  2682. }
  2683. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2684. result->op = GGML_OP_ADD;
  2685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2686. result->src[0] = a;
  2687. result->src[1] = b;
  2688. return result;
  2689. }
  2690. struct ggml_tensor * ggml_add(
  2691. struct ggml_context * ctx,
  2692. struct ggml_tensor * a,
  2693. struct ggml_tensor * b) {
  2694. return ggml_add_impl(ctx, a, b, false);
  2695. }
  2696. struct ggml_tensor * ggml_add_inplace(
  2697. struct ggml_context * ctx,
  2698. struct ggml_tensor * a,
  2699. struct ggml_tensor * b) {
  2700. return ggml_add_impl(ctx, a, b, true);
  2701. }
  2702. // ggml_add_cast
  2703. static struct ggml_tensor * ggml_add_cast_impl(
  2704. struct ggml_context * ctx,
  2705. struct ggml_tensor * a,
  2706. struct ggml_tensor * b,
  2707. enum ggml_type type) {
  2708. // TODO: support less-strict constraint
  2709. // GGML_ASSERT(ggml_can_repeat(b, a));
  2710. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2711. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2712. bool is_node = false;
  2713. if (a->grad || b->grad) {
  2714. // TODO: support backward pass for broadcasting
  2715. GGML_ASSERT(ggml_are_same_shape(a, b));
  2716. is_node = true;
  2717. }
  2718. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2719. result->op = GGML_OP_ADD;
  2720. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2721. result->src[0] = a;
  2722. result->src[1] = b;
  2723. return result;
  2724. }
  2725. struct ggml_tensor * ggml_add_cast(
  2726. struct ggml_context * ctx,
  2727. struct ggml_tensor * a,
  2728. struct ggml_tensor * b,
  2729. enum ggml_type type) {
  2730. return ggml_add_cast_impl(ctx, a, b, type);
  2731. }
  2732. // ggml_add1
  2733. static struct ggml_tensor * ggml_add1_impl(
  2734. struct ggml_context * ctx,
  2735. struct ggml_tensor * a,
  2736. struct ggml_tensor * b,
  2737. bool inplace) {
  2738. GGML_ASSERT(ggml_is_scalar(b));
  2739. GGML_ASSERT(ggml_is_padded_1d(a));
  2740. bool is_node = false;
  2741. if (a->grad || b->grad) {
  2742. is_node = true;
  2743. }
  2744. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2745. result->op = GGML_OP_ADD1;
  2746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2747. result->src[0] = a;
  2748. result->src[1] = b;
  2749. return result;
  2750. }
  2751. struct ggml_tensor * ggml_add1(
  2752. struct ggml_context * ctx,
  2753. struct ggml_tensor * a,
  2754. struct ggml_tensor * b) {
  2755. return ggml_add1_impl(ctx, a, b, false);
  2756. }
  2757. struct ggml_tensor * ggml_add1_inplace(
  2758. struct ggml_context * ctx,
  2759. struct ggml_tensor * a,
  2760. struct ggml_tensor * b) {
  2761. return ggml_add1_impl(ctx, a, b, true);
  2762. }
  2763. // ggml_acc
  2764. static struct ggml_tensor * ggml_acc_impl(
  2765. struct ggml_context * ctx,
  2766. struct ggml_tensor * a,
  2767. struct ggml_tensor * b,
  2768. size_t nb1,
  2769. size_t nb2,
  2770. size_t nb3,
  2771. size_t offset,
  2772. bool inplace) {
  2773. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2774. GGML_ASSERT(ggml_is_contiguous(a));
  2775. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2776. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2777. bool is_node = false;
  2778. if (!inplace && (a->grad || b->grad)) {
  2779. is_node = true;
  2780. }
  2781. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2782. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2783. ggml_set_op_params(result, params, sizeof(params));
  2784. result->op = GGML_OP_ACC;
  2785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2786. result->src[0] = a;
  2787. result->src[1] = b;
  2788. return result;
  2789. }
  2790. struct ggml_tensor * ggml_acc(
  2791. struct ggml_context * ctx,
  2792. struct ggml_tensor * a,
  2793. struct ggml_tensor * b,
  2794. size_t nb1,
  2795. size_t nb2,
  2796. size_t nb3,
  2797. size_t offset) {
  2798. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2799. }
  2800. struct ggml_tensor * ggml_acc_inplace(
  2801. struct ggml_context * ctx,
  2802. struct ggml_tensor * a,
  2803. struct ggml_tensor * b,
  2804. size_t nb1,
  2805. size_t nb2,
  2806. size_t nb3,
  2807. size_t offset) {
  2808. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2809. }
  2810. // ggml_sub
  2811. static struct ggml_tensor * ggml_sub_impl(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a,
  2814. struct ggml_tensor * b,
  2815. bool inplace) {
  2816. GGML_ASSERT(ggml_are_same_shape(a, b));
  2817. bool is_node = false;
  2818. if (!inplace && (a->grad || b->grad)) {
  2819. is_node = true;
  2820. }
  2821. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2822. result->op = GGML_OP_SUB;
  2823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2824. result->src[0] = a;
  2825. result->src[1] = b;
  2826. return result;
  2827. }
  2828. struct ggml_tensor * ggml_sub(
  2829. struct ggml_context * ctx,
  2830. struct ggml_tensor * a,
  2831. struct ggml_tensor * b) {
  2832. return ggml_sub_impl(ctx, a, b, false);
  2833. }
  2834. struct ggml_tensor * ggml_sub_inplace(
  2835. struct ggml_context * ctx,
  2836. struct ggml_tensor * a,
  2837. struct ggml_tensor * b) {
  2838. return ggml_sub_impl(ctx, a, b, true);
  2839. }
  2840. // ggml_mul
  2841. static struct ggml_tensor * ggml_mul_impl(
  2842. struct ggml_context * ctx,
  2843. struct ggml_tensor * a,
  2844. struct ggml_tensor * b,
  2845. bool inplace) {
  2846. GGML_ASSERT(ggml_can_repeat(b, a));
  2847. bool is_node = false;
  2848. if (!inplace && (a->grad || b->grad)) {
  2849. // TODO: support backward pass for broadcasting
  2850. GGML_ASSERT(ggml_are_same_shape(a, b));
  2851. is_node = true;
  2852. }
  2853. if (inplace) {
  2854. GGML_ASSERT(!is_node);
  2855. }
  2856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2857. result->op = GGML_OP_MUL;
  2858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2859. result->src[0] = a;
  2860. result->src[1] = b;
  2861. return result;
  2862. }
  2863. struct ggml_tensor * ggml_mul(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * a,
  2866. struct ggml_tensor * b) {
  2867. return ggml_mul_impl(ctx, a, b, false);
  2868. }
  2869. struct ggml_tensor * ggml_mul_inplace(
  2870. struct ggml_context * ctx,
  2871. struct ggml_tensor * a,
  2872. struct ggml_tensor * b) {
  2873. return ggml_mul_impl(ctx, a, b, true);
  2874. }
  2875. // ggml_div
  2876. static struct ggml_tensor * ggml_div_impl(
  2877. struct ggml_context * ctx,
  2878. struct ggml_tensor * a,
  2879. struct ggml_tensor * b,
  2880. bool inplace) {
  2881. GGML_ASSERT(ggml_can_repeat(b, a));
  2882. bool is_node = false;
  2883. if (!inplace && (a->grad || b->grad)) {
  2884. is_node = true;
  2885. }
  2886. if (inplace) {
  2887. GGML_ASSERT(!is_node);
  2888. }
  2889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2890. result->op = GGML_OP_DIV;
  2891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2892. result->src[0] = a;
  2893. result->src[1] = b;
  2894. return result;
  2895. }
  2896. struct ggml_tensor * ggml_div(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a,
  2899. struct ggml_tensor * b) {
  2900. return ggml_div_impl(ctx, a, b, false);
  2901. }
  2902. struct ggml_tensor * ggml_div_inplace(
  2903. struct ggml_context * ctx,
  2904. struct ggml_tensor * a,
  2905. struct ggml_tensor * b) {
  2906. return ggml_div_impl(ctx, a, b, true);
  2907. }
  2908. // ggml_sqr
  2909. static struct ggml_tensor * ggml_sqr_impl(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. bool inplace) {
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad)) {
  2915. is_node = true;
  2916. }
  2917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2918. result->op = GGML_OP_SQR;
  2919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2920. result->src[0] = a;
  2921. return result;
  2922. }
  2923. struct ggml_tensor * ggml_sqr(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a) {
  2926. return ggml_sqr_impl(ctx, a, false);
  2927. }
  2928. struct ggml_tensor * ggml_sqr_inplace(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a) {
  2931. return ggml_sqr_impl(ctx, a, true);
  2932. }
  2933. // ggml_sqrt
  2934. static struct ggml_tensor * ggml_sqrt_impl(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. bool inplace) {
  2938. bool is_node = false;
  2939. if (!inplace && (a->grad)) {
  2940. is_node = true;
  2941. }
  2942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2943. result->op = GGML_OP_SQRT;
  2944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2945. result->src[0] = a;
  2946. return result;
  2947. }
  2948. struct ggml_tensor * ggml_sqrt(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. return ggml_sqrt_impl(ctx, a, false);
  2952. }
  2953. struct ggml_tensor * ggml_sqrt_inplace(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a) {
  2956. return ggml_sqrt_impl(ctx, a, true);
  2957. }
  2958. // ggml_log
  2959. static struct ggml_tensor * ggml_log_impl(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. bool inplace) {
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad)) {
  2965. is_node = true;
  2966. }
  2967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2968. result->op = GGML_OP_LOG;
  2969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2970. result->src[0] = a;
  2971. return result;
  2972. }
  2973. struct ggml_tensor * ggml_log(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a) {
  2976. return ggml_log_impl(ctx, a, false);
  2977. }
  2978. struct ggml_tensor * ggml_log_inplace(
  2979. struct ggml_context * ctx,
  2980. struct ggml_tensor * a) {
  2981. return ggml_log_impl(ctx, a, true);
  2982. }
  2983. // ggml_sum
  2984. struct ggml_tensor * ggml_sum(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a) {
  2987. bool is_node = false;
  2988. if (a->grad) {
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2992. result->op = GGML_OP_SUM;
  2993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2994. result->src[0] = a;
  2995. return result;
  2996. }
  2997. // ggml_sum_rows
  2998. struct ggml_tensor * ggml_sum_rows(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a) {
  3001. bool is_node = false;
  3002. if (a->grad) {
  3003. is_node = true;
  3004. }
  3005. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3006. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3007. ne[i] = a->ne[i];
  3008. }
  3009. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3010. result->op = GGML_OP_SUM_ROWS;
  3011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3012. result->src[0] = a;
  3013. return result;
  3014. }
  3015. // ggml_mean
  3016. struct ggml_tensor * ggml_mean(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a) {
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. GGML_ASSERT(false); // TODO: implement
  3022. is_node = true;
  3023. }
  3024. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3025. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3026. result->op = GGML_OP_MEAN;
  3027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3028. result->src[0] = a;
  3029. return result;
  3030. }
  3031. // ggml_argmax
  3032. struct ggml_tensor * ggml_argmax(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a) {
  3035. GGML_ASSERT(ggml_is_matrix(a));
  3036. bool is_node = false;
  3037. if (a->grad) {
  3038. GGML_ASSERT(false);
  3039. is_node = true;
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3042. result->op = GGML_OP_ARGMAX;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_repeat
  3048. struct ggml_tensor * ggml_repeat(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. GGML_ASSERT(ggml_can_repeat(a, b));
  3053. bool is_node = false;
  3054. if (a->grad) {
  3055. is_node = true;
  3056. }
  3057. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3058. result->op = GGML_OP_REPEAT;
  3059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3060. result->src[0] = a;
  3061. return result;
  3062. }
  3063. // ggml_repeat_back
  3064. struct ggml_tensor * ggml_repeat_back(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a,
  3067. struct ggml_tensor * b) {
  3068. GGML_ASSERT(ggml_can_repeat(b, a));
  3069. bool is_node = false;
  3070. if (a->grad) {
  3071. is_node = true;
  3072. }
  3073. if (ggml_are_same_shape(a, b) && !is_node) {
  3074. return a;
  3075. }
  3076. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3077. result->op = GGML_OP_REPEAT_BACK;
  3078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3079. result->src[0] = a;
  3080. return result;
  3081. }
  3082. // ggml_concat
  3083. struct ggml_tensor * ggml_concat(
  3084. struct ggml_context* ctx,
  3085. struct ggml_tensor* a,
  3086. struct ggml_tensor* b) {
  3087. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3088. bool is_node = false;
  3089. if (a->grad || b->grad) {
  3090. is_node = true;
  3091. }
  3092. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3093. result->op = GGML_OP_CONCAT;
  3094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3095. result->src[0] = a;
  3096. result->src[1] = b;
  3097. return result;
  3098. }
  3099. // ggml_abs
  3100. struct ggml_tensor * ggml_abs(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3104. }
  3105. struct ggml_tensor * ggml_abs_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a) {
  3108. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3109. }
  3110. // ggml_sgn
  3111. struct ggml_tensor * ggml_sgn(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3115. }
  3116. struct ggml_tensor * ggml_sgn_inplace(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a) {
  3119. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3120. }
  3121. // ggml_neg
  3122. struct ggml_tensor * ggml_neg(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3126. }
  3127. struct ggml_tensor * ggml_neg_inplace(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a) {
  3130. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3131. }
  3132. // ggml_step
  3133. struct ggml_tensor * ggml_step(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3137. }
  3138. struct ggml_tensor * ggml_step_inplace(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3142. }
  3143. // ggml_tanh
  3144. struct ggml_tensor * ggml_tanh(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3148. }
  3149. struct ggml_tensor * ggml_tanh_inplace(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a) {
  3152. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3153. }
  3154. // ggml_elu
  3155. struct ggml_tensor * ggml_elu(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3159. }
  3160. struct ggml_tensor * ggml_elu_inplace(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a) {
  3163. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3164. }
  3165. // ggml_relu
  3166. struct ggml_tensor * ggml_relu(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a) {
  3169. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3170. }
  3171. struct ggml_tensor * ggml_relu_inplace(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3175. }
  3176. // ggml_leaky_relu
  3177. struct ggml_tensor * ggml_leaky_relu(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3180. bool is_node = false;
  3181. if (!inplace && (a->grad)) {
  3182. is_node = true;
  3183. }
  3184. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3185. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3186. result->op = GGML_OP_LEAKY_RELU;
  3187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3188. result->src[0] = a;
  3189. return result;
  3190. }
  3191. // ggml_gelu
  3192. struct ggml_tensor * ggml_gelu(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3196. }
  3197. struct ggml_tensor * ggml_gelu_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3201. }
  3202. // ggml_gelu_quick
  3203. struct ggml_tensor * ggml_gelu_quick(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a) {
  3206. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3207. }
  3208. struct ggml_tensor * ggml_gelu_quick_inplace(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a) {
  3211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3212. }
  3213. // ggml_silu
  3214. struct ggml_tensor * ggml_silu(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3218. }
  3219. struct ggml_tensor * ggml_silu_inplace(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3223. }
  3224. // ggml_silu_back
  3225. struct ggml_tensor * ggml_silu_back(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b) {
  3229. bool is_node = false;
  3230. if (a->grad || b->grad) {
  3231. // TODO: implement backward
  3232. is_node = true;
  3233. }
  3234. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3235. result->op = GGML_OP_SILU_BACK;
  3236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3237. result->src[0] = a;
  3238. result->src[1] = b;
  3239. return result;
  3240. }
  3241. // ggml_norm
  3242. static struct ggml_tensor * ggml_norm_impl(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a,
  3245. float eps,
  3246. bool inplace) {
  3247. bool is_node = false;
  3248. if (!inplace && (a->grad)) {
  3249. GGML_ASSERT(false); // TODO: implement backward
  3250. is_node = true;
  3251. }
  3252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3253. ggml_set_op_params(result, &eps, sizeof(eps));
  3254. result->op = GGML_OP_NORM;
  3255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3256. result->src[0] = a;
  3257. return result;
  3258. }
  3259. struct ggml_tensor * ggml_norm(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. float eps) {
  3263. return ggml_norm_impl(ctx, a, eps, false);
  3264. }
  3265. struct ggml_tensor * ggml_norm_inplace(
  3266. struct ggml_context * ctx,
  3267. struct ggml_tensor * a,
  3268. float eps) {
  3269. return ggml_norm_impl(ctx, a, eps, true);
  3270. }
  3271. // ggml_rms_norm
  3272. static struct ggml_tensor * ggml_rms_norm_impl(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a,
  3275. float eps,
  3276. bool inplace) {
  3277. bool is_node = false;
  3278. if (!inplace && (a->grad)) {
  3279. is_node = true;
  3280. }
  3281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. ggml_set_op_params(result, &eps, sizeof(eps));
  3283. result->op = GGML_OP_RMS_NORM;
  3284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3285. result->src[0] = a;
  3286. return result;
  3287. }
  3288. struct ggml_tensor * ggml_rms_norm(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. float eps) {
  3292. return ggml_rms_norm_impl(ctx, a, eps, false);
  3293. }
  3294. struct ggml_tensor * ggml_rms_norm_inplace(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. float eps) {
  3298. return ggml_rms_norm_impl(ctx, a, eps, true);
  3299. }
  3300. // ggml_rms_norm_back
  3301. struct ggml_tensor * ggml_rms_norm_back(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b,
  3305. float eps) {
  3306. bool is_node = false;
  3307. if (a->grad) {
  3308. // TODO: implement backward
  3309. is_node = true;
  3310. }
  3311. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3312. ggml_set_op_params(result, &eps, sizeof(eps));
  3313. result->op = GGML_OP_RMS_NORM_BACK;
  3314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3315. result->src[0] = a;
  3316. result->src[1] = b;
  3317. return result;
  3318. }
  3319. // ggml_group_norm
  3320. static struct ggml_tensor * ggml_group_norm_impl(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a,
  3323. int n_groups,
  3324. bool inplace) {
  3325. bool is_node = false;
  3326. if (!inplace && (a->grad)) {
  3327. GGML_ASSERT(false); // TODO: implement backward
  3328. is_node = true;
  3329. }
  3330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3331. result->op_params[0] = n_groups;
  3332. result->op = GGML_OP_GROUP_NORM;
  3333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3334. result->src[0] = a;
  3335. return result;
  3336. }
  3337. struct ggml_tensor * ggml_group_norm(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. int n_groups) {
  3341. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3342. }
  3343. struct ggml_tensor * ggml_group_norm_inplace(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. int n_groups) {
  3347. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3348. }
  3349. // ggml_mul_mat
  3350. struct ggml_tensor * ggml_mul_mat(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b) {
  3354. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3355. GGML_ASSERT(!ggml_is_transposed(a));
  3356. bool is_node = false;
  3357. if (a->grad || b->grad) {
  3358. is_node = true;
  3359. }
  3360. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3361. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3362. result->op = GGML_OP_MUL_MAT;
  3363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3364. result->src[0] = a;
  3365. result->src[1] = b;
  3366. return result;
  3367. }
  3368. void ggml_mul_mat_set_prec(
  3369. struct ggml_tensor * a,
  3370. enum ggml_prec prec) {
  3371. const int32_t prec_i32 = (int32_t) prec;
  3372. ggml_set_op_params_i32(a, 0, prec_i32);
  3373. }
  3374. // ggml_mul_mat_id
  3375. struct ggml_tensor * ggml_mul_mat_id(
  3376. struct ggml_context * ctx,
  3377. struct ggml_tensor * const as[],
  3378. int n_as,
  3379. struct ggml_tensor * ids,
  3380. int id,
  3381. struct ggml_tensor * b) {
  3382. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3383. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3384. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3385. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3386. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3387. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3388. bool is_node = false;
  3389. if (as[0]->grad || b->grad) {
  3390. is_node = true;
  3391. }
  3392. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3393. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3394. ggml_set_op_params_i32(result, 0, id);
  3395. ggml_set_op_params_i32(result, 1, n_as);
  3396. result->op = GGML_OP_MUL_MAT_ID;
  3397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3398. result->src[0] = ids;
  3399. result->src[1] = b;
  3400. for (int i = 0; i < n_as; i++) {
  3401. struct ggml_tensor * a = as[i];
  3402. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3403. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3404. GGML_ASSERT(!ggml_is_transposed(a));
  3405. result->src[i + 2] = a;
  3406. }
  3407. return result;
  3408. }
  3409. // ggml_out_prod
  3410. struct ggml_tensor * ggml_out_prod(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a,
  3413. struct ggml_tensor * b) {
  3414. GGML_ASSERT(ggml_can_out_prod(a, b));
  3415. GGML_ASSERT(!ggml_is_transposed(a));
  3416. bool is_node = false;
  3417. if (a->grad || b->grad) {
  3418. is_node = true;
  3419. }
  3420. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3421. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3422. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3423. result->op = GGML_OP_OUT_PROD;
  3424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3425. result->src[0] = a;
  3426. result->src[1] = b;
  3427. return result;
  3428. }
  3429. // ggml_scale
  3430. static struct ggml_tensor * ggml_scale_impl(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. float s,
  3434. bool inplace) {
  3435. GGML_ASSERT(ggml_is_padded_1d(a));
  3436. bool is_node = false;
  3437. if (a->grad) {
  3438. is_node = true;
  3439. }
  3440. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3441. ggml_set_op_params(result, &s, sizeof(s));
  3442. result->op = GGML_OP_SCALE;
  3443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3444. result->src[0] = a;
  3445. return result;
  3446. }
  3447. struct ggml_tensor * ggml_scale(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a,
  3450. float s) {
  3451. return ggml_scale_impl(ctx, a, s, false);
  3452. }
  3453. struct ggml_tensor * ggml_scale_inplace(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a,
  3456. float s) {
  3457. return ggml_scale_impl(ctx, a, s, true);
  3458. }
  3459. // ggml_set
  3460. static struct ggml_tensor * ggml_set_impl(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. struct ggml_tensor * b,
  3464. size_t nb1,
  3465. size_t nb2,
  3466. size_t nb3,
  3467. size_t offset,
  3468. bool inplace) {
  3469. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3470. bool is_node = false;
  3471. if (a->grad || b->grad) {
  3472. is_node = true;
  3473. }
  3474. // make a view of the destination
  3475. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3476. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3477. ggml_set_op_params(result, params, sizeof(params));
  3478. result->op = GGML_OP_SET;
  3479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3480. result->src[0] = a;
  3481. result->src[1] = b;
  3482. return result;
  3483. }
  3484. struct ggml_tensor * ggml_set(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. struct ggml_tensor * b,
  3488. size_t nb1,
  3489. size_t nb2,
  3490. size_t nb3,
  3491. size_t offset) {
  3492. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3493. }
  3494. struct ggml_tensor * ggml_set_inplace(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b,
  3498. size_t nb1,
  3499. size_t nb2,
  3500. size_t nb3,
  3501. size_t offset) {
  3502. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3503. }
  3504. struct ggml_tensor * ggml_set_1d(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b,
  3508. size_t offset) {
  3509. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3510. }
  3511. struct ggml_tensor * ggml_set_1d_inplace(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. struct ggml_tensor * b,
  3515. size_t offset) {
  3516. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3517. }
  3518. struct ggml_tensor * ggml_set_2d(
  3519. struct ggml_context * ctx,
  3520. struct ggml_tensor * a,
  3521. struct ggml_tensor * b,
  3522. size_t nb1,
  3523. size_t offset) {
  3524. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3525. }
  3526. struct ggml_tensor * ggml_set_2d_inplace(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b,
  3530. size_t nb1,
  3531. size_t offset) {
  3532. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3533. }
  3534. // ggml_cpy
  3535. static struct ggml_tensor * ggml_cpy_impl(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b,
  3539. bool inplace) {
  3540. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3541. bool is_node = false;
  3542. if (!inplace && (a->grad || b->grad)) {
  3543. is_node = true;
  3544. }
  3545. // make a view of the destination
  3546. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3547. if (strlen(b->name) > 0) {
  3548. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3549. } else {
  3550. ggml_format_name(result, "%s (copy)", a->name);
  3551. }
  3552. result->op = GGML_OP_CPY;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src[0] = a;
  3555. result->src[1] = b;
  3556. return result;
  3557. }
  3558. struct ggml_tensor * ggml_cpy(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a,
  3561. struct ggml_tensor * b) {
  3562. return ggml_cpy_impl(ctx, a, b, false);
  3563. }
  3564. struct ggml_tensor * ggml_cpy_inplace(
  3565. struct ggml_context * ctx,
  3566. struct ggml_tensor * a,
  3567. struct ggml_tensor * b) {
  3568. return ggml_cpy_impl(ctx, a, b, true);
  3569. }
  3570. // ggml_cont
  3571. static struct ggml_tensor * ggml_cont_impl(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. bool inplace) {
  3575. bool is_node = false;
  3576. if (!inplace && a->grad) {
  3577. is_node = true;
  3578. }
  3579. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3580. ggml_format_name(result, "%s (cont)", a->name);
  3581. result->op = GGML_OP_CONT;
  3582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3583. result->src[0] = a;
  3584. return result;
  3585. }
  3586. struct ggml_tensor * ggml_cont(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a) {
  3589. return ggml_cont_impl(ctx, a, false);
  3590. }
  3591. struct ggml_tensor * ggml_cont_inplace(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a) {
  3594. return ggml_cont_impl(ctx, a, true);
  3595. }
  3596. // make contiguous, with new shape
  3597. GGML_API struct ggml_tensor * ggml_cont_1d(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. int64_t ne0) {
  3601. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3602. }
  3603. GGML_API struct ggml_tensor * ggml_cont_2d(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a,
  3606. int64_t ne0,
  3607. int64_t ne1) {
  3608. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3609. }
  3610. GGML_API struct ggml_tensor * ggml_cont_3d(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. int64_t ne0,
  3614. int64_t ne1,
  3615. int64_t ne2) {
  3616. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3617. }
  3618. struct ggml_tensor * ggml_cont_4d(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. int64_t ne0,
  3622. int64_t ne1,
  3623. int64_t ne2,
  3624. int64_t ne3) {
  3625. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3626. bool is_node = false;
  3627. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3628. ggml_format_name(result, "%s (cont)", a->name);
  3629. result->op = GGML_OP_CONT;
  3630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3631. result->src[0] = a;
  3632. return result;
  3633. }
  3634. // ggml_reshape
  3635. struct ggml_tensor * ggml_reshape(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. struct ggml_tensor * b) {
  3639. GGML_ASSERT(ggml_is_contiguous(a));
  3640. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3641. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3642. bool is_node = false;
  3643. if (a->grad) {
  3644. is_node = true;
  3645. }
  3646. if (b->grad) {
  3647. // gradient propagation is not supported
  3648. //GGML_ASSERT(false);
  3649. }
  3650. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3651. ggml_format_name(result, "%s (reshaped)", a->name);
  3652. result->op = GGML_OP_RESHAPE;
  3653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3654. result->src[0] = a;
  3655. return result;
  3656. }
  3657. struct ggml_tensor * ggml_reshape_1d(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a,
  3660. int64_t ne0) {
  3661. GGML_ASSERT(ggml_is_contiguous(a));
  3662. GGML_ASSERT(ggml_nelements(a) == ne0);
  3663. bool is_node = false;
  3664. if (a->grad) {
  3665. is_node = true;
  3666. }
  3667. const int64_t ne[1] = { ne0 };
  3668. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3669. ggml_format_name(result, "%s (reshaped)", a->name);
  3670. result->op = GGML_OP_RESHAPE;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src[0] = a;
  3673. return result;
  3674. }
  3675. struct ggml_tensor * ggml_reshape_2d(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. int64_t ne0,
  3679. int64_t ne1) {
  3680. GGML_ASSERT(ggml_is_contiguous(a));
  3681. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3682. bool is_node = false;
  3683. if (a->grad) {
  3684. is_node = true;
  3685. }
  3686. const int64_t ne[2] = { ne0, ne1 };
  3687. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3688. ggml_format_name(result, "%s (reshaped)", a->name);
  3689. result->op = GGML_OP_RESHAPE;
  3690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3691. result->src[0] = a;
  3692. return result;
  3693. }
  3694. struct ggml_tensor * ggml_reshape_3d(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. int64_t ne0,
  3698. int64_t ne1,
  3699. int64_t ne2) {
  3700. GGML_ASSERT(ggml_is_contiguous(a));
  3701. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3702. bool is_node = false;
  3703. if (a->grad) {
  3704. is_node = true;
  3705. }
  3706. const int64_t ne[3] = { ne0, ne1, ne2 };
  3707. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3708. ggml_format_name(result, "%s (reshaped)", a->name);
  3709. result->op = GGML_OP_RESHAPE;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src[0] = a;
  3712. return result;
  3713. }
  3714. struct ggml_tensor * ggml_reshape_4d(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. int64_t ne0,
  3718. int64_t ne1,
  3719. int64_t ne2,
  3720. int64_t ne3) {
  3721. GGML_ASSERT(ggml_is_contiguous(a));
  3722. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3723. bool is_node = false;
  3724. if (a->grad) {
  3725. is_node = true;
  3726. }
  3727. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3728. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3729. ggml_format_name(result, "%s (reshaped)", a->name);
  3730. result->op = GGML_OP_RESHAPE;
  3731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3732. result->src[0] = a;
  3733. return result;
  3734. }
  3735. static struct ggml_tensor * ggml_view_impl(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. int n_dims,
  3739. const int64_t * ne,
  3740. size_t offset) {
  3741. bool is_node = false;
  3742. if (a->grad) {
  3743. is_node = true;
  3744. }
  3745. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3746. ggml_format_name(result, "%s (view)", a->name);
  3747. ggml_set_op_params(result, &offset, sizeof(offset));
  3748. result->op = GGML_OP_VIEW;
  3749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3750. result->src[0] = a;
  3751. return result;
  3752. }
  3753. // ggml_view_1d
  3754. struct ggml_tensor * ggml_view_1d(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. int64_t ne0,
  3758. size_t offset) {
  3759. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3760. return result;
  3761. }
  3762. // ggml_view_2d
  3763. struct ggml_tensor * ggml_view_2d(
  3764. struct ggml_context * ctx,
  3765. struct ggml_tensor * a,
  3766. int64_t ne0,
  3767. int64_t ne1,
  3768. size_t nb1,
  3769. size_t offset) {
  3770. const int64_t ne[2] = { ne0, ne1 };
  3771. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3772. result->nb[1] = nb1;
  3773. result->nb[2] = result->nb[1]*ne1;
  3774. result->nb[3] = result->nb[2];
  3775. return result;
  3776. }
  3777. // ggml_view_3d
  3778. struct ggml_tensor * ggml_view_3d(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. int64_t ne0,
  3782. int64_t ne1,
  3783. int64_t ne2,
  3784. size_t nb1,
  3785. size_t nb2,
  3786. size_t offset) {
  3787. const int64_t ne[3] = { ne0, ne1, ne2 };
  3788. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3789. result->nb[1] = nb1;
  3790. result->nb[2] = nb2;
  3791. result->nb[3] = result->nb[2]*ne2;
  3792. return result;
  3793. }
  3794. // ggml_view_4d
  3795. struct ggml_tensor * ggml_view_4d(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. int64_t ne0,
  3799. int64_t ne1,
  3800. int64_t ne2,
  3801. int64_t ne3,
  3802. size_t nb1,
  3803. size_t nb2,
  3804. size_t nb3,
  3805. size_t offset) {
  3806. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3807. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3808. result->nb[1] = nb1;
  3809. result->nb[2] = nb2;
  3810. result->nb[3] = nb3;
  3811. return result;
  3812. }
  3813. // ggml_permute
  3814. struct ggml_tensor * ggml_permute(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a,
  3817. int axis0,
  3818. int axis1,
  3819. int axis2,
  3820. int axis3) {
  3821. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3822. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3823. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3824. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3825. GGML_ASSERT(axis0 != axis1);
  3826. GGML_ASSERT(axis0 != axis2);
  3827. GGML_ASSERT(axis0 != axis3);
  3828. GGML_ASSERT(axis1 != axis2);
  3829. GGML_ASSERT(axis1 != axis3);
  3830. GGML_ASSERT(axis2 != axis3);
  3831. bool is_node = false;
  3832. if (a->grad) {
  3833. is_node = true;
  3834. }
  3835. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3836. ggml_format_name(result, "%s (permuted)", a->name);
  3837. int ne[GGML_MAX_DIMS];
  3838. int nb[GGML_MAX_DIMS];
  3839. ne[axis0] = a->ne[0];
  3840. ne[axis1] = a->ne[1];
  3841. ne[axis2] = a->ne[2];
  3842. ne[axis3] = a->ne[3];
  3843. nb[axis0] = a->nb[0];
  3844. nb[axis1] = a->nb[1];
  3845. nb[axis2] = a->nb[2];
  3846. nb[axis3] = a->nb[3];
  3847. result->ne[0] = ne[0];
  3848. result->ne[1] = ne[1];
  3849. result->ne[2] = ne[2];
  3850. result->ne[3] = ne[3];
  3851. result->nb[0] = nb[0];
  3852. result->nb[1] = nb[1];
  3853. result->nb[2] = nb[2];
  3854. result->nb[3] = nb[3];
  3855. result->op = GGML_OP_PERMUTE;
  3856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3857. result->src[0] = a;
  3858. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3859. ggml_set_op_params(result, params, sizeof(params));
  3860. return result;
  3861. }
  3862. // ggml_transpose
  3863. struct ggml_tensor * ggml_transpose(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3871. ggml_format_name(result, "%s (transposed)", a->name);
  3872. result->ne[0] = a->ne[1];
  3873. result->ne[1] = a->ne[0];
  3874. result->nb[0] = a->nb[1];
  3875. result->nb[1] = a->nb[0];
  3876. result->op = GGML_OP_TRANSPOSE;
  3877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3878. result->src[0] = a;
  3879. return result;
  3880. }
  3881. // ggml_get_rows
  3882. struct ggml_tensor * ggml_get_rows(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3887. GGML_ASSERT(b->ne[3] == 1);
  3888. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3889. bool is_node = false;
  3890. if (a->grad || b->grad) {
  3891. is_node = true;
  3892. }
  3893. // TODO: implement non F32 return
  3894. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3895. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3896. result->op = GGML_OP_GET_ROWS;
  3897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3898. result->src[0] = a;
  3899. result->src[1] = b;
  3900. return result;
  3901. }
  3902. // ggml_get_rows_back
  3903. struct ggml_tensor * ggml_get_rows_back(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b,
  3907. struct ggml_tensor * c) {
  3908. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3909. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3910. bool is_node = false;
  3911. if (a->grad || b->grad) {
  3912. is_node = true;
  3913. }
  3914. // TODO: implement non F32 return
  3915. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3916. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3917. result->op = GGML_OP_GET_ROWS_BACK;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src[0] = a;
  3920. result->src[1] = b;
  3921. return result;
  3922. }
  3923. // ggml_diag
  3924. struct ggml_tensor * ggml_diag(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a) {
  3927. GGML_ASSERT(a->ne[1] == 1);
  3928. bool is_node = false;
  3929. if (a->grad) {
  3930. is_node = true;
  3931. }
  3932. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3933. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3934. result->op = GGML_OP_DIAG;
  3935. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3936. result->src[0] = a;
  3937. return result;
  3938. }
  3939. // ggml_diag_mask_inf
  3940. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3941. struct ggml_context * ctx,
  3942. struct ggml_tensor * a,
  3943. int n_past,
  3944. bool inplace) {
  3945. bool is_node = false;
  3946. if (a->grad) {
  3947. is_node = true;
  3948. }
  3949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3950. int32_t params[] = { n_past };
  3951. ggml_set_op_params(result, params, sizeof(params));
  3952. result->op = GGML_OP_DIAG_MASK_INF;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src[0] = a;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_diag_mask_inf(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. int n_past) {
  3961. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3962. }
  3963. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. int n_past) {
  3967. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3968. }
  3969. // ggml_diag_mask_zero
  3970. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. int n_past,
  3974. bool inplace) {
  3975. bool is_node = false;
  3976. if (a->grad) {
  3977. is_node = true;
  3978. }
  3979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3980. int32_t params[] = { n_past };
  3981. ggml_set_op_params(result, params, sizeof(params));
  3982. result->op = GGML_OP_DIAG_MASK_ZERO;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src[0] = a;
  3985. return result;
  3986. }
  3987. struct ggml_tensor * ggml_diag_mask_zero(
  3988. struct ggml_context * ctx,
  3989. struct ggml_tensor * a,
  3990. int n_past) {
  3991. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3992. }
  3993. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int n_past) {
  3997. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3998. }
  3999. // ggml_soft_max
  4000. static struct ggml_tensor * ggml_soft_max_impl(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. struct ggml_tensor * mask,
  4004. float scale,
  4005. bool inplace) {
  4006. GGML_ASSERT(ggml_is_contiguous(a));
  4007. if (mask) {
  4008. GGML_ASSERT(ggml_is_contiguous(mask));
  4009. GGML_ASSERT(mask->ne[2] == 1);
  4010. GGML_ASSERT(mask->ne[3] == 1);
  4011. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4012. }
  4013. bool is_node = false;
  4014. if (a->grad) {
  4015. is_node = true;
  4016. }
  4017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4018. float params[] = { scale };
  4019. ggml_set_op_params(result, params, sizeof(params));
  4020. result->op = GGML_OP_SOFT_MAX;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src[0] = a;
  4023. result->src[1] = mask;
  4024. return result;
  4025. }
  4026. struct ggml_tensor * ggml_soft_max(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a) {
  4029. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4030. }
  4031. struct ggml_tensor * ggml_soft_max_inplace(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a) {
  4034. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4035. }
  4036. struct ggml_tensor * ggml_soft_max_ext(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. struct ggml_tensor * mask,
  4040. float scale) {
  4041. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4042. }
  4043. // ggml_soft_max_back
  4044. static struct ggml_tensor * ggml_soft_max_back_impl(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. struct ggml_tensor * b,
  4048. bool inplace) {
  4049. bool is_node = false;
  4050. if (a->grad || b->grad) {
  4051. is_node = true; // TODO : implement backward pass
  4052. }
  4053. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4054. result->op = GGML_OP_SOFT_MAX_BACK;
  4055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4056. result->src[0] = a;
  4057. result->src[1] = b;
  4058. return result;
  4059. }
  4060. struct ggml_tensor * ggml_soft_max_back(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a,
  4063. struct ggml_tensor * b) {
  4064. return ggml_soft_max_back_impl(ctx, a, b, false);
  4065. }
  4066. struct ggml_tensor * ggml_soft_max_back_inplace(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b) {
  4070. return ggml_soft_max_back_impl(ctx, a, b, true);
  4071. }
  4072. // ggml_rope
  4073. static struct ggml_tensor * ggml_rope_impl(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a,
  4076. struct ggml_tensor * b,
  4077. int n_dims,
  4078. int mode,
  4079. int n_ctx,
  4080. int n_orig_ctx,
  4081. float freq_base,
  4082. float freq_scale,
  4083. float ext_factor,
  4084. float attn_factor,
  4085. float beta_fast,
  4086. float beta_slow,
  4087. float xpos_base,
  4088. bool xpos_down,
  4089. bool inplace) {
  4090. GGML_ASSERT(ggml_is_vector(b));
  4091. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4092. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4093. bool is_node = false;
  4094. if (a->grad) {
  4095. is_node = true;
  4096. }
  4097. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4098. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4099. memcpy(params + 5, &freq_base, sizeof(float));
  4100. memcpy(params + 6, &freq_scale, sizeof(float));
  4101. memcpy(params + 7, &ext_factor, sizeof(float));
  4102. memcpy(params + 8, &attn_factor, sizeof(float));
  4103. memcpy(params + 9, &beta_fast, sizeof(float));
  4104. memcpy(params + 10, &beta_slow, sizeof(float));
  4105. memcpy(params + 11, &xpos_base, sizeof(float));
  4106. memcpy(params + 12, &xpos_down, sizeof(bool));
  4107. ggml_set_op_params(result, params, sizeof(params));
  4108. result->op = GGML_OP_ROPE;
  4109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4110. result->src[0] = a;
  4111. result->src[1] = b;
  4112. return result;
  4113. }
  4114. struct ggml_tensor * ggml_rope(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. struct ggml_tensor * b,
  4118. int n_dims,
  4119. int mode,
  4120. int n_ctx) {
  4121. return ggml_rope_impl(
  4122. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4123. );
  4124. }
  4125. struct ggml_tensor * ggml_rope_inplace(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. struct ggml_tensor * b,
  4129. int n_dims,
  4130. int mode,
  4131. int n_ctx) {
  4132. return ggml_rope_impl(
  4133. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4134. );
  4135. }
  4136. struct ggml_tensor * ggml_rope_custom(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. struct ggml_tensor * b,
  4140. int n_dims,
  4141. int mode,
  4142. int n_ctx,
  4143. int n_orig_ctx,
  4144. float freq_base,
  4145. float freq_scale,
  4146. float ext_factor,
  4147. float attn_factor,
  4148. float beta_fast,
  4149. float beta_slow) {
  4150. return ggml_rope_impl(
  4151. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4152. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4153. );
  4154. }
  4155. struct ggml_tensor * ggml_rope_custom_inplace(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b,
  4159. int n_dims,
  4160. int mode,
  4161. int n_ctx,
  4162. int n_orig_ctx,
  4163. float freq_base,
  4164. float freq_scale,
  4165. float ext_factor,
  4166. float attn_factor,
  4167. float beta_fast,
  4168. float beta_slow) {
  4169. return ggml_rope_impl(
  4170. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4171. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4172. );
  4173. }
  4174. struct ggml_tensor * ggml_rope_xpos_inplace(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. struct ggml_tensor * b,
  4178. int n_dims,
  4179. float base,
  4180. bool down) {
  4181. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4182. }
  4183. // ggml_rope_back
  4184. struct ggml_tensor * ggml_rope_back(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b,
  4188. int n_dims,
  4189. int mode,
  4190. int n_ctx,
  4191. int n_orig_ctx,
  4192. float freq_base,
  4193. float freq_scale,
  4194. float ext_factor,
  4195. float attn_factor,
  4196. float beta_fast,
  4197. float beta_slow,
  4198. float xpos_base,
  4199. bool xpos_down) {
  4200. GGML_ASSERT(ggml_is_vector(b));
  4201. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4202. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4203. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4204. bool is_node = false;
  4205. if (a->grad) {
  4206. is_node = false; // TODO: implement backward
  4207. }
  4208. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4209. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4210. memcpy(params + 5, &freq_base, sizeof(float));
  4211. memcpy(params + 6, &freq_scale, sizeof(float));
  4212. memcpy(params + 7, &ext_factor, sizeof(float));
  4213. memcpy(params + 8, &attn_factor, sizeof(float));
  4214. memcpy(params + 9, &beta_fast, sizeof(float));
  4215. memcpy(params + 10, &beta_slow, sizeof(float));
  4216. memcpy(params + 11, &xpos_base, sizeof(float));
  4217. memcpy(params + 12, &xpos_down, sizeof(bool));
  4218. ggml_set_op_params(result, params, sizeof(params));
  4219. result->op = GGML_OP_ROPE_BACK;
  4220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4221. result->src[0] = a;
  4222. result->src[1] = b;
  4223. return result;
  4224. }
  4225. // ggml_alibi
  4226. struct ggml_tensor * ggml_alibi(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a,
  4229. int n_past,
  4230. int n_head,
  4231. float bias_max) {
  4232. GGML_ASSERT(n_past >= 0);
  4233. bool is_node = false;
  4234. if (a->grad) {
  4235. GGML_ASSERT(false); // TODO: implement backward
  4236. is_node = true;
  4237. }
  4238. // TODO: when implement backward, fix this:
  4239. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4240. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4241. int32_t op_params[3] = { n_past, n_head };
  4242. memcpy(op_params + 2, &bias_max, sizeof(float));
  4243. ggml_set_op_params(result, op_params, sizeof(op_params));
  4244. result->op = GGML_OP_ALIBI;
  4245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4246. result->src[0] = a;
  4247. return result;
  4248. }
  4249. // ggml_clamp
  4250. struct ggml_tensor * ggml_clamp(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. float min,
  4254. float max) {
  4255. bool is_node = false;
  4256. if (a->grad) {
  4257. GGML_ASSERT(false); // TODO: implement backward
  4258. is_node = true;
  4259. }
  4260. // TODO: when implement backward, fix this:
  4261. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4262. float params[] = { min, max };
  4263. ggml_set_op_params(result, params, sizeof(params));
  4264. result->op = GGML_OP_CLAMP;
  4265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4266. result->src[0] = a;
  4267. return result;
  4268. }
  4269. // ggml_conv_1d
  4270. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4271. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4272. }
  4273. GGML_API struct ggml_tensor * ggml_conv_1d(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a,
  4276. struct ggml_tensor * b,
  4277. int s0,
  4278. int p0,
  4279. int d0) {
  4280. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4281. struct ggml_tensor * result =
  4282. ggml_mul_mat(ctx,
  4283. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4284. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4285. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4286. return result;
  4287. }
  4288. // ggml_conv_1d_ph
  4289. struct ggml_tensor* ggml_conv_1d_ph(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * b,
  4293. int s,
  4294. int d) {
  4295. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4296. }
  4297. // ggml_conv_transpose_1d
  4298. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4299. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4300. }
  4301. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. struct ggml_tensor * b,
  4305. int s0,
  4306. int p0,
  4307. int d0) {
  4308. GGML_ASSERT(ggml_is_matrix(b));
  4309. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4310. GGML_ASSERT(a->ne[3] == 1);
  4311. GGML_ASSERT(p0 == 0);
  4312. GGML_ASSERT(d0 == 1);
  4313. bool is_node = false;
  4314. if (a->grad || b->grad) {
  4315. GGML_ASSERT(false); // TODO: implement backward
  4316. is_node = true;
  4317. }
  4318. const int64_t ne[4] = {
  4319. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4320. a->ne[1], b->ne[2], 1,
  4321. };
  4322. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4323. int32_t params[] = { s0, p0, d0 };
  4324. ggml_set_op_params(result, params, sizeof(params));
  4325. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4327. result->src[0] = a;
  4328. result->src[1] = b;
  4329. return result;
  4330. }
  4331. // ggml_conv_2d
  4332. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4333. // a: [OC,IC, KH, KW]
  4334. // b: [N, IC, IH, IW]
  4335. // result: [N, OH, OW, IC*KH*KW]
  4336. struct ggml_tensor * ggml_im2col(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. struct ggml_tensor * b,
  4340. int s0,
  4341. int s1,
  4342. int p0,
  4343. int p1,
  4344. int d0,
  4345. int d1,
  4346. bool is_2D) {
  4347. if(is_2D) {
  4348. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4349. } else {
  4350. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4351. }
  4352. bool is_node = false;
  4353. if (a->grad || b->grad) {
  4354. GGML_ASSERT(false); // TODO: implement backward
  4355. is_node = true;
  4356. }
  4357. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4358. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4359. const int64_t ne[4] = {
  4360. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4361. OW,
  4362. is_2D ? OH : b->ne[2],
  4363. is_2D ? b->ne[3] : 1,
  4364. };
  4365. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4366. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4367. ggml_set_op_params(result, params, sizeof(params));
  4368. result->op = GGML_OP_IM2COL;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src[0] = a;
  4371. result->src[1] = b;
  4372. return result;
  4373. }
  4374. // a: [OC,IC, KH, KW]
  4375. // b: [N, IC, IH, IW]
  4376. // result: [N, OC, OH, OW]
  4377. struct ggml_tensor * ggml_conv_2d(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. struct ggml_tensor * b,
  4381. int s0,
  4382. int s1,
  4383. int p0,
  4384. int p1,
  4385. int d0,
  4386. int d1) {
  4387. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4388. struct ggml_tensor * result =
  4389. ggml_mul_mat(ctx,
  4390. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4391. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4392. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4393. return result;
  4394. }
  4395. // ggml_conv_2d_sk_p0
  4396. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. struct ggml_tensor * b) {
  4400. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4401. }
  4402. // ggml_conv_2d_s1_ph
  4403. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a,
  4406. struct ggml_tensor * b) {
  4407. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4408. }
  4409. // ggml_conv_transpose_2d_p0
  4410. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4411. return (ins - 1) * s - 2 * p + ks;
  4412. }
  4413. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. struct ggml_tensor * b,
  4417. int stride) {
  4418. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4419. bool is_node = false;
  4420. if (a->grad || b->grad) {
  4421. GGML_ASSERT(false); // TODO: implement backward
  4422. is_node = true;
  4423. }
  4424. const int64_t ne[4] = {
  4425. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4426. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4427. a->ne[2], b->ne[3],
  4428. };
  4429. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4430. ggml_set_op_params_i32(result, 0, stride);
  4431. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src[0] = a;
  4434. result->src[1] = b;
  4435. return result;
  4436. }
  4437. // ggml_pool_*
  4438. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4439. return (ins + 2 * p - ks) / s + 1;
  4440. }
  4441. // ggml_pool_1d
  4442. struct ggml_tensor * ggml_pool_1d(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. enum ggml_op_pool op,
  4446. int k0,
  4447. int s0,
  4448. int p0) {
  4449. bool is_node = false;
  4450. if (a->grad) {
  4451. GGML_ASSERT(false); // TODO: implement backward
  4452. is_node = true;
  4453. }
  4454. const int64_t ne[2] = {
  4455. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4456. a->ne[1],
  4457. };
  4458. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4459. int32_t params[] = { op, k0, s0, p0 };
  4460. ggml_set_op_params(result, params, sizeof(params));
  4461. result->op = GGML_OP_POOL_1D;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src[0] = a;
  4464. return result;
  4465. }
  4466. // ggml_pool_2d
  4467. struct ggml_tensor * ggml_pool_2d(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. enum ggml_op_pool op,
  4471. int k0,
  4472. int k1,
  4473. int s0,
  4474. int s1,
  4475. float p0,
  4476. float p1) {
  4477. bool is_node = false;
  4478. if (a->grad) {
  4479. GGML_ASSERT(false); // TODO: implement backward
  4480. is_node = true;
  4481. }
  4482. const int64_t ne[3] = {
  4483. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4484. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4485. a->ne[2],
  4486. };
  4487. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4488. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4489. ggml_set_op_params(result, params, sizeof(params));
  4490. result->op = GGML_OP_POOL_2D;
  4491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4492. result->src[0] = a;
  4493. return result;
  4494. }
  4495. // ggml_upscale
  4496. static struct ggml_tensor * ggml_upscale_impl(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a,
  4499. int scale_factor) {
  4500. bool is_node = false;
  4501. if (a->grad) {
  4502. GGML_ASSERT(false); // TODO: implement backward
  4503. is_node = true;
  4504. }
  4505. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4506. a->ne[0] * scale_factor,
  4507. a->ne[1] * scale_factor,
  4508. a->ne[2], a->ne[3]);
  4509. result->op = GGML_OP_UPSCALE;
  4510. result->op_params[0] = scale_factor;
  4511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4512. result->src[0] = a;
  4513. return result;
  4514. }
  4515. struct ggml_tensor * ggml_pad(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. int p0, int p1, int p2, int p3) {
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. GGML_ASSERT(false); // TODO: implement backward
  4522. is_node = true;
  4523. }
  4524. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4525. a->ne[0] + p0,
  4526. a->ne[1] + p1,
  4527. a->ne[2] + p2,
  4528. a->ne[3] + p3);
  4529. result->op = GGML_OP_PAD;
  4530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4531. result->src[0] = a;
  4532. return result;
  4533. }
  4534. struct ggml_tensor * ggml_upscale(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. int scale_factor) {
  4538. return ggml_upscale_impl(ctx, a, scale_factor);
  4539. }
  4540. // ggml_argsort
  4541. struct ggml_tensor * ggml_argsort(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a,
  4544. enum ggml_sort_order order) {
  4545. bool is_node = false;
  4546. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4547. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4548. result->op = GGML_OP_ARGSORT;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src[0] = a;
  4551. return result;
  4552. }
  4553. // ggml_top_k
  4554. struct ggml_tensor * ggml_top_k(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. int k) {
  4558. GGML_ASSERT(a->ne[0] >= k);
  4559. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4560. result = ggml_view_4d(ctx, result,
  4561. k, result->ne[1], result->ne[2], result->ne[3],
  4562. result->nb[1], result->nb[2], result->nb[3],
  4563. 0);
  4564. return result;
  4565. }
  4566. // ggml_flash_attn
  4567. struct ggml_tensor * ggml_flash_attn(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * q,
  4570. struct ggml_tensor * k,
  4571. struct ggml_tensor * v,
  4572. bool masked) {
  4573. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4574. // TODO: check if vT can be multiplied by (k*qT)
  4575. bool is_node = false;
  4576. if (q->grad || k->grad || v->grad) {
  4577. is_node = true;
  4578. }
  4579. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4580. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4581. int32_t t = masked ? 1 : 0;
  4582. ggml_set_op_params(result, &t, sizeof(t));
  4583. result->op = GGML_OP_FLASH_ATTN;
  4584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4585. result->src[0] = q;
  4586. result->src[1] = k;
  4587. result->src[2] = v;
  4588. return result;
  4589. }
  4590. // ggml_flash_ff
  4591. struct ggml_tensor * ggml_flash_ff(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a,
  4594. struct ggml_tensor * b0,
  4595. struct ggml_tensor * b1,
  4596. struct ggml_tensor * c0,
  4597. struct ggml_tensor * c1) {
  4598. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4599. // TODO: more checks
  4600. bool is_node = false;
  4601. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4602. is_node = true;
  4603. }
  4604. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4605. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4606. result->op = GGML_OP_FLASH_FF;
  4607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4608. result->src[0] = a;
  4609. result->src[1] = b0;
  4610. result->src[2] = b1;
  4611. result->src[3] = c0;
  4612. result->src[4] = c1;
  4613. return result;
  4614. }
  4615. // ggml_flash_attn_back
  4616. struct ggml_tensor * ggml_flash_attn_back(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * q,
  4619. struct ggml_tensor * k,
  4620. struct ggml_tensor * v,
  4621. struct ggml_tensor * d,
  4622. bool masked) {
  4623. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4624. // TODO: check if vT can be multiplied by (k*qT)
  4625. // d shape [D,N,ne2,ne3]
  4626. // q shape [D,N,ne2,ne3]
  4627. // k shape [D,M,kvne2,ne3]
  4628. // v shape [M,D,kvne2,ne3]
  4629. const int64_t D = q->ne[0];
  4630. const int64_t N = q->ne[1];
  4631. const int64_t M = k->ne[1];
  4632. const int64_t ne2 = q->ne[2];
  4633. const int64_t ne3 = q->ne[3];
  4634. const int64_t kvne2 = k->ne[2];
  4635. GGML_ASSERT(k->ne[0] == D);
  4636. GGML_ASSERT(v->ne[0] == M);
  4637. GGML_ASSERT(v->ne[1] == D);
  4638. GGML_ASSERT(d->ne[0] == D);
  4639. GGML_ASSERT(d->ne[1] == N);
  4640. GGML_ASSERT(k->ne[2] == kvne2);
  4641. GGML_ASSERT(k->ne[3] == ne3);
  4642. GGML_ASSERT(v->ne[2] == kvne2);
  4643. GGML_ASSERT(v->ne[3] == ne3);
  4644. GGML_ASSERT(d->ne[2] == ne2);
  4645. GGML_ASSERT(d->ne[3] == ne3);
  4646. GGML_ASSERT(ne2 % kvne2 == 0);
  4647. bool is_node = false;
  4648. if (q->grad || k->grad || v->grad) {
  4649. // when using this operation (in backwards pass) these grads are set.
  4650. // we don't want to create (big) grad of our result, so is_node is false.
  4651. is_node = false;
  4652. }
  4653. // store gradients of q, k and v as continuous tensors concatenated in result.
  4654. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4655. const int64_t elem_q = ggml_nelements(q);
  4656. const int64_t elem_k = ggml_nelements(k);
  4657. const int64_t elem_v = ggml_nelements(v);
  4658. enum ggml_type result_type = GGML_TYPE_F32;
  4659. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4660. const size_t tsize = ggml_type_size(result_type);
  4661. const size_t offs_q = 0;
  4662. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4663. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4664. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4665. const size_t nelements = (end + tsize - 1)/tsize;
  4666. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4667. int32_t masked_i = masked ? 1 : 0;
  4668. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4669. result->op = GGML_OP_FLASH_ATTN_BACK;
  4670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4671. result->src[0] = q;
  4672. result->src[1] = k;
  4673. result->src[2] = v;
  4674. result->src[3] = d;
  4675. return result;
  4676. }
  4677. // ggml_win_part
  4678. struct ggml_tensor * ggml_win_part(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. int w) {
  4682. GGML_ASSERT(a->ne[3] == 1);
  4683. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4684. bool is_node = false;
  4685. if (a->grad) {
  4686. GGML_ASSERT(false); // TODO: implement backward
  4687. is_node = true;
  4688. }
  4689. // padding
  4690. const int px = (w - a->ne[1]%w)%w;
  4691. const int py = (w - a->ne[2]%w)%w;
  4692. const int npx = (px + a->ne[1])/w;
  4693. const int npy = (py + a->ne[2])/w;
  4694. const int np = npx*npy;
  4695. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4696. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4697. int32_t params[] = { npx, npy, w };
  4698. ggml_set_op_params(result, params, sizeof(params));
  4699. result->op = GGML_OP_WIN_PART;
  4700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4701. result->src[0] = a;
  4702. return result;
  4703. }
  4704. // ggml_win_unpart
  4705. struct ggml_tensor * ggml_win_unpart(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. int w0,
  4709. int h0,
  4710. int w) {
  4711. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4712. bool is_node = false;
  4713. if (a->grad) {
  4714. GGML_ASSERT(false); // TODO: implement backward
  4715. is_node = true;
  4716. }
  4717. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4718. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4719. int32_t params[] = { w };
  4720. ggml_set_op_params(result, params, sizeof(params));
  4721. result->op = GGML_OP_WIN_UNPART;
  4722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4723. result->src[0] = a;
  4724. return result;
  4725. }
  4726. // ggml_get_rel_pos
  4727. struct ggml_tensor * ggml_get_rel_pos(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. int qh,
  4731. int kh) {
  4732. GGML_ASSERT(qh == kh);
  4733. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4734. bool is_node = false;
  4735. if (a->grad) {
  4736. GGML_ASSERT(false); // TODO: implement backward
  4737. is_node = true;
  4738. }
  4739. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4740. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4741. result->op = GGML_OP_GET_REL_POS;
  4742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4743. result->src[0] = a;
  4744. return result;
  4745. }
  4746. // ggml_add_rel_pos
  4747. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. struct ggml_tensor * pw,
  4751. struct ggml_tensor * ph,
  4752. bool inplace) {
  4753. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4754. GGML_ASSERT(ggml_is_contiguous(a));
  4755. GGML_ASSERT(ggml_is_contiguous(pw));
  4756. GGML_ASSERT(ggml_is_contiguous(ph));
  4757. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4758. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4759. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4760. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4761. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4762. bool is_node = false;
  4763. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4764. is_node = true;
  4765. }
  4766. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4767. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4768. result->op = GGML_OP_ADD_REL_POS;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src[0] = a;
  4771. result->src[1] = pw;
  4772. result->src[2] = ph;
  4773. return result;
  4774. }
  4775. struct ggml_tensor * ggml_add_rel_pos(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. struct ggml_tensor * pw,
  4779. struct ggml_tensor * ph) {
  4780. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4781. }
  4782. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * pw,
  4786. struct ggml_tensor * ph) {
  4787. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4788. }
  4789. // gmml_unary
  4790. static struct ggml_tensor * ggml_unary_impl(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. enum ggml_unary_op op,
  4794. bool inplace) {
  4795. bool is_node = false;
  4796. if (!inplace && (a->grad)) {
  4797. is_node = true;
  4798. }
  4799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4800. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4801. result->op = GGML_OP_UNARY;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src[0] = a;
  4804. return result;
  4805. }
  4806. struct ggml_tensor * ggml_unary(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. enum ggml_unary_op op) {
  4810. return ggml_unary_impl(ctx, a, op, false);
  4811. }
  4812. struct ggml_tensor * ggml_unary_inplace(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. enum ggml_unary_op op) {
  4816. return ggml_unary_impl(ctx, a, op, true);
  4817. }
  4818. // ggml_map_unary
  4819. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. const ggml_unary_op_f32_t fun,
  4823. bool inplace) {
  4824. bool is_node = false;
  4825. if (!inplace && a->grad) {
  4826. is_node = true;
  4827. }
  4828. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4829. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4830. result->op = GGML_OP_MAP_UNARY;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src[0] = a;
  4833. return result;
  4834. }
  4835. struct ggml_tensor * ggml_map_unary_f32(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. const ggml_unary_op_f32_t fun) {
  4839. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4840. }
  4841. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. const ggml_unary_op_f32_t fun) {
  4845. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4846. }
  4847. // ggml_map_binary
  4848. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. struct ggml_tensor * b,
  4852. const ggml_binary_op_f32_t fun,
  4853. bool inplace) {
  4854. GGML_ASSERT(ggml_are_same_shape(a, b));
  4855. bool is_node = false;
  4856. if (!inplace && (a->grad || b->grad)) {
  4857. is_node = true;
  4858. }
  4859. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4860. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4861. result->op = GGML_OP_MAP_BINARY;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src[0] = a;
  4864. result->src[1] = b;
  4865. return result;
  4866. }
  4867. struct ggml_tensor * ggml_map_binary_f32(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a,
  4870. struct ggml_tensor * b,
  4871. const ggml_binary_op_f32_t fun) {
  4872. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4873. }
  4874. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. struct ggml_tensor * b,
  4878. const ggml_binary_op_f32_t fun) {
  4879. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4880. }
  4881. // ggml_map_custom1_f32
  4882. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. const ggml_custom1_op_f32_t fun,
  4886. bool inplace) {
  4887. bool is_node = false;
  4888. if (!inplace && a->grad) {
  4889. is_node = true;
  4890. }
  4891. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4892. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4893. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4895. result->src[0] = a;
  4896. return result;
  4897. }
  4898. struct ggml_tensor * ggml_map_custom1_f32(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. const ggml_custom1_op_f32_t fun) {
  4902. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4903. }
  4904. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. const ggml_custom1_op_f32_t fun) {
  4908. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4909. }
  4910. // ggml_map_custom2_f32
  4911. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. struct ggml_tensor * b,
  4915. const ggml_custom2_op_f32_t fun,
  4916. bool inplace) {
  4917. bool is_node = false;
  4918. if (!inplace && (a->grad || b->grad)) {
  4919. is_node = true;
  4920. }
  4921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4922. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4923. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4925. result->src[0] = a;
  4926. result->src[1] = b;
  4927. return result;
  4928. }
  4929. struct ggml_tensor * ggml_map_custom2_f32(
  4930. struct ggml_context * ctx,
  4931. struct ggml_tensor * a,
  4932. struct ggml_tensor * b,
  4933. const ggml_custom2_op_f32_t fun) {
  4934. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4935. }
  4936. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4937. struct ggml_context * ctx,
  4938. struct ggml_tensor * a,
  4939. struct ggml_tensor * b,
  4940. const ggml_custom2_op_f32_t fun) {
  4941. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4942. }
  4943. // ggml_map_custom3_f32
  4944. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. struct ggml_tensor * c,
  4949. const ggml_custom3_op_f32_t fun,
  4950. bool inplace) {
  4951. bool is_node = false;
  4952. if (!inplace && (a->grad || b->grad || c->grad)) {
  4953. is_node = true;
  4954. }
  4955. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4956. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4957. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src[0] = a;
  4960. result->src[1] = b;
  4961. result->src[2] = c;
  4962. return result;
  4963. }
  4964. struct ggml_tensor * ggml_map_custom3_f32(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b,
  4968. struct ggml_tensor * c,
  4969. const ggml_custom3_op_f32_t fun) {
  4970. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4971. }
  4972. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. struct ggml_tensor * b,
  4976. struct ggml_tensor * c,
  4977. const ggml_custom3_op_f32_t fun) {
  4978. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4979. }
  4980. // ggml_map_custom1
  4981. struct ggml_map_custom1_op_params {
  4982. ggml_custom1_op_t fun;
  4983. int n_tasks;
  4984. void * userdata;
  4985. };
  4986. static struct ggml_tensor * ggml_map_custom1_impl(
  4987. struct ggml_context * ctx,
  4988. struct ggml_tensor * a,
  4989. const ggml_custom1_op_t fun,
  4990. int n_tasks,
  4991. void * userdata,
  4992. bool inplace) {
  4993. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4994. bool is_node = false;
  4995. if (!inplace && a->grad) {
  4996. is_node = true;
  4997. }
  4998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4999. struct ggml_map_custom1_op_params params = {
  5000. /*.fun =*/ fun,
  5001. /*.n_tasks =*/ n_tasks,
  5002. /*.userdata =*/ userdata
  5003. };
  5004. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5005. result->op = GGML_OP_MAP_CUSTOM1;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src[0] = a;
  5008. return result;
  5009. }
  5010. struct ggml_tensor * ggml_map_custom1(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. const ggml_custom1_op_t fun,
  5014. int n_tasks,
  5015. void * userdata) {
  5016. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5017. }
  5018. struct ggml_tensor * ggml_map_custom1_inplace(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a,
  5021. const ggml_custom1_op_t fun,
  5022. int n_tasks,
  5023. void * userdata) {
  5024. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5025. }
  5026. // ggml_map_custom2
  5027. struct ggml_map_custom2_op_params {
  5028. ggml_custom2_op_t fun;
  5029. int n_tasks;
  5030. void * userdata;
  5031. };
  5032. static struct ggml_tensor * ggml_map_custom2_impl(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a,
  5035. struct ggml_tensor * b,
  5036. const ggml_custom2_op_t fun,
  5037. int n_tasks,
  5038. void * userdata,
  5039. bool inplace) {
  5040. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5041. bool is_node = false;
  5042. if (!inplace && (a->grad || b->grad)) {
  5043. is_node = true;
  5044. }
  5045. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5046. struct ggml_map_custom2_op_params params = {
  5047. /*.fun =*/ fun,
  5048. /*.n_tasks =*/ n_tasks,
  5049. /*.userdata =*/ userdata
  5050. };
  5051. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5052. result->op = GGML_OP_MAP_CUSTOM2;
  5053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5054. result->src[0] = a;
  5055. result->src[1] = b;
  5056. return result;
  5057. }
  5058. struct ggml_tensor * ggml_map_custom2(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. struct ggml_tensor * b,
  5062. const ggml_custom2_op_t fun,
  5063. int n_tasks,
  5064. void * userdata) {
  5065. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5066. }
  5067. struct ggml_tensor * ggml_map_custom2_inplace(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. struct ggml_tensor * b,
  5071. const ggml_custom2_op_t fun,
  5072. int n_tasks,
  5073. void * userdata) {
  5074. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5075. }
  5076. // ggml_map_custom3
  5077. struct ggml_map_custom3_op_params {
  5078. ggml_custom3_op_t fun;
  5079. int n_tasks;
  5080. void * userdata;
  5081. };
  5082. static struct ggml_tensor * ggml_map_custom3_impl(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. struct ggml_tensor * b,
  5086. struct ggml_tensor * c,
  5087. const ggml_custom3_op_t fun,
  5088. int n_tasks,
  5089. void * userdata,
  5090. bool inplace) {
  5091. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5092. bool is_node = false;
  5093. if (!inplace && (a->grad || b->grad || c->grad)) {
  5094. is_node = true;
  5095. }
  5096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5097. struct ggml_map_custom3_op_params params = {
  5098. /*.fun =*/ fun,
  5099. /*.n_tasks =*/ n_tasks,
  5100. /*.userdata =*/ userdata
  5101. };
  5102. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5103. result->op = GGML_OP_MAP_CUSTOM3;
  5104. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5105. result->src[0] = a;
  5106. result->src[1] = b;
  5107. result->src[2] = c;
  5108. return result;
  5109. }
  5110. struct ggml_tensor * ggml_map_custom3(
  5111. struct ggml_context * ctx,
  5112. struct ggml_tensor * a,
  5113. struct ggml_tensor * b,
  5114. struct ggml_tensor * c,
  5115. const ggml_custom3_op_t fun,
  5116. int n_tasks,
  5117. void * userdata) {
  5118. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5119. }
  5120. struct ggml_tensor * ggml_map_custom3_inplace(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. struct ggml_tensor * b,
  5124. struct ggml_tensor * c,
  5125. const ggml_custom3_op_t fun,
  5126. int n_tasks,
  5127. void * userdata) {
  5128. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5129. }
  5130. // ggml_cross_entropy_loss
  5131. struct ggml_tensor * ggml_cross_entropy_loss(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. struct ggml_tensor * b) {
  5135. GGML_ASSERT(ggml_are_same_shape(a, b));
  5136. bool is_node = false;
  5137. if (a->grad || b->grad) {
  5138. is_node = true;
  5139. }
  5140. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5141. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5143. result->src[0] = a;
  5144. result->src[1] = b;
  5145. return result;
  5146. }
  5147. // ggml_cross_entropy_loss_back
  5148. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5149. struct ggml_context * ctx,
  5150. struct ggml_tensor * a,
  5151. struct ggml_tensor * b,
  5152. struct ggml_tensor * c) {
  5153. GGML_ASSERT(ggml_are_same_shape(a, b));
  5154. GGML_ASSERT(ggml_is_scalar(c));
  5155. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5156. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5157. result->grad = NULL;
  5158. result->src[0] = a;
  5159. result->src[1] = b;
  5160. result->src[2] = c;
  5161. return result;
  5162. }
  5163. ////////////////////////////////////////////////////////////////////////////////
  5164. void ggml_set_param(
  5165. struct ggml_context * ctx,
  5166. struct ggml_tensor * tensor) {
  5167. tensor->is_param = true;
  5168. GGML_ASSERT(tensor->grad == NULL);
  5169. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5170. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5171. }
  5172. // ggml_compute_forward_dup
  5173. static void ggml_compute_forward_dup_same_cont(
  5174. const struct ggml_compute_params * params,
  5175. const struct ggml_tensor * src0,
  5176. struct ggml_tensor * dst) {
  5177. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5178. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5179. GGML_ASSERT(src0->type == dst->type);
  5180. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5181. return;
  5182. }
  5183. const size_t nb00 = src0->nb[0];
  5184. const size_t nb0 = dst->nb[0];
  5185. const int ith = params->ith; // thread index
  5186. const int nth = params->nth; // number of threads
  5187. // parallelize by elements
  5188. const int ne = ggml_nelements(dst);
  5189. const int dr = (ne + nth - 1) / nth;
  5190. const int ie0 = dr * ith;
  5191. const int ie1 = MIN(ie0 + dr, ne);
  5192. if (ie0 < ie1) {
  5193. memcpy(
  5194. ((char *) dst->data + ie0*nb0),
  5195. ((char *) src0->data + ie0*nb00),
  5196. (ie1 - ie0) * ggml_type_size(src0->type));
  5197. }
  5198. }
  5199. static void ggml_compute_forward_dup_f16(
  5200. const struct ggml_compute_params * params,
  5201. const struct ggml_tensor * src0,
  5202. struct ggml_tensor * dst) {
  5203. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5204. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5205. return;
  5206. }
  5207. GGML_TENSOR_UNARY_OP_LOCALS
  5208. const int ith = params->ith; // thread index
  5209. const int nth = params->nth; // number of threads
  5210. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5211. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5212. return;
  5213. }
  5214. // parallelize by rows
  5215. const int nr = ne01;
  5216. // number of rows per thread
  5217. const int dr = (nr + nth - 1) / nth;
  5218. // row range for this thread
  5219. const int ir0 = dr * ith;
  5220. const int ir1 = MIN(ir0 + dr, nr);
  5221. if (src0->type == dst->type &&
  5222. ne00 == ne0 &&
  5223. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5224. // copy by rows
  5225. const size_t rs = ne00*nb00;
  5226. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5227. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5228. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5229. memcpy(
  5230. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5231. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5232. rs);
  5233. }
  5234. }
  5235. }
  5236. return;
  5237. }
  5238. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5239. if (ggml_is_contiguous(dst)) {
  5240. if (nb00 == sizeof(ggml_fp16_t)) {
  5241. if (dst->type == GGML_TYPE_F16) {
  5242. size_t id = 0;
  5243. const size_t rs = ne00 * nb00;
  5244. char * dst_ptr = (char *) dst->data;
  5245. for (int i03 = 0; i03 < ne03; i03++) {
  5246. for (int i02 = 0; i02 < ne02; i02++) {
  5247. id += rs * ir0;
  5248. for (int i01 = ir0; i01 < ir1; i01++) {
  5249. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5250. memcpy(dst_ptr + id, src0_ptr, rs);
  5251. id += rs;
  5252. }
  5253. id += rs * (ne01 - ir1);
  5254. }
  5255. }
  5256. } else if (dst->type == GGML_TYPE_F32) {
  5257. size_t id = 0;
  5258. float * dst_ptr = (float *) dst->data;
  5259. for (int i03 = 0; i03 < ne03; i03++) {
  5260. for (int i02 = 0; i02 < ne02; i02++) {
  5261. id += ne00 * ir0;
  5262. for (int i01 = ir0; i01 < ir1; i01++) {
  5263. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5264. for (int i00 = 0; i00 < ne00; i00++) {
  5265. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5266. id++;
  5267. }
  5268. }
  5269. id += ne00 * (ne01 - ir1);
  5270. }
  5271. }
  5272. } else if (type_traits[dst->type].from_float) {
  5273. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5274. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5275. size_t id = 0;
  5276. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5277. char * dst_ptr = (char *) dst->data;
  5278. for (int i03 = 0; i03 < ne03; i03++) {
  5279. for (int i02 = 0; i02 < ne02; i02++) {
  5280. id += rs * ir0;
  5281. for (int i01 = ir0; i01 < ir1; i01++) {
  5282. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5283. for (int i00 = 0; i00 < ne00; i00++) {
  5284. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5285. }
  5286. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5287. id += rs;
  5288. }
  5289. id += rs * (ne01 - ir1);
  5290. }
  5291. }
  5292. } else {
  5293. GGML_ASSERT(false); // TODO: implement
  5294. }
  5295. } else {
  5296. //printf("%s: this is not optimal - fix me\n", __func__);
  5297. if (dst->type == GGML_TYPE_F32) {
  5298. size_t id = 0;
  5299. float * dst_ptr = (float *) dst->data;
  5300. for (int i03 = 0; i03 < ne03; i03++) {
  5301. for (int i02 = 0; i02 < ne02; i02++) {
  5302. id += ne00 * ir0;
  5303. for (int i01 = ir0; i01 < ir1; i01++) {
  5304. for (int i00 = 0; i00 < ne00; i00++) {
  5305. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5306. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5307. id++;
  5308. }
  5309. }
  5310. id += ne00 * (ne01 - ir1);
  5311. }
  5312. }
  5313. } else if (dst->type == GGML_TYPE_F16) {
  5314. size_t id = 0;
  5315. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5316. for (int i03 = 0; i03 < ne03; i03++) {
  5317. for (int i02 = 0; i02 < ne02; i02++) {
  5318. id += ne00 * ir0;
  5319. for (int i01 = ir0; i01 < ir1; i01++) {
  5320. for (int i00 = 0; i00 < ne00; i00++) {
  5321. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5322. dst_ptr[id] = *src0_ptr;
  5323. id++;
  5324. }
  5325. }
  5326. id += ne00 * (ne01 - ir1);
  5327. }
  5328. }
  5329. } else {
  5330. GGML_ASSERT(false); // TODO: implement
  5331. }
  5332. }
  5333. return;
  5334. }
  5335. // dst counters
  5336. int64_t i10 = 0;
  5337. int64_t i11 = 0;
  5338. int64_t i12 = 0;
  5339. int64_t i13 = 0;
  5340. if (dst->type == GGML_TYPE_F16) {
  5341. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5342. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5343. i10 += ne00 * ir0;
  5344. while (i10 >= ne0) {
  5345. i10 -= ne0;
  5346. if (++i11 == ne1) {
  5347. i11 = 0;
  5348. if (++i12 == ne2) {
  5349. i12 = 0;
  5350. if (++i13 == ne3) {
  5351. i13 = 0;
  5352. }
  5353. }
  5354. }
  5355. }
  5356. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5357. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5358. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5359. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5360. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5361. if (++i10 == ne00) {
  5362. i10 = 0;
  5363. if (++i11 == ne01) {
  5364. i11 = 0;
  5365. if (++i12 == ne02) {
  5366. i12 = 0;
  5367. if (++i13 == ne03) {
  5368. i13 = 0;
  5369. }
  5370. }
  5371. }
  5372. }
  5373. }
  5374. }
  5375. i10 += ne00 * (ne01 - ir1);
  5376. while (i10 >= ne0) {
  5377. i10 -= ne0;
  5378. if (++i11 == ne1) {
  5379. i11 = 0;
  5380. if (++i12 == ne2) {
  5381. i12 = 0;
  5382. if (++i13 == ne3) {
  5383. i13 = 0;
  5384. }
  5385. }
  5386. }
  5387. }
  5388. }
  5389. }
  5390. } else if (dst->type == GGML_TYPE_F32) {
  5391. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5392. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5393. i10 += ne00 * ir0;
  5394. while (i10 >= ne0) {
  5395. i10 -= ne0;
  5396. if (++i11 == ne1) {
  5397. i11 = 0;
  5398. if (++i12 == ne2) {
  5399. i12 = 0;
  5400. if (++i13 == ne3) {
  5401. i13 = 0;
  5402. }
  5403. }
  5404. }
  5405. }
  5406. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5407. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5408. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5409. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5410. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5411. if (++i10 == ne0) {
  5412. i10 = 0;
  5413. if (++i11 == ne1) {
  5414. i11 = 0;
  5415. if (++i12 == ne2) {
  5416. i12 = 0;
  5417. if (++i13 == ne3) {
  5418. i13 = 0;
  5419. }
  5420. }
  5421. }
  5422. }
  5423. }
  5424. }
  5425. i10 += ne00 * (ne01 - ir1);
  5426. while (i10 >= ne0) {
  5427. i10 -= ne0;
  5428. if (++i11 == ne1) {
  5429. i11 = 0;
  5430. if (++i12 == ne2) {
  5431. i12 = 0;
  5432. if (++i13 == ne3) {
  5433. i13 = 0;
  5434. }
  5435. }
  5436. }
  5437. }
  5438. }
  5439. }
  5440. } else {
  5441. GGML_ASSERT(false); // TODO: implement
  5442. }
  5443. }
  5444. static void ggml_compute_forward_dup_f32(
  5445. const struct ggml_compute_params * params,
  5446. const struct ggml_tensor * src0,
  5447. struct ggml_tensor * dst) {
  5448. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5450. return;
  5451. }
  5452. GGML_TENSOR_UNARY_OP_LOCALS
  5453. const int ith = params->ith; // thread index
  5454. const int nth = params->nth; // number of threads
  5455. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5456. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5457. return;
  5458. }
  5459. // parallelize by rows
  5460. const int nr = ne01;
  5461. // number of rows per thread
  5462. const int dr = (nr + nth - 1) / nth;
  5463. // row range for this thread
  5464. const int ir0 = dr * ith;
  5465. const int ir1 = MIN(ir0 + dr, nr);
  5466. if (src0->type == dst->type &&
  5467. ne00 == ne0 &&
  5468. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5469. // copy by rows
  5470. const size_t rs = ne00*nb00;
  5471. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5472. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5473. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5474. memcpy(
  5475. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5476. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5477. rs);
  5478. }
  5479. }
  5480. }
  5481. return;
  5482. }
  5483. if (ggml_is_contiguous(dst)) {
  5484. // TODO: simplify
  5485. if (nb00 == sizeof(float)) {
  5486. if (dst->type == GGML_TYPE_F32) {
  5487. size_t id = 0;
  5488. const size_t rs = ne00 * nb00;
  5489. char * dst_ptr = (char *) dst->data;
  5490. for (int i03 = 0; i03 < ne03; i03++) {
  5491. for (int i02 = 0; i02 < ne02; i02++) {
  5492. id += rs * ir0;
  5493. for (int i01 = ir0; i01 < ir1; i01++) {
  5494. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5495. memcpy(dst_ptr + id, src0_ptr, rs);
  5496. id += rs;
  5497. }
  5498. id += rs * (ne01 - ir1);
  5499. }
  5500. }
  5501. } else if (type_traits[dst->type].from_float) {
  5502. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5503. size_t id = 0;
  5504. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5505. char * dst_ptr = (char *) dst->data;
  5506. for (int i03 = 0; i03 < ne03; i03++) {
  5507. for (int i02 = 0; i02 < ne02; i02++) {
  5508. id += rs * ir0;
  5509. for (int i01 = ir0; i01 < ir1; i01++) {
  5510. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5511. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5512. id += rs;
  5513. }
  5514. id += rs * (ne01 - ir1);
  5515. }
  5516. }
  5517. } else {
  5518. GGML_ASSERT(false); // TODO: implement
  5519. }
  5520. } else {
  5521. //printf("%s: this is not optimal - fix me\n", __func__);
  5522. if (dst->type == GGML_TYPE_F32) {
  5523. size_t id = 0;
  5524. float * dst_ptr = (float *) dst->data;
  5525. for (int i03 = 0; i03 < ne03; i03++) {
  5526. for (int i02 = 0; i02 < ne02; i02++) {
  5527. id += ne00 * ir0;
  5528. for (int i01 = ir0; i01 < ir1; i01++) {
  5529. for (int i00 = 0; i00 < ne00; i00++) {
  5530. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5531. dst_ptr[id] = *src0_ptr;
  5532. id++;
  5533. }
  5534. }
  5535. id += ne00 * (ne01 - ir1);
  5536. }
  5537. }
  5538. } else if (dst->type == GGML_TYPE_F16) {
  5539. size_t id = 0;
  5540. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5541. for (int i03 = 0; i03 < ne03; i03++) {
  5542. for (int i02 = 0; i02 < ne02; i02++) {
  5543. id += ne00 * ir0;
  5544. for (int i01 = ir0; i01 < ir1; i01++) {
  5545. for (int i00 = 0; i00 < ne00; i00++) {
  5546. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5547. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5548. id++;
  5549. }
  5550. }
  5551. id += ne00 * (ne01 - ir1);
  5552. }
  5553. }
  5554. } else {
  5555. GGML_ASSERT(false); // TODO: implement
  5556. }
  5557. }
  5558. return;
  5559. }
  5560. // dst counters
  5561. int64_t i10 = 0;
  5562. int64_t i11 = 0;
  5563. int64_t i12 = 0;
  5564. int64_t i13 = 0;
  5565. if (dst->type == GGML_TYPE_F32) {
  5566. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5567. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5568. i10 += ne00 * ir0;
  5569. while (i10 >= ne0) {
  5570. i10 -= ne0;
  5571. if (++i11 == ne1) {
  5572. i11 = 0;
  5573. if (++i12 == ne2) {
  5574. i12 = 0;
  5575. if (++i13 == ne3) {
  5576. i13 = 0;
  5577. }
  5578. }
  5579. }
  5580. }
  5581. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5582. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5583. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5584. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5585. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5586. if (++i10 == ne0) {
  5587. i10 = 0;
  5588. if (++i11 == ne1) {
  5589. i11 = 0;
  5590. if (++i12 == ne2) {
  5591. i12 = 0;
  5592. if (++i13 == ne3) {
  5593. i13 = 0;
  5594. }
  5595. }
  5596. }
  5597. }
  5598. }
  5599. }
  5600. i10 += ne00 * (ne01 - ir1);
  5601. while (i10 >= ne0) {
  5602. i10 -= ne0;
  5603. if (++i11 == ne1) {
  5604. i11 = 0;
  5605. if (++i12 == ne2) {
  5606. i12 = 0;
  5607. if (++i13 == ne3) {
  5608. i13 = 0;
  5609. }
  5610. }
  5611. }
  5612. }
  5613. }
  5614. }
  5615. } else if (dst->type == GGML_TYPE_F16) {
  5616. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5617. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5618. i10 += ne00 * ir0;
  5619. while (i10 >= ne0) {
  5620. i10 -= ne0;
  5621. if (++i11 == ne1) {
  5622. i11 = 0;
  5623. if (++i12 == ne2) {
  5624. i12 = 0;
  5625. if (++i13 == ne3) {
  5626. i13 = 0;
  5627. }
  5628. }
  5629. }
  5630. }
  5631. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5632. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5633. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5634. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5635. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5636. if (++i10 == ne0) {
  5637. i10 = 0;
  5638. if (++i11 == ne1) {
  5639. i11 = 0;
  5640. if (++i12 == ne2) {
  5641. i12 = 0;
  5642. if (++i13 == ne3) {
  5643. i13 = 0;
  5644. }
  5645. }
  5646. }
  5647. }
  5648. }
  5649. }
  5650. i10 += ne00 * (ne01 - ir1);
  5651. while (i10 >= ne0) {
  5652. i10 -= ne0;
  5653. if (++i11 == ne1) {
  5654. i11 = 0;
  5655. if (++i12 == ne2) {
  5656. i12 = 0;
  5657. if (++i13 == ne3) {
  5658. i13 = 0;
  5659. }
  5660. }
  5661. }
  5662. }
  5663. }
  5664. }
  5665. } else {
  5666. GGML_ASSERT(false); // TODO: implement
  5667. }
  5668. }
  5669. static void ggml_compute_forward_dup(
  5670. const struct ggml_compute_params * params,
  5671. const struct ggml_tensor * src0,
  5672. struct ggml_tensor * dst) {
  5673. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5674. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5675. return;
  5676. }
  5677. switch (src0->type) {
  5678. case GGML_TYPE_F16:
  5679. {
  5680. ggml_compute_forward_dup_f16(params, src0, dst);
  5681. } break;
  5682. case GGML_TYPE_F32:
  5683. {
  5684. ggml_compute_forward_dup_f32(params, src0, dst);
  5685. } break;
  5686. default:
  5687. {
  5688. GGML_ASSERT(false);
  5689. } break;
  5690. }
  5691. }
  5692. // ggml_compute_forward_add
  5693. static void ggml_compute_forward_add_f32(
  5694. const struct ggml_compute_params * params,
  5695. const struct ggml_tensor * src0,
  5696. const struct ggml_tensor * src1,
  5697. struct ggml_tensor * dst) {
  5698. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5700. return;
  5701. }
  5702. const int ith = params->ith;
  5703. const int nth = params->nth;
  5704. const int nr = ggml_nrows(src0);
  5705. GGML_TENSOR_BINARY_OP_LOCALS
  5706. GGML_ASSERT( nb0 == sizeof(float));
  5707. GGML_ASSERT(nb00 == sizeof(float));
  5708. // rows per thread
  5709. const int dr = (nr + nth - 1)/nth;
  5710. // row range for this thread
  5711. const int ir0 = dr*ith;
  5712. const int ir1 = MIN(ir0 + dr, nr);
  5713. if (nb10 == sizeof(float)) {
  5714. for (int ir = ir0; ir < ir1; ++ir) {
  5715. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5716. const int64_t i03 = ir/(ne02*ne01);
  5717. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5718. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5719. const int64_t i13 = i03 % ne13;
  5720. const int64_t i12 = i02 % ne12;
  5721. const int64_t i11 = i01 % ne11;
  5722. const int64_t nr0 = ne00 / ne10;
  5723. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5724. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5725. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5726. for (int64_t r = 0; r < nr0; ++r) {
  5727. #ifdef GGML_USE_ACCELERATE
  5728. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5729. #else
  5730. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5731. #endif
  5732. }
  5733. }
  5734. } else {
  5735. // src1 is not contiguous
  5736. for (int ir = ir0; ir < ir1; ++ir) {
  5737. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5738. const int64_t i03 = ir/(ne02*ne01);
  5739. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5740. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5741. const int64_t i13 = i03 % ne13;
  5742. const int64_t i12 = i02 % ne12;
  5743. const int64_t i11 = i01 % ne11;
  5744. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5745. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5746. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5747. const int64_t i10 = i0 % ne10;
  5748. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5749. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5750. }
  5751. }
  5752. }
  5753. }
  5754. static void ggml_compute_forward_add_f16_f32(
  5755. const struct ggml_compute_params * params,
  5756. const struct ggml_tensor * src0,
  5757. const struct ggml_tensor * src1,
  5758. struct ggml_tensor * dst) {
  5759. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5760. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5761. return;
  5762. }
  5763. const int ith = params->ith;
  5764. const int nth = params->nth;
  5765. const int nr = ggml_nrows(src0);
  5766. GGML_TENSOR_BINARY_OP_LOCALS
  5767. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5768. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5769. if (dst->type == GGML_TYPE_F32) {
  5770. GGML_ASSERT( nb0 == sizeof(float));
  5771. }
  5772. else {
  5773. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5774. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5775. }
  5776. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5777. // rows per thread
  5778. const int dr = (nr + nth - 1)/nth;
  5779. // row range for this thread
  5780. const int ir0 = dr*ith;
  5781. const int ir1 = MIN(ir0 + dr, nr);
  5782. if (nb10 == sizeof(float)) {
  5783. if (dst->type == GGML_TYPE_F16) {
  5784. for (int ir = ir0; ir < ir1; ++ir) {
  5785. // src0, src1 and dst are same shape => same indices
  5786. const int i3 = ir/(ne2*ne1);
  5787. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5788. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5789. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5790. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5791. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5792. for (int i = 0; i < ne0; i++) {
  5793. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5794. }
  5795. }
  5796. } else {
  5797. for (int ir = ir0; ir < ir1; ++ir) {
  5798. // src0, src1 and dst are same shape => same indices
  5799. const int i3 = ir/(ne2*ne1);
  5800. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5801. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5802. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5803. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5804. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5805. for (int i = 0; i < ne0; i++) {
  5806. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5807. }
  5808. }
  5809. }
  5810. }
  5811. else {
  5812. // src1 is not contiguous
  5813. GGML_ASSERT(false);
  5814. }
  5815. }
  5816. static void ggml_compute_forward_add_f16_f16(
  5817. const struct ggml_compute_params * params,
  5818. const struct ggml_tensor * src0,
  5819. const struct ggml_tensor * src1,
  5820. struct ggml_tensor * dst) {
  5821. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5822. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5823. return;
  5824. }
  5825. const int ith = params->ith;
  5826. const int nth = params->nth;
  5827. const int nr = ggml_nrows(src0);
  5828. GGML_TENSOR_BINARY_OP_LOCALS
  5829. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5830. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5831. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5832. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5833. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5834. // rows per thread
  5835. const int dr = (nr + nth - 1)/nth;
  5836. // row range for this thread
  5837. const int ir0 = dr*ith;
  5838. const int ir1 = MIN(ir0 + dr, nr);
  5839. if (nb10 == sizeof(ggml_fp16_t)) {
  5840. for (int ir = ir0; ir < ir1; ++ir) {
  5841. // src0, src1 and dst are same shape => same indices
  5842. const int i3 = ir/(ne2*ne1);
  5843. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5844. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5845. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5846. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5847. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5848. for (int i = 0; i < ne0; i++) {
  5849. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5850. }
  5851. }
  5852. }
  5853. else {
  5854. // src1 is not contiguous
  5855. GGML_ASSERT(false);
  5856. }
  5857. }
  5858. static void ggml_compute_forward_add_q_f32(
  5859. const struct ggml_compute_params * params,
  5860. const struct ggml_tensor * src0,
  5861. const struct ggml_tensor * src1,
  5862. struct ggml_tensor * dst) {
  5863. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5864. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5865. return;
  5866. }
  5867. const int nr = ggml_nrows(src0);
  5868. GGML_TENSOR_BINARY_OP_LOCALS
  5869. const int ith = params->ith;
  5870. const int nth = params->nth;
  5871. const enum ggml_type type = src0->type;
  5872. const enum ggml_type dtype = dst->type;
  5873. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5874. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5875. // we don't support permuted src0 or src1
  5876. GGML_ASSERT(nb00 == ggml_type_size(type));
  5877. GGML_ASSERT(nb10 == sizeof(float));
  5878. // dst cannot be transposed or permuted
  5879. GGML_ASSERT(nb0 <= nb1);
  5880. GGML_ASSERT(nb1 <= nb2);
  5881. GGML_ASSERT(nb2 <= nb3);
  5882. GGML_ASSERT(ggml_is_quantized(src0->type));
  5883. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5884. // rows per thread
  5885. const int dr = (nr + nth - 1)/nth;
  5886. // row range for this thread
  5887. const int ir0 = dr*ith;
  5888. const int ir1 = MIN(ir0 + dr, nr);
  5889. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5890. for (int ir = ir0; ir < ir1; ++ir) {
  5891. // src0 indices
  5892. const int i03 = ir/(ne02*ne01);
  5893. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5894. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5895. // src1 and dst are same shape as src0 => same indices
  5896. const int i13 = i03;
  5897. const int i12 = i02;
  5898. const int i11 = i01;
  5899. const int i3 = i03;
  5900. const int i2 = i02;
  5901. const int i1 = i01;
  5902. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5903. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5904. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5905. assert(ne00 % 32 == 0);
  5906. // unquantize row from src0 to temp buffer
  5907. dequantize_row_q(src0_row, wdata, ne00);
  5908. // add src1
  5909. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5910. // quantize row to dst
  5911. if (quantize_row_q != NULL) {
  5912. quantize_row_q(wdata, dst_row, ne00);
  5913. } else {
  5914. memcpy(dst_row, wdata, ne0*nb0);
  5915. }
  5916. }
  5917. }
  5918. static void ggml_compute_forward_add(
  5919. const struct ggml_compute_params * params,
  5920. const struct ggml_tensor * src0,
  5921. const struct ggml_tensor * src1,
  5922. struct ggml_tensor * dst) {
  5923. switch (src0->type) {
  5924. case GGML_TYPE_F32:
  5925. {
  5926. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5927. } break;
  5928. case GGML_TYPE_F16:
  5929. {
  5930. if (src1->type == GGML_TYPE_F16) {
  5931. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5932. }
  5933. else if (src1->type == GGML_TYPE_F32) {
  5934. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5935. }
  5936. else {
  5937. GGML_ASSERT(false);
  5938. }
  5939. } break;
  5940. case GGML_TYPE_Q4_0:
  5941. case GGML_TYPE_Q4_1:
  5942. case GGML_TYPE_Q5_0:
  5943. case GGML_TYPE_Q5_1:
  5944. case GGML_TYPE_Q8_0:
  5945. case GGML_TYPE_Q2_K:
  5946. case GGML_TYPE_Q3_K:
  5947. case GGML_TYPE_Q4_K:
  5948. case GGML_TYPE_Q5_K:
  5949. case GGML_TYPE_Q6_K:
  5950. {
  5951. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5952. } break;
  5953. default:
  5954. {
  5955. GGML_ASSERT(false);
  5956. } break;
  5957. }
  5958. }
  5959. // ggml_compute_forward_add1
  5960. static void ggml_compute_forward_add1_f32(
  5961. const struct ggml_compute_params * params,
  5962. const struct ggml_tensor * src0,
  5963. const struct ggml_tensor * src1,
  5964. struct ggml_tensor * dst) {
  5965. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5966. GGML_ASSERT(ggml_is_scalar(src1));
  5967. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5968. return;
  5969. }
  5970. const int ith = params->ith;
  5971. const int nth = params->nth;
  5972. const int nr = ggml_nrows(src0);
  5973. GGML_TENSOR_UNARY_OP_LOCALS
  5974. GGML_ASSERT( nb0 == sizeof(float));
  5975. GGML_ASSERT(nb00 == sizeof(float));
  5976. // rows per thread
  5977. const int dr = (nr + nth - 1)/nth;
  5978. // row range for this thread
  5979. const int ir0 = dr*ith;
  5980. const int ir1 = MIN(ir0 + dr, nr);
  5981. for (int ir = ir0; ir < ir1; ++ir) {
  5982. // src0 and dst are same shape => same indices
  5983. const int i3 = ir/(ne2*ne1);
  5984. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5985. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5986. #ifdef GGML_USE_ACCELERATE
  5987. UNUSED(ggml_vec_add1_f32);
  5988. vDSP_vadd(
  5989. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5990. (float *) ((char *) src1->data), 0,
  5991. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5992. ne0);
  5993. #else
  5994. ggml_vec_add1_f32(ne0,
  5995. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5996. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5997. *(float *) src1->data);
  5998. #endif
  5999. }
  6000. }
  6001. static void ggml_compute_forward_add1_f16_f32(
  6002. const struct ggml_compute_params * params,
  6003. const struct ggml_tensor * src0,
  6004. const struct ggml_tensor * src1,
  6005. struct ggml_tensor * dst) {
  6006. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6007. GGML_ASSERT(ggml_is_scalar(src1));
  6008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6009. return;
  6010. }
  6011. // scalar to add
  6012. const float v = *(float *) src1->data;
  6013. const int ith = params->ith;
  6014. const int nth = params->nth;
  6015. const int nr = ggml_nrows(src0);
  6016. GGML_TENSOR_UNARY_OP_LOCALS
  6017. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6018. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6019. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6020. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6021. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6022. // rows per thread
  6023. const int dr = (nr + nth - 1)/nth;
  6024. // row range for this thread
  6025. const int ir0 = dr*ith;
  6026. const int ir1 = MIN(ir0 + dr, nr);
  6027. for (int ir = ir0; ir < ir1; ++ir) {
  6028. // src0 and dst are same shape => same indices
  6029. const int i3 = ir/(ne2*ne1);
  6030. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6031. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6032. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6033. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6034. for (int i = 0; i < ne0; i++) {
  6035. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6036. }
  6037. }
  6038. }
  6039. static void ggml_compute_forward_add1_f16_f16(
  6040. const struct ggml_compute_params * params,
  6041. const struct ggml_tensor * src0,
  6042. const struct ggml_tensor * src1,
  6043. struct ggml_tensor * dst) {
  6044. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6045. GGML_ASSERT(ggml_is_scalar(src1));
  6046. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6047. return;
  6048. }
  6049. // scalar to add
  6050. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6051. const int ith = params->ith;
  6052. const int nth = params->nth;
  6053. const int nr = ggml_nrows(src0);
  6054. GGML_TENSOR_UNARY_OP_LOCALS
  6055. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6056. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6057. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6058. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6059. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6060. // rows per thread
  6061. const int dr = (nr + nth - 1)/nth;
  6062. // row range for this thread
  6063. const int ir0 = dr*ith;
  6064. const int ir1 = MIN(ir0 + dr, nr);
  6065. for (int ir = ir0; ir < ir1; ++ir) {
  6066. // src0 and dst are same shape => same indices
  6067. const int i3 = ir/(ne2*ne1);
  6068. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6069. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6070. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6071. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6072. for (int i = 0; i < ne0; i++) {
  6073. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6074. }
  6075. }
  6076. }
  6077. static void ggml_compute_forward_add1_q_f32(
  6078. const struct ggml_compute_params * params,
  6079. const struct ggml_tensor * src0,
  6080. const struct ggml_tensor * src1,
  6081. struct ggml_tensor * dst) {
  6082. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6083. GGML_ASSERT(ggml_is_scalar(src1));
  6084. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6085. return;
  6086. }
  6087. // scalar to add
  6088. const float v = *(float *) src1->data;
  6089. const int ith = params->ith;
  6090. const int nth = params->nth;
  6091. const int nr = ggml_nrows(src0);
  6092. GGML_TENSOR_UNARY_OP_LOCALS
  6093. const enum ggml_type type = src0->type;
  6094. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6095. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6096. // we don't support permuted src0
  6097. GGML_ASSERT(nb00 == ggml_type_size(type));
  6098. // dst cannot be transposed or permuted
  6099. GGML_ASSERT(nb0 <= nb1);
  6100. GGML_ASSERT(nb1 <= nb2);
  6101. GGML_ASSERT(nb2 <= nb3);
  6102. GGML_ASSERT(ggml_is_quantized(src0->type));
  6103. GGML_ASSERT(dst->type == src0->type);
  6104. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6105. // rows per thread
  6106. const int dr = (nr + nth - 1)/nth;
  6107. // row range for this thread
  6108. const int ir0 = dr*ith;
  6109. const int ir1 = MIN(ir0 + dr, nr);
  6110. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6111. for (int ir = ir0; ir < ir1; ++ir) {
  6112. // src0 and dst are same shape => same indices
  6113. const int i3 = ir/(ne2*ne1);
  6114. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6115. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6116. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6117. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6118. assert(ne0 % 32 == 0);
  6119. // unquantize row from src0 to temp buffer
  6120. dequantize_row_q(src0_row, wdata, ne0);
  6121. // add src1
  6122. ggml_vec_acc1_f32(ne0, wdata, v);
  6123. // quantize row to dst
  6124. quantize_row_q(wdata, dst_row, ne0);
  6125. }
  6126. }
  6127. static void ggml_compute_forward_add1(
  6128. const struct ggml_compute_params * params,
  6129. const struct ggml_tensor * src0,
  6130. const struct ggml_tensor * src1,
  6131. struct ggml_tensor * dst) {
  6132. switch (src0->type) {
  6133. case GGML_TYPE_F32:
  6134. {
  6135. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6136. } break;
  6137. case GGML_TYPE_F16:
  6138. {
  6139. if (src1->type == GGML_TYPE_F16) {
  6140. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6141. }
  6142. else if (src1->type == GGML_TYPE_F32) {
  6143. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6144. }
  6145. else {
  6146. GGML_ASSERT(false);
  6147. }
  6148. } break;
  6149. case GGML_TYPE_Q4_0:
  6150. case GGML_TYPE_Q4_1:
  6151. case GGML_TYPE_Q5_0:
  6152. case GGML_TYPE_Q5_1:
  6153. case GGML_TYPE_Q8_0:
  6154. case GGML_TYPE_Q8_1:
  6155. case GGML_TYPE_Q2_K:
  6156. case GGML_TYPE_Q3_K:
  6157. case GGML_TYPE_Q4_K:
  6158. case GGML_TYPE_Q5_K:
  6159. case GGML_TYPE_Q6_K:
  6160. {
  6161. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6162. } break;
  6163. default:
  6164. {
  6165. GGML_ASSERT(false);
  6166. } break;
  6167. }
  6168. }
  6169. // ggml_compute_forward_acc
  6170. static void ggml_compute_forward_acc_f32(
  6171. const struct ggml_compute_params * params,
  6172. const struct ggml_tensor * src0,
  6173. const struct ggml_tensor * src1,
  6174. struct ggml_tensor * dst) {
  6175. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6176. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6177. // view src0 and dst with these strides and data offset inbytes during acc
  6178. // nb0 is implicitly element_size because src0 and dst are contiguous
  6179. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6180. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6181. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6182. size_t offset = ((int32_t *) dst->op_params)[3];
  6183. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6184. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6185. // memcpy needs to be synchronized across threads to avoid race conditions.
  6186. // => do it in INIT phase
  6187. memcpy(
  6188. ((char *) dst->data),
  6189. ((char *) src0->data),
  6190. ggml_nbytes(dst));
  6191. }
  6192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6193. return;
  6194. }
  6195. const int ith = params->ith;
  6196. const int nth = params->nth;
  6197. const int nr = ggml_nrows(src1);
  6198. const int nc = src1->ne[0];
  6199. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6200. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6201. // src0 and dst as viewed during acc
  6202. const size_t nb0 = ggml_element_size(src0);
  6203. const size_t nb00 = nb0;
  6204. const size_t nb01 = nb1;
  6205. const size_t nb02 = nb2;
  6206. const size_t nb03 = nb3;
  6207. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6208. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6209. GGML_ASSERT(nb10 == sizeof(float));
  6210. // rows per thread
  6211. const int dr = (nr + nth - 1)/nth;
  6212. // row range for this thread
  6213. const int ir0 = dr*ith;
  6214. const int ir1 = MIN(ir0 + dr, nr);
  6215. for (int ir = ir0; ir < ir1; ++ir) {
  6216. // src0 and dst are viewed with shape of src1 and offset
  6217. // => same indices
  6218. const int i3 = ir/(ne12*ne11);
  6219. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6220. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6221. #ifdef GGML_USE_ACCELERATE
  6222. vDSP_vadd(
  6223. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6224. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6225. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6226. #else
  6227. ggml_vec_add_f32(nc,
  6228. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6229. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6230. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6231. #endif
  6232. }
  6233. }
  6234. static void ggml_compute_forward_acc(
  6235. const struct ggml_compute_params * params,
  6236. const struct ggml_tensor * src0,
  6237. const struct ggml_tensor * src1,
  6238. struct ggml_tensor * dst) {
  6239. switch (src0->type) {
  6240. case GGML_TYPE_F32:
  6241. {
  6242. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6243. } break;
  6244. case GGML_TYPE_F16:
  6245. case GGML_TYPE_Q4_0:
  6246. case GGML_TYPE_Q4_1:
  6247. case GGML_TYPE_Q5_0:
  6248. case GGML_TYPE_Q5_1:
  6249. case GGML_TYPE_Q8_0:
  6250. case GGML_TYPE_Q8_1:
  6251. case GGML_TYPE_Q2_K:
  6252. case GGML_TYPE_Q3_K:
  6253. case GGML_TYPE_Q4_K:
  6254. case GGML_TYPE_Q5_K:
  6255. case GGML_TYPE_Q6_K:
  6256. default:
  6257. {
  6258. GGML_ASSERT(false);
  6259. } break;
  6260. }
  6261. }
  6262. // ggml_compute_forward_sub
  6263. static void ggml_compute_forward_sub_f32(
  6264. const struct ggml_compute_params * params,
  6265. const struct ggml_tensor * src0,
  6266. const struct ggml_tensor * src1,
  6267. struct ggml_tensor * dst) {
  6268. assert(params->ith == 0);
  6269. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6271. return;
  6272. }
  6273. const int nr = ggml_nrows(src0);
  6274. GGML_TENSOR_BINARY_OP_LOCALS
  6275. GGML_ASSERT( nb0 == sizeof(float));
  6276. GGML_ASSERT(nb00 == sizeof(float));
  6277. if (nb10 == sizeof(float)) {
  6278. for (int ir = 0; ir < nr; ++ir) {
  6279. // src0, src1 and dst are same shape => same indices
  6280. const int i3 = ir/(ne2*ne1);
  6281. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6282. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6283. #ifdef GGML_USE_ACCELERATE
  6284. vDSP_vsub(
  6285. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6286. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6287. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6288. ne0);
  6289. #else
  6290. ggml_vec_sub_f32(ne0,
  6291. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6292. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6293. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6294. #endif
  6295. // }
  6296. // }
  6297. }
  6298. } else {
  6299. // src1 is not contiguous
  6300. for (int ir = 0; ir < nr; ++ir) {
  6301. // src0, src1 and dst are same shape => same indices
  6302. const int i3 = ir/(ne2*ne1);
  6303. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6304. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6305. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6306. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6307. for (int i0 = 0; i0 < ne0; i0++) {
  6308. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6309. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6310. }
  6311. }
  6312. }
  6313. }
  6314. static void ggml_compute_forward_sub(
  6315. const struct ggml_compute_params * params,
  6316. const struct ggml_tensor * src0,
  6317. const struct ggml_tensor * src1,
  6318. struct ggml_tensor * dst) {
  6319. switch (src0->type) {
  6320. case GGML_TYPE_F32:
  6321. {
  6322. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6323. } break;
  6324. default:
  6325. {
  6326. GGML_ASSERT(false);
  6327. } break;
  6328. }
  6329. }
  6330. // ggml_compute_forward_mul
  6331. static void ggml_compute_forward_mul_f32(
  6332. const struct ggml_compute_params * params,
  6333. const struct ggml_tensor * src0,
  6334. const struct ggml_tensor * src1,
  6335. struct ggml_tensor * dst) {
  6336. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6338. return;
  6339. }
  6340. const int ith = params->ith;
  6341. const int nth = params->nth;
  6342. #ifdef GGML_USE_CLBLAST
  6343. if (src1->backend == GGML_BACKEND_GPU) {
  6344. // TODO: OpenCL kernel support full broadcast
  6345. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6346. if (ith == 0) {
  6347. ggml_cl_mul(src0, src1, dst);
  6348. }
  6349. return;
  6350. }
  6351. #endif
  6352. const int64_t nr = ggml_nrows(src0);
  6353. GGML_TENSOR_BINARY_OP_LOCALS
  6354. GGML_ASSERT( nb0 == sizeof(float));
  6355. GGML_ASSERT(nb00 == sizeof(float));
  6356. if (nb10 == sizeof(float)) {
  6357. for (int64_t ir = ith; ir < nr; ir += nth) {
  6358. // src0 and dst are same shape => same indices
  6359. const int64_t i03 = ir/(ne02*ne01);
  6360. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6361. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6362. const int64_t i13 = i03 % ne13;
  6363. const int64_t i12 = i02 % ne12;
  6364. const int64_t i11 = i01 % ne11;
  6365. const int64_t nr0 = ne00 / ne10;
  6366. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6367. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6368. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6369. for (int64_t r = 0 ; r < nr0; ++r) {
  6370. #ifdef GGML_USE_ACCELERATE
  6371. UNUSED(ggml_vec_mul_f32);
  6372. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6373. #else
  6374. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6375. #endif
  6376. }
  6377. }
  6378. } else {
  6379. // src1 is not contiguous
  6380. for (int64_t ir = ith; ir < nr; ir += nth) {
  6381. // src0 and dst are same shape => same indices
  6382. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6383. const int64_t i03 = ir/(ne02*ne01);
  6384. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6385. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6386. const int64_t i13 = i03 % ne13;
  6387. const int64_t i12 = i02 % ne12;
  6388. const int64_t i11 = i01 % ne11;
  6389. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6390. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6391. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6392. const int64_t i10 = i0 % ne10;
  6393. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6394. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6395. }
  6396. }
  6397. }
  6398. }
  6399. static void ggml_compute_forward_mul(
  6400. const struct ggml_compute_params * params,
  6401. const struct ggml_tensor * src0,
  6402. const struct ggml_tensor * src1,
  6403. struct ggml_tensor * dst) {
  6404. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6405. switch (src0->type) {
  6406. case GGML_TYPE_F32:
  6407. {
  6408. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6409. } break;
  6410. default:
  6411. {
  6412. GGML_ASSERT(false);
  6413. } break;
  6414. }
  6415. }
  6416. // ggml_compute_forward_div
  6417. static void ggml_compute_forward_div_f32(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. const struct ggml_tensor * src1,
  6421. struct ggml_tensor * dst) {
  6422. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6424. return;
  6425. }
  6426. const int ith = params->ith;
  6427. const int nth = params->nth;
  6428. const int64_t nr = ggml_nrows(src0);
  6429. GGML_TENSOR_BINARY_OP_LOCALS
  6430. GGML_ASSERT( nb0 == sizeof(float));
  6431. GGML_ASSERT(nb00 == sizeof(float));
  6432. if (nb10 == sizeof(float)) {
  6433. for (int64_t ir = ith; ir < nr; ir += nth) {
  6434. // src0 and dst are same shape => same indices
  6435. const int64_t i03 = ir/(ne02*ne01);
  6436. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6437. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6438. const int64_t i13 = i03 % ne13;
  6439. const int64_t i12 = i02 % ne12;
  6440. const int64_t i11 = i01 % ne11;
  6441. const int64_t nr0 = ne00 / ne10;
  6442. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6443. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6444. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6445. for (int64_t r = 0; r < nr0; ++r) {
  6446. #ifdef GGML_USE_ACCELERATE
  6447. UNUSED(ggml_vec_div_f32);
  6448. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6449. #else
  6450. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6451. #endif
  6452. }
  6453. }
  6454. } else {
  6455. // src1 is not contiguous
  6456. for (int64_t ir = ith; ir < nr; ir += nth) {
  6457. // src0 and dst are same shape => same indices
  6458. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6459. const int64_t i03 = ir/(ne02*ne01);
  6460. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6461. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6462. const int64_t i13 = i03 % ne13;
  6463. const int64_t i12 = i02 % ne12;
  6464. const int64_t i11 = i01 % ne11;
  6465. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6466. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6467. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6468. const int64_t i10 = i0 % ne10;
  6469. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6470. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6471. }
  6472. }
  6473. }
  6474. }
  6475. static void ggml_compute_forward_div(
  6476. const struct ggml_compute_params * params,
  6477. const struct ggml_tensor * src0,
  6478. const struct ggml_tensor * src1,
  6479. struct ggml_tensor * dst) {
  6480. switch (src0->type) {
  6481. case GGML_TYPE_F32:
  6482. {
  6483. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6484. } break;
  6485. default:
  6486. {
  6487. GGML_ASSERT(false);
  6488. } break;
  6489. }
  6490. }
  6491. // ggml_compute_forward_sqr
  6492. static void ggml_compute_forward_sqr_f32(
  6493. const struct ggml_compute_params * params,
  6494. const struct ggml_tensor * src0,
  6495. struct ggml_tensor * dst) {
  6496. assert(params->ith == 0);
  6497. assert(ggml_are_same_shape(src0, dst));
  6498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6499. return;
  6500. }
  6501. const int n = ggml_nrows(src0);
  6502. const int nc = src0->ne[0];
  6503. assert( dst->nb[0] == sizeof(float));
  6504. assert(src0->nb[0] == sizeof(float));
  6505. for (int i = 0; i < n; i++) {
  6506. ggml_vec_sqr_f32(nc,
  6507. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6508. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6509. }
  6510. }
  6511. static void ggml_compute_forward_sqr(
  6512. const struct ggml_compute_params * params,
  6513. const struct ggml_tensor * src0,
  6514. struct ggml_tensor * dst) {
  6515. switch (src0->type) {
  6516. case GGML_TYPE_F32:
  6517. {
  6518. ggml_compute_forward_sqr_f32(params, src0, dst);
  6519. } break;
  6520. default:
  6521. {
  6522. GGML_ASSERT(false);
  6523. } break;
  6524. }
  6525. }
  6526. // ggml_compute_forward_sqrt
  6527. static void ggml_compute_forward_sqrt_f32(
  6528. const struct ggml_compute_params * params,
  6529. const struct ggml_tensor * src0,
  6530. struct ggml_tensor * dst) {
  6531. assert(params->ith == 0);
  6532. assert(ggml_are_same_shape(src0, dst));
  6533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6534. return;
  6535. }
  6536. const int n = ggml_nrows(src0);
  6537. const int nc = src0->ne[0];
  6538. assert( dst->nb[0] == sizeof(float));
  6539. assert(src0->nb[0] == sizeof(float));
  6540. for (int i = 0; i < n; i++) {
  6541. ggml_vec_sqrt_f32(nc,
  6542. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6543. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6544. }
  6545. }
  6546. static void ggml_compute_forward_sqrt(
  6547. const struct ggml_compute_params * params,
  6548. const struct ggml_tensor * src0,
  6549. struct ggml_tensor * dst) {
  6550. switch (src0->type) {
  6551. case GGML_TYPE_F32:
  6552. {
  6553. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6554. } break;
  6555. default:
  6556. {
  6557. GGML_ASSERT(false);
  6558. } break;
  6559. }
  6560. }
  6561. // ggml_compute_forward_log
  6562. static void ggml_compute_forward_log_f32(
  6563. const struct ggml_compute_params * params,
  6564. const struct ggml_tensor * src0,
  6565. struct ggml_tensor * dst) {
  6566. GGML_ASSERT(params->ith == 0);
  6567. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6569. return;
  6570. }
  6571. const int n = ggml_nrows(src0);
  6572. const int nc = src0->ne[0];
  6573. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6574. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6575. for (int i = 0; i < n; i++) {
  6576. ggml_vec_log_f32(nc,
  6577. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6578. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6579. }
  6580. }
  6581. static void ggml_compute_forward_log(
  6582. const struct ggml_compute_params * params,
  6583. const struct ggml_tensor * src0,
  6584. struct ggml_tensor * dst) {
  6585. switch (src0->type) {
  6586. case GGML_TYPE_F32:
  6587. {
  6588. ggml_compute_forward_log_f32(params, src0, dst);
  6589. } break;
  6590. default:
  6591. {
  6592. GGML_ASSERT(false);
  6593. } break;
  6594. }
  6595. }
  6596. // ggml_compute_forward_sum
  6597. static void ggml_compute_forward_sum_f32(
  6598. const struct ggml_compute_params * params,
  6599. const struct ggml_tensor * src0,
  6600. struct ggml_tensor * dst) {
  6601. assert(params->ith == 0);
  6602. assert(ggml_is_scalar(dst));
  6603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6604. return;
  6605. }
  6606. assert(ggml_is_scalar(dst));
  6607. assert(src0->nb[0] == sizeof(float));
  6608. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6609. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6610. ggml_float sum = 0;
  6611. ggml_float row_sum = 0;
  6612. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6613. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6614. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6615. ggml_vec_sum_f32_ggf(ne00,
  6616. &row_sum,
  6617. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6618. sum += row_sum;
  6619. }
  6620. }
  6621. }
  6622. ((float *) dst->data)[0] = sum;
  6623. }
  6624. static void ggml_compute_forward_sum_f16(
  6625. const struct ggml_compute_params * params,
  6626. const struct ggml_tensor * src0,
  6627. struct ggml_tensor * dst) {
  6628. assert(params->ith == 0);
  6629. assert(ggml_is_scalar(dst));
  6630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6631. return;
  6632. }
  6633. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6634. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6635. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6636. float sum = 0;
  6637. float row_sum = 0;
  6638. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6639. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6640. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6641. ggml_vec_sum_f16_ggf(ne00,
  6642. &row_sum,
  6643. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6644. sum += row_sum;
  6645. }
  6646. }
  6647. }
  6648. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6649. }
  6650. static void ggml_compute_forward_sum(
  6651. const struct ggml_compute_params * params,
  6652. const struct ggml_tensor * src0,
  6653. struct ggml_tensor * dst) {
  6654. switch (src0->type) {
  6655. case GGML_TYPE_F32:
  6656. {
  6657. ggml_compute_forward_sum_f32(params, src0, dst);
  6658. } break;
  6659. case GGML_TYPE_F16:
  6660. {
  6661. ggml_compute_forward_sum_f16(params, src0, dst);
  6662. } break;
  6663. default:
  6664. {
  6665. GGML_ASSERT(false);
  6666. } break;
  6667. }
  6668. }
  6669. // ggml_compute_forward_sum_rows
  6670. static void ggml_compute_forward_sum_rows_f32(
  6671. const struct ggml_compute_params * params,
  6672. const struct ggml_tensor * src0,
  6673. struct ggml_tensor * dst) {
  6674. GGML_ASSERT(params->ith == 0);
  6675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6676. return;
  6677. }
  6678. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6679. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6680. GGML_TENSOR_UNARY_OP_LOCALS
  6681. GGML_ASSERT(ne0 == 1);
  6682. GGML_ASSERT(ne1 == ne01);
  6683. GGML_ASSERT(ne2 == ne02);
  6684. GGML_ASSERT(ne3 == ne03);
  6685. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6686. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6687. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6688. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6689. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6690. float row_sum = 0;
  6691. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6692. dst_row[0] = row_sum;
  6693. }
  6694. }
  6695. }
  6696. }
  6697. static void ggml_compute_forward_sum_rows(
  6698. const struct ggml_compute_params * params,
  6699. const struct ggml_tensor * src0,
  6700. struct ggml_tensor * dst) {
  6701. switch (src0->type) {
  6702. case GGML_TYPE_F32:
  6703. {
  6704. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6705. } break;
  6706. default:
  6707. {
  6708. GGML_ASSERT(false);
  6709. } break;
  6710. }
  6711. }
  6712. // ggml_compute_forward_mean
  6713. static void ggml_compute_forward_mean_f32(
  6714. const struct ggml_compute_params * params,
  6715. const struct ggml_tensor * src0,
  6716. struct ggml_tensor * dst) {
  6717. assert(params->ith == 0);
  6718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6719. return;
  6720. }
  6721. assert(src0->nb[0] == sizeof(float));
  6722. GGML_TENSOR_UNARY_OP_LOCALS
  6723. assert(ne0 == 1);
  6724. assert(ne1 == ne01);
  6725. assert(ne2 == ne02);
  6726. assert(ne3 == ne03);
  6727. UNUSED(ne0);
  6728. UNUSED(ne1);
  6729. UNUSED(ne2);
  6730. UNUSED(ne3);
  6731. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6732. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6733. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6734. ggml_vec_sum_f32(ne00,
  6735. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6736. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6737. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6738. }
  6739. }
  6740. }
  6741. }
  6742. static void ggml_compute_forward_mean(
  6743. const struct ggml_compute_params * params,
  6744. const struct ggml_tensor * src0,
  6745. struct ggml_tensor * dst) {
  6746. switch (src0->type) {
  6747. case GGML_TYPE_F32:
  6748. {
  6749. ggml_compute_forward_mean_f32(params, src0, dst);
  6750. } break;
  6751. default:
  6752. {
  6753. GGML_ASSERT(false);
  6754. } break;
  6755. }
  6756. }
  6757. // ggml_compute_forward_argmax
  6758. static void ggml_compute_forward_argmax_f32(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * src0,
  6761. struct ggml_tensor * dst) {
  6762. assert(params->ith == 0);
  6763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6764. return;
  6765. }
  6766. assert(src0->nb[0] == sizeof(float));
  6767. assert(dst->nb[0] == sizeof(float));
  6768. const int64_t ne00 = src0->ne[0];
  6769. const int64_t ne01 = src0->ne[1];
  6770. const size_t nb01 = src0->nb[1];
  6771. const size_t nb0 = dst->nb[0];
  6772. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6773. float * src = (float *) ((char *) src0->data + i1*nb01);
  6774. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6775. int v = 0;
  6776. ggml_vec_argmax_f32(ne00, &v, src);
  6777. dst_[0] = v;
  6778. }
  6779. }
  6780. static void ggml_compute_forward_argmax(
  6781. const struct ggml_compute_params * params,
  6782. const struct ggml_tensor * src0,
  6783. struct ggml_tensor * dst) {
  6784. switch (src0->type) {
  6785. case GGML_TYPE_F32:
  6786. {
  6787. ggml_compute_forward_argmax_f32(params, src0, dst);
  6788. } break;
  6789. default:
  6790. {
  6791. GGML_ASSERT(false);
  6792. } break;
  6793. }
  6794. }
  6795. // ggml_compute_forward_repeat
  6796. static void ggml_compute_forward_repeat_f32(
  6797. const struct ggml_compute_params * params,
  6798. const struct ggml_tensor * src0,
  6799. struct ggml_tensor * dst) {
  6800. GGML_ASSERT(params->ith == 0);
  6801. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6803. return;
  6804. }
  6805. GGML_TENSOR_UNARY_OP_LOCALS
  6806. // guaranteed to be an integer due to the check in ggml_can_repeat
  6807. const int nr0 = (int)(ne0/ne00);
  6808. const int nr1 = (int)(ne1/ne01);
  6809. const int nr2 = (int)(ne2/ne02);
  6810. const int nr3 = (int)(ne3/ne03);
  6811. // TODO: support for transposed / permuted tensors
  6812. GGML_ASSERT(nb0 == sizeof(float));
  6813. GGML_ASSERT(nb00 == sizeof(float));
  6814. // TODO: maybe this is not optimal?
  6815. for (int i3 = 0; i3 < nr3; i3++) {
  6816. for (int k3 = 0; k3 < ne03; k3++) {
  6817. for (int i2 = 0; i2 < nr2; i2++) {
  6818. for (int k2 = 0; k2 < ne02; k2++) {
  6819. for (int i1 = 0; i1 < nr1; i1++) {
  6820. for (int k1 = 0; k1 < ne01; k1++) {
  6821. for (int i0 = 0; i0 < nr0; i0++) {
  6822. ggml_vec_cpy_f32(ne00,
  6823. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6824. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6825. }
  6826. }
  6827. }
  6828. }
  6829. }
  6830. }
  6831. }
  6832. }
  6833. static void ggml_compute_forward_repeat_f16(
  6834. const struct ggml_compute_params * params,
  6835. const struct ggml_tensor * src0,
  6836. struct ggml_tensor * dst) {
  6837. GGML_ASSERT(params->ith == 0);
  6838. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6840. return;
  6841. }
  6842. GGML_TENSOR_UNARY_OP_LOCALS
  6843. // guaranteed to be an integer due to the check in ggml_can_repeat
  6844. const int nr0 = (int)(ne0/ne00);
  6845. const int nr1 = (int)(ne1/ne01);
  6846. const int nr2 = (int)(ne2/ne02);
  6847. const int nr3 = (int)(ne3/ne03);
  6848. // TODO: support for transposed / permuted tensors
  6849. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6850. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6851. // TODO: maybe this is not optimal?
  6852. for (int i3 = 0; i3 < nr3; i3++) {
  6853. for (int k3 = 0; k3 < ne03; k3++) {
  6854. for (int i2 = 0; i2 < nr2; i2++) {
  6855. for (int k2 = 0; k2 < ne02; k2++) {
  6856. for (int i1 = 0; i1 < nr1; i1++) {
  6857. for (int k1 = 0; k1 < ne01; k1++) {
  6858. for (int i0 = 0; i0 < nr0; i0++) {
  6859. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6860. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6861. // ggml_vec_cpy_f16(ne00, y, x)
  6862. for (int i = 0; i < ne00; ++i) {
  6863. y[i] = x[i];
  6864. }
  6865. }
  6866. }
  6867. }
  6868. }
  6869. }
  6870. }
  6871. }
  6872. }
  6873. static void ggml_compute_forward_repeat(
  6874. const struct ggml_compute_params * params,
  6875. const struct ggml_tensor * src0,
  6876. struct ggml_tensor * dst) {
  6877. switch (src0->type) {
  6878. case GGML_TYPE_F16:
  6879. {
  6880. ggml_compute_forward_repeat_f16(params, src0, dst);
  6881. } break;
  6882. case GGML_TYPE_F32:
  6883. {
  6884. ggml_compute_forward_repeat_f32(params, src0, dst);
  6885. } break;
  6886. default:
  6887. {
  6888. GGML_ASSERT(false);
  6889. } break;
  6890. }
  6891. }
  6892. // ggml_compute_forward_repeat_back
  6893. static void ggml_compute_forward_repeat_back_f32(
  6894. const struct ggml_compute_params * params,
  6895. const struct ggml_tensor * src0,
  6896. struct ggml_tensor * dst) {
  6897. GGML_ASSERT(params->ith == 0);
  6898. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6900. return;
  6901. }
  6902. GGML_TENSOR_UNARY_OP_LOCALS
  6903. // guaranteed to be an integer due to the check in ggml_can_repeat
  6904. const int nr0 = (int)(ne00/ne0);
  6905. const int nr1 = (int)(ne01/ne1);
  6906. const int nr2 = (int)(ne02/ne2);
  6907. const int nr3 = (int)(ne03/ne3);
  6908. // TODO: support for transposed / permuted tensors
  6909. GGML_ASSERT(nb0 == sizeof(float));
  6910. GGML_ASSERT(nb00 == sizeof(float));
  6911. if (ggml_is_contiguous(dst)) {
  6912. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6913. } else {
  6914. for (int k3 = 0; k3 < ne3; k3++) {
  6915. for (int k2 = 0; k2 < ne2; k2++) {
  6916. for (int k1 = 0; k1 < ne1; k1++) {
  6917. ggml_vec_set_f32(ne0,
  6918. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6919. 0);
  6920. }
  6921. }
  6922. }
  6923. }
  6924. // TODO: maybe this is not optimal?
  6925. for (int i3 = 0; i3 < nr3; i3++) {
  6926. for (int k3 = 0; k3 < ne3; k3++) {
  6927. for (int i2 = 0; i2 < nr2; i2++) {
  6928. for (int k2 = 0; k2 < ne2; k2++) {
  6929. for (int i1 = 0; i1 < nr1; i1++) {
  6930. for (int k1 = 0; k1 < ne1; k1++) {
  6931. for (int i0 = 0; i0 < nr0; i0++) {
  6932. ggml_vec_acc_f32(ne0,
  6933. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6934. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6935. }
  6936. }
  6937. }
  6938. }
  6939. }
  6940. }
  6941. }
  6942. }
  6943. static void ggml_compute_forward_repeat_back(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. struct ggml_tensor * dst) {
  6947. switch (src0->type) {
  6948. case GGML_TYPE_F32:
  6949. {
  6950. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6951. } break;
  6952. default:
  6953. {
  6954. GGML_ASSERT(false);
  6955. } break;
  6956. }
  6957. }
  6958. // ggml_compute_forward_concat
  6959. static void ggml_compute_forward_concat_f32(
  6960. const struct ggml_compute_params * params,
  6961. const struct ggml_tensor * src0,
  6962. const struct ggml_tensor * src1,
  6963. struct ggml_tensor * dst) {
  6964. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6965. return;
  6966. }
  6967. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6968. const int ith = params->ith;
  6969. const int nth = params->nth;
  6970. GGML_TENSOR_BINARY_OP_LOCALS
  6971. // TODO: support for transposed / permuted tensors
  6972. GGML_ASSERT(nb0 == sizeof(float));
  6973. GGML_ASSERT(nb00 == sizeof(float));
  6974. GGML_ASSERT(nb10 == sizeof(float));
  6975. for (int i3 = 0; i3 < ne3; i3++) {
  6976. for (int i2 = ith; i2 < ne2; i2 += nth) {
  6977. if (i2 < ne02) { // src0
  6978. for (int i1 = 0; i1 < ne1; i1++) {
  6979. for (int i0 = 0; i0 < ne0; i0++) {
  6980. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6981. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6982. *y = *x;
  6983. }
  6984. }
  6985. } // src1
  6986. else {
  6987. for (int i1 = 0; i1 < ne1; i1++) {
  6988. for (int i0 = 0; i0 < ne0; i0++) {
  6989. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6990. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6991. *y = *x;
  6992. }
  6993. }
  6994. }
  6995. }
  6996. }
  6997. }
  6998. static void ggml_compute_forward_concat(
  6999. const struct ggml_compute_params* params,
  7000. const struct ggml_tensor* src0,
  7001. const struct ggml_tensor* src1,
  7002. struct ggml_tensor* dst) {
  7003. switch (src0->type) {
  7004. case GGML_TYPE_F32:
  7005. {
  7006. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7007. } break;
  7008. default:
  7009. {
  7010. GGML_ASSERT(false);
  7011. } break;
  7012. }
  7013. }
  7014. // ggml_compute_forward_abs
  7015. static void ggml_compute_forward_abs_f32(
  7016. const struct ggml_compute_params * params,
  7017. const struct ggml_tensor * src0,
  7018. struct ggml_tensor * dst) {
  7019. assert(params->ith == 0);
  7020. assert(ggml_are_same_shape(src0, dst));
  7021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7022. return;
  7023. }
  7024. const int n = ggml_nrows(src0);
  7025. const int nc = src0->ne[0];
  7026. assert(dst->nb[0] == sizeof(float));
  7027. assert(src0->nb[0] == sizeof(float));
  7028. for (int i = 0; i < n; i++) {
  7029. ggml_vec_abs_f32(nc,
  7030. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7031. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7032. }
  7033. }
  7034. static void ggml_compute_forward_abs(
  7035. const struct ggml_compute_params * params,
  7036. const struct ggml_tensor * src0,
  7037. struct ggml_tensor * dst) {
  7038. switch (src0->type) {
  7039. case GGML_TYPE_F32:
  7040. {
  7041. ggml_compute_forward_abs_f32(params, src0, dst);
  7042. } break;
  7043. default:
  7044. {
  7045. GGML_ASSERT(false);
  7046. } break;
  7047. }
  7048. }
  7049. // ggml_compute_forward_sgn
  7050. static void ggml_compute_forward_sgn_f32(
  7051. const struct ggml_compute_params * params,
  7052. const struct ggml_tensor * src0,
  7053. struct ggml_tensor * dst) {
  7054. assert(params->ith == 0);
  7055. assert(ggml_are_same_shape(src0, dst));
  7056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7057. return;
  7058. }
  7059. const int n = ggml_nrows(src0);
  7060. const int nc = src0->ne[0];
  7061. assert(dst->nb[0] == sizeof(float));
  7062. assert(src0->nb[0] == sizeof(float));
  7063. for (int i = 0; i < n; i++) {
  7064. ggml_vec_sgn_f32(nc,
  7065. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7066. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7067. }
  7068. }
  7069. static void ggml_compute_forward_sgn(
  7070. const struct ggml_compute_params * params,
  7071. const struct ggml_tensor * src0,
  7072. struct ggml_tensor * dst) {
  7073. switch (src0->type) {
  7074. case GGML_TYPE_F32:
  7075. {
  7076. ggml_compute_forward_sgn_f32(params, src0, dst);
  7077. } break;
  7078. default:
  7079. {
  7080. GGML_ASSERT(false);
  7081. } break;
  7082. }
  7083. }
  7084. // ggml_compute_forward_neg
  7085. static void ggml_compute_forward_neg_f32(
  7086. const struct ggml_compute_params * params,
  7087. const struct ggml_tensor * src0,
  7088. struct ggml_tensor * dst) {
  7089. assert(params->ith == 0);
  7090. assert(ggml_are_same_shape(src0, dst));
  7091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7092. return;
  7093. }
  7094. const int n = ggml_nrows(src0);
  7095. const int nc = src0->ne[0];
  7096. assert(dst->nb[0] == sizeof(float));
  7097. assert(src0->nb[0] == sizeof(float));
  7098. for (int i = 0; i < n; i++) {
  7099. ggml_vec_neg_f32(nc,
  7100. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7101. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7102. }
  7103. }
  7104. static void ggml_compute_forward_neg(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * src0,
  7107. struct ggml_tensor * dst) {
  7108. switch (src0->type) {
  7109. case GGML_TYPE_F32:
  7110. {
  7111. ggml_compute_forward_neg_f32(params, src0, dst);
  7112. } break;
  7113. default:
  7114. {
  7115. GGML_ASSERT(false);
  7116. } break;
  7117. }
  7118. }
  7119. // ggml_compute_forward_step
  7120. static void ggml_compute_forward_step_f32(
  7121. const struct ggml_compute_params * params,
  7122. const struct ggml_tensor * src0,
  7123. struct ggml_tensor * dst) {
  7124. assert(params->ith == 0);
  7125. assert(ggml_are_same_shape(src0, dst));
  7126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7127. return;
  7128. }
  7129. const int n = ggml_nrows(src0);
  7130. const int nc = src0->ne[0];
  7131. assert(dst->nb[0] == sizeof(float));
  7132. assert(src0->nb[0] == sizeof(float));
  7133. for (int i = 0; i < n; i++) {
  7134. ggml_vec_step_f32(nc,
  7135. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7136. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7137. }
  7138. }
  7139. static void ggml_compute_forward_step(
  7140. const struct ggml_compute_params * params,
  7141. const struct ggml_tensor * src0,
  7142. struct ggml_tensor * dst) {
  7143. switch (src0->type) {
  7144. case GGML_TYPE_F32:
  7145. {
  7146. ggml_compute_forward_step_f32(params, src0, dst);
  7147. } break;
  7148. default:
  7149. {
  7150. GGML_ASSERT(false);
  7151. } break;
  7152. }
  7153. }
  7154. // ggml_compute_forward_tanh
  7155. static void ggml_compute_forward_tanh_f32(
  7156. const struct ggml_compute_params * params,
  7157. const struct ggml_tensor * src0,
  7158. struct ggml_tensor * dst) {
  7159. assert(params->ith == 0);
  7160. assert(ggml_are_same_shape(src0, dst));
  7161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7162. return;
  7163. }
  7164. const int n = ggml_nrows(src0);
  7165. const int nc = src0->ne[0];
  7166. assert(dst->nb[0] == sizeof(float));
  7167. assert(src0->nb[0] == sizeof(float));
  7168. for (int i = 0; i < n; i++) {
  7169. ggml_vec_tanh_f32(nc,
  7170. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7171. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7172. }
  7173. }
  7174. static void ggml_compute_forward_tanh(
  7175. const struct ggml_compute_params * params,
  7176. const struct ggml_tensor * src0,
  7177. struct ggml_tensor * dst) {
  7178. switch (src0->type) {
  7179. case GGML_TYPE_F32:
  7180. {
  7181. ggml_compute_forward_tanh_f32(params, src0, dst);
  7182. } break;
  7183. default:
  7184. {
  7185. GGML_ASSERT(false);
  7186. } break;
  7187. }
  7188. }
  7189. // ggml_compute_forward_elu
  7190. static void ggml_compute_forward_elu_f32(
  7191. const struct ggml_compute_params * params,
  7192. const struct ggml_tensor * src0,
  7193. struct ggml_tensor * dst) {
  7194. assert(params->ith == 0);
  7195. assert(ggml_are_same_shape(src0, dst));
  7196. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7197. return;
  7198. }
  7199. const int n = ggml_nrows(src0);
  7200. const int nc = src0->ne[0];
  7201. assert(dst->nb[0] == sizeof(float));
  7202. assert(src0->nb[0] == sizeof(float));
  7203. for (int i = 0; i < n; i++) {
  7204. ggml_vec_elu_f32(nc,
  7205. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7206. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7207. }
  7208. }
  7209. static void ggml_compute_forward_elu(
  7210. const struct ggml_compute_params * params,
  7211. const struct ggml_tensor * src0,
  7212. struct ggml_tensor * dst) {
  7213. switch (src0->type) {
  7214. case GGML_TYPE_F32:
  7215. {
  7216. ggml_compute_forward_elu_f32(params, src0, dst);
  7217. } break;
  7218. default:
  7219. {
  7220. GGML_ASSERT(false);
  7221. } break;
  7222. }
  7223. }
  7224. // ggml_compute_forward_relu
  7225. static void ggml_compute_forward_relu_f32(
  7226. const struct ggml_compute_params * params,
  7227. const struct ggml_tensor * src0,
  7228. struct ggml_tensor * dst) {
  7229. assert(params->ith == 0);
  7230. assert(ggml_are_same_shape(src0, dst));
  7231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7232. return;
  7233. }
  7234. const int n = ggml_nrows(src0);
  7235. const int nc = src0->ne[0];
  7236. assert(dst->nb[0] == sizeof(float));
  7237. assert(src0->nb[0] == sizeof(float));
  7238. for (int i = 0; i < n; i++) {
  7239. ggml_vec_relu_f32(nc,
  7240. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7241. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7242. }
  7243. }
  7244. static void ggml_compute_forward_relu(
  7245. const struct ggml_compute_params * params,
  7246. const struct ggml_tensor * src0,
  7247. struct ggml_tensor * dst) {
  7248. switch (src0->type) {
  7249. case GGML_TYPE_F32:
  7250. {
  7251. ggml_compute_forward_relu_f32(params, src0, dst);
  7252. } break;
  7253. default:
  7254. {
  7255. GGML_ASSERT(false);
  7256. } break;
  7257. }
  7258. }
  7259. // ggml_compute_forward_gelu
  7260. static void ggml_compute_forward_gelu_f32(
  7261. const struct ggml_compute_params * params,
  7262. const struct ggml_tensor * src0,
  7263. struct ggml_tensor * dst) {
  7264. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7265. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7266. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7268. return;
  7269. }
  7270. const int ith = params->ith;
  7271. const int nth = params->nth;
  7272. const int nc = src0->ne[0];
  7273. const int nr = ggml_nrows(src0);
  7274. // rows per thread
  7275. const int dr = (nr + nth - 1)/nth;
  7276. // row range for this thread
  7277. const int ir0 = dr*ith;
  7278. const int ir1 = MIN(ir0 + dr, nr);
  7279. for (int i1 = ir0; i1 < ir1; i1++) {
  7280. ggml_vec_gelu_f32(nc,
  7281. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7282. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7283. #ifndef NDEBUG
  7284. for (int k = 0; k < nc; k++) {
  7285. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7286. UNUSED(x);
  7287. assert(!isnan(x));
  7288. assert(!isinf(x));
  7289. }
  7290. #endif
  7291. }
  7292. }
  7293. static void ggml_compute_forward_gelu(
  7294. const struct ggml_compute_params * params,
  7295. const struct ggml_tensor * src0,
  7296. struct ggml_tensor * dst) {
  7297. switch (src0->type) {
  7298. case GGML_TYPE_F32:
  7299. {
  7300. ggml_compute_forward_gelu_f32(params, src0, dst);
  7301. } break;
  7302. default:
  7303. {
  7304. GGML_ASSERT(false);
  7305. } break;
  7306. }
  7307. }
  7308. // ggml_compute_forward_gelu_quick
  7309. static void ggml_compute_forward_gelu_quick_f32(
  7310. const struct ggml_compute_params * params,
  7311. const struct ggml_tensor * src0,
  7312. struct ggml_tensor * dst) {
  7313. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7314. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7315. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7317. return;
  7318. }
  7319. const int ith = params->ith;
  7320. const int nth = params->nth;
  7321. const int nc = src0->ne[0];
  7322. const int nr = ggml_nrows(src0);
  7323. // rows per thread
  7324. const int dr = (nr + nth - 1)/nth;
  7325. // row range for this thread
  7326. const int ir0 = dr*ith;
  7327. const int ir1 = MIN(ir0 + dr, nr);
  7328. for (int i1 = ir0; i1 < ir1; i1++) {
  7329. ggml_vec_gelu_quick_f32(nc,
  7330. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7331. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7332. #ifndef NDEBUG
  7333. for (int k = 0; k < nc; k++) {
  7334. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7335. UNUSED(x);
  7336. assert(!isnan(x));
  7337. assert(!isinf(x));
  7338. }
  7339. #endif
  7340. }
  7341. }
  7342. static void ggml_compute_forward_gelu_quick(
  7343. const struct ggml_compute_params * params,
  7344. const struct ggml_tensor * src0,
  7345. struct ggml_tensor * dst) {
  7346. switch (src0->type) {
  7347. case GGML_TYPE_F32:
  7348. {
  7349. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7350. } break;
  7351. default:
  7352. {
  7353. GGML_ASSERT(false);
  7354. } break;
  7355. }
  7356. }
  7357. // ggml_compute_forward_silu
  7358. static void ggml_compute_forward_silu_f32(
  7359. const struct ggml_compute_params * params,
  7360. const struct ggml_tensor * src0,
  7361. struct ggml_tensor * dst) {
  7362. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7363. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7364. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7366. return;
  7367. }
  7368. const int ith = params->ith;
  7369. const int nth = params->nth;
  7370. const int nc = src0->ne[0];
  7371. const int nr = ggml_nrows(src0);
  7372. // rows per thread
  7373. const int dr = (nr + nth - 1)/nth;
  7374. // row range for this thread
  7375. const int ir0 = dr*ith;
  7376. const int ir1 = MIN(ir0 + dr, nr);
  7377. for (int i1 = ir0; i1 < ir1; i1++) {
  7378. ggml_vec_silu_f32(nc,
  7379. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7380. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7381. #ifndef NDEBUG
  7382. for (int k = 0; k < nc; k++) {
  7383. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7384. UNUSED(x);
  7385. assert(!isnan(x));
  7386. assert(!isinf(x));
  7387. }
  7388. #endif
  7389. }
  7390. }
  7391. static void ggml_compute_forward_silu(
  7392. const struct ggml_compute_params * params,
  7393. const struct ggml_tensor * src0,
  7394. struct ggml_tensor * dst) {
  7395. switch (src0->type) {
  7396. case GGML_TYPE_F32:
  7397. {
  7398. ggml_compute_forward_silu_f32(params, src0, dst);
  7399. } break;
  7400. default:
  7401. {
  7402. GGML_ASSERT(false);
  7403. } break;
  7404. }
  7405. }
  7406. // ggml_compute_forward_leaky_relu
  7407. static void ggml_compute_forward_leaky_relu_f32(
  7408. const struct ggml_compute_params * params,
  7409. const struct ggml_tensor * src0,
  7410. struct ggml_tensor * dst) {
  7411. assert(params->ith == 0);
  7412. assert(ggml_are_same_shape(src0, dst));
  7413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. const int n = ggml_nrows(src0);
  7417. const int nc = src0->ne[0];
  7418. float negative_slope;
  7419. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7420. assert(dst->nb[0] == sizeof(float));
  7421. assert(src0->nb[0] == sizeof(float));
  7422. for (int i = 0; i < n; i++) {
  7423. ggml_vec_leaky_relu_f32(nc,
  7424. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7425. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7426. }
  7427. }
  7428. static void ggml_compute_forward_leaky_relu(
  7429. const struct ggml_compute_params * params,
  7430. const struct ggml_tensor * src0,
  7431. struct ggml_tensor * dst) {
  7432. switch (src0->type) {
  7433. case GGML_TYPE_F32:
  7434. {
  7435. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7436. } break;
  7437. default:
  7438. {
  7439. GGML_ASSERT(false);
  7440. } break;
  7441. }
  7442. }
  7443. // ggml_compute_forward_silu_back
  7444. static void ggml_compute_forward_silu_back_f32(
  7445. const struct ggml_compute_params * params,
  7446. const struct ggml_tensor * src0,
  7447. const struct ggml_tensor * grad,
  7448. struct ggml_tensor * dst) {
  7449. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7450. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7451. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7452. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7453. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7455. return;
  7456. }
  7457. const int ith = params->ith;
  7458. const int nth = params->nth;
  7459. const int nc = src0->ne[0];
  7460. const int nr = ggml_nrows(src0);
  7461. // rows per thread
  7462. const int dr = (nr + nth - 1)/nth;
  7463. // row range for this thread
  7464. const int ir0 = dr*ith;
  7465. const int ir1 = MIN(ir0 + dr, nr);
  7466. for (int i1 = ir0; i1 < ir1; i1++) {
  7467. ggml_vec_silu_backward_f32(nc,
  7468. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7469. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7470. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7471. #ifndef NDEBUG
  7472. for (int k = 0; k < nc; k++) {
  7473. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7474. UNUSED(x);
  7475. assert(!isnan(x));
  7476. assert(!isinf(x));
  7477. }
  7478. #endif
  7479. }
  7480. }
  7481. static void ggml_compute_forward_silu_back(
  7482. const struct ggml_compute_params * params,
  7483. const struct ggml_tensor * src0,
  7484. const struct ggml_tensor * grad,
  7485. struct ggml_tensor * dst) {
  7486. switch (src0->type) {
  7487. case GGML_TYPE_F32:
  7488. {
  7489. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7490. } break;
  7491. default:
  7492. {
  7493. GGML_ASSERT(false);
  7494. } break;
  7495. }
  7496. }
  7497. // ggml_compute_forward_norm
  7498. static void ggml_compute_forward_norm_f32(
  7499. const struct ggml_compute_params * params,
  7500. const struct ggml_tensor * src0,
  7501. struct ggml_tensor * dst) {
  7502. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7504. return;
  7505. }
  7506. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7507. const int ith = params->ith;
  7508. const int nth = params->nth;
  7509. GGML_TENSOR_UNARY_OP_LOCALS
  7510. float eps;
  7511. memcpy(&eps, dst->op_params, sizeof(float));
  7512. GGML_ASSERT(eps > 0.0f);
  7513. // TODO: optimize
  7514. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7515. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7516. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7517. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7518. ggml_float sum = 0.0;
  7519. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7520. sum += (ggml_float)x[i00];
  7521. }
  7522. float mean = sum/ne00;
  7523. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7524. ggml_float sum2 = 0.0;
  7525. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7526. float v = x[i00] - mean;
  7527. y[i00] = v;
  7528. sum2 += (ggml_float)(v*v);
  7529. }
  7530. float variance = sum2/ne00;
  7531. const float scale = 1.0f/sqrtf(variance + eps);
  7532. ggml_vec_scale_f32(ne00, y, scale);
  7533. }
  7534. }
  7535. }
  7536. }
  7537. static void ggml_compute_forward_norm(
  7538. const struct ggml_compute_params * params,
  7539. const struct ggml_tensor * src0,
  7540. struct ggml_tensor * dst) {
  7541. switch (src0->type) {
  7542. case GGML_TYPE_F32:
  7543. {
  7544. ggml_compute_forward_norm_f32(params, src0, dst);
  7545. } break;
  7546. default:
  7547. {
  7548. GGML_ASSERT(false);
  7549. } break;
  7550. }
  7551. }
  7552. // ggml_compute_forward_group_rms_norm
  7553. static void ggml_compute_forward_rms_norm_f32(
  7554. const struct ggml_compute_params * params,
  7555. const struct ggml_tensor * src0,
  7556. struct ggml_tensor * dst) {
  7557. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7559. return;
  7560. }
  7561. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7562. const int ith = params->ith;
  7563. const int nth = params->nth;
  7564. GGML_TENSOR_UNARY_OP_LOCALS
  7565. float eps;
  7566. memcpy(&eps, dst->op_params, sizeof(float));
  7567. GGML_ASSERT(eps > 0.0f);
  7568. // TODO: optimize
  7569. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7570. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7571. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7572. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7573. ggml_float sum = 0.0;
  7574. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7575. sum += (ggml_float)(x[i00] * x[i00]);
  7576. }
  7577. const float mean = sum/ne00;
  7578. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7579. memcpy(y, x, ne00 * sizeof(float));
  7580. // for (int i00 = 0; i00 < ne00; i00++) {
  7581. // y[i00] = x[i00];
  7582. // }
  7583. const float scale = 1.0f/sqrtf(mean + eps);
  7584. ggml_vec_scale_f32(ne00, y, scale);
  7585. }
  7586. }
  7587. }
  7588. }
  7589. static void ggml_compute_forward_rms_norm(
  7590. const struct ggml_compute_params * params,
  7591. const struct ggml_tensor * src0,
  7592. struct ggml_tensor * dst) {
  7593. switch (src0->type) {
  7594. case GGML_TYPE_F32:
  7595. {
  7596. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7597. } break;
  7598. default:
  7599. {
  7600. GGML_ASSERT(false);
  7601. } break;
  7602. }
  7603. }
  7604. static void ggml_compute_forward_rms_norm_back_f32(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. const struct ggml_tensor * src1,
  7608. struct ggml_tensor * dst) {
  7609. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7611. return;
  7612. }
  7613. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7614. const int ith = params->ith;
  7615. const int nth = params->nth;
  7616. GGML_TENSOR_BINARY_OP_LOCALS
  7617. float eps;
  7618. memcpy(&eps, dst->op_params, sizeof(float));
  7619. // TODO: optimize
  7620. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7621. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7622. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7623. // src1 is same shape as src0 => same indices
  7624. const int64_t i11 = i01;
  7625. const int64_t i12 = i02;
  7626. const int64_t i13 = i03;
  7627. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7628. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7629. ggml_float sum_xx = 0.0;
  7630. ggml_float sum_xdz = 0.0;
  7631. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7632. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7633. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7634. }
  7635. //const float mean = (float)(sum_xx)/ne00;
  7636. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7637. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7638. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7639. // we could cache rms from forward pass to improve performance.
  7640. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7641. //const float rms = sqrtf(mean_eps);
  7642. const float rrms = 1.0f / sqrtf(mean_eps);
  7643. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7644. {
  7645. // z = rms_norm(x)
  7646. //
  7647. // rms_norm(src0) =
  7648. // scale(
  7649. // src0,
  7650. // div(
  7651. // 1,
  7652. // sqrt(
  7653. // add(
  7654. // scale(
  7655. // sum(
  7656. // sqr(
  7657. // src0)),
  7658. // (1.0/N)),
  7659. // eps))));
  7660. // postorder:
  7661. // ## op args grad
  7662. // 00 param src0 grad[#00]
  7663. // 01 const 1
  7664. // 02 sqr (#00) grad[#02]
  7665. // 03 sum (#02) grad[#03]
  7666. // 04 const 1/N
  7667. // 05 scale (#03, #04) grad[#05]
  7668. // 06 const eps
  7669. // 07 add (#05, #06) grad[#07]
  7670. // 08 sqrt (#07) grad[#08]
  7671. // 09 div (#01,#08) grad[#09]
  7672. // 10 scale (#00,#09) grad[#10]
  7673. //
  7674. // backward pass, given grad[#10]
  7675. // #10: scale
  7676. // grad[#00] += scale(grad[#10],#09)
  7677. // grad[#09] += sum(mul(grad[#10],#00))
  7678. // #09: div
  7679. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7680. // #08: sqrt
  7681. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7682. // #07: add
  7683. // grad[#05] += grad[#07]
  7684. // #05: scale
  7685. // grad[#03] += scale(grad[#05],#04)
  7686. // #03: sum
  7687. // grad[#02] += repeat(grad[#03], #02)
  7688. // #02:
  7689. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7690. //
  7691. // substitute and simplify:
  7692. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7693. // grad[#02] = repeat(grad[#03], #02)
  7694. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7695. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7696. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7697. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7698. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7699. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7700. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7701. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7702. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7703. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7704. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7705. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7706. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7707. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7708. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7709. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7710. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7711. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7712. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7713. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7714. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7715. // a = b*c + d*e
  7716. // a = b*c*f/f + d*e*f/f
  7717. // a = (b*c*f + d*e*f)*(1/f)
  7718. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7719. // a = (b + d*e/c)*c
  7720. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7721. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7722. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7723. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7724. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7725. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7726. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7727. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7728. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7729. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7730. }
  7731. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7732. // post-order:
  7733. // dx := x
  7734. // dx := scale(dx,-mean_xdz/mean_eps)
  7735. // dx := add(dx, dz)
  7736. // dx := scale(dx, rrms)
  7737. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7738. ggml_vec_cpy_f32 (ne00, dx, x);
  7739. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7740. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7741. ggml_vec_acc_f32 (ne00, dx, dz);
  7742. ggml_vec_scale_f32(ne00, dx, rrms);
  7743. }
  7744. }
  7745. }
  7746. }
  7747. static void ggml_compute_forward_rms_norm_back(
  7748. const struct ggml_compute_params * params,
  7749. const struct ggml_tensor * src0,
  7750. const struct ggml_tensor * src1,
  7751. struct ggml_tensor * dst) {
  7752. switch (src0->type) {
  7753. case GGML_TYPE_F32:
  7754. {
  7755. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7756. } break;
  7757. default:
  7758. {
  7759. GGML_ASSERT(false);
  7760. } break;
  7761. }
  7762. }
  7763. // ggml_compute_forward_group_norm
  7764. static void ggml_compute_forward_group_norm_f32(
  7765. const struct ggml_compute_params * params,
  7766. const struct ggml_tensor * src0,
  7767. struct ggml_tensor * dst) {
  7768. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7770. return;
  7771. }
  7772. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7773. const int ith = params->ith;
  7774. const int nth = params->nth;
  7775. GGML_TENSOR_UNARY_OP_LOCALS
  7776. const float eps = 1e-6f; // TODO: make this a parameter
  7777. // TODO: optimize
  7778. int n_channels = src0->ne[2];
  7779. int n_groups = dst->op_params[0];
  7780. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7781. for (int i = ith; i < n_groups; i+=nth) {
  7782. int start = i * n_channels_per_group;
  7783. int end = start + n_channels_per_group;
  7784. if (end > n_channels) {
  7785. end = n_channels;
  7786. }
  7787. int step = end - start;
  7788. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7789. ggml_float sum = 0.0;
  7790. for (int64_t i02 = start; i02 < end; i02++) {
  7791. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7792. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7793. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7794. sum += (ggml_float)x[i00];
  7795. }
  7796. }
  7797. }
  7798. float mean = sum / (ne00 * ne01 * step);
  7799. ggml_float sum2 = 0.0;
  7800. for (int64_t i02 = start; i02 < end; i02++) {
  7801. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7802. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7803. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7804. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7805. float v = x[i00] - mean;
  7806. y[i00] = v;
  7807. sum2 += (ggml_float)(v * v);
  7808. }
  7809. }
  7810. }
  7811. float variance = sum2 / (ne00 * ne01 * step);
  7812. const float scale = 1.0f / sqrtf(variance + eps);
  7813. for (int64_t i02 = start; i02 < end; i02++) {
  7814. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7815. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7816. ggml_vec_scale_f32(ne00, y, scale);
  7817. }
  7818. }
  7819. }
  7820. }
  7821. }
  7822. static void ggml_compute_forward_group_norm(
  7823. const struct ggml_compute_params * params,
  7824. const struct ggml_tensor * src0,
  7825. struct ggml_tensor * dst) {
  7826. switch (src0->type) {
  7827. case GGML_TYPE_F32:
  7828. {
  7829. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7830. } break;
  7831. default:
  7832. {
  7833. GGML_ASSERT(false);
  7834. } break;
  7835. }
  7836. }
  7837. // ggml_compute_forward_mul_mat
  7838. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7839. // helper function to determine if it is better to use BLAS or not
  7840. // for large matrices, BLAS is faster
  7841. static bool ggml_compute_forward_mul_mat_use_blas(
  7842. const struct ggml_tensor * src0,
  7843. const struct ggml_tensor * src1,
  7844. struct ggml_tensor * dst) {
  7845. //const int64_t ne00 = src0->ne[0];
  7846. //const int64_t ne01 = src0->ne[1];
  7847. const int64_t ne10 = src1->ne[0];
  7848. const int64_t ne0 = dst->ne[0];
  7849. const int64_t ne1 = dst->ne[1];
  7850. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  7851. // all the experts for each batch element and the processing would become incredibly slow
  7852. // TODO: find the optimal values for these
  7853. if (dst->op != GGML_OP_MUL_MAT_ID &&
  7854. ggml_is_contiguous(src0) &&
  7855. ggml_is_contiguous(src1) &&
  7856. //src0->type == GGML_TYPE_F32 &&
  7857. src1->type == GGML_TYPE_F32 &&
  7858. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7859. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7860. return true;
  7861. }
  7862. return false;
  7863. }
  7864. #endif
  7865. static void ggml_compute_forward_mul_mat(
  7866. const struct ggml_compute_params * params,
  7867. const struct ggml_tensor * src0,
  7868. const struct ggml_tensor * src1,
  7869. struct ggml_tensor * dst) {
  7870. int64_t t0 = ggml_perf_time_us();
  7871. UNUSED(t0);
  7872. GGML_TENSOR_BINARY_OP_LOCALS
  7873. const int ith = params->ith;
  7874. const int nth = params->nth;
  7875. const enum ggml_type type = src0->type;
  7876. const bool src1_cont = ggml_is_contiguous(src1);
  7877. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7878. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7879. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7880. GGML_ASSERT(ne0 == ne01);
  7881. GGML_ASSERT(ne1 == ne11);
  7882. GGML_ASSERT(ne2 == ne12);
  7883. GGML_ASSERT(ne3 == ne13);
  7884. // we don't support permuted src0 or src1
  7885. GGML_ASSERT(nb00 == ggml_type_size(type));
  7886. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7887. // dst cannot be transposed or permuted
  7888. GGML_ASSERT(nb0 == sizeof(float));
  7889. GGML_ASSERT(nb0 <= nb1);
  7890. GGML_ASSERT(nb1 <= nb2);
  7891. GGML_ASSERT(nb2 <= nb3);
  7892. // broadcast factors
  7893. const int64_t r2 = ne12/ne02;
  7894. const int64_t r3 = ne13/ne03;
  7895. // nb01 >= nb00 - src0 is not transposed
  7896. // compute by src0 rows
  7897. #if defined(GGML_USE_CLBLAST)
  7898. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7899. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7900. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7901. }
  7902. return;
  7903. }
  7904. #endif
  7905. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7906. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7907. if (params->ith != 0) {
  7908. return;
  7909. }
  7910. if (params->type == GGML_TASK_INIT) {
  7911. return;
  7912. }
  7913. if (params->type == GGML_TASK_FINALIZE) {
  7914. return;
  7915. }
  7916. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7917. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7918. // broadcast src0 into src1 across 2nd,3rd dimension
  7919. const int64_t i03 = i13/r3;
  7920. const int64_t i02 = i12/r2;
  7921. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7922. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7923. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7924. if (type != GGML_TYPE_F32) {
  7925. float * const wdata = params->wdata;
  7926. ggml_to_float_t const to_float = type_traits[type].to_float;
  7927. size_t id = 0;
  7928. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7929. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7930. id += ne00;
  7931. }
  7932. assert(id*sizeof(float) <= params->wsize);
  7933. x = wdata;
  7934. }
  7935. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7936. ne1, ne01, ne10,
  7937. 1.0f, y, ne10,
  7938. x, ne00,
  7939. 0.0f, d, ne01);
  7940. }
  7941. }
  7942. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7943. return;
  7944. }
  7945. #endif
  7946. if (params->type == GGML_TASK_INIT) {
  7947. if (src1->type != vec_dot_type) {
  7948. char * wdata = params->wdata;
  7949. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  7950. assert(params->wsize >= ne11*ne12*ne13*row_size);
  7951. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7952. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7953. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7954. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7955. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7956. wdata += row_size;
  7957. }
  7958. }
  7959. }
  7960. }
  7961. return;
  7962. }
  7963. if (params->type == GGML_TASK_FINALIZE) {
  7964. return;
  7965. }
  7966. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7967. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  7968. const int64_t nr0 = ne01; // src0 rows
  7969. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  7970. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7971. // distribute the thread work across the inner or outer loop based on which one is larger
  7972. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7973. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7974. const int64_t ith0 = ith % nth0;
  7975. const int64_t ith1 = ith / nth0;
  7976. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7977. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7978. const int64_t ir010 = dr0*ith0;
  7979. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7980. const int64_t ir110 = dr1*ith1;
  7981. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7982. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7983. // threads with no work simply yield (not sure if it helps)
  7984. if (ir010 >= ir011 || ir110 >= ir111) {
  7985. sched_yield();
  7986. return;
  7987. }
  7988. assert(ne12 % ne02 == 0);
  7989. assert(ne13 % ne03 == 0);
  7990. // block-tiling attempt
  7991. const int64_t blck_0 = 16;
  7992. const int64_t blck_1 = 16;
  7993. // attempt to reduce false-sharing (does not seem to make a difference)
  7994. float tmp[16];
  7995. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7996. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7997. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7998. const int64_t i13 = (ir1/(ne12*ne1));
  7999. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8000. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8001. // broadcast src0 into src1
  8002. const int64_t i03 = i13/r3;
  8003. const int64_t i02 = i12/r2;
  8004. const int64_t i1 = i11;
  8005. const int64_t i2 = i12;
  8006. const int64_t i3 = i13;
  8007. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8008. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8009. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8010. // the original src1 data pointer, so we should index using the indices directly
  8011. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8012. const char * src1_col = (const char *) wdata +
  8013. (src1_cont || src1->type != vec_dot_type
  8014. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8015. : (i11*nb11 + i12*nb12 + i13*nb13));
  8016. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8017. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8018. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8019. //}
  8020. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8021. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8022. }
  8023. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8024. }
  8025. }
  8026. }
  8027. }
  8028. // ggml_compute_forward_mul_mat_id
  8029. static void ggml_compute_forward_mul_mat_id(
  8030. const struct ggml_compute_params * params,
  8031. const struct ggml_tensor * ids,
  8032. const struct ggml_tensor * src1,
  8033. struct ggml_tensor * dst) {
  8034. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8035. GGML_TENSOR_BINARY_OP_LOCALS
  8036. const int ith = params->ith;
  8037. const int nth = params->nth;
  8038. const enum ggml_type type = src0->type;
  8039. const bool src1_cont = ggml_is_contiguous(src1);
  8040. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8041. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8042. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8043. GGML_ASSERT(ne0 == ne01);
  8044. GGML_ASSERT(ne1 == ne11);
  8045. GGML_ASSERT(ne2 == ne12);
  8046. GGML_ASSERT(ne3 == ne13);
  8047. // we don't support permuted src0 or src1
  8048. GGML_ASSERT(nb00 == ggml_type_size(type));
  8049. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8050. // dst cannot be transposed or permuted
  8051. GGML_ASSERT(nb0 == sizeof(float));
  8052. GGML_ASSERT(nb0 <= nb1);
  8053. GGML_ASSERT(nb1 <= nb2);
  8054. GGML_ASSERT(nb2 <= nb3);
  8055. // broadcast factors
  8056. const int64_t r2 = ne12/ne02;
  8057. const int64_t r3 = ne13/ne03;
  8058. // row groups
  8059. const int id = ggml_get_op_params_i32(dst, 0);
  8060. const int n_as = ggml_get_op_params_i32(dst, 1);
  8061. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8062. (char *) params->wdata :
  8063. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8064. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8065. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8066. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8067. if (params->type == GGML_TASK_INIT) {
  8068. char * wdata = params->wdata;
  8069. if (src1->type != vec_dot_type) {
  8070. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8071. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8072. assert(src1->type == GGML_TYPE_F32);
  8073. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8074. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8075. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8076. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8077. wdata += row_size;
  8078. }
  8079. }
  8080. }
  8081. }
  8082. // initialize matrix_row_counts
  8083. GGML_ASSERT(wdata == wdata_src1_end);
  8084. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8085. // group rows by src0 matrix
  8086. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8087. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8088. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8089. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8090. matrix_row_counts[row_id] += 1;
  8091. }
  8092. return;
  8093. }
  8094. if (params->type == GGML_TASK_FINALIZE) {
  8095. return;
  8096. }
  8097. // compute each matrix multiplication in sequence
  8098. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8099. const int64_t cne1 = matrix_row_counts[cur_a];
  8100. if (cne1 == 0) {
  8101. continue;
  8102. }
  8103. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8104. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8105. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8106. const int64_t nr0 = ne01; // src0 rows
  8107. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8108. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8109. // distribute the thread work across the inner or outer loop based on which one is larger
  8110. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8111. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8112. const int64_t ith0 = ith % nth0;
  8113. const int64_t ith1 = ith / nth0;
  8114. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8115. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8116. const int64_t ir010 = dr0*ith0;
  8117. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8118. const int64_t ir110 = dr1*ith1;
  8119. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8120. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8121. // threads with no work simply yield (not sure if it helps)
  8122. if (ir010 >= ir011 || ir110 >= ir111) {
  8123. sched_yield();
  8124. continue;
  8125. }
  8126. assert(ne12 % ne02 == 0);
  8127. assert(ne13 % ne03 == 0);
  8128. // block-tiling attempt
  8129. const int64_t blck_0 = 16;
  8130. const int64_t blck_1 = 16;
  8131. // attempt to reduce false-sharing (does not seem to make a difference)
  8132. float tmp[16];
  8133. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8134. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8135. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8136. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8137. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8138. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8139. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8140. // broadcast src0 into src1
  8141. const int64_t i03 = i13/r3;
  8142. const int64_t i02 = i12/r2;
  8143. const int64_t i1 = i11;
  8144. const int64_t i2 = i12;
  8145. const int64_t i3 = i13;
  8146. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8147. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8148. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8149. // the original src1 data pointer, so we should index using the indices directly
  8150. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8151. const char * src1_col = (const char *) wdata +
  8152. (src1_cont || src1->type != vec_dot_type
  8153. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8154. : (i11*nb11 + i12*nb12 + i13*nb13));
  8155. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8156. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8157. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8158. //}
  8159. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8160. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8161. }
  8162. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8163. }
  8164. }
  8165. }
  8166. }
  8167. #undef MMID_MATRIX_ROW
  8168. }
  8169. // ggml_compute_forward_out_prod
  8170. static void ggml_compute_forward_out_prod_f32(
  8171. const struct ggml_compute_params * params,
  8172. const struct ggml_tensor * src0,
  8173. const struct ggml_tensor * src1,
  8174. struct ggml_tensor * dst) {
  8175. // int64_t t0 = ggml_perf_time_us();
  8176. // UNUSED(t0);
  8177. GGML_TENSOR_BINARY_OP_LOCALS
  8178. const int ith = params->ith;
  8179. const int nth = params->nth;
  8180. GGML_ASSERT(ne0 == ne00);
  8181. GGML_ASSERT(ne1 == ne10);
  8182. GGML_ASSERT(ne2 == ne02);
  8183. GGML_ASSERT(ne02 == ne12);
  8184. GGML_ASSERT(ne3 == ne13);
  8185. GGML_ASSERT(ne03 == ne13);
  8186. // we don't support permuted src0 or src1
  8187. GGML_ASSERT(nb00 == sizeof(float));
  8188. // dst cannot be transposed or permuted
  8189. GGML_ASSERT(nb0 == sizeof(float));
  8190. // GGML_ASSERT(nb0 <= nb1);
  8191. // GGML_ASSERT(nb1 <= nb2);
  8192. // GGML_ASSERT(nb2 <= nb3);
  8193. // nb01 >= nb00 - src0 is not transposed
  8194. // compute by src0 rows
  8195. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8196. // TODO: #if defined(GGML_USE_CLBLAST)
  8197. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8198. bool use_blas = ggml_is_matrix(src0) &&
  8199. ggml_is_matrix(src1) &&
  8200. ggml_is_contiguous(src0) &&
  8201. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8202. #endif
  8203. if (params->type == GGML_TASK_INIT) {
  8204. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8205. if (use_blas) {
  8206. return;
  8207. }
  8208. #endif
  8209. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8210. return;
  8211. }
  8212. if (params->type == GGML_TASK_FINALIZE) {
  8213. return;
  8214. }
  8215. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8216. if (use_blas) {
  8217. if (params->ith != 0) { // All threads other than the first do no work.
  8218. return;
  8219. }
  8220. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8221. // src0: (k,n)
  8222. // src1: (k,m)
  8223. // dst: (m,n)
  8224. //
  8225. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8226. // Also expressed as (major,minor)
  8227. // a: (m,k): so src1 transposed
  8228. // b: (k,n): so src0
  8229. // c: (m,n)
  8230. //
  8231. // However, if ggml_is_transposed(src1) is true, then
  8232. // src1->data already contains a transposed version, so sgemm mustn't
  8233. // transpose it further.
  8234. int n = src0->ne[0];
  8235. int k = src0->ne[1];
  8236. int m = src1->ne[0];
  8237. int transposeA, lda;
  8238. if (!ggml_is_transposed(src1)) {
  8239. transposeA = CblasTrans;
  8240. lda = m;
  8241. } else {
  8242. transposeA = CblasNoTrans;
  8243. lda = k;
  8244. }
  8245. float * a = (float *) ((char *) src1->data);
  8246. float * b = (float *) ((char *) src0->data);
  8247. float * c = (float *) ((char *) dst->data);
  8248. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8249. return;
  8250. }
  8251. #endif
  8252. // dst[:,:,:,:] = 0
  8253. // for i2,i3:
  8254. // for i1:
  8255. // for i01:
  8256. // for i0:
  8257. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8258. // parallelize by last three dimensions
  8259. // total rows in dst
  8260. const int64_t nr = ne1*ne2*ne3;
  8261. // rows per thread
  8262. const int64_t dr = (nr + nth - 1)/nth;
  8263. // row range for this thread
  8264. const int64_t ir0 = dr*ith;
  8265. const int64_t ir1 = MIN(ir0 + dr, nr);
  8266. // block-tiling attempt
  8267. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8268. const int64_t blck_1 = 16;
  8269. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8270. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8271. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8272. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8273. for (int64_t ir = bir; ir < bir1; ++ir) {
  8274. // dst indices
  8275. const int64_t i3 = ir/(ne2*ne1);
  8276. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8277. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8278. const int64_t i02 = i2;
  8279. const int64_t i03 = i3;
  8280. //const int64_t i10 = i1;
  8281. const int64_t i12 = i2;
  8282. const int64_t i13 = i3;
  8283. #if GGML_VEC_MAD_UNROLL > 2
  8284. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8285. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8286. const int64_t i11 = i01;
  8287. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8288. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8289. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8290. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8291. }
  8292. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8293. const int64_t i11 = i01;
  8294. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8295. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8296. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8297. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8298. }
  8299. #else
  8300. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8301. const int64_t i11 = i01;
  8302. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8303. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8304. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8305. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8306. }
  8307. #endif
  8308. }
  8309. }
  8310. }
  8311. //int64_t t1 = ggml_perf_time_us();
  8312. //static int64_t acc = 0;
  8313. //acc += t1 - t0;
  8314. //if (t1 - t0 > 10) {
  8315. // printf("\n");
  8316. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8317. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8318. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8319. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8320. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8321. //}
  8322. }
  8323. static void ggml_compute_forward_out_prod_q_f32(
  8324. const struct ggml_compute_params * params,
  8325. const struct ggml_tensor * src0,
  8326. const struct ggml_tensor * src1,
  8327. struct ggml_tensor * dst) {
  8328. // int64_t t0 = ggml_perf_time_us();
  8329. // UNUSED(t0);
  8330. GGML_TENSOR_BINARY_OP_LOCALS;
  8331. const int ith = params->ith;
  8332. const int nth = params->nth;
  8333. const enum ggml_type type = src0->type;
  8334. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8335. GGML_ASSERT(ne02 == ne12);
  8336. GGML_ASSERT(ne03 == ne13);
  8337. GGML_ASSERT(ne2 == ne12);
  8338. GGML_ASSERT(ne3 == ne13);
  8339. // we don't support permuted src0 dim0
  8340. GGML_ASSERT(nb00 == ggml_type_size(type));
  8341. // dst dim0 cannot be transposed or permuted
  8342. GGML_ASSERT(nb0 == sizeof(float));
  8343. // GGML_ASSERT(nb0 <= nb1);
  8344. // GGML_ASSERT(nb1 <= nb2);
  8345. // GGML_ASSERT(nb2 <= nb3);
  8346. GGML_ASSERT(ne0 == ne00);
  8347. GGML_ASSERT(ne1 == ne10);
  8348. GGML_ASSERT(ne2 == ne02);
  8349. GGML_ASSERT(ne3 == ne03);
  8350. // nb01 >= nb00 - src0 is not transposed
  8351. // compute by src0 rows
  8352. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8353. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8354. if (params->type == GGML_TASK_INIT) {
  8355. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8356. return;
  8357. }
  8358. if (params->type == GGML_TASK_FINALIZE) {
  8359. return;
  8360. }
  8361. // parallelize by last three dimensions
  8362. // total rows in dst
  8363. const int64_t nr = ne1*ne2*ne3;
  8364. // rows per thread
  8365. const int64_t dr = (nr + nth - 1)/nth;
  8366. // row range for this thread
  8367. const int64_t ir0 = dr*ith;
  8368. const int64_t ir1 = MIN(ir0 + dr, nr);
  8369. // dst[:,:,:,:] = 0
  8370. // for i2,i3:
  8371. // for i1:
  8372. // for i01:
  8373. // for i0:
  8374. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8375. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8376. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8377. // dst indices
  8378. const int64_t i3 = ir/(ne2*ne1);
  8379. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8380. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8381. const int64_t i02 = i2;
  8382. const int64_t i03 = i3;
  8383. //const int64_t i10 = i1;
  8384. const int64_t i12 = i2;
  8385. const int64_t i13 = i3;
  8386. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8387. const int64_t i11 = i01;
  8388. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8389. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8390. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8391. dequantize_row_q(s0, wdata, ne0);
  8392. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8393. }
  8394. }
  8395. //int64_t t1 = ggml_perf_time_us();
  8396. //static int64_t acc = 0;
  8397. //acc += t1 - t0;
  8398. //if (t1 - t0 > 10) {
  8399. // printf("\n");
  8400. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8401. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8402. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8403. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8404. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8405. //}
  8406. }
  8407. static void ggml_compute_forward_out_prod(
  8408. const struct ggml_compute_params * params,
  8409. const struct ggml_tensor * src0,
  8410. const struct ggml_tensor * src1,
  8411. struct ggml_tensor * dst) {
  8412. switch (src0->type) {
  8413. case GGML_TYPE_Q4_0:
  8414. case GGML_TYPE_Q4_1:
  8415. case GGML_TYPE_Q5_0:
  8416. case GGML_TYPE_Q5_1:
  8417. case GGML_TYPE_Q8_0:
  8418. case GGML_TYPE_Q2_K:
  8419. case GGML_TYPE_Q3_K:
  8420. case GGML_TYPE_Q4_K:
  8421. case GGML_TYPE_Q5_K:
  8422. case GGML_TYPE_Q6_K:
  8423. {
  8424. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8425. } break;
  8426. case GGML_TYPE_F16:
  8427. {
  8428. GGML_ASSERT(false); // todo
  8429. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8430. } break;
  8431. case GGML_TYPE_F32:
  8432. {
  8433. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8434. } break;
  8435. default:
  8436. {
  8437. GGML_ASSERT(false);
  8438. } break;
  8439. }
  8440. }
  8441. // ggml_compute_forward_scale
  8442. static void ggml_compute_forward_scale_f32(
  8443. const struct ggml_compute_params * params,
  8444. const struct ggml_tensor * src0,
  8445. struct ggml_tensor * dst) {
  8446. GGML_ASSERT(ggml_is_contiguous(src0));
  8447. GGML_ASSERT(ggml_is_contiguous(dst));
  8448. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8450. return;
  8451. }
  8452. // scale factor
  8453. float v;
  8454. memcpy(&v, dst->op_params, sizeof(float));
  8455. const int ith = params->ith;
  8456. const int nth = params->nth;
  8457. const int nc = src0->ne[0];
  8458. const int nr = ggml_nrows(src0);
  8459. // rows per thread
  8460. const int dr = (nr + nth - 1)/nth;
  8461. // row range for this thread
  8462. const int ir0 = dr*ith;
  8463. const int ir1 = MIN(ir0 + dr, nr);
  8464. const size_t nb01 = src0->nb[1];
  8465. const size_t nb1 = dst->nb[1];
  8466. for (int i1 = ir0; i1 < ir1; i1++) {
  8467. if (dst->data != src0->data) {
  8468. // src0 is same shape as dst => same indices
  8469. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8470. }
  8471. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8472. }
  8473. }
  8474. static void ggml_compute_forward_scale(
  8475. const struct ggml_compute_params * params,
  8476. const struct ggml_tensor * src0,
  8477. struct ggml_tensor * dst) {
  8478. switch (src0->type) {
  8479. case GGML_TYPE_F32:
  8480. {
  8481. ggml_compute_forward_scale_f32(params, src0, dst);
  8482. } break;
  8483. default:
  8484. {
  8485. GGML_ASSERT(false);
  8486. } break;
  8487. }
  8488. }
  8489. // ggml_compute_forward_set
  8490. static void ggml_compute_forward_set_f32(
  8491. const struct ggml_compute_params * params,
  8492. const struct ggml_tensor * src0,
  8493. const struct ggml_tensor * src1,
  8494. struct ggml_tensor * dst) {
  8495. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8496. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8497. // view src0 and dst with these strides and data offset inbytes during set
  8498. // nb0 is implicitly element_size because src0 and dst are contiguous
  8499. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8500. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8501. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8502. size_t offset = ((int32_t *) dst->op_params)[3];
  8503. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8504. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8505. // memcpy needs to be synchronized across threads to avoid race conditions.
  8506. // => do it in INIT phase
  8507. memcpy(
  8508. ((char *) dst->data),
  8509. ((char *) src0->data),
  8510. ggml_nbytes(dst));
  8511. }
  8512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8513. return;
  8514. }
  8515. const int ith = params->ith;
  8516. const int nth = params->nth;
  8517. const int nr = ggml_nrows(src1);
  8518. const int nc = src1->ne[0];
  8519. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8520. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8521. // src0 and dst as viewed during set
  8522. const size_t nb0 = ggml_element_size(src0);
  8523. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8524. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8525. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8526. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8527. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8528. GGML_ASSERT(nb10 == sizeof(float));
  8529. // rows per thread
  8530. const int dr = (nr + nth - 1)/nth;
  8531. // row range for this thread
  8532. const int ir0 = dr*ith;
  8533. const int ir1 = MIN(ir0 + dr, nr);
  8534. for (int ir = ir0; ir < ir1; ++ir) {
  8535. // src0 and dst are viewed with shape of src1 and offset
  8536. // => same indices
  8537. const int i3 = ir/(ne12*ne11);
  8538. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8539. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8540. ggml_vec_cpy_f32(nc,
  8541. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8542. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8543. }
  8544. }
  8545. static void ggml_compute_forward_set(
  8546. const struct ggml_compute_params * params,
  8547. const struct ggml_tensor * src0,
  8548. const struct ggml_tensor * src1,
  8549. struct ggml_tensor * dst) {
  8550. switch (src0->type) {
  8551. case GGML_TYPE_F32:
  8552. {
  8553. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8554. } break;
  8555. case GGML_TYPE_F16:
  8556. case GGML_TYPE_Q4_0:
  8557. case GGML_TYPE_Q4_1:
  8558. case GGML_TYPE_Q5_0:
  8559. case GGML_TYPE_Q5_1:
  8560. case GGML_TYPE_Q8_0:
  8561. case GGML_TYPE_Q8_1:
  8562. case GGML_TYPE_Q2_K:
  8563. case GGML_TYPE_Q3_K:
  8564. case GGML_TYPE_Q4_K:
  8565. case GGML_TYPE_Q5_K:
  8566. case GGML_TYPE_Q6_K:
  8567. default:
  8568. {
  8569. GGML_ASSERT(false);
  8570. } break;
  8571. }
  8572. }
  8573. // ggml_compute_forward_cpy
  8574. static void ggml_compute_forward_cpy(
  8575. const struct ggml_compute_params * params,
  8576. const struct ggml_tensor * src0,
  8577. struct ggml_tensor * dst) {
  8578. ggml_compute_forward_dup(params, src0, dst);
  8579. }
  8580. // ggml_compute_forward_cont
  8581. static void ggml_compute_forward_cont(
  8582. const struct ggml_compute_params * params,
  8583. const struct ggml_tensor * src0,
  8584. struct ggml_tensor * dst) {
  8585. ggml_compute_forward_dup(params, src0, dst);
  8586. }
  8587. // ggml_compute_forward_reshape
  8588. static void ggml_compute_forward_reshape(
  8589. const struct ggml_compute_params * params,
  8590. const struct ggml_tensor * src0,
  8591. struct ggml_tensor * dst) {
  8592. // NOP
  8593. UNUSED(params);
  8594. UNUSED(src0);
  8595. UNUSED(dst);
  8596. }
  8597. // ggml_compute_forward_view
  8598. static void ggml_compute_forward_view(
  8599. const struct ggml_compute_params * params,
  8600. const struct ggml_tensor * src0) {
  8601. // NOP
  8602. UNUSED(params);
  8603. UNUSED(src0);
  8604. }
  8605. // ggml_compute_forward_permute
  8606. static void ggml_compute_forward_permute(
  8607. const struct ggml_compute_params * params,
  8608. const struct ggml_tensor * src0) {
  8609. // NOP
  8610. UNUSED(params);
  8611. UNUSED(src0);
  8612. }
  8613. // ggml_compute_forward_transpose
  8614. static void ggml_compute_forward_transpose(
  8615. const struct ggml_compute_params * params,
  8616. const struct ggml_tensor * src0) {
  8617. // NOP
  8618. UNUSED(params);
  8619. UNUSED(src0);
  8620. }
  8621. // ggml_compute_forward_get_rows
  8622. static void ggml_compute_forward_get_rows_q(
  8623. const struct ggml_compute_params * params,
  8624. const struct ggml_tensor * src0,
  8625. const struct ggml_tensor * src1,
  8626. struct ggml_tensor * dst) {
  8627. assert(params->ith == 0);
  8628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8629. return;
  8630. }
  8631. GGML_TENSOR_BINARY_OP_LOCALS
  8632. const int64_t nc = ne00;
  8633. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8634. const enum ggml_type type = src0->type;
  8635. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8636. assert(ne0 == nc);
  8637. assert(ne02 == ne11);
  8638. assert(nb00 == ggml_type_size(type));
  8639. assert(ggml_nrows(dst) == nr);
  8640. // TODO: multi-thread
  8641. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8642. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8643. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8644. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8645. dequantize_row_q(
  8646. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8647. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8648. }
  8649. }
  8650. }
  8651. }
  8652. static void ggml_compute_forward_get_rows_f16(
  8653. const struct ggml_compute_params * params,
  8654. const struct ggml_tensor * src0,
  8655. const struct ggml_tensor * src1,
  8656. struct ggml_tensor * dst) {
  8657. assert(params->ith == 0);
  8658. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8659. return;
  8660. }
  8661. GGML_TENSOR_BINARY_OP_LOCALS
  8662. const int64_t nc = ne00;
  8663. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8664. assert(ne0 == nc);
  8665. assert(ne02 == ne11);
  8666. assert(nb00 == sizeof(ggml_fp16_t));
  8667. assert(ggml_nrows(dst) == nr);
  8668. // TODO: multi-thread
  8669. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8670. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8671. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8672. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8673. ggml_fp16_to_fp32_row(
  8674. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8675. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8676. }
  8677. }
  8678. }
  8679. }
  8680. static void ggml_compute_forward_get_rows_f32(
  8681. const struct ggml_compute_params * params,
  8682. const struct ggml_tensor * src0,
  8683. const struct ggml_tensor * src1,
  8684. struct ggml_tensor * dst) {
  8685. assert(params->ith == 0);
  8686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8687. return;
  8688. }
  8689. GGML_TENSOR_BINARY_OP_LOCALS
  8690. const int64_t nc = ne00;
  8691. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8692. assert(ne0 == nc);
  8693. assert(ne02 == ne11);
  8694. assert(nb00 == sizeof(float));
  8695. assert(ggml_nrows(dst) == nr);
  8696. // TODO: multi-thread
  8697. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8698. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8699. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8700. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8701. ggml_vec_cpy_f32(nc,
  8702. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8703. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8704. }
  8705. }
  8706. }
  8707. }
  8708. static void ggml_compute_forward_get_rows(
  8709. const struct ggml_compute_params * params,
  8710. const struct ggml_tensor * src0,
  8711. const struct ggml_tensor * src1,
  8712. struct ggml_tensor * dst) {
  8713. switch (src0->type) {
  8714. case GGML_TYPE_Q4_0:
  8715. case GGML_TYPE_Q4_1:
  8716. case GGML_TYPE_Q5_0:
  8717. case GGML_TYPE_Q5_1:
  8718. case GGML_TYPE_Q8_0:
  8719. case GGML_TYPE_Q8_1:
  8720. case GGML_TYPE_Q2_K:
  8721. case GGML_TYPE_Q3_K:
  8722. case GGML_TYPE_Q4_K:
  8723. case GGML_TYPE_Q5_K:
  8724. case GGML_TYPE_Q6_K:
  8725. {
  8726. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8727. } break;
  8728. case GGML_TYPE_F16:
  8729. {
  8730. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8731. } break;
  8732. case GGML_TYPE_F32:
  8733. {
  8734. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8735. } break;
  8736. default:
  8737. {
  8738. GGML_ASSERT(false);
  8739. } break;
  8740. }
  8741. //static bool first = true;
  8742. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8743. //if (first) {
  8744. // first = false;
  8745. //} else {
  8746. // for (int k = 0; k < dst->ne[1]; ++k) {
  8747. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8748. // for (int i = 0; i < 16; ++i) {
  8749. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8750. // }
  8751. // printf("\n");
  8752. // }
  8753. // printf("\n");
  8754. // }
  8755. // printf("\n");
  8756. // exit(0);
  8757. //}
  8758. }
  8759. // ggml_compute_forward_get_rows_back
  8760. static void ggml_compute_forward_get_rows_back_f32_f16(
  8761. const struct ggml_compute_params * params,
  8762. const struct ggml_tensor * src0,
  8763. const struct ggml_tensor * src1,
  8764. struct ggml_tensor * dst) {
  8765. GGML_ASSERT(params->ith == 0);
  8766. GGML_ASSERT(ggml_is_contiguous(dst));
  8767. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8768. if (params->type == GGML_TASK_INIT) {
  8769. memset(dst->data, 0, ggml_nbytes(dst));
  8770. }
  8771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8772. return;
  8773. }
  8774. const int nc = src0->ne[0];
  8775. const int nr = ggml_nelements(src1);
  8776. GGML_ASSERT( dst->ne[0] == nc);
  8777. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8778. for (int i = 0; i < nr; ++i) {
  8779. const int r = ((int32_t *) src1->data)[i];
  8780. for (int j = 0; j < nc; ++j) {
  8781. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8782. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8783. }
  8784. }
  8785. }
  8786. static void ggml_compute_forward_get_rows_back_f32(
  8787. const struct ggml_compute_params * params,
  8788. const struct ggml_tensor * src0,
  8789. const struct ggml_tensor * src1,
  8790. struct ggml_tensor * dst) {
  8791. GGML_ASSERT(params->ith == 0);
  8792. GGML_ASSERT(ggml_is_contiguous(dst));
  8793. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8794. if (params->type == GGML_TASK_INIT) {
  8795. memset(dst->data, 0, ggml_nbytes(dst));
  8796. }
  8797. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8798. return;
  8799. }
  8800. const int nc = src0->ne[0];
  8801. const int nr = ggml_nelements(src1);
  8802. GGML_ASSERT( dst->ne[0] == nc);
  8803. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8804. for (int i = 0; i < nr; ++i) {
  8805. const int r = ((int32_t *) src1->data)[i];
  8806. ggml_vec_add_f32(nc,
  8807. (float *) ((char *) dst->data + r*dst->nb[1]),
  8808. (float *) ((char *) dst->data + r*dst->nb[1]),
  8809. (float *) ((char *) src0->data + i*src0->nb[1]));
  8810. }
  8811. }
  8812. static void ggml_compute_forward_get_rows_back(
  8813. const struct ggml_compute_params * params,
  8814. const struct ggml_tensor * src0,
  8815. const struct ggml_tensor * src1,
  8816. struct ggml_tensor * dst) {
  8817. switch (src0->type) {
  8818. case GGML_TYPE_F16:
  8819. {
  8820. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8821. } break;
  8822. case GGML_TYPE_F32:
  8823. {
  8824. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8825. } break;
  8826. default:
  8827. {
  8828. GGML_ASSERT(false);
  8829. } break;
  8830. }
  8831. //static bool first = true;
  8832. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8833. //if (first) {
  8834. // first = false;
  8835. //} else {
  8836. // for (int k = 0; k < dst->ne[1]; ++k) {
  8837. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8838. // for (int i = 0; i < 16; ++i) {
  8839. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8840. // }
  8841. // printf("\n");
  8842. // }
  8843. // printf("\n");
  8844. // }
  8845. // printf("\n");
  8846. // exit(0);
  8847. //}
  8848. }
  8849. // ggml_compute_forward_diag
  8850. static void ggml_compute_forward_diag_f32(
  8851. const struct ggml_compute_params * params,
  8852. const struct ggml_tensor * src0,
  8853. struct ggml_tensor * dst) {
  8854. GGML_ASSERT(params->ith == 0);
  8855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8856. return;
  8857. }
  8858. // TODO: handle transposed/permuted matrices
  8859. GGML_TENSOR_UNARY_OP_LOCALS
  8860. GGML_ASSERT(ne00 == ne0);
  8861. GGML_ASSERT(ne00 == ne1);
  8862. GGML_ASSERT(ne01 == 1);
  8863. GGML_ASSERT(ne02 == ne2);
  8864. GGML_ASSERT(ne03 == ne3);
  8865. GGML_ASSERT(nb00 == sizeof(float));
  8866. GGML_ASSERT(nb0 == sizeof(float));
  8867. for (int i3 = 0; i3 < ne3; i3++) {
  8868. for (int i2 = 0; i2 < ne2; i2++) {
  8869. for (int i1 = 0; i1 < ne1; i1++) {
  8870. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8871. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8872. for (int i0 = 0; i0 < i1; i0++) {
  8873. d[i0] = 0;
  8874. }
  8875. d[i1] = s[i1];
  8876. for (int i0 = i1+1; i0 < ne0; i0++) {
  8877. d[i0] = 0;
  8878. }
  8879. }
  8880. }
  8881. }
  8882. }
  8883. static void ggml_compute_forward_diag(
  8884. const struct ggml_compute_params * params,
  8885. const struct ggml_tensor * src0,
  8886. struct ggml_tensor * dst) {
  8887. switch (src0->type) {
  8888. case GGML_TYPE_F32:
  8889. {
  8890. ggml_compute_forward_diag_f32(params, src0, dst);
  8891. } break;
  8892. default:
  8893. {
  8894. GGML_ASSERT(false);
  8895. } break;
  8896. }
  8897. }
  8898. // ggml_compute_forward_diag_mask_inf
  8899. static void ggml_compute_forward_diag_mask_f32(
  8900. const struct ggml_compute_params * params,
  8901. const struct ggml_tensor * src0,
  8902. struct ggml_tensor * dst,
  8903. const float value) {
  8904. const int ith = params->ith;
  8905. const int nth = params->nth;
  8906. const int n_past = ((int32_t *) dst->op_params)[0];
  8907. const bool inplace = src0->data == dst->data;
  8908. GGML_ASSERT(n_past >= 0);
  8909. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8910. // memcpy needs to be synchronized across threads to avoid race conditions.
  8911. // => do it in INIT phase
  8912. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8913. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8914. memcpy(
  8915. ((char *) dst->data),
  8916. ((char *) src0->data),
  8917. ggml_nbytes(dst));
  8918. }
  8919. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8920. return;
  8921. }
  8922. // TODO: handle transposed/permuted matrices
  8923. const int n = ggml_nrows(src0);
  8924. const int nc = src0->ne[0];
  8925. const int nr = src0->ne[1];
  8926. const int nz = n/nr;
  8927. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8928. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8929. for (int k = 0; k < nz; k++) {
  8930. for (int j = ith; j < nr; j += nth) {
  8931. for (int i = n_past; i < nc; i++) {
  8932. if (i > n_past + j) {
  8933. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8934. }
  8935. }
  8936. }
  8937. }
  8938. }
  8939. static void ggml_compute_forward_diag_mask_inf(
  8940. const struct ggml_compute_params * params,
  8941. const struct ggml_tensor * src0,
  8942. struct ggml_tensor * dst) {
  8943. switch (src0->type) {
  8944. case GGML_TYPE_F32:
  8945. {
  8946. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8947. } break;
  8948. default:
  8949. {
  8950. GGML_ASSERT(false);
  8951. } break;
  8952. }
  8953. }
  8954. static void ggml_compute_forward_diag_mask_zero(
  8955. const struct ggml_compute_params * params,
  8956. const struct ggml_tensor * src0,
  8957. struct ggml_tensor * dst) {
  8958. switch (src0->type) {
  8959. case GGML_TYPE_F32:
  8960. {
  8961. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8962. } break;
  8963. default:
  8964. {
  8965. GGML_ASSERT(false);
  8966. } break;
  8967. }
  8968. }
  8969. // ggml_compute_forward_soft_max
  8970. static void ggml_compute_forward_soft_max_f32(
  8971. const struct ggml_compute_params * params,
  8972. const struct ggml_tensor * src0,
  8973. const struct ggml_tensor * src1,
  8974. struct ggml_tensor * dst) {
  8975. assert(ggml_is_contiguous(dst));
  8976. assert(ggml_are_same_shape(src0, dst));
  8977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8978. return;
  8979. }
  8980. float scale = 1.0f;
  8981. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8982. // TODO: handle transposed/permuted matrices
  8983. const int ith = params->ith;
  8984. const int nth = params->nth;
  8985. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  8986. const int nc = src0->ne[0];
  8987. const int nr = ggml_nrows(src0);
  8988. // rows per thread
  8989. const int dr = (nr + nth - 1)/nth;
  8990. // row range for this thread
  8991. const int ir0 = dr*ith;
  8992. const int ir1 = MIN(ir0 + dr, nr);
  8993. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  8994. for (int i1 = ir0; i1 < ir1; i1++) {
  8995. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8996. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8997. // broadcast the mask across rows
  8998. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  8999. ggml_vec_cpy_f32 (nc, wp, sp);
  9000. ggml_vec_scale_f32(nc, wp, scale);
  9001. if (mp) {
  9002. ggml_vec_acc_f32(nc, wp, mp);
  9003. }
  9004. #ifndef NDEBUG
  9005. for (int i = 0; i < nc; ++i) {
  9006. //printf("p[%d] = %f\n", i, p[i]);
  9007. assert(!isnan(wp[i]));
  9008. }
  9009. #endif
  9010. float max = -INFINITY;
  9011. ggml_vec_max_f32(nc, &max, wp);
  9012. ggml_float sum = 0.0;
  9013. uint16_t scvt;
  9014. for (int i = 0; i < nc; i++) {
  9015. if (wp[i] == -INFINITY) {
  9016. dp[i] = 0.0f;
  9017. } else {
  9018. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9019. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9020. memcpy(&scvt, &s, sizeof(scvt));
  9021. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9022. sum += (ggml_float)val;
  9023. dp[i] = val;
  9024. }
  9025. }
  9026. assert(sum > 0.0);
  9027. sum = 1.0/sum;
  9028. ggml_vec_scale_f32(nc, dp, sum);
  9029. #ifndef NDEBUG
  9030. for (int i = 0; i < nc; ++i) {
  9031. assert(!isnan(dp[i]));
  9032. assert(!isinf(dp[i]));
  9033. }
  9034. #endif
  9035. }
  9036. }
  9037. static void ggml_compute_forward_soft_max(
  9038. const struct ggml_compute_params * params,
  9039. const struct ggml_tensor * src0,
  9040. const struct ggml_tensor * src1,
  9041. struct ggml_tensor * dst) {
  9042. switch (src0->type) {
  9043. case GGML_TYPE_F32:
  9044. {
  9045. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9046. } break;
  9047. default:
  9048. {
  9049. GGML_ASSERT(false);
  9050. } break;
  9051. }
  9052. }
  9053. // ggml_compute_forward_soft_max_back
  9054. static void ggml_compute_forward_soft_max_back_f32(
  9055. const struct ggml_compute_params * params,
  9056. const struct ggml_tensor * src0,
  9057. const struct ggml_tensor * src1,
  9058. struct ggml_tensor * dst) {
  9059. GGML_ASSERT(ggml_is_contiguous(src0));
  9060. GGML_ASSERT(ggml_is_contiguous(src1));
  9061. GGML_ASSERT(ggml_is_contiguous(dst));
  9062. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9063. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9064. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9065. return;
  9066. }
  9067. // TODO: handle transposed/permuted matrices
  9068. const int ith = params->ith;
  9069. const int nth = params->nth;
  9070. const int nc = src0->ne[0];
  9071. const int nr = ggml_nrows(src0);
  9072. // rows per thread
  9073. const int dr = (nr + nth - 1)/nth;
  9074. // row range for this thread
  9075. const int ir0 = dr*ith;
  9076. const int ir1 = MIN(ir0 + dr, nr);
  9077. for (int i1 = ir0; i1 < ir1; i1++) {
  9078. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9079. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9080. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9081. #ifndef NDEBUG
  9082. for (int i = 0; i < nc; ++i) {
  9083. //printf("p[%d] = %f\n", i, p[i]);
  9084. assert(!isnan(dy[i]));
  9085. assert(!isnan(y[i]));
  9086. }
  9087. #endif
  9088. // Jii = yi - yi*yi
  9089. // Jij = -yi*yj
  9090. // J = diag(y)-y.T*y
  9091. // dx = J * dy
  9092. // dxk = sum_i(Jki * dyi)
  9093. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9094. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9095. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9096. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9097. // dxk = -yk * dot(y, dy) + yk*dyk
  9098. // dxk = yk * (- dot(y, dy) + dyk)
  9099. // dxk = yk * (dyk - dot(y, dy))
  9100. //
  9101. // post-order:
  9102. // dot_y_dy := dot(y, dy)
  9103. // dx := dy
  9104. // dx := dx - dot_y_dy
  9105. // dx := dx * y
  9106. // linear runtime, no additional memory
  9107. float dot_y_dy = 0;
  9108. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9109. ggml_vec_cpy_f32 (nc, dx, dy);
  9110. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9111. ggml_vec_mul_f32 (nc, dx, dx, y);
  9112. #ifndef NDEBUG
  9113. for (int i = 0; i < nc; ++i) {
  9114. assert(!isnan(dx[i]));
  9115. assert(!isinf(dx[i]));
  9116. }
  9117. #endif
  9118. }
  9119. }
  9120. static void ggml_compute_forward_soft_max_back(
  9121. const struct ggml_compute_params * params,
  9122. const struct ggml_tensor * src0,
  9123. const struct ggml_tensor * src1,
  9124. struct ggml_tensor * dst) {
  9125. switch (src0->type) {
  9126. case GGML_TYPE_F32:
  9127. {
  9128. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9129. } break;
  9130. default:
  9131. {
  9132. GGML_ASSERT(false);
  9133. } break;
  9134. }
  9135. }
  9136. // ggml_compute_forward_alibi
  9137. static void ggml_compute_forward_alibi_f32(
  9138. const struct ggml_compute_params * params,
  9139. const struct ggml_tensor * src0,
  9140. struct ggml_tensor * dst) {
  9141. assert(params->ith == 0);
  9142. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9143. return;
  9144. }
  9145. //const int n_past = ((int32_t *) dst->op_params)[0];
  9146. const int n_head = ((int32_t *) dst->op_params)[1];
  9147. float max_bias;
  9148. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9149. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9150. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9151. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9152. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9153. const int64_t n = ggml_nrows(src0);
  9154. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9155. const size_t nb0 = src0->nb[0];
  9156. const size_t nb1 = src0->nb[1];
  9157. const size_t nb2 = src0->nb[2];
  9158. //const int nb3 = src0->nb[3];
  9159. GGML_ASSERT(nb0 == sizeof(float));
  9160. GGML_ASSERT(n_head == ne2);
  9161. // add alibi to src0 (KQ_scaled)
  9162. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9163. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9164. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9165. for (int64_t i = 0; i < ne0; i++) {
  9166. for (int64_t j = 0; j < ne1; j++) {
  9167. for (int64_t k = 0; k < ne2_ne3; k++) {
  9168. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9169. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9170. // TODO: k*nb2 or k*nb3
  9171. float m_k;
  9172. if (k < n_heads_log2_floor) {
  9173. m_k = powf(m0, k + 1);
  9174. } else {
  9175. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9176. }
  9177. pdst[0] = i * m_k + src[0];
  9178. }
  9179. }
  9180. }
  9181. }
  9182. static void ggml_compute_forward_alibi_f16(
  9183. const struct ggml_compute_params * params,
  9184. const struct ggml_tensor * src0,
  9185. struct ggml_tensor * dst) {
  9186. assert(params->ith == 0);
  9187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9188. return;
  9189. }
  9190. //const int n_past = ((int32_t *) dst->op_params)[0];
  9191. const int n_head = ((int32_t *) dst->op_params)[1];
  9192. float max_bias;
  9193. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9194. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9195. const int ne1 = src0->ne[1]; // seq_len_without_past
  9196. const int ne2 = src0->ne[2]; // n_head -> this is k
  9197. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9198. const int n = ggml_nrows(src0);
  9199. const int ne2_ne3 = n/ne1; // ne2*ne3
  9200. const int nb0 = src0->nb[0];
  9201. const int nb1 = src0->nb[1];
  9202. const int nb2 = src0->nb[2];
  9203. //const int nb3 = src0->nb[3];
  9204. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9205. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9206. GGML_ASSERT(n_head == ne2);
  9207. // add alibi to src0 (KQ_scaled)
  9208. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9209. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9210. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9211. for (int i = 0; i < ne0; i++) {
  9212. for (int j = 0; j < ne1; j++) {
  9213. for (int k = 0; k < ne2_ne3; k++) {
  9214. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9215. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9216. // TODO: k*nb2 or k*nb3
  9217. float m_k;
  9218. if (k < n_heads_log2_floor) {
  9219. m_k = powf(m0, k + 1);
  9220. } else {
  9221. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9222. }
  9223. // we return F32
  9224. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9225. }
  9226. }
  9227. }
  9228. }
  9229. static void ggml_compute_forward_alibi(
  9230. const struct ggml_compute_params * params,
  9231. const struct ggml_tensor * src0,
  9232. struct ggml_tensor * dst) {
  9233. switch (src0->type) {
  9234. case GGML_TYPE_F16:
  9235. {
  9236. ggml_compute_forward_alibi_f16(params, src0, dst);
  9237. } break;
  9238. case GGML_TYPE_F32:
  9239. {
  9240. ggml_compute_forward_alibi_f32(params, src0, dst);
  9241. } break;
  9242. case GGML_TYPE_Q4_0:
  9243. case GGML_TYPE_Q4_1:
  9244. case GGML_TYPE_Q5_0:
  9245. case GGML_TYPE_Q5_1:
  9246. case GGML_TYPE_Q8_0:
  9247. case GGML_TYPE_Q8_1:
  9248. case GGML_TYPE_Q2_K:
  9249. case GGML_TYPE_Q3_K:
  9250. case GGML_TYPE_Q4_K:
  9251. case GGML_TYPE_Q5_K:
  9252. case GGML_TYPE_Q6_K:
  9253. case GGML_TYPE_Q8_K:
  9254. case GGML_TYPE_I8:
  9255. case GGML_TYPE_I16:
  9256. case GGML_TYPE_I32:
  9257. case GGML_TYPE_COUNT:
  9258. {
  9259. GGML_ASSERT(false);
  9260. } break;
  9261. }
  9262. }
  9263. // ggml_compute_forward_clamp
  9264. static void ggml_compute_forward_clamp_f32(
  9265. const struct ggml_compute_params * params,
  9266. const struct ggml_tensor * src0,
  9267. struct ggml_tensor * dst) {
  9268. assert(params->ith == 0);
  9269. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9270. return;
  9271. }
  9272. float min;
  9273. float max;
  9274. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9275. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9276. const int ith = params->ith;
  9277. const int nth = params->nth;
  9278. const int n = ggml_nrows(src0);
  9279. const int nc = src0->ne[0];
  9280. const size_t nb00 = src0->nb[0];
  9281. const size_t nb01 = src0->nb[1];
  9282. const size_t nb0 = dst->nb[0];
  9283. const size_t nb1 = dst->nb[1];
  9284. GGML_ASSERT( nb0 == sizeof(float));
  9285. GGML_ASSERT(nb00 == sizeof(float));
  9286. for (int j = ith; j < n; j += nth) {
  9287. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9288. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9289. for (int i = 0; i < nc; i++) {
  9290. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9291. }
  9292. }
  9293. }
  9294. static void ggml_compute_forward_clamp(
  9295. const struct ggml_compute_params * params,
  9296. const struct ggml_tensor * src0,
  9297. struct ggml_tensor * dst) {
  9298. switch (src0->type) {
  9299. case GGML_TYPE_F32:
  9300. {
  9301. ggml_compute_forward_clamp_f32(params, src0, dst);
  9302. } break;
  9303. case GGML_TYPE_F16:
  9304. case GGML_TYPE_Q4_0:
  9305. case GGML_TYPE_Q4_1:
  9306. case GGML_TYPE_Q5_0:
  9307. case GGML_TYPE_Q5_1:
  9308. case GGML_TYPE_Q8_0:
  9309. case GGML_TYPE_Q8_1:
  9310. case GGML_TYPE_Q2_K:
  9311. case GGML_TYPE_Q3_K:
  9312. case GGML_TYPE_Q4_K:
  9313. case GGML_TYPE_Q5_K:
  9314. case GGML_TYPE_Q6_K:
  9315. case GGML_TYPE_Q8_K:
  9316. case GGML_TYPE_I8:
  9317. case GGML_TYPE_I16:
  9318. case GGML_TYPE_I32:
  9319. case GGML_TYPE_COUNT:
  9320. {
  9321. GGML_ASSERT(false);
  9322. } break;
  9323. }
  9324. }
  9325. // ggml_compute_forward_rope
  9326. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9327. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9328. return 1 - MIN(1, MAX(0, y));
  9329. }
  9330. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9331. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9332. static void rope_yarn(
  9333. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9334. float * cos_theta, float * sin_theta
  9335. ) {
  9336. // Get n-d rotational scaling corrected for extrapolation
  9337. float theta_interp = freq_scale * theta_extrap;
  9338. float theta = theta_interp;
  9339. if (ext_factor != 0.0f) {
  9340. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9341. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9342. // Get n-d magnitude scaling corrected for interpolation
  9343. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9344. }
  9345. *cos_theta = cosf(theta) * mscale;
  9346. *sin_theta = sinf(theta) * mscale;
  9347. }
  9348. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9349. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9350. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9351. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9352. }
  9353. void ggml_rope_yarn_corr_dims(
  9354. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9355. ) {
  9356. // start and end correction dims
  9357. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9358. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9359. }
  9360. static void ggml_compute_forward_rope_f32(
  9361. const struct ggml_compute_params * params,
  9362. const struct ggml_tensor * src0,
  9363. const struct ggml_tensor * src1,
  9364. struct ggml_tensor * dst,
  9365. const bool forward) {
  9366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9367. return;
  9368. }
  9369. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9370. // these two only relevant for xPos RoPE:
  9371. float xpos_base;
  9372. bool xpos_down;
  9373. //const int n_past = ((int32_t *) dst->op_params)[0];
  9374. const int n_dims = ((int32_t *) dst->op_params)[1];
  9375. const int mode = ((int32_t *) dst->op_params)[2];
  9376. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9377. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9378. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9379. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9380. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9381. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9382. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9383. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9384. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9385. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9386. GGML_TENSOR_UNARY_OP_LOCALS
  9387. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9388. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9389. GGML_ASSERT(nb00 == sizeof(float));
  9390. const int ith = params->ith;
  9391. const int nth = params->nth;
  9392. const int nr = ggml_nrows(dst);
  9393. GGML_ASSERT(n_dims <= ne0);
  9394. GGML_ASSERT(n_dims % 2 == 0);
  9395. // rows per thread
  9396. const int dr = (nr + nth - 1)/nth;
  9397. // row range for this thread
  9398. const int ir0 = dr*ith;
  9399. const int ir1 = MIN(ir0 + dr, nr);
  9400. // row index used to determine which thread to use
  9401. int ir = 0;
  9402. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9403. const float inv_ndims = -1.f/n_dims;
  9404. float corr_dims[2];
  9405. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9406. const bool is_neox = mode & 2;
  9407. const bool is_glm = mode & 4;
  9408. // backward process uses inverse rotation by cos and sin.
  9409. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9410. // this essentially just switches the sign of sin.
  9411. const float sin_sign = forward ? 1.0f : -1.0f;
  9412. const int32_t * pos = (const int32_t *) src1->data;
  9413. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9414. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9415. const int64_t p = pos[i2];
  9416. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9417. if (ir++ < ir0) continue;
  9418. if (ir > ir1) break;
  9419. float theta_base = (float)p;
  9420. if (is_glm) {
  9421. theta_base = MIN(p, n_ctx - 2);
  9422. float block_theta = MAX(p - (n_ctx - 2), 0);
  9423. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9424. const float cos_theta = cosf(theta_base);
  9425. const float sin_theta = sinf(theta_base) * sin_sign;
  9426. const float cos_block_theta = cosf(block_theta);
  9427. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9428. theta_base *= theta_scale;
  9429. block_theta *= theta_scale;
  9430. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9431. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9432. const float x0 = src[0];
  9433. const float x1 = src[n_dims/2];
  9434. const float x2 = src[n_dims];
  9435. const float x3 = src[n_dims/2*3];
  9436. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9437. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9438. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9439. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9440. }
  9441. } else if (!is_neox) {
  9442. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9443. float cos_theta, sin_theta;
  9444. rope_yarn(
  9445. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9446. );
  9447. sin_theta *= sin_sign;
  9448. // zeta scaling for xPos only:
  9449. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9450. if (xpos_down) zeta = 1.0f / zeta;
  9451. theta_base *= theta_scale;
  9452. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9453. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9454. const float x0 = src[0];
  9455. const float x1 = src[1];
  9456. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9457. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9458. }
  9459. } else {
  9460. // TODO: this might be wrong for ne0 != n_dims - need double check
  9461. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9462. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9463. theta_base *= freq_scale;
  9464. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9465. if (ic < n_dims) {
  9466. const int64_t ib = 0;
  9467. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9468. float cur_rot = inv_ndims * ic - ib;
  9469. float cos_theta, sin_theta;
  9470. rope_yarn(
  9471. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9472. &cos_theta, &sin_theta
  9473. );
  9474. sin_theta *= sin_sign;
  9475. theta_base *= theta_scale;
  9476. const int64_t i0 = ib*n_dims + ic/2;
  9477. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9478. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9479. const float x0 = src[0];
  9480. const float x1 = src[n_dims/2];
  9481. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9482. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9483. } else {
  9484. const int64_t i0 = ic;
  9485. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9486. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9487. dst_data[0] = src[0];
  9488. dst_data[1] = src[1];
  9489. }
  9490. }
  9491. }
  9492. }
  9493. }
  9494. }
  9495. }
  9496. static void ggml_compute_forward_rope_f16(
  9497. const struct ggml_compute_params * params,
  9498. const struct ggml_tensor * src0,
  9499. const struct ggml_tensor * src1,
  9500. struct ggml_tensor * dst,
  9501. const bool forward) {
  9502. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9503. return;
  9504. }
  9505. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9506. //const int n_past = ((int32_t *) dst->op_params)[0];
  9507. const int n_dims = ((int32_t *) dst->op_params)[1];
  9508. const int mode = ((int32_t *) dst->op_params)[2];
  9509. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9510. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9511. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9512. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9513. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9514. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9515. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9516. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9517. GGML_TENSOR_UNARY_OP_LOCALS
  9518. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9519. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9520. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9521. const int ith = params->ith;
  9522. const int nth = params->nth;
  9523. const int nr = ggml_nrows(dst);
  9524. GGML_ASSERT(n_dims <= ne0);
  9525. GGML_ASSERT(n_dims % 2 == 0);
  9526. // rows per thread
  9527. const int dr = (nr + nth - 1)/nth;
  9528. // row range for this thread
  9529. const int ir0 = dr*ith;
  9530. const int ir1 = MIN(ir0 + dr, nr);
  9531. // row index used to determine which thread to use
  9532. int ir = 0;
  9533. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9534. const float inv_ndims = -1.f/n_dims;
  9535. float corr_dims[2];
  9536. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9537. const bool is_neox = mode & 2;
  9538. const bool is_glm = mode & 4;
  9539. // backward process uses inverse rotation by cos and sin.
  9540. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9541. // this essentially just switches the sign of sin.
  9542. const float sin_sign = forward ? 1.0f : -1.0f;
  9543. const int32_t * pos = (const int32_t *) src1->data;
  9544. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9545. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9546. const int64_t p = pos[i2];
  9547. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9548. if (ir++ < ir0) continue;
  9549. if (ir > ir1) break;
  9550. float theta_base = (float)p;
  9551. if (is_glm) {
  9552. theta_base = MIN(p, n_ctx - 2);
  9553. float block_theta = MAX(p - (n_ctx - 2), 0);
  9554. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9555. const float cos_theta = cosf(theta_base);
  9556. const float sin_theta = sinf(theta_base) * sin_sign;
  9557. const float cos_block_theta = cosf(block_theta);
  9558. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9559. theta_base *= theta_scale;
  9560. block_theta *= theta_scale;
  9561. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9562. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9563. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9564. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9565. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9566. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9567. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9568. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9569. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9570. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9571. }
  9572. } else if (!is_neox) {
  9573. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9574. float cos_theta, sin_theta;
  9575. rope_yarn(
  9576. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9577. );
  9578. sin_theta *= sin_sign;
  9579. theta_base *= theta_scale;
  9580. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9581. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9582. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9583. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9584. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9585. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9586. }
  9587. } else {
  9588. // TODO: this might be wrong for ne0 != n_dims - need double check
  9589. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9590. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9591. theta_base *= freq_scale;
  9592. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9593. if (ic < n_dims) {
  9594. const int64_t ib = 0;
  9595. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9596. float cur_rot = inv_ndims * ic - ib;
  9597. float cos_theta, sin_theta;
  9598. rope_yarn(
  9599. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9600. &cos_theta, &sin_theta
  9601. );
  9602. sin_theta *= sin_sign;
  9603. theta_base *= theta_scale;
  9604. const int64_t i0 = ib*n_dims + ic/2;
  9605. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9606. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9607. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9608. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9609. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9610. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9611. } else {
  9612. const int64_t i0 = ic;
  9613. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9614. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9615. dst_data[0] = src[0];
  9616. dst_data[1] = src[1];
  9617. }
  9618. }
  9619. }
  9620. }
  9621. }
  9622. }
  9623. }
  9624. static void ggml_compute_forward_rope(
  9625. const struct ggml_compute_params * params,
  9626. const struct ggml_tensor * src0,
  9627. const struct ggml_tensor * src1,
  9628. struct ggml_tensor * dst) {
  9629. switch (src0->type) {
  9630. case GGML_TYPE_F16:
  9631. {
  9632. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9633. } break;
  9634. case GGML_TYPE_F32:
  9635. {
  9636. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9637. } break;
  9638. default:
  9639. {
  9640. GGML_ASSERT(false);
  9641. } break;
  9642. }
  9643. }
  9644. // ggml_compute_forward_rope_back
  9645. static void ggml_compute_forward_rope_back(
  9646. const struct ggml_compute_params * params,
  9647. const struct ggml_tensor * src0,
  9648. const struct ggml_tensor * src1,
  9649. struct ggml_tensor * dst) {
  9650. switch (src0->type) {
  9651. case GGML_TYPE_F16:
  9652. {
  9653. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9654. } break;
  9655. case GGML_TYPE_F32:
  9656. {
  9657. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9658. } break;
  9659. default:
  9660. {
  9661. GGML_ASSERT(false);
  9662. } break;
  9663. }
  9664. }
  9665. // ggml_compute_forward_conv_transpose_1d
  9666. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9667. const struct ggml_compute_params * params,
  9668. const struct ggml_tensor * src0,
  9669. const struct ggml_tensor * src1,
  9670. struct ggml_tensor * dst) {
  9671. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9672. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9673. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9674. int64_t t0 = ggml_perf_time_us();
  9675. UNUSED(t0);
  9676. GGML_TENSOR_BINARY_OP_LOCALS
  9677. const int ith = params->ith;
  9678. const int nth = params->nth;
  9679. const int nk = ne00*ne01*ne02;
  9680. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9681. GGML_ASSERT(nb10 == sizeof(float));
  9682. if (params->type == GGML_TASK_INIT) {
  9683. memset(params->wdata, 0, params->wsize);
  9684. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9685. {
  9686. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9688. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9689. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9690. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9691. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9692. dst_data[i00*ne02 + i02] = src[i00];
  9693. }
  9694. }
  9695. }
  9696. }
  9697. // permute source data (src1) from (L x Cin) to (Cin x L)
  9698. {
  9699. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9700. ggml_fp16_t * dst_data = wdata;
  9701. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9702. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9703. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9704. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9705. }
  9706. }
  9707. }
  9708. // need to zero dst since we are accumulating into it
  9709. memset(dst->data, 0, ggml_nbytes(dst));
  9710. return;
  9711. }
  9712. if (params->type == GGML_TASK_FINALIZE) {
  9713. return;
  9714. }
  9715. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9716. // total rows in dst
  9717. const int nr = ne1;
  9718. // rows per thread
  9719. const int dr = (nr + nth - 1)/nth;
  9720. // row range for this thread
  9721. const int ir0 = dr*ith;
  9722. const int ir1 = MIN(ir0 + dr, nr);
  9723. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9724. ggml_fp16_t * const wdata_src = wdata + nk;
  9725. for (int i1 = ir0; i1 < ir1; i1++) {
  9726. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9727. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9728. for (int i10 = 0; i10 < ne10; i10++) {
  9729. const int i1n = i10*ne11;
  9730. for (int i00 = 0; i00 < ne00; i00++) {
  9731. float v = 0;
  9732. ggml_vec_dot_f16(ne02, &v,
  9733. (ggml_fp16_t *) wdata_src + i1n,
  9734. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9735. dst_data[i10*s0 + i00] += v;
  9736. }
  9737. }
  9738. }
  9739. }
  9740. static void ggml_compute_forward_conv_transpose_1d_f32(
  9741. const struct ggml_compute_params * params,
  9742. const struct ggml_tensor * src0,
  9743. const struct ggml_tensor * src1,
  9744. struct ggml_tensor * dst) {
  9745. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9746. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9747. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9748. int64_t t0 = ggml_perf_time_us();
  9749. UNUSED(t0);
  9750. GGML_TENSOR_BINARY_OP_LOCALS
  9751. const int ith = params->ith;
  9752. const int nth = params->nth;
  9753. const int nk = ne00*ne01*ne02;
  9754. GGML_ASSERT(nb00 == sizeof(float));
  9755. GGML_ASSERT(nb10 == sizeof(float));
  9756. if (params->type == GGML_TASK_INIT) {
  9757. memset(params->wdata, 0, params->wsize);
  9758. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9759. {
  9760. float * const wdata = (float *) params->wdata + 0;
  9761. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9762. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9763. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9764. float * dst_data = wdata + i01*ne00*ne02;
  9765. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9766. dst_data[i00*ne02 + i02] = src[i00];
  9767. }
  9768. }
  9769. }
  9770. }
  9771. // prepare source data (src1)
  9772. {
  9773. float * const wdata = (float *) params->wdata + nk;
  9774. float * dst_data = wdata;
  9775. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9776. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9777. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9778. dst_data[i10*ne11 + i11] = src[i10];
  9779. }
  9780. }
  9781. }
  9782. // need to zero dst since we are accumulating into it
  9783. memset(dst->data, 0, ggml_nbytes(dst));
  9784. return;
  9785. }
  9786. if (params->type == GGML_TASK_FINALIZE) {
  9787. return;
  9788. }
  9789. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9790. // total rows in dst
  9791. const int nr = ne1;
  9792. // rows per thread
  9793. const int dr = (nr + nth - 1)/nth;
  9794. // row range for this thread
  9795. const int ir0 = dr*ith;
  9796. const int ir1 = MIN(ir0 + dr, nr);
  9797. float * const wdata = (float *) params->wdata + 0;
  9798. float * const wdata_src = wdata + nk;
  9799. for (int i1 = ir0; i1 < ir1; i1++) {
  9800. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9801. float * wdata_kernel = wdata + i1*ne02*ne00;
  9802. for (int i10 = 0; i10 < ne10; i10++) {
  9803. const int i1n = i10*ne11;
  9804. for (int i00 = 0; i00 < ne00; i00++) {
  9805. float v = 0;
  9806. ggml_vec_dot_f32(ne02, &v,
  9807. wdata_src + i1n,
  9808. wdata_kernel + i00*ne02);
  9809. dst_data[i10*s0 + i00] += v;
  9810. }
  9811. }
  9812. }
  9813. }
  9814. static void ggml_compute_forward_conv_transpose_1d(
  9815. const struct ggml_compute_params * params,
  9816. const struct ggml_tensor * src0,
  9817. const struct ggml_tensor * src1,
  9818. struct ggml_tensor * dst) {
  9819. switch (src0->type) {
  9820. case GGML_TYPE_F16:
  9821. {
  9822. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9823. } break;
  9824. case GGML_TYPE_F32:
  9825. {
  9826. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9827. } break;
  9828. default:
  9829. {
  9830. GGML_ASSERT(false);
  9831. } break;
  9832. }
  9833. }
  9834. // src0: kernel [OC, IC, KH, KW]
  9835. // src1: image [N, IC, IH, IW]
  9836. // dst: result [N, OH, OW, IC*KH*KW]
  9837. static void ggml_compute_forward_im2col_f16(
  9838. const struct ggml_compute_params * params,
  9839. const struct ggml_tensor * src0,
  9840. const struct ggml_tensor * src1,
  9841. struct ggml_tensor * dst) {
  9842. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9843. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9844. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9845. int64_t t0 = ggml_perf_time_us();
  9846. UNUSED(t0);
  9847. GGML_TENSOR_BINARY_OP_LOCALS;
  9848. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9849. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9850. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9851. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9852. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9853. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9854. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9855. const int ith = params->ith;
  9856. const int nth = params->nth;
  9857. const int64_t N = is_2D ? ne13 : ne12;
  9858. const int64_t IC = is_2D ? ne12 : ne11;
  9859. const int64_t IH = is_2D ? ne11 : 1;
  9860. const int64_t IW = ne10;
  9861. const int64_t KH = is_2D ? ne01 : 1;
  9862. const int64_t KW = ne00;
  9863. const int64_t OH = is_2D ? ne2 : 1;
  9864. const int64_t OW = ne1;
  9865. int ofs0 = is_2D ? nb13 : nb12;
  9866. int ofs1 = is_2D ? nb12 : nb11;
  9867. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9868. GGML_ASSERT(nb10 == sizeof(float));
  9869. if (params->type == GGML_TASK_INIT) {
  9870. return;
  9871. }
  9872. if (params->type == GGML_TASK_FINALIZE) {
  9873. return;
  9874. }
  9875. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9876. {
  9877. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9878. for (int64_t in = 0; in < N; in++) {
  9879. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9880. for (int64_t iow = 0; iow < OW; iow++) {
  9881. for (int64_t iic = ith; iic < IC; iic += nth) {
  9882. // micro kernel
  9883. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9884. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9885. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9886. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9887. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9888. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9889. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9890. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9891. } else {
  9892. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9893. }
  9894. }
  9895. }
  9896. }
  9897. }
  9898. }
  9899. }
  9900. }
  9901. }
  9902. static void ggml_compute_forward_im2col(
  9903. const struct ggml_compute_params * params,
  9904. const struct ggml_tensor * src0,
  9905. const struct ggml_tensor * src1,
  9906. struct ggml_tensor * dst) {
  9907. switch (src0->type) {
  9908. case GGML_TYPE_F16:
  9909. {
  9910. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9911. } break;
  9912. case GGML_TYPE_F32:
  9913. {
  9914. GGML_ASSERT(false);
  9915. } break;
  9916. default:
  9917. {
  9918. GGML_ASSERT(false);
  9919. } break;
  9920. }
  9921. }
  9922. // ggml_compute_forward_conv_transpose_2d
  9923. static void ggml_compute_forward_conv_transpose_2d(
  9924. const struct ggml_compute_params * params,
  9925. const struct ggml_tensor * src0,
  9926. const struct ggml_tensor * src1,
  9927. struct ggml_tensor * dst) {
  9928. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9929. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9930. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9931. int64_t t0 = ggml_perf_time_us();
  9932. UNUSED(t0);
  9933. GGML_TENSOR_BINARY_OP_LOCALS
  9934. const int ith = params->ith;
  9935. const int nth = params->nth;
  9936. const int nk = ne00*ne01*ne02*ne03;
  9937. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9938. GGML_ASSERT(nb10 == sizeof(float));
  9939. if (params->type == GGML_TASK_INIT) {
  9940. memset(params->wdata, 0, params->wsize);
  9941. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9942. {
  9943. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9944. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9945. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9946. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9947. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9948. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9949. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9950. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9951. }
  9952. }
  9953. }
  9954. }
  9955. }
  9956. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9957. {
  9958. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9959. for (int i12 = 0; i12 < ne12; i12++) {
  9960. for (int i11 = 0; i11 < ne11; i11++) {
  9961. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9962. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9963. for (int i10 = 0; i10 < ne10; i10++) {
  9964. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9965. }
  9966. }
  9967. }
  9968. }
  9969. memset(dst->data, 0, ggml_nbytes(dst));
  9970. return;
  9971. }
  9972. if (params->type == GGML_TASK_FINALIZE) {
  9973. return;
  9974. }
  9975. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9976. // total patches in dst
  9977. const int np = ne2;
  9978. // patches per thread
  9979. const int dp = (np + nth - 1)/nth;
  9980. // patch range for this thread
  9981. const int ip0 = dp*ith;
  9982. const int ip1 = MIN(ip0 + dp, np);
  9983. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9984. ggml_fp16_t * const wdata_src = wdata + nk;
  9985. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9986. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9987. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9988. for (int i11 = 0; i11 < ne11; i11++) {
  9989. for (int i10 = 0; i10 < ne10; i10++) {
  9990. const int i1n = i11*ne10*ne12 + i10*ne12;
  9991. for (int i01 = 0; i01 < ne01; i01++) {
  9992. for (int i00 = 0; i00 < ne00; i00++) {
  9993. float v = 0;
  9994. ggml_vec_dot_f16(ne03, &v,
  9995. wdata_src + i1n,
  9996. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  9997. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  9998. }
  9999. }
  10000. }
  10001. }
  10002. }
  10003. }
  10004. // ggml_compute_forward_pool_1d_sk_p0
  10005. static void ggml_compute_forward_pool_1d_sk_p0(
  10006. const struct ggml_compute_params * params,
  10007. const enum ggml_op_pool op,
  10008. const struct ggml_tensor * src,
  10009. const int k,
  10010. struct ggml_tensor * dst) {
  10011. assert(src->type == GGML_TYPE_F32);
  10012. assert(params->ith == 0);
  10013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10014. return;
  10015. }
  10016. const char * cdata = (const char *)src->data;
  10017. const char * const data_end = cdata + ggml_nbytes(src);
  10018. float * drow = (float *)dst->data;
  10019. const int64_t rs = dst->ne[0];
  10020. while (cdata < data_end) {
  10021. const float * const srow = (const float *)cdata;
  10022. int j = 0;
  10023. for (int64_t i = 0; i < rs; ++i) {
  10024. switch (op) {
  10025. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10026. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10027. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10028. }
  10029. for (int ki = 0; ki < k; ++ki) {
  10030. switch (op) {
  10031. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10032. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10033. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10034. }
  10035. ++j;
  10036. }
  10037. switch (op) {
  10038. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10039. case GGML_OP_POOL_MAX: break;
  10040. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10041. }
  10042. }
  10043. cdata += src->nb[1];
  10044. drow += rs;
  10045. }
  10046. }
  10047. // ggml_compute_forward_pool_1d
  10048. static void ggml_compute_forward_pool_1d(
  10049. const struct ggml_compute_params * params,
  10050. const struct ggml_tensor * src0,
  10051. struct ggml_tensor * dst) {
  10052. const int32_t * opts = (const int32_t *)dst->op_params;
  10053. enum ggml_op_pool op = opts[0];
  10054. const int k0 = opts[1];
  10055. const int s0 = opts[2];
  10056. const int p0 = opts[3];
  10057. GGML_ASSERT(p0 == 0); // padding not supported
  10058. GGML_ASSERT(k0 == s0); // only s = k supported
  10059. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10060. }
  10061. // ggml_compute_forward_pool_2d
  10062. static void ggml_compute_forward_pool_2d(
  10063. const struct ggml_compute_params * params,
  10064. const struct ggml_tensor * src,
  10065. struct ggml_tensor * dst) {
  10066. assert(src->type == GGML_TYPE_F32);
  10067. assert(params->ith == 0);
  10068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10069. return;
  10070. }
  10071. const int32_t * opts = (const int32_t *)dst->op_params;
  10072. enum ggml_op_pool op = opts[0];
  10073. const int k0 = opts[1];
  10074. const int k1 = opts[2];
  10075. const int s0 = opts[3];
  10076. const int s1 = opts[4];
  10077. const int p0 = opts[5];
  10078. const int p1 = opts[6];
  10079. const char * cdata = (const char*)src->data;
  10080. const char * const data_end = cdata + ggml_nbytes(src);
  10081. const int64_t px = dst->ne[0];
  10082. const int64_t py = dst->ne[1];
  10083. const int64_t pa = px * py;
  10084. float * dplane = (float *)dst->data;
  10085. const int ka = k0 * k1;
  10086. const int offset0 = -p0;
  10087. const int offset1 = -p1;
  10088. while (cdata < data_end) {
  10089. for (int oy = 0; oy < py; ++oy) {
  10090. float * const drow = dplane + oy * px;
  10091. for (int ox = 0; ox < px; ++ox) {
  10092. float * const out = drow + ox;
  10093. switch (op) {
  10094. case GGML_OP_POOL_AVG: *out = 0; break;
  10095. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10096. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10097. }
  10098. const int ix = offset0 + ox * s0;
  10099. const int iy = offset1 + oy * s1;
  10100. for (int ky = 0; ky < k1; ++ky) {
  10101. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10102. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10103. for (int kx = 0; kx < k0; ++kx) {
  10104. int j = ix + kx;
  10105. if (j < 0 || j >= src->ne[0]) continue;
  10106. switch (op) {
  10107. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10108. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10109. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10110. }
  10111. }
  10112. }
  10113. switch (op) {
  10114. case GGML_OP_POOL_AVG: *out /= ka; break;
  10115. case GGML_OP_POOL_MAX: break;
  10116. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10117. }
  10118. }
  10119. }
  10120. cdata += src->nb[2];
  10121. dplane += pa;
  10122. }
  10123. }
  10124. // ggml_compute_forward_upscale
  10125. static void ggml_compute_forward_upscale_f32(
  10126. const struct ggml_compute_params * params,
  10127. const struct ggml_tensor * src0,
  10128. struct ggml_tensor * dst) {
  10129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10130. return;
  10131. }
  10132. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10133. const int ith = params->ith;
  10134. const int nth = params->nth;
  10135. GGML_TENSOR_UNARY_OP_LOCALS
  10136. const int scale_factor = dst->op_params[0];
  10137. // TODO: optimize
  10138. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10139. const int64_t i03 = i3;
  10140. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10141. const int64_t i02 = i2;
  10142. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10143. const int64_t i01 = i1 / scale_factor;
  10144. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10145. const int64_t i00 = i0 / scale_factor;
  10146. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10147. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10148. *y = *x;
  10149. }
  10150. }
  10151. }
  10152. }
  10153. }
  10154. static void ggml_compute_forward_upscale(
  10155. const struct ggml_compute_params * params,
  10156. const struct ggml_tensor * src0,
  10157. struct ggml_tensor * dst) {
  10158. switch (src0->type) {
  10159. case GGML_TYPE_F32:
  10160. {
  10161. ggml_compute_forward_upscale_f32(params, src0, dst);
  10162. } break;
  10163. default:
  10164. {
  10165. GGML_ASSERT(false);
  10166. } break;
  10167. }
  10168. }
  10169. // ggml_compute_forward_pad
  10170. static void ggml_compute_forward_pad_f32(
  10171. const struct ggml_compute_params * params,
  10172. const struct ggml_tensor * src0,
  10173. struct ggml_tensor * dst) {
  10174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10175. return;
  10176. }
  10177. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10178. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10179. const int ith = params->ith;
  10180. const int nth = params->nth;
  10181. GGML_TENSOR_UNARY_OP_LOCALS
  10182. float * dst_ptr = (float *) dst->data;
  10183. // TODO: optimize
  10184. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10185. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10186. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10187. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10188. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10189. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10190. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10191. dst_ptr[dst_idx] = *src_ptr;
  10192. } else {
  10193. dst_ptr[dst_idx] = 0;
  10194. }
  10195. }
  10196. }
  10197. }
  10198. }
  10199. }
  10200. static void ggml_compute_forward_pad(
  10201. const struct ggml_compute_params * params,
  10202. const struct ggml_tensor * src0,
  10203. struct ggml_tensor * dst) {
  10204. switch (src0->type) {
  10205. case GGML_TYPE_F32:
  10206. {
  10207. ggml_compute_forward_pad_f32(params, src0, dst);
  10208. } break;
  10209. default:
  10210. {
  10211. GGML_ASSERT(false);
  10212. } break;
  10213. }
  10214. }
  10215. // ggml_compute_forward_argsort
  10216. static void ggml_compute_forward_argsort_f32(
  10217. const struct ggml_compute_params * params,
  10218. const struct ggml_tensor * src0,
  10219. struct ggml_tensor * dst) {
  10220. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10221. return;
  10222. }
  10223. GGML_TENSOR_UNARY_OP_LOCALS
  10224. GGML_ASSERT(nb0 == sizeof(float));
  10225. const int ith = params->ith;
  10226. const int nth = params->nth;
  10227. const int64_t nr = ggml_nrows(src0);
  10228. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10229. for (int64_t i = ith; i < nr; i += nth) {
  10230. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10231. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10232. for (int64_t j = 0; j < ne0; j++) {
  10233. dst_data[j] = j;
  10234. }
  10235. // C doesn't have a functional sort, so we do a bubble sort instead
  10236. for (int64_t j = 0; j < ne0; j++) {
  10237. for (int64_t k = j + 1; k < ne0; k++) {
  10238. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10239. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10240. int32_t tmp = dst_data[j];
  10241. dst_data[j] = dst_data[k];
  10242. dst_data[k] = tmp;
  10243. }
  10244. }
  10245. }
  10246. }
  10247. }
  10248. static void ggml_compute_forward_argsort(
  10249. const struct ggml_compute_params * params,
  10250. const struct ggml_tensor * src0,
  10251. struct ggml_tensor * dst) {
  10252. switch (src0->type) {
  10253. case GGML_TYPE_F32:
  10254. {
  10255. ggml_compute_forward_argsort_f32(params, src0, dst);
  10256. } break;
  10257. default:
  10258. {
  10259. GGML_ASSERT(false);
  10260. } break;
  10261. }
  10262. }
  10263. // ggml_compute_forward_flash_attn
  10264. static void ggml_compute_forward_flash_attn_f32(
  10265. const struct ggml_compute_params * params,
  10266. const struct ggml_tensor * q,
  10267. const struct ggml_tensor * k,
  10268. const struct ggml_tensor * v,
  10269. const bool masked,
  10270. struct ggml_tensor * dst) {
  10271. int64_t t0 = ggml_perf_time_us();
  10272. UNUSED(t0);
  10273. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10274. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10275. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10276. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10277. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10278. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10279. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10280. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10281. const int ith = params->ith;
  10282. const int nth = params->nth;
  10283. const int64_t D = neq0;
  10284. const int64_t N = neq1;
  10285. const int64_t P = nek1 - N;
  10286. const int64_t M = P + N;
  10287. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10288. GGML_ASSERT(ne0 == D);
  10289. GGML_ASSERT(ne1 == N);
  10290. GGML_ASSERT(P >= 0);
  10291. GGML_ASSERT(nbq0 == sizeof(float));
  10292. GGML_ASSERT(nbk0 == sizeof(float));
  10293. GGML_ASSERT(nbv0 == sizeof(float));
  10294. GGML_ASSERT(neq0 == D);
  10295. GGML_ASSERT(nek0 == D);
  10296. GGML_ASSERT(nev1 == D);
  10297. GGML_ASSERT(neq1 == N);
  10298. GGML_ASSERT(nek1 == N + P);
  10299. GGML_ASSERT(nev1 == D);
  10300. // dst cannot be transposed or permuted
  10301. GGML_ASSERT(nb0 == sizeof(float));
  10302. GGML_ASSERT(nb0 <= nb1);
  10303. GGML_ASSERT(nb1 <= nb2);
  10304. GGML_ASSERT(nb2 <= nb3);
  10305. if (params->type == GGML_TASK_INIT) {
  10306. return;
  10307. }
  10308. if (params->type == GGML_TASK_FINALIZE) {
  10309. return;
  10310. }
  10311. // parallelize by q rows using ggml_vec_dot_f32
  10312. // total rows in q
  10313. const int nr = neq1*neq2*neq3;
  10314. // rows per thread
  10315. const int dr = (nr + nth - 1)/nth;
  10316. // row range for this thread
  10317. const int ir0 = dr*ith;
  10318. const int ir1 = MIN(ir0 + dr, nr);
  10319. const float scale = 1.0f/sqrtf(D);
  10320. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10321. for (int ir = ir0; ir < ir1; ++ir) {
  10322. // q indices
  10323. const int iq3 = ir/(neq2*neq1);
  10324. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10325. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10326. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10327. for (int i = M; i < Mup; ++i) {
  10328. S[i] = -INFINITY;
  10329. }
  10330. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10331. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10332. // k indices
  10333. const int ik3 = iq3;
  10334. const int ik2 = iq2 % nek2;
  10335. const int ik1 = ic;
  10336. // S indices
  10337. const int i1 = ik1;
  10338. ggml_vec_dot_f32(neq0,
  10339. S + i1,
  10340. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10341. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10342. }
  10343. // scale
  10344. ggml_vec_scale_f32(masked_begin, S, scale);
  10345. for (int64_t i = masked_begin; i < M; i++) {
  10346. S[i] = -INFINITY;
  10347. }
  10348. // softmax
  10349. // exclude known -INF S[..] values from max and loop
  10350. // dont forget to set their SW values to zero
  10351. {
  10352. float max = -INFINITY;
  10353. ggml_vec_max_f32(masked_begin, &max, S);
  10354. ggml_float sum = 0.0;
  10355. {
  10356. #ifdef GGML_SOFT_MAX_ACCELERATE
  10357. max = -max;
  10358. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10359. vvexpf(S, S, &Mup);
  10360. ggml_vec_sum_f32(Mup, &sum, S);
  10361. #else
  10362. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10363. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10364. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10365. if (i >= masked_begin) {
  10366. break;
  10367. }
  10368. float * SS = S + i;
  10369. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10370. if (i + j >= masked_begin) {
  10371. break;
  10372. } else if (SS[j] == -INFINITY) {
  10373. SS[j] = 0.0f;
  10374. } else {
  10375. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10376. const float val = expf(SS[j] - max);
  10377. #else
  10378. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10379. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10380. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10381. #endif
  10382. sump[j] += (ggml_float)val;
  10383. SS[j] = val;
  10384. }
  10385. }
  10386. }
  10387. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10388. sum += sump[i];
  10389. }
  10390. #endif
  10391. }
  10392. assert(sum > 0.0);
  10393. sum = 1.0/sum;
  10394. ggml_vec_scale_f32(masked_begin, S, sum);
  10395. #ifndef NDEBUG
  10396. for (int i = 0; i < masked_begin; ++i) {
  10397. assert(!isnan(S[i]));
  10398. assert(!isinf(S[i]));
  10399. }
  10400. #endif
  10401. }
  10402. for (int64_t ic = 0; ic < nev1; ++ic) {
  10403. // dst indices
  10404. const int i1 = iq1;
  10405. const int i2 = iq2;
  10406. const int i3 = iq3;
  10407. // v indices
  10408. const int iv2 = iq2 % nev2;
  10409. const int iv3 = iq3;
  10410. ggml_vec_dot_f32(masked_begin,
  10411. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10412. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10413. S);
  10414. }
  10415. }
  10416. }
  10417. static void ggml_compute_forward_flash_attn_f16(
  10418. const struct ggml_compute_params * params,
  10419. const struct ggml_tensor * q,
  10420. const struct ggml_tensor * k,
  10421. const struct ggml_tensor * v,
  10422. const bool masked,
  10423. struct ggml_tensor * dst) {
  10424. int64_t t0 = ggml_perf_time_us();
  10425. UNUSED(t0);
  10426. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10427. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10428. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10429. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10430. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10431. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10432. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10433. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10434. const int ith = params->ith;
  10435. const int nth = params->nth;
  10436. const int64_t D = neq0;
  10437. const int64_t N = neq1;
  10438. const int64_t P = nek1 - N;
  10439. const int64_t M = P + N;
  10440. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10441. GGML_ASSERT(ne0 == D);
  10442. GGML_ASSERT(ne1 == N);
  10443. GGML_ASSERT(P >= 0);
  10444. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10445. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10446. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10447. GGML_ASSERT(neq0 == D);
  10448. GGML_ASSERT(nek0 == D);
  10449. GGML_ASSERT(nev1 == D);
  10450. GGML_ASSERT(neq1 == N);
  10451. GGML_ASSERT(nek1 == N + P);
  10452. GGML_ASSERT(nev1 == D);
  10453. // dst cannot be transposed or permuted
  10454. GGML_ASSERT(nb0 == sizeof(float));
  10455. GGML_ASSERT(nb0 <= nb1);
  10456. GGML_ASSERT(nb1 <= nb2);
  10457. GGML_ASSERT(nb2 <= nb3);
  10458. if (params->type == GGML_TASK_INIT) {
  10459. return;
  10460. }
  10461. if (params->type == GGML_TASK_FINALIZE) {
  10462. return;
  10463. }
  10464. // parallelize by q rows using ggml_vec_dot_f32
  10465. // total rows in q
  10466. const int nr = neq1*neq2*neq3;
  10467. // rows per thread
  10468. const int dr = (nr + nth - 1)/nth;
  10469. // row range for this thread
  10470. const int ir0 = dr*ith;
  10471. const int ir1 = MIN(ir0 + dr, nr);
  10472. const float scale = 1.0f/sqrtf(D);
  10473. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10474. for (int ir = ir0; ir < ir1; ++ir) {
  10475. // q indices
  10476. const int iq3 = ir/(neq2*neq1);
  10477. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10478. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10479. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10480. for (int i = M; i < Mup; ++i) {
  10481. S[i] = -INFINITY;
  10482. }
  10483. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10484. for (int64_t ic = 0; ic < nek1; ++ic) {
  10485. // k indices
  10486. const int ik3 = iq3;
  10487. const int ik2 = iq2 % nek2;
  10488. const int ik1 = ic;
  10489. // S indices
  10490. const int i1 = ik1;
  10491. ggml_vec_dot_f16(neq0,
  10492. S + i1,
  10493. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10494. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10495. }
  10496. } else {
  10497. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10498. // k indices
  10499. const int ik3 = iq3;
  10500. const int ik2 = iq2 % nek2;
  10501. const int ik1 = ic;
  10502. // S indices
  10503. const int i1 = ik1;
  10504. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10505. S + i1,
  10506. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10507. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10508. }
  10509. }
  10510. // scale
  10511. ggml_vec_scale_f32(nek1, S, scale);
  10512. if (masked) {
  10513. for (int64_t i = P; i < M; i++) {
  10514. if (i > P + iq1) {
  10515. S[i] = -INFINITY;
  10516. }
  10517. }
  10518. }
  10519. // softmax
  10520. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10521. // dont forget to set their S values to zero
  10522. {
  10523. float max = -INFINITY;
  10524. ggml_vec_max_f32(M, &max, S);
  10525. ggml_float sum = 0.0;
  10526. {
  10527. #ifdef GGML_SOFT_MAX_ACCELERATE
  10528. max = -max;
  10529. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10530. vvexpf(S, S, &Mup);
  10531. ggml_vec_sum_f32(Mup, &sum, S);
  10532. #else
  10533. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10534. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10535. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10536. float * SS = S + i;
  10537. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10538. if (SS[j] == -INFINITY) {
  10539. SS[j] = 0.0f;
  10540. } else {
  10541. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10542. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10543. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10544. sump[j] += (ggml_float)val;
  10545. SS[j] = val;
  10546. }
  10547. }
  10548. }
  10549. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10550. sum += sump[i];
  10551. }
  10552. #endif
  10553. }
  10554. assert(sum > 0.0);
  10555. sum = 1.0/sum;
  10556. ggml_vec_scale_f32(M, S, sum);
  10557. #ifndef NDEBUG
  10558. for (int i = 0; i < M; ++i) {
  10559. assert(!isnan(S[i]));
  10560. assert(!isinf(S[i]));
  10561. }
  10562. #endif
  10563. }
  10564. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10565. for (int64_t i = 0; i < M; i++) {
  10566. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10567. }
  10568. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10569. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10570. for (int64_t ic = 0; ic < nev1; ++ic) {
  10571. // dst indices
  10572. const int i1 = iq1;
  10573. const int i2 = iq2;
  10574. const int i3 = iq3;
  10575. // v indices
  10576. const int iv2 = iq2 % nev2;
  10577. const int iv3 = iq3;
  10578. ggml_vec_dot_f16(nev0,
  10579. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10580. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10581. S16);
  10582. }
  10583. } else {
  10584. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10585. // dst indices
  10586. const int i1 = iq1;
  10587. const int i2 = iq2;
  10588. const int i3 = iq3;
  10589. // v indices
  10590. const int iv2 = iq2 % nev2;
  10591. const int iv3 = iq3;
  10592. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10593. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10594. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10595. S16);
  10596. }
  10597. }
  10598. }
  10599. }
  10600. static void ggml_compute_forward_flash_attn(
  10601. const struct ggml_compute_params * params,
  10602. const struct ggml_tensor * q,
  10603. const struct ggml_tensor * k,
  10604. const struct ggml_tensor * v,
  10605. const bool masked,
  10606. struct ggml_tensor * dst) {
  10607. switch (q->type) {
  10608. case GGML_TYPE_F16:
  10609. {
  10610. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10611. } break;
  10612. case GGML_TYPE_F32:
  10613. {
  10614. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10615. } break;
  10616. default:
  10617. {
  10618. GGML_ASSERT(false);
  10619. } break;
  10620. }
  10621. }
  10622. // ggml_compute_forward_flash_ff
  10623. static void ggml_compute_forward_flash_ff_f16(
  10624. const struct ggml_compute_params * params,
  10625. const struct ggml_tensor * a, // F16
  10626. const struct ggml_tensor * b0, // F16 fc_w
  10627. const struct ggml_tensor * b1, // F32 fc_b
  10628. const struct ggml_tensor * c0, // F16 proj_w
  10629. const struct ggml_tensor * c1, // F32 proj_b
  10630. struct ggml_tensor * dst) {
  10631. int64_t t0 = ggml_perf_time_us();
  10632. UNUSED(t0);
  10633. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10634. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10635. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10636. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10637. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10638. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10639. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10640. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10641. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10642. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10643. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10644. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10645. const int ith = params->ith;
  10646. const int nth = params->nth;
  10647. const int64_t D = nea0;
  10648. //const int64_t N = nea1;
  10649. const int64_t M = neb01;
  10650. GGML_ASSERT(ne0 == nea0);
  10651. GGML_ASSERT(ne1 == nea1);
  10652. GGML_ASSERT(ne2 == nea2);
  10653. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10654. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10655. GGML_ASSERT(nbb10 == sizeof(float));
  10656. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10657. GGML_ASSERT(nbc10 == sizeof(float));
  10658. GGML_ASSERT(neb00 == D);
  10659. GGML_ASSERT(neb01 == M);
  10660. GGML_ASSERT(neb10 == M);
  10661. GGML_ASSERT(neb11 == 1);
  10662. GGML_ASSERT(nec00 == M);
  10663. GGML_ASSERT(nec01 == D);
  10664. GGML_ASSERT(nec10 == D);
  10665. GGML_ASSERT(nec11 == 1);
  10666. // dst cannot be transposed or permuted
  10667. GGML_ASSERT(nb0 == sizeof(float));
  10668. GGML_ASSERT(nb0 <= nb1);
  10669. GGML_ASSERT(nb1 <= nb2);
  10670. GGML_ASSERT(nb2 <= nb3);
  10671. if (params->type == GGML_TASK_INIT) {
  10672. return;
  10673. }
  10674. if (params->type == GGML_TASK_FINALIZE) {
  10675. return;
  10676. }
  10677. // parallelize by a rows using ggml_vec_dot_f32
  10678. // total rows in a
  10679. const int nr = nea1*nea2*nea3;
  10680. // rows per thread
  10681. const int dr = (nr + nth - 1)/nth;
  10682. // row range for this thread
  10683. const int ir0 = dr*ith;
  10684. const int ir1 = MIN(ir0 + dr, nr);
  10685. for (int ir = ir0; ir < ir1; ++ir) {
  10686. // a indices
  10687. const int ia3 = ir/(nea2*nea1);
  10688. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10689. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10690. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10691. for (int64_t ic = 0; ic < neb01; ++ic) {
  10692. // b0 indices
  10693. const int ib03 = ia3;
  10694. const int ib02 = ia2;
  10695. const int ib01 = ic;
  10696. // S indices
  10697. const int i1 = ib01;
  10698. ggml_vec_dot_f16(nea0,
  10699. S + i1,
  10700. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10701. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10702. }
  10703. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10704. //ggml_vec_gelu_f32(neb01, S, S);
  10705. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10706. for (int64_t i = 0; i < M; i++) {
  10707. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10708. }
  10709. ggml_vec_gelu_f16(neb01, S16, S16);
  10710. {
  10711. // dst indices
  10712. const int i1 = ia1;
  10713. const int i2 = ia2;
  10714. const int i3 = ia3;
  10715. for (int64_t ic = 0; ic < nec01; ++ic) {
  10716. ggml_vec_dot_f16(neb01,
  10717. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10718. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10719. S16);
  10720. }
  10721. ggml_vec_add_f32(nec01,
  10722. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10723. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10724. (float *) c1->data);
  10725. }
  10726. }
  10727. }
  10728. static void ggml_compute_forward_flash_ff(
  10729. const struct ggml_compute_params * params,
  10730. const struct ggml_tensor * a,
  10731. const struct ggml_tensor * b0,
  10732. const struct ggml_tensor * b1,
  10733. const struct ggml_tensor * c0,
  10734. const struct ggml_tensor * c1,
  10735. struct ggml_tensor * dst) {
  10736. switch (b0->type) {
  10737. case GGML_TYPE_F16:
  10738. {
  10739. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10740. } break;
  10741. case GGML_TYPE_F32:
  10742. {
  10743. GGML_ASSERT(false); // TODO
  10744. } break;
  10745. default:
  10746. {
  10747. GGML_ASSERT(false);
  10748. } break;
  10749. }
  10750. }
  10751. // ggml_compute_forward_flash_attn_back
  10752. static void ggml_compute_forward_flash_attn_back_f32(
  10753. const struct ggml_compute_params * params,
  10754. const struct ggml_tensor * q,
  10755. const struct ggml_tensor * k,
  10756. const struct ggml_tensor * v,
  10757. const struct ggml_tensor * d,
  10758. const bool masked,
  10759. struct ggml_tensor * dst) {
  10760. int64_t t0 = ggml_perf_time_us();
  10761. UNUSED(t0);
  10762. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10763. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10764. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10765. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10766. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10767. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10768. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10769. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10770. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10771. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10772. const int ith = params->ith;
  10773. const int nth = params->nth;
  10774. const int64_t D = neq0;
  10775. const int64_t N = neq1;
  10776. const int64_t P = nek1 - N;
  10777. const int64_t M = P + N;
  10778. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10779. const int mxDM = MAX(D, Mup);
  10780. // GGML_ASSERT(ne0 == D);
  10781. // GGML_ASSERT(ne1 == N);
  10782. GGML_ASSERT(P >= 0);
  10783. GGML_ASSERT(nbq0 == sizeof(float));
  10784. GGML_ASSERT(nbk0 == sizeof(float));
  10785. GGML_ASSERT(nbv0 == sizeof(float));
  10786. GGML_ASSERT(neq0 == D);
  10787. GGML_ASSERT(nek0 == D);
  10788. GGML_ASSERT(nev1 == D);
  10789. GGML_ASSERT(ned0 == D);
  10790. GGML_ASSERT(neq1 == N);
  10791. GGML_ASSERT(nek1 == N + P);
  10792. GGML_ASSERT(nev1 == D);
  10793. GGML_ASSERT(ned1 == N);
  10794. // dst cannot be transposed or permuted
  10795. GGML_ASSERT(nb0 == sizeof(float));
  10796. GGML_ASSERT(nb0 <= nb1);
  10797. GGML_ASSERT(nb1 <= nb2);
  10798. GGML_ASSERT(nb2 <= nb3);
  10799. if (params->type == GGML_TASK_INIT) {
  10800. if (ith == 0) {
  10801. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10802. }
  10803. return;
  10804. }
  10805. if (params->type == GGML_TASK_FINALIZE) {
  10806. return;
  10807. }
  10808. const int64_t elem_q = ggml_nelements(q);
  10809. const int64_t elem_k = ggml_nelements(k);
  10810. enum ggml_type result_type = dst->type;
  10811. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10812. const size_t tsize = ggml_type_size(result_type);
  10813. const size_t offs_q = 0;
  10814. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10815. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10816. void * grad_q = (char *) dst->data;
  10817. void * grad_k = (char *) dst->data + offs_k;
  10818. void * grad_v = (char *) dst->data + offs_v;
  10819. const size_t nbgq1 = nb0*neq0;
  10820. const size_t nbgq2 = nb0*neq0*neq1;
  10821. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10822. const size_t nbgk1 = nb0*nek0;
  10823. const size_t nbgk2 = nb0*nek0*nek1;
  10824. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10825. const size_t nbgv1 = nb0*nev0;
  10826. const size_t nbgv2 = nb0*nev0*nev1;
  10827. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10828. // parallelize by k rows using ggml_vec_dot_f32
  10829. // total rows in k
  10830. const int nr = nek2*nek3;
  10831. // rows per thread
  10832. const int dr = (nr + nth - 1)/nth;
  10833. // row range for this thread
  10834. const int ir0 = dr*ith;
  10835. const int ir1 = MIN(ir0 + dr, nr);
  10836. const float scale = 1.0f/sqrtf(D);
  10837. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10838. // how often k2 (and v2) is repeated in q2
  10839. int nrep = neq2/nek2;
  10840. for (int ir = ir0; ir < ir1; ++ir) {
  10841. // q indices
  10842. const int ik3 = ir/(nek2);
  10843. const int ik2 = ir - ik3*nek2;
  10844. const int iq3 = ik3;
  10845. const int id3 = ik3;
  10846. const int iv3 = ik3;
  10847. const int iv2 = ik2;
  10848. for (int irep = 0; irep < nrep; ++irep) {
  10849. const int iq2 = ik2 + irep*nek2;
  10850. const int id2 = iq2;
  10851. // (ik2 + irep*nek2) % nek2 == ik2
  10852. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10853. const int id1 = iq1;
  10854. // not sure about CACHE_LINE_SIZE_F32..
  10855. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10856. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10857. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10858. for (int i = M; i < Mup; ++i) {
  10859. S[i] = -INFINITY;
  10860. }
  10861. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10862. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10863. // k indices
  10864. const int ik1 = ic;
  10865. // S indices
  10866. const int i1 = ik1;
  10867. ggml_vec_dot_f32(neq0,
  10868. S + i1,
  10869. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10870. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10871. }
  10872. // scale
  10873. ggml_vec_scale_f32(masked_begin, S, scale);
  10874. for (int64_t i = masked_begin; i < M; i++) {
  10875. S[i] = -INFINITY;
  10876. }
  10877. // softmax
  10878. // exclude known -INF S[..] values from max and loop
  10879. // dont forget to set their SM values to zero
  10880. {
  10881. float max = -INFINITY;
  10882. ggml_vec_max_f32(masked_begin, &max, S);
  10883. ggml_float sum = 0.0;
  10884. {
  10885. #ifdef GGML_SOFT_MAX_ACCELERATE
  10886. max = -max;
  10887. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10888. vvexpf(SM, SM, &Mup);
  10889. ggml_vec_sum_f32(Mup, &sum, SM);
  10890. #else
  10891. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10892. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10893. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10894. if (i >= masked_begin) {
  10895. break;
  10896. }
  10897. float * SR = S + i;
  10898. float * SW = SM + i;
  10899. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10900. if (i + j >= masked_begin) {
  10901. break;
  10902. } else if (SR[j] == -INFINITY) {
  10903. SW[j] = 0.0f;
  10904. } else {
  10905. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10906. const float val = expf(SR[j] - max);
  10907. #else
  10908. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10909. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10910. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10911. #endif
  10912. sump[j] += (ggml_float)val;
  10913. SW[j] = val;
  10914. }
  10915. }
  10916. }
  10917. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10918. sum += sump[i];
  10919. }
  10920. #endif
  10921. }
  10922. assert(sum > 0.0);
  10923. sum = 1.0/sum;
  10924. ggml_vec_scale_f32(masked_begin, SM, sum);
  10925. }
  10926. // step-by-step explanation
  10927. {
  10928. // forward-process shape grads from backward process
  10929. // parallel_for ik2,ik3:
  10930. // for irep:
  10931. // iq2 = ik2 + irep*nek2
  10932. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10933. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10934. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10935. // for iq1:
  10936. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10937. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10938. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10939. // S0 = -Inf [D,1,1,1]
  10940. // ~S1[i] = dot(kcur[:D,i], qcur)
  10941. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10942. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10943. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10944. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10945. // ~S5[i] = dot(vcur[:,i], S4)
  10946. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10947. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10948. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10949. // dst backward-/ grad[dst] = d
  10950. //
  10951. // output gradients with their dependencies:
  10952. //
  10953. // grad[kcur] = grad[S1].T @ qcur
  10954. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10955. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10956. // grad[S4] = grad[S5] @ vcur
  10957. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10958. // grad[qcur] = grad[S1] @ kcur
  10959. // grad[vcur] = grad[S5].T @ S4
  10960. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10961. //
  10962. // in post-order:
  10963. //
  10964. // S1 = qcur @ kcur.T
  10965. // S2 = S1 * scale
  10966. // S3 = diag_mask_inf(S2, P)
  10967. // S4 = softmax(S3)
  10968. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10969. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10970. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10971. // grad[qcur] = grad[S1] @ kcur
  10972. // grad[kcur] = grad[S1].T @ qcur
  10973. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10974. //
  10975. // using less variables (SM=S4):
  10976. //
  10977. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10978. // SM = softmax(S)
  10979. // S = d[:D,iq1,iq2,iq3] @ vcur
  10980. // dot_SM_gradSM = dot(SM, S)
  10981. // S = SM * (S - dot(SM, S))
  10982. // S = diag_mask_zero(S, P) * scale
  10983. //
  10984. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10985. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10986. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10987. }
  10988. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10989. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10990. // for ic:
  10991. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10992. // exclude known future zero S[..] values from operation
  10993. ggml_vec_set_f32(masked_begin, S, 0);
  10994. for (int64_t ic = 0; ic < D; ++ic) {
  10995. ggml_vec_mad_f32(masked_begin,
  10996. S,
  10997. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10998. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10999. }
  11000. // S = SM * (S - dot(SM, S))
  11001. float dot_SM_gradSM = 0;
  11002. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11003. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11004. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11005. // S = diag_mask_zero(S, P) * scale
  11006. // already done by above ggml_vec_set_f32
  11007. // exclude known zero S[..] values from operation
  11008. ggml_vec_scale_f32(masked_begin, S, scale);
  11009. // S shape [M,1]
  11010. // SM shape [M,1]
  11011. // kcur shape [D,M]
  11012. // qcur shape [D,1]
  11013. // vcur shape [M,D]
  11014. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11015. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11016. // for ic:
  11017. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11018. // exclude known zero S[..] values from loop
  11019. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11020. ggml_vec_mad_f32(D,
  11021. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11022. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11023. S[ic]);
  11024. }
  11025. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11026. // for ic:
  11027. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11028. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11029. // exclude known zero S[..] values from loop
  11030. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11031. ggml_vec_mad_f32(D,
  11032. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11033. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11034. S[ic]);
  11035. }
  11036. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11037. // for ic:
  11038. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11039. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11040. // exclude known zero SM[..] values from mad
  11041. for (int64_t ic = 0; ic < D; ++ic) {
  11042. ggml_vec_mad_f32(masked_begin,
  11043. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11044. SM,
  11045. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11046. }
  11047. }
  11048. }
  11049. }
  11050. }
  11051. static void ggml_compute_forward_flash_attn_back(
  11052. const struct ggml_compute_params * params,
  11053. const struct ggml_tensor * q,
  11054. const struct ggml_tensor * k,
  11055. const struct ggml_tensor * v,
  11056. const struct ggml_tensor * d,
  11057. const bool masked,
  11058. struct ggml_tensor * dst) {
  11059. switch (q->type) {
  11060. case GGML_TYPE_F32:
  11061. {
  11062. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11063. } break;
  11064. default:
  11065. {
  11066. GGML_ASSERT(false);
  11067. } break;
  11068. }
  11069. }
  11070. // ggml_compute_forward_win_part
  11071. static void ggml_compute_forward_win_part_f32(
  11072. const struct ggml_compute_params * params,
  11073. const struct ggml_tensor * src0,
  11074. struct ggml_tensor * dst) {
  11075. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11076. return;
  11077. }
  11078. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11079. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11080. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11081. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11082. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11083. assert(ne00 == ne0);
  11084. assert(ne3 == nep0*nep1);
  11085. // TODO: optimize / multi-thread
  11086. for (int py = 0; py < nep1; ++py) {
  11087. for (int px = 0; px < nep0; ++px) {
  11088. const int64_t i3 = py*nep0 + px;
  11089. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11090. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11091. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11092. const int64_t i02 = py*w + i2;
  11093. const int64_t i01 = px*w + i1;
  11094. const int64_t i00 = i0;
  11095. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11096. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11097. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11098. ((float *) dst->data)[i] = 0.0f;
  11099. } else {
  11100. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11101. }
  11102. }
  11103. }
  11104. }
  11105. }
  11106. }
  11107. }
  11108. static void ggml_compute_forward_win_part(
  11109. const struct ggml_compute_params * params,
  11110. const struct ggml_tensor * src0,
  11111. struct ggml_tensor * dst) {
  11112. switch (src0->type) {
  11113. case GGML_TYPE_F32:
  11114. {
  11115. ggml_compute_forward_win_part_f32(params, src0, dst);
  11116. } break;
  11117. default:
  11118. {
  11119. GGML_ASSERT(false);
  11120. } break;
  11121. }
  11122. }
  11123. // ggml_compute_forward_win_unpart
  11124. static void ggml_compute_forward_win_unpart_f32(
  11125. const struct ggml_compute_params * params,
  11126. const struct ggml_tensor * src0,
  11127. struct ggml_tensor * dst) {
  11128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11129. return;
  11130. }
  11131. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11132. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11133. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11134. // padding
  11135. const int px = (w - ne1%w)%w;
  11136. //const int py = (w - ne2%w)%w;
  11137. const int npx = (px + ne1)/w;
  11138. //const int npy = (py + ne2)/w;
  11139. assert(ne0 == ne00);
  11140. // TODO: optimize / multi-thread
  11141. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11142. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11143. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11144. const int ip2 = i2/w;
  11145. const int ip1 = i1/w;
  11146. const int64_t i02 = i2%w;
  11147. const int64_t i01 = i1%w;
  11148. const int64_t i00 = i0;
  11149. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11150. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11151. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11152. }
  11153. }
  11154. }
  11155. }
  11156. static void ggml_compute_forward_win_unpart(
  11157. const struct ggml_compute_params * params,
  11158. const struct ggml_tensor * src0,
  11159. struct ggml_tensor * dst) {
  11160. switch (src0->type) {
  11161. case GGML_TYPE_F32:
  11162. {
  11163. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11164. } break;
  11165. default:
  11166. {
  11167. GGML_ASSERT(false);
  11168. } break;
  11169. }
  11170. }
  11171. //gmml_compute_forward_unary
  11172. static void ggml_compute_forward_unary(
  11173. const struct ggml_compute_params * params,
  11174. const struct ggml_tensor * src0,
  11175. struct ggml_tensor * dst) {
  11176. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11177. switch (op) {
  11178. case GGML_UNARY_OP_ABS:
  11179. {
  11180. ggml_compute_forward_abs(params, src0, dst);
  11181. } break;
  11182. case GGML_UNARY_OP_SGN:
  11183. {
  11184. ggml_compute_forward_sgn(params, src0, dst);
  11185. } break;
  11186. case GGML_UNARY_OP_NEG:
  11187. {
  11188. ggml_compute_forward_neg(params, src0, dst);
  11189. } break;
  11190. case GGML_UNARY_OP_STEP:
  11191. {
  11192. ggml_compute_forward_step(params, src0, dst);
  11193. } break;
  11194. case GGML_UNARY_OP_TANH:
  11195. {
  11196. ggml_compute_forward_tanh(params, src0, dst);
  11197. } break;
  11198. case GGML_UNARY_OP_ELU:
  11199. {
  11200. ggml_compute_forward_elu(params, src0, dst);
  11201. } break;
  11202. case GGML_UNARY_OP_RELU:
  11203. {
  11204. ggml_compute_forward_relu(params, src0, dst);
  11205. } break;
  11206. case GGML_UNARY_OP_GELU:
  11207. {
  11208. ggml_compute_forward_gelu(params, src0, dst);
  11209. } break;
  11210. case GGML_UNARY_OP_GELU_QUICK:
  11211. {
  11212. ggml_compute_forward_gelu_quick(params, src0, dst);
  11213. } break;
  11214. case GGML_UNARY_OP_SILU:
  11215. {
  11216. ggml_compute_forward_silu(params, src0, dst);
  11217. } break;
  11218. default:
  11219. {
  11220. GGML_ASSERT(false);
  11221. } break;
  11222. }
  11223. }
  11224. // ggml_compute_forward_get_rel_pos
  11225. static void ggml_compute_forward_get_rel_pos_f16(
  11226. const struct ggml_compute_params * params,
  11227. const struct ggml_tensor * src0,
  11228. struct ggml_tensor * dst) {
  11229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11230. return;
  11231. }
  11232. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11233. GGML_TENSOR_UNARY_OP_LOCALS
  11234. const int64_t w = ne1;
  11235. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11236. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11237. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11238. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11239. const int64_t pos = (w - i1 - 1) + i2;
  11240. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11241. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11242. }
  11243. }
  11244. }
  11245. }
  11246. static void ggml_compute_forward_get_rel_pos(
  11247. const struct ggml_compute_params * params,
  11248. const struct ggml_tensor * src0,
  11249. struct ggml_tensor * dst) {
  11250. switch (src0->type) {
  11251. case GGML_TYPE_F16:
  11252. {
  11253. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11254. } break;
  11255. default:
  11256. {
  11257. GGML_ASSERT(false);
  11258. } break;
  11259. }
  11260. }
  11261. // ggml_compute_forward_add_rel_pos
  11262. static void ggml_compute_forward_add_rel_pos_f32(
  11263. const struct ggml_compute_params * params,
  11264. const struct ggml_tensor * src0,
  11265. const struct ggml_tensor * src1,
  11266. const struct ggml_tensor * src2,
  11267. struct ggml_tensor * dst) {
  11268. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11269. if (!inplace && params->type == GGML_TASK_INIT) {
  11270. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11271. return;
  11272. }
  11273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11274. return;
  11275. }
  11276. int64_t t0 = ggml_perf_time_us();
  11277. UNUSED(t0);
  11278. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11279. float * src1_data = (float *) src1->data;
  11280. float * src2_data = (float *) src2->data;
  11281. float * dst_data = (float *) dst->data;
  11282. const int64_t ne10 = src1->ne[0];
  11283. const int64_t ne11 = src1->ne[1];
  11284. const int64_t ne12 = src1->ne[2];
  11285. const int64_t ne13 = src1->ne[3];
  11286. const int ith = params->ith;
  11287. const int nth = params->nth;
  11288. // total patches in dst
  11289. const int np = ne13;
  11290. // patches per thread
  11291. const int dp = (np + nth - 1)/nth;
  11292. // patch range for this thread
  11293. const int ip0 = dp*ith;
  11294. const int ip1 = MIN(ip0 + dp, np);
  11295. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11296. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11297. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11298. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11299. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11300. const int64_t jp0 = jp1 + i10;
  11301. const float src1_e = src1_data[jp0];
  11302. const float src2_e = src2_data[jp0];
  11303. const int64_t jdh = jp0 * ne10;
  11304. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11305. for (int64_t j = 0; j < ne10; ++j) {
  11306. dst_data[jdh + j ] += src2_e;
  11307. dst_data[jdw + j*ne10] += src1_e;
  11308. }
  11309. }
  11310. }
  11311. }
  11312. }
  11313. }
  11314. static void ggml_compute_forward_add_rel_pos(
  11315. const struct ggml_compute_params * params,
  11316. const struct ggml_tensor * src0,
  11317. const struct ggml_tensor * src1,
  11318. const struct ggml_tensor * src2,
  11319. struct ggml_tensor * dst) {
  11320. switch (src0->type) {
  11321. case GGML_TYPE_F32:
  11322. {
  11323. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11324. } break;
  11325. default:
  11326. {
  11327. GGML_ASSERT(false);
  11328. } break;
  11329. }
  11330. }
  11331. // ggml_compute_forward_map_unary
  11332. static void ggml_compute_forward_map_unary_f32(
  11333. const struct ggml_compute_params * params,
  11334. const struct ggml_tensor * src0,
  11335. struct ggml_tensor * dst,
  11336. const ggml_unary_op_f32_t fun) {
  11337. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11339. return;
  11340. }
  11341. const int n = ggml_nrows(src0);
  11342. const int nc = src0->ne[0];
  11343. assert( dst->nb[0] == sizeof(float));
  11344. assert(src0->nb[0] == sizeof(float));
  11345. for (int i = 0; i < n; i++) {
  11346. fun(nc,
  11347. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11348. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11349. }
  11350. }
  11351. static void ggml_compute_forward_map_unary(
  11352. const struct ggml_compute_params * params,
  11353. const struct ggml_tensor * src0,
  11354. struct ggml_tensor * dst,
  11355. const ggml_unary_op_f32_t fun) {
  11356. switch (src0->type) {
  11357. case GGML_TYPE_F32:
  11358. {
  11359. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11360. } break;
  11361. default:
  11362. {
  11363. GGML_ASSERT(false);
  11364. } break;
  11365. }
  11366. }
  11367. // ggml_compute_forward_map_binary
  11368. static void ggml_compute_forward_map_binary_f32(
  11369. const struct ggml_compute_params * params,
  11370. const struct ggml_tensor * src0,
  11371. const struct ggml_tensor * src1,
  11372. struct ggml_tensor * dst,
  11373. const ggml_binary_op_f32_t fun) {
  11374. assert(params->ith == 0);
  11375. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11377. return;
  11378. }
  11379. const int n = ggml_nrows(src0);
  11380. const int nc = src0->ne[0];
  11381. assert( dst->nb[0] == sizeof(float));
  11382. assert(src0->nb[0] == sizeof(float));
  11383. assert(src1->nb[0] == sizeof(float));
  11384. for (int i = 0; i < n; i++) {
  11385. fun(nc,
  11386. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11387. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11388. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11389. }
  11390. }
  11391. static void ggml_compute_forward_map_binary(
  11392. const struct ggml_compute_params * params,
  11393. const struct ggml_tensor * src0,
  11394. const struct ggml_tensor * src1,
  11395. struct ggml_tensor * dst,
  11396. const ggml_binary_op_f32_t fun) {
  11397. switch (src0->type) {
  11398. case GGML_TYPE_F32:
  11399. {
  11400. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11401. } break;
  11402. default:
  11403. {
  11404. GGML_ASSERT(false);
  11405. } break;
  11406. }
  11407. }
  11408. // ggml_compute_forward_map_custom1
  11409. static void ggml_compute_forward_map_custom1_f32(
  11410. const struct ggml_compute_params * params,
  11411. const struct ggml_tensor * a,
  11412. struct ggml_tensor * dst,
  11413. const ggml_custom1_op_f32_t fun) {
  11414. assert(params->ith == 0);
  11415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11416. return;
  11417. }
  11418. fun(dst, a);
  11419. }
  11420. // ggml_compute_forward_map_custom2
  11421. static void ggml_compute_forward_map_custom2_f32(
  11422. const struct ggml_compute_params * params,
  11423. const struct ggml_tensor * a,
  11424. const struct ggml_tensor * b,
  11425. struct ggml_tensor * dst,
  11426. const ggml_custom2_op_f32_t fun) {
  11427. assert(params->ith == 0);
  11428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11429. return;
  11430. }
  11431. fun(dst, a, b);
  11432. }
  11433. // ggml_compute_forward_map_custom3
  11434. static void ggml_compute_forward_map_custom3_f32(
  11435. const struct ggml_compute_params * params,
  11436. const struct ggml_tensor * a,
  11437. const struct ggml_tensor * b,
  11438. const struct ggml_tensor * c,
  11439. struct ggml_tensor * dst,
  11440. const ggml_custom3_op_f32_t fun) {
  11441. assert(params->ith == 0);
  11442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11443. return;
  11444. }
  11445. fun(dst, a, b, c);
  11446. }
  11447. // ggml_compute_forward_map_custom1
  11448. static void ggml_compute_forward_map_custom1(
  11449. const struct ggml_compute_params * params,
  11450. const struct ggml_tensor * a,
  11451. struct ggml_tensor * dst) {
  11452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11453. return;
  11454. }
  11455. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11456. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11457. }
  11458. // ggml_compute_forward_map_custom2
  11459. static void ggml_compute_forward_map_custom2(
  11460. const struct ggml_compute_params * params,
  11461. const struct ggml_tensor * a,
  11462. const struct ggml_tensor * b,
  11463. struct ggml_tensor * dst) {
  11464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11465. return;
  11466. }
  11467. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11468. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11469. }
  11470. // ggml_compute_forward_map_custom3
  11471. static void ggml_compute_forward_map_custom3(
  11472. const struct ggml_compute_params * params,
  11473. const struct ggml_tensor * a,
  11474. const struct ggml_tensor * b,
  11475. const struct ggml_tensor * c,
  11476. struct ggml_tensor * dst) {
  11477. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11478. return;
  11479. }
  11480. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11481. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11482. }
  11483. // ggml_compute_forward_cross_entropy_loss
  11484. static void ggml_compute_forward_cross_entropy_loss_f32(
  11485. const struct ggml_compute_params * params,
  11486. const struct ggml_tensor * src0,
  11487. const struct ggml_tensor * src1,
  11488. struct ggml_tensor * dst) {
  11489. GGML_ASSERT(ggml_is_contiguous(src0));
  11490. GGML_ASSERT(ggml_is_contiguous(src1));
  11491. GGML_ASSERT(ggml_is_scalar(dst));
  11492. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11493. const int ith = params->ith;
  11494. const int nth = params->nth;
  11495. float * sums = (float *) params->wdata;
  11496. // TODO: handle transposed/permuted matrices
  11497. const int nc = src0->ne[0];
  11498. const int nr = ggml_nrows(src0);
  11499. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11500. if (params->type == GGML_TASK_INIT) {
  11501. if (ith == 0) {
  11502. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11503. }
  11504. return;
  11505. }
  11506. if (params->type == GGML_TASK_FINALIZE) {
  11507. if (ith == 0) {
  11508. float * dp = (float *) dst->data;
  11509. ggml_vec_sum_f32(nth, dp, sums);
  11510. dp[0] *= -1.0f / (float) nr;
  11511. }
  11512. return;
  11513. }
  11514. const double eps = 1e-9;
  11515. // rows per thread
  11516. const int dr = (nr + nth - 1)/nth;
  11517. // row range for this thread
  11518. const int ir0 = dr*ith;
  11519. const int ir1 = MIN(ir0 + dr, nr);
  11520. for (int i1 = ir0; i1 < ir1; i1++) {
  11521. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11522. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11523. float * st = ((float *) params->wdata) + nth + ith*nc;
  11524. #ifndef NDEBUG
  11525. for (int i = 0; i < nc; ++i) {
  11526. //printf("p[%d] = %f\n", i, p[i]);
  11527. assert(!isnan(s0[i]));
  11528. assert(!isnan(s1[i]));
  11529. }
  11530. #endif
  11531. // soft_max
  11532. ggml_float sum = 0.0;
  11533. {
  11534. float max = -INFINITY;
  11535. ggml_vec_max_f32(nc, &max, s0);
  11536. uint16_t scvt; UNUSED(scvt);
  11537. for (int i = 0; i < nc; i++) {
  11538. if (s0[i] == -INFINITY) {
  11539. st[i] = 0.0f;
  11540. } else {
  11541. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11542. const float s = s0[i] - max;
  11543. const float val = expf(s);
  11544. #else
  11545. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11546. memcpy(&scvt, &s, sizeof(scvt));
  11547. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11548. #endif
  11549. sum += (ggml_float)val;
  11550. st[i] = val;
  11551. }
  11552. }
  11553. assert(sum > 0.0);
  11554. // sum = 1.0/sum;
  11555. }
  11556. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11557. sum = (1.0 - eps) / sum;
  11558. ggml_vec_scale_f32(nc, st, sum);
  11559. ggml_vec_add1_f32(nc, st, st, eps);
  11560. ggml_vec_log_f32(nc, st, st);
  11561. ggml_vec_mul_f32(nc, st, st, s1);
  11562. float st_sum = 0;
  11563. ggml_vec_sum_f32(nc, &st_sum, st);
  11564. sums[ith] += st_sum;
  11565. #ifndef NDEBUG
  11566. for (int i = 0; i < nc; ++i) {
  11567. assert(!isnan(st[i]));
  11568. assert(!isinf(st[i]));
  11569. }
  11570. #endif
  11571. }
  11572. }
  11573. static void ggml_compute_forward_cross_entropy_loss(
  11574. const struct ggml_compute_params * params,
  11575. const struct ggml_tensor * src0,
  11576. const struct ggml_tensor * src1,
  11577. struct ggml_tensor * dst) {
  11578. switch (src0->type) {
  11579. case GGML_TYPE_F32:
  11580. {
  11581. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11582. } break;
  11583. default:
  11584. {
  11585. GGML_ASSERT(false);
  11586. } break;
  11587. }
  11588. }
  11589. // ggml_compute_forward_cross_entropy_loss_back
  11590. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11591. const struct ggml_compute_params * params,
  11592. const struct ggml_tensor * src0,
  11593. const struct ggml_tensor * src1,
  11594. const struct ggml_tensor * opt0,
  11595. struct ggml_tensor * dst) {
  11596. GGML_ASSERT(ggml_is_contiguous(dst));
  11597. GGML_ASSERT(ggml_is_contiguous(src0));
  11598. GGML_ASSERT(ggml_is_contiguous(src1));
  11599. GGML_ASSERT(ggml_is_contiguous(opt0));
  11600. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11601. const int64_t ith = params->ith;
  11602. const int64_t nth = params->nth;
  11603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11604. return;
  11605. }
  11606. const double eps = 1e-9;
  11607. // TODO: handle transposed/permuted matrices
  11608. const int64_t nc = src0->ne[0];
  11609. const int64_t nr = ggml_nrows(src0);
  11610. // rows per thread
  11611. const int64_t dr = (nr + nth - 1)/nth;
  11612. // row range for this thread
  11613. const int64_t ir0 = dr*ith;
  11614. const int64_t ir1 = MIN(ir0 + dr, nr);
  11615. float * d = (float *) opt0->data;
  11616. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11617. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11618. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11619. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11620. #ifndef NDEBUG
  11621. for (int i = 0; i < nc; ++i) {
  11622. //printf("p[%d] = %f\n", i, p[i]);
  11623. assert(!isnan(s0[i]));
  11624. assert(!isnan(s1[i]));
  11625. }
  11626. #endif
  11627. // soft_max
  11628. ggml_float sum = 0.0;
  11629. {
  11630. float max = -INFINITY;
  11631. ggml_vec_max_f32(nc, &max, s0);
  11632. uint16_t scvt; UNUSED(scvt);
  11633. for (int i = 0; i < nc; i++) {
  11634. if (s0[i] == -INFINITY) {
  11635. ds0[i] = 0.0f;
  11636. } else {
  11637. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11638. const float s = s0[i] - max;
  11639. const float val = expf(s);
  11640. #else
  11641. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11642. memcpy(&scvt, &s, sizeof(scvt));
  11643. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11644. #endif
  11645. sum += (ggml_float)val;
  11646. ds0[i] = val;
  11647. }
  11648. }
  11649. assert(sum > 0.0);
  11650. sum = (1.0 - eps)/sum;
  11651. }
  11652. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11653. ggml_vec_scale_f32(nc, ds0, sum);
  11654. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11655. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11656. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11657. #ifndef NDEBUG
  11658. for (int i = 0; i < nc; ++i) {
  11659. assert(!isnan(ds0[i]));
  11660. assert(!isinf(ds0[i]));
  11661. }
  11662. #endif
  11663. }
  11664. }
  11665. static void ggml_compute_forward_cross_entropy_loss_back(
  11666. const struct ggml_compute_params * params,
  11667. const struct ggml_tensor * src0,
  11668. const struct ggml_tensor * src1,
  11669. const struct ggml_tensor * opt0,
  11670. struct ggml_tensor * dst) {
  11671. switch (src0->type) {
  11672. case GGML_TYPE_F32:
  11673. {
  11674. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11675. } break;
  11676. default:
  11677. {
  11678. GGML_ASSERT(false);
  11679. } break;
  11680. }
  11681. }
  11682. /////////////////////////////////
  11683. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11684. GGML_ASSERT(params);
  11685. if (tensor->op == GGML_OP_NONE) {
  11686. return;
  11687. }
  11688. #ifdef GGML_USE_CUBLAS
  11689. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11690. if (skip_cpu) {
  11691. return;
  11692. }
  11693. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11694. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11695. #endif // GGML_USE_CUBLAS
  11696. switch (tensor->op) {
  11697. case GGML_OP_DUP:
  11698. {
  11699. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11700. } break;
  11701. case GGML_OP_ADD:
  11702. {
  11703. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11704. } break;
  11705. case GGML_OP_ADD1:
  11706. {
  11707. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11708. } break;
  11709. case GGML_OP_ACC:
  11710. {
  11711. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11712. } break;
  11713. case GGML_OP_SUB:
  11714. {
  11715. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11716. } break;
  11717. case GGML_OP_MUL:
  11718. {
  11719. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11720. } break;
  11721. case GGML_OP_DIV:
  11722. {
  11723. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11724. } break;
  11725. case GGML_OP_SQR:
  11726. {
  11727. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11728. } break;
  11729. case GGML_OP_SQRT:
  11730. {
  11731. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11732. } break;
  11733. case GGML_OP_LOG:
  11734. {
  11735. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11736. } break;
  11737. case GGML_OP_SUM:
  11738. {
  11739. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11740. } break;
  11741. case GGML_OP_SUM_ROWS:
  11742. {
  11743. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11744. } break;
  11745. case GGML_OP_MEAN:
  11746. {
  11747. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11748. } break;
  11749. case GGML_OP_ARGMAX:
  11750. {
  11751. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11752. } break;
  11753. case GGML_OP_REPEAT:
  11754. {
  11755. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11756. } break;
  11757. case GGML_OP_REPEAT_BACK:
  11758. {
  11759. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11760. } break;
  11761. case GGML_OP_CONCAT:
  11762. {
  11763. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11764. } break;
  11765. case GGML_OP_SILU_BACK:
  11766. {
  11767. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11768. } break;
  11769. case GGML_OP_NORM:
  11770. {
  11771. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11772. } break;
  11773. case GGML_OP_RMS_NORM:
  11774. {
  11775. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11776. } break;
  11777. case GGML_OP_RMS_NORM_BACK:
  11778. {
  11779. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11780. } break;
  11781. case GGML_OP_GROUP_NORM:
  11782. {
  11783. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11784. } break;
  11785. case GGML_OP_MUL_MAT:
  11786. {
  11787. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11788. } break;
  11789. case GGML_OP_MUL_MAT_ID:
  11790. {
  11791. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11792. } break;
  11793. case GGML_OP_OUT_PROD:
  11794. {
  11795. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11796. } break;
  11797. case GGML_OP_SCALE:
  11798. {
  11799. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11800. } break;
  11801. case GGML_OP_SET:
  11802. {
  11803. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11804. } break;
  11805. case GGML_OP_CPY:
  11806. {
  11807. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11808. } break;
  11809. case GGML_OP_CONT:
  11810. {
  11811. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11812. } break;
  11813. case GGML_OP_RESHAPE:
  11814. {
  11815. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11816. } break;
  11817. case GGML_OP_VIEW:
  11818. {
  11819. ggml_compute_forward_view(params, tensor->src[0]);
  11820. } break;
  11821. case GGML_OP_PERMUTE:
  11822. {
  11823. ggml_compute_forward_permute(params, tensor->src[0]);
  11824. } break;
  11825. case GGML_OP_TRANSPOSE:
  11826. {
  11827. ggml_compute_forward_transpose(params, tensor->src[0]);
  11828. } break;
  11829. case GGML_OP_GET_ROWS:
  11830. {
  11831. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11832. } break;
  11833. case GGML_OP_GET_ROWS_BACK:
  11834. {
  11835. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11836. } break;
  11837. case GGML_OP_DIAG:
  11838. {
  11839. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11840. } break;
  11841. case GGML_OP_DIAG_MASK_INF:
  11842. {
  11843. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11844. } break;
  11845. case GGML_OP_DIAG_MASK_ZERO:
  11846. {
  11847. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11848. } break;
  11849. case GGML_OP_SOFT_MAX:
  11850. {
  11851. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11852. } break;
  11853. case GGML_OP_SOFT_MAX_BACK:
  11854. {
  11855. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11856. } break;
  11857. case GGML_OP_ROPE:
  11858. {
  11859. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11860. } break;
  11861. case GGML_OP_ROPE_BACK:
  11862. {
  11863. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11864. } break;
  11865. case GGML_OP_ALIBI:
  11866. {
  11867. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11868. } break;
  11869. case GGML_OP_CLAMP:
  11870. {
  11871. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11872. } break;
  11873. case GGML_OP_CONV_TRANSPOSE_1D:
  11874. {
  11875. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11876. } break;
  11877. case GGML_OP_IM2COL:
  11878. {
  11879. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11880. } break;
  11881. case GGML_OP_CONV_TRANSPOSE_2D:
  11882. {
  11883. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11884. } break;
  11885. case GGML_OP_POOL_1D:
  11886. {
  11887. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11888. } break;
  11889. case GGML_OP_POOL_2D:
  11890. {
  11891. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11892. } break;
  11893. case GGML_OP_UPSCALE:
  11894. {
  11895. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11896. } break;
  11897. case GGML_OP_PAD:
  11898. {
  11899. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  11900. } break;
  11901. case GGML_OP_ARGSORT:
  11902. {
  11903. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  11904. } break;
  11905. case GGML_OP_LEAKY_RELU:
  11906. {
  11907. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  11908. } break;
  11909. case GGML_OP_FLASH_ATTN:
  11910. {
  11911. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11912. GGML_ASSERT(t == 0 || t == 1);
  11913. const bool masked = t != 0;
  11914. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11915. } break;
  11916. case GGML_OP_FLASH_FF:
  11917. {
  11918. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11919. } break;
  11920. case GGML_OP_FLASH_ATTN_BACK:
  11921. {
  11922. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11923. GGML_ASSERT(t == 0 || t == 1);
  11924. bool masked = t != 0;
  11925. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11926. } break;
  11927. case GGML_OP_WIN_PART:
  11928. {
  11929. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11930. } break;
  11931. case GGML_OP_WIN_UNPART:
  11932. {
  11933. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11934. } break;
  11935. case GGML_OP_UNARY:
  11936. {
  11937. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11938. } break;
  11939. case GGML_OP_GET_REL_POS:
  11940. {
  11941. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11942. } break;
  11943. case GGML_OP_ADD_REL_POS:
  11944. {
  11945. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11946. } break;
  11947. case GGML_OP_MAP_UNARY:
  11948. {
  11949. ggml_unary_op_f32_t fun;
  11950. memcpy(&fun, tensor->op_params, sizeof(fun));
  11951. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11952. }
  11953. break;
  11954. case GGML_OP_MAP_BINARY:
  11955. {
  11956. ggml_binary_op_f32_t fun;
  11957. memcpy(&fun, tensor->op_params, sizeof(fun));
  11958. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11959. }
  11960. break;
  11961. case GGML_OP_MAP_CUSTOM1_F32:
  11962. {
  11963. ggml_custom1_op_f32_t fun;
  11964. memcpy(&fun, tensor->op_params, sizeof(fun));
  11965. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11966. }
  11967. break;
  11968. case GGML_OP_MAP_CUSTOM2_F32:
  11969. {
  11970. ggml_custom2_op_f32_t fun;
  11971. memcpy(&fun, tensor->op_params, sizeof(fun));
  11972. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11973. }
  11974. break;
  11975. case GGML_OP_MAP_CUSTOM3_F32:
  11976. {
  11977. ggml_custom3_op_f32_t fun;
  11978. memcpy(&fun, tensor->op_params, sizeof(fun));
  11979. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11980. }
  11981. break;
  11982. case GGML_OP_MAP_CUSTOM1:
  11983. {
  11984. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11985. }
  11986. break;
  11987. case GGML_OP_MAP_CUSTOM2:
  11988. {
  11989. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11990. }
  11991. break;
  11992. case GGML_OP_MAP_CUSTOM3:
  11993. {
  11994. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11995. }
  11996. break;
  11997. case GGML_OP_CROSS_ENTROPY_LOSS:
  11998. {
  11999. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12000. }
  12001. break;
  12002. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12003. {
  12004. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12005. }
  12006. break;
  12007. case GGML_OP_NONE:
  12008. {
  12009. // nop
  12010. } break;
  12011. case GGML_OP_COUNT:
  12012. {
  12013. GGML_ASSERT(false);
  12014. } break;
  12015. }
  12016. }
  12017. ////////////////////////////////////////////////////////////////////////////////
  12018. static size_t ggml_hash_size(size_t min_sz) {
  12019. // next primes after powers of two
  12020. static const size_t primes[] = {
  12021. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12022. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12023. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12024. 16777259, 33554467, 67108879, 134217757, 268435459,
  12025. 536870923, 1073741827, 2147483659
  12026. };
  12027. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12028. // find the smallest prime that is larger or equal to min_sz
  12029. size_t l = 0;
  12030. size_t r = n_primes;
  12031. while (l < r) {
  12032. size_t m = (l + r)/2;
  12033. if (primes[m] < min_sz) {
  12034. l = m + 1;
  12035. } else {
  12036. r = m;
  12037. }
  12038. }
  12039. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12040. return sz;
  12041. }
  12042. static size_t ggml_hash(const void * p) {
  12043. return (size_t)p;
  12044. }
  12045. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12046. size_t h = ggml_hash(key) % hash_set.size;
  12047. // linear probing
  12048. size_t i = h;
  12049. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12050. i = (i + 1) % hash_set.size;
  12051. if (i == h) {
  12052. // visited all hash table entries -> not found
  12053. return GGML_HASHTABLE_FULL;
  12054. }
  12055. }
  12056. return i;
  12057. }
  12058. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12059. size_t i = ggml_hash_find(hash_set, key);
  12060. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12061. }
  12062. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12063. size_t i = ggml_hash_find(hash_set, key);
  12064. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12065. if (hash_set.keys[i] == key) {
  12066. return GGML_HASHTABLE_ALREADY_EXISTS;
  12067. }
  12068. // insert
  12069. GGML_ASSERT(hash_set.keys[i] == NULL);
  12070. hash_set.keys[i] = key;
  12071. return i;
  12072. }
  12073. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12074. size_t i = ggml_hash_find(hash_set, key);
  12075. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12076. hash_set.keys[i] = key;
  12077. return i;
  12078. }
  12079. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12080. size = ggml_hash_size(size);
  12081. struct ggml_hash_set result;
  12082. result.size = size;
  12083. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12084. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12085. return result;
  12086. }
  12087. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12088. free(hash_set.keys);
  12089. }
  12090. struct hash_map {
  12091. struct ggml_hash_set set;
  12092. struct ggml_tensor ** vals;
  12093. };
  12094. static struct hash_map * ggml_new_hash_map(size_t size) {
  12095. struct hash_map * result = malloc(sizeof(struct hash_map));
  12096. result->set = ggml_hash_set_new(size);
  12097. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12098. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12099. return result;
  12100. }
  12101. static void ggml_hash_map_free(struct hash_map * map) {
  12102. ggml_hash_set_free(map->set);
  12103. free(map->vals);
  12104. free(map);
  12105. }
  12106. // gradient checkpointing
  12107. static struct ggml_tensor * ggml_recompute_graph_node(
  12108. struct ggml_context * ctx,
  12109. struct ggml_cgraph * graph,
  12110. struct hash_map * replacements,
  12111. struct ggml_tensor * node) {
  12112. if (node == NULL) {
  12113. return NULL;
  12114. }
  12115. if (node->is_param) {
  12116. return node;
  12117. }
  12118. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12119. return node;
  12120. }
  12121. int count_children = 0;
  12122. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12123. if (node->src[k]) {
  12124. ++count_children;
  12125. }
  12126. }
  12127. if (count_children == 0) {
  12128. return node;
  12129. }
  12130. size_t i = ggml_hash_find(replacements->set, node);
  12131. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12132. if (replacements->set.keys[i] == node) {
  12133. return replacements->vals[i];
  12134. }
  12135. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12136. // insert clone into replacements
  12137. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12138. replacements->set.keys[i] = node;
  12139. replacements->vals[i] = clone;
  12140. clone->op = node->op;
  12141. clone->grad = node->grad;
  12142. clone->is_param = node->is_param;
  12143. clone->extra = node->extra;
  12144. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12145. clone->nb[k] = node->nb[k];
  12146. }
  12147. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12148. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12149. }
  12150. if (node->view_src != NULL) {
  12151. clone->data = (node->view_src->data == NULL)
  12152. ? NULL // view_src not yet allocated
  12153. : (char *) node->view_src->data // view_src already allocated
  12154. + node->view_offs;
  12155. clone->view_src = node->view_src;
  12156. clone->view_offs = node->view_offs;
  12157. }
  12158. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12159. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12160. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12161. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12162. return clone;
  12163. }
  12164. void ggml_build_backward_gradient_checkpointing(
  12165. struct ggml_context * ctx,
  12166. struct ggml_cgraph * gf,
  12167. struct ggml_cgraph * gb,
  12168. struct ggml_cgraph * gb_tmp,
  12169. struct ggml_tensor * * checkpoints,
  12170. int n_checkpoints) {
  12171. ggml_graph_cpy(gf, gb_tmp);
  12172. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12173. if (n_checkpoints <= 0) {
  12174. ggml_graph_cpy(gb_tmp, gb);
  12175. return;
  12176. }
  12177. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12178. // insert checkpoints in replacements
  12179. for (int i = 0; i < n_checkpoints; ++i) {
  12180. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12181. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12182. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12183. replacements->set.keys[k] = checkpoints[i];
  12184. replacements->vals[k] = checkpoints[i];
  12185. }
  12186. ggml_graph_cpy(gf, gb);
  12187. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12188. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12189. // by recomputing them from checkpoints
  12190. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12191. struct ggml_tensor * node = gb_tmp->nodes[i];
  12192. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12193. // insert new tensors recomputing src, reusing already made replacements,
  12194. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12195. // recurse for input tensors,
  12196. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12197. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12198. }
  12199. // insert rewritten backward node with replacements made into resulting backward graph gb
  12200. ggml_build_forward_expand(gb, node);
  12201. }
  12202. ggml_hash_map_free(replacements);
  12203. }
  12204. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12205. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12206. if (ggml_hash_contains(zero_table, a)) {
  12207. return b;
  12208. } else {
  12209. return ggml_add_impl(ctx, a, b, false);
  12210. }
  12211. }
  12212. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12213. if (ggml_hash_contains(zero_table, a)) {
  12214. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12215. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12216. } else {
  12217. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12218. }
  12219. }
  12220. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12221. if (ggml_hash_contains(zero_table, a)) {
  12222. return ggml_repeat(ctx, b, a);
  12223. } else {
  12224. return ggml_add1_impl(ctx, a, b, false);
  12225. }
  12226. }
  12227. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12228. if (ggml_hash_contains(zero_table, a)) {
  12229. return ggml_neg(ctx, b);
  12230. } else {
  12231. return ggml_sub_impl(ctx, a, b, false);
  12232. }
  12233. }
  12234. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12235. struct ggml_tensor * src0 = tensor->src[0];
  12236. struct ggml_tensor * src1 = tensor->src[1];
  12237. switch (tensor->op) {
  12238. case GGML_OP_DUP:
  12239. {
  12240. if (src0->grad) {
  12241. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12242. }
  12243. } break;
  12244. case GGML_OP_ADD:
  12245. {
  12246. if (src0->grad) {
  12247. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12248. }
  12249. if (src1->grad) {
  12250. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12251. }
  12252. } break;
  12253. case GGML_OP_ADD1:
  12254. {
  12255. if (src0->grad) {
  12256. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12257. }
  12258. if (src1->grad) {
  12259. src1->grad = ggml_add_or_set(ctx,
  12260. src1->grad,
  12261. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12262. zero_table);
  12263. }
  12264. } break;
  12265. case GGML_OP_ACC:
  12266. {
  12267. if (src0->grad) {
  12268. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12269. }
  12270. if (src1->grad) {
  12271. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12272. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12273. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12274. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12275. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12276. tensor->grad,
  12277. src1->grad->ne[0],
  12278. src1->grad->ne[1],
  12279. src1->grad->ne[2],
  12280. src1->grad->ne[3],
  12281. nb1, nb2, nb3, offset);
  12282. src1->grad =
  12283. ggml_add_or_set(ctx,
  12284. src1->grad,
  12285. ggml_reshape(ctx,
  12286. ggml_cont(ctx, tensor_grad_view),
  12287. src1->grad),
  12288. zero_table);
  12289. }
  12290. } break;
  12291. case GGML_OP_SUB:
  12292. {
  12293. if (src0->grad) {
  12294. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12295. }
  12296. if (src1->grad) {
  12297. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12298. }
  12299. } break;
  12300. case GGML_OP_MUL:
  12301. {
  12302. if (src0->grad) {
  12303. src0->grad =
  12304. ggml_add_or_set(ctx,
  12305. src0->grad,
  12306. ggml_mul(ctx, src1, tensor->grad),
  12307. zero_table);
  12308. }
  12309. if (src1->grad) {
  12310. src1->grad =
  12311. ggml_add_or_set(ctx,
  12312. src1->grad,
  12313. ggml_mul(ctx, src0, tensor->grad),
  12314. zero_table);
  12315. }
  12316. } break;
  12317. case GGML_OP_DIV:
  12318. {
  12319. if (src0->grad) {
  12320. src0->grad =
  12321. ggml_add_or_set(ctx,
  12322. src0->grad,
  12323. ggml_div(ctx, tensor->grad, src1),
  12324. zero_table);
  12325. }
  12326. if (src1->grad) {
  12327. src1->grad =
  12328. ggml_sub_or_set(ctx,
  12329. src1->grad,
  12330. ggml_mul(ctx,
  12331. tensor->grad,
  12332. ggml_div(ctx, tensor, src1)),
  12333. zero_table);
  12334. }
  12335. } break;
  12336. case GGML_OP_SQR:
  12337. {
  12338. if (src0->grad) {
  12339. src0->grad =
  12340. ggml_add_or_set(ctx,
  12341. src0->grad,
  12342. ggml_scale(ctx,
  12343. ggml_mul(ctx, src0, tensor->grad),
  12344. 2.0f),
  12345. zero_table);
  12346. }
  12347. } break;
  12348. case GGML_OP_SQRT:
  12349. {
  12350. if (src0->grad) {
  12351. src0->grad =
  12352. ggml_add_or_set(ctx,
  12353. src0->grad,
  12354. ggml_scale(ctx,
  12355. ggml_div(ctx,
  12356. tensor->grad,
  12357. tensor),
  12358. 0.5f),
  12359. zero_table);
  12360. }
  12361. } break;
  12362. case GGML_OP_LOG:
  12363. {
  12364. if (src0->grad) {
  12365. src0->grad =
  12366. ggml_add_or_set(ctx,
  12367. src0->grad,
  12368. ggml_div(ctx,
  12369. tensor->grad,
  12370. src0),
  12371. zero_table);
  12372. }
  12373. } break;
  12374. case GGML_OP_SUM:
  12375. {
  12376. if (src0->grad) {
  12377. src0->grad =
  12378. ggml_add1_or_set(ctx,
  12379. src0->grad,
  12380. tensor->grad,
  12381. zero_table);
  12382. }
  12383. } break;
  12384. case GGML_OP_SUM_ROWS:
  12385. {
  12386. if (src0->grad) {
  12387. src0->grad =
  12388. ggml_add_or_set(ctx,
  12389. src0->grad,
  12390. ggml_repeat(ctx,
  12391. tensor->grad,
  12392. src0->grad),
  12393. zero_table);
  12394. }
  12395. } break;
  12396. case GGML_OP_MEAN:
  12397. case GGML_OP_ARGMAX:
  12398. {
  12399. GGML_ASSERT(false); // TODO: implement
  12400. } break;
  12401. case GGML_OP_REPEAT:
  12402. {
  12403. // necessary for llama
  12404. if (src0->grad) {
  12405. src0->grad = ggml_add_or_set(ctx,
  12406. src0->grad,
  12407. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12408. zero_table);
  12409. }
  12410. } break;
  12411. case GGML_OP_REPEAT_BACK:
  12412. {
  12413. if (src0->grad) {
  12414. // TODO: test this
  12415. src0->grad = ggml_add_or_set(ctx,
  12416. src0->grad,
  12417. ggml_repeat(ctx, tensor->grad, src0->grad),
  12418. zero_table);
  12419. }
  12420. } break;
  12421. case GGML_OP_CONCAT:
  12422. {
  12423. GGML_ASSERT(false); // TODO: implement
  12424. } break;
  12425. case GGML_OP_SILU_BACK:
  12426. {
  12427. GGML_ASSERT(false); // TODO: not implemented
  12428. } break;
  12429. case GGML_OP_NORM:
  12430. {
  12431. GGML_ASSERT(false); // TODO: not implemented
  12432. } break;
  12433. case GGML_OP_RMS_NORM:
  12434. {
  12435. // necessary for llama
  12436. if (src0->grad) {
  12437. float eps;
  12438. memcpy(&eps, tensor->op_params, sizeof(float));
  12439. src0->grad = ggml_add_or_set(ctx,
  12440. src0->grad,
  12441. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12442. zero_table);
  12443. }
  12444. } break;
  12445. case GGML_OP_RMS_NORM_BACK:
  12446. {
  12447. GGML_ASSERT(false); // TODO: not implemented
  12448. } break;
  12449. case GGML_OP_GROUP_NORM:
  12450. {
  12451. GGML_ASSERT(false); // TODO: not implemented
  12452. } break;
  12453. case GGML_OP_MUL_MAT:
  12454. {
  12455. // https://cs231n.github.io/optimization-2/#staged
  12456. // # forward pass
  12457. // s0 = np.random.randn(5, 10)
  12458. // s1 = np.random.randn(10, 3)
  12459. // t = s0.dot(s1)
  12460. // # now suppose we had the gradient on t from above in the circuit
  12461. // dt = np.random.randn(*t.shape) # same shape as t
  12462. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12463. // ds1 = t.T.dot(dt)
  12464. // tensor.shape [m,p,qq,rr]
  12465. // src0.shape [n,m,q1,r1]
  12466. // src1.shape [n,p,qq,rr]
  12467. // necessary for llama
  12468. if (src0->grad) {
  12469. struct ggml_tensor * s1_tg =
  12470. ggml_out_prod(ctx, // [n,m,qq,rr]
  12471. src1, // [n,p,qq,rr]
  12472. tensor->grad); // [m,p,qq,rr]
  12473. const int64_t qq = s1_tg->ne[2];
  12474. const int64_t rr = s1_tg->ne[3];
  12475. const int64_t q1 = src0->ne[2];
  12476. const int64_t r1 = src0->ne[3];
  12477. const bool ne2_broadcasted = qq > q1;
  12478. const bool ne3_broadcasted = rr > r1;
  12479. if (ne2_broadcasted || ne3_broadcasted) {
  12480. // sum broadcast repetitions of s1_tg into shape of src0
  12481. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12482. }
  12483. src0->grad =
  12484. ggml_add_or_set(ctx,
  12485. src0->grad, // [n,m,q1,r1]
  12486. s1_tg, // [n,m,q1,r1]
  12487. zero_table);
  12488. }
  12489. if (src1->grad) {
  12490. src1->grad =
  12491. ggml_add_or_set(ctx,
  12492. src1->grad, // [n,p,qq,rr]
  12493. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12494. // ggml_cont(ctx, // [m,n,q1,r1]
  12495. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12496. // tensor->grad), // [m,p,qq,rr]
  12497. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12498. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12499. // // and then use ggml_out_prod
  12500. ggml_out_prod(ctx, // [n,p,qq,rr]
  12501. src0, // [n,m,q1,r1]
  12502. ggml_transpose(ctx, // [p,m,qq,rr]
  12503. tensor->grad)), // [m,p,qq,rr]
  12504. zero_table);
  12505. }
  12506. } break;
  12507. case GGML_OP_MUL_MAT_ID:
  12508. {
  12509. GGML_ASSERT(false); // TODO: not implemented
  12510. } break;
  12511. case GGML_OP_OUT_PROD:
  12512. {
  12513. GGML_ASSERT(false); // TODO: not implemented
  12514. } break;
  12515. case GGML_OP_SCALE:
  12516. {
  12517. // necessary for llama
  12518. if (src0->grad) {
  12519. float s;
  12520. memcpy(&s, tensor->op_params, sizeof(float));
  12521. src0->grad =
  12522. ggml_add_or_set(ctx,
  12523. src0->grad,
  12524. ggml_scale_impl(ctx, tensor->grad, s, false),
  12525. zero_table);
  12526. }
  12527. } break;
  12528. case GGML_OP_SET:
  12529. {
  12530. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12531. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12532. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12533. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12534. struct ggml_tensor * tensor_grad_view = NULL;
  12535. if (src0->grad || src1->grad) {
  12536. GGML_ASSERT(src0->type == tensor->type);
  12537. GGML_ASSERT(tensor->grad->type == tensor->type);
  12538. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12539. tensor_grad_view = ggml_view_4d(ctx,
  12540. tensor->grad,
  12541. src1->grad->ne[0],
  12542. src1->grad->ne[1],
  12543. src1->grad->ne[2],
  12544. src1->grad->ne[3],
  12545. nb1, nb2, nb3, offset);
  12546. }
  12547. if (src0->grad) {
  12548. src0->grad = ggml_add_or_set(ctx,
  12549. src0->grad,
  12550. ggml_acc_impl(ctx,
  12551. tensor->grad,
  12552. ggml_neg(ctx, tensor_grad_view),
  12553. nb1, nb2, nb3, offset, false),
  12554. zero_table);
  12555. }
  12556. if (src1->grad) {
  12557. src1->grad =
  12558. ggml_add_or_set(ctx,
  12559. src1->grad,
  12560. ggml_reshape(ctx,
  12561. ggml_cont(ctx, tensor_grad_view),
  12562. src1->grad),
  12563. zero_table);
  12564. }
  12565. } break;
  12566. case GGML_OP_CPY:
  12567. {
  12568. // necessary for llama
  12569. // cpy overwrites value of src1 by src0 and returns view(src1)
  12570. // the overwriting is mathematically equivalent to:
  12571. // tensor = src0 * 1 + src1 * 0
  12572. if (src0->grad) {
  12573. // dsrc0 = dtensor * 1
  12574. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12575. }
  12576. if (src1->grad) {
  12577. // dsrc1 = dtensor * 0 -> noop
  12578. }
  12579. } break;
  12580. case GGML_OP_CONT:
  12581. {
  12582. // same as cpy
  12583. if (src0->grad) {
  12584. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12585. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12586. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12587. }
  12588. } break;
  12589. case GGML_OP_RESHAPE:
  12590. {
  12591. // necessary for llama
  12592. if (src0->grad) {
  12593. src0->grad =
  12594. ggml_add_or_set(ctx, src0->grad,
  12595. ggml_reshape(ctx,
  12596. ggml_is_contiguous(tensor->grad)
  12597. ? tensor->grad
  12598. : ggml_cont(ctx, tensor->grad),
  12599. src0->grad),
  12600. zero_table);
  12601. }
  12602. } break;
  12603. case GGML_OP_VIEW:
  12604. {
  12605. // necessary for llama
  12606. if (src0->grad) {
  12607. size_t offset;
  12608. memcpy(&offset, tensor->op_params, sizeof(offset));
  12609. size_t nb1 = tensor->nb[1];
  12610. size_t nb2 = tensor->nb[2];
  12611. size_t nb3 = tensor->nb[3];
  12612. if (src0->type != src0->grad->type) {
  12613. // gradient is typically F32, but src0 could be other type
  12614. size_t ng = ggml_element_size(src0->grad);
  12615. size_t n0 = ggml_element_size(src0);
  12616. GGML_ASSERT(offset % n0 == 0);
  12617. GGML_ASSERT(nb1 % n0 == 0);
  12618. GGML_ASSERT(nb2 % n0 == 0);
  12619. GGML_ASSERT(nb3 % n0 == 0);
  12620. offset = (offset / n0) * ng;
  12621. nb1 = (nb1 / n0) * ng;
  12622. nb2 = (nb2 / n0) * ng;
  12623. nb3 = (nb3 / n0) * ng;
  12624. }
  12625. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12626. }
  12627. } break;
  12628. case GGML_OP_PERMUTE:
  12629. {
  12630. // necessary for llama
  12631. if (src0->grad) {
  12632. int32_t * axes = (int32_t *) tensor->op_params;
  12633. int axis0 = axes[0] & 0x3;
  12634. int axis1 = axes[1] & 0x3;
  12635. int axis2 = axes[2] & 0x3;
  12636. int axis3 = axes[3] & 0x3;
  12637. int axes_backward[4] = {0,0,0,0};
  12638. axes_backward[axis0] = 0;
  12639. axes_backward[axis1] = 1;
  12640. axes_backward[axis2] = 2;
  12641. axes_backward[axis3] = 3;
  12642. src0->grad =
  12643. ggml_add_or_set(ctx, src0->grad,
  12644. ggml_permute(ctx,
  12645. tensor->grad,
  12646. axes_backward[0],
  12647. axes_backward[1],
  12648. axes_backward[2],
  12649. axes_backward[3]),
  12650. zero_table);
  12651. }
  12652. } break;
  12653. case GGML_OP_TRANSPOSE:
  12654. {
  12655. // necessary for llama
  12656. if (src0->grad) {
  12657. src0->grad =
  12658. ggml_add_or_set(ctx, src0->grad,
  12659. ggml_transpose(ctx, tensor->grad),
  12660. zero_table);
  12661. }
  12662. } break;
  12663. case GGML_OP_GET_ROWS:
  12664. {
  12665. // necessary for llama (only for tokenizer)
  12666. if (src0->grad) {
  12667. src0->grad =
  12668. ggml_add_or_set(ctx, src0->grad,
  12669. // last ggml_get_rows_back argument src0->grad is only
  12670. // necessary to setup correct output shape
  12671. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12672. zero_table);
  12673. }
  12674. if (src1->grad) {
  12675. // noop
  12676. }
  12677. } break;
  12678. case GGML_OP_GET_ROWS_BACK:
  12679. {
  12680. GGML_ASSERT(false); // TODO: not implemented
  12681. } break;
  12682. case GGML_OP_DIAG:
  12683. {
  12684. GGML_ASSERT(false); // TODO: not implemented
  12685. } break;
  12686. case GGML_OP_DIAG_MASK_INF:
  12687. {
  12688. // necessary for llama
  12689. if (src0->grad) {
  12690. const int n_past = ((int32_t *) tensor->op_params)[0];
  12691. src0->grad =
  12692. ggml_add_or_set(ctx, src0->grad,
  12693. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12694. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12695. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12696. zero_table);
  12697. }
  12698. } break;
  12699. case GGML_OP_DIAG_MASK_ZERO:
  12700. {
  12701. // necessary for llama
  12702. if (src0->grad) {
  12703. const int n_past = ((int32_t *) tensor->op_params)[0];
  12704. src0->grad =
  12705. ggml_add_or_set(ctx, src0->grad,
  12706. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12707. zero_table);
  12708. }
  12709. } break;
  12710. case GGML_OP_SOFT_MAX:
  12711. {
  12712. // necessary for llama
  12713. if (src0->grad) {
  12714. src0->grad =
  12715. ggml_add_or_set(ctx, src0->grad,
  12716. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12717. zero_table);
  12718. }
  12719. } break;
  12720. case GGML_OP_SOFT_MAX_BACK:
  12721. {
  12722. GGML_ASSERT(false); // TODO: not implemented
  12723. } break;
  12724. case GGML_OP_ROPE:
  12725. {
  12726. // necessary for llama
  12727. if (src0->grad) {
  12728. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12729. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12730. const int mode = ((int32_t *) tensor->op_params)[2];
  12731. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12732. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12733. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12734. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12735. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12736. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12737. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12738. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12739. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12740. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12741. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12742. src0->grad = ggml_add_or_set(ctx,
  12743. src0->grad,
  12744. ggml_rope_back(ctx,
  12745. tensor->grad,
  12746. src1,
  12747. n_dims,
  12748. mode,
  12749. n_ctx,
  12750. n_orig_ctx,
  12751. freq_base,
  12752. freq_scale,
  12753. ext_factor,
  12754. attn_factor,
  12755. beta_fast,
  12756. beta_slow,
  12757. xpos_base,
  12758. xpos_down),
  12759. zero_table);
  12760. }
  12761. } break;
  12762. case GGML_OP_ROPE_BACK:
  12763. {
  12764. if (src0->grad) {
  12765. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12766. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12767. const int mode = ((int32_t *) tensor->op_params)[2];
  12768. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12769. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12770. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12771. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12772. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12773. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12774. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12775. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12776. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12777. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12778. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12779. src0->grad = ggml_add_or_set(ctx,
  12780. src0->grad,
  12781. ggml_rope_impl(ctx,
  12782. tensor->grad,
  12783. src1,
  12784. n_dims,
  12785. mode,
  12786. n_ctx,
  12787. n_orig_ctx,
  12788. freq_base,
  12789. freq_scale,
  12790. ext_factor,
  12791. attn_factor,
  12792. beta_fast,
  12793. beta_slow,
  12794. xpos_base,
  12795. xpos_down,
  12796. false),
  12797. zero_table);
  12798. }
  12799. } break;
  12800. case GGML_OP_ALIBI:
  12801. {
  12802. GGML_ASSERT(false); // TODO: not implemented
  12803. } break;
  12804. case GGML_OP_CLAMP:
  12805. {
  12806. GGML_ASSERT(false); // TODO: not implemented
  12807. } break;
  12808. case GGML_OP_CONV_TRANSPOSE_1D:
  12809. {
  12810. GGML_ASSERT(false); // TODO: not implemented
  12811. } break;
  12812. case GGML_OP_IM2COL:
  12813. {
  12814. GGML_ASSERT(false); // TODO: not implemented
  12815. } break;
  12816. case GGML_OP_CONV_TRANSPOSE_2D:
  12817. {
  12818. GGML_ASSERT(false); // TODO: not implemented
  12819. } break;
  12820. case GGML_OP_POOL_1D:
  12821. {
  12822. GGML_ASSERT(false); // TODO: not implemented
  12823. } break;
  12824. case GGML_OP_POOL_2D:
  12825. {
  12826. GGML_ASSERT(false); // TODO: not implemented
  12827. } break;
  12828. case GGML_OP_UPSCALE:
  12829. {
  12830. GGML_ASSERT(false); // TODO: not implemented
  12831. } break;
  12832. case GGML_OP_PAD:
  12833. {
  12834. GGML_ASSERT(false); // TODO: not implemented
  12835. } break;
  12836. case GGML_OP_ARGSORT:
  12837. {
  12838. GGML_ASSERT(false); // TODO: not implemented
  12839. } break;
  12840. case GGML_OP_LEAKY_RELU:
  12841. {
  12842. GGML_ASSERT(false); // TODO: not implemented
  12843. } break;
  12844. case GGML_OP_FLASH_ATTN:
  12845. {
  12846. struct ggml_tensor * flash_grad = NULL;
  12847. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12848. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12849. GGML_ASSERT(t == 0 || t == 1);
  12850. bool masked = t != 0;
  12851. flash_grad =
  12852. ggml_flash_attn_back(ctx,
  12853. src0,
  12854. src1,
  12855. tensor->src[2],
  12856. tensor->grad,
  12857. masked);
  12858. }
  12859. struct ggml_tensor * src2 = tensor->src[2];
  12860. const int64_t elem_q = ggml_nelements(src0);
  12861. const int64_t elem_k = ggml_nelements(src1);
  12862. const int64_t elem_v = ggml_nelements(src2);
  12863. enum ggml_type result_type = flash_grad->type;
  12864. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12865. const size_t tsize = ggml_type_size(result_type);
  12866. const size_t offs_q = 0;
  12867. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12868. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12869. if (src0->grad) {
  12870. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12871. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12872. src0->grad = ggml_add_or_set(ctx,
  12873. src0->grad,
  12874. grad_q,
  12875. zero_table);
  12876. }
  12877. if (src1->grad) {
  12878. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12879. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12880. src1->grad = ggml_add_or_set(ctx,
  12881. src1->grad,
  12882. grad_k,
  12883. zero_table);
  12884. }
  12885. if (src2->grad) {
  12886. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12887. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12888. src2->grad = ggml_add_or_set(ctx,
  12889. src2->grad,
  12890. grad_v,
  12891. zero_table);
  12892. }
  12893. } break;
  12894. case GGML_OP_FLASH_FF:
  12895. {
  12896. GGML_ASSERT(false); // not supported
  12897. } break;
  12898. case GGML_OP_FLASH_ATTN_BACK:
  12899. {
  12900. GGML_ASSERT(false); // not supported
  12901. } break;
  12902. case GGML_OP_WIN_PART:
  12903. case GGML_OP_WIN_UNPART:
  12904. case GGML_OP_UNARY:
  12905. {
  12906. switch (ggml_get_unary_op(tensor)) {
  12907. case GGML_UNARY_OP_ABS:
  12908. {
  12909. if (src0->grad) {
  12910. src0->grad =
  12911. ggml_add_or_set(ctx,
  12912. src0->grad,
  12913. ggml_mul(ctx,
  12914. ggml_sgn(ctx, src0),
  12915. tensor->grad),
  12916. zero_table);
  12917. }
  12918. } break;
  12919. case GGML_UNARY_OP_SGN:
  12920. {
  12921. if (src0->grad) {
  12922. // noop
  12923. }
  12924. } break;
  12925. case GGML_UNARY_OP_NEG:
  12926. {
  12927. if (src0->grad) {
  12928. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12929. }
  12930. } break;
  12931. case GGML_UNARY_OP_STEP:
  12932. {
  12933. if (src0->grad) {
  12934. // noop
  12935. }
  12936. } break;
  12937. case GGML_UNARY_OP_TANH:
  12938. {
  12939. GGML_ASSERT(false); // TODO: not implemented
  12940. } break;
  12941. case GGML_UNARY_OP_ELU:
  12942. {
  12943. GGML_ASSERT(false); // TODO: not implemented
  12944. } break;
  12945. case GGML_UNARY_OP_RELU:
  12946. {
  12947. if (src0->grad) {
  12948. src0->grad = ggml_add_or_set(ctx,
  12949. src0->grad,
  12950. ggml_mul(ctx,
  12951. ggml_step(ctx, src0),
  12952. tensor->grad),
  12953. zero_table);
  12954. }
  12955. } break;
  12956. case GGML_UNARY_OP_GELU:
  12957. {
  12958. GGML_ASSERT(false); // TODO: not implemented
  12959. } break;
  12960. case GGML_UNARY_OP_GELU_QUICK:
  12961. {
  12962. GGML_ASSERT(false); // TODO: not implemented
  12963. } break;
  12964. case GGML_UNARY_OP_SILU:
  12965. {
  12966. // necessary for llama
  12967. if (src0->grad) {
  12968. src0->grad = ggml_add_or_set(ctx,
  12969. src0->grad,
  12970. ggml_silu_back(ctx, src0, tensor->grad),
  12971. zero_table);
  12972. }
  12973. } break;
  12974. default:
  12975. GGML_ASSERT(false);
  12976. }
  12977. } break;
  12978. case GGML_OP_GET_REL_POS:
  12979. case GGML_OP_ADD_REL_POS:
  12980. case GGML_OP_MAP_UNARY:
  12981. case GGML_OP_MAP_BINARY:
  12982. case GGML_OP_MAP_CUSTOM1_F32:
  12983. case GGML_OP_MAP_CUSTOM2_F32:
  12984. case GGML_OP_MAP_CUSTOM3_F32:
  12985. case GGML_OP_MAP_CUSTOM1:
  12986. case GGML_OP_MAP_CUSTOM2:
  12987. case GGML_OP_MAP_CUSTOM3:
  12988. {
  12989. GGML_ASSERT(false); // not supported
  12990. } break;
  12991. case GGML_OP_CROSS_ENTROPY_LOSS:
  12992. {
  12993. if (src0->grad) {
  12994. src0->grad = ggml_add_or_set(ctx,
  12995. src0->grad,
  12996. ggml_cross_entropy_loss_back(ctx,
  12997. src0,
  12998. src1,
  12999. tensor->grad),
  13000. zero_table);
  13001. }
  13002. } break;
  13003. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13004. {
  13005. GGML_ASSERT(false); // not supported
  13006. } break;
  13007. case GGML_OP_NONE:
  13008. {
  13009. // nop
  13010. } break;
  13011. case GGML_OP_COUNT:
  13012. {
  13013. GGML_ASSERT(false);
  13014. } break;
  13015. }
  13016. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13017. if (tensor->src[i] && tensor->src[i]->grad) {
  13018. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13019. }
  13020. }
  13021. }
  13022. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13023. if (node->grad == NULL) {
  13024. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13025. // it can also happen during forward pass, if the user performs computations with constants
  13026. if (node->op != GGML_OP_NONE) {
  13027. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13028. }
  13029. }
  13030. // check if already visited
  13031. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13032. return;
  13033. }
  13034. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13035. const int k =
  13036. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13037. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13038. /* unknown order, just fall back to using i*/ i;
  13039. if (node->src[k]) {
  13040. ggml_visit_parents(cgraph, node->src[k]);
  13041. }
  13042. }
  13043. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13044. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13045. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13046. if (strlen(node->name) == 0) {
  13047. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13048. }
  13049. cgraph->leafs[cgraph->n_leafs] = node;
  13050. cgraph->n_leafs++;
  13051. } else {
  13052. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13053. if (strlen(node->name) == 0) {
  13054. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13055. }
  13056. cgraph->nodes[cgraph->n_nodes] = node;
  13057. if (cgraph->grads) {
  13058. cgraph->grads[cgraph->n_nodes] = node->grad;
  13059. }
  13060. cgraph->n_nodes++;
  13061. }
  13062. }
  13063. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13064. if (!expand) {
  13065. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13066. ggml_graph_clear(cgraph);
  13067. }
  13068. const int n0 = cgraph->n_nodes;
  13069. UNUSED(n0);
  13070. ggml_visit_parents(cgraph, tensor);
  13071. const int n_new = cgraph->n_nodes - n0;
  13072. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13073. if (n_new > 0) {
  13074. // the last added node should always be starting point
  13075. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13076. }
  13077. }
  13078. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13079. ggml_build_forward_impl(cgraph, tensor, true);
  13080. }
  13081. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13082. GGML_ASSERT(gf->n_nodes > 0);
  13083. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13084. if (keep) {
  13085. for (int i = 0; i < gf->n_nodes; i++) {
  13086. struct ggml_tensor * node = gf->nodes[i];
  13087. if (node->grad) {
  13088. node->grad = ggml_dup_tensor(ctx, node);
  13089. gf->grads[i] = node->grad;
  13090. }
  13091. }
  13092. }
  13093. // remember original gradients which start with zero values
  13094. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13095. for (int i = 0; i < gf->n_nodes; i++) {
  13096. if (gf->grads[i]) {
  13097. ggml_hash_insert(zero_table, gf->grads[i]);
  13098. }
  13099. }
  13100. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13101. struct ggml_tensor * node = gf->nodes[i];
  13102. // inplace operations to add gradients are not created by ggml_compute_backward
  13103. // use allocator to automatically make inplace operations
  13104. if (node->grad) {
  13105. ggml_compute_backward(ctx, node, zero_table);
  13106. }
  13107. }
  13108. for (int i = 0; i < gf->n_nodes; i++) {
  13109. struct ggml_tensor * node = gf->nodes[i];
  13110. if (node->is_param) {
  13111. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13112. ggml_build_forward_expand(gb, node->grad);
  13113. }
  13114. }
  13115. ggml_hash_set_free(zero_table);
  13116. }
  13117. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13118. size_t nbytes = sizeof(struct ggml_cgraph);
  13119. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13120. if (grads) {
  13121. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13122. }
  13123. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13124. return nbytes;
  13125. }
  13126. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13127. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13128. }
  13129. size_t ggml_graph_overhead(void) {
  13130. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13131. }
  13132. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13133. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13134. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13135. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13136. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13137. size_t hash_size = ggml_hash_size(size * 2);
  13138. struct ggml_tensor ** nodes_ptr = data_start;
  13139. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13140. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13141. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13142. // check that we allocated the correct amount of memory
  13143. assert(obj_size == (size_t) (
  13144. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13145. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13146. *cgraph = (struct ggml_cgraph) {
  13147. /*.size =*/ size,
  13148. /*.n_nodes =*/ 0,
  13149. /*.n_leafs =*/ 0,
  13150. /*.nodes =*/ nodes_ptr,
  13151. /*.grads =*/ grads_ptr,
  13152. /*.leafs =*/ leafs_ptr,
  13153. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13154. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13155. /*.perf_runs =*/ 0,
  13156. /*.perf_cycles =*/ 0,
  13157. /*.perf_time_us =*/ 0,
  13158. };
  13159. return cgraph;
  13160. }
  13161. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13162. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13163. }
  13164. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13165. struct ggml_cgraph cgraph = {
  13166. /*.size =*/ 0,
  13167. /*.n_nodes =*/ i1 - i0,
  13168. /*.n_leafs =*/ 0,
  13169. /*.nodes =*/ cgraph0->nodes + i0,
  13170. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13171. /*.leafs =*/ NULL,
  13172. /*.hash_table =*/ { 0, NULL },
  13173. /*.order =*/ cgraph0->order,
  13174. /*.perf_runs =*/ 0,
  13175. /*.perf_cycles =*/ 0,
  13176. /*.perf_time_us =*/ 0,
  13177. };
  13178. return cgraph;
  13179. }
  13180. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13181. GGML_ASSERT(dst->size >= src->n_leafs);
  13182. GGML_ASSERT(dst->size >= src->n_nodes);
  13183. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13184. dst->n_leafs = src->n_leafs;
  13185. dst->n_nodes = src->n_nodes;
  13186. dst->order = src->order;
  13187. for (int i = 0; i < src->n_leafs; ++i) {
  13188. dst->leafs[i] = src->leafs[i];
  13189. }
  13190. for (int i = 0; i < src->n_nodes; ++i) {
  13191. dst->nodes[i] = src->nodes[i];
  13192. }
  13193. if (src->grads) {
  13194. GGML_ASSERT(dst->grads != NULL);
  13195. for (int i = 0; i < src->n_nodes; ++i) {
  13196. dst->grads[i] = src->grads[i];
  13197. }
  13198. }
  13199. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13200. if (src->visited_hash_table.keys[i]) {
  13201. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13202. }
  13203. }
  13204. }
  13205. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13206. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13207. ggml_graph_cpy(cgraph, result);
  13208. return result;
  13209. }
  13210. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13211. GGML_ASSERT(cgraph->grads != NULL);
  13212. for (int i = 0; i < cgraph->n_nodes; i++) {
  13213. struct ggml_tensor * grad = cgraph->grads[i];
  13214. if (grad) {
  13215. ggml_set_zero(grad);
  13216. }
  13217. }
  13218. }
  13219. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13220. cgraph->n_leafs = 0;
  13221. cgraph->n_nodes = 0;
  13222. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13223. }
  13224. //
  13225. // thread data
  13226. //
  13227. // synchronization is done via busy loops
  13228. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13229. //
  13230. #ifdef __APPLE__
  13231. //#include <os/lock.h>
  13232. //
  13233. //typedef os_unfair_lock ggml_lock_t;
  13234. //
  13235. //#define ggml_lock_init(x) UNUSED(x)
  13236. //#define ggml_lock_destroy(x) UNUSED(x)
  13237. //#define ggml_lock_lock os_unfair_lock_lock
  13238. //#define ggml_lock_unlock os_unfair_lock_unlock
  13239. //
  13240. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13241. typedef int ggml_lock_t;
  13242. #define ggml_lock_init(x) UNUSED(x)
  13243. #define ggml_lock_destroy(x) UNUSED(x)
  13244. #define ggml_lock_lock(x) UNUSED(x)
  13245. #define ggml_lock_unlock(x) UNUSED(x)
  13246. #define GGML_LOCK_INITIALIZER 0
  13247. typedef pthread_t ggml_thread_t;
  13248. #define ggml_thread_create pthread_create
  13249. #define ggml_thread_join pthread_join
  13250. #else
  13251. //typedef pthread_spinlock_t ggml_lock_t;
  13252. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13253. //#define ggml_lock_destroy pthread_spin_destroy
  13254. //#define ggml_lock_lock pthread_spin_lock
  13255. //#define ggml_lock_unlock pthread_spin_unlock
  13256. typedef int ggml_lock_t;
  13257. #define ggml_lock_init(x) UNUSED(x)
  13258. #define ggml_lock_destroy(x) UNUSED(x)
  13259. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13260. #define ggml_lock_lock(x) _mm_pause()
  13261. #else
  13262. #define ggml_lock_lock(x) UNUSED(x)
  13263. #endif
  13264. #define ggml_lock_unlock(x) UNUSED(x)
  13265. #define GGML_LOCK_INITIALIZER 0
  13266. typedef pthread_t ggml_thread_t;
  13267. #define ggml_thread_create pthread_create
  13268. #define ggml_thread_join pthread_join
  13269. #endif
  13270. // Android's libc implementation "bionic" does not support setting affinity
  13271. #if defined(__linux__) && !defined(__BIONIC__)
  13272. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13273. if (!ggml_is_numa()) {
  13274. return;
  13275. }
  13276. // run thread on node_num thread_n / (threads per node)
  13277. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13278. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13279. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13280. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13281. CPU_ZERO_S(setsize, cpus);
  13282. for (size_t i = 0; i < node->n_cpus; ++i) {
  13283. CPU_SET_S(node->cpus[i], setsize, cpus);
  13284. }
  13285. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13286. if (rv) {
  13287. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13288. strerror(rv));
  13289. }
  13290. CPU_FREE(cpus);
  13291. }
  13292. static void clear_numa_thread_affinity(void) {
  13293. if (!ggml_is_numa()) {
  13294. return;
  13295. }
  13296. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13297. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13298. CPU_ZERO_S(setsize, cpus);
  13299. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13300. CPU_SET_S(i, setsize, cpus);
  13301. }
  13302. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13303. if (rv) {
  13304. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13305. strerror(rv));
  13306. }
  13307. CPU_FREE(cpus);
  13308. }
  13309. #else
  13310. // TODO: Windows etc.
  13311. // (the linux implementation may also work on BSD, someone should test)
  13312. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13313. static void clear_numa_thread_affinity(void) {}
  13314. #endif
  13315. struct ggml_compute_state_shared {
  13316. const struct ggml_cgraph * cgraph;
  13317. const struct ggml_cplan * cplan;
  13318. int64_t perf_node_start_cycles;
  13319. int64_t perf_node_start_time_us;
  13320. const int n_threads;
  13321. // synchronization primitives
  13322. atomic_int n_active; // num active threads
  13323. atomic_int node_n; // active graph node
  13324. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13325. void * abort_callback_data;
  13326. };
  13327. struct ggml_compute_state {
  13328. ggml_thread_t thrd;
  13329. int ith;
  13330. struct ggml_compute_state_shared * shared;
  13331. };
  13332. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13333. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13334. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13335. node->perf_runs++;
  13336. node->perf_cycles += cycles_cur;
  13337. node->perf_time_us += time_us_cur;
  13338. }
  13339. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13340. int n_tasks = 0;
  13341. switch (node->op) {
  13342. case GGML_OP_CPY:
  13343. case GGML_OP_DUP:
  13344. case GGML_OP_ADD:
  13345. case GGML_OP_ADD1:
  13346. case GGML_OP_ACC:
  13347. {
  13348. n_tasks = n_threads;
  13349. } break;
  13350. case GGML_OP_SUB:
  13351. case GGML_OP_SQR:
  13352. case GGML_OP_SQRT:
  13353. case GGML_OP_LOG:
  13354. case GGML_OP_SUM:
  13355. case GGML_OP_SUM_ROWS:
  13356. case GGML_OP_MEAN:
  13357. case GGML_OP_ARGMAX:
  13358. case GGML_OP_REPEAT:
  13359. case GGML_OP_REPEAT_BACK:
  13360. case GGML_OP_LEAKY_RELU:
  13361. {
  13362. n_tasks = 1;
  13363. } break;
  13364. case GGML_OP_UNARY:
  13365. switch (ggml_get_unary_op(node)) {
  13366. case GGML_UNARY_OP_ABS:
  13367. case GGML_UNARY_OP_SGN:
  13368. case GGML_UNARY_OP_NEG:
  13369. case GGML_UNARY_OP_STEP:
  13370. case GGML_UNARY_OP_TANH:
  13371. case GGML_UNARY_OP_ELU:
  13372. case GGML_UNARY_OP_RELU:
  13373. {
  13374. n_tasks = 1;
  13375. } break;
  13376. case GGML_UNARY_OP_GELU:
  13377. case GGML_UNARY_OP_GELU_QUICK:
  13378. case GGML_UNARY_OP_SILU:
  13379. {
  13380. n_tasks = n_threads;
  13381. } break;
  13382. default:
  13383. GGML_ASSERT(false);
  13384. }
  13385. break;
  13386. case GGML_OP_SILU_BACK:
  13387. case GGML_OP_MUL:
  13388. case GGML_OP_DIV:
  13389. case GGML_OP_NORM:
  13390. case GGML_OP_RMS_NORM:
  13391. case GGML_OP_RMS_NORM_BACK:
  13392. case GGML_OP_GROUP_NORM:
  13393. case GGML_OP_CONCAT:
  13394. {
  13395. n_tasks = n_threads;
  13396. } break;
  13397. case GGML_OP_MUL_MAT:
  13398. {
  13399. n_tasks = n_threads;
  13400. // TODO: use different scheduling for different matrix sizes
  13401. //const int nr0 = ggml_nrows(node->src[0]);
  13402. //const int nr1 = ggml_nrows(node->src[1]);
  13403. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13404. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13405. #if defined(GGML_USE_CUBLAS)
  13406. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13407. n_tasks = 1; // TODO: this actually is doing nothing
  13408. // the threads are still spinning
  13409. }
  13410. #elif defined(GGML_USE_CLBLAST)
  13411. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13412. n_tasks = 1; // TODO: this actually is doing nothing
  13413. // the threads are still spinning
  13414. }
  13415. #endif
  13416. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13417. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13418. n_tasks = 1; // TODO: this actually is doing nothing
  13419. // the threads are still spinning
  13420. }
  13421. #endif
  13422. } break;
  13423. case GGML_OP_MUL_MAT_ID:
  13424. {
  13425. n_tasks = n_threads;
  13426. } break;
  13427. case GGML_OP_OUT_PROD:
  13428. {
  13429. n_tasks = n_threads;
  13430. } break;
  13431. case GGML_OP_SCALE:
  13432. case GGML_OP_SET:
  13433. case GGML_OP_CONT:
  13434. case GGML_OP_RESHAPE:
  13435. case GGML_OP_VIEW:
  13436. case GGML_OP_PERMUTE:
  13437. case GGML_OP_TRANSPOSE:
  13438. case GGML_OP_GET_ROWS:
  13439. case GGML_OP_GET_ROWS_BACK:
  13440. case GGML_OP_DIAG:
  13441. {
  13442. n_tasks = 1;
  13443. } break;
  13444. case GGML_OP_DIAG_MASK_ZERO:
  13445. case GGML_OP_DIAG_MASK_INF:
  13446. case GGML_OP_SOFT_MAX_BACK:
  13447. case GGML_OP_ROPE:
  13448. case GGML_OP_ROPE_BACK:
  13449. case GGML_OP_ADD_REL_POS:
  13450. {
  13451. n_tasks = n_threads;
  13452. } break;
  13453. case GGML_OP_ALIBI:
  13454. {
  13455. n_tasks = 1; //TODO
  13456. } break;
  13457. case GGML_OP_CLAMP:
  13458. {
  13459. n_tasks = 1; //TODO
  13460. } break;
  13461. case GGML_OP_SOFT_MAX:
  13462. {
  13463. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13464. } break;
  13465. case GGML_OP_CONV_TRANSPOSE_1D:
  13466. {
  13467. n_tasks = n_threads;
  13468. } break;
  13469. case GGML_OP_IM2COL:
  13470. {
  13471. n_tasks = n_threads;
  13472. } break;
  13473. case GGML_OP_CONV_TRANSPOSE_2D:
  13474. {
  13475. n_tasks = n_threads;
  13476. } break;
  13477. case GGML_OP_POOL_1D:
  13478. case GGML_OP_POOL_2D:
  13479. {
  13480. n_tasks = 1;
  13481. } break;
  13482. case GGML_OP_UPSCALE:
  13483. {
  13484. n_tasks = n_threads;
  13485. } break;
  13486. case GGML_OP_PAD:
  13487. {
  13488. n_tasks = n_threads;
  13489. } break;
  13490. case GGML_OP_ARGSORT:
  13491. {
  13492. n_tasks = n_threads;
  13493. } break;
  13494. case GGML_OP_FLASH_ATTN:
  13495. {
  13496. n_tasks = n_threads;
  13497. } break;
  13498. case GGML_OP_FLASH_FF:
  13499. {
  13500. n_tasks = n_threads;
  13501. } break;
  13502. case GGML_OP_FLASH_ATTN_BACK:
  13503. {
  13504. n_tasks = n_threads;
  13505. } break;
  13506. case GGML_OP_WIN_PART:
  13507. case GGML_OP_WIN_UNPART:
  13508. case GGML_OP_GET_REL_POS:
  13509. case GGML_OP_MAP_UNARY:
  13510. case GGML_OP_MAP_BINARY:
  13511. case GGML_OP_MAP_CUSTOM1_F32:
  13512. case GGML_OP_MAP_CUSTOM2_F32:
  13513. case GGML_OP_MAP_CUSTOM3_F32:
  13514. {
  13515. n_tasks = 1;
  13516. } break;
  13517. case GGML_OP_MAP_CUSTOM1:
  13518. {
  13519. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13520. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13521. n_tasks = n_threads;
  13522. } else {
  13523. n_tasks = MIN(p->n_tasks, n_threads);
  13524. }
  13525. } break;
  13526. case GGML_OP_MAP_CUSTOM2:
  13527. {
  13528. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13529. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13530. n_tasks = n_threads;
  13531. } else {
  13532. n_tasks = MIN(p->n_tasks, n_threads);
  13533. }
  13534. } break;
  13535. case GGML_OP_MAP_CUSTOM3:
  13536. {
  13537. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13538. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13539. n_tasks = n_threads;
  13540. } else {
  13541. n_tasks = MIN(p->n_tasks, n_threads);
  13542. }
  13543. } break;
  13544. case GGML_OP_CROSS_ENTROPY_LOSS:
  13545. {
  13546. n_tasks = n_threads;
  13547. } break;
  13548. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13549. {
  13550. n_tasks = n_threads;
  13551. } break;
  13552. case GGML_OP_NONE:
  13553. {
  13554. n_tasks = 1;
  13555. } break;
  13556. case GGML_OP_COUNT:
  13557. {
  13558. GGML_ASSERT(false);
  13559. } break;
  13560. default:
  13561. {
  13562. fprintf(stderr, "%s: op not implemented: ", __func__);
  13563. if (node->op < GGML_OP_COUNT) {
  13564. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13565. } else {
  13566. fprintf(stderr, "%d\n", node->op);
  13567. }
  13568. GGML_ASSERT(false);
  13569. } break;
  13570. }
  13571. assert(n_tasks > 0);
  13572. return n_tasks;
  13573. }
  13574. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13575. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13576. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13577. const struct ggml_cplan * cplan = state->shared->cplan;
  13578. const int n_threads = state->shared->n_threads;
  13579. set_numa_thread_affinity(state->ith, n_threads);
  13580. int node_n = -1;
  13581. while (true) {
  13582. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13583. state->shared->node_n += 1;
  13584. return (thread_ret_t) GGML_EXIT_ABORTED;
  13585. }
  13586. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13587. // all other threads are finished and spinning
  13588. // do finalize and init here so we don't have synchronize again
  13589. struct ggml_compute_params params = {
  13590. /*.type =*/ GGML_TASK_FINALIZE,
  13591. /*.ith =*/ 0,
  13592. /*.nth =*/ 0,
  13593. /*.wsize =*/ cplan->work_size,
  13594. /*.wdata =*/ cplan->work_data,
  13595. };
  13596. if (node_n != -1) {
  13597. /* FINALIZE */
  13598. struct ggml_tensor * node = cgraph->nodes[node_n];
  13599. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13600. params.nth = ggml_get_n_tasks(node, n_threads);
  13601. ggml_compute_forward(&params, node);
  13602. }
  13603. ggml_graph_compute_perf_stats_node(node, state->shared);
  13604. }
  13605. // distribute new work or execute it direct if 1T
  13606. while (++node_n < cgraph->n_nodes) {
  13607. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13608. struct ggml_tensor * node = cgraph->nodes[node_n];
  13609. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13610. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13611. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13612. params.nth = n_tasks;
  13613. /* INIT */
  13614. if (GGML_OP_HAS_INIT[node->op]) {
  13615. params.type = GGML_TASK_INIT;
  13616. ggml_compute_forward(&params, node);
  13617. }
  13618. if (n_tasks == 1) {
  13619. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13620. // they do something more efficient than spinning (?)
  13621. params.type = GGML_TASK_COMPUTE;
  13622. ggml_compute_forward(&params, node);
  13623. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13624. params.type = GGML_TASK_FINALIZE;
  13625. ggml_compute_forward(&params, node);
  13626. }
  13627. ggml_graph_compute_perf_stats_node(node, state->shared);
  13628. } else {
  13629. break;
  13630. }
  13631. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13632. break;
  13633. }
  13634. }
  13635. atomic_store(&state->shared->n_active, n_threads);
  13636. atomic_store(&state->shared->node_n, node_n);
  13637. } else {
  13638. // wait for other threads to finish
  13639. const int last = node_n;
  13640. while (true) {
  13641. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13642. // depending on the workload and the operating system.
  13643. // since it is not clear what is the best approach, it should potentially become user-configurable
  13644. // ref: https://github.com/ggerganov/ggml/issues/291
  13645. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13646. sched_yield();
  13647. #endif
  13648. node_n = atomic_load(&state->shared->node_n);
  13649. if (node_n != last) break;
  13650. };
  13651. }
  13652. // check if we should stop
  13653. if (node_n >= cgraph->n_nodes) break;
  13654. /* COMPUTE */
  13655. struct ggml_tensor * node = cgraph->nodes[node_n];
  13656. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13657. struct ggml_compute_params params = {
  13658. /*.type =*/ GGML_TASK_COMPUTE,
  13659. /*.ith =*/ state->ith,
  13660. /*.nth =*/ n_tasks,
  13661. /*.wsize =*/ cplan->work_size,
  13662. /*.wdata =*/ cplan->work_data,
  13663. };
  13664. if (state->ith < n_tasks) {
  13665. ggml_compute_forward(&params, node);
  13666. }
  13667. }
  13668. return GGML_EXIT_SUCCESS;
  13669. }
  13670. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13671. if (n_threads <= 0) {
  13672. n_threads = GGML_DEFAULT_N_THREADS;
  13673. }
  13674. size_t work_size = 0;
  13675. struct ggml_cplan cplan;
  13676. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13677. // thread scheduling for the different operations + work buffer size estimation
  13678. for (int i = 0; i < cgraph->n_nodes; i++) {
  13679. struct ggml_tensor * node = cgraph->nodes[i];
  13680. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13681. size_t cur = 0;
  13682. switch (node->op) {
  13683. case GGML_OP_CPY:
  13684. case GGML_OP_DUP:
  13685. {
  13686. if (ggml_is_quantized(node->type)) {
  13687. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13688. }
  13689. } break;
  13690. case GGML_OP_ADD:
  13691. case GGML_OP_ADD1:
  13692. {
  13693. if (ggml_is_quantized(node->src[0]->type)) {
  13694. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13695. }
  13696. } break;
  13697. case GGML_OP_ACC:
  13698. {
  13699. if (ggml_is_quantized(node->src[0]->type)) {
  13700. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13701. }
  13702. } break;
  13703. case GGML_OP_MUL_MAT:
  13704. {
  13705. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13706. #if defined(GGML_USE_CLBLAST)
  13707. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13708. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13709. } else
  13710. #endif
  13711. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13712. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13713. if (node->src[0]->type != GGML_TYPE_F32) {
  13714. // here we need memory just for single 2D matrix from src0
  13715. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13716. }
  13717. } else
  13718. #endif
  13719. if (node->src[1]->type != vec_dot_type) {
  13720. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13721. }
  13722. } break;
  13723. case GGML_OP_MUL_MAT_ID:
  13724. {
  13725. const struct ggml_tensor * src0 = node->src[2];
  13726. const struct ggml_tensor * src1 = node->src[1];
  13727. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13728. if (src1->type != vec_dot_type) {
  13729. cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13730. }
  13731. const int n_as = ggml_get_op_params_i32(node, 1);
  13732. cur = GGML_PAD(cur, sizeof(int64_t)); // align
  13733. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13734. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13735. } break;
  13736. case GGML_OP_OUT_PROD:
  13737. {
  13738. if (ggml_is_quantized(node->src[0]->type)) {
  13739. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13740. }
  13741. } break;
  13742. case GGML_OP_SOFT_MAX:
  13743. {
  13744. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13745. } break;
  13746. case GGML_OP_CONV_TRANSPOSE_1D:
  13747. {
  13748. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13749. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13750. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13751. const int64_t ne00 = node->src[0]->ne[0]; // K
  13752. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13753. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13754. const int64_t ne10 = node->src[1]->ne[0]; // L
  13755. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13756. if (node->src[0]->type == GGML_TYPE_F16 &&
  13757. node->src[1]->type == GGML_TYPE_F32) {
  13758. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13759. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13760. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13761. node->src[1]->type == GGML_TYPE_F32) {
  13762. cur += sizeof(float)*ne00*ne01*ne02;
  13763. cur += sizeof(float)*ne10*ne11;
  13764. } else {
  13765. GGML_ASSERT(false);
  13766. }
  13767. } break;
  13768. case GGML_OP_CONV_TRANSPOSE_2D:
  13769. {
  13770. const int64_t ne00 = node->src[0]->ne[0]; // W
  13771. const int64_t ne01 = node->src[0]->ne[1]; // H
  13772. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13773. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13774. const int64_t ne10 = node->src[1]->ne[0]; // W
  13775. const int64_t ne11 = node->src[1]->ne[1]; // H
  13776. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13777. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13778. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13779. } break;
  13780. case GGML_OP_FLASH_ATTN:
  13781. {
  13782. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13783. if (node->src[1]->type == GGML_TYPE_F32) {
  13784. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13785. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13786. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13787. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13788. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13789. }
  13790. } break;
  13791. case GGML_OP_FLASH_FF:
  13792. {
  13793. if (node->src[1]->type == GGML_TYPE_F32) {
  13794. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13795. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13796. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13797. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13798. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13799. }
  13800. } break;
  13801. case GGML_OP_FLASH_ATTN_BACK:
  13802. {
  13803. const int64_t D = node->src[0]->ne[0];
  13804. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13805. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13806. if (node->src[1]->type == GGML_TYPE_F32) {
  13807. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13808. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13809. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13810. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13811. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13812. }
  13813. } break;
  13814. case GGML_OP_CROSS_ENTROPY_LOSS:
  13815. {
  13816. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13817. } break;
  13818. case GGML_OP_COUNT:
  13819. {
  13820. GGML_ASSERT(false);
  13821. } break;
  13822. default:
  13823. break;
  13824. }
  13825. work_size = MAX(work_size, cur);
  13826. }
  13827. if (work_size > 0) {
  13828. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13829. }
  13830. cplan.n_threads = n_threads;
  13831. cplan.work_size = work_size;
  13832. cplan.work_data = NULL;
  13833. return cplan;
  13834. }
  13835. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13836. {
  13837. GGML_ASSERT(cplan);
  13838. GGML_ASSERT(cplan->n_threads > 0);
  13839. if (cplan->work_size > 0) {
  13840. GGML_ASSERT(cplan->work_data);
  13841. }
  13842. }
  13843. const int n_threads = cplan->n_threads;
  13844. struct ggml_compute_state_shared state_shared = {
  13845. /*.cgraph =*/ cgraph,
  13846. /*.cgraph_plan =*/ cplan,
  13847. /*.perf_node_start_cycles =*/ 0,
  13848. /*.perf_node_start_time_us =*/ 0,
  13849. /*.n_threads =*/ n_threads,
  13850. /*.n_active =*/ n_threads,
  13851. /*.node_n =*/ -1,
  13852. /*.abort_callback =*/ NULL,
  13853. /*.abort_callback_data =*/ NULL,
  13854. };
  13855. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13856. // create thread pool
  13857. if (n_threads > 1) {
  13858. for (int j = 1; j < n_threads; ++j) {
  13859. workers[j] = (struct ggml_compute_state) {
  13860. .thrd = 0,
  13861. .ith = j,
  13862. .shared = &state_shared,
  13863. };
  13864. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13865. GGML_ASSERT(rc == 0);
  13866. UNUSED(rc);
  13867. }
  13868. }
  13869. workers[0].ith = 0;
  13870. workers[0].shared = &state_shared;
  13871. const int64_t perf_start_cycles = ggml_perf_cycles();
  13872. const int64_t perf_start_time_us = ggml_perf_time_us();
  13873. // this is a work thread too
  13874. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13875. // don't leave affinity set on the main thread
  13876. clear_numa_thread_affinity();
  13877. // join or kill thread pool
  13878. if (n_threads > 1) {
  13879. for (int j = 1; j < n_threads; j++) {
  13880. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13881. GGML_ASSERT(rc == 0);
  13882. }
  13883. }
  13884. // performance stats (graph)
  13885. {
  13886. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13887. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13888. cgraph->perf_runs++;
  13889. cgraph->perf_cycles += perf_cycles_cur;
  13890. cgraph->perf_time_us += perf_time_us_cur;
  13891. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13892. __func__, cgraph->perf_runs,
  13893. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13894. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13895. (double) perf_time_us_cur / 1000.0,
  13896. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13897. }
  13898. return compute_status;
  13899. }
  13900. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13901. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13902. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13903. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13904. ggml_graph_compute(cgraph, &cplan);
  13905. }
  13906. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13907. for (int i = 0; i < cgraph->n_leafs; i++) {
  13908. struct ggml_tensor * leaf = cgraph->leafs[i];
  13909. if (strcmp(leaf->name, name) == 0) {
  13910. return leaf;
  13911. }
  13912. }
  13913. for (int i = 0; i < cgraph->n_nodes; i++) {
  13914. struct ggml_tensor * node = cgraph->nodes[i];
  13915. if (strcmp(node->name, name) == 0) {
  13916. return node;
  13917. }
  13918. }
  13919. return NULL;
  13920. }
  13921. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13922. const int64_t * ne = tensor->ne;
  13923. const size_t * nb = tensor->nb;
  13924. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13925. ggml_type_name(tensor->type),
  13926. ggml_op_name (tensor->op),
  13927. ggml_n_dims(tensor),
  13928. ne[0], ne[1], ne[2], ne[3],
  13929. nb[0], nb[1], nb[2], nb[3],
  13930. tensor->data,
  13931. tensor->name);
  13932. }
  13933. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13934. const int64_t * ne = tensor->ne;
  13935. const size_t * nb = tensor->nb;
  13936. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13937. arg,
  13938. ggml_type_name(tensor->type),
  13939. ggml_op_name (tensor->op),
  13940. ggml_n_dims(tensor),
  13941. ne[0], ne[1], ne[2], ne[3],
  13942. nb[0], nb[1], nb[2], nb[3],
  13943. tensor->data,
  13944. tensor->name);
  13945. }
  13946. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13947. uint64_t size_eval = 0;
  13948. // compute size of intermediate results
  13949. // TODO: does not take into account scratch buffers !!!!
  13950. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13951. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13952. }
  13953. // print
  13954. {
  13955. FILE * fout = stdout;
  13956. fprintf(fout, "\n");
  13957. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13958. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13959. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13960. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13961. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13962. // header
  13963. fprintf(fout, "\n");
  13964. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13965. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13966. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13967. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13968. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13969. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13970. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13971. }
  13972. // header
  13973. fprintf(fout, "\n");
  13974. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13975. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13976. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13977. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13978. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13979. if (cgraph->nodes[i]->src[j]) {
  13980. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13981. }
  13982. }
  13983. fprintf(fout, "\n");
  13984. }
  13985. fprintf(fout, "\n");
  13986. }
  13987. // write binary data
  13988. {
  13989. FILE * fout = fopen(fname, "wb");
  13990. if (!fout) {
  13991. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13992. return;
  13993. }
  13994. // header
  13995. {
  13996. const uint32_t magic = GGML_FILE_MAGIC;
  13997. const uint32_t version = GGML_FILE_VERSION;
  13998. const uint32_t n_leafs = cgraph->n_leafs;
  13999. const uint32_t n_nodes = cgraph->n_nodes;
  14000. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14001. fwrite(&version, sizeof(uint32_t), 1, fout);
  14002. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14003. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14004. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14005. }
  14006. // leafs
  14007. {
  14008. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14009. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14010. const uint32_t type = tensor->type;
  14011. const uint32_t op = tensor->op;
  14012. fwrite(&type, sizeof(uint32_t), 1, fout);
  14013. fwrite(&op, sizeof(uint32_t), 1, fout);
  14014. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14015. const uint64_t ne = tensor->ne[j];
  14016. const uint64_t nb = tensor->nb[j];
  14017. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14018. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14019. }
  14020. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14021. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14022. // dump the data
  14023. // TODO: pad this to 32 byte boundary
  14024. {
  14025. const size_t size = ggml_nbytes(tensor);
  14026. fwrite(tensor->data, sizeof(char), size, fout);
  14027. }
  14028. }
  14029. }
  14030. // nodes
  14031. {
  14032. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14033. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14034. const uint32_t type = tensor->type;
  14035. const uint32_t op = tensor->op;
  14036. fwrite(&type, sizeof(uint32_t), 1, fout);
  14037. fwrite(&op, sizeof(uint32_t), 1, fout);
  14038. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14039. const uint64_t ne = tensor->ne[j];
  14040. const uint64_t nb = tensor->nb[j];
  14041. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14042. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14043. }
  14044. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14045. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14046. // output the op arguments
  14047. {
  14048. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14049. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14050. args[j] = tensor->src[j];
  14051. }
  14052. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14053. if (args[j]) {
  14054. int32_t idx = -1;
  14055. // check if leaf
  14056. {
  14057. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14058. if (args[j] == cgraph->leafs[k]) {
  14059. idx = k;
  14060. break;
  14061. }
  14062. }
  14063. }
  14064. // check if node
  14065. if (idx == -1) {
  14066. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14067. if (args[j] == cgraph->nodes[k]) {
  14068. idx = cgraph->n_leafs + k;
  14069. break;
  14070. }
  14071. }
  14072. }
  14073. if (idx == -1) {
  14074. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14075. fclose(fout);
  14076. return;
  14077. }
  14078. fwrite(&idx, sizeof(int32_t), 1, fout);
  14079. } else {
  14080. const int32_t nul = -1;
  14081. fwrite(&nul, sizeof(int32_t), 1, fout);
  14082. }
  14083. }
  14084. }
  14085. }
  14086. }
  14087. fclose(fout);
  14088. }
  14089. }
  14090. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14091. assert(*ctx_data == NULL);
  14092. assert(*ctx_eval == NULL);
  14093. struct ggml_cgraph * result = NULL;
  14094. struct ggml_tensor * data = NULL;
  14095. // read file into data
  14096. {
  14097. FILE * fin = fopen(fname, "rb");
  14098. if (!fin) {
  14099. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14100. return result;
  14101. }
  14102. size_t fsize = 0;
  14103. fseek(fin, 0, SEEK_END);
  14104. fsize = ftell(fin);
  14105. fseek(fin, 0, SEEK_SET);
  14106. // create the data context
  14107. {
  14108. const size_t overhead = 1*ggml_tensor_overhead();
  14109. struct ggml_init_params params = {
  14110. .mem_size = fsize + overhead,
  14111. .mem_buffer = NULL,
  14112. .no_alloc = false,
  14113. };
  14114. *ctx_data = ggml_init(params);
  14115. if (!*ctx_data) {
  14116. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14117. fclose(fin);
  14118. return result;
  14119. }
  14120. }
  14121. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14122. {
  14123. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14124. if (ret != fsize) {
  14125. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14126. fclose(fin);
  14127. return result;
  14128. }
  14129. }
  14130. fclose(fin);
  14131. }
  14132. // populate result
  14133. {
  14134. char * ptr = (char *) data->data;
  14135. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14136. if (magic != GGML_FILE_MAGIC) {
  14137. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14138. return result;
  14139. }
  14140. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14141. if (version != GGML_FILE_VERSION) {
  14142. fprintf(stderr, "%s: invalid version number\n", __func__);
  14143. return result;
  14144. }
  14145. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14146. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14147. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14148. const int graph_size = MAX(n_leafs, n_nodes);
  14149. // create the data context
  14150. {
  14151. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14152. struct ggml_init_params params = {
  14153. .mem_size = size_eval + overhead,
  14154. .mem_buffer = NULL,
  14155. .no_alloc = true,
  14156. };
  14157. *ctx_eval = ggml_init(params);
  14158. if (!*ctx_eval) {
  14159. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14160. return result;
  14161. }
  14162. }
  14163. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14164. result->n_leafs = n_leafs;
  14165. result->n_nodes = n_nodes;
  14166. // leafs
  14167. {
  14168. uint32_t type;
  14169. uint32_t op;
  14170. for (uint32_t i = 0; i < n_leafs; ++i) {
  14171. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14172. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14173. int64_t ne[GGML_MAX_DIMS];
  14174. size_t nb[GGML_MAX_DIMS];
  14175. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14176. uint64_t ne_cur;
  14177. uint64_t nb_cur;
  14178. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14179. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14180. ne[j] = ne_cur;
  14181. nb[j] = nb_cur;
  14182. }
  14183. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14184. tensor->op = (enum ggml_op) op;
  14185. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14186. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14187. tensor->data = (void *) ptr;
  14188. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14189. tensor->nb[j] = nb[j];
  14190. }
  14191. result->leafs[i] = tensor;
  14192. ptr += ggml_nbytes(tensor);
  14193. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14194. }
  14195. }
  14196. ggml_set_no_alloc(*ctx_eval, false);
  14197. // nodes
  14198. {
  14199. uint32_t type;
  14200. uint32_t op;
  14201. for (uint32_t i = 0; i < n_nodes; ++i) {
  14202. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14203. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14204. enum ggml_op eop = (enum ggml_op) op;
  14205. int64_t ne[GGML_MAX_DIMS];
  14206. size_t nb[GGML_MAX_DIMS];
  14207. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14208. uint64_t ne_cur;
  14209. uint64_t nb_cur;
  14210. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14211. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14212. ne[j] = ne_cur;
  14213. nb[j] = nb_cur;
  14214. }
  14215. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14216. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14217. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14218. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14219. // parse args
  14220. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14221. const int32_t arg_idx = ptr_arg_idx[j];
  14222. if (arg_idx == -1) {
  14223. continue;
  14224. }
  14225. if (arg_idx < result->n_leafs) {
  14226. args[j] = result->leafs[arg_idx];
  14227. } else {
  14228. args[j] = result->nodes[arg_idx - result->n_leafs];
  14229. }
  14230. }
  14231. // create the tensor
  14232. // "view" operations are handled differently
  14233. // TODO: handle inplace ops - currently a copy is always made
  14234. struct ggml_tensor * tensor = NULL;
  14235. switch (eop) {
  14236. // TODO: implement other view ops
  14237. case GGML_OP_RESHAPE:
  14238. {
  14239. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14240. } break;
  14241. case GGML_OP_VIEW:
  14242. {
  14243. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14244. size_t offs;
  14245. memcpy(&offs, ptr_op_params, sizeof(offs));
  14246. tensor->data = ((char *) tensor->data) + offs;
  14247. } break;
  14248. case GGML_OP_TRANSPOSE:
  14249. {
  14250. tensor = ggml_transpose(*ctx_eval, args[0]);
  14251. } break;
  14252. case GGML_OP_PERMUTE:
  14253. {
  14254. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14255. } break;
  14256. default:
  14257. {
  14258. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14259. tensor->op = eop;
  14260. } break;
  14261. }
  14262. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14263. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14264. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14265. tensor->nb[j] = nb[j];
  14266. }
  14267. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14268. tensor->src[j] = args[j];
  14269. }
  14270. result->nodes[i] = tensor;
  14271. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14272. }
  14273. }
  14274. }
  14275. return result;
  14276. }
  14277. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14278. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14279. GGML_PRINT("=== GRAPH ===\n");
  14280. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14281. for (int i = 0; i < cgraph->n_nodes; i++) {
  14282. struct ggml_tensor * node = cgraph->nodes[i];
  14283. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14284. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14285. i,
  14286. node->ne[0], node->ne[1], node->ne[2],
  14287. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14288. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14289. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14290. (double) node->perf_time_us / 1000.0,
  14291. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14292. }
  14293. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14294. for (int i = 0; i < cgraph->n_leafs; i++) {
  14295. struct ggml_tensor * node = cgraph->leafs[i];
  14296. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14297. i,
  14298. node->ne[0], node->ne[1],
  14299. ggml_op_name(node->op),
  14300. ggml_get_name(node));
  14301. }
  14302. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14303. if (perf_total_per_op_us[i] == 0) {
  14304. continue;
  14305. }
  14306. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14307. }
  14308. GGML_PRINT("========================================\n");
  14309. }
  14310. // check if node is part of the graph
  14311. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14312. if (cgraph == NULL) {
  14313. return true;
  14314. }
  14315. for (int i = 0; i < cgraph->n_nodes; i++) {
  14316. if (cgraph->nodes[i] == node) {
  14317. return true;
  14318. }
  14319. }
  14320. return false;
  14321. }
  14322. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14323. for (int i = 0; i < cgraph->n_nodes; i++) {
  14324. struct ggml_tensor * parent = cgraph->nodes[i];
  14325. if (parent->grad == node) {
  14326. return parent;
  14327. }
  14328. }
  14329. return NULL;
  14330. }
  14331. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14332. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14333. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14334. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14335. gparent0 ? (void *) gparent0 : (void *) parent,
  14336. gparent0 ? "g" : "x",
  14337. gparent ? (void *) gparent : (void *) node,
  14338. gparent ? "g" : "x",
  14339. gparent ? "empty" : "vee",
  14340. gparent ? "dashed" : "solid",
  14341. label);
  14342. }
  14343. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14344. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14345. (void *) parent, "x",
  14346. (void *) node, "x",
  14347. label);
  14348. }
  14349. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14350. char color[16];
  14351. FILE * fp = fopen(filename, "w");
  14352. GGML_ASSERT(fp);
  14353. fprintf(fp, "digraph G {\n");
  14354. fprintf(fp, " newrank = true;\n");
  14355. fprintf(fp, " rankdir = LR;\n");
  14356. for (int i = 0; i < gb->n_nodes; i++) {
  14357. struct ggml_tensor * node = gb->nodes[i];
  14358. if (ggml_graph_get_parent(gb, node) != NULL) {
  14359. continue;
  14360. }
  14361. if (node->is_param) {
  14362. snprintf(color, sizeof(color), "yellow");
  14363. } else if (node->grad) {
  14364. if (ggml_graph_find(gf, node)) {
  14365. snprintf(color, sizeof(color), "green");
  14366. } else {
  14367. snprintf(color, sizeof(color), "lightblue");
  14368. }
  14369. } else {
  14370. snprintf(color, sizeof(color), "white");
  14371. }
  14372. fprintf(fp, " \"%p\" [ "
  14373. "style = filled; fillcolor = %s; shape = record; "
  14374. "label=\"",
  14375. (void *) node, color);
  14376. if (strlen(node->name) > 0) {
  14377. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14378. } else {
  14379. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14380. }
  14381. if (ggml_is_matrix(node)) {
  14382. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14383. } else {
  14384. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14385. }
  14386. if (node->grad) {
  14387. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14388. } else {
  14389. fprintf(fp, "\"; ]\n");
  14390. }
  14391. }
  14392. for (int i = 0; i < gb->n_leafs; i++) {
  14393. struct ggml_tensor * node = gb->leafs[i];
  14394. snprintf(color, sizeof(color), "pink");
  14395. fprintf(fp, " \"%p\" [ "
  14396. "style = filled; fillcolor = %s; shape = record; "
  14397. "label=\"<x>",
  14398. (void *) node, color);
  14399. if (strlen(node->name) > 0) {
  14400. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14401. } else {
  14402. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14403. }
  14404. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14405. if (ggml_nelements(node) < 5) {
  14406. fprintf(fp, " | (");
  14407. for (int j = 0; j < ggml_nelements(node); j++) {
  14408. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14409. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14410. }
  14411. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14412. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14413. }
  14414. else {
  14415. fprintf(fp, "#");
  14416. }
  14417. if (j < ggml_nelements(node) - 1) {
  14418. fprintf(fp, ", ");
  14419. }
  14420. }
  14421. fprintf(fp, ")");
  14422. }
  14423. fprintf(fp, "\"; ]\n");
  14424. }
  14425. for (int i = 0; i < gb->n_nodes; i++) {
  14426. struct ggml_tensor * node = gb->nodes[i];
  14427. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14428. if (node->src[j]) {
  14429. char label[16];
  14430. snprintf(label, sizeof(label), "src %d", j);
  14431. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14432. }
  14433. }
  14434. }
  14435. for (int i = 0; i < gb->n_leafs; i++) {
  14436. struct ggml_tensor * node = gb->leafs[i];
  14437. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14438. if (node->src[j]) {
  14439. char label[16];
  14440. snprintf(label, sizeof(label), "src %d", j);
  14441. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14442. }
  14443. }
  14444. }
  14445. fprintf(fp, "}\n");
  14446. fclose(fp);
  14447. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14448. }
  14449. ////////////////////////////////////////////////////////////////////////////////
  14450. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14451. int i = 0;
  14452. for (int p = 0; p < np; ++p) {
  14453. const int64_t ne = ggml_nelements(ps[p]) ;
  14454. // TODO: add function to set tensor from array
  14455. for (int64_t j = 0; j < ne; ++j) {
  14456. ggml_set_f32_1d(ps[p], j, x[i++]);
  14457. }
  14458. }
  14459. }
  14460. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14461. int i = 0;
  14462. for (int p = 0; p < np; ++p) {
  14463. const int64_t ne = ggml_nelements(ps[p]) ;
  14464. // TODO: add function to get all elements at once
  14465. for (int64_t j = 0; j < ne; ++j) {
  14466. x[i++] = ggml_get_f32_1d(ps[p], j);
  14467. }
  14468. }
  14469. }
  14470. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14471. int64_t i = 0;
  14472. for (int p = 0; p < np; ++p) {
  14473. const int64_t ne = ggml_nelements(ps[p]) ;
  14474. // TODO: add function to get all elements at once
  14475. for (int64_t j = 0; j < ne; ++j) {
  14476. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14477. }
  14478. }
  14479. }
  14480. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14481. int64_t i = 0;
  14482. for (int p = 0; p < np; ++p) {
  14483. const int64_t ne = ggml_nelements(ps[p]) ;
  14484. // TODO: add function to get all elements at once
  14485. for (int64_t j = 0; j < ne; ++j) {
  14486. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14487. }
  14488. }
  14489. }
  14490. //
  14491. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14492. //
  14493. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14494. //
  14495. static enum ggml_opt_result ggml_opt_adam(
  14496. struct ggml_context * ctx,
  14497. struct ggml_opt_context * opt,
  14498. struct ggml_opt_params params,
  14499. struct ggml_tensor * f,
  14500. struct ggml_cgraph * gf,
  14501. struct ggml_cgraph * gb,
  14502. ggml_opt_callback callback,
  14503. void * callback_data) {
  14504. GGML_ASSERT(ggml_is_scalar(f));
  14505. // these will store the parameters we want to optimize
  14506. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14507. int np = 0;
  14508. int64_t nx = 0;
  14509. for (int i = 0; i < gf->n_nodes; ++i) {
  14510. if (gf->nodes[i]->is_param) {
  14511. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14512. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14513. ps[np++] = gf->nodes[i];
  14514. nx += ggml_nelements(gf->nodes[i]);
  14515. }
  14516. }
  14517. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14518. int iter = opt->iter;
  14519. ggml_opt_init(opt->ctx, opt, params, nx);
  14520. opt->iter = iter;
  14521. }
  14522. // constants
  14523. float sched = params.adam.sched;
  14524. const float alpha = params.adam.alpha;
  14525. const float decay = params.adam.decay * alpha;
  14526. const float beta1 = params.adam.beta1;
  14527. const float beta2 = params.adam.beta2;
  14528. const float eps = params.adam.eps;
  14529. const float gclip = params.adam.gclip;
  14530. const int decay_min_ndim = params.adam.decay_min_ndim;
  14531. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14532. const float accum_norm = 1.0f / (float) n_accum;
  14533. float * g = opt->adam.g->data; // gradients
  14534. float * m = opt->adam.m->data; // first moment
  14535. float * v = opt->adam.v->data; // second moment
  14536. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14537. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14538. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14539. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14540. bool cancel = false;
  14541. // compute the function value
  14542. float fx = 0;
  14543. ggml_set_zero(opt->adam.g);
  14544. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14545. if (callback) {
  14546. callback(callback_data, accum_step, &sched, &cancel);
  14547. if (cancel) {
  14548. return GGML_OPT_CANCEL;
  14549. }
  14550. }
  14551. // ggml_graph_reset (gf);
  14552. ggml_set_f32 (f->grad, 1.0f);
  14553. ggml_graph_compute(gb, &cplan);
  14554. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14555. fx += ggml_get_f32_1d(f, 0);
  14556. }
  14557. fx *= accum_norm;
  14558. opt->adam.fx_prev = fx;
  14559. opt->adam.fx_best = opt->adam.fx_prev;
  14560. if (pf) {
  14561. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14562. }
  14563. opt->loss_before = opt->adam.fx_prev;
  14564. opt->loss_after = opt->adam.fx_prev;
  14565. // initialize
  14566. if (opt->just_initialized) {
  14567. opt->adam.n_no_improvement = 0;
  14568. opt->just_initialized = false;
  14569. }
  14570. float * fx_best = &opt->adam.fx_best;
  14571. float * fx_prev = &opt->adam.fx_prev;
  14572. int * n_no_improvement = &opt->adam.n_no_improvement;
  14573. int iter0 = opt->iter;
  14574. // run the optimizer
  14575. for (int t = 0; t < params.adam.n_iter; ++t) {
  14576. opt->iter = iter0 + t + 1;
  14577. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14578. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14579. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14580. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14581. for (int i = 0; i < np; ++i) {
  14582. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14583. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14584. }
  14585. const int64_t t_start_wall = ggml_time_us();
  14586. const int64_t t_start_cpu = ggml_cycles();
  14587. UNUSED(t_start_wall);
  14588. UNUSED(t_start_cpu);
  14589. {
  14590. float gnorm = 1.0f;
  14591. if (gclip > 0.0f) {
  14592. // gradient clipping
  14593. ggml_float sum = 0.0;
  14594. for (int64_t i = 0; i < nx; ++i) {
  14595. sum += (ggml_float)(g[i]*g[i]);
  14596. }
  14597. ggml_float norm = sqrt(sum);
  14598. if (norm > (ggml_float) gclip) {
  14599. gnorm = (float) ((ggml_float) gclip / norm);
  14600. }
  14601. }
  14602. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14603. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14604. int64_t i = 0;
  14605. for (int p = 0; p < np; ++p) {
  14606. const int64_t ne = ggml_nelements(ps[p]);
  14607. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14608. for (int64_t j = 0; j < ne; ++j) {
  14609. float x = ggml_get_f32_1d(ps[p], j);
  14610. float g_ = g[i]*gnorm;
  14611. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14612. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14613. float mh = m[i]*beta1h;
  14614. float vh = v[i]*beta2h;
  14615. vh = sqrtf(vh) + eps;
  14616. x = x*(1.0f - p_decay) - mh/vh;
  14617. ggml_set_f32_1d(ps[p], j, x);
  14618. ++i;
  14619. }
  14620. }
  14621. }
  14622. fx = 0;
  14623. ggml_set_zero(opt->adam.g);
  14624. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14625. if (callback) {
  14626. callback(callback_data, accum_step, &sched, &cancel);
  14627. if (cancel) {
  14628. return GGML_OPT_CANCEL;;
  14629. }
  14630. }
  14631. // ggml_graph_reset (gf);
  14632. ggml_set_f32 (f->grad, 1.0f);
  14633. ggml_graph_compute(gb, &cplan);
  14634. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14635. fx += ggml_get_f32_1d(f, 0);
  14636. }
  14637. fx *= accum_norm;
  14638. opt->loss_after = fx;
  14639. // check convergence
  14640. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14641. GGML_PRINT_DEBUG("converged\n");
  14642. return GGML_OPT_OK;
  14643. }
  14644. // delta-based convergence test
  14645. if (pf != NULL) {
  14646. // need at least params.past iterations to start checking for convergence
  14647. if (params.past <= iter0 + t) {
  14648. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14649. if (fabsf(rate) < params.delta) {
  14650. return GGML_OPT_OK;
  14651. }
  14652. }
  14653. pf[(iter0 + t)%params.past] = fx;
  14654. }
  14655. // check for improvement
  14656. if (params.max_no_improvement > 0) {
  14657. if (fx_best[0] > fx) {
  14658. fx_best[0] = fx;
  14659. n_no_improvement[0] = 0;
  14660. } else {
  14661. ++n_no_improvement[0];
  14662. if (n_no_improvement[0] >= params.max_no_improvement) {
  14663. return GGML_OPT_OK;
  14664. }
  14665. }
  14666. }
  14667. fx_prev[0] = fx;
  14668. {
  14669. const int64_t t_end_cpu = ggml_cycles();
  14670. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14671. UNUSED(t_end_cpu);
  14672. const int64_t t_end_wall = ggml_time_us();
  14673. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14674. UNUSED(t_end_wall);
  14675. }
  14676. }
  14677. return GGML_OPT_DID_NOT_CONVERGE;
  14678. }
  14679. //
  14680. // L-BFGS
  14681. //
  14682. // the L-BFGS implementation below is based on the following implementation:
  14683. //
  14684. // https://github.com/chokkan/liblbfgs
  14685. //
  14686. struct ggml_lbfgs_iteration_data {
  14687. float alpha;
  14688. float ys;
  14689. float * s;
  14690. float * y;
  14691. };
  14692. static enum ggml_opt_result linesearch_backtracking(
  14693. const struct ggml_opt_params * params,
  14694. int nx,
  14695. float * x,
  14696. float * fx,
  14697. float * g,
  14698. float * d,
  14699. float * step,
  14700. const float * xp,
  14701. struct ggml_tensor * f,
  14702. struct ggml_cgraph * gb,
  14703. struct ggml_cplan * cplan,
  14704. const int np,
  14705. struct ggml_tensor * ps[],
  14706. bool * cancel,
  14707. ggml_opt_callback callback,
  14708. void * callback_data) {
  14709. int count = 0;
  14710. float width = 0.0f;
  14711. float dg = 0.0f;
  14712. float finit = 0.0f;
  14713. float dginit = 0.0f;
  14714. float dgtest = 0.0f;
  14715. const float dec = 0.5f;
  14716. const float inc = 2.1f;
  14717. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14718. const float accum_norm = 1.0f / (float) n_accum;
  14719. if (*step <= 0.f) {
  14720. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14721. }
  14722. // compute the initial gradient in the search direction
  14723. ggml_vec_dot_f32(nx, &dginit, g, d);
  14724. // make sure that d points to a descent direction
  14725. if (0 < dginit) {
  14726. return GGML_LINESEARCH_FAIL;
  14727. }
  14728. // initialize local variables
  14729. finit = *fx;
  14730. dgtest = params->lbfgs.ftol*dginit;
  14731. while (true) {
  14732. ggml_vec_cpy_f32(nx, x, xp);
  14733. ggml_vec_mad_f32(nx, x, d, *step);
  14734. // evaluate the function and gradient values
  14735. {
  14736. ggml_opt_set_params(np, ps, x);
  14737. *fx = 0;
  14738. memset(g, 0, sizeof(float)*nx);
  14739. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14740. if (callback) {
  14741. // LBFG-S does not support learning rate -> ignore learning schedule
  14742. float sched = 0;
  14743. callback(callback_data, accum_step, &sched, cancel);
  14744. if (*cancel) {
  14745. return GGML_OPT_CANCEL;
  14746. }
  14747. }
  14748. // ggml_graph_reset (gf);
  14749. ggml_set_f32 (f->grad, 1.0f);
  14750. ggml_graph_compute(gb, cplan);
  14751. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14752. *fx += ggml_get_f32_1d(f, 0);
  14753. }
  14754. *fx *= accum_norm;
  14755. }
  14756. ++count;
  14757. if (*fx > finit + (*step)*dgtest) {
  14758. width = dec;
  14759. } else {
  14760. // Armijo condition is satisfied
  14761. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14762. return count;
  14763. }
  14764. ggml_vec_dot_f32(nx, &dg, g, d);
  14765. // check the Wolfe condition
  14766. if (dg < params->lbfgs.wolfe * dginit) {
  14767. width = inc;
  14768. } else {
  14769. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14770. // regular Wolfe conditions
  14771. return count;
  14772. }
  14773. if(dg > -params->lbfgs.wolfe*dginit) {
  14774. width = dec;
  14775. } else {
  14776. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14777. return count;
  14778. }
  14779. }
  14780. }
  14781. if (*step < params->lbfgs.min_step) {
  14782. return GGML_LINESEARCH_MINIMUM_STEP;
  14783. }
  14784. if (*step > params->lbfgs.max_step) {
  14785. return GGML_LINESEARCH_MAXIMUM_STEP;
  14786. }
  14787. if (params->lbfgs.max_linesearch <= count) {
  14788. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14789. }
  14790. (*step) *= width;
  14791. }
  14792. GGML_UNREACHABLE();
  14793. }
  14794. static enum ggml_opt_result ggml_opt_lbfgs(
  14795. struct ggml_context * ctx,
  14796. struct ggml_opt_context * opt,
  14797. struct ggml_opt_params params,
  14798. struct ggml_tensor * f,
  14799. struct ggml_cgraph * gf,
  14800. struct ggml_cgraph * gb,
  14801. ggml_opt_callback callback,
  14802. void * callback_data) {
  14803. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14804. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14805. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14806. return GGML_OPT_INVALID_WOLFE;
  14807. }
  14808. }
  14809. const int m = params.lbfgs.m;
  14810. // these will store the parameters we want to optimize
  14811. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14812. int np = 0;
  14813. int nx = 0;
  14814. for (int i = 0; i < gf->n_nodes; ++i) {
  14815. if (gf->nodes[i]->is_param) {
  14816. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14817. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14818. ps[np++] = gf->nodes[i];
  14819. nx += ggml_nelements(gf->nodes[i]);
  14820. }
  14821. }
  14822. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14823. int iter = opt->iter;
  14824. ggml_opt_init(ctx, opt, params, nx);
  14825. opt->iter = iter;
  14826. }
  14827. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14828. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14829. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14830. float * x = opt->lbfgs.x->data; // current parameters
  14831. float * xp = opt->lbfgs.xp->data; // previous parameters
  14832. float * g = opt->lbfgs.g->data; // current gradient
  14833. float * gp = opt->lbfgs.gp->data; // previous gradient
  14834. float * d = opt->lbfgs.d->data; // search direction
  14835. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14836. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14837. const float accum_norm = 1.0f / (float) n_accum;
  14838. float fx = 0.0f; // cost function value
  14839. float xnorm = 0.0f; // ||x||
  14840. float gnorm = 0.0f; // ||g||
  14841. // initialize x from the graph nodes
  14842. ggml_opt_get_params(np, ps, x);
  14843. // the L-BFGS memory
  14844. float * lm_alpha = opt->lbfgs.lmal->data;
  14845. float * lm_ys = opt->lbfgs.lmys->data;
  14846. float * lm_s = opt->lbfgs.lms->data;
  14847. float * lm_y = opt->lbfgs.lmy->data;
  14848. bool cancel = false;
  14849. // evaluate the function value and its gradient
  14850. {
  14851. ggml_opt_set_params(np, ps, x);
  14852. fx = 0;
  14853. memset(g, 0, sizeof(float)*nx);
  14854. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14855. if (callback) {
  14856. // LBFG-S does not support learning rate -> ignore learning schedule
  14857. float sched = 0;
  14858. callback(callback_data, accum_step, &sched, &cancel);
  14859. if (cancel) {
  14860. return GGML_OPT_CANCEL;
  14861. }
  14862. }
  14863. // ggml_graph_reset (gf);
  14864. ggml_set_f32 (f->grad, 1.0f);
  14865. ggml_graph_compute(gb, &cplan);
  14866. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14867. fx += ggml_get_f32_1d(f, 0);
  14868. }
  14869. fx *= accum_norm;
  14870. opt->loss_before = fx;
  14871. opt->loss_after = fx;
  14872. }
  14873. // search direction = -gradient
  14874. ggml_vec_neg_f32(nx, d, g);
  14875. // ||x||, ||g||
  14876. ggml_vec_norm_f32(nx, &xnorm, x);
  14877. ggml_vec_norm_f32(nx, &gnorm, g);
  14878. if (xnorm < 1.0f) {
  14879. xnorm = 1.0f;
  14880. }
  14881. // already optimized
  14882. if (gnorm/xnorm <= params.lbfgs.eps) {
  14883. return GGML_OPT_OK;
  14884. }
  14885. if (opt->just_initialized) {
  14886. if (pf) {
  14887. pf[0] = fx;
  14888. }
  14889. opt->lbfgs.fx_best = fx;
  14890. // initial step
  14891. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14892. opt->lbfgs.j = 0;
  14893. opt->lbfgs.k = 1;
  14894. opt->lbfgs.end = 0;
  14895. opt->lbfgs.n_no_improvement = 0;
  14896. opt->just_initialized = false;
  14897. }
  14898. float * fx_best = &opt->lbfgs.fx_best;
  14899. float * step = &opt->lbfgs.step;
  14900. int * j = &opt->lbfgs.j;
  14901. int * k = &opt->lbfgs.k;
  14902. int * end = &opt->lbfgs.end;
  14903. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14904. int ls = 0;
  14905. int bound = 0;
  14906. float ys = 0.0f;
  14907. float yy = 0.0f;
  14908. float beta = 0.0f;
  14909. int it = 0;
  14910. while (true) {
  14911. // store the current position and gradient vectors
  14912. ggml_vec_cpy_f32(nx, xp, x);
  14913. ggml_vec_cpy_f32(nx, gp, g);
  14914. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14915. // to determine if the optimization should be cancelled
  14916. // this is a simple change, but not doing this atm, since I don't have a nice
  14917. // way to test and don't want to break something with so many changes lined up
  14918. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14919. if (cancel) {
  14920. return GGML_OPT_CANCEL;
  14921. }
  14922. if (ls < 0) {
  14923. // linesearch failed - go back to the previous point and return
  14924. ggml_vec_cpy_f32(nx, x, xp);
  14925. ggml_vec_cpy_f32(nx, g, gp);
  14926. return ls;
  14927. }
  14928. opt->loss_after = fx;
  14929. ggml_vec_norm_f32(nx, &xnorm, x);
  14930. ggml_vec_norm_f32(nx, &gnorm, g);
  14931. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14932. if (xnorm < 1.0f) {
  14933. xnorm = 1.0f;
  14934. }
  14935. if (gnorm/xnorm <= params.lbfgs.eps) {
  14936. // converged
  14937. return GGML_OPT_OK;
  14938. }
  14939. // delta-based convergence test
  14940. if (pf != NULL) {
  14941. // need at least params.past iterations to start checking for convergence
  14942. if (params.past <= k[0]) {
  14943. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14944. if (fabsf(rate) < params.delta) {
  14945. return GGML_OPT_OK;
  14946. }
  14947. }
  14948. pf[k[0]%params.past] = fx;
  14949. }
  14950. // check for improvement
  14951. if (params.max_no_improvement > 0) {
  14952. if (fx < fx_best[0]) {
  14953. fx_best[0] = fx;
  14954. n_no_improvement[0] = 0;
  14955. } else {
  14956. n_no_improvement[0]++;
  14957. if (n_no_improvement[0] >= params.max_no_improvement) {
  14958. return GGML_OPT_OK;
  14959. }
  14960. }
  14961. }
  14962. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14963. // reached the maximum number of iterations
  14964. return GGML_OPT_DID_NOT_CONVERGE;
  14965. }
  14966. // update vectors s and y:
  14967. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14968. // y_{k+1} = g_{k+1} - g_{k}.
  14969. //
  14970. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14971. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14972. // compute scalars ys and yy:
  14973. // ys = y^t \cdot s -> 1 / \rho.
  14974. // yy = y^t \cdot y.
  14975. //
  14976. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14977. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14978. lm_ys[end[0]] = ys;
  14979. // find new search direction
  14980. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14981. bound = (m <= k[0]) ? m : k[0];
  14982. k[0]++;
  14983. it++;
  14984. end[0] = (end[0] + 1)%m;
  14985. // initialize search direction with -g
  14986. ggml_vec_neg_f32(nx, d, g);
  14987. j[0] = end[0];
  14988. for (int i = 0; i < bound; ++i) {
  14989. j[0] = (j[0] + m - 1) % m;
  14990. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14991. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14992. lm_alpha[j[0]] /= lm_ys[j[0]];
  14993. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14994. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14995. }
  14996. ggml_vec_scale_f32(nx, d, ys/yy);
  14997. for (int i = 0; i < bound; ++i) {
  14998. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14999. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15000. beta /= lm_ys[j[0]];
  15001. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15002. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15003. j[0] = (j[0] + 1)%m;
  15004. }
  15005. step[0] = 1.0;
  15006. }
  15007. GGML_UNREACHABLE();
  15008. }
  15009. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15010. struct ggml_opt_params result;
  15011. switch (type) {
  15012. case GGML_OPT_ADAM:
  15013. {
  15014. result = (struct ggml_opt_params) {
  15015. .type = GGML_OPT_ADAM,
  15016. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15017. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15018. .past = 0,
  15019. .delta = 1e-5f,
  15020. .max_no_improvement = 100,
  15021. .print_forward_graph = true,
  15022. .print_backward_graph = true,
  15023. .n_gradient_accumulation = 1,
  15024. .adam = {
  15025. .n_iter = 10000,
  15026. .sched = 1.000f,
  15027. .decay = 0.0f,
  15028. .decay_min_ndim = 2,
  15029. .alpha = 0.001f,
  15030. .beta1 = 0.9f,
  15031. .beta2 = 0.999f,
  15032. .eps = 1e-8f,
  15033. .eps_f = 1e-5f,
  15034. .eps_g = 1e-3f,
  15035. .gclip = 0.0f,
  15036. },
  15037. };
  15038. } break;
  15039. case GGML_OPT_LBFGS:
  15040. {
  15041. result = (struct ggml_opt_params) {
  15042. .type = GGML_OPT_LBFGS,
  15043. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15044. .n_threads = 1,
  15045. .past = 0,
  15046. .delta = 1e-5f,
  15047. .max_no_improvement = 0,
  15048. .print_forward_graph = true,
  15049. .print_backward_graph = true,
  15050. .n_gradient_accumulation = 1,
  15051. .lbfgs = {
  15052. .m = 6,
  15053. .n_iter = 100,
  15054. .max_linesearch = 20,
  15055. .eps = 1e-5f,
  15056. .ftol = 1e-4f,
  15057. .wolfe = 0.9f,
  15058. .min_step = 1e-20f,
  15059. .max_step = 1e+20f,
  15060. .linesearch = GGML_LINESEARCH_DEFAULT,
  15061. },
  15062. };
  15063. } break;
  15064. }
  15065. return result;
  15066. }
  15067. GGML_API void ggml_opt_init(
  15068. struct ggml_context * ctx,
  15069. struct ggml_opt_context * opt,
  15070. struct ggml_opt_params params,
  15071. int64_t nx) {
  15072. opt->ctx = ctx;
  15073. opt->params = params;
  15074. opt->iter = 0;
  15075. opt->nx = nx;
  15076. opt->just_initialized = true;
  15077. if (opt->ctx == NULL) {
  15078. struct ggml_init_params ctx_opt_params;
  15079. if (opt->params.type == GGML_OPT_ADAM) {
  15080. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15081. if (opt->params.past > 0) {
  15082. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15083. }
  15084. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15085. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15086. if (opt->params.past > 0) {
  15087. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15088. }
  15089. }
  15090. ctx_opt_params.mem_buffer = NULL;
  15091. ctx_opt_params.no_alloc = false;
  15092. opt->ctx = ggml_init(ctx_opt_params);
  15093. }
  15094. switch (opt->params.type) {
  15095. case GGML_OPT_ADAM:
  15096. {
  15097. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15098. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15099. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15100. opt->adam.pf = params.past > 0
  15101. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15102. : NULL;
  15103. ggml_set_zero(opt->adam.m);
  15104. ggml_set_zero(opt->adam.v);
  15105. if (opt->adam.pf) {
  15106. ggml_set_zero(opt->adam.pf);
  15107. }
  15108. } break;
  15109. case GGML_OPT_LBFGS:
  15110. {
  15111. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15112. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15113. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15114. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15115. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15116. opt->lbfgs.pf = params.past > 0
  15117. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15118. : NULL;
  15119. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15120. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15121. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15122. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15123. ggml_set_zero(opt->lbfgs.x);
  15124. ggml_set_zero(opt->lbfgs.xp);
  15125. ggml_set_zero(opt->lbfgs.g);
  15126. ggml_set_zero(opt->lbfgs.gp);
  15127. ggml_set_zero(opt->lbfgs.d);
  15128. if (opt->lbfgs.pf) {
  15129. ggml_set_zero(opt->lbfgs.pf);
  15130. }
  15131. ggml_set_zero(opt->lbfgs.lmal);
  15132. ggml_set_zero(opt->lbfgs.lmys);
  15133. ggml_set_zero(opt->lbfgs.lms);
  15134. ggml_set_zero(opt->lbfgs.lmy);
  15135. } break;
  15136. }
  15137. }
  15138. enum ggml_opt_result ggml_opt(
  15139. struct ggml_context * ctx,
  15140. struct ggml_opt_params params,
  15141. struct ggml_tensor * f) {
  15142. bool free_ctx = false;
  15143. if (ctx == NULL) {
  15144. struct ggml_init_params params_ctx = {
  15145. .mem_size = 16*1024*1024,
  15146. .mem_buffer = NULL,
  15147. .no_alloc = false,
  15148. };
  15149. ctx = ggml_init(params_ctx);
  15150. if (ctx == NULL) {
  15151. return GGML_OPT_NO_CONTEXT;
  15152. }
  15153. free_ctx = true;
  15154. }
  15155. enum ggml_opt_result result = GGML_OPT_OK;
  15156. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15157. ggml_opt_init(ctx, opt, params, 0);
  15158. result = ggml_opt_resume(ctx, opt, f);
  15159. if (free_ctx) {
  15160. ggml_free(ctx);
  15161. }
  15162. return result;
  15163. }
  15164. enum ggml_opt_result ggml_opt_resume(
  15165. struct ggml_context * ctx,
  15166. struct ggml_opt_context * opt,
  15167. struct ggml_tensor * f) {
  15168. // build forward + backward compute graphs
  15169. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15170. ggml_build_forward_expand(gf, f);
  15171. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15172. ggml_build_backward_expand(ctx, gf, gb, true);
  15173. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15174. }
  15175. enum ggml_opt_result ggml_opt_resume_g(
  15176. struct ggml_context * ctx,
  15177. struct ggml_opt_context * opt,
  15178. struct ggml_tensor * f,
  15179. struct ggml_cgraph * gf,
  15180. struct ggml_cgraph * gb,
  15181. ggml_opt_callback callback,
  15182. void * callback_data) {
  15183. // build forward + backward compute graphs
  15184. enum ggml_opt_result result = GGML_OPT_OK;
  15185. switch (opt->params.type) {
  15186. case GGML_OPT_ADAM:
  15187. {
  15188. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15189. } break;
  15190. case GGML_OPT_LBFGS:
  15191. {
  15192. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15193. } break;
  15194. }
  15195. if (opt->params.print_forward_graph) {
  15196. ggml_graph_print (gf);
  15197. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15198. }
  15199. if (opt->params.print_backward_graph) {
  15200. ggml_graph_print (gb);
  15201. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15202. }
  15203. return result;
  15204. }
  15205. ////////////////////////////////////////////////////////////////////////////////
  15206. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15207. assert(k % QK4_0 == 0);
  15208. const int nb = k / QK4_0;
  15209. for (int b = 0; b < n; b += k) {
  15210. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15211. quantize_row_q4_0_reference(src + b, y, k);
  15212. for (int i = 0; i < nb; i++) {
  15213. for (int j = 0; j < QK4_0; j += 2) {
  15214. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15215. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15216. hist[vi0]++;
  15217. hist[vi1]++;
  15218. }
  15219. }
  15220. }
  15221. return (n/QK4_0*sizeof(block_q4_0));
  15222. }
  15223. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15224. assert(k % QK4_1 == 0);
  15225. const int nb = k / QK4_1;
  15226. for (int b = 0; b < n; b += k) {
  15227. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15228. quantize_row_q4_1_reference(src + b, y, k);
  15229. for (int i = 0; i < nb; i++) {
  15230. for (int j = 0; j < QK4_1; j += 2) {
  15231. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15232. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15233. hist[vi0]++;
  15234. hist[vi1]++;
  15235. }
  15236. }
  15237. }
  15238. return (n/QK4_1*sizeof(block_q4_1));
  15239. }
  15240. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15241. assert(k % QK5_0 == 0);
  15242. const int nb = k / QK5_0;
  15243. for (int b = 0; b < n; b += k) {
  15244. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15245. quantize_row_q5_0_reference(src + b, y, k);
  15246. for (int i = 0; i < nb; i++) {
  15247. uint32_t qh;
  15248. memcpy(&qh, &y[i].qh, sizeof(qh));
  15249. for (int j = 0; j < QK5_0; j += 2) {
  15250. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15251. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15252. // cast to 16 bins
  15253. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15254. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15255. hist[vi0]++;
  15256. hist[vi1]++;
  15257. }
  15258. }
  15259. }
  15260. return (n/QK5_0*sizeof(block_q5_0));
  15261. }
  15262. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15263. assert(k % QK5_1 == 0);
  15264. const int nb = k / QK5_1;
  15265. for (int b = 0; b < n; b += k) {
  15266. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15267. quantize_row_q5_1_reference(src + b, y, k);
  15268. for (int i = 0; i < nb; i++) {
  15269. uint32_t qh;
  15270. memcpy(&qh, &y[i].qh, sizeof(qh));
  15271. for (int j = 0; j < QK5_1; j += 2) {
  15272. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15273. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15274. // cast to 16 bins
  15275. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15276. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15277. hist[vi0]++;
  15278. hist[vi1]++;
  15279. }
  15280. }
  15281. }
  15282. return (n/QK5_1*sizeof(block_q5_1));
  15283. }
  15284. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15285. assert(k % QK8_0 == 0);
  15286. const int nb = k / QK8_0;
  15287. for (int b = 0; b < n; b += k) {
  15288. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15289. quantize_row_q8_0_reference(src + b, y, k);
  15290. for (int i = 0; i < nb; i++) {
  15291. for (int j = 0; j < QK8_0; ++j) {
  15292. const int8_t vi = y[i].qs[j];
  15293. hist[vi/16 + 8]++;
  15294. }
  15295. }
  15296. }
  15297. return (n/QK8_0*sizeof(block_q8_0));
  15298. }
  15299. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15300. size_t result = 0;
  15301. switch (type) {
  15302. case GGML_TYPE_Q4_0:
  15303. {
  15304. GGML_ASSERT(start % QK4_0 == 0);
  15305. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15306. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15307. } break;
  15308. case GGML_TYPE_Q4_1:
  15309. {
  15310. GGML_ASSERT(start % QK4_1 == 0);
  15311. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15312. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15313. } break;
  15314. case GGML_TYPE_Q5_0:
  15315. {
  15316. GGML_ASSERT(start % QK5_0 == 0);
  15317. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15318. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15319. } break;
  15320. case GGML_TYPE_Q5_1:
  15321. {
  15322. GGML_ASSERT(start % QK5_1 == 0);
  15323. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15324. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15325. } break;
  15326. case GGML_TYPE_Q8_0:
  15327. {
  15328. GGML_ASSERT(start % QK8_0 == 0);
  15329. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15330. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15331. } break;
  15332. case GGML_TYPE_Q2_K:
  15333. {
  15334. GGML_ASSERT(start % QK_K == 0);
  15335. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15336. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15337. } break;
  15338. case GGML_TYPE_Q3_K:
  15339. {
  15340. GGML_ASSERT(start % QK_K == 0);
  15341. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15342. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15343. } break;
  15344. case GGML_TYPE_Q4_K:
  15345. {
  15346. GGML_ASSERT(start % QK_K == 0);
  15347. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15348. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15349. } break;
  15350. case GGML_TYPE_Q5_K:
  15351. {
  15352. GGML_ASSERT(start % QK_K == 0);
  15353. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15354. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15355. } break;
  15356. case GGML_TYPE_Q6_K:
  15357. {
  15358. GGML_ASSERT(start % QK_K == 0);
  15359. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15360. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15361. } break;
  15362. case GGML_TYPE_F16:
  15363. {
  15364. int elemsize = sizeof(ggml_fp16_t);
  15365. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15366. result = n * elemsize;
  15367. } break;
  15368. case GGML_TYPE_F32:
  15369. {
  15370. int elemsize = sizeof(float);
  15371. result = n * elemsize;
  15372. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15373. } break;
  15374. default:
  15375. assert(false);
  15376. }
  15377. return result;
  15378. }
  15379. ////////////////////////////////////////////////////////////////////////////////
  15380. struct gguf_str {
  15381. uint64_t n; // GGUFv2
  15382. char * data;
  15383. };
  15384. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15385. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15386. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15387. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15388. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15389. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15390. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15391. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15392. [GGUF_TYPE_BOOL] = sizeof(bool),
  15393. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15394. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15395. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15396. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15397. [GGUF_TYPE_ARRAY] = 0, // undefined
  15398. };
  15399. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15400. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15401. [GGUF_TYPE_UINT8] = "u8",
  15402. [GGUF_TYPE_INT8] = "i8",
  15403. [GGUF_TYPE_UINT16] = "u16",
  15404. [GGUF_TYPE_INT16] = "i16",
  15405. [GGUF_TYPE_UINT32] = "u32",
  15406. [GGUF_TYPE_INT32] = "i32",
  15407. [GGUF_TYPE_FLOAT32] = "f32",
  15408. [GGUF_TYPE_BOOL] = "bool",
  15409. [GGUF_TYPE_STRING] = "str",
  15410. [GGUF_TYPE_ARRAY] = "arr",
  15411. [GGUF_TYPE_UINT64] = "u64",
  15412. [GGUF_TYPE_INT64] = "i64",
  15413. [GGUF_TYPE_FLOAT64] = "f64",
  15414. };
  15415. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15416. union gguf_value {
  15417. uint8_t uint8;
  15418. int8_t int8;
  15419. uint16_t uint16;
  15420. int16_t int16;
  15421. uint32_t uint32;
  15422. int32_t int32;
  15423. float float32;
  15424. uint64_t uint64;
  15425. int64_t int64;
  15426. double float64;
  15427. bool bool_;
  15428. struct gguf_str str;
  15429. struct {
  15430. enum gguf_type type;
  15431. uint64_t n; // GGUFv2
  15432. void * data;
  15433. } arr;
  15434. };
  15435. struct gguf_kv {
  15436. struct gguf_str key;
  15437. enum gguf_type type;
  15438. union gguf_value value;
  15439. };
  15440. struct gguf_header {
  15441. char magic[4];
  15442. uint32_t version;
  15443. uint64_t n_tensors; // GGUFv2
  15444. uint64_t n_kv; // GGUFv2
  15445. };
  15446. struct gguf_tensor_info {
  15447. struct gguf_str name;
  15448. uint32_t n_dims;
  15449. uint64_t ne[GGML_MAX_DIMS];
  15450. enum ggml_type type;
  15451. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15452. // for writing API
  15453. const void * data;
  15454. size_t size;
  15455. };
  15456. struct gguf_context {
  15457. struct gguf_header header;
  15458. struct gguf_kv * kv;
  15459. struct gguf_tensor_info * infos;
  15460. size_t alignment;
  15461. size_t offset; // offset of `data` from beginning of file
  15462. size_t size; // size of `data` in bytes
  15463. //uint8_t * padding;
  15464. void * data;
  15465. };
  15466. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15467. const size_t n = fread(dst, 1, size, file);
  15468. *offset += n;
  15469. return n == size;
  15470. }
  15471. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15472. p->n = 0;
  15473. p->data = NULL;
  15474. bool ok = true;
  15475. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15476. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15477. return ok;
  15478. }
  15479. struct gguf_context * gguf_init_empty(void) {
  15480. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15481. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15482. ctx->header.version = GGUF_VERSION;
  15483. ctx->header.n_tensors = 0;
  15484. ctx->header.n_kv = 0;
  15485. ctx->kv = NULL;
  15486. ctx->infos = NULL;
  15487. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15488. ctx->offset = 0;
  15489. ctx->size = 0;
  15490. ctx->data = NULL;
  15491. return ctx;
  15492. }
  15493. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15494. FILE * file = fopen(fname, "rb");
  15495. if (!file) {
  15496. return NULL;
  15497. }
  15498. // offset from start of file
  15499. size_t offset = 0;
  15500. char magic[4];
  15501. // check the magic before making allocations
  15502. {
  15503. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15504. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15505. if (magic[i] != GGUF_MAGIC[i]) {
  15506. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15507. fclose(file);
  15508. return NULL;
  15509. }
  15510. }
  15511. }
  15512. bool ok = true;
  15513. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15514. // read the header
  15515. {
  15516. strncpy(ctx->header.magic, magic, 4);
  15517. ctx->kv = NULL;
  15518. ctx->infos = NULL;
  15519. ctx->data = NULL;
  15520. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15521. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15522. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15523. if (ctx->header.version == 1) {
  15524. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15525. fclose(file);
  15526. gguf_free(ctx);
  15527. return NULL;
  15528. }
  15529. if (!ok) {
  15530. fprintf(stderr, "%s: failed to read header\n", __func__);
  15531. fclose(file);
  15532. gguf_free(ctx);
  15533. return NULL;
  15534. }
  15535. }
  15536. // read the kv pairs
  15537. {
  15538. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15539. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15540. struct gguf_kv * kv = &ctx->kv[i];
  15541. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15542. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15543. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15544. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15545. switch (kv->type) {
  15546. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15547. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15548. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15549. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15550. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15551. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15552. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15553. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15554. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15555. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15556. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15557. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15558. case GGUF_TYPE_ARRAY:
  15559. {
  15560. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15561. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15562. switch (kv->value.arr.type) {
  15563. case GGUF_TYPE_UINT8:
  15564. case GGUF_TYPE_INT8:
  15565. case GGUF_TYPE_UINT16:
  15566. case GGUF_TYPE_INT16:
  15567. case GGUF_TYPE_UINT32:
  15568. case GGUF_TYPE_INT32:
  15569. case GGUF_TYPE_FLOAT32:
  15570. case GGUF_TYPE_UINT64:
  15571. case GGUF_TYPE_INT64:
  15572. case GGUF_TYPE_FLOAT64:
  15573. case GGUF_TYPE_BOOL:
  15574. {
  15575. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15576. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15577. } break;
  15578. case GGUF_TYPE_STRING:
  15579. {
  15580. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15581. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15582. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15583. }
  15584. } break;
  15585. case GGUF_TYPE_ARRAY:
  15586. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15587. }
  15588. } break;
  15589. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15590. }
  15591. if (!ok) {
  15592. break;
  15593. }
  15594. }
  15595. if (!ok) {
  15596. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15597. fclose(file);
  15598. gguf_free(ctx);
  15599. return NULL;
  15600. }
  15601. }
  15602. // read the tensor infos
  15603. {
  15604. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15605. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15606. struct gguf_tensor_info * info = &ctx->infos[i];
  15607. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15608. info->ne[j] = 1;
  15609. }
  15610. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15611. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15612. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15613. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15614. }
  15615. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15616. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15617. if (!ok) {
  15618. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15619. fclose(file);
  15620. gguf_free(ctx);
  15621. return NULL;
  15622. }
  15623. }
  15624. }
  15625. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15626. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15627. if (alignment_idx != -1) {
  15628. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15629. }
  15630. // we require the data section to be aligned, so take into account any padding
  15631. {
  15632. const size_t offset_pad = offset % ctx->alignment;
  15633. if (offset_pad != 0) {
  15634. offset += ctx->alignment - offset_pad;
  15635. fseek(file, offset, SEEK_SET);
  15636. }
  15637. }
  15638. // store the current file offset - this is where the data section starts
  15639. ctx->offset = offset;
  15640. // compute the total size of the data section, taking into account the alignment
  15641. {
  15642. ctx->size = 0;
  15643. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15644. struct gguf_tensor_info * info = &ctx->infos[i];
  15645. const int64_t ne =
  15646. (int64_t) info->ne[0] *
  15647. (int64_t) info->ne[1] *
  15648. (int64_t) info->ne[2] *
  15649. (int64_t) info->ne[3];
  15650. if (ne % ggml_blck_size(info->type) != 0) {
  15651. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15652. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15653. fclose(file);
  15654. gguf_free(ctx);
  15655. return NULL;
  15656. }
  15657. const size_t size_cur = ggml_row_size(info->type, ne);
  15658. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15659. }
  15660. }
  15661. // load the tensor data only if requested
  15662. if (params.ctx != NULL) {
  15663. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15664. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15665. // the ggml_tensor structs to the appropriate locations in the binary blob
  15666. // compute the exact size needed for the new ggml_context
  15667. const size_t mem_size =
  15668. params.no_alloc ?
  15669. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15670. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15671. struct ggml_init_params pdata = {
  15672. .mem_size = mem_size,
  15673. .mem_buffer = NULL,
  15674. .no_alloc = params.no_alloc,
  15675. };
  15676. *params.ctx = ggml_init(pdata);
  15677. struct ggml_context * ctx_data = *params.ctx;
  15678. struct ggml_tensor * data = NULL;
  15679. if (!params.no_alloc) {
  15680. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15681. ok = ok && data != NULL;
  15682. // read the binary blob with the tensor data
  15683. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15684. if (!ok) {
  15685. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15686. fclose(file);
  15687. ggml_free(ctx_data);
  15688. gguf_free(ctx);
  15689. return NULL;
  15690. }
  15691. ctx->data = data->data;
  15692. }
  15693. ggml_set_no_alloc(ctx_data, true);
  15694. // create the tensors
  15695. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15696. const int64_t ne[GGML_MAX_DIMS] = {
  15697. ctx->infos[i].ne[0],
  15698. ctx->infos[i].ne[1],
  15699. ctx->infos[i].ne[2],
  15700. ctx->infos[i].ne[3],
  15701. };
  15702. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15703. ok = ok && cur != NULL;
  15704. ggml_set_name(cur, ctx->infos[i].name.data);
  15705. if (!ok) {
  15706. break;
  15707. }
  15708. // point the data member to the appropriate location in the binary blob using the tensor infos
  15709. if (!params.no_alloc) {
  15710. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15711. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15712. }
  15713. }
  15714. if (!ok) {
  15715. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15716. fclose(file);
  15717. ggml_free(ctx_data);
  15718. gguf_free(ctx);
  15719. return NULL;
  15720. }
  15721. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15722. }
  15723. fclose(file);
  15724. return ctx;
  15725. }
  15726. void gguf_free(struct gguf_context * ctx) {
  15727. if (ctx == NULL) {
  15728. return;
  15729. }
  15730. if (ctx->kv) {
  15731. // free string memory - not great..
  15732. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15733. struct gguf_kv * kv = &ctx->kv[i];
  15734. if (kv->key.data) {
  15735. free(kv->key.data);
  15736. }
  15737. if (kv->type == GGUF_TYPE_STRING) {
  15738. if (kv->value.str.data) {
  15739. free(kv->value.str.data);
  15740. }
  15741. }
  15742. if (kv->type == GGUF_TYPE_ARRAY) {
  15743. if (kv->value.arr.data) {
  15744. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15745. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15746. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15747. if (str->data) {
  15748. free(str->data);
  15749. }
  15750. }
  15751. }
  15752. free(kv->value.arr.data);
  15753. }
  15754. }
  15755. }
  15756. free(ctx->kv);
  15757. }
  15758. if (ctx->infos) {
  15759. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15760. struct gguf_tensor_info * info = &ctx->infos[i];
  15761. if (info->name.data) {
  15762. free(info->name.data);
  15763. }
  15764. }
  15765. free(ctx->infos);
  15766. }
  15767. GGML_ALIGNED_FREE(ctx);
  15768. }
  15769. const char * gguf_type_name(enum gguf_type type) {
  15770. return GGUF_TYPE_NAME[type];
  15771. }
  15772. int gguf_get_version(const struct gguf_context * ctx) {
  15773. return ctx->header.version;
  15774. }
  15775. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15776. return ctx->alignment;
  15777. }
  15778. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15779. return ctx->offset;
  15780. }
  15781. void * gguf_get_data(const struct gguf_context * ctx) {
  15782. return ctx->data;
  15783. }
  15784. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15785. return ctx->header.n_kv;
  15786. }
  15787. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15788. // return -1 if key not found
  15789. int keyfound = -1;
  15790. const int n_kv = gguf_get_n_kv(ctx);
  15791. for (int i = 0; i < n_kv; ++i) {
  15792. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15793. keyfound = i;
  15794. break;
  15795. }
  15796. }
  15797. return keyfound;
  15798. }
  15799. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15800. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15801. return ctx->kv[key_id].key.data;
  15802. }
  15803. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15804. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15805. return ctx->kv[key_id].type;
  15806. }
  15807. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15808. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15809. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15810. return ctx->kv[key_id].value.arr.type;
  15811. }
  15812. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15813. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15814. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15815. return ctx->kv[key_id].value.arr.data;
  15816. }
  15817. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15818. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15819. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15820. struct gguf_kv * kv = &ctx->kv[key_id];
  15821. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15822. return str->data;
  15823. }
  15824. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15825. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15826. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15827. return ctx->kv[key_id].value.arr.n;
  15828. }
  15829. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15830. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15831. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15832. return ctx->kv[key_id].value.uint8;
  15833. }
  15834. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15835. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15836. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15837. return ctx->kv[key_id].value.int8;
  15838. }
  15839. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15840. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15841. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15842. return ctx->kv[key_id].value.uint16;
  15843. }
  15844. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15845. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15846. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15847. return ctx->kv[key_id].value.int16;
  15848. }
  15849. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15850. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15851. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15852. return ctx->kv[key_id].value.uint32;
  15853. }
  15854. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15855. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15856. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15857. return ctx->kv[key_id].value.int32;
  15858. }
  15859. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15860. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15861. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15862. return ctx->kv[key_id].value.float32;
  15863. }
  15864. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15865. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15866. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15867. return ctx->kv[key_id].value.uint64;
  15868. }
  15869. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15870. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15871. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15872. return ctx->kv[key_id].value.int64;
  15873. }
  15874. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15875. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15876. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15877. return ctx->kv[key_id].value.float64;
  15878. }
  15879. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15880. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15881. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15882. return ctx->kv[key_id].value.bool_;
  15883. }
  15884. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15885. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15886. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15887. return ctx->kv[key_id].value.str.data;
  15888. }
  15889. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  15890. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15891. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  15892. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  15893. return &ctx->kv[key_id].value;
  15894. }
  15895. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15896. return ctx->header.n_tensors;
  15897. }
  15898. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15899. // return -1 if tensor not found
  15900. int tensorfound = -1;
  15901. const int n_tensors = gguf_get_n_tensors(ctx);
  15902. for (int i = 0; i < n_tensors; ++i) {
  15903. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15904. tensorfound = i;
  15905. break;
  15906. }
  15907. }
  15908. return tensorfound;
  15909. }
  15910. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15911. return ctx->infos[i].offset;
  15912. }
  15913. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15914. return ctx->infos[i].name.data;
  15915. }
  15916. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  15917. return ctx->infos[i].type;
  15918. }
  15919. // returns the index
  15920. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15921. const int idx = gguf_find_key(ctx, key);
  15922. if (idx >= 0) {
  15923. return idx;
  15924. }
  15925. const int n_kv = gguf_get_n_kv(ctx);
  15926. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15927. ctx->kv[n_kv].key.n = strlen(key);
  15928. ctx->kv[n_kv].key.data = strdup(key);
  15929. ctx->header.n_kv++;
  15930. return n_kv;
  15931. }
  15932. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15933. const int idx = gguf_get_or_add_key(ctx, key);
  15934. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15935. ctx->kv[idx].value.uint8 = val;
  15936. }
  15937. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15938. const int idx = gguf_get_or_add_key(ctx, key);
  15939. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15940. ctx->kv[idx].value.int8 = val;
  15941. }
  15942. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15943. const int idx = gguf_get_or_add_key(ctx, key);
  15944. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15945. ctx->kv[idx].value.uint16 = val;
  15946. }
  15947. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15948. const int idx = gguf_get_or_add_key(ctx, key);
  15949. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15950. ctx->kv[idx].value.int16 = val;
  15951. }
  15952. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15953. const int idx = gguf_get_or_add_key(ctx, key);
  15954. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15955. ctx->kv[idx].value.uint32 = val;
  15956. }
  15957. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15958. const int idx = gguf_get_or_add_key(ctx, key);
  15959. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15960. ctx->kv[idx].value.int32 = val;
  15961. }
  15962. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15963. const int idx = gguf_get_or_add_key(ctx, key);
  15964. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15965. ctx->kv[idx].value.float32 = val;
  15966. }
  15967. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15968. const int idx = gguf_get_or_add_key(ctx, key);
  15969. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15970. ctx->kv[idx].value.uint64 = val;
  15971. }
  15972. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15973. const int idx = gguf_get_or_add_key(ctx, key);
  15974. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15975. ctx->kv[idx].value.int64 = val;
  15976. }
  15977. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15978. const int idx = gguf_get_or_add_key(ctx, key);
  15979. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15980. ctx->kv[idx].value.float64 = val;
  15981. }
  15982. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15983. const int idx = gguf_get_or_add_key(ctx, key);
  15984. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15985. ctx->kv[idx].value.bool_ = val;
  15986. }
  15987. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15988. const int idx = gguf_get_or_add_key(ctx, key);
  15989. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15990. ctx->kv[idx].value.str.n = strlen(val);
  15991. ctx->kv[idx].value.str.data = strdup(val);
  15992. }
  15993. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15994. const int idx = gguf_get_or_add_key(ctx, key);
  15995. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15996. ctx->kv[idx].value.arr.type = type;
  15997. ctx->kv[idx].value.arr.n = n;
  15998. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15999. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16000. }
  16001. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16002. const int idx = gguf_get_or_add_key(ctx, key);
  16003. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16004. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16005. ctx->kv[idx].value.arr.n = n;
  16006. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16007. for (int i = 0; i < n; i++) {
  16008. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16009. str->n = strlen(data[i]);
  16010. str->data = strdup(data[i]);
  16011. }
  16012. }
  16013. // set or add KV pairs from another context
  16014. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16015. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16016. switch (src->kv[i].type) {
  16017. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16018. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16019. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16020. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16021. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16022. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16023. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16024. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16025. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16026. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16027. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16028. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16029. case GGUF_TYPE_ARRAY:
  16030. {
  16031. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16032. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16033. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16034. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16035. }
  16036. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16037. free((void *)data);
  16038. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16039. GGML_ASSERT(false && "nested arrays not supported");
  16040. } else {
  16041. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16042. }
  16043. } break;
  16044. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16045. }
  16046. }
  16047. }
  16048. void gguf_add_tensor(
  16049. struct gguf_context * ctx,
  16050. const struct ggml_tensor * tensor) {
  16051. const int idx = ctx->header.n_tensors;
  16052. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16053. ctx->infos[idx].name.n = strlen(tensor->name);
  16054. ctx->infos[idx].name.data = strdup(tensor->name);
  16055. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16056. ctx->infos[idx].ne[i] = 1;
  16057. }
  16058. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16059. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16060. ctx->infos[idx].ne[i] = tensor->ne[i];
  16061. }
  16062. ctx->infos[idx].type = tensor->type;
  16063. ctx->infos[idx].offset = 0;
  16064. ctx->infos[idx].data = tensor->data;
  16065. ctx->infos[idx].size = ggml_nbytes(tensor);
  16066. if (ctx->header.n_tensors > 0) {
  16067. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16068. }
  16069. ctx->header.n_tensors++;
  16070. }
  16071. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16072. const int idx = gguf_find_tensor(ctx, name);
  16073. if (idx < 0) {
  16074. GGML_ASSERT(false && "tensor not found");
  16075. }
  16076. ctx->infos[idx].type = type;
  16077. }
  16078. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16079. const int idx = gguf_find_tensor(ctx, name);
  16080. if (idx < 0) {
  16081. GGML_ASSERT(false && "tensor not found");
  16082. }
  16083. ctx->infos[idx].data = data;
  16084. ctx->infos[idx].size = size;
  16085. // update offsets
  16086. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16087. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16088. }
  16089. }
  16090. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16091. // fwrite(&val->n, sizeof(val->n), 1, file);
  16092. // fwrite(val->data, sizeof(char), val->n, file);
  16093. //}
  16094. //
  16095. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16096. // fwrite(val, sizeof(char), size, file);
  16097. //}
  16098. struct gguf_buf {
  16099. void * data;
  16100. size_t size;
  16101. size_t offset;
  16102. };
  16103. static struct gguf_buf gguf_buf_init(size_t size) {
  16104. struct gguf_buf buf = {
  16105. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16106. /*buf.size =*/ size,
  16107. /*buf.offset =*/ 0,
  16108. };
  16109. return buf;
  16110. }
  16111. static void gguf_buf_free(struct gguf_buf buf) {
  16112. if (buf.data) {
  16113. free(buf.data);
  16114. }
  16115. }
  16116. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16117. if (buf->offset + size > buf->size) {
  16118. buf->size = 1.5*(buf->offset + size);
  16119. if (buf->data) {
  16120. buf->data = realloc(buf->data, buf->size);
  16121. }
  16122. }
  16123. }
  16124. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16125. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16126. if (buf->data) {
  16127. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16128. }
  16129. buf->offset += sizeof(val->n);
  16130. if (buf->data) {
  16131. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16132. }
  16133. buf->offset += val->n;
  16134. }
  16135. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16136. gguf_buf_grow(buf, el_size);
  16137. if (buf->data) {
  16138. memcpy((char *) buf->data + buf->offset, val, el_size);
  16139. }
  16140. buf->offset += el_size;
  16141. }
  16142. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16143. // write header
  16144. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16145. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16146. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16147. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16148. // write key-value pairs
  16149. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16150. struct gguf_kv * kv = &ctx->kv[i];
  16151. gguf_bwrite_str(buf, &kv->key);
  16152. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16153. switch (kv->type) {
  16154. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16155. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16156. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16157. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16158. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16159. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16160. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16161. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16162. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16163. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16164. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16165. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16166. case GGUF_TYPE_ARRAY:
  16167. {
  16168. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16169. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16170. switch (kv->value.arr.type) {
  16171. case GGUF_TYPE_UINT8:
  16172. case GGUF_TYPE_INT8:
  16173. case GGUF_TYPE_UINT16:
  16174. case GGUF_TYPE_INT16:
  16175. case GGUF_TYPE_UINT32:
  16176. case GGUF_TYPE_INT32:
  16177. case GGUF_TYPE_FLOAT32:
  16178. case GGUF_TYPE_UINT64:
  16179. case GGUF_TYPE_INT64:
  16180. case GGUF_TYPE_FLOAT64:
  16181. case GGUF_TYPE_BOOL:
  16182. {
  16183. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16184. } break;
  16185. case GGUF_TYPE_STRING:
  16186. {
  16187. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16188. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16189. }
  16190. } break;
  16191. case GGUF_TYPE_ARRAY:
  16192. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16193. }
  16194. } break;
  16195. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16196. }
  16197. }
  16198. // write tensor infos
  16199. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16200. struct gguf_tensor_info * info = &ctx->infos[i];
  16201. gguf_bwrite_str(buf, &info->name);
  16202. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16203. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16204. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16205. }
  16206. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16207. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16208. }
  16209. // we require the data section to be aligned, so take into account any padding
  16210. {
  16211. const size_t offset = buf->offset;
  16212. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16213. if (offset_pad != offset) {
  16214. uint8_t pad = 0;
  16215. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16216. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16217. }
  16218. }
  16219. }
  16220. if (only_meta) {
  16221. return;
  16222. }
  16223. size_t offset = 0;
  16224. // write tensor data
  16225. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16226. struct gguf_tensor_info * info = &ctx->infos[i];
  16227. const size_t size = info->size;
  16228. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16229. gguf_bwrite_el(buf, info->data, size);
  16230. if (size_pad != size) {
  16231. uint8_t pad = 0;
  16232. for (size_t j = 0; j < size_pad - size; ++j) {
  16233. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16234. }
  16235. }
  16236. GGML_ASSERT(offset == info->offset);
  16237. offset += size_pad;
  16238. }
  16239. }
  16240. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16241. FILE * file = fopen(fname, "wb");
  16242. if (!file) {
  16243. GGML_ASSERT(false && "failed to open file for writing");
  16244. }
  16245. struct gguf_buf buf = gguf_buf_init(16*1024);
  16246. gguf_write_to_buf(ctx, &buf, only_meta);
  16247. fwrite(buf.data, 1, buf.offset, file);
  16248. gguf_buf_free(buf);
  16249. fclose(file);
  16250. }
  16251. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16252. // no allocs - only compute size
  16253. struct gguf_buf buf = gguf_buf_init(0);
  16254. gguf_write_to_buf(ctx, &buf, true);
  16255. return buf.offset;
  16256. }
  16257. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16258. struct gguf_buf buf = gguf_buf_init(16*1024);
  16259. gguf_write_to_buf(ctx, &buf, true);
  16260. memcpy(data, buf.data, buf.offset);
  16261. gguf_buf_free(buf);
  16262. }
  16263. ////////////////////////////////////////////////////////////////////////////////
  16264. int ggml_cpu_has_avx(void) {
  16265. #if defined(__AVX__)
  16266. return 1;
  16267. #else
  16268. return 0;
  16269. #endif
  16270. }
  16271. int ggml_cpu_has_avx_vnni(void) {
  16272. #if defined(__AVXVNNI__)
  16273. return 1;
  16274. #else
  16275. return 0;
  16276. #endif
  16277. }
  16278. int ggml_cpu_has_avx2(void) {
  16279. #if defined(__AVX2__)
  16280. return 1;
  16281. #else
  16282. return 0;
  16283. #endif
  16284. }
  16285. int ggml_cpu_has_avx512(void) {
  16286. #if defined(__AVX512F__)
  16287. return 1;
  16288. #else
  16289. return 0;
  16290. #endif
  16291. }
  16292. int ggml_cpu_has_avx512_vbmi(void) {
  16293. #if defined(__AVX512VBMI__)
  16294. return 1;
  16295. #else
  16296. return 0;
  16297. #endif
  16298. }
  16299. int ggml_cpu_has_avx512_vnni(void) {
  16300. #if defined(__AVX512VNNI__)
  16301. return 1;
  16302. #else
  16303. return 0;
  16304. #endif
  16305. }
  16306. int ggml_cpu_has_fma(void) {
  16307. #if defined(__FMA__)
  16308. return 1;
  16309. #else
  16310. return 0;
  16311. #endif
  16312. }
  16313. int ggml_cpu_has_neon(void) {
  16314. #if defined(__ARM_NEON)
  16315. return 1;
  16316. #else
  16317. return 0;
  16318. #endif
  16319. }
  16320. int ggml_cpu_has_arm_fma(void) {
  16321. #if defined(__ARM_FEATURE_FMA)
  16322. return 1;
  16323. #else
  16324. return 0;
  16325. #endif
  16326. }
  16327. int ggml_cpu_has_metal(void) {
  16328. #if defined(GGML_USE_METAL)
  16329. return 1;
  16330. #else
  16331. return 0;
  16332. #endif
  16333. }
  16334. int ggml_cpu_has_f16c(void) {
  16335. #if defined(__F16C__)
  16336. return 1;
  16337. #else
  16338. return 0;
  16339. #endif
  16340. }
  16341. int ggml_cpu_has_fp16_va(void) {
  16342. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16343. return 1;
  16344. #else
  16345. return 0;
  16346. #endif
  16347. }
  16348. int ggml_cpu_has_wasm_simd(void) {
  16349. #if defined(__wasm_simd128__)
  16350. return 1;
  16351. #else
  16352. return 0;
  16353. #endif
  16354. }
  16355. int ggml_cpu_has_blas(void) {
  16356. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16357. return 1;
  16358. #else
  16359. return 0;
  16360. #endif
  16361. }
  16362. int ggml_cpu_has_cublas(void) {
  16363. #if defined(GGML_USE_CUBLAS)
  16364. return 1;
  16365. #else
  16366. return 0;
  16367. #endif
  16368. }
  16369. int ggml_cpu_has_clblast(void) {
  16370. #if defined(GGML_USE_CLBLAST)
  16371. return 1;
  16372. #else
  16373. return 0;
  16374. #endif
  16375. }
  16376. int ggml_cpu_has_gpublas(void) {
  16377. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16378. }
  16379. int ggml_cpu_has_sse3(void) {
  16380. #if defined(__SSE3__)
  16381. return 1;
  16382. #else
  16383. return 0;
  16384. #endif
  16385. }
  16386. int ggml_cpu_has_ssse3(void) {
  16387. #if defined(__SSSE3__)
  16388. return 1;
  16389. #else
  16390. return 0;
  16391. #endif
  16392. }
  16393. int ggml_cpu_has_vsx(void) {
  16394. #if defined(__POWER9_VECTOR__)
  16395. return 1;
  16396. #else
  16397. return 0;
  16398. #endif
  16399. }
  16400. ////////////////////////////////////////////////////////////////////////////////